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ABSTRACT

ORDER-PRESERVING MODELS FOR DISCRETE EVENT

SYSTEMS: THEORY AND APPLICATIONS

NOORULDEEN, Anas

Ph.D., Department of Electronic and Communication Engineering

Supervisor: Prof. Dr. Klaus Werner SCHMIDT

Co-Supervisor: Assoc. Prof. Dr. Hüsnü Deniz BAŞDEMİR

February 2020, 80 pages

Flexible manufacturing systems (FMS) are characterized by the processing of

different product types on the same manufacturing systems. In particular, it is

possible that the paths of different product types through an FMS overlap and

different product types share the same production components such as machines

or conveyor belts. That is, when designing controllers for FMS, it is required to

keep track of products traveling through the FMS in order to process products

correctly. In particular, it is important that the sequential order of different

products is captures by dynamic models of FMS. In this context, the modeling

formalism of discrete event systems (DES) is suitable since it allows capturing

the sequential behavior of FMS.
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Accordingly, this thesis develops a new modeling technique for the supervisory

control of FMS in the framework of DES. In particular, the thesis considers the

general case of an FMS, where different product types can share production com-

ponents and production components can hold multiple products. It is first pointed

out that a suitable model for such production component needs to keep track of

the product type and the order of products entering and leaving production com-

ponents. Then, order-preserving languages are introduced as a new model for

FMS. Several important properties of such order-preserving languages are for-

mally proved and their benefit for modeling FMS is discussed.

In addition, a general method for algorithmically constructing the required order-

preserving models using finite state automata is proposed. The practicability of

the developed method is demonstrated by several application examples.

Keywords: Discrete Event Systems, Flexible Manufacturing Systems, Supervi-

sory Control, Order-Preserving Models.
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ÖZ

AYRIK OLAYLI SISTEMLER İÇİN SIRASAL DEVAMLILIĞI

KORUMA MODELLERİ: KURAM VE UYGULAMALAR

NOORULDEEN, Anas

Doktora, Elektronik ve Haberleşme Mühendisliği Anabilim Dalı

Tez Yöneticisi: Prof. Dr. Klaus Werner SCHMIDT

Ortak Tez Yöneticisi : Assoc. Prof. Dr. Hüsnü Deniz BAŞDEMİR

Şubat 2020, 80 sayfa

Esnek Üretim Sistemleri (FMS), farklı ürün türlerinin aynı imalat sistemleri

üzerinde işlenmesi ile karakterizedir. Bir FMS çakışması yoluyla farklı ürün

türlerine ait yolların ve farklı ürün türlerinin, makine veya taşıma bantları gibi

aynı üretim bileşenlerini paylaşmaları mümkündür. Yani, FMS ile ilgili kontrol

birimlerini tasarlarken ürünleri doğru bir şekilde işlemek için FMS aracılığıyla

taşınan ürünleri takip etmek gereklidir. Farklı ürünlerin sıralı düzeninin FMS’nin

dinamik modelleri tarafından yakalanması özellikle önem arz etmektedir. Bu

bağlamda ayrık olaylı sistemlerin (DES) modelleme formalizmi FMS’nin sıralı

davranışını yakalamaya olanak sağladığı için uygundur.
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Dolayısıyla bu tezde, DES çerçevesinde FMS’nin denetleyici kontroln̈e yönelik

yeni bir modelleme tekniği geliştirilmiştir. Tez bilhassa farklı ürün türlerinin

üretim bileşenlerini paylaşabileceği ve bu üretim bileşenlerinin ise çoklu ürünleri

barındırabileceği FMS’nin genel bir durumunu ele almaktadır. İlk olarak söz

konusu üretim bileşeni için uygun bir modelin, bu ürünün türünü ve üretim

bileşenlerine giren ve çıkan ürünlerin sırasını takip etmesi gerektiğine dikkat

çekilmiştir. Sonrasında sırasal devamlılığı koruma dilleri, FMS için yeni bir

model olarak sunulmuştur. Bu sırasal devamlılığı koruma dillerinin birçok öinemli

özelliği, usulen ispat edilmiş ve FMS modellemesi için faydaları tartışılmıştır.

Bununla birlikte, sonlu durum otamatı kullanılarak gerekli sırasal devamlılığı

koruma modellerini algoritmik olarak oluşturmaya ilişkin genel bir yöntem

önerilmiştir. Geliştirilen bu yöntemin uygulanabilirliği birkaç uygulama örneği

ile gösterilmiştir.

Anahtar Kelimeler: Ayrık Olaylı Sistemler, Esnek Üretim Sistemleri, Denet-

leyici Kontrol, Sırasal Devamlılığı Koruma Modelleri.
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CHAPTER 1

INTRODUCTION

Discrete event system (DES) models are used for systems that reside on a discrete

state space and whose state evolution depends on the occurrence of discrete events

[1]. Examples for DES are human-made systems such as manufacturing systems,

transportation systems or communication networks [2, 3, 4, 5, 6]. In particular,

DES models are suitable for Flexible manufacturing systems (FMS). FMS have

the ability of manufacturing different types of products using a given hardware

setup with various production components such as machines, robots and conveyor

belts [7, 8, 9, 10, 11]. In an FMS, it is generally desired to move products along pre-

defined paths through the FMS and use pre-specified production components for

processing these products in a given sequence [12, 13, 14]. Considering that FMS

can process different types of products using the same production components,

it is important to keep track of the products traveling through and FMS and to

avoid blocking situations in case different products require processing by the same

production component.

The logic control of FMS can be carried out in the framework of supervisory con-

trol for discrete event systems (DES) [1]. In this formal framework, the desired

production sequences are realized by a supervisor that is designed based on a for-

mal DES model of the FMS and a formal specification of the production sequence.

The existing literature considers various aspects regarding the supervisory con-

trol of FMS. The work in [15, 16, 17, 18] focuses on the avoidance of deadlocks

or forbidden states in FMS and [12, 13, 19, 20] develop modular and hierarchical
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methods for the efficient computation of supervisors for FMS. Furthermore, there

is recent work such as [14] that proposes the concept of distinguishers in order to

facilitate the modeling of FMS with different product types. In this context, it has

to be noted that, although an FMS should keep track of the sequence of products

traveling through the FMS, the existing methods avoid this necessity by certain

modeling tricks that facilitate the FMS modeling and that restrict generality.

Accordingly, the main subject of this thesis is the modeling of an additional prop-

erty of FMS that has not been addressed in previous work on the supervisory

control of FMS. In particular, it is possible that production components can hold

multiple products and then process them sequentially. In this case, it is required

that a product that enters the production component first will also be processed

first and then leave the production component first. That is, if a production

component is able to process different product types, it is necessary to keep track

of the different product types entering and leaving such production component.

Nevertheless, this case does not appear in the existing literature. For FMS with

different product types it is either the case that these product types have inde-

pendent paths in the FMS [9, 14, 21], the product paths are defined such that

it is not necessary to remember the product order [7, 12, 13, 19, 20, 22, 23] or

the product order is not taken into account and it is implicitly assumed that the

production component knows which product is currently transported [8, 15, 16].

In order to address this issue, the thesis first determines scenarios under which

a suitable model for a production component needs to keep track of the product

type and the order of products entering and leaving. Then, a formal modeling

framework denotes as ”order-preserving languages” is introduced and important

properties of order-preserving languages are studied. In particular, it is shown

that order-preserving languages are closed under arbitrary union and the compo-

sition of order-preserving languages again yields an order-preserving language.

As an extension of the theoretical investigation of order-preserving languages,

the thesis further develops a general method for algorithmically constructing the

required order-preserving models of production components. This method takes

into account the neighborhood relationship between production components and
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is applicable to production components that can hold an arbitrary number of prod-

ucts and that can process an arbitrary number of product types. We demonstrate

the practicability of the proposed modeling method by different FMS examples

with multiple products and overlapping product paths.

The remainder of the thesis is organized as follows. Chapter 2 introduces the

basic notation regarding DES and supervisory control. Chapter 3 formulates the

problem addressed in this thesis based on a variety of motivating examples. Then,

Chapter 4 introduces the new modeling formalism of order-preserving languages

and derives their most important properties. The proposed order-preserving mod-

eling method using finite state automata is developed in Chapter 5 and applied

to various FMS examples in Chapter 6. Chapter 7 gives conclusions and states

ideas for future work.
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CHAPTER 2

BASIC NOTATION

This chapter gives the necessary background information about modeling and

supervisory control of discrete event systems (DES) that are studied in this thesis.

First, Section 2.1 defines DES and introduces the modeling formalisms of formal

languages and finite state automata. Then, Section 2.2 discusses the supervisory

control of DES.

2.1 Discrete Event Systems

The expression ”discrete event system” (DES) was introduced in the early 1980s

to model an increasingly important class of human-made dynamic systems with

a discrete state space and state transitions that are given by the asynchronous

occurrence of discrete events. Such systems are encountered in a variety of fields

and have been successfully employed in many areas, for example in manufactur-

ing systems and communication networks [1, 24]. The operation of a DES is in

principle governed by sequences of events, whereby the order of events is most

relevant. The exact timing of events is nevertheless not important. A DES model

can hence very well describe systems with activities such as turning some device

”On ,Off”, sending one or multiple message packets, or detecting if an object

arrives at a certain location.

DES can be characterized by the following distinctive properties:
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• A DES has a finite or countably infinite number of discrete states

• Each change of state occurs at a discrete time instant. State changes are

called transitions

• Each transition is driven by the occurrence of an event

• A DES spends time only in states. That is, state transitions occur instan-

taneously (they do not need time).

A light switch is a simple example of a DES. The switch has two discrete states,

which can be identified as ”On” and ”Off”. There are further two possible events

switchOn and switchOff. If the light switch is for example in state ”Off”, the

event switchOn can occur, and the light switch performs an instantaneous tran-

sition to the state ”On”. Analogously, in state ”On”, a transition with event

switchOff leads to state ”Off”.

In the established literature, the behavior of a DES is modeled by a formal lan-

guage [1]. We next introduce the concept of a formal language.

2.1.1 Formal Language

The behavior of discrete event systems is represented by formal languages over

finite set of events, also called alphabet Σ. This set consists of all the events that

can possibly happen in a given DES.

A string (or trace) is a finite sequence of events from Σ. The length of a string s,

denoted by |s| is given by the number of events in s. The empty string, denoted by

ε, is the string with zero length (i.e., |s| = 0). Each element σ ∈ Σ is denoted as

an event, Σ? denotes the set of all finite strings over Σ. whereby the ?-operation

is called Kleene Closure.

Considering the light switch example, the alphabet is given by Σ = {switchOn,
switchOff}. A possible sequence of events is s = switchOn switchOff switchOn

with length |s| = 3. The Kleene closure of Σ in this case is Σ? = {ε, switchOn,
switchOff, switchOn switchOn, switchOn switchOff, switchOff switchOn,
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switchOff switchOff, . . . , }. Note that not all strings in Σ? must be possible

in the DES.

