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Supervisor: Prof. Dr. Erdoğan DOGDU 

 

2019, 80 pages 
 

Intrusion detection systems are one of the most important systems in cybersecurity that 

are designed to prevent and detect attacks by analyzing network traffic to look for 

abnormal patterns that are likely to represent hidden attacks. Volume, velocity, and 

variety are the characteristics of big data and represent the great challenge of intrusion 

detection systems, making it difficult to monitor and analyze this large volume of data 

using traditional techniques. In this study, big data and deep learning techniques are 

integrated to improve the performance of intrusion detection systems. Three classifiers 

are used to classify the network traffic datasets, and those are Deep Feed-Forward 

Neural Network and two ensemble techniques, Random Forest and Gradient Boosting 

Tree. To select the most relevant attributes from the datasets, we use a homogeneity 

metric to evaluate features. Two recently published datasets UNSW-NB15 and 

CICIDS2017 are used to evaluate the proposed method. 5-fold cross validation is used 

in this work to evaluate the machine learning model. We implemented the method 

using the distributed computing environment Apache Spark, integrated with Keras 

Deep Learning Library to implement the deep learning technique while the ensemble 

techniques are implemented using Apache Spark Machine Learning Library. The 
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results show a high accuracy with DNN for binary and multiclass classification on 

UNSW-NB15 dataset with very short prediction time and with accuracies at 99.16% 

for binary classification and 97.01% for multiclass classification. While the GBT 

classifier achieved the best accuracy for binary classification with the CICIDS2017 

dataset, which at 99.99% and for multiclass classification the DNN accuracy the 

highest with 99.56%.  

Keywords: Intrusion detection system, big data, machine learning, artificial neural 

networks, deep learning, ensemble techniques, feature selection.  
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ÖZ 

BÜYÜK VERİ VE DERİN ÖĞRENME  

TEKNİKLERİNİ KULLANARAK SALDIRI TESPİTİ 

 

FAKER, Osama 

Yüksek Lisans, Bilgisayar Mühendisliği Departmanı 

Danışman: Prof. Dr. Erdoğan DOGDU 

2019, 80 sayfa 

Saldırı tespit sistemleri, gizli saldırıları temsil etmesi muhtemel anormal kalıpları 

aramak için ağ trafiğini analiz ederek saldırıları önlemek ve tespit etmek için 

tasarlanmış siber güvenlik alanındaki en önemli sistemlerden biridir. Hacim, hız ve 

çeşitlilik büyük verilerin özellikleridir. Geleneksel teknikleri kullanarak, büyük veri 

hacminin izlenmesini ve analiz edilmesini zorlaştıracak olan saldırı tespit sistemleri 

büyük zorluğunu temsil etmektedir. Bu çalışmada, büyük veri ve derin öğrenme 

teknikleri, izinsiz giriş tespit sistemlerinin performansını iyileştirmek için entegre 

edilmiştir. Ağ trafiği veri kümelerini sınıflandırmak için üç sınıflandırıcı kullanılır. 

Bunlar; Derin Ileri Beslemeli Yapay Sinir Ağı (Deep Feed-Forward Neural Network) 

ve iki ensemble öğrenme tekniğidir; bunlar da Rastgele Orman (Random Forest) ve 

Gradyan Artırma Ağacı (Gradient Boosting Tree). Veri kümelerinden en ilgili 

özellikleri seçmek ve bunları değerlendirmek için homojenlik ölçümünü kullanıyoruz. 

Yeni yayınlanan iki veri seti UNSW-NB15 ve CICIDS2017, önerilen yöntemi 

değerlendirmek için kullanılmıştır. Makine öğrenim modelini değerlendirmek için bu 

çalışmada 5 kat çapraz doğrulama kullanılmıştır. Apache Spark Machine Learning 

Library(Apache Spark Makine Öğrenme Kütüphanesi) kullanılarak ensemble 
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teknikleri uygulanırken, derin öğrenme tekniğini uygulamak için Keras Deep Learning 

Library (Keras Derin Öğrenme Kütüphanesi) ile entegre olan dağıtılmış bilgi işlem 

ortamı Apache Spark’ı kullanarak bu yöntemi uyguladık. Sonuçlar, DNS'nin 

UNSW-NB15 veri setinde ikili ve çoklu sınıf sınıflandırması için yüksek bir hassasiyet 

olduğunu ve çok kısa bir süre için öngörülen sürenin, ikili sınıflandırma için %99,16, 

çoklu sınıflandırma için %97,01 olduğunu ve GBT sınıflandırıcısının en iyi ikili 

sınıflandırma doğruluğunu elde ettiğini gösterdi. %99.99 olan CICIDS 2017 veri seti 

ve çok sınıflı sınıflandırma için DNN doğruluğu %99.56 ile en yüksek seviyedeydi. 

Anahtar Kelimeler: Saldırı tespit sistemi, büyük veri, makine öğrenmesi, yapay sinir 

ağları, derin öğrenme, topluluk teknikleri, özellik seçimi. 
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CHAPTER 1 

INTRODUCTION 

Providing protection and privacy of big data is one of the most important challenges 

facing developers of security management systems. Especially with the large 

expansion of the use of Internet networks and the rapid growth of the volume of data 

generated from several sources. This expansion and growth gave more space for 

hackers to launch their malicious attacks and development techniques and tools of 

intrusion. On the other hand, researchers and developers of intrusion detection systems 

(IDSs) seek to increase the efficiency of detecting malicious attacks and predicting 

them early. Intrusion detection systems are one of the most important systems used in 

cybersecurity. 

Intrusion refers to attempts to compromise the confidentiality, integrity, availability, 

or to bypass the security mechanisms of a computer or network resources. Intrusion 

detection systems (IDSs) are the hardware or software that monitors and analyzes data 

flowing through computers and networks to detect security breaches that threaten 

confidentiality, integrity or availability of a system's resources [1]. There are three 

types of intrusion detection system, Host-based IDS, Network-based IDS, and Hybrid-

based IDS, depending on the IDS’ location in the network. Host-based IDS monitors 

and collects data flowing within a computer or host and with the large growth of 

networks. The need for network-based IDS has emerged, which focus on monitoring 

the flow of data within a specific network or network group. The integration between 

the Host-based IDS and Network-based IDS created a more efficient system to monitor 

the flow of data within the devices and across the network, which is called Hybrid-

based IDS [2]. 
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Intrusion detection systems are using two basic methods for analyzing events to detect 

attacks: (I) misuse detection and (ii) anomaly detection. Misuse detection or signature-

based detection is an analysis of system activities to search and detect patterns of 

attacks identical or a like to previously known attack patterns and stored in a database 

intrusion detection system. Anomaly detection is to detect unusual patterns of behavior 

in network traffic and relies on building models that represent the normal behavior of 

users, hosts or the network where patterns of behavior that deviate from these models 

are detected and often represent abnormal behavior [3]. 

The process of anomalies detecting was classified into two ways. The first method is 

Programmed model, where the system is taught to detect abnormal activities by an 

external user. Which determines the abnormal behavior in the system, that poses a 

threat to system integration and security. This Programmed model has been classified 

into three categories: threshold, Simple rule-based and Statistical model. The second 

method is self-learning; this method is based on building models of the basic processes 

of the system by monitoring traffic for a long time. Self-learning systems are classified 

into two categories: time series and machine learning [4]. 

Big data is data that are difficult to be stored, managed, or manipulated by traditional 

techniques. The big data characteristics are volume, variety, and velocity, which is 

called 3Vs of big data [5]. Where they represent a major challenge for intrusion 

detection systems [6]. Volume refers to the amount of data, where data generated from 

several different sources have exploded very dramatically over the last years. Which 

requires monitoring and analysis network traffic to integrate with the management and 

processing of big data. The Big Data is often associated with another challenge, which 

is variety, that indicates different data sources and therefore various data types 

structured, semi-structured and unstructured data. Also, variety refers to 

heterogeneous data, large IT infrastructure can generate a huge amount of data from 

many resources like many application servers, networks and workstations. Analyzing 

and monitoring heterogeneous data is a complex challenge and exacerbates the 

problems facing intrusion detection systems. The huge change in the volume and 

variety of data has also led to a change in the speed of data generation and streaming, 

which is called: velocity. Big data velocity refers to the speed of data that flows from 
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many sources like networks, business process, human interaction with applications 

like social media.  The speed of data flow from multiple sources is another challenge 

for the developers of intrusion detection systems. There is an urgent need to build 

intrusion detection systems capable of coping with the speed of data flow. Thus, 

improving the efficiency of analyzing and monitoring data traffic, detecting and 

preventing intrusion [7]. IBM company added another characteristic of “V” to the 

three previous 3Vs of big data, the fourth characteristic is the veracity that refers to the 

noises, biases, and abnormality in data. The higher the data quality, the more accurate 

the results [8]. Yuri Demchenko [9] added another “V” to the IBM 4Vs of big data, 

that called value, it Furthermore, Microsoft extended the 3Vs of big data to the 6Vs, 

which it added veracity, variability, and visibility [10]. Where the variability refers to 

the complexity of data or the number of variables in a data set. While the Visibility 

emphasizes that need have a full picture of data to make an informative decision. 

Big Data framework and related technologies have been created and developed over 

the last few years such as Hadoop [11], Apache Spark [12], Hive [13], NoSQL [14], 

which can handle big data and its various characteristics of volume, velocity, and 

variety. Big data techniques have many advantages such as speed in receiving, storing 

and processing data of various types. The characteristics of big data represent a real 

challenge for developers of intrusion detection systems, while the advantages of big 

data technologies give greater efficiency to intrusion detection systems in case of 

integration between them. 

Apache Spark is one of the most important frameworks developed over the past few 

years to handle the big data. An open source framework that combines an engine for 

distributing programs across clusters of machines with an elegant model for writing 

programs on top of it. Apache Spark has been developed using MapReduce technology 

for big data processing, also to deal with many workloads such as interactive queries 

and streaming, batch applications, frequent algorithms. The most important feature of 

Apache Spark is cluster computing in memory. It supports and provides many APIs 

where applications can be written in different languages (Java, Scala, Python), and it 

supports data flow, machine learning, SQL queries, and graph algorithms [15]. 

Machine learning library provided by Apache Spark which includes many machine 
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learning algorithms that are widely used in many fields such as anomaly detection, 

natural language processing and recommendation engines etc. Machine learning 

algorithms are divided into many categories according to the tasks performed by the 

algorithm such as classification, prediction, clustering etc. [16]. The Apache Spark 

integrates with a range of deep learning libraries that allow deep learning algorithms 

to be implemented on a Spark computing environment quickly, reducing training and 

testing time. Keras is a high-level neural networks API, written in Python and capable 

of running on top of TensorFlow, CNTK, or Theano [17]. 

Machine learning is an artificial intelligence application based on the idea that the 

machine can learn from data to build models and make decisions with very limited 

human intervention. Machine learning techniques have shown high performance and 

efficiency in extracting different types a pattern of knowledge from the environment 

in which these techniques are used. These techniques are divided into two main 

categories: unsupervised and supervised machine learning techniques. A term 

supervised indicates that this type of technology requires a training process so that the 

extracted outputs are an approach or a match to the expected outputs. While the term 

refers to the fact that these techniques do not require a training process and thus cannot 

be expected outputs. These techniques rely on their capability to extract knowledge 

from the data [18]. Machine learning includes a range of techniques such as clustering, 

classification, artificial neural networks. Each of these techniques includes a set of 

algorithms that are widely used to develop and improve the performance of anomaly 

detection. Recently, artificial neural networks have been used in many applications 

and have provided good performance and results [19] 

1.1. Problem Definition 

Over the past years, the number of cyber-attacks has increased. These attacks target to 

threat the integrity and confidentiality of networks. With the large volume of data 

generated from several sources, intrusion detection systems face with major 

challenges. Detecting and preventing attacks before they occur requires a great ability 

to monitoring and analyzing the big data traffic to determine and know the features 

and patterns of attacks. The speed of analysis and monitor of big data traffic is not 
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provided by traditional data management techniques. which makes intrusion detection 

systems not capable of handling large data characteristics. Big data techniques and 

intrusion detection systems are involved in the use of machine learning techniques in 

data analysis and pattern extraction. allowing their integration to develop the 

capabilities of intrusion detection systems.  

1.2. Aim of the Study 

The aim of this study is to integrate deep learning and big data processing techniques 

to improve the performance of intrusion detection systems. A hybrid approach has 

been proposed that includes the use of a homogeneity metric in K-means clustering 

algorithm to select features from datasets. Then apply a deep learning network and 

ensemble technique Independently with k-fold cross-validation procedure. The 

approach has been tested on two recent datasets that contain a set of common and 

modern attacks. 

1.3. Thesis Layout 

The rest of the thesis chapters are arranged as follow, Chapter two reviews the 

literature related to the techniques included in this work. Chapter three provides the 

proposed method in detail. The experiments conducted to evaluate the performance of 

the proposed method are explained in Chapter four. Chapter five discusses the results 

of the experiments. Finally, chapter six presents the concluding remarks of the study. 
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CHAPTER 2 

LITERATURE REVIEW 

The intrusion detection systems are different in terms of design and structure. Since 

the development of the first model for intrusion detection by Dorothy [20]. many 

intrusion detection systems have been designed and developed, which differ in their 

data observation and collection techniques. However, most of them rely on the basic 

architectural form shown in Figure 2.1. It consists of the following parts: Data 

gathering device (sensor), the function of this component is to collect data from a 

monitored system; Detector (Intrusion Detection (ID) analysis engine) that is 

responsible for processing data collected from the sensors to determine anomaly 

activity. Knowledgebase (Database) that includes data collected from sensors after 

preprocessing, which represent information of attack patterns and data profiles. 

Configuration devise that provides information about the status of the Intrusion 

Detection System (IDS). Response component that is responsible for initiating 

intrusion detection procedures [21]. 

 

Figure 2.1:Basic architectural design of an Intrusion Detection System [21] 
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The intrusion detection systems are based on two main methods of detection. One of 

them is misuse-based detection, which is also called signature-based detection. This 

method is based on a database that includes attack patterns and characteristics. Where 

this technique monitors and analyzes data to detect any data that matches the patterns 

or characteristics of items in the database. On the other hand, the other method, which 

is called anomaly-based detection, attempts to estimate the normal behavior of the 

system that needs to be protected from abnormal patterns. that are detected and deviate 

from the normal behavior of the system. Anomaly-based detection is to detect unusual 

patterns of behavior in network traffic and relies on building models that represent the 

normal behavior of users, hosts, or the network. Where patterns of behavior that 

deviate from these models are detected and often represent abnormal behavior. As in 

the following Figure 2.2, which illustrates the anomaly in a two-dimensional data set, 

where groups N1 and N2 are normal data sets because they contain most of the data 

points, while the data points in the A3 set and A4 and A5 are considered as the 

anomalies because they are so far away from the two normal assumed datasets N1 and 

N2 [22]. 