The concatenation of two strings s1s2 ∈ Σ? is defined as s1, s2 ∈ Σ?. s1 ≤ s

indicates that s1 is a prefix of s and ε ∈ Σ? is the empty string. With a slight

abuse of notation, we write σ ∈ s for a string s ∈ Σ? and an event σ ∈ Σ if σ

appears in s.

For any string s = σ1, . . . , σ|s| ∈ Σ? with σi ∈ Σ for i = 1, . . . , |s|, we fur-

ther write prek(s) = σ1 . . . σk for the prefix of s with the first k events and

sufk(s) = σ|s|−k+1 · · ·σ|s| for the suffix of s with the last k events. In particular,

s = prek(s)suf|s|−k(s) for any k ≤ |s|.

A formal language over Σ is a subset L ⊆ Σ?. Then,

L := {s1 ∈ Σ?| ∃s ∈ L s.t. s1 ≤ s}

defines the prefix closure of L, and L is called prefix closed if L = L.

Consider two alphabets Σ̂,Σ such that Σ̂ ⊆ Σ. The natural projection erases all

events in Σ \ Σ̂ (\ is the set difference) from strings s ∈ Σ?. This function is

defined as p : Σ? → Σ̂? iteratively such that

p(ε) = ε

p(σ) =

 σ if σ ∈ Σ̂

ε otherwise

p(sσ) = p(s)p(σ)

For example, if we are only interested in the event switchOn of the light switch,

we can project each string to the alphabet Σ̂ = {switchOn} and make occurrences

of switchOff invisible. For the string s = switchOn switchOff switchOn, the

projection gives p(s) = switchOn switchOn.

The set-valued inverse of p is written as

p−1 : Σ̂→ 2Σ?

, p−1
i (t) := {s ∈ Σ?| pi(s) = t}

Consider two languages L1 ⊆ Σ?
1 and L2 ⊆ Σ?

2 for alphabets Σ1,Σ2. Using the
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natural projection, the synchronous composition L1||L2 ⊆ (Σ1 ∪ Σ2)? of L1 and

L2 is computed as L1||L2 = p−1
1 (L1) ∩ p−1

2 (L2).

2.1.2 Automata

A very widely used compact model for languages is the automaton. It allows to

describe and study the structure of DES and the automaton graph visualizes the

behavior of DES. Usually, a DES is modeled by a finite state automaton.

A finite state automaton is a 5-tuple G = (X,Σ, δ, x0, Xm) with

• the finite set of states X;

• the finite alphabet of events Σ;

• the partial transition function δ : X × Σ→ X;

• the initial state x0 ∈ X; and

• the set of marked states Xm ⊆ X.

Hereby, δ(x, σ)! is written if δ is defined at (x, σ) and we extend the transition

function δ to a partial function on X × Σ? in the usual way. That is, if δ(x, s)

exists for some s ∈ Σ?, δ(x, s) represents the state reached starting from state x

and executing the string s.

We use the example automaton G = (X,Σ, δ, x0, Xm) in Fig. 2.1 to explain the

notation introduced before.

1 2
G

5 3

a b

b

4

d
c

6
d

Figure 2.1: Example finite state automaton G.
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G has 6 states with X = {1, 2, 3, 4, 5, 6} and an alphabet with 4 events Σ =

{a, b, c, d}. The transition relation δ is defined with δ(1, a) = 2, δ(1, b) = 5,

δ(1, c) = 3, δ(2, b) = 4, δ(4, d) = 3, δ(5, d) = 6. The initial state is x0 = 1 and the

set of marked states is Xm = {1, 4, 6}.

The behavior of an automaton G is given by its closed language:

L(G) := {s ∈ Σ?|δ(x0, s)!}

and its marked language:

Lm(G) := {s ∈ L(G)|δ(x0, s) ∈ Xm}

The closed language L(G) contains all event sequences that follow the transitions

of G starting from the initial state. The language Lm(G) contains all strings

of events, starting from the initial state of G and leading to a marked state in

Xm. For the example automaton in Fig. 2.1, we determine the closed language

L(G) = {ε, a, ab, abd, c, b, bd} and the marked language Lm(G) = {ε, ab, bd}.

A finite state automaton G is said to be nonblocking if

Lm(G) = L(G)

This property holds, when every string generated by G can be extended to a

marked (desired) state in G. Finite state automata can be cyclic or acyclic. A

cycle in a finite automaton is a sequence of states x1, x2, . . . , xk (k is a natural

number) such that x1 = xk and for all i = 1, . . . , k − 1, there exists an event

σi ∈ Σ such that δ(xi, σi) = xi+1. This means, it is possible to start at a state x1

of G, follow the transitions in G and return back to x1. Then, an automaton G

without cycles is called acyclic.

Now we introduce several relevant properties and operations for automata:

• Accessible: The automaton G = (X,Σ, δ, x0, Xm) is accessible, if all states

in X can be reached from the initial state x0. Formally, we write

∀x ∈ X, ∃s ∈ Σ? such that δ(x0, s) = x

In addition, we write Acc(G) for the automaton, where all states from G

that are not reachable from x0 are removed. Then, Acc(G) is accessible.
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• Coaccessible: The automaton G = (X,Σ, δ, x0, Xm) is coaccessible, if it is

possible to reach a marked state from any state in X. Formally, we write

∀x ∈ X, ∃s ∈ Σ? such that δ(x, s) ∈ Xm

It holds that a coaccessible automaton is nonblocking: Lm(G) = L(G). In

addition, we write CoAcc(G) for the automaton, where all states from G

that are not coaccessible are removed. Then, CoACC(G) is coaccessible.

• Trim

The automaton G = (X,Σ, δ, x0, Xm) is trim, if it is accessible and coacces-

sible at the same time. We write

Trim(G) = Acc(CoAcc(G)) = CoAcc(Acc(G))

The example automaton G in Fig. 2.1 is accessible because all states in X are

reachable from the initial state 1. Hence, Acc(G) = G. However, G is not

coaccessible because there is no path from the state 3 to a marked state. Hence

CoAcc(G) is obtained by removing state 3 from G. Then, CoAcc(G) is a strict

subautomaton of G. It can also be seen that G is acyclic.

If a DES is modeled by more than one finite state automaton (for example, if the

system has several components with their own automata model), the synchronous

composition operation can be used to obtain a single automaton model of the DES.

Assume two automataG1 = (X1,Σ1, δ1, x0,1, Xm,1) andG2 = (X2,Σ2, δ2, x0,2, Xm,2)

are given.

The synchronous composition is written as:

G12 = (X12,Σ12, δ12, x0,12, Xm,12) = G1||G2,

and is defined such that

• X12 = X1 ×X2 (canonical product of states from X1 and X2)

• Σ12 = Σ1 ∪ Σ2 (union of events in Σ1 and Σ2)

• x0,12 = (x0,1, x0,2)
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• Xm,12 = Xm,1 ×Xm,2

• the transition relation takes care that events in Σ1 ∩ Σ2 that are shared by

G1 and G2 are synchronized. For (x1, x2) ∈ X12 and σ ∈ Σ12:

δ12((x1, x2), σ) =


(δ1(x1, σ), δ2(x2, σ) if σ ∈ Σ1 ∩ Σ2 ∧ δ1(x1, σ)! ∧ δ2(x2, σ)!

(δ1(x1, σ), x2) if σ ∈ Σ1 \ Σ2 ∧ δ1(x1, σ)!

(x1, δ2(x2, σ)) if σ ∈ Σ2 \ Σ1 ∧ δ2(x2, σ)!

That is, the important point of the synchronous composition [1] is that is syn-

chronizes the shared events (events that appear in both automata), whereas

all other events can occur independent of each other. In relation to the syn-

chronous composition of languages, it holds that L(G1||G2) = L(G1)||L(G2) and

Lm(G1||G2) = Lm(G1)||Lm(G2).

Until now, we described how a DES can be modeled by formal languages and

finite state automata, respectively. The supervisory control theory for DES is

introduced in the next section.

2.2 Supervisory Control

The supervisory control theory for DES was first established by Ramadge and

Wonham [25]. It offers a formal framework to design and implement control for

DES. The control of the system is executed by allowing or preventing specific

events from occurring in the plant. Such control is performed by a controller

(or supervisor) while taking into consideration the necessity to ensure the desired

behavior of the system.

In supervisory control, we write Σ = Σc ∪Σu for controllable (Σc) and uncontrol-

lable (Σu) events. We say that an automaton S = (Q,Σ, ν, q0, Qm) is a supervisor

for a plant G if S can only disable events in Σc. In particular, it must hold for

all s ∈ L(G) ∩ L(S) and σ ∈ Σu with sσ ∈ L(G) that also sσ ∈ L(S). Then,

L(G)||L(S) and Lm(G)||Lm(S) represent the closed and marked behavior of the

closed-loop system G||S, respectively. A supervisor S is called nonblocking if the

automaton G||S is nonblocking.
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The design of the supervisor S is based on the desired behavior of the plant.

This desired behavior is usually given in the form of another automaton C =

(Y,Σ, β, y0, Ym) and K = Lm(C) is called the specification language for the control

problem. The meaning of K is, that it contains all strings that are desirable. On

the other hand, a supervisor should disable all strings in L(G) that do not belong

to K. The question if this task is possible is answered by the controllability

condition.

A language K ⊆ Lm(G) is said to be controllable for L(G) and Σu if

KΣu ∩ L(G) ⊆ K

In this expression, K is the prefix-closure of K and KΣu represents the set of all

strings that start with a prefix in K concatenated with an uncontrollable event

in Σu. In words, K is controllable with respect to G and Σu if, whenever a string

s ∈ K that is allowed by the specification can be extended by an uncontrollable

event in the plant (sσ ∈ L(G)) the extended string must again belong to the

specification (sσ ∈ K). This is necessary, because σ could not be disabled by a

supervisor after s. There exists a supervisor S such that Lm(G||S) = K if and

only if K is controllable for L(G) and Σu [25].

In case, K is not controllable for L(G) and Σu, the supervisor will implement the

supremal controllable sublanguage of K. We write

Lm(S||G) = SupC(K,G,Σu)

That is, SupC(K,G,Σu) includes all sublanguages of K that are controllable

with respect to G and Σu. It is ensured that such supervisor is nonblocking and

maximally permissive if SupC(K,G,Σu) 6= ∅ [24].

In summary, the supervisory control theory allows to algorithmically compute

a supervisor S for a DES plant G such that a given language specification is

fulfilled, which means that Lm(G||S) ⊆ K. The design problem is summarized in

the following table.
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Table 2.1: Design procedure for the supervisory control problem.