 

Figure 2.2: A simple example of anomalies [22] 

As in Figure 2.2, anomaly-based detection is highly dependent on multiple machine 

learning techniques. That have the ability to extract patterns in data and build models 

based on a set of features that can classify the abnormal behavior of data traffic to and 

from the network or devices. Classification, clustering, shallow and deep neural 
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networks are some of the most widely used machine learning techniques in developing 

and improving the performance of anomaly detection systems.  

 

Figure 2.3: Techniques used in anomaly detection 

Several previous and modern works discussed the techniques of anomaly-based 

detection and their applications and approaches based on machine learning techniques. 

Bhuyan et al. [23] provides an overview of the research and studies, discussing the 

infrastructure of anomalies detection techniques. As well as the different species 

developed from these infrastructures, and the use of anomaly detection in many 

applications and challenges is also discussed. Agrawal and Agrawal [24] review 

various mining techniques and their approaches to detecting anomalies such as 

classification, clustering and hybrid techniques. Jyothsna et al. [25] this work provides 

a detailed survey of four major methods of anomaly detection techniques that are 

widely used, including classification, statistics, information theory and aggregation. 

Also discusses research difficulties and challenges with data sets used to detect 

intrusion.  

The basic processes of machine learning techniques can be described in the detection 

of anomalies as in Figure 2.4. After collecting the required data, they are categorized 

and tabulated in a way that allows the application of machine learning techniques. the 

type of machine learning technique is determined by the way it operates supervised or 

unsupervised. Decision tree, K-Nearest Neighbors, neural networks are considering 

supervised techniques. K-means Clustering Example of unsupervised techniques. 
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Outputs are evaluated in two ways: scores or binary/label. Scoring-based anomaly 

detection techniques determined anomaly value for each data instance. While the 

binary- based anomaly defined the output in binary format as either anomaly or 

normal [26]. 

 

Figure 2.4: Basic processes of Machine learning in Anomaly Detection [26] 

The applied of machine learning techniques to the data set is often preceded by the 

process of features selection. Which is an important technique for improving the 

performance of machine learning techniques. building highly efficient systems for 

monitoring and analyzing network traffic, early detection and prevention of attacks. 

Especially with the enormous volume of data transmitted across networks, this data is 

variety and has multiple sources and often associated with a high level of noise and 

duplicate data. feature selection is one of the common ways to get rid of noisy and 

irrelevant data [27]. 

Feature selection is a set of techniques that are used to select a subset of related features 

to build a high-expectation model. Datasets contain several features, some features are 

often more important in building a predictive model while having unneeded, irrelevant 

or duplicate features are likely to adversely affect the construction of a highly accurate 
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model. Feature selection is one of the most important techniques in machine learning, 

which aims to improve the efficiency and performance of the predictors to obtain a 

high accuracy rate. Also feature selection helps to build a faster and more cost-

effective predictors and provides a clearer understanding of the basic process of 

generating the data set [28]. 

There are many algorithms used to feature selection, that are divided into three main 

categories: filter method, wrapper method and embedded method. The filter method is 

based on the applies of statistical measures to determine the scoring of each feature, 

then features are ranked by the score, which attributes are retained, and which ones are 

deleted. While the wrapper method depends on the selected subset of the features and 

evaluation of the selected subset by the performance of classifier. Each time repeated 

the subset selection of the features and evaluated until the highest rating is obtained 

and considered as the final features set to learn the classifier then evaluated the 

classifier on independent testing dataset. feature selecting while building the model 

may produce more accurate and unbiased results, this is called an embedded method 

where the learning process cannot be separated from the feature selection process [29].  

Hindy et al. [30] this work provided an overview of the overall classification of 

intrusion detection systems and their classification with recent and previous work. This 

classification gives a detailed description of the intrusion detection system and its 

complexity. It also provides an overview of feature selection techniques that affect the 

effectiveness of machine learning techniques and their role in training and testing.  

The proposed method suggested that the homogeneity metric is used as an 

unsupervised feature selection for filter method. which is one of the measures used in 

the clustering techniques, where the homogeneity ranking of each feature is measured 

individually and the features with the highest rating are selected, that will be used to 

build the prediction model. The k-means clustering algorithm is one of the most 

popular clustering algorithms and is effective in handling large data. The homogeneity 

metric is one measure of the k mean algorithm, which indicates the extent to which a 

set of data points belongs to a specific class [31]. 
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Data cluster is the process of placing data points in similar clusters, a branch of data 

mining. The clustering algorithm divides data points set into several groups, since the 

similarity between points within a particular cluster is greater than the similarity 

between points within two different clusters. The idea of data clustering is simple in 

nature and very close to human in its way of thinking. Whenever the amount of data 

is large, the human tends to summarize the huge amount of data to a small number of 

groups or categories, in order to facilitate the process of analysis. clustering algorithms 

are widely used not only to organize and classify data but to compress data and build 

a data order model. If can find clusters of data, a model of the problem can be built 

based on those clusters. 

K-means clustering algorithm is one of the most common unsupervised machine 

learning algorithms. That is defined as a method in which data are divided into groups 

in a way that objects in each group share more similarity than with other objects in 

other groups. It is the most famous data analysis algorithms due to its outstanding 

mathematical performance. Where the data is collected in (K) cluster, (k) is the number 

of clusters determined before starting the algorithm. The clustering is done by reducing 

the total square distances (Euclidean spaces) between the elements and the center of 

the corresponding cluster. K is the number of clusters that is determined by the 

programmer. After determining the number of clusters, the Centroid is chosen 

randomly for each cluster. The distance between the Centroid and the data points is 

measured by the Euclidean equation.  

𝑑𝑖𝑗√∑ (𝑥𝑖𝑘
𝑛
𝑘=1  −  𝑥𝑗𝑘  )2 .................................................. (2.1) 

𝑛 = data points number 

𝑥𝑖𝑘 coordinate k of data point 𝑖 

𝑥𝑗𝑘 coordinate k of data point 𝑗 

The data points closest to the Centroid is grouped, the mean distance between these 

data points is calculated and the mean is defined as a new Centroid. The process is 

repeated from the second stage so that no data points moves between the clusters. 

Homogeneity is a clustering metric that is used to determine the homogeneity of data 
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points in a single cluster, where clustering must assign only those data points that are 

members of a single class to a single cluster. That means the cluster entropy is zero, 

entropy refers to the randomness or unpredictability.  

Define homogeneity as: 

       ℎ =  
𝐻(𝐶,𝐾)

𝐻(𝐶)
 .......................................................................... (2.2) 

where 𝐻(𝐶, 𝐾) is the conditional entropy of the classes given the cluster 

assignments and is given by: 

𝐻(𝐶, 𝐾) =  − ∑ ∑
𝑛𝑐,𝑘

𝑛
 

|𝐶|
𝐶=1

|𝐾|
𝐾=1 log

𝑛𝑐,𝑘

𝑛𝑘
 ....................................... (2.3) 

and 𝐻(𝐶) is the entropy of the classes and is given by 

𝐻(𝐶) =  − ∑
𝑛𝑐

𝑛

|𝐶|
𝐶=1  log

𝑛𝑐

𝑛
 ....................................................... (2.4) 

where 𝑛 the total number of data points, 𝑛𝑐 and 𝑛𝑘 the number of data points 

respectively belonging to belonging to class 𝑐 and cluster 𝑘, and 𝑛𝑐,𝑘 the number of 

data points from class 𝑐 assigned to cluster k [32, 33]. 

The researchers presented several proposals and studies that relied on the technique of 

unsupervised features selection. Some of them based on one technique and others 

introduced a hybrid approach combining sets of techniques for feature selection and 

machine learning techniques. Nisioti et al. [34] This paper provides an overview of the 

works that have provided hybrid and unsupervised intrusion detection systems, also 

the techniques used and their efficiency in detecting modern attack types based on a 

subset of features, In addition, the study shows that unsupervised techniques have the 

ability to select a subset of features from data generated from different and 

heterogeneous sources without the need to re-training, thus reducing computational 

time and complexity. 

Nour Mustafa and Jill Slay [35] Proposed Hybrid feature selection technique based on 

the central points (CP) of attribute values and Association Rule Mining (ARM). The 

EM clustering, Logistic Regression and Naïve Bayes are used to discriminate between 

attack and normal records. UNSW-NB15 & NLSKDD used to evaluate the proposed, 
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where the Logistic Regression achieved the best accuracies on both dataset 83% of 

UNSW-NB15 and 82.1% of NLSKDD. 

Vajiheh Hajisalem, Shahram Babaie [36] proposed a new hybrid classification method 

based on Artificial Bee Colony (ABC) and Artificial Fish Swarm (AFS) algorithms. 

The Fuzzy C-Means Clustering (FCM) and Correlation-based Feature Selection (CFS) 

techniques are applied to divide the training dataset and remove the irrelevant features. 

If-Then rules are generated through the CART technique according to the selected 

features to distinguish the normal and anomaly records. The proposed hybrid method 

was evaluated using UNSW-NB15 and NLSKDD dataset in terms of detection rate 

and false positive rates. Where the method applied on NLSKDD achieved 99% 

accuracy rate and 0.01% false positive rate, while the UNSW-NB15 achieved 98.9% 

accuracy rate and 0.13 false positive rate. 

Mohamed Idhammad, et al. [37] Authors presented a detection approach of DoS attack 

based on ANN (MLP). Unsupervised correlation-based feature selection method used 

to select relevant features. MLP implemented with several hidden layer (1 to 10) and 

average of accuracy. Training time and testing time calculated for each. The best 

average of accuracy 0.97% achieved by the MLP with seven hidden layer that applied 

on UNSW-NB15 dataset, while the six hidden layers achieved 0.99% average of 

accuracy with NLSKDD dataset. 

Artificial neural networks (ANN) are one of the main techniques used in machine 

learning. The word "nervous" refers to systems inspired by how the brain works to 

mimic the way humans learn or acquire knowledge. Neural networks are a technique 

created to simulate the human brain to patterns recognition, classification and 

clustering [38]. 

 

Figure 2.5: Essential components of the neuron in brain [39] 
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The simple neuron of the human brain consists of four parts: first, the function of 

Dendrite is the responsible part for receiving signals from other neurons. The Second, 

Soma (Cell Body) This section collects all incoming signals to generate inputs. Third, 

Axon Structure In the case of the total sum in the cell body to the threshold value, the 

signal is transmitted to other neurons by the axon. Finally, Synapses Working 

represents the point of connection between one neuron and the other neurons. 

ANN is designed to simulate the work of basic biological neurons, where weighted 

inputs based on their synaptic interconnection represent the dendrites in the Biological 

Neural Network. Artificial neurons in the ANN, which also include a summation unit 

and threshold representing the cell body in biological neural networks, while the output 

layer in artificial neural networks performs the function of Exon. 

 

Figure 2.6: Artificial neuron Computations [40] 

In artificial neural networks, to simulate the electrochemical junction in the human 

neurons. Adjusted the effect of the output of one neuron that moving to another neuron 

by multiplying the output value of that neuron by the weight between the two neurons. 

calculated the output of a neuron by passing the summation of the weighted inputs of 

that neuron through an activation function. The activation function is used to make the 

boundary between input values non-linear leading to greater precision in decision-

making. There is many functions are used to activate the summation of the weighted 

inputs in a neuron, such as the rectified linear unit (ReLU), the Hyperbolic Tangent 

(TanH) and Sigmoid functions. The ReLU is widely used in hidden layers for their 

ability to improve performance and fast learning when compared to other activation 

functions [41]. 
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Different activation functions are often used in the output layer neurons than those 

used in hidden layer neurons as desired by neural network outputs. Where the Sigmoid 

activation function is used for labeling problems, while the SoftMax activation 

function is used when the input value is assigned to a single class. The initial weights 

are often randomly selected and then updated to obtain the desired result. There are 

many techniques that are used to update the weights for each neuron. Back-

propagation algorithm is method widely using to update the weights of the neural 

network by calculating the gradient of loss function [42]. 

In general, ANN consists of three layers, one layer for input, one for output and at least 

one hidden layer between them. Inputs are passed to the hidden layers by a group of 

neurons in each layer. Where these neurons are connected to each other by weight, 

which represents the importance of input value, the more valuable neurons from the 

other will have a greater impact on the next layer of neurons. 

 

Figure 2.7: Topology of deep neural network 

Deep neural networks indicate that there is more than one hidden layer in the neural 

network, it widely using for supervised and unsupervised. DNN is highly efficient in 

deriving meanings from complex or imprecise data, extracting patterns and identifying 

extremely complex directions that cannot be known by humans or other computer 

technologies. The trained neural network can be considered an "expert" in the category 

of information given for analysis. This expert can then be used to make projections 

with new cases of interest. Neural networks are capable of handling large and noisy 

data, Where the greater the size of the data, the more accurate modeling results [43].  
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Output layer 

Input 

Input 
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Various types of artificial neural networks (ANN) have been developed, the first and 

simplest neural networks that are widely used is feedforward neural network , Which 

proposed in this work as one of the machine learning techniques to be applied, in this 

type of networks, information is transmitted in parallel from the input layer directly 

through the hidden layers and then into the output layer without cycles/loops, the 

proposed neural network contains three hidden layers. each network layer is fully 

connected to the next layer in the network, where ReLU function using in hidden layers 

and sigmoid function used in the output layer for binary classification while the 

SoftMax function used in the output layer for multiclass classification., where 

Backpropagation for learning the model. 

Ilyas Benmessahel, et al. [44] Developed advanced approach used new natural 

evolutionary algorithm (EA) called multiverse optimizer (MVO) is investigated and 

combined with an artificial neural network (ANN). This main idea of this approach is 

to train the feedforward multilayer artificial neural network using MOV and applied 

on UNSW-NB15 and NLSKDD. The results demonstrate the effectiveness of the 

proposed approach where the accuracy rate was 99.61% on UNSW-NB15, while the 

NLSKDD achieved 98.21%. 

Sayantan Guha, et al. [45] Presented approach using an artificial neural network with 

a genetic algorithm to reduce the number of features extracted from the network traffic 

data. The fully connected feedforward multilayer neural network used to classify 

network traffic data and consist three-layer input, a hidden layer and output layer. The 

nodes number in input layer has the same number of feature selection selected by the 

genetic algorithm. The output layer has a number of nodes as the same number of 

attack categories. While the ANN includes one hidden layer that consist of 22 nodes. 

This topology applied on tow datasets UNSW-NB15 and NLSKDD. The results of this 

approach are 95.46% and 91.98% respectively of datasets. 

Khoi khac Nguyen, et al. [46] Authors proposed a novel framework to detect anomaly 

in mobile cloud environment by using deep learning approach. Where the deep 

learning model includes two steps: feature analysis and dimension reduction, the aim 

of feature analysis is extracted features and learn from the features. While the 
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dimension reduction using Principle Component Analysis (PCA) to reduce the 

dimensionality of dataset. learning process includes three layers, input, output and 

hidden layers. Each layer act step, the first step: pre-learning process, where the   

Gaussian Binary Restricted Boltzmann Machine (GRBM) using to transform real 

value, input data to binary code that use in the hidden layer. Second step: deep learning 

phase adjust the weights of the neural network. Finally step: SoftMax Regression is 

the output layer that receives the output from the last hidden layer to classify the 

packets. three datasets used to evaluate the framework UNSW-NB15, NLSKDD and 

KDDCUP99. The accuracies rate is 95.84%, 90.99% and 97.11% respectively.    