Given Desired Solution

Plant G Find supervisor Compute SupC(K,G,Σu)
Specification K S such that Use supervisor S with

Uncontrollable events Σu Lm(G||S) ⊆ K Lm(G||S) = SupC(K,G,Σu)
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CHAPTER 3

MOTIVATION AND PROBLEM STATEMENT

In this chapter, we introduce the main issues addressed in this thesis. First,

Section 3.1 gives several motivating examples. Then, Section 3.2 discusses the

main observations and states the main problem considered in this thesis.

3.1 Motivating Examples

The main focus of this thesis is the generation of DES models that retain the order

of products for production systems. In this section, we illustrate the need for such

models by two example scenarios. The first scenario in Section 3.1.1 considers

the modeling of conveyor belts with multiple products. As an extension, Section

3.1.2 discusses DES models for a small production systems with one conveyor belt

and two machines.

3.1.1 Conveyor Belt with Multiple Products

The work in this thesis is motivated by an observation from modeling complex

flexible manufacturing systems (FMS) where (i) different product types can be

processed on the same production component and (ii) production components

might have different capacities. That is, such production component is able to

hold several products that are then processed sequentially. In order to illustrate

this observation, we consider different conveyor belts (CBs) as shown in Fig. 3.1.
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P1

P1 P2P1 P1

P1 P2

(a)(a)

(c)

(g)

(b)

(d)

P1 P2

P1 P2 P1

(e)

P3 P2 P1

(f)

P1/P2

Figure 3.1: CBs with different product types and capacities: (a) one product type
and capacity one; (b) two product types and capacity one; (c) one product type
and capacity two; (d) two product types and capacity two; (e) two product types
and capacity three; (f) three product types and capacity three; (g) two connected
CBs with different product types.

We next discuss the cases in the different parts of Fig. 3.1 together with possible

models. Hereby, we introduce events such as inP1, inP2, . . . for products entering

the CB and outP1, outP2, . . . for products leaving the CB. Part (a) and (b) show

the case of a CB with one and two product types and a capacity of one product.

That is, the CB in part (a) will always take a single product, whose type is

unique. Differently, the CB in part (b) will take a single product but its type

can be either P1 or P2. In addition, part (c) considers the case of one product

type and a capacity of two. This means that two products can be present on the

CB simultaneously. However, since these products have the same type P1, it is

clear that always a product of type P1 will leave the CB. The cases (a), (b) and

(c) can be straightforwardly modeled by the automata in Fig. 3.2 (a), (b) and

(c). In particular, it can be directly seen that the order of product types entering

and leaving the CB is either irrelevant (case (a) and (c)) or is preserved by these

models (case (b)).
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Differently, the modeling becomes more involved in part (d) of Fig. 3.1. Here,

the CB has a capacity of two products and there are two different product types.

That is, products of different types will leave the CB in the same order as entering

the CB. For example, if two products with type P1 and P2 enter the CB in the

sequence P1-P2 (represented by the string inP1inP2), they also must leave the CB

in this sequence (represented by the string outP1outP2). In this case, the model

in Fig. 3.2 (d-1), which is commonly used to model the scenario with two product

types is not suitable. Specifically, such model suggests that product type P2 can

leave the CB before type P1 even P1 enters the CB first (string inP1 inP2 outP1).

A model that captures the correct order of product types entering and leaving

the CB is shown in Fig. 3.2 (d-2). Here, only outP1 is possible in state 5 (after

inP1inP2) and only outP2 is possible in state 6 (after inP2inP1). More complicated

scenarios can easily be envisaged by increasing the capacity (as in Fig. 3.1 (e))

and/or the number of product types (as in Fig. 3.1 (f)). Moreover, it is possible

to consider the connection of multiple CBs that keep the order of product types

as in Fig. 3.1 (g).

0 1
GCB

2 0 1

3 5

6

2

4

0 1
GCB in

out
0 1

GCB
inP1

outP1

2
inP2

outP2

in in

out out

inP1 inP1

inP1

outP1 outP1

outP1

inP2

inP2

outP2

outP2

outP2

inP2

GCB

(a) (b)

0 1
GCB

2

inP1

outP1

inP2

outP2

inP1

outP1

inP2

outP2

(d-1) (d-2)

(c)

Figure 3.2: CB models for different cases: (a) one product type and capacity one;
(b) two product types and capacity one; (c) one product type and capacity two;
(d-1) two product types and capacity two with arbitrary order; (d-2) two product
types, capacity two and order-preserving.
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3.1.2 Small Production System

In the second motivating example, we take into account that production systems

are generally composed of multiple production components. That is, we study

the simple production system with one conveyor belt (C) and two machines (M1

and M2) in Fig. 3.3.

output

M1

output 

M2

to M1

to M2

M1

M2

Cinput C

Figure 3.3: Example system with one conveyor (C) and two machines (M1 and
M2).

In analogy to the previous section, we focus on the case where the conveyor belt

(C) is potentially long and can hold multiple products simultaneously. Products

are fed to C from the left and are then transported to one of the machines M1 or

M2 on the right hand side of the figure. Each product is then processed in the

respective machine and leaves the example system on the right hand side.

In this simple setup, the common automaton model GC of the conveyor and the

automata models GM1 and GM2 of the machines are as given in Fig. 3.4. That is,

the conveyor receives products with the event inC and delivers products towards

the machines with the event outC. If C can hold at most n products simultaneously

(that is, the capacity of C is n), GC has n+1 states to keep memory of the number

of products in C. The machines M1 and M2 obtain products with the event inM1

and inM2, respectively. After processing products are delivered to the outside

with outM1 and outM2.

Although such models are frequently used in the modeling of manufacturing sys-

tems, flexible manufacturing systems (FMS) [26] as well as reconfigurable manu-

facturing systems (RMS) [27], we again argue that these models are not suitable

if there are different product types (with different processing requirements).
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outC

GC

n
inC

outC

inC

outC

10
inM1

outM1

GM1

10
inM1

outM2

GM2

Figure 3.4: Automata models for the conveyor belt (C) and machines (M1 and
M2).

To this end, we next discuss four relevant scenarios and their effect on the conveyor

model as depicted in Fig. 3.5. Different from the example in the previous section,

we now consider that the conveyor belt has neighboring production components

(M1 and M2) with different processing capabilities. That is, it is important to

move the correct product type to the correct machine.

C

M1

M2

C

M1

M2

C

M1

M2

(a) (b)

(c) (d)

P1

P2

P1

C

M1

M2

P1

P2P2

P3

Figure 3.5: Conveyor belt: (a) One product type and capacity one; (b) two
product types and capacity one; (c) two product types and capacity two; (d)
three product types and capacity two.

3.1.2.1 Scenario with a single product type and capacity of one prod-

uct on C

Fig. 3.5 (a) shows the case where there is a single product type and C has capacity

for a single product. It is further desired that any product is delivered to one of

the machines arbitrarily. In this case, it needs to be taken into account that (i)

there is no difference between products that enter C; (ii) any product that enters

C can leave to two different machines. Accordingly, input of a product to C can

be modeled by the event inC, whereas product output has to be modeled by two
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different events C-M1 (from C to M1) and C-M2 (from C to M2) as is shown in

Fig. 3.6. Similarly, the model of the machines in Fig. 3.4 has to be adjusted such

that inM1 is replaced by C-M1 and inM2 is replaced by C-M2 in order to match

the events defined for C.

10
C-M2

outM2

GM2
10

C-M1

outM1

GM1
10

inC

C-M1

GC

C-M2

Figure 3.6: Models for the case in Fig. 3.5 (a).

3.1.2.2 Scenario with two product types and capacity of one product

on C

We next investigate the scenario in Fig. 3.5 (b). Here, the conveyor can hold a

single product but there are two product types. Product P1 (blue) needs to be

processed by M1, whereas product P2 (green) has to be processed by M2. In

this case, it needs to be taken into account that (i) different products enter C; (ii)

depending on the product type in C, the product leaves to M1 or M2. That is, the

model of C in Fig. 3.6 is not suitable since it cannot distinguish products entering

C. In order to distinguish the product type, a refinement of the event alphabet of

GC is required by introducing separate events for the different product types. That

is, instead of ΣC = {inC, C-M1, C-M2}, we use ΣC = {inCP1, inCP2, C-M1, C-M2}.
In addition, the model needs to respect the order of products entering and leav-

ing C. In particular, it is not possible that P2 leaves C (C-M2) after P1 enters

C (inCP1) and vice versa. A suitable model for this scenario is shown in Fig. 3.7.

Here, GC expresses that each event C-Mi is only possible after the respective event

inCPi, i ∈ {1, 2}.

10
C-M2

outM2

GM2
10

C-M1

outM1

GM1

2

0
C-M1

GC

C-M2

1inCP1

inCP2

Figure 3.7: Models for the case in Fig. 3.5 (b).
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3.1.2.3 Scenario with two product types and capacity for two products

on C

A more complicated modeling problem is encountered in the scenario in Fig. 3.5

(c). Here, two different product types P1 and P2 are produced and C can hold up

to two products. In this case, it needs to be taken into account that (i) different

products enter C; (ii) depending on the product type in C, the product leaves to

M1 or M2; (iii) the order of products entering and leaving C must be preserved in

the model. Similar to the previous case, it is again necessary to refine the event

alphabet of GC as ΣC = {inCP1, inCP2, C-M1, C-M2}. In addition, the model has

to remember the order in which products enter the system since products have to

leave C in the same order. A suitable model for this purpose is shown in Fig. 3.8.

Here, GC has one state for each possible product combination on C as is indicated

by the color code in the respective states (P1 – blue; P2 – green). For example,

it can be seen that the input order P1, P2 of products (string inCP1 inCP2) leads

to a state where only P1 can exit C to M1 (event C-M1), whereas P2 has to wait

until P1 leaves C.

P1

P1 P1 P2 P1 P1 P2 P2 P2

P2

GC
inCP1

inCP1
inCP1

inCP2inCP2

C-M1

10
M1out

GM1

0
GM2

inCP2

C-M2

C-M2 C-M1

C-M2C-M1

C-M1

1
M2out

C-M2

Figure 3.8: Models for the the case in Fig. 3.5 (c).

3.1.2.4 Scenario with three product types and capacity for two prod-

ucts on C

The next example shows that the modeling problem need not be restricted to a

single component of a production system. To this end, we consider the scenario

in Fig. 3.5 (d). Here, there are three product types P1, P2, P3 and C has a
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capacity of two products. P2 is delivered to M2, whereas both P1 and P3 are

delivered to M1. That is, P1 and P3 share the same path within the example

system but might follow a different path after leaving the example system. In

this case, it needs to be taken into account that (i) different products enter C;

(ii) depending on the product type in C, the product leaves to M1 or M2; (iii)

the order of products entering and leaving C and M1 must be preserved in the

model. Since there are three products in C and two products in M1, we refine the

respective alphabets as ΣC = {inCP1, inCP2, inCP3, C-M1P1, C-M1P3, C-M2P2}, ΣM1 =

{C-M1P1, C-M1P3, outM1P1, outM1P3} and ΣM2 = {C-M2P2, outM2P2}. In addition,

the model has to remember the order in which three different products enter C

(capacity 2) and the order in which two different products enter M1 (capacity 1).

A suitable model for this purpose is shown in Fig. 3.9. Similar to Fig. 3.8, GC

has one state for each possible product combination on C. Since there are more

product types, more combinations have to be considered. Finally, the model for

M1 has the same structure as the model for C in Fig. 3.7 since there are two

products types and the capacity is one.

P1

P1 P1 P3 P1 P1 P3 P3P3

P3

inCP1

inCP1
inCP1

inCP3

inCP2

inCP2
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P1 P2 P2 P2
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P3 P2 P2 P3P2 P1
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Figure 3.9: Models for the the case in Fig. 3.5 (d).
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3.2 Discussion and Research Problem

The main purpose of the example scenarios in Fig. 3.1 and Fig. 3.5 is to clarify the

effect of different product types and different capacities of production components

on the structure of the respective automaton model. In particular, it can be

observed from the scenario in Fig. 3.1 (b) and Fig. 3.5 (b) that DES models need

to distinguish products if there is more than one product type. In addition, the

scenarios in Fig. 3.1 (d) to (f) and Fig. 3.5 (c) indicate that the DES model needs

to remember the order of products if there are multiple product types and the

capacity of the production component is greater than one. Finally, the scenarios

in Fig. 3.1 (g) and Fig. 3.5 (d) show that the information about capacity and

different product types has to be incorporated in the DES models of all relevant

production components.

In view of the previous discussion, the main aim of this thesis is the construction of

models for production components that keep the order of product types entering

and leaving the component. Instead of constructing a separate model for each

scenario, we develop a general order-preserving DES model that is parametrized

by the possible product types and the capacity of the component. In addition,

we show that reduced models can be constructed when composing such order-

preserving models from multiple components.

It is interesting to note that, although the existing literature considers the control

of production systems with different product types [7, 8, 9, 12, 13, 14, 15, 16, 19,

20, 21, 22, 23], none of the existing works develops DES models that preserve the

order of products. In order to avoid the need for order-preserving DES models

existing work restricts the general case by means of the control specification. In

particular, two special cases can be observed.

The first special case is restricted to production systems, where different product

types use disjoint paths through the system and are hence processed by different

production components [9, 14, 21]. In this case, products need not be distin-

guished and models as in Fig. 3.2 (a) and (c) are suitable. In the second case, it

is possible that the paths of different products intersect [7, 8, 12, 13, 15, 16, 19, 20,
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22, 23]. Although this implies that the same production component is passed by

multiple products, these research works again make simplifying assumptions. One

the one hand, [7, 12, 13, 19, 20, 22, 23] choose the control specification such that

remembering the product order is straightforward. Specifically, this is achieved by

using production components, whose capacity does not exceed one. On the other

hand, [8, 15, 16] allow for production components with multiple product types

and a capacity that is greater than one. However, these papers use models as

in Fig. 3.2 (d-1) for such production components. That is, the order of products

entering and leaving the production component is not taken into account. This

means that knowledge about which product leaves such production component

must be implicitly known. In a real application this implies that sensors need to

be installed to t detect the product type leaving such production component. In

addition, using a model as in Fig. 3.2 (d-1) for an order-preserving production

component means that the model contains unnecessary behavior.

Accordingly, this thesis focuses on the problem of developing a formal framework

for order-preserving DES models of production components with multiple product

types and capacities that are greater than one. Parts of the work are published

in [28] and are under preparation in [29].
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CHAPTER 4

ORDER-PRESERVING LANGUAGES

The previous chapter motivates the need for order-preserving models in DES. This

chapter defines and analyzes order-preserving DES models in the framework of

formal languages. First, Section 4.1 introduces the required notation for the def-

inition of order-preserving languages and then determines their basic properties.

Then, Section 4.2 shows the existence of a supremal order-preserving language

and Section 4.3 studies the composition of order-preserving languages. Finally,

Section 4.4 shows that reduced order-preserving models can be obtained after

composition.

4.1 Notation and Definitions

We consider an alphabet Σ that is divided into disjoint sets of input events Σin

and output Σout such that Σin ∪ Σout = Σ and Σin ∩ Σout = ∅. Moreover, we

introduce the natural projections to the respective alphabets as pin : Σ? → (Σin)?

and pout : Σ? → (Σout)?. In addition, we define a bijective input/output mapping

m : Σin → Σout such that for each input event α ∈ Σin, m(α) ∈ Σout denotes the

corresponding output event. We further write m−1 : Σout → Σin for the inverse

mapping. Relating this definition to the discussion about production systems in

the previous section, an input event α ∈ Σin and output event m(α) represent a

product entering and leaving a production component, respectively.

Given the above notation, we introduce the new notion of an order-preserving
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language, whose strings preserve the order of input events and their corresponding

output events.

Definition 1 Consider Σ, Σin, Σout, pin, pout and m as introduced above. A

string s ∈ Σ? is denoted as order-preserving if

m(pin(s)) = pout(s). (4.1)

A language L ⊆ Σ? is denoted as order-preserving if it holds for all s ∈ L that s

is order-preserving.

That is, each order-preserving string has the same order of input events and cor-

responding output events. In particular, it must be the case that each order-

preserving string s ∈ Σ? has the same number of input and output events:

|pin(s)| = |pout(s)| and each prefix s′ ≤ s of an order-preserving string s must

fulfill

pout(s′) ≤ m(pin(s′)).

This means that output events can only occur after the corresponding input event.

For illustration, we consider the languages L1 = Lm(G1) and L2 = Lm(G2) of

the automata G1 and G2 in Fig. 4.1. Here, we assume that Σ = {a1, a2, b1, b2},
Σin = {a1, a2}, Σout = {b1, b2} and m(a1) = b1, m(a2) = b2. For example, it

holds that s1 = a1a2b1b2 ∈ L1 and s2 = a2b2a1a2b1b2 ∈ L2 are order-preserving

strings. Specifically, m(pin(s1)) = m(a1a2) = b1b2 = pout(s1) and m(pin(s2)) =

m(a2a1a2) = b2b1b2 = pout(s2). It can be further verified that L2 is an order-

preserving language. Nevertheless, it is the case that L1 is not order-preserving.

This can be seen by looking at the string s3 = a1a2b2b1 ∈ L1 with m(pin(s3)) =

b1b2 6= pout(s3) = b2b1.

Referring to Definition 1, we write

LOP(Σin,Σout,m) = {L ⊆ (Σin ∪ Σout)?|L is order-preserving} (4.2)

for the set of all order-preserving languages. In addition, we introduce the notion

of the capacity of an order-preserving language.
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Figure 4.1: Example automata

Definition 2 Assume Σin, Σout, Σ, pin and pout are given as above. Consider an

order-preserving string s ∈ Σ?. Then, the capacity of s is defined by the function

c : Σ? → N as

c(s) = max
s′≤s
{|pin(s′)| − |pout(s′)}. (4.3)

Extending this notion to languages, the capacity of any order-preserving language

L ∈ LOP(Σin,Σout) is defined as

c(L) = max
s∈L
{c(s)}. (4.4)

That is, the capacity of an order-preserving string s ∈ Σ? captures the maximum

difference between the number of input events and the number of output events

in any prefix s′ of s. Analogously, the capacity of an order-preserving language is

given by the maximum capacity of any string s ∈ L.

Consider the languages L2 = Lm(G2) and L3 = Lm(G3) of the automata G2 and

G3 in Fig. 4.1. It holds that c(L2) = 2 since the largest difference between the

number of input and output events is obtained for strings s ∈ L2 that contain

the substring a1a2. Differently, c(L3) = 1 since each input event ai, i = 1, 2, is

directly followed by the corresponding output event bi.

In order to relate the notion of capacity to practical systems, we consider pro-

25



duction systems as discussed in the previous section. Here, input events could

be identified with products of certain types entering the system, whereas output

events can characterize the corresponding products exiting the system. There-

fore, modeling a production system by an order-preserving language L ensures

that products leave the system in the order of entering the system. In that case,

the capacity c(L) indicates the maximum number of products that can be in the

system simultaneously.

4.2 Supremal Order-preserving Language

In order to analyze properties of order-preserving languages, we introduce

LOP
C (Σin,Σout,m) = {L ∈ LOP(Σin,Σout,m)|c(L) = C} (4.5)

as the set of order-preserving languages with alphabet Σ = Σin∪Σout and capacity

C. Our first result shows that order-preserving languages of a given capacity C

are closed under arbitrary union with a supremal element Lsup
C (Σin,Σout,m).

Theorem 1 Let LOP
C (Σin,Σout,m) be as defined in (4.5). Then, LOP

C (Σin,Σout,m)

is closed under arbitrary union and contains a supremal element

Lsup
C (Σin,Σout,m) =

⋃
L∈LOP

C (Σin,Σout,m)

L. (4.6)

We note that, for ease of notation, we write LOP, LOP
C and Lsup

C whenever Σin,

Σout and m are clear from the context.

We first show that LOP
C is closed under arbitrary union. To this end, let L1, L2 ∈

LOP
C . We have to show that L1 ∪L2 ∈ LOP

C . Take an arbitrary string s ∈ L1 ∪L2.

Then, s ∈ L1 or s ∈ L2. In both cases, it holds that s is order-preserving since

L1 and L2 are both order-preserving. Hence, it follows that L1 ∪ L2 is order-

preserving. Moreover, c(s) ≤ C since c(L1) = c(L2) = C. It remains to show

that there exists at least one string s′ ∈ L1 ∪ L2 such that c(s′) = C. Without

loss of generality, we can take some s′ ∈ L1 ⊆ L1 ∪ L1 such that c(s′) = C

since c(L1) = C. Together, we conclude that L1 ∪ L2 is order-preserving and
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c(L1 ∪ L2) = C. Hence, L1 ∪ L2 ∈ LOP
C . Now, consider Lsup

C =
⋃

L∈LOP
C
L. Since

LOP
C is closed under arbitrary union, it must hold that Lsup

C ∈ LOP
C . Hence, Lsup

C

is indeed the supremal order-preserving language with capacity C.

In order to further characterize Lsup
C , we first define the function

f : Σ? → (Σin)? : f(s) = suf|pout(s)|(p
in(s)) (4.7)

for any given s ∈ Lsup
C . That is, f(s) characterizes the string of input events in

s, whose corresponding output events did not occur, yet. Consider for example

the string s = a1a2b1b2a2b2a1a2 ∈ L2 = Lm(G2) in Fig. 4.1. Then, f(s) =

suf|b1b2b2|(p
in(s)) = suf3(a1a2a2a1a2) = a1a2. Then, we define the equivalence

relation ≡OP as the equivalence kernel of f such that for any two strings s, s′ ∈
L

sup

C ,

s ≡OP s
′ ⇐⇒ f(s) = f(s′). (4.8)

Using ≡OP, we introduce the automaton Gsup
C = (Xsup

C ,Σ, δsup
C , xsup

0,C
, Xsup

m,C
) such

that X = L
sup

C / ≡OP is the quotient set of L
sup

C , xsup
0,C

= [ε] and Xsup
m,C

= {[ε]}.
Furthermore, the transition relation is defined such that for all s ∈ L

sup

C and

σ ∈ Σ with sσ ∈ Lsup

C

δsup
C ([s], σ) = [sσ]. (4.9)

Then, Theorem 2 shows that Gsup
C has a finite number of states and recognizes

the supremal order-preserving language with capacity C. In particular, Lsup
C is

regular.