 

Figure 2.8: DNN with Features Analysis and Dimension Reduction approach [46] 

Muna AL-Hawawreh, et al. [47] Proposed deep-learning methods for unsupervised 

learning. Automatic dimensionality reductions, deep auto-encoder (DAE) and deep 

feedforward neural network (DFFNN) architecture using to consecutive training 

process on two dataset UNSW-NB15 and NLSKDD. The network structures of the 

model were used for both datasets is input layer with 41 nodes, three hidden layers 

(10,3,10 nodes) and output layer consists 41 nodes for DAE. While 2 nodes of output 

layer for DFFNN. This method achieved accuracy rates are 98.4% and 92.5% 

NLSKDD and UNSW-NB15 respectively.  
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The ensemble is one of the most important methods used in machine learning to 

minimize noise, bias and variance factors. Which aims to improve the stability and 

accuracy of machine learning algorithms. The ensemble is a set of predictions that are 

integrated together to obtain a final prediction where several different predictions are 

combined to reach the target prediction, ensemble techniques are classified into two 

methods Boosting and Bagging.  

Table 2.1: Ensemble techniques types 
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Bagging 

e.g., Random Forest 

Independent classification 

Handle overfitting 

Reduce variance and increases accuracy 

Boosting 

e.g., Gradient Boosting Tree 

Sequential classifiers 

Reduce bias, variance and increases 

accuracy 

Can overfitting 

Bagging (Bootstrap Aggregation) depends on the creation many independent 

predictors (Decision Tree). Which are trained on subsets of data and then collect these 

predictions using one of the models averaging techniques weighted average, vote 

majority or normal average. Using a set of decision trees that are trained on subsets of 

data gives more accurate results than using a single decision tree and reduce the 

variation of the decision tree. Random forest algorithm is bagging ensemble. Boosting 

is an ensemble technique, Different from Bagging in that the predictor is not created 

independently but sequentially. Where every tree that is generated is trying to learn 

from the errors of the tree before it. Each time the input is incorrectly classified by a 

hypothesis, weight is increased so that the following hypothesis is more likely to be 

correctly categorized Gradient Boosted Tree is boosting ensemble [48].      

Random forest is a supervised learning algorithm that is one of the most used 

algorithms because it’s flexible and easy to use for classification and regression tasks. 

it depends on the ensemble method where it creates a set of decision trees and 

combines them to obtain a higher accuracy and stability prediction. Random forests 
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rely on the decision tree algorithm to build trees and training of each decision tree that 

is generated in parallel with a different subset of the training data. The nodes of each 

decision tree are split using a randomly selected attribute of the data. Randomly 

selected attribute leading to the distribution of potential errors evenly throughout the 

model and being eliminated through the majority voting decision strategy in the model. 

 

Figure 2.9: Random Forest simplified [49] 

A random forest is defined as a collection of tree-structured classifiers 

{h (x, Θk), k=1,…} where the {Θk} are independent identically distributed random 

vectors and each tree casts a unit vote for the most popular class at input x [50]. 

The growth of a single decision tree can be described within random forests in the 

following steps: Several random sub-sampling sets are created from the basic data set 

with replacement. The features are selected with the same sampling approach where a 

subset of the features is randomly selected from the sum of the overall features. 

Training the decision tree on each sample. Decision trees grow without pruning. 

Integrate all the decision Trees predictions results of by simple majority voting. the 

more trees are built, the more random forests ability to resist noise and increase the 

classification efficiency. Furthermore, the ability of a random forest algorithm to 

operate within distributed and parallel computing and efficiently process data by 
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simple classifiers built by the decision tree gives it the advantage of scalability and 

adaptation to large changes in data volume and variety. The random forest includes a 

set of parameters that need to be adjusted and which often result in improved 

performance. The two most important Parameters are the number of trees in the forest 

and a maximum depth of each tree. Increasing the number of trees helps to improve 

the testing time accuracy and reduce the variance in predictions, while the increases 

the depth of trees helps to build a more cohesive and powerful model [51,52].   

Because of its high performance in classification, the random forest has been proposed 

in many approaches and methods to improve and develop intrusion detection systems. 

Malik, et al. [53] provided IDS based on binary particle swarm optimization (PSO) 

and Random forest (RF). Where the binary PSO is used to search and select a more 

suitable set of attributes to classify network interferences and RF is used to 

classification. The proposed method consists of two steps to feature selection and 

classification, 10 cross-validation used to evaluate the classifier, all experiments were 

implemented in MATLAB4. 

 

Figure 2.10: Diagram of Random Forest and dimension redection [53] 

Random forest molding-based intrusion detection provided by Farnaaz and Jabbar [54] 

to detect four types of attack included in NLS-KDD dataset like Dos, Probe, U2R and 

R2L. the proposed method using feature selection techniques (Symmetrical 

uncertainty (SU)) to select a subset of features from the dataset, reduce dimensionality, 

remove redundant and irrelevant features. 10 cross-validation using for classification, 

the experiments implemented on WEKA tool. This work using a set of performance 

measures to evaluate the classifier like accuracy, Detection rate, False alarm rate and 
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Mathews correlation coefficient (MCC). The accuracies of each attack are 99.68% for 

DOS, 99.63% for Probe, 99.69% for R2L and 99.68 for R2L. 

Shi et al. [55] This paper discussed the used Semi-Supervised Random Forest for IDS, 

the classifier applied on KDD 1999 dataset, that included 41 features and four types of 

attacks. The results compared with the supervised RF and semi-supervised Ladder 

Network. These classifiers applied on four sets of samples selected from the dataset. 

Two performance measure used to evaluate classifiers are accuracy and execution 

time, supervised RF performed better than the semi-supervised RF in accuracy and 

execution time, while the semi-supervised RF achieved results better than semi-

supervised Ladder Network of both measures.  

Iman Sharafaldin et al. [56] the authors produce a reliable CICIDS2017 dataset that 

contains benign and seven common attack network flows. Examine the performance 

and accuracy of the selected features with seven common machine learning algorithms 

K-Nearest Neighbors, Random Forest, ID3, Ada-boost, Multilayer Perceptron, Nave 

Bayes and Quadratic Discriminant Analysis. According to the accuracy and execution 

time results the RF algorithms achieved best results, the accuracy is 98%. In addition, 

the new dataset was compared with publicly available data sets from 1998 till 2016 

based on 11 criteria representing common errors and criticisms of previous data sets, 

the comparison results showed that the new dataset addressed all errors and criticisms.       

Gradient Boosted is supervised machine learning, widely used for classification and 

regression tasks. GBT is an ensemble method as RF, But the difference is in the 

predictor’s creation (Decision trees). GBT is based on weak learners (high bias, low 

variance), weak learner in decision tree mean shallow tree. Where the GBT start with 

the shallow tree to build predictor, then calculate the error of expectations and passes 

the errors to the second tree as a target. The second tree adopts the new prediction 

model according to the data of the first tree model. The error is calculated for the new 

predictor model and passed to the third tree and so forth. GBT aims to reduce loss 

function on the training dataset and using the (log loss) for classification to reduce the 

loss function [57]. 

The log loss definition as: 
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2 ∑ log(1 + 𝑒𝑥𝑝(−2𝑦𝑖𝐹(𝑥𝑖)
𝑁
𝑖=1 )) ................................................ (2.5) 

where N = number of instances, 𝑦𝑖  𝑙𝑎𝑏𝑙𝑒 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐 𝑖, 𝑥𝑖 =

 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑖,   𝑓(𝑥𝑖)= model’s predicted label of instance i [51]. 

Tama and Rhee [58] Proposed anomaly-based IDS using gradient boosted machine 

(GBM), where the best parameters of GBM are obtained by performance grid search. 

GBM applied on three datasets UNSW-NB15, NLSKDD and GPRS with tenfold 

cross-validation. The performance of proposed approach compared with four 

classification techniques, Random forest (RF), deep neural network, support vector 

machine, classification and regression (CART). Using four measures accuracy, 

specificity, sensitivity, and AUC metric. The GBN classifier achieved high results on 

the three datasets.  

Gupta and Manish [59] This paper suggests a framework for intrusion detecting based 

on feature selection using two algorithms, correlation-based feature selection and Chi-

squared feature selection. Moreover, five classification algorithms using to detect the 

intrusion are Logistic regression, Support vector machines, Random forest, Gradient 

Boosted Decision trees and Naive Bayes. KDD’99 and NLS_KDD datasets are used 

to evaluate the framework. Five measures to performance evaluate (accuracy, training 

time, prediction time, specificity and sensitivity), the Random Forest and GBT 

achieved the best accuracy on both datasets.  

 

Figure 2.11: A framework of feature selection and classification techniques [59] 
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Cross-validation is also called rotation estimation. It is a common statistical method 

used to estimate the efficiency of machine learning models. Where This technique is 

used in applied machine learning to compare and select a case model in predictive 

modeling. Because it is easily understood and applied, and results in efficiency 

estimates that often have low bias than other methods. K-fold cross-validation one of 

the most famous methods used for cross-validation. It can identify and determine the 

best parameters that provide higher efficiency and accuracy in the model. Where it 

provides a good assessment of how the model works on the entire data set thus 

reducing the variance in the data set and takes all the folds into the training account as 

well as the test and thus reduces the variation in the data set. Which is why it provides 

a good indication of the generalization error [60]. 

 

Figure 2.12: 5-fold cross validation data split 

K-Fold Cross-validation technique has one parameter called (K) indicates the number 

of groups to which the data set will be divided, this procedure is implemented in 

several steps: 
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Table 2.2: Main steps of 5-cross validation 

Step1 The data set is Shuffle randomly 

Step 2 Divide data set to equal k sets 

Step 3 assume that K = 5 and folds: F1 to F5. 

Step 4 

For i = 1 to i = 5, 

one Fi set is selected for the testing and the remainder F2 to F5 for the 

training. 

Step 5 
This procedure is performed k times, where each subset is used as a test 

set once, while all subsets are used as training set several times. 

Step 6 

Train the machine learning on the subsets of training to create the model 

and evaluate it on the subset of testing to get the accuracy rate, Where the 

accuracy rate is kept, and the model is ignored. 

Step 7 
Finally, Estimate the accuracy of the model by averaging accuracy rate 

for all results in k cases of cross validation. 

MalekAl-Zewairi, et al. [61] A deep learning model was proposed based on artificial 

neural networks using back-propagation and stochastic gradient descent method. 

Where the model evaluated as a binomial classifier for NIDSs on UNSW-NB15 

datasets. DL model contained five hidden layers in each layer of ten neurons and the 

10-folds Cross validation technique was used.  The results showed that the model 

obtained high accuracy and low alarm rate compared to earlier models. 

Pritma and Tama [62] proposed compares the performance of IDS by applying a 

random forest classifier with respect to two performance measures, accuracy and false 

alarm rate, and used 10fold cross-validation technique.  Three datasets of IDSs used 

in the experiment are NSL-KDD, UNSW-NB15, and GPRS. where Compared the 

results with the set of classifiers as Multilayer Perceptron, Decision Tree and NBterr. 

The results of the study show the effectiveness of the proposed model using a cross-

validation technique, while the comparison of the results of the proposed model and 

an MLP classifier. The accuracy of the proposed model was better than the MLP. 

Deep learning techniques often require large volumes of data to ideally train and build 

the model, resulting in a long training time. Therefore, this work suggests the use of 

big data computing techniques because of the characteristics afforded by the ability to 
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deal with the size of data and very speed in the process of data analysis. Apache Spark 

is a cluster computing technique designed to handle big data Rapidly. Spark developed 

to address MapReduce's limitations and more effectively support many types of 

computation, including streaming processing and interactive queries. Spark has many 

features, one of the main features is the ability to run computation in memory, where 

the data is stored and processed in the memory without being transferred to the disk. 

Which provides high efficiency in the detection of patterns interactively without 

waiting for minutes and hours. Spark covers a wide range of workloads that require 

separate techniques to implement [63]. 

Apache Spark includes a machine learning library that contains a range of machine 

learning algorithms. That are widely used in many fields. Recently, there has been a 

great need for deep machine learning techniques that are highly efficient in dealing 

with large data and provide high performance in extracting patterns. A collection of 

open source deep learning libraries has been built, such as TensorFlow, Keras, Theano 

etc. The Spark machine learning Library does not include deep learning techniques but 

can integrate some of these libraries. 

This work suggests using a Keras library, which is high-level neural network API and 

provide fast and easy way to create a range of deep learning models by python. Where 

it is run on top of TensorFlow or Theano and can execute on Graphics processing unit 

(GPU), Central Processing Unit (CPU) or Tensor Processing Unit (TPU). Keras has 

been developed to act as a distributed, providing a deep learning distributed 

framework. That executed on top of apache spark and Keras with included modern 

distributed optimization algorithms to reduce the training time using distributed deep 

learning techniques. Distributed Keras supported several distributed methods like 

models using data parallel methods and the training of ensembles.  

Recently, several studies have suggested using Apache Spark to enhance the 

performance of intrusion detection systems. P.  Dahiya, et al.  [64] proposed an 

intrusion detection system using Apache Spark to implement the proposed approach 

which relies on the feature reduction algorithm, Canonical Correlation Analysis (CCA) 

and Linear Discriminant Analysis (LDA) and seven well-known classification 
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algorithms Nave Bayes, REP Tree, Random Tree, Random Forest, Random 

Committee, Bagging and Randomizable. The results show that the approach is more 

efficient and fast using (LDA) and Random Tree algorithms, and achieved the best 

accuracy better than other algorithms. 

Mustapha Beluch, et al.  [65] Authors evaluated the performance set of classification 

algorithms (SVM, Decision Tree, Naive Bayes, Random Forest) using Apache Spark 

and complete the UNSW-NB15 dataset with all 42 features. accuracy, sensitivity, 

specificity and execution time are used to evaluate the performance of classifiers. The 

results showing the Random forest classifier performed better than other classifiers in 

four measures, where its accuracy is 97.49%. 
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CHAPTER 3 

METHODOLOGY 

The proposed method includes a set of steps that begin with the preprocessing of the 

datasets and then selection of related features. Where the K-means clustering 

(homogeneity metric) is used as an unsupervised feature selection technique for the 

selection of relevant features from two datasets to improve the performance of 

classifiers. Five-fold cross validation is used to estimate and improve the performance 

of machine learning models. Deep neural network and two ensemble techniques (RF, 

GBT) are used to extract the models from the subsets of relevant features. The 

proposed method is evaluated on two recent datasets, namely UNSW-NB15 and 

CICIDS2017, which contain a combination of common and modern attacks. The 

datasets are preprocessed to be suitable for applying the machine learning techniques. 