Theorem 2 Let Lsup
C be as defined in (4.5). Then, Lsup

C is a regular language and

it holds that |Xsup
C | =

∑C
i=0 |Σin|i.

We show the theorem by constructing an automaton G = (X,Σ, δ, x0, Xm) that is

isomorphic to Gsup
C . We define x0 = [ε], Xm = {[ε]}. Furthermore, the transition

relation is defined with the following rules:

R1 δ([ε], α1) = [α1] for all α1 ∈ Σin

R2 δ([α1], ω1) = [ε] for ω1 = m(α1)
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R3 δ([α1, . . . , αj], αj+1) = [α1, . . . , αjαj+1] for all [α1, . . . , αj] ∈ X and αj+1 ∈
Σin, j = 1, . . . , C − 1

R4 δ([α1, α2, . . . , αj], ω1) = [α2, . . . , αj] for all [α1, α2, . . . , αj] ∈ X and ω1 =

m(α1), j = 2, . . . , C.

First, we show that G has the same number of states as Gsup
C . To this end,

we observe that the state set X contains the equivalence classes of ≡OP. Since

any string s ∈ Lsup
C has a capacity c(s) ≤ C, it must be the case that |f(s)| =

|pin(s)| − |pout(s)| ≤ C. Hence, the possible equivalence classes are given by

[ε] and sequences [α1 · · ·αj] for 1 ≤ j ≤ C and with arbitrary input events

αi ∈ Σin, 1 ≤ i ≤ j. That is, the state set of Gsup
C is Xsup

C = {[ε]} ∪ {[α1]|α1 ∈
Σin} ∪ · · · ∪ {[α1 · · ·αC−1]|α1, . . . , αC−1 ∈ Σin} ∪ {[α1 · · ·αC ]|α1, . . . , αC ∈ Σin}.
This coincides with the state set X of G.

Considering that there are |Σin|j combinations for each equivalence class [α1 · · ·αj],

j = 1, . . . , C and there is one equivalence class [ε], it already follows that G has

a finite number of

|X| =
C∑

j=0

|Σin|j (4.10)

states. It remains to show that Lm(G) = Lm(Gsup
C ) = Lsup

C . To this end, we show

that (i) Lm(G) ⊆ Lsup
C and (ii) Lm(G) ⊇ Lsup

C .

For (i), it is required to show that each string s ∈ Lm(G) is order-preserving with

capacity c(s) ≤ C. We use induction on the string length to show that for each

prefix sk := prek(s) ≤ s, pout(sk) ≤ m(pin(sk)), c(sk) ≤ C and δ(x0, sk) = [f(sk)].

Let s ∈ Lm(G) be arbitrary. For the initialization, we consider s0 = ε ≤ s.

Then, it holds that pout(s0) = m(pin(s0)) = ε and c(s0) = 0 ≤ C. Furthermore,

δ(x0, s0) = [f(s0)] = [ε].

Now assume that for some k < |s|, we have that pout(sk) ≤ m(pin(sk)), c(sk) ≤ C

and δ(x0, sk) = [f(sk)]. We show that also pout(sk+1) ≤ m(pin(sk+1)), c(sk+1) ≤ C

and δ(x0, sk+1) = [f(sk+1)].

There are three cases. In the first case, let |f(sk)| = 0. That is, [f(sk)] =

[ε]. Then, sk+1 = sk α1 with α1 ∈ Σin according to (R1). Furthermore, it
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holds that pout(sk+1) = pout(skα1) = pout(sk) ≤ m(pin(sk+1)) = m(pin(skα1)) =

m(pin(sk))m(α1), c(sk+1) = c(skα1) = max{c(sk), 1} ≤ C and δ(x0, sk+1) =

δ([ε], α1) = [α1] = [f(sk+1)]. In the second case, let |f(sk)| = C. That is,

[f(sk)] = [α1α2 · · ·αC ] for some α1, . . . , αC ∈ Σin. Then, sk+1 = sk ω1 with

ω1 = m(α1) ∈ Σout according to (R4). Noting that f(sk) = α1α2 · · ·αC , we

further conclude that

pout(sk+1) = pout(skω1) = pout(sk)ω1

= m(pre|pout(sk)|(p
in(sk)))ω1

= m(pre|pout(sk)|(p
in(sk)))m(α1)

≤ m(pre|pout(sk)|(p
in(sk)))m(α1α2 · · ·αC)

= m
(
pre|pout(sk)|(p

in(sk)
)
suf|pout(sk)(p

in(sk)))

= m(pin(sk)) = m(pin(skω1)) = m(pin(sk+1)).

Furthermore, f(sk+1) = f(skω1) = α2 · · ·αC and accordingly δ(x0, sk+1) =

δ([α1α2 · · ·αC ], ω1) = [α2 · · ·αC ] = [f(sk+1)] with (R4). Finally, since c(sk) ≤ C

and c(sk+1) ≤ c(sk), it follows that c(sk+1) ≤ C. In the third case, 0 < |f(sk)| <
C. That is, [f(sk)] = [α1 · · ·αj] with j < C. Then, there are two possible transi-

tions. First, let σ = αj+1 ∈ Σin according to (R3). Then, the same argument as

in the first case shows that pout(sk+1) = pout(skαj+1) = pout(sk) ≤ m(pin(sk+1)) =

m(pin(skαj+1)) = m(pin(sk))m(αj+1), c(sk+1) = c(skαj+1) = max{c(sk), |f(sk)| +
1} ≤ C and δ(x0, sk+1) = δ([α1 · · ·αj], αj+1) = [α1 · · ·αjαj+1] = [f(sk+1)]. Sec-

ond, let σ = ω1 = m(α1) ∈ Σout according to (R2) or (R4). Then, the same

argument as in the second case shows that pout(sk+1) ≤ m(pin(sk+1)), f(sk+1) =

α2 · · ·αj and accordingly δ(x0, sk+1) = δ([α1α2 · · ·αj], ω1) = [α2 · · ·αj] = [f(sk+1)].

Since k was arbitrary, it follows for k+ 1 = |s| that pout(s) ≤ m(pin(s)), c(s) ≤ C

and δ(x0, s) = [f(s)]. Considering that s ∈ Lm(G), it is further the case that

δ(x0, s) = [ε]. Hence, it is the case that m(pin(s)) = pout(s). That is, s is order-

preserving according to Definition 1.

For (ii), we consider an arbitrary string s ∈ Lsup
C and we show by induction that

it holds for each k ≤ |s| that sk ∈ L(G) and δ(x0, sk) = [f(sk)] in order to

show that s ∈ Lm(G). For initialization, we consider s0 = ε. Then, it holds

that δ(x0, ε) = [ε] = [f(s0)]. For the induction step, we let k < |s| and assume
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that δ(x0, sk) = [f(sk)]. Then, we show that δ(x0, sk+1) = [f(sk+1)]. In general,

sk+1 = skσ for σ ∈ Σ and there are different cases for σ. First, consider that

f(sk) = ε. Since s is order-preserving, this implies that pout(sk) = m(pin(sk)).

Hence, it must be the case that σ = α1 ∈ Σin. But then, (R1) ensures that

δ([ε], α1) = δ(x0, skα1) = δ(x0, sk+1) = [α1] = [f(sk+1)]. Second, consider that

f(sk) = α1α2 · · ·αC . Since the capacity of s is c(s) = C and s is order preserving,

it must be the case that σ = ω1 for ω1 = m(α1). But then, (R4) ensures that

δ([α1α2 · · ·αC ], α1) = δ(x0, skα1) = δ(x0, sk+1) = [α2 · · ·αC ] = [f(sk+1)]. Third,

consider that f(sk) = α1α2 · · ·αj for 1 ≤ j < C. Since 0 < |f(sk)| < C and s is

order preserving, it is possible that σ = αj+1 for some αj+1 ∈ Σin or σ = ω1 =

m(α1) ∈ Σout. If σ = αj+1, (R3) ensures that δ([α1 · · ·αj], αj+1) = δ(x0, skαj+1) =

δ(x0, sk+1) = [α1 · · ·αjαj+1] = [f(sk+1)]. If σ = ω1, (R2) or (R4) ensure that

δ([α1α2 · · ·αj], ω1) = δ(x0, skω1) = δ(x0, sk+1) = [α2 · · ·αj] = [f(sk+1)].

In particular, for k + 1 = |s|, we have that δ(x0, s) = [f(s)] = [ε] = x0 since s is

order-preserving and, hence, |pin(s)| = |pout(s)|. That is, s ∈ Lm(G).

According to Theorem 2, Lsup
C can be realized by a canonical recognizer Gsup

C

with a finite number of states as given in (4.10) that depends on the number of

input events |Σin| and the capacity C. Hereby, each state of Gsup
C represents an

equivalence class of ≡OP as defined in (4.8) and the transition relation of Gsup
C

is defined by the rules (R1) to (R4) in the proof of Theorem 2. It is hence

straightforward to compute Gsup
C . As an example, consider Σ = Σin ∪ Σout =

{a1, a2} ∪ {b1, b2}. Then, Fig. 4.1 shows G3 = Gsup
1 and G4 = Gsup

2 .

Moreover, as a more practical example, we consider a conveyor belt (CB) in a

production system that can transport 3 different product types P1, P2 and P3 and

that can hold up to 2 products simultaneously. It is further the case that products

leave the CB in the same sequence as entering the CB. Hence, the behavior of

such CB should be modeled by an order-preserving language with the input events

Σin = {iP1, iP2, iP3} and the output events Σout = {oP1.oP2, oP3}. The mapping

m is defined by m(iPi) = oPi for i = 1, 2, 3 and the capacity is C = 2. Hence, the

canonical recognizer Gsup
2 for the CB as shown in Fig. 4.2 has 13 states. Hereby,

there is one product on the CB in the states shaded in light gray, whereas there
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are two products on CB in the states shaded in dark gray.
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Figure 4.2: Order-preserving model of a CB with three product types P1, P2, P3
and capacity C = 2.

4.3 Composition of Order-preserving Languages

Practical DES are commonly composed of various modular system components.