3.1. Dataset Preprocessing 

To provide a more suitable data for the neural network classifier and ensemble 

techniques, the dataset is passed through a group of preprocessing operations. These 

operations are summarized below: 

• Remove socket information: As the original dataset includes the IP address and Port 

numbers of the source and destination hosts in the network. It is important to 

remove such information to provide unbiased detection, where using such 

information may results in overfitted training toward this socket information. 

However, it is more important to let the classifier learn from the characteristics of 

the packet itself, so that, any host with similar packet information is filtered out 

regardless to its socket information. 
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• Remove white spaces: Some of the multi-class labels in the dataset include white 

spaces. Such white spaces result in different classes as the actual value is different 

from the labels of other tuples in the same class.  

• Label encoding: The multi-class labels in the dataset are provided with the attack’s 

names, which are strings values. Thus, it is important to encode these values into 

numerical values, so that, the classifier can learn the class number that each tuple 

belongs to. This operation is executed using the multi-class labels only, as the 

binary labels are already in zero-one formation. 

• Data normalization: The numerical data in the dataset are of different ranges, which 

poses some challenges to the classifier during training to compensate these 

differences. Thus, it is important to normalize the values in each attribute, so that, 

the minimum value in each attribute is zero, while the maximum is one. This 

provides more homogeneous values to the classifier while maintaining the relativity 

among the values of each attribute. 

• Remove/replace massing and infinity values: CICIDS2017 dataset contains 2,867 

tuples as missing and infinity values, this has been addressed in two ways that s 

produces two datasets: the first, the dataset is without the missing and infinite 

values, where is removed all missing and infinity values. the second dataset is 

replaced the infinite values with the maximum value and the missing values with 

the average values. Both datasets are used to evaluate the proposed method. 

• For multiclass classification, Information packets that represent normal network 

traffic from both data sets are ignored and only the attack information packets are 

using to evaluate the proposed method.  

3.2. Feature Ranking (homogeneity metric) 

After the preprocessing phase, as showing in Algorithm 3.1 the K-means clustering 

algorithm is applied to the two datasets for features ranking. The technique is using to 

do the features ranking, for features selections, is that taking each attribute separately, 

then use it to cluster the dataset. In binary classification K= 2, that mean the data point 

of feature clustering to two groups, normal or anomaly. For multi-class classification 

the K equals the number of attacks in datasets. Thereafter the homogeneity score is 
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calculated of the resulting clusters are then used as a rank for that features. Such score 

indicates that better classification can be conducted relying on that feature, while a 

lower score indicates that this feature does not have a significant role in the 

classification. 

When the rank of homogeneity is determined for each feature, they are arranged in 

descending order from the lowest rank to the highest rank. The homogeneity rank is 

between zero and one. The zero refers to the lack of homogeneity between the data 

points of the feature in the cluster. Therefore, this feature belongs to different classes. 

It indicates high homogeneity between feature data points and this means that this 

feature represents only one class. Finding a unique feature that belongs to a single class 

is probably more effective than relying on common features in the classification 

process, especially with the increasing volume of heterogeneous data generated from 

several sources. 

Algorithm 3.1: Steps of the proposed methods 

Inputs: C=number of classes; F=number of features; R=Features ranks D=Data; 

L=Labels 

Output: Selected features 

Step1: hs=empty array(F,2)   //initiate an empty array to store that homogeneity 

score of each attribute. 

 Acc=0   //Declare a variable to calculate accuracy. 

 Tacc=empty array(F,2)   //initiate an empty array to store accuracies. 

Step2: for f=1 to F 

 d=D[:,f]   //Select single attribute from the data. 

 cl=Kmeans(d)   //Cluster the data using the selected attribute’s values. 

 hs[f]=[f,cl]   //Insert the feature number and homogeneity score. 

Step3: or=order(hs,1,ascending). //Order features in ascending order based on their 

ranks. 

Step4: for f=0 to F 

 sf=rd[f:,1]   //Selected higher ranked features. 

 d=D[:,sf] //Filter out lower ranked features. 

 For train, test in Kfolds(d,5)  

  Trclsf=clsf.train(d[train], L[train]) //Train a classifier using the 

training    set 

  prd=Trclsf.predict(d[test])   //Predict labels for data instances in the 

test    set. 

  Acc=Acc+accuracy_score(L[test],prd) 

 Tacc[f]=[f,Acc/5)   //Store the average accuracy of five folds. 

Step5: bfi=Tacc[argmax(Tacc[:,1]),0]   //Find the index of highest accuracy. 

 bfl=or[bfi:]   //Retrieve the list of features that achieved heist accuracy. 

 Return(bfl) 
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3.3. Implemented Artificial Neural Network and Ensemble Techniques 

As in Figure 3.1, the deep neural network, Random Forest and Gradient Boosted Tree 

Classification algorithms were implemented on CICIDS2018 and UNSW-NB15 

datasets to evaluate the proposed methods. Two scenarios are executed using amazon 

web server EC2 (AWS). Each algorithm was applied across two scenarios binary 

classification and multiclass classification except GBT, because spark MLlib does not 

support it for multiclass classification. 

 

Figure 3.1: Flowchart of proposed method 
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Deep neural network considers one of feedforward artificial neural networks, DNN 

consists of Multiple layers of nodes. Each layer is fully connected to the next layer in 

the network. Where 43 and 78 nodes in input layer that represent the number of 

features in UNSW-NB15 and CICIDS2017 dataset Respectively. Three hidden layers 

128,64 and 32 nodes per layer respectively, ReLU activation function used in the 

hidden layer. SoftMax function used in the output layer for multiclass classification 

and sigmoid function for binary classification. Where Backpropagation for learning 

the model, training epoch 1000 (Epoch means one pass over the full training set) and 

Batch size 1,000,000 (Total number of training examples present in a single batch).  

3.4. Binary Classification 

The first scenario uses binary classification that refers to the result of the classification 

process being two groups. Predict each packet to be a part of a normal or attack traffic. 

Machine Learning techniques are initially applied to full two datasets, then remove the 

first feature from the dataset and repeat Calculates the evaluation metric. Repeated 

removing one feature each time of the data set and calculation the evaluation metric 

until access to the last feature of the dataset. The deep neural network has the same 

settings as above except the output layer which has only two nodes and sigmoid 

function is used. The classifiers are applied on both dataset, UNSW-NB15 and two 

sets of CICIDS2017. Before performing assembly techniques, values for parameters 

are determined. For random forest, there are two important parameters whose values 

must be determined, the number of trees in the forest that has been given value 100, 

while the depth of the tree is 4. Gradient Boosted Tree has two parameters, log loss for 

classification to reduce the loss function and the number of iterations is 10. 

3.5. Multiclass Classification 

The second scenario is multiclass classification, where classifies the attack packets 

onto the number of classes in datasets, nine different attacks in the UNSW-NB15 and 

fourteen in the CICIDS2017. The same settings used for deep learning in binary 

classifications except the number of nodes in the output layer and the activation 

function. The number of nodes in the output layer equal to the number of dataset 

attacks classes and the SoftMax as the activation function. The same settings of 
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random forest. In this scenario, the packets information of attack only using to evaluate 

the proposed method. To obtain high performance and reduce the bias of machine 

learning techniques, k-fold cross-validation was used in this work to evaluate the 

machine learning model. the entire dataset is split into five bins randomly, each bin is 

used once for testing, while the remaining bins are used for training, per each iteration. 

Thus, when the evaluation is complete, a prediction per each tuple in the dataset is 

provided by the deep neural network, Random forest, and the accuracy calculated.  

3.6. Description of datasets 

There are several data sets created to evaluate the proposed techniques to develop and 

improve the performance of intrusion detection systems. According to most studies 

based on intrusion detection systems used the KDD cup 99 dataset that launched in 

1999 [66, 67] and the refined version NLS-KDD dataset [68, 69]. Which include four 

types of attacks: DOS/DDOS, Probing, U2R and R2L. This data sets are relatively old 

and cannot be relied upon to evaluate intrusion detection systems because they do not 

contain new types of attacks and modern normal behaviors, especially with the great 

development in attack methods and the emergence of new types [70]. This section will 

discuss two modern intrusion detection datasets UNSW-NB15 and CICIDS2017 

Which includes a wide range of modern attacks that allow for more realistic evaluation 

of the proposed approach. 

3.6.1. UNSW-NB15 Dataset 

The UNSW-NB15 [71,72] is one of the latest datasets created by the cyber security 

research group at Australian center of cybersecurity (ACCS) for evaluating IDSs. It 

has become available to researchers since late 2015. Where the IXIA PerfectStorm 

testing platform [73] is used to generate about 100 GB of normal and abnormal 

network traffic. Extracted 49 features from the raw “pcap” file by using the Argus [74] 

and Bro-IDS [75] split into five sets Basic features: Flow features, Content features, 

Time Features, Additional generated features. The dataset continues a total number of 

(2,540,047 rec). 
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As in Figure 3.2, the data set contains nine types of recent and common attacks, 

namely, Fuzzers, Analysis, Backdoors, Dos, Exploits, Generic, Reconnaissance, 

Shellcode and worms. A total of its records in the data set (321,283 rec), while the 

total number of normal records is (2,218,764 rec). The size of the normal information 

packets represents 88% of the data set size, while the attack information packets 

represent 12%. The UNSW-NB15 dataset has many advantages that make it one of the 

most important data sets that have been widely used in evaluating intrusion detection 

systems. The information packets of UNSW-NB15 dataset collected over 16 hours and 

15 hours that represents modern traffic and common attack scenarios, also, it Contains 

a set of features that represent payload and header for packet data making it reflect 

network packets efficiently. 

 

 

Figure 3.2: Class distribution in UNSW-NB15 dataset 
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Table 3.1: Description of classes in UNSW-NB15 dataset 

No. Category No. of Records Description 

1 Normal 2,218,761 Natural transection data 

2 Fuzzers 24,246 

It tries to enter a set of random data 

for the program and analyzing the 

results to find errors may be 

exploitable 

3 Analysis 2,677 

It is the process of intercepting and 

checking network traffic in order 

to collect information from 

patterns in communication It 

contains different attacks of 

PortScan, spam and html files 

penetrations 

4 Backdoors 2,329 

It is a technique designed to 

bypass the protection system 

without detection to access the 

computer or network resources. 

5 Dos 10,353 

It is an attempt to make a server or 

network resource unavailable by 

interrupting or suspending host 

services 

6 Exploits 44525 

An attacker is trying to get a 

security vulnerability in an 

operating system or in a program 

and exploit it to access network 

7 Generic 215,481 

A technique works against all 

block ciphers (with a given block 

and key size), without 

consideration about the structure 

of the block-cipher. 

8 Reconnaissance 13,987 

Includes a set of attacks aimed at 

collecting information about the 

network and its sources 

9 Shellcode 1,511 

It is a piece code that is carefully 

loaded with an application and 

executed as soon as the application 

runs to control the hacked device 

and access network resources. 

10 worms 174 

Is a self-replicating malware that 

relies on duplicates itself on the 

computers and is intended to 

consume system resources which 

slow down or stop some services 
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3.6.2. CICIDS2017 Dataset 

The CICIDS2017 dataset [55,76] released in late 2017 via Canadian Institute for 

Cybersecurity (CIC), where it contains benign and the most up-to-data common 

attacks. B-Profile system [77] used for the abstract behavior of human interactions and 

to generate benign natural background traffic and CICFlowMeter [78] to extract the 

features from the dataset. CICIDS2017 Dataset contains the most common attack 

based on the 2016 McAfee report (Dos, DDos, Web-based, Brute force, Infiltration, 

Heart-bleed, Bot and Scan) with more than 80 features extracted from the generated 

network traffic. For created the dataset complete network topology used where 

includes different operating systems (Windows, Ubuntu, MAC OS X) and network 

devices (Modem, Switches, Firewall, Routers).  

Figure 3.3 shows the distribution of each attack in the CICIDS2017 dataset. it Contains 

14 types of attacks and (2,273,097 rec) of normal packets information (BENIGN), 

Which represents 80% of dataset size. While (557,646 rec) of attack packets 

information that represents 20% of dataset size. The dataset provides a variety of 

common and recent attacks, that is useful for a more efficient and realistic assessment. 

 

Figure 3.3: The classes distribution of CICIDS2017 dataset 
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Table 3.2 shows a brief description of the 14 types of attacks contained in the data set 

and the number of records for each attack. 

Table 3.2: Description of the classes in CICIDS2017 dataset 

No. Category No. of records Description 

1 BENIGN 2273097 Normal human activities 

2 DoS Hulk 231073 

Generate a huge number of 

unique and obfuscated network 

traffic in the web server to bypass 

the caching engines then 

obstruction or stop web server 

resources. 

3 PortScan 158930 

This attack is done by using 

malicious techniques to scan 

computer ports and exploit 

detected vulnerabilities to access 

network or server resources 

4 DDoS 128027 

A distributed denial-of-service 

(DDoS) attack Is to try to disrupt 

the normal traffic of the target 

server or network by flooding the 

target with a flood of traffic 

exploiting a group of hacked 

computers as a source of attack 

traffic. 

5 DoS GoldenEye 10293 

It aims to consume all available 

sockets on the HTTP server using 

KeepAlive paired with cache-

control option to persist socket 

connection busting through 

caching 

6 FTP-Patator 7938 

It is a type of brute force attacks, 

that try to crack passwords using 

two method dictionary attack or 

generate password. 

7 SSH-Patator 5897 

It Is a type of brute force attacks 

that try to crack passwords using 

two method dictionary attack or 

generate password. 

8 DoS slowloris 5796 

Works by sending several 

incomplete requests to connect to 

the server and keep these 

connections open for as long as 

possible, which leads to the 

exploitation of the maximum 

communication and thus denial 

normal communications. 
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9 DoS Slowhttptest 5499 

This attack is intended to drain 

the memory and CPU of the 

server by sending incomplete 

requests to the HTTP server so 

that the server keeps these 

requests until completion, which 

later leads to denial of server. 

10 Botnet 1966 

A set of networked computers 

that are controlled by sending 

malicious software to stop or take 

down the network service, web 

site, steal dated, access to the 

network resource. 

11 
Web Attack Brute 

Force 
1507 

It uses a set of consecutive 

automated programs to create a 

large number of guesses to get 

passwords or PIN 

12 Web Attack XSS 652 

Cross-Site Scripting attacks 

Refers to the attacker injecting 

malicious code into a Web site or 

Web application to access the 

victim's machine and thus 

directing the victim to malicious 

sites or access to his private data. 

13 Infiltration 36 

The first step in cyber kill chain 

attack that attempting to perform 

a data breach, it is Exploiting 

security vulnerabilities in 

applications or sending malicious 

files to access network resources. 

14 
Web Attack Sql 

Injection 
21 

Refers to malicious SQL code 

that Injection in web application 

for database manipulation to 

access secret information. 