That is, we next investigate the composition of multiple components with order-

preserving languages. To this end, we first consider the case of two order-

preserving languages Li ⊆ Σ?
i over the alphabet Σi with given capacities c(Li) =

Ci and maps mi : Σin
i → Σout

i for i = 1, 2. in addition, we assume that the

output events of the first language are the input events of the second language:

Σout
1 = Σin

2 . In a production system, such languages could represent two produc-

tion components, whereby the first component delivers products to the second

component. Defining the alphabets Σin = Σin
1 , Σout = Σout

2 , Σ = Σin ∪ Σout, the

natural projections p : (Σ1 ∪ Σ2)? → Σ?, pi : (Σ1 ∪ Σ2)? → Σ?
i , i = 1, 2 and the

mapping m : (Σin)? → (Σout)? : m(s) = m2(m1(s)), we determine the composed

language

L = p(L1||L2). (4.11)

We next show that L is an order-preserving language with capacity C ≤ C1 +C2.

Theorem 3 Assume that L1 ∈ Lsup
C1

(Σin
1 ,Σ

out
1 ,m1), L2 ∈ Lsup

C2
(Σin

2 ,Σ
out
2 ,m2), m1,

m2, Σ, m and p : (Σ1 ∪ Σ2)? → Σ? are as introduced above and let Σin = Σin
1 ,
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Σout = Σout
2 and Σout

1 = Σin
2 . Further, assume that L1||L2 6= ∅. Then, L =

p(L1||L2) ∈ Lsup
C (Σin,Σout,m) for some C ≤ C1 + C2.

In the sequel, we again write Lsup
C1

, Lsup
C2

and Lsup
C for brevity.

Since L1||L2 6= ∅, there is at least one string s ∈ p(L1||L2). Now consider any

arbitrary string s ∈ p(L1||L2). We need to show that s is order-preserving and

c(s) ≤ C1 + C2.

We first show that s is order-preserving. Assume the contrary. That is s ∈ L and

s is not order-preserving. Then, we can write s = u1αu2ωu3 with u1, u2, u3 ∈ Σ?,

α ∈ Σin and ω ∈ Σout, such that for some k < |pin(s)||

prekm(pin(s)) = m(pin(u1)) = prekp
out(s) = pout(u1αu2)

but

prek+1m(pin(s)) = m(pin(u1α)) 6= prek+1p
out(s)

= pout(u1αu2ω) = pout(u1αu2)ω.

In words, we consider that the order of the first k input events in s is equal to

the order of the first k output events, whereas the order of the first k + 1 input

events of s is different from the order of the first k + 1 output events. Since

m(pin(u1)) = pout(u1αu2), this implies that m(α) 6= ω.

We further know that s ∈ L = p(L1||L2) implies that there are s1 ∈ L1 and

s2 ∈ L2 such that s = p(s1||s2). Since Li is order-preserving for i = 1, 2, also

si is order-preserving for i = 1, 2. Considering that Σin
1 = Σin, Σout

2 = Σout,

Σ1 ∩ Σout
2 = ∅ and Σ2 ∩ Σin

1 = ∅, we further conclude that pin
1 (s1) = pin(s),

pout
2 (s2) = pout(s) and pout

1 (s1) = pin
2 (s2).

Accordingly, we determine prek+1m1(pin
1 (s1)) = prek+1m1(pin(s)) =

m1(pin(u1α)) = m1(pin(u1))α and prek+1m
−1
2 (pout

2 (s2)) = prek+1m
−1
2 (pout(s)) =

m−1
2 (pout(u1αu2ω)) = m−1

2 (pout(u1αu2))m−1
2 (ω). Since m(pin(u1))

= m2(m1(pin(u1))) = pout(u1αu2) and Σout
1 = Σin

2 , we conclude that
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prekm1(pin
1 (s1)) = prekm

−1
2 (pout

2 (s2)). However,

prek+1m1(pin
1 (s1)) = m1(pin(u1))m1(α)

6=prek+1m
−1
2 (pout

2 (s2)) = m−1
2 (pout(u1αu2))m−1

2 (ω)

because m1(α) 6= m−1
2 (ω) (which follows from m(α) 6= ω). Hence, pout

1 (s1) 6=
pin

2 (s2) such that p-1
1 (s1)∩ p-1

2 (s2) = ∅, which implies that s 6∈ p(p−1
1 (s1)∩ p−1

2 (s2))

⊆ p(L1||L2) = L. This is a contradiction, because we assumed that s ∈ L.

It remains to show that c(L) = C ≤ C1 + C2. To this end, let s ∈ p(L1||L2) and

s1 ∈ L1, s2 ∈ L2 such that s = p(s1||s2). From the previous discussion, we know

that for each s′ ≤ s, pin(s′) = pin
1 (s′1), pout(s′) = pout

2 (s′2) and pout
1 (s′1) = pin

2 (s′2) for

some s′1 ≤ s1, s′2 ≤ s2. That is, we compute

c(s) = max
s′≤s
{|pin(s′)| − |pout(s′)|}

= max
s′1≤s1,s′2≤s2,s′=p(s′1||s′2)

{|pin
1 (s′1)| − |pout

2 (s′2)|}

= max
s′1≤s1,s′2≤s2,s′=p(s′1||s′2)

{|pin
1 (s′1)| − |pout

1 (s′1)|︸ ︷︷ ︸
≤C1

+ |pin
2 (s′2)| − |pout

2 (s′2)|︸ ︷︷ ︸
≤C2

} ≤ C1 + C2.

Since s ∈ L was arbitrary, it follows that c(L) = C ≤ C1 + C2.

We demonstrate the implications of Theorem 3 using the example automata in

Fig. 4.1 and 4.3.
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2
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Figure 4.3: Example automata

First consider the languages L2 = Lm(G2) with C2 = 2 in Fig. 4.1 and L5 =

Lm(G5) with C5 = 1 in Fig. 4.3. A canonical recognizer G25 (excluding the

states shaded in gray) with L25 = Lm(G25) = p(L2||L5) and Σin = {a1, a2} and

Σout = {c1, c2} is shown in Fig. 4.4. It is readily observed that L25 is order-

preserving and C25 = c(L25) = 3 = C2 +C5. For illustration, the states of G25 are
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colored such that orange, blue and green states correspond to strings with capacity

1, 2 and 3, respectively. Moreover, G25 shows two blocking states 2 and 6 that

are shaded in gray. In particular, it holds that L2||L5 6= L2||L5 such that L2 and

L5 are conflicting. That is, even Theorem 3 shows that any string s ∈ Lm(G25)

is order-preserving, there might be strings in L(G25) that cannot be extended to

an order-preserving string. Next, we consider L2 = Lm(G2) with C2 = 2 in Fig.

4.1 and L6 = Lm(G6) with C6 = 2 in Fig. 4.3. A canonical recognizer G26 for

L26 = Lm(G26) = p(L2||L6) with Σin = {a1, a2} and Σout = {c1, c2} is shown in

Fig. 4.4. Here, it turns out that C26 = 3 6= C1 + C2 = 4. That is, the capacity

of L26 is smaller than the accumulated capacity of L2 and L6. This is possible

according to Theorem 3 and occurs since L2 ⊂ Lsup
2 and L6 ⊂ Lsup

2 . We finally

consider the composition of L3 = Lm(G3) = Lsup
1 and L4 = Lm(G4) = Lsup

2 in

Fig. 4.1 with L7 = Lm(G7) = Lsup
1 in Fig. 4.3. The resulting order-preserving

languages L37 = Lm(G37) and L47 = Lm(G47) are shown in Fig. 4.4. Hereby, it is

interesting to note that L37 = Lsup
2 and L47 = Lsup

3 . In addition, L3 and L7 as well

as L4 and L7 are non-conflicting. In the sequel, we will formalize the observations

from this example in Theorem 4 and 6.
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Figure 4.4: Composition of order-preserving languages.
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Theorem 4 Assume that L1 = Lsup
C1

and L2 = Lsup
C2

for C1, C2 > 0. Let m1, m2,

m, Σ, p : (Σ1 ∪ Σ2)? → Σ?, Σin = Σin
1 , Σout = Σout

2 and Σout
1 = Σin

2 be introduced

as above. Then, L = p(L1||L2) = Lsup
C1+C2

.

That is, Theorem 4 states that the composition of two supremal order-preserving

languages again yields a supremal order-preserving language, whose capacity is

the sum of the capacities of the composed languages.

In order to prove Theorem 4, we establish three lemmas that show general proper-

ties of L = p(L1||L2). Lemma 1 determines that the capacity of L is c(L) = C =

C1 + C2 if both languages Li, i = 1, 2 are supremal order-preserving languages

with capacity Ci.

Lemma 1 Assume that L1 = Lsup
C1

and L2 = Lsup
C2

for C1, C2 > 0. Let p, Σin =

Σin
1 , Σout = Σout

2 and Σout
1 = Σin

2 be introduced as above. Then, c(L) = C =

C1 + C2.We have to show that c(L) = C = C1 + C2. Since L1 = Lsup
C1

(Σ1) and L2 =

Lsup
C2

(Σ2) for C1, C2 > 0, it holds that ε ∈ L1||L2 6= ∅. Hence, we already know

from Theorem 3 that C = c(L) ≤ C1 + C2. In order to show that C = C1 + C2,

it remains to show that C ≥ C1 + C2.

We consider two cases. In the first case C2 ≤ C1. In addition, for simplicity, we

assume that C1 ≤ 2C2. The extension for the case C1 > 2C2 is conceptually

straightforward. Since the capacity of L1 is c(L1) = C1 and L1 = Lsup
C1

(Σ2), it

holds for an arbitrary α1 ∈ Σin
1 and ω1 = m1(α1) ∈ Σout

1 that

s1 = α1 · · ·α1︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C2

α1 · · ·α1︸ ︷︷ ︸
C1

ω1 · · ·ω1︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C1−C2

∈ L1

and c(s1) = C1. Now consider that α2 = ω1 ∈ Σin
2 = Σout

1 and ω2 = m2(α2) ∈ Σout
2 .

Since the capacity of L2 is c(L2) = C2 and L2 = Lsup
C2

(Σ2), it holds that

s2=α2 · · ·α2︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C2

α2 · · ·α2︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C2

α2 · · ·α2︸ ︷︷ ︸
C1−C2

ω2 · · ·ω2︸ ︷︷ ︸
C1−C2

=ω1 · · ·ω1︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C1−C2

ω2 · · ·ω2︸ ︷︷ ︸
C1−C2

∈ L2
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and c(s2) = C2 since C1−C2 ≤ C2 by assumption (if C1−C2 > C2, it is sufficient

to add additional substrings ω1 · · ·ω1︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C2

). Since Σ1 ∩ Σ2 = Σout
1 = Σin

2 , it

further holds that,

s =α1 · · ·α1︸ ︷︷ ︸
C2

α1 · · ·α1︸ ︷︷ ︸
C1

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C1−C2

=p(α1 · · ·α1︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C2

α1 · · ·α1︸ ︷︷ ︸
C1

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C1−C2

ω2 · · ·ω2︸ ︷︷ ︸
C1−C2

)

= p(s1||s2) ∈ p(L1||L2) = L

and

c(s) =|pin(α1...α1︸ ︷︷ ︸
C2

α1...α1︸ ︷︷ ︸
C1

)| − |pout(α1...α1︸ ︷︷ ︸
C2

α1...α1︸ ︷︷ ︸
C1

)|

C1 + C2 − 0 = C1 + C2.