15 Heartbleed 11 

Attack targets a serious 

vulnerability in the popular 

OpenSSL cryptographic software 

library, where allows an attacker 

to retrieve a block of memory of 

the server up to 64kb in response 

directly from the vulnerable 

server via sending the malicious 

heartbeat. 
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CHAPTER 4 

EXPERIMENTAL RESULTS 

This section represents the results and evaluated of two scenarios, binary and 

multiclass classification. The experiments are conducted using Amazon’s Elastic Map 

Reduce (EMR) cloud services with PySpark setup. A cluster of ten nodes is used for 

these experiments, where each node has a 2.4 GHz Intel Xeon® E5-2676 v3 processor 

and 64GB of memory. The random forest and GBT classifiers are implemented using 

Spark’s built-in machine learning library MLlib. The deep learning model is 

implemented using the Distributed Keras library, which implements and operates 

Keras deep learning models using a PySpark cluster. The performance of deep neural 

network and ensemble techniques are evaluated in terms of accuracy, prediction time 

and confusion matrix, which are calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 ...................................................... (4.1) 

Confusion matrix: 

Table 4.1: Confusion Matrix 

Actual 

Class 

Predicted Class 

Attack Normal 

Attack TP FN 

Normal FP TN 

The true positive (TP) is the attack instances correctly classified as belonging to the 

attack class. False positive (FP) is the normal instances incorrectly classified as 

belonging to the attack class. True negative (TN) is the normal instances correctly 

classified as belonging to the normal class. False negative (FN) is the attack instances 
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incorrectly classified as belonging to the normal class [76]. The evaluation of the 

proposed method are done by two scenarios, the first is binary classification and the 

second is multiclass classification, where the all classifiers experiments are 

implemented on two datasets UNSW-NB15 and CICIDS2017 in two scenarios.   

4.1. Binary Classification 

4.1.1. UNSW-NB15 Dataset 

The proposed deep machine learning and ensemble techniques have been applied to a 

UNSW-NB15 dataset independently. using cross-validation performance evaluation, 

the entire dataset is split into five bins, each bin is used once for testing, while the 

remaining bins are used for training, per each iteration. Thus, when the evaluation is 

complete, a prediction per each tuple in the dataset is provided by the deep neural 

network and ensemble techniques, and the accuracy, prediction time and confusion 

matrix computed. The accuracy is computed of full dataset and after deleted the 

features one by one, then the best accuracy is achieved by the subset of features are 

selected. 

The topology of the deep neural network used in all experiment in binary classification 

contains five layers, one input layer with 15 nodes, three hidden layers with 128,64 

and 32 layers respectively and an output layer with 1 neuron. The average time on full 

dataset taken by the binary classifier to predict the state of a packet to be a normal or 

an attack packet is 1.43 ns and accuracy rate is 99. 16%. The best accuracy achieved 

with the subset of features contain 41 features, which is 99.19% and the predicted time 

is 1.35 ns. The confusion matrix shown in Table 4.3 illustrates the actual and predicted 

classes of the tuples in the dataset.  

Table 4.2: Result of binary classification DNN with UNSW-NB15 dataset 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 99. 16 1.43 99. 19 1.35 41 
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Table 4.3: Confusion matrix of DNN binary classification of feature selection  

Actual Class 
Predicted Class 

Attack Normal 

Attack 287833 33450 

Normal 19466 2199298 

A random forest classifier with 100 trees, is used in this experiment. The average 

prediction time on per each tuple in the UNSW-NB15 dataset, to provide a binary 

classification is 12.13 ns, and the accuracy rate is 98. 85%. the predictions provided 

by the classifier are summarized in the confusion matrix shown in Table 4.5. 

Table 4.4: Result of binary classification RF with UNSW-NB15 dataset 

 
Accuracy – 

full dataset 
P. Time 

(ns) 
Best accuracy 

with FS 
P. Time 

(ns) 

Number 

of 

Features 

RF 98. 85% 12.13 98. 86% 11.36073 36 

Table 4.5: Confusion matrix of RF binary classification of feature selection 

Actual 

Class 

Predicted Class 

Attack Normal 

Attack 294310 26973 

Normal 2087 2216677 

In this experiment, the gradient boosting tree classifier using to classify tuples into two 

classes, anomaly or normal. Table 4.6 shows the accuracy rate when the classifier is 

implemented on full UNSW-NB15 dataset, that is 97.83 %. While the average time of 

predict is 0.70 ns. A subset of features is consisting 26 features achieved best accuracy 

rate is 97.92% and the average time of predict is 0.37. 

Table 4.6: Result of binary classification GPT with UNSW-NB15 dataset 

 
Accuracy – 

full dataset 
P. Time (ns) 

Best 

accuracy 

with FS 

P. Time (ns) 
Number of 

Features 

GBT 97.83 0.7004 97.92% 0.37 26 
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Table 4.7: Confusion matrix of GPT binary classification of feature selection  

Actual 

Class 

Predicted Class 

Attack Normal 

Attack 287833 33450 

Normal 19466 2199298 

Table 4.8 includes the features ranks calculated by the homogeneity metric and 

arranged in descending order in a matrix starting from features with lower 

homogeneity down to features with higher homogeneity. The table also shows the 

accuracy rate and prediction time for each classifier where a feature is removed each 

time from the dataset and compute the accuracy of the remaining features set until the 

last feature is reached. 
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Table 4.8: Results of feature ranking and binary classification on UNSW-NB15 

No. Features Remove Feature F- Rank DNN-ACC RF-ACC GBT-ACC 

43   0.991675 0.9885 0.9783 

42 3 0.00000 0.991898 0.9886 0.9784 

41 24 0.00113 0.991903 0.9885 0.9784 

40 30 0.00602 0.991466 0.9886 0.9783 

39 31 0.00622 0.991416 0.9886 0.9783 

38 4 0.00712 0.991899 0.9885 0.9783 

37 8 0.00911 0.991851 0.9886 0.9783 

36 23 0.00911 0.991544 0.9885 0.9783 

35 28 0.00932 0.991434 0.9885 0.9783 

34 34 0.01196 0.991404 0.9885 0.9783 

33 32 0.01220 0.991377 0.9885 0.9783 

32 27 0.02752 0.99169 0.9886 0.9783 

31 11 0.02803 0.991562 0.9885 0.9783 

30 35 0.03109 0.991196 0.9885 0.9790 

29 36 0.03231 0.991627 0.9885 0.9783 

28 19 0.04128 0.991339 0.9884 0.9787 

27 21 0.04619 0.991492 0.9884 0.9785 

26 22 0.04844 0.991355 0.9884 0.9792 

25 13 0.09075 0.991169 0.9884 0.9788 

24 1 0.09864 0.991322 0.9884 0.9792 

23 5 0.11000 0.99138 0.9884 0.9782 

22 14 0.15909 0.991193 0.9884 0.9786 

21 9 0.17254 0.991334 0.9884 0.9787 

20 10 0.17426 0.990726 0.9884 0.9781 

19 29 0.17544 0.990726 0.9884 0.9781 

18 12 0.18851 0.990866 0.9884 0.9781 

17 17 0.18927 0.990612 0.9884 0.9782 

16 18 0.18929 0.99086 0.9884 0.9781 

15 7 0.19401 0.990418 0.9884 0.9781 

14 2 0.19507 0.990551 0.9884 0.9780 

13 20 0.19982 0.989806 0.9883 0.9778 

12 25 0.20008 0.989716 0.9881 0.9778 

11 26 0.22955 0.989766 0.9816 0.9780 

10 16 0.23613 0.989693 0.9816 0.9780 

9 15 0.29547 0.989474 0.9815 0.9763 

8 39 0.29830 0.989497 0.9810 0.9762 

7 40 0.31214 0.989376 0.9805 0.9763 

6 41 0.37118 0.989578 0.9798 0.9762 

5 37 0.38086 0.989227 0.9789 0.9777 

4 38 0.40017 0.988241 0.9778 0.9760 

3 42 0.40521 0.98782 0.9771 0.9767 

2 43 0.40639 0.986622 0.9754 0.9739 
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4.1.2. CICIDS2017 Dataset 

In those experiments, the three algorithms were applied for binary classification on the 

CICIDS2017data set in two ways: first, to replace the infinite values with the 

maximum value and the missing values with the average values (Rep-CICIDS2017). 

The second to remove the missing and infinite value (Rem- CICIDS2017). Deep neural 

network using with the same settings in previews UNSW-NB15 experiments.  

Table 4.9 shows the prediction time and accuracy rate on full Rep-CICIDS2017 

dataset and subset of features. Table 4.10 shows the confusion matrix of the 

predictions provided by the classifier used in this experiment.   

Table 4.9: Result of DNN binary classification with Rep-CICIDS2017 dataset 

Rep-CICIDS2017 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best accuracy 

with FS 
P. Time (ns) 

Number 

of 

Features 

DNN 97.72 0.0538 97.73 0.0544 59 

Table 4.10: Confusion matrix of DNN binary classification of feature selection 

Actual 

Class 

Predicted Class 

Attack Normal 

Attack 520731 36915 

Normal 27290 2245807 

Deep neural network applied on Rem-CICIDS2017 and the table shows the DNN 

achieved accuracy rate on the full dataset is 97.71%, while the average prediction time 

of the classifier in this experiment is 0.0531 ns per each tuple. As in Table 4.11, the 

subset of 59 features achieved a 97.7% accuracy rate and prediction time is 0.05 ns. 

Table 4.12 shows the confusion matrix of the predictions provided by the classifier 

used in this experiment. 
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Table 4.11: Result of DNN binary classification with Rem-CICIDS2017 dataset 

Rem-CICIDS2017 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best 

accuracy 

with FS 

P. Time 

(ns) 

Number of 

Features 

DNN 97.71% 0.053 97.72% 0.052 59 

Table 4.12: Confusion matrix of DNN binary classification of feature selection 

Actual Class 
Predicted Class 

Attack Normal 

Attack 519105 37451 

Normal 27017 2244303 

Random forest classifier applied in this experiment on Rep-CICIDS2017. The average 

time consumed by the classifier to provide a prediction for a single tuple is 7.71 ns and 

accuracy rate is 92.54%. The best accuracy achieved by a subset of features is 92.72% 

with prediction time is 6.78 ns. The predictions provided by the classifier are compared 

to the actual labels of these tuples in the confusion matrix shown in Table 4.14. 

Table 4.13: Result of RF binary classification with Rep-CICIDS2017 dataset 

Rep-CICIDS2017 

 
Accuracy – full 

dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

RF 92.54% 7.71 92.72% 6.78 6 

Table 4.14: Confusion matrix of RF binary classification of feature selection 

Actual 

Class 

Predicted Class 

Attack Normal 

Attack 359826 197820 

Normal 8256 2264841 

The Rem-CICIDS2017 dataset used to evaluate the random forest classifier with the 

feature selection approach, using all features in the dataset the classifier achieved 
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92.54% accuracy rate. The subset of feature consists of 8 features achieved an accuracy 

rate of 92.71%. Classification results are summarized in the confusion matrix shown 

in Table 4.16. 

Table 4.15: Result of RF binary classification with Rem-CICIDS2017 dataset 

Rem-CICIDS2017 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best 

accuracy 

with FS 

P. 

Time(ns) 

Number of 

Features 

RF 92.54% 7.68 92. 71% 6.81 9 

Table 4.16: Confusion matrix of RF binary classification of feature selection 

Actual 

Class 

Predicted Class 

Attack Normal 

Attack 358467 198089 

Normal 7976 2263344 

In this experiment, gradient boosting tree classifier implemented on Rep-CICIDS2017 

dataset to compute the accuracy and prediction time. A subset of 23 features achieved 

an accuracy rate of 99.97% with prediction time of 0.53 ns. An average of 1.23 ns is 

consumed by the classifier to predict the time for each tuple. the performance 

evaluation measures are shown in Table 4.17. Classification results are summarized in 

the confusion matrix shown in Table 4.18.  

Table 4.17: Result of GBT binary classification with Rep-CICIDS2017 dataset 

Rep-CICIDS2017 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best 

accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

GBT 0.9981 1.23 99.97% 0.53 23 
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Table 4.18: Confusion matrix of GBT binary classification of feature selection 

Actual Class 
Predicted Class 

Attack Normal 

Attack 557340 306 

Normal 530 2272567 

By using Rem-CICIDS2017, the average time taken by the binary classifier to predict 

the state of a packet to be a normal or an attack packet is 1.24 ns and the accuracy is 

99.81%. While the 21 features are selection achieved an accuracy of 99.99% with 

average prediction time compute for each tuple is 0.49 ns. Table 4.19 includes the 

performance summary of the classifier used in this experiment. The predictions 

provided by the classifier are summarized in the confusion matrix shown in Table 4.20. 

Table 4.19: Result of GBT binary classification with Rem-CICIDS2017 dataset 

Rem-CICIDS2017 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

GBT 99.81% 1.24 99.99% 0.49 21 

Table 4.20: Confusion matrix of GBT binary classification of feature selection 

Actual 

Class 

Predicted Class 

Attack Normal 

Attack 556473 83 

Normal 213 2271107 

By using the Rep-CICIDS2017 dataset to evaluate the proposed method, the results of 

features rank, accuracy rate of each iteration shown in Table 4.21, while the Table 4.22 

shows the results of proposed method applied on Rem-CICIDS2017. 
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Table 4.21: Results of feature ranking and binary classification with Rep-CICIDS2017 

No. Feature Remove Feature F-Rank DNN-ACC RF-ACC GBT-ACC 

78   0.9772 0.9254 0.9981 

77 3 0.00000 0.9747 0.9256 0.9985 

76 4 0.00000 0.9751 0.9255 0.9984 

75 5 0.00000 0.9746 0.9254 0.9983 

74 6 0.00000 0.9756 0.9257 0.9987 

73 32 0.00000 0.9740 0.9256 0.9982 

72 34 0.00000 0.9737 0.9255 0.9986 

71 35 0.00000 0.9744 0.9258 0.9982 

70 36 0.00000 0.9764 0.9253 0.9986 

69 38 0.00000 0.9756 0.9254 0.9987 

68 56 0.00000 0.9770 0.9254 0.9945 

67 57 0.00000 0.9758 0.9255 0.9985 

66 58 0.00000 0.9768 0.9255 0.9986 

65 59 0.00000 0.9746 0.9254 0.9986 

64 60 0.00000 0.9736 0.9256 0.9983 

63 61 0.00000 0.9748 0.9260 0.9986 

62 62 0.00000 0.9742 0.9252 0.9983 

61 63 0.00000 0.9769 0.9253 0.9984 

60 64 0.00000 0.9743 0.9255 0.9985 

59 65 0.00000 0.9773 0.9255 0.9985 

58 66 0.00000 0.9723 0.9258 0.9986 

57 69 0.00000 0.9717 0.9257 0.9988 

56 70 0.00000 0.9715 0.9256 0.9982 

55 72 0.00003 0.9722 0.9257 0.9989 

54 73 0.00003 0.9722 0.9258 0.9985 

53 33 0.00004 0.9733 0.9258 0.9986 

52 50 0.00004 0.9722 0.9258 0.9985 

51 20 0.00005 0.9701 0.9255 0.9991 

50 15 0.00008 0.9714 0.9259 0.9986 

49 46 0.00010 0.9720 0.9256 0.9984 

48 51 0.00010 0.9704 0.9257 0.9986 

47 26 0.00021 0.9723 0.9256 0.9988 

46 8 0.00024 0.9719 0.9256 0.9985 

45 17 0.00029 0.9723 0.9254 0.9987 

44 27 0.00074 0.9706 0.9257 0.9985 

43 37 0.00076 0.9719 0.9258 0.9985 

42 25 0.00107 0.9715 0.9256 0.9654 

41 22 0.00113 0.9722 0.9255 0.9990 

40 16 0.00118 0.9744 0.9258 0.9654 

39 74 0.00140 0.9751 0.9259 0.9657 
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38 71 0.00169 0.9739 0.9248 0.9989 

37 30 0.00258 0.9756 0.9253 0.9993 

36 10 0.00339 0.9729 0.9255 0.9993 

35 7 0.00379 0.9738 0.9254 0.9993 

34 9 0.00379 0.9750 0.9257 0.9971 

33 54 0.00379 0.9743 0.9256 0.9994 

32 52 0.00553 0.9630 0.9252 0.9949 

31 67 0.00618 0.9589 0.9254 0.9975 

30 76 0.00725 0.9590 0.9254 0.9949 

29 29 0.00751 0.9593 0.9250 0.9989 

28 31 0.00868 0.9590 0.9252 0.9996 

27 45 0.00868 0.9599 0.9250 0.9995 

26 68 0.01156 0.9595 0.9250 0.9958 

25 48 0.01526 0.9616 0.9251 0.9997 

24 28 0.01989 0.9574 0.9251 0.9997 

23 44 0.02762 0.9584 0.9249 0.999705 

22 47 0.02977 0.9355 0.9252 0.9997 

21 49 0.03151 0.9055 0.9252 0.999705 

20 1 0.03476 0.9032 0.9253 0.9987 

19 2 0.04516 0.9020 0.9252 0.9987 

18 21 0.04586 0.9003 0.9259 0.9987 

17 78 0.09369 0.9005 0.9261 0.9987 

16 19 0.09873 0.9031 0.9263 0.9987 

15 24 0.09918 0.9012 0.9264 0.9989 

14 75 0.09935 0.8994 0.9263 0.9989 

13 77 0.10227 0.8947 0.9267 0.9990 

12 18 0.11188 0.8929 0.9267 0.9990 

11 43 0.11679 0.8912 0.9269 0.9990 

10 23 0.13229 0.8883 0.9270 0.9991 

9 12 0.13819 0.8884 0.9270 0.9992 

8 41 0.18037 0.8883 0.9271 0.9992 

7 53 0.18334 0.8882 0.9272 0.9991 

6 39 0.19780 0.8882 0.9272 0.9991 

5 13 0.21123 0.8882 0.9271 0.9990 

4 55 0.21123 0.8880 0.9258 0.9990 

3 40 0.21340 0.8882 0.9259 0.9985 

2 42 0.23100 0.8873 0.9024 0.9993 
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Table 4.22: Results of feature ranking and binary classification with Rem-CICIDS2017 

No. Feature Removed Feature F-Rank DNN-ACC RF-ACC GBT-ACC 

78   0.9771 0.9254 0.9981 

77 3 0.00000 0.9747 0.9258 0.9985 

76 4 0.00000 0.9752 0.9255 0.9983 

75 5 0.00000 0.9748 0.9254 0.9981 

74 6 0.00000 0.9755 0.9257 0.9989 

73 32 0.00000 0.9737 0.9256 0.9981 

72 34 0.00000 0.9738 0.9255 0.9986 

71 35 0.00000 0.9744 0.9257 0.9981 

70 36 0.00000 0.9766 0.9255 0.9988 

69 38 0.00000 0.9755 0.9254 0.9986 

68 56 0.00000 0.9770 0.9255 0.9945 

67 57 0.00000 0.9758 0.9256 0.9984 

66 58 0.00000 0.9768 0.9256 0.9987 

65 59 0.00000 0.9747 0.9253 0.9985 

64 60 0.00000 0.9736 0.9255 0.9983 

63 61 0.00000 0.9745 0.9260 0.9987 

62 62 0.00000 0.9742 0.9255 0.9983 

61 63 0.00000 0.9769 0.9253 0.9985 

60 64 0.00000 0.9743 0.9253 0.9984 

59 65 0.00000 0.9772 0.9255 0.9984 

58 66 0.00000 0.9723 0.9256 0.9984 

57 69 0.00000 0.9719 0.9262 0.9989 

56 70 0.00000 0.9715 0.9257 0.9983 

55 72 0.00003 0.9726 0.9257 0.9990 

54 73 0.00003 0.9721 0.9257 0.9984 

53 33 0.00004 0.9736 0.9259 0.9986 

52 50 0.00004 0.9722 0.9258 0.9985 

51 20 0.00005 0.9701 0.9255 0.9990 

50 46 0.00010 0.9714 0.9259 0.9988 

49 51 0.00010 0.9719 0.9256 0.9982 

48 15 0.00012 0.9707 0.9257 0.9985 

47 26 0.00020 0.9724 0.9256 0.9987 

46 8 0.00024 0.9719 0.9258 0.9986 

45 17 0.00029 0.9720 0.9254 0.9988 

44 16 0.00069 0.9704 0.9253 0.9983 

43 27 0.00074 0.9717 0.9256 0.9986 

42 37 0.00077 0.9715 0.9255 0.9653 

41 25 0.00107 0.9721 0.9255 0.9991 

40 22 0.00113 0.9744 0.9256 0.9654 

39 74 0.00141 0.9750 0.9259 0.9659 

38 71 0.00170 0.9738 0.9248 0.9991 

37 30 0.00258 0.9756 0.9251 0.9992 
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36 10 0.00340 0.9728 0.9255 0.9994 

35 7 0.00379 0.9741 0.9255 0.9992 

34 9 0.00379 0.9750 0.9258 0.9973 

33 54 0.00379 0.9743 0.9254 0.9993 

32 52 0.00544 0.9631 0.9252 0.9948 

31 67 0.00622 0.9590 0.9255 0.9973 

30 76 0.00727 0.9590 0.9255 0.9950 

29 29 0.00754 0.9592 0.9251 0.9990 

28 31 0.00864 0.9591 0.9255 0.9995 

27 45 0.00864 0.9601 0.9250 0.9996 

26 68 0.01153 0.9594 0.9248 0.9957 

25 48 0.01517 0.9615 0.9251 0.9995 

24 28 0.01995 0.9573 0.9252 0.9996 

23 44 0.02789 0.9585 0.9250 0.9997 

22 47 0.02991 0.9355 0.9249 0.9996 

21 49 0.03149 0.9056 0.9252 0.9999 

20 1 0.03463 0.9031 0.9252 0.9988 

19 2 0.04533 0.9015 0.9253 0.9987 

18 21 0.04604 0.9001 0.9253 0.9989 

17 78 0.09395 0.9006 0.9259 0.9986 

16 19 0.09902 0.9034 0.9264 0.9986 

15 24 0.09947 0.9013 0.9267 0.9987 

14 75 0.09963 0.8995 0.9265 0.9987 

13 77 0.10256 0.8948 0.9265 0.9990 

12 18 0.11219 0.8928 0.9268 0.9989 

11 43 0.11705 0.8912 0.9270 0.9992 

10 23 0.13263 0.8883 0.9269 0.9991 

9 12 0.13828 0.8884 0.9271 0.9990 

8 41 0.18091 0.8883 0.9270 0.9992 

7 53 0.18388 0.8882 0.9271 0.9992 

6 39 0.19795 0.8882 0.9271 0.9989 

5 55 0.21179 0.8881 0.9271 0.9989 

4 13 0.21180 0.8881 0.9258 0.9988 

3 40 0.21397 0.8881 0.9259 0.9985 

2 42 0.23147 0.8875 0.9023 0.9994 

4.2. Multiclass Classification 

 For multiclass classification, information packets that represent normal network 

traffic from both datasets are deleted and only the attack information packets are kept. 

with 321,283 tuples that represent packet information of nine different types of attacks 

in UNSW-NB15 and 557646 tuples in CICIDS2017 datasets that represent packet 
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information of fourteen different types of attacks. GBT classifier is not used for 

multiclass classification because Apache Spark does not support it. 

4.2.1. UNSW-NB15 Dataset 

321,283 tuples using for multi-class classification that represent packet information of 

nine different types of attacks in UNSW-NB15. Table 4.23 showing the summarized 

results of two classifier DNN. using the proposed approach to feature selecting, the 

results show an improvement in the accuracy of the DNN classifiers. Table 4.24 shows 

the confusion matrix of the predictions provided by the DNN classifier used in this 

experiment. 

Table 4.23: Result of DNN multiclass classification with UNSW-NB15 dataset 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best 

accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 97.01 5.15 97.04 4.71 29 

In this experiment, an average of 24.85 ns is consumed by the RF classifier to predict 

one of the nine attack labels for each tuple and the accuracy rate is 91.76%. The subset 

of 29 features selected by using feature selection approach are achieved an accuracy 

of 91.77% and prediction time 23.63 ns. Table 4.25 shows the confusion matrix of the 

predictions provided by the classifier used in this experiment. 

Table 4.24: Result RF of multiclass classification with UNSW-NB15 dataset 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best 

accuracy 

with FS 

P. Time 

(ns) 

Number of 

Features 

RF 91.76% 24.85 91.77% 23.63 29 

 

 

 

 



 

Table 4.25: Confusion matrix of the DNN multiclass classification with UNSW-NB15. 

 
Predicted 

Analysis Backdoors DoS Exploits Fuzzers Generic Reconnaissance Shellcode Worms 

A
ct

u
al

 

Analysis 1350 0 64 938 285 16 24 0 0 

Backdoors 0 1549 124 165 348 16 127 0 0 

DoS 11 0 14776 42 649 390 428 57 0 

Exploits 93 0 631 43036 84 561 68 52 0 

Fuzzers 29 0 67 790 22656 107 565 32 0 

Generic 29 208 98 359 408 214165 183 30 1 

Reconnaissance 9 0 130 73 524 25 13226 0 0 

Shellcode 0 0 0 288 221 16 54 932 0 

Worms 2 0 0 27 16 24 0 1 104 

Table 4.26: Confusion matrix of the RF multiclass classification with UNSW-NB15. 

 
Predicted 

Analysis Backdoors DoS Exploits Fuzzers Generic Reconnaissance Shellcode Worms 

A
ct

u
al

 

Analysis 596 0 592 1243 223 23 0 0 0 

Backdoors 0 350 601 1141 226 7 4 0 0 

DoS 0 0 8366 7712 231 22 19 2 1 

Exploits 0 2 6148 37801 472 64 32 3 3 

Fuzzers 2 2 613 1675 21936 9 9 0 0 

Generic 10 0 631 2524 5 212304 4 3 0 

Reconnaissance 1 1 743 1425 7 5 11805 0 0 

Shellcode 0 0 1 0 1 0 0 1509 0 

Worms 0 0 1 10 0 0 0 0 163 

5
2
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Table 4.27: Results of feature ranking and M-Class classification on UNSW-NB15 

Features Removed Feature F-Rank DNN-ACC RF-ACC 

43   0.970176 0.9176 

42 32 0.00000 0.969858 0.9176 

41 22 0.00000 0.970432 0.9176 

40 4 0.00008 0.969808 0.9176 

39 8 0.00013 0.970264 0.9176 

38 5 0.00024 0.970027 0.9176 

37 35 0.00024 0.970458 0.9176 

36 36 0.00033 0.970387 0.9176 

35 9 0.00050 0.969518 0.9175 

34 27 0.00054 0.970013 0.9175 

33 14 0.00058 0.969926 0.9175 

32 13 0.00068 0.969854 0.9176 

31 26 0.00165 0.969613 0.9177 

30 12 0.00180 0.970438 0.9177 

29 25 0.00181 0.970464 0.9177 

28 24 0.00183 0.970041 0.9175 

27 21 0.00205 0.970099 0.9175 

26 34 0.00208 0.970192 0.9175 

25 23 0.00721 0.970076 0.9175 

24 6 0.00750 0.969492 0.9175 

23 28 0.00784 0.968671 0.9175 

22 3 0.00797 0.969088 0.9175 

21 30 0.00798 0.969155 0.9175 

20 17 0.01385 0.969102 0.9175 

19 18 0.03947 0.968871 0.9175 

18 31 0.05884 0.968506 0.9175 

17 16 0.06158 0.969479 0.9175 

16 15 0.06166 0.969028 0.9174 

15 7 0.07820 0.968624 0.9174 

14 29 0.08158 0.968287 0.9174 

13 2 0.10041 0.967739 0.9169 

12 33 0.12162 0.967302 0.9152 

11 20 0.12162 0.965938 0.8484 

10 11 0.13263 0.965853 0.8484 

9 1 0.13351 0.965885 0.8484 

8 19 0.14530 0.965275 0.8455 

7 40 0.14943 0.965441 0.8408 

6 39 0.15862 0.964903 0.8361 

5 43 0.15960 0.965087 0.8290 

4 37 0.16260 0.964236 0.8149 

3 41 0.16462 0.963745 0.7951 

2 38 0.18168 0.962656 0.7702 
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4.2.2. CICIDS2017 Dataset 

This experiment using 557,646 tuples represent packet information of fourteen 

different types of attacks in CICIDS2017 datasets. The dataset using by tow method 

as in the preview’s experiments, which Rep-CICIDS2017 and Rem-CICIDS2017.  

According to the results shown in Table 4.28, the performance of the DNN classifier 

achieved a high accuracy rate of 99.55% on Rep-CICIDS2017. While the accuracy of 

the DNN classifier improved slightly when implemented on a subset of 75 features. 

Table 4.30 illustrates the confusion matrix. 

Table 4.28: Result of DNN multiclass classification with Rep-CICIDS2017 dataset 

Replace 

 
Accuracy – 

full dataset 

P. 

Time 

(ns) 

Best accuracy 

with FS 

P. 

Time 

(ns) 

Number 

of 

Features 

DNN 99.55 0.64 99.57 0.70 75 

As in Table 4.29, the average prediction time of the DNN classifier in this experiment 

is 0.63 ns per each tuple of Rep-CICIDS2017, and the accuracy is 99.56%, while the 

average of 0.73 ns is consumed by the classifier on the subset of 72 features to predict 

one of the nine attack labels for each tuple. Table 4.31 shows the confusion matrix of 

DNN. 

Table 4.29: Result of DNN multiclass classification with Rem-CICIDS2017 dataset 

Remove 

 
Accuracy – 

full dataset 

P. 

Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 99.56% 0.63 99.56% 0.73 67 

 



 

Table 4.30: Confusion matrix of the DNN multi-class classification with Rep-CICIDS2017 

 Predicted 

A
ct

u
a
l 

Replace Bot DDoS 
DoS 

GoldenEye 
DoS Hulk 

DoS 

Slowhttptest 
DoS slowloris FTP-Patator Heartbleed Infiltration PortScan SSH-Patator 

Web Attack 

Brute Force 

Web Attack 

Sql Injection 

Web Attack 

XSS 

Bot 1869 0 0 25 1 1 0 0 0 6 64 0 0 0 

DDoS 3 127974 13 20 0 0 0 0 0 17 0 0 0 0 

DoS 

GoldenEye 
0 142 9992 72 4 7 0 0 0 0 76 0 0 0 

DoS Hulk 121 13 5 230887 6 0 0 0 0 11 27 3 0 0 

DoS 

Slowhttptest 
1 1 3 2 5272 159 1 0 0 27 22 11 0 0 

DoS slowloris 0 0 38 4 376 4732 522 0 0 9 82 33 0 0 

FTP-Patator 0 0 0 11 0 2 7918 0 0 0 6 1 0 0 

Heartbleed 0 0 1 10 0 0 0 0 0 0 0 0 0 0 

Infiltration 0 1 2 1 13 11 0 0 6 1 1 0 0 0 

PortScan 0 3 12 13 3 44 1 0 0 158801 44 9 0 0 

SSH-Patator 1 0 0 9 0 2 27 0 0 19 5839 0 0 0 

Web Attack  

Brute Force 
0 0 75 1 0 0 2 0 0 3 16 1410 0 0 

Web Attack  
Sql Injection 

0 0 5 0 0 0 1 0 0 0 11 0 4 0 

Web Attack  

XSS 
0 0 0 17 0 0 0 0 0 1 9 101 0 524 

  

5
5

 



 

Table 4.31: Confusion matrix of the DNN multi-class classification with Rem-CICIDS2017 

 

Predicted 

Remove Bot DDoS 
DoS 

GoldenEye 
DoS Hulk 

DoS 

Slowhttptes

t 

DoS 

slowloris 

FTP-

Patator 
Heartbleed Infiltration PortScan 

SSH-

Patator 

Web 

Attack 

Brute 

Force 

Web 

Attack  Sql 

Injection 

Web 

Attack  

XSS 

A
ct

u
a

l 

Bot 1868 0 0 16 1 1 0 0 0 6 64 0 0 0 

DDoS 3 127973 13 19 0 0 0 0 0 17 0 0 0 0 

DoS GoldenEye 0 142 9992 72 4 7 0 0 0 0 76 0 0 0 

DoS Hulk 138 13 5 229921 6 0 0 0 0 11 27 3 0 0 

DoS Slowhttptest 1 1 3 2 5272 159 1 0 0 27 22 11 0 0 

DoS slowloris 0 0 38 4 376 4732 522 0 0 9 82 33 0 0 

FTP-Patator 0 0 0 11 0 2 7915 0 0 0 6 1 0 0 

Heartbleed 0 0 1 10 0 0 0 0 0 0 0 0 0 0 

Infiltration 0 1 2 1 13 11 0 0 6 1 1 0 0 0 

PortScan 0 3 12 13 3 44 1 0 0 158675 44 9 0 0 

SSH-Patator 1 0 0 9 0 2 27 0 0 19 5839 0 0 0 

Web Attack 

Brute Force 
0 0 75 1 0 0 2 0 0 3 16 1410 0 0 

Web Attack  Sql 

Injection 
0 0 5 0 0 0 1 0 0 0 11 0 4 0 

Web Attack XSS 0 0 0 17 0 0 0 0 0 1 9 101 0 524 

 

5
6
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In this experiment, the RF classifier applied on the Rep-CICIDS to classify tuples into 

one of the fourteen different attacks. Table 4.32 shows the accuracy rate and prediction 

time, where the classifier achieved an accuracy of 92.57% and prediction time is 

7.40 ns. Eight features selected that achieved the best accuracy of 92.72% with slight 

improvement. The predictions provided by the classifier are compared to the actual 

labels of these tuples in the confusion matrix shown in Table 4.34. 

Table 4.32: Result of RF multiclass classification with Rep-CICIDS2017 dataset 

Replace 

 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

RF 92.57% 7.40 92.72% 6.22 8 

The Rep-CICIDS are used to evaluate the RF classifier with the feature selection 

technique, the Table 4.33 shows the accuracy rate is 92.54% when implemented the 

classifier on full dataset, and there is marginal improvement by using the subset of 6 

features that obtain the high homogeneity rank, where the classifier achieved an 

accuracy rate is 92.71%. Table 4.35 shows the confusion matrix. 

Table 4.33: Result of RF multiclass classification with Rem-CICIDS2017 dataset 

Remove 

 
Accuracy – full 

dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

RF 92.54% 6.98 92.71% 6.04 6 

The results of features ranking and accuracy rate of the DNN and RF classifiers those 

implemented on Rep-CICIDS2017 and Rem-CICIDS2017 datasets are showing in 

Table 4.36 and Table 4.37, respectively. 

 



 

 

Table 4.34: Confusion matrix of the RF multi-class classification with Rep-CICIDS2017 

 
Predicted 

A
ct

u
a
l 

Replace Bot DDoS 
DoS 

GoldenEye 
DoS Hulk 

DoS 

Slowhttptest 

DoS 

slowloris 

FTP-

Patator 
Heartbleed Infiltration PortScan 

SSH-

Patator 

Web Attack  

Brute Force 

Web Attack  

Sql 

Injection 

Web Attack  

XSS 

Bot 0 736 738 2 0 0 0 0 0 490 0 0 0 0 

DDoS 69 127913 0 29 0 0 0 0 0 0 16 0 0 0 

DoS 

GoldenEye 
0 0 0 5371 998 2280 75 0 350 108 0 88 489 534 

DoS Hulk 0 15 121 230583 206 2 145 0 0 1 0 0 0 0 

DoS 

Slowhttptest 
0 224 2110 356 0 0 0 1 0 2808 0 0 0 0 

DoS 

slowloris 
0 1768 2309 80 0 0 0 0 0 1639 0 0 0 0 

FTP-

Patator 
0 3953 0 17 0 0 0 0 0 3968 0 0 0 0 

Heartbleed 0 8 0 0 1 0 1 0 0 1 0 0 0 0 

Infiltration 0 2 33 0 0 0 0 0 0 1 0 0 0 0 

PortScan 29 0 40 60 255 1 0 0 0 158542 3 0 0 0 

SSH-

Patator 
0 17 2939 8 0 0 0 0 0 2933 0 0 0 0 

Web Attack 

Brute Force 
0 0 216 74 0 0 0 0 0 1217 0 0 0 0 

Web Attack  

Sql 

Injection 

0 0 14 2 0 0 0 0 0 5 0 0 0 0 

Web Attack  

XSS 
0 0 43 2 0 0 0 0 0 607 0 0 0 0 

5
8

 



 

 

Table 4.35: Confusion matrix of the RF multi-class classification with Rem-CICIDS2017 

 Predicted 

A
ct

u
a
l 

Remove Bot DDoS 
DoS 

GoldenEye 
DoS Hulk 

DoS 
Slowhttptest 

DoS 
slowloris 

FTP-Patator Heartbleed Infiltration PortScan SSH-Patator 
Web Attack  
Brute Force 

Web Attack  
Sql Injection 

Web Attack  
XSS 

Bot 0 726 738 2 0 0 0 0 0 490 0 0 0 0 

DDoS 68 127900 0 29 0 12 0 0 0 0 16 0 0 0 

DoS 
GoldenEye 

0 0 0 5372 1083 2283 75 0 350 43 0 91 481 515 

DoS Hulk 0 17 115 229638 205 2 145 0 0 1 0 1 0 0 

DoS 
Slowhttptest 

0 224 2110 356 0 0 0 1 0 2808 0 0 0 0 

DoS slowloris 0 1768 2310 80 0 0 0 0 0 1638 0 0 0 0 

FTP-Patator 0 7905 0 17 0 0 0 0 0 13 0 0 0 0 

Heartbleed 0 9 0 0 1 0 0 0 0 1 0 0 0 0 

Infiltration 0 2 33 0 0 0 0 0 0 1 0 0 0 0 

PortScan 29 0 40 60 243 1 0 0 0 158428 3 0 0 0 

SSH-Patator 0 19 2950 8 0 0 0 0 0 2920 0 0 0 0 

Web Attack 
Brute Force 

0 0 218 73 0 0 0 0 0 1216 0 0 0 0 

Web Attack 
Sql Injection 

0 0 14 2 0 0 0 0 0 5 0 0 0 0 

Web Attack 
XSS 

0 0 44 2 0 0 0 0 0 606 0 0 0 0 

5
9
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Table 4.36: The results of feature ranking and multi-class classification 

with Rep-CICIDS2017 

Features Removed Feature F-Rank DNN-ACC RF-ACC 

78   0.9955 0.9257 

77 32 0 0.9955 0.9259 

76 33 0 0.9954 0.9255 

75 34 0 0.9957 0.9254 

74 46 0 0.9946 0.9254 

73 50 0 0.9952 0.9256 

72 51 0 0.9956 0.9255 

71 57 0 0.9955 0.9253 

70 58 0 0.9950 0.9258 

69 59 0 0.9949 0.9254 

68 60 0 0.9951 0.9256 

67 61 0 0.9956 0.9255 

66 62 0 0.9956 0.9254 

65 72 0.01188 0.9955 0.9251 

64 15 0.0163 0.9954 0.9254 

63 30 0.02156 0.9953 0.9255 

62 49 0.02239 0.9946 0.9256 

61 31 0.03202 0.9942 0.9254 

60 45 0.03202 0.9936 0.9258 

59 20 0.0382 0.9921 0.9254 

58 74 0.03979 0.9933 0.9258 

57 25 0.04715 0.9913 0.9259 

56 71 0.04718 0.9922 0.9257 

55 73 0.0495 0.9927 0.9258 

54 76 0.05322 0.9930 0.9256 

53 44 0.07368 0.9912 0.9258 

52 27 0.11298 0.9911 0.9254 

51 48 0.16125 0.9920 0.9255 

50 28 0.17754 0.9906 0.9254 

49 52 0.20243 0.9920 0.9256 

48 26 0.2039 0.9908 0.9257 

47 29 0.20659 0.9911 0.9256 

46 14 0.21546 0.9896 0.9257 

45 6 0.21685 0.9903 0.9256 

44 66 0.21685 0.9904 0.9259 

43 8 0.23151 0.9910 0.9255 

42 43 0.23777 0.9901 0.9258 

41 39 0.24161 0.9899 0.9255 

40 5 0.25238 0.9905 0.9259 
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39 64 0.25243 0.9908 0.9256 

38 40 0.25285 0.9898 0.9253 

37 4 0.25811 0.9899 0.9254 

36 65 0.25811 0.9892 0.9255 

35 22 0.26455 0.9897 0.9251 

34 42 0.26923 0.9896 0.9256 

33 47 0.28221 0.9863 0.9257 

32 11 0.28657 0.9862 0.9254 

31 17 0.28842 0.9858 0.9252 

30 78 0.29142 0.9859 0.9256 

29 41 0.30188 0.9859 0.9251 

28 53 0.30296 0.9862 0.9254 

27 77 0.30385 0.9856 0.9252 

26 18 0.30606 0.9848 0.9252 

25 75 0.30758 0.9853 0.9253 

24 23 0.31161 0.9838 0.9252 

23 1 0.33756 0.9816 0.9252 

22 21 0.34186 0.9827 0.9254 

21 69 0.35098 0.9808 0.9252 

20 24 0.35774 0.9823 0.9251 

19 3 0.36944 0.9806 0.9254 

18 63 0.36944 0.9810 0.9259 

17 2 0.37961 0.9808 0.9260 

16 19 0.38341 0.9756 0.9264 

15 36 0.38887 0.9777 0.9265 

14 10 0.40721 0.9681 0.9264 

13 37 0.41205 0.9588 0.9268 

12 38 0.41221 0.9624 0.9267 

11 16 0.41843 0.9597 0.9270 

10 12 0.42154 0.9567 0.9269 

9 7 0.44074 0.9565 0.9269 

8 68 0.451 0.9538 0.9272 

7 35 0.49988 0.9514 0.9272 

6 56 0.50071 0.9544 0.9272 

5 13 0.51447 0.9574 0.9271 

4 55 0.51447 0.9527 0.9258 

3 9 0.5455 0.9481 0.9259 

2 54 0.54697 0.9511 0.9024 

   0.9957 0.9272 
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Table 4.37: Results of feature ranking and multi-class classification with 

Rem-CICIDS2017 

Features Removed Feature Rank DNN-ACC RF-ACC 

78   0.9956 0.9254 

76 33 0 0.9954 0.9254 

75 34 0 0.995642 0.9255 

74 46 0 0.9945 0.9252 

73 50 0 0.9951 0.9254 

72 51 0 0.9956 0.9253 

71 57 0 0.9953 0.9250 

70 58 0 0.9947 0.9251 

69 59 0 0.9949 0.9251 

68 60 0 0.9953 0.9253 

67 61 0 0.9956 0.9253 

66 62 0 0.9955 0.9256 

65 72 0 0.9955 0.9251 

64 15 0.01189 0.9954 0.9253 

63 30 0.0209 0.9954 0.9254 

62 49 0.02159 0.9945 0.9252 

61 31 0.02239 0.9941 0.9253 

60 45 0.03203 0.9938 0.9255 

59 20 0.03203 0.9921 0.9254 

58 74 0.03823 0.9935 0.9254 

57 25 0.03982 0.9912 0.9254 

56 71 0.04717 0.9922 0.9255 

55 73 0.04721 0.9927 0.9258 

54 76 0.04956 0.9933 0.9253 

53 44 0.05325 0.9911 0.9256 

52 27 0.07399 0.9909 0.9257 

51 48 0.11325 0.9921 0.9253 

50 28 0.16082 0.9906 0.9253 

49 52 0.17624 0.9920 0.9256 

48 26 0.20212 0.9908 0.9257 

47 29 0.2065 0.9912 0.9252 

46 6 0.20974 0.9893 0.9252 

45 66 0.2177 0.9903 0.9255 

44 14 0.2177 0.9909 0.9254 

43 8 0.21802 0.9911 0.9256 

42 43 0.23145 0.9903 0.9255 

41 39 0.23907 0.9899 0.9257 

40 64 0.24155 0.9905 0.9255 

39 5 0.25364 0.9909 0.9256 

38 40 0.25365 0.9898 0.9255 

37 4 0.25373 0.9899 0.9252 

36 65 0.25899 0.9892 0.9256 

35 42 0.25899 0.9899 0.9253 
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34 22 0.26785 0.9899 0.9252 

33 47 0.27328 0.9862 0.9254 

32 17 0.28179 0.9862 0.9253 

31 11 0.28275 0.9859 0.9254 

30 78 0.28751 0.9856 0.9253 

29 75 0.29226 0.9858 0.9249 

28 41 0.30213 0.9862 0.9250 

27 53 0.30281 0.9856 0.9251 

26 77 0.30391 0.9847 0.9248 

25 18 0.30458 0.9853 0.9252 

24 23 0.30698 0.9838 0.9249 

23 21 0.31105 0.9814 0.9254 

22 1 0.3361 0.9830 0.9250 

21 69 0.33748 0.9808 0.9250 

20 24 0.34746 0.9823 0.9250 

19 3 0.35563 0.9806 0.9254 

18 63 0.36749 0.9812 0.9251 

17 2 0.36749 0.9807 0.9258 

16 19 0.38546 0.9757 0.9263 

15 36 0.38707 0.9775 0.9262 

14 10 0.38997 0.9680 0.9262 

13 38 0.40827 0.9585 0.9262 

12 37 0.41361 0.9624 0.9266 

11 16 0.41377 0.9597 0.9269 

10 12 0.41827 0.9568 0.9269 

9 7 0.4215 0.9565 0.9268 

8 68 0.44367 0.9538 0.9270 

7 35 0.45219 0.9515 0.9270 

6 56 0.49833 0.9543 0.9271 

5 13 0.49862 0.9573 0.9270 

4 55 0.51625 0.9527 0.9257 

3 54 0.51625 0.9481 0.9258 

2 9 0.54662 0.9512 0.9023 
  0.54669 0.9956 0.9271 
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CHAPTER 5 

DISCUSSION 

In binary classification with UNSW-NB15 dataset, although the differences are 

marginal. As in Table 5.1 the results show the accuracies are provided by the proposed 

method, where the three classifiers achieved high accuracy rate. The DNN with three 

hidden layers is the best classifier where achieved the best accuracy rate with 41 

features compared to the rest of the classifiers, is 99.19%. The GBT provided an 

extremely lower average prediction time per each packet, which is 0.35 ns, compared 

to the DNN and RF classifiers, which consumed 1.35 ns and 11.16 ns respectively. 