In the second case, C1 < C2. In addition, for simplicity, we assume that C2 ≤ 2C1.

The extension for the case C2 > 2C1 is conceptually straightforward. Since the

capacity of L2 is c(L2) = C2 and L2 = Lsup
C2

(Σ2), it holds for an arbitrary α1 ∈ Σin
1

and ω1 = m1(α1) ∈ Σout
1 that

s1=α1 · · ·α1︸ ︷︷ ︸
C1

ω1 · · ·ω1︸ ︷︷ ︸
C1

α1 · · ·α1︸ ︷︷ ︸
C2−C1

ω1 · · ·ω1︸ ︷︷ ︸
C2−C1

α1 · · ·α1︸ ︷︷ ︸
C1

ω1 · · ·ω1︸ ︷︷ ︸
C1

∈ L1

and c(s1) = C1. Now consider that α2 = ω1 ∈ Σin
2 = Σout

1 and ω2 = m2(α2) ∈ Σout
2 .

Since the capacity of L2 is c(L2) = C2 and L2 is full, it holds that

s2 =α2 · · ·α2︸ ︷︷ ︸
C1

α2 · · ·α2︸ ︷︷ ︸
C2−C1

ω2 · · ·ω2︸ ︷︷ ︸
C2

α2 · · ·α2︸ ︷︷ ︸
C1

ω2 · · ·ω2︸ ︷︷ ︸
C1

= ω1 · · ·ω1︸ ︷︷ ︸
C1

ω1 · · ·ω1︸ ︷︷ ︸
C2−C1

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C1

ω2 · · ·ω2︸ ︷︷ ︸
C1

∈ L2

and c(s2) = C2. Since ω1 ∈ Σ1 ∩ Σ2 = Σout
1 = Σin

2 , it follows that

s = α1 · · ·α1︸ ︷︷ ︸
C1

α1 · · ·α1︸ ︷︷ ︸
C2−C1

α1 · · ·α1︸ ︷︷ ︸
C1

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω2 · · ·ω2︸ ︷︷ ︸
C1

= p(α1 · · ·α1︸ ︷︷ ︸
C1

ω1 · · ·ω1︸ ︷︷ ︸
C1

α1 · · ·α1︸ ︷︷ ︸
C2−C1

ω1 · · ·ω1︸ ︷︷ ︸
C2−C1

α1 · · ·α1︸ ︷︷ ︸
C1

ω2 · · ·ω2︸ ︷︷ ︸
C2

ω1 · · ·ω1︸ ︷︷ ︸
C1

ω2 · · ·ω2︸ ︷︷ ︸
C1

)

∈ p(s1||s2) ⊆ p(L1||L2) = L.
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and

c(s) = |pin(α1...α1︸ ︷︷ ︸
C1

α1...α1︸ ︷︷ ︸
C2−C1

α1...α1︸ ︷︷ ︸
C1

)|−

|pout(α1...α1︸ ︷︷ ︸
C1

α1...α1︸ ︷︷ ︸
C2−C1

α1...α1︸ ︷︷ ︸
C1

)| = C1 + C2.

That is, indeed, c(L) = C = C1 + C2

Lemma 2 introduces a decomposition of f(s) for any string s ∈ L = p(L1||L2).

Lemma 2 Consider L1, L2, Σ, p, m, m1, m2, Σin and Σout as defined above

and let s1 ∈ L1, s2 ∈ L2 and s ∈ L1||L2 such that s = p(s1||s2). Further, let

f : Σ? → (Σin)?, f1 : Σ?
1 → (Σin

1 )? and f2 : Σ?
2 → (Σin

2 )? be defined as in (4.7).

Then, it holds that

f(s) = m−1
1 (f2(s2)) f1(s1). (4.12)

That is, assuming a string s = p(s1||s2) ∈ p(L1||L2) the excess input events f(s),

whose corresponding output events did not occur, yet, are either excess input

events f1(s1) or correspond to excess input events f2(s2). We next give the proof

of Lemma 2.

We prove the lemma by induction on the length of prefixes of sk = prek(s). For

the initialization, we start from k = 0. It holds that s0 = ε and s0 = p(s1,0||s2,0)

and f(s0) = m−1
1 (f2(s2,0)) f1(s1,0) = ε for s1,0 = ε ≤ s1, s2,0 = ε ≤ s2.

For the induction step, assume for some k < |s|, s1,k ≤ s1, s2,k ≤ s2 that sk =

p(s1,k||s2,k) and f(sk) = m−1
1 (f2(s2,k)) f1(s1,k). We have to show that for sk+1 =

skσ ≤ s, there are s1,k+1 ≤ s1, s2,k+1 ≤ s2 such that sk+1 = p(s1,k+1||s2,k+1) and

f(sk+1) = m−1
1 (f2(s2,k+1)) f1(s1,k+1).

Consider sk+1 = skσ ≤ s and write f(sk) = α1 · · ·αj for some 0 ≤ j ≤ C with

α1, . . . , αj ∈ Σin (with a slight abuse of notation, we define f(sk) = ε if j = 0).

Then, it is possible that (i) σ ∈ Σin or (ii) σ ∈ Σout.

(i) Assume that σ = αj+1 ∈ Σin. Then, it must be the case that j < C. Consider

the contrary, that is, j = C = C1 +C2. Since |f(sk)| = |m−1
1 (f2(s2,k))f1(s1,k)| and

c(si,k) ≤ Ci for i = 1, 2, this implies that |fi(si,k)| = Ci. Since sk+1 ∈ p(L1||L2),
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sk = p(s1,k||s2,k) and αj+1 6∈ Σ2, it must further be the case that sk+1 =

p(s1,kuαj+1||s2,ku) for some u ∈ Σout
1 = Σin

2 . Considering that |f2(s2,k)| = C2

it follows that u = ε (otherwise, |f2(s2,ku)| > C2. But then, |f1(s1,kuαj+1)| =

|f1(s1,kαj+1)| = C1 + 1, which implies that s1,kαj+1 6∈ L1 and hence sk+1 6∈
p(L1||L2). This contradicts the assumption that s ∈ p(L1||L2). Hence, indeed

j < C. Accordingly, |f1(s1,k)| < C1 or |f1(s1,k)| = C1 and |f2(s2,k)| < C2. If

|f1(s1,k)| < C1, we know that m−1
1 (f2(s2,k)) = α1 · · ·αl and f1(s1,k) = αl+1 · · ·αj

for l ≤ C2 and j − l < C1. Then, it holds that s1,kαj+1 ∈ L1 since L1 =

Lsup
C1

(Σ1). Furthermore, sk+1 = skαj+1 = p(s1,k+1||s2,k+1) for s1,k+1 = s1,kαj+1 and

s2,k+1 = s2,k and f(sk+1) = α1 · · ·αlαl+1 · · ·αjαj+1 = m−1
2 (f2(s2,k+1))f1(s1,k+1). If

|f1(s1,k)| = C1 and |f2(s2,k)| < C2, we have that m−1
1 (f2(s2,k)) = α1 · · ·αl and

f1(s1,k) = αl+1 · · ·αj for l < C2 and j − l = C1. Consider γl+1 = m1(αl+1).

Since L1 = Lsup
C1

(Σ1), L2 = LC2(Σ2) and γl+1 ∈ Σout
1 = Σin

2 , it must be the

case that s1,kγl+1 ∈ L1 and s2,kγl+1 ∈ L2. But then, also s1,kγl+1αj+1 ∈ L1

since |f1(s1,kγl+1)| = C1 − 1 < C1. That is, defining s1,k+1 = s1,kγl+1αj+1 and

s2,k+1 = s2,kγl+1, we have that sk+1 = skαj+1 = p(s1,k+1||s2,k+1) since αj+1 6∈ Σ2.

In addition, it holds that f(sk+1) = α1 · · ·αjαj+1, f1(s1,k+1) = αl+2 · · ·αj+1 and

m−1
1 (f2(s2,k+1) = α1 · · ·αlαl+1 with |f1(s1,k+1)| = j + 1− (l+ 1) = j − l = C1 and

|f2(s2,k+1)| = l + 1 ≤ C2. Moreover, f(sk+1) =

α1 · · ·αlαl+1 · · ·αjαj+1 = m−1
2 (f2(s2,k+1))f1(s1,k+1).

(ii) If σ ∈ Σout, it must be the case that j > 0 (if j = 0, |f(skσ)| = −1 < 0).

Accordingly, |f2(s2,k)| > 0 or |f2(s2,k)| = 0 and |f1(s1,k)| > 0. If |f2(s2,k)| > 0,

we know that f1(s1,k) = αl+1 · · ·αj and m−1
1 (f2(s2,k)) = α1 · · ·αl for some l > 0.

Then, it holds that s2,kω1 ∈ L2 since L2 = Lsup
C2

(Σ2) and L2 is order-preserving.

That is, σ = ω1. Furthermore, sk+1 = skω1 = p(s1,k+1||s2,k+1) for s1,k+1 = sk and

s2,k+1 = s2,kω1 and f(sk+1) = α2 · · ·αj = m−1
1 (f2(s2,k+1))f1(s1,k+1). If |f2(s2,k)| =

0 and |f1(s1,k)| > 0, we have that f1(s1,k) = α1 · · ·αj and m−1
1 (f2(s2,k)) =

ε. Since L1 = Lsup
C1

(Σ1), it holds that s1,kγ1 ∈ L1 for γ1 = m1(α1). Since

L2 = Lsup
C2

(Σ2), γ1 ∈ Σout
1 = Σin

2 and ω1 = m2(γ1) = m(α1) ∈ Σout
2 , it is

further the case that s2,kγ1ω1 ∈ L2. That is, sk+1 = skω1 = p(s1,k+1||s2,k+1)

for s1,k+1 = s1,kγ1 and s2,k+1 = s2,kγ1ω1. In addition, it holds that f(sk+1) =

α2 · · ·αj = m−1
2 (f2(s2,k+1))f1(s1,k+1) since m−1

2 (f2(s2,k+1)) = m−1
2 (f2(s2,kγ1ω1)) =
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m−1
2 (f2(s2,k)) = ε and f1(s1,k+1) = f1(s1,kγ1) = α2 · · ·αj.

Since k < |s| was chosen arbitrary, the proven relation also holds for k = |s| − 1.

That is,

f(s) = f(sk+1) = m−1
1 (f2(s2,k+1))f1(s1,k+1)

= m−1
1 (f2(s2))f1(s2).

Lemma 3 shows that any extension sσ ∈ p(L1||L2) of a string s ∈ p(L1||L2) with

an event σ ∈ Σ has a corresponding extension of any string t ∈ L1||L2 that has

the projection p(t) = s.