Moreover, by comparing the results of the proposed method with the results of 

classifiers on full dataset, there was a slight improvement in the accuracy and time 

prediction. 

Table 5.1: Summary of binary classification with UNSW-NB15 dataset 

Classifier 
Accuracy – 

full dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 99.16% 1.43 99.19% 1.35 41 

RF 98.85% 12.13 98.86% 11.36 32 

GBT 97.83% 0.70 97.92% 0.35 26 

Using a CICIDS2017 data set with two methods that replacing and removing the 

massing and infinity values for binary classification. The best accuracy rate provided 

by the GBT classifier on the 23 features selected from the Rep-CICIDS2017, which is 

99.81%. The DNN classifier achieved the lower time prediction, which consumed 0.05 

ns and a lower accuracy rate than GBT, which is 92.72%. Table 5.2 shows the 

differences are marginal, here there is an improvement in the accuracy of the works 
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with the suggested approach, although small compared with the results of the full 

dataset. 

Table 5.2: Summary of binary classification with Rep-CICIDS2017 dataset 

Classifier 

Replace 

Accuracy – 

full dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 97.72% 0.05 97.73% 0.05 59 

RF 92.54% 7.71 92.72% 0.18 6 

GBT 99.81% 1.23 99.97% 0.01 23 

According to the Table 5.3 shows the results of the implementation of the proposed 

method on the Rem-CICIDS2017 data set, there is a very small difference in the 

results. The RF achieved the lowest rate of performance and the highest consumer time 

to prediction when compared to other classifiers. 

Table 5.3: Summary of binary classification with Rem-CICIDS2017 dataset 

Classifier 

Remove 

Accuracy – 

full dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 97.71% 0.05 97.72% 0.05 59 

RF 92.54% 7.68 92.71% 0.13 8 

GBT 99.81% 1.24 99.99% 0.03 21 

For the multi-class attacks prediction, the results show the superiority of the DNN 

using the UNSW-NB15 attacks packets, which consumed 5.15 ns and 4.71 ns, while 

provided accuracy 97.01%, and 97.04 by using the homogeneity metric for feature 

selection. While the RF achieved an accuracy of 91.76% with UNSW-NB15 attacks 

packets and 91.77% with the subset of 31 features selection.  In contrast, the results of 

the proposed feature selection method indicate an incommodious improvement in the 

accuracy rate and prediction time. 
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Table 5.4: Summary of multiclass classification with UNSW-NB15 dataset 

By using attack packets of Rep-CICIDS2017, DNN achieved a high accuracy rate in 

the classification of attack packets, which is 99.55% and prediction time is 0.64 ns. The 

DNN classifier obtained the same accuracy on subset of 75 features with very little 

improvement. The RF classifier achieved a lower accuracy rate with attack packets compared 

to DNN, also with a subset of features selected from the entire attack packets. 

Table 5.5: Summary of multiclass classification with Rep-CICIDS2017 dataset 

Classifiers 

Rep-CICIDS2017 

Accuracy – 

attack dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 99.55% 0.64 99.57% 0.70 75 

RF 92.57% 7.40 92.72% 6.22 8 

As in Table 5.6, there is no significant difference in the applied of classifiers to the 

attack data packets of Rem-CICIDS2017 data. This also applies to the time of 

expectation, which indicates that there is little effect either by deleting the lost and 

infinite values or replacing them with the mean values. 

Table 5.6: Summary of multiclass classification with Rem-CICIDS2017 dataset 

Classifier 

Rem-CICIDS2017 

Accuracy – 

attack dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 99.56% 0.63 99.56% 0.85 67 

RF 92.54% 6.98 92.71% 6.04 6 

In general, the homogeneity metric is a simple and uncomplicated method. This 

proposed technique has achieved a high accuracy rate with fewer features when 

compared with the applied of classifiers on full two datasets. as in Figure 5.1 and 

Figure 5.2, Note that the curves maintain the same level almost with features that have 

Classifier 
Accuracy – 

attack dataset 

P. Time 

(ns) 

Best accuracy 

with FS 

P. Time 

(ns) 

Number 

of 

Features 

DNN 97.01% 5.15 97.04% 4.71 29 

RF 91.76% 24.85 91.77% 23.48 31 
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a lower rank and then starts to decline with the remove features that have a higher rank. 

The slight improvement in classifier performance using the proposed feature selection 

approach suggests that this approach can be developed to deal more efficiently with 

heterogeneous data, which is one of the most significant challenges of intrusion 

detection systems. 

 

Figure 5.1: Correlation of feature rank and accuracy 

 

Figure 5.2: Correlation of feature rank and accuracy 

Figure 5.3 Illustration that DNN remains at the same accuracy with marginal 

improvement and a slight slope whenever high homogeneity features are removed. The 
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RF is more steeply slanted in accuracy whenever the range of features that achieve 

high homogeneity. As in Figure 5.4 shows the DNN obtained the high accuracy rate 

on full features of CICIDS2017 dataset. The curve maintains the same accuracy rate 

with features that have the least homogeneity rank and then starts gradual regression 

whenever the higher features are removed. The RF maintains a constant accuracy rate 

until the last feature is reached. 

 

Figure 5.3: Correlation of feature rank and accuracy 

  

Figure 5.4: Correlation of feature rank and accuracy 

In binary classification scenario, The DDN and GBT classifiers achieved best accuracy 

and time prediction. While the RF classifier came at a lower rate compared to other 
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classifiers. Given the overall performance of deep learning and ensemble techniques, 

they have the ability to handle large data and improve the performance of intrusion 

detection systems in detecting abnormal patterns in data with less false alarm rate. For 

multiclass classification, The DNN classifier achieved a high accuracy rate, which 

reduced the false rate alarms while the random forest classifier gave a lower accuracy 

compared to the two. 

Two recent sets of data were used, including a set of common attacks to evaluate the 

proposed method, A UNSW-NB15 dataset has been used in many previous studies and 

has proved, as in this study, that it has the efficiency to be used to evaluate modern 

approaches aimed at detecting modern and sophisticated patterns of attacks. A 

CICIDS2017 dataset contains a wider range of common and modern attacks than large-

scale datasets, in this study, the results showed that there is no significant effect on the 

performance of the classifiers because the size of the data that have missing or infinite 

values is small compared to the total size of the CICIDS2017 dataset. 

The use of apache spark technique has greatly improved the prediction time of the 

three classifiers when compared to traditional techniques, this improvement gives 

intrusion detection systems the ability to make decisions more efficiently in terms of 

blocking or allowing data to pass through the network, in addition, the integration 

between Apache Spark and the Keras Deep Learning Library has increased the 

capabilities of deep learning algorithms to work more efficiently and quickly. 

As shown in Table 1.7, the accuracy of classifiers used in this study is compared with 

previous studies in binary classification, while table 1.8 shown the comparison in 

multiclass classification. 
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Table 5.7: Comparison of the accuracy of the binary classification 

prediction with earlier studies. 

Study Classifier 
Accuracy 

(%) 

Primartha and Tama [62] 
Random Forest 95.5 

Multilayer Perceptron 83.50 

Nour Mustafa and Jill Slay [35] 

Naïve Bayes 79.50 

Expectation-Maximization 77.20 

Linear Regression 83.00 

Mustapha Belouch, et al. [79] 

RepTree 87.80 

Naïve Bayes 80.04 

Random Tree 86.59 

Decision Tree 86.13 

Artificial Neural Network 86.31 

Malek Al-Zewairi, et al. [61] Deep Learning 98.99 

This Study 

Deep neural network 99.16 

Random Forest 98.85 

Gradient Boosted Tree 97.83 

Table 5.8: Comparison of the prediction’s accuracy attack of multiclass 

classification with earlier studies. 

Study Classifier Accuracy (%) 

Mustapha Belouch, et al. [79] 

RepTree 79.20 

Random Tree 76.21 

Naïve Bayes 73.86 

Artificial Neural Network 78.14 

Hossein Gharaee, Hamid 

Hosseinvand [80] 
Genetic + SVM 93.25 

This Study 
Deep neural network 97.01 

Random forest 91.76 

Table 5.9 shows the comparison of classifiers accuracies rate were used in proposed 

method with the earlier works that used the CICIDS2017 dataset, the results show that 

the results are close to the simple superiority of the proposed method in this work. 
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Table 5.9: Comparison of the accuracy of the binary classification 

prediction with earlier studies used CICIDS2017 dataset. 

Study Classifier Accuracy (%) 

Iman Sharafaldin, et al. [56] 

K-Nearest Neighbors 96.00 

Random Forest 98.00 

ID 98.00 

Adaboost 77.00 

Multilayer Perceptron 77.00 

Naïve Bayes 88.00 

Quadratic Discriminant 

Analysis 
97.00 

R. Vijayanand, et al. [81] SVM+ Genetic 99.85 

Alves and Drummond. [82] Genetic + Profiling 92.85 

This study 

Deep neural network 97.73 

Random forest 92.72 

Gradient Boosted Tree 99.97 
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CHAPTER 6 

CONCLUSION 

Intrusion detection systems have been developed to protect network resources and data 

from any attacks that threaten their integrity and confidentiality. The emergence of the 

term big data over the past years, which refers to the huge amount of data that are 

generated daily from several sources, such as social networking sites Internet of things, 

factories, which constitute a real challenge to the characteristics of intrusion detection 

systems in monitoring network traffic, prevention and detection of attacks. The 

intrusion detection systems are based on two main methods of detection: misuse-based 

detection and anomaly-based detection. The first method is to analyze the data 

according to the attack knowledge databases. The second method relies on extracting 

abnormal patterns of data. Anomaly detection methods use machine learning 

techniques to mine data whose behavior differs from the behavior of normal data, often 

representing potential attacks.  

Heterogeneity of huge amount of data is one of the barriers to intrusion detection 

systems for analyzing data and extracting the relevant features that represent anomaly 

data. Many techniques use the selection of relevant features, that help to improve the 

performance of classification techniques and reduce the volume of resources 

consumed. Several methods have been proposed to improve the performance of 

intrusion detection systems that have used different types of feature selection and 

intrusion detection techniques. Most studies rely on traditional data processing 

techniques to improve the performance of data intrusion detection systems which have 

become useless in dealing with the increasing volume of data. Studies that relied on 

big data techniques did not give much importance to how intrusion detection systems 

deal with large and heterogeneous data. Our proposed method is based on the 

integration of deep learning and big data techniques with a feature selection technique 

based on a homogeneity metric. 
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Our proposed method relies on the use of the homogeneity metric of the k-means 

clustering algorithm to select the relevant features on two recent data sets 

UNSW-NB15 and CICIDS2017, that contain a set of common attacks. Homogeneity 

is a clustering metric, where clustering must assign only those data points that are 

members of a single class to a single cluster where unique features can be identified 

for each class. The homogeneity rank of each feature is computed separately, the 

features are arranged in descending order from the lowest rank to the highest rank. 

Deep Neural Network, Random Forest and Gradient Boosting Tree classifiers are 

applied on the datasets with two scenarios, which are binary and multiclass 

classification. A feature is removed each time with the application of the classifiers on 

the remaining feature set until accessing to the latest feature. 5-fold cross validation 

method is used in all experiments to evaluate the machine learning models. The 

performance of the proposed method is evaluated in terms of accuracy and prediction 

time. 

The proposed approach achieved a high-performance accuracy, as the use of the 

homogeneity metric of the feature rank proved that a unique feature could be identified 

for each class, thus increasing the performance of the classifiers in extracting 

anomalies in data. In binary classification, the DNN classifier achieved a high accuracy 

is 99.19% with a subset of 41 features when implemented on UNSW-NB15 dataset 

while the GBT classifier achieved the high accuracy of 99.99% with a subset of 21 

features of the subset selected from CICIDS2017 dataset. For multiclass classification, 

the highest accuracies achieved by DNN classifier are 97.04% with the subset of 29 

features and 99.56% with the subset of 67 features, that obtained the highest rank of 

homogeneity and selected from UNSW-NB15 and CICIDS2017 datasets respectively. 

The proposed approach was compared with a set of related work that relied on the 

same datasets to evaluate their proposals, and the differences were marginal. Given the 

comparison, the proposed approach obtained a higher accuracy rate than previous 

work, machine learning techniques used in this proposal have the ability to deal with 

big data, often involving heterogeneous data, using the homogeneity metric to select a 

unique feature that enhances the ability of classifiers to detect anomalies. The high 

efficiency and speed of Apache Spark in the analysis and processing of large data and 

its ability to integrate with deep learning libraries improve the speed required to build 
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models and detect anomalies, which helps to enhance the speed of decision-making 

and reduce the false rate alarm. 

In future work, the development of homogeneity can be studied to obtain a higher 

homogeneity rank, and experiment with other deep learning techniques that have the 

ability to handle large data. Another future work could be the use of Graphics 

Processing Unit (GPU) for its high speed, which will reduce the training time spent on 

machine learning techniques. 
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