Lemma 3 Assume that L1 = Lsup
C1

(Σ1) and L2 = Lsup
C2

(Σ2) for C1, C2 > 0 and Σ,

p : (Σ1 ∪ Σ2)? → Σ? are as introduced above. Further, let Σin = Σin
1 , Σout = Σout

2

and Σout
1 = Σin

2 . Then, it holds for any t ∈ L1||L2 and σ ∈ Σ that

p(t)σ ∈ p(L1||L2)⇒∃v ∈ (Σ1 ∪ Σ2)? s.t.

p(v) = σ and tv ∈ L1||L2. (4.13)

Consider an arbitrary string t ∈ L1||L2 and let σ ∈ Σ such that p(t)σ ∈ p(L1||L2).

We write s = p(t). According to Lemma 2, it holds that s = p(s1||s2) for s1 ∈ L1

and s2 ∈ L2. In addition, f(s) = m−1
1 (f2(s2))f1(s) = α1 · · ·αlαl+1 · · ·αj with

|m−1
1 (f2(s2))||α1 · · ·αl| = l and |f1(s1)||f1(αl+1 · · ·αj)| = j − l and 0 ≤ j ≤ C =

C1 + C2.

We now consider that (i) σ =∈ Σin or (ii) σ ∈ Σout.

(i) If σ ∈ Σin = Σin
1 , it must be the case that j < C. Otherwise, |f(sσ)| =

|f(s)σ| = j + 1 > C. There are two cases. In the first case, |f1(s1)| < C1.

Since L1 = Lsup
C1

(Σ1), it holds that s1σ ∈ L1. Since Σin
1 ∩ Σ2 = ∅, it follows that

tσ ∈ s1σ||s2 ⊆ L1||L2 and p(tσ) = p(t)σ = sσ. That is, (4.13) is fulfilled with

v = σ ∈ (Σ1 ∪ Σ2)?. In the second case, |f1(s1)| = C1 and hence |f2(s2)| < C2.

We write γl+1 = m1(αl+1) ∈ Σout
1 = Σin

2 . Since L1 = Lsup
C1

(Σ1) and L2 = Lsup
C2

(Σ2),

it is the case that s1γl+1 ∈ L1 and s2γl+1 ∈ L2. Furthermore, γl+1 ∈ Σout
1 ,

implies |f1(s1γl+1)| = |αl+2 · · ·αj| = C1 − 1 < C1. That is, s1γl+1σ ∈ L1 since
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L1 = Lsup
C1

(Σ1). Together, we have that tγl+1σ ∈ s1γl+1σ||s2γl+1 ⊆ L1||L2 and

p(tγl+1σ) = p(t)σ = sσ. That is, (4.13) is fulfilled with v = γl+1σ.

(ii) if σ ∈ Σout = Σout
2 , it must be the case that j > 0. Otherwise, |f(sσ)| = j−1 <

0. There are two cases. In the first case, |f2(s2)| > 0. Since L2 = Lsup
C2

(Σ2), it

holds that s2σ ∈ L2. Since Σin
2 ∩ Σ1 = ∅, it follows that tσ ∈ s1||s2σ ⊆ L1||L2

and p(tσ) = p(t)σ = sσ. That is, (4.13) is fulfilled with v = σ ∈ (Σ1 ∪ Σ2)?. In

the second case, |f2(s2)| = 0 and hence |f1(s1)| > 0. In addition, it must hold

that σ = ω1 = m(α1) since f(s) = α1 · · ·αj. We write γ1 = m1(α) ∈ Σout
1 = Σin

2 .

Since L1 = Lsup
C1

(Σ1) and L2 = Lsup
C2

(Σ2), it is the case that s1γ1 ∈ L1 and

s2γ1 ∈ L2. Furthermore, γ1 ∈ Σin
2 , implies |m−1

1 (f2(s2γ1))| = |α1| = 1 > 0. That

is, s1γ1ω1 ∈ L1 since m2(γ1) = m(α1) = ω1 and L2 = Lsup
C2

(Σ2). Together, we

have that tγ1σ = tγ1ω1 ∈ s1γl+1||s2γl+1ω1 ⊆ L1||L2 and p(tγl+1σ) = p(t)σ = sσ.

That is, (4.13) is fulfilled with v = γ1σ.

That is, (4.13) holds in all possible cases, which proves the lemma.

Using Lemma 1 to 3, it is now possible to prove Theorem 4.

In order to show that L = p(L1||L2) = Lsup
C1+C2

, we show that (i) L ⊆ Lsup
C1+C2

and

(ii) L ⊇ Lsup
C1+C2

.

(i) Since L1 = Lsup
C1

and L2 = Lsup
C2

for C1, C2 > 0, it holds that ε ∈ L1||L2 6= ∅.
Hence, we know from Theorem 3 that L is order-preserving and Lemma 1 implies

that c(L) = C = C1 + C2. Hence, L ⊆ Lsup
C1+C2

.

(ii) In order to show that L ⊇ Lsup
C , we take an arbitrary order-preserving string

s ∈ Lsup
C . First, we show by induction that s ∈ p(L1||L2). To this end, we write

s = σ1 · · ·σ|s| with σi ∈ Σ for i = 1, . . . , |s|.

For the initialization, consider s0 = pre0s = ε. Since ε ∈ L1 and ε ∈ L2, it follows

that ε ∈ L1||L2 ⊆ L1||L2. Hence, we have that t0 = ε ∈ L1||L2 and s0 = p(t0) ∈
p(L1||L2). For the induction step, we assume that sk−1 = prek−1s = σ1 · · ·σk−1

for some 1 ≤ k ≤ |s| and there is a tk−1 ∈ L1||L2 such that p(tk−1) = sk−1. Now

consider σk ∈ Σ. Then, it holds that tk−1 ∈ L1||L2 and sk−1 ∈ p(L1||L2) and

σk ∈ Σ and p(tk−1)σk = sk−1σk = preks ∈ p(L1||L2). According to Lemma 3, this
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implies that there is a vk ∈ (Σ1 ∪ Σ2)? such that p(vk) = σk and tk−1vk ∈ L1||L2.

In particular, for k = |s|, it follows that t = t0v1 · · · v|s| ∈ L1||L2 and s = pre|s|s =

p(t) ∈ p(L1||L2).

This concludes the induction step and we found that s ∈ p(L1||L2). It remains

to show that s ∈ p(L1||L2). To this end, we first conclude that f(s) = ε since

s ∈ Lsup
C and t ∈ s1||s2 for some s1 ∈ L1 and s2 ∈ L2 since t ∈ L1||L2. Considering

that f(s) = m−1
1 (f2(s2))f1(s1) according to Lemma 2, it must be the case that

|f2(s2))| = |f1(s1)| = |f(s)| = 0. Hence, s1 ∈ L1 and s2 ∈ L2, which implies

that t ∈ L1||L2. Therefore, s = p(t) ∈ p(L1||L2). Since s ∈ Lsup
C was arbitrary, it

follows that Lsup
C ⊆ p(L1||L2), which concludes the proof of Theorem 4.

The next theorem confirms the observation from the previous example. It holds

that the composition of two supremal order-preserving languages is non-conflicting.

Theorem 5 Assume that L1 = Lsup
C1

and L2 = Lsup
C2

for C1, C2 > 0. Let p :

(Σ1 ∪ Σ2)? → Σ?, Σin = Σin
1 , Σout = Σout

2 and Σout
1 = Σin

2 be introduced as above.

Then, L1 and L2 are non-conflicting.

We first show that L1 and L2 are non-conflicting. Consider an arbitrary string

t ∈ L1||L2. Then, it holds that t ∈ s1||s2 for some s1 ∈ L1, s2 ∈ L2 and f(s) =

α1 · · ·αj = m−1
1 (f2(s2))f1(s1) for s = p(t) and some 0 ≤ j ≤ C = C1 + C2. We

further write m−1
1 (f2(s2)) = α1 · · ·αl and f1(s1) = αl+1 · · ·αj. We consider ωi =

m(αi) ∈ Σout for 1 ≤ i ≤ j and define the string v = ω1 · · ·ωlγl+1ωl+1 · · · γjωj ∈
(Σ1 ∪ Σ2)? for γi = m1(αi) = m−1

2 (ωi), i = l + 1, . . . , j. In addition, we write

v1 = p1(v) = γl+1 · · · γj and v2 = p2(v) = v. Since f1(s1) = αl+1 · · ·αj = m−1
1 (v1)

and L1 = Lsup
C1

, it holds that s1v1 ∈ L1. Furthermore, we first conclude that

m−1
1 (f2(s2ω1 · · ·ωl)) = ε since m(m−1

1 (f2(s2))) = m2(f2(s2)) = ω1 · · ·ωl. That is,

f2(s2ω1 · · ·ωl) = ε. Then, it directly follows that f2(s2ω1 · · ·ωlγl+1ωl+1 · · · γiωi) =

ε for all i = l + 1, . . . , j. Hence, also s2v2 ∈ L2. Together, we have

tv ∈ (s1||s2)v ⊆ s1v1||s2v2 ⊆ L1||L2,

which implies that t ∈ L1||L2. Since t was arbitrary, it follows that L1 and L2 are

nonconflicting.
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The implications of Theorem 4 and 6 can be observed from G37 and G47 in Fig. 4.4

and the related automata in Fig. 4.1 and 4.3. According to the previous discussion,

it is the case that Lm(G37) = Lsup
C = Lm(G3)||Lm(G7) = LC1sup||LC2sup with

C1 = 1, C2 = 1 and C = C1 + C2 = 2. Furthermore, G37 is nonblocking,

which indicates that Lm(G3) and Lm(G7) are nonconflicting. Similarly, Lm(G47) =

Lsup
C = Lm(G4)||Lm(G7) = LC1sup||LC2sup with C1 = 2, C2 = 1 and C = C1 +

C2 = 3 and G47 is nonblocking, Differently, Lm(G26) 6= Lsup
3 (Σ26) since Lm(G2) 6=

Lsup
2 and Lm(G6) 6= Lsup

2 . In addition, G26 is blocking, that is, Lm(G2) and

Lm(G6) are conflicting. Here, we further note that the conditions in Theorem 4 are

sufficient but not necessary. Consider for example the order-preserving languages

Lm(G8) in Fig. 4.5 and Lm(G7) in Fig. 4.3. Then, it holds that Lm(G8) 6= Lsup
1 but

Lm(G87) = Lm(G8)||Lm(G7) = Lsup
2 and Lm(G8) and Lm(G7) are nonconflicting.
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Figure 4.5: Sufficiency of Theorem 4.

An important outcome of Theorem 4 is that the composition of two supremal

order-preserving languages is again a supremal order-preserving language. That

is, the result of the composition operation has the same properties as its argument.

Using this fact, we next state the following corollary, which shows that the com-

position of an arbitrary number of supremal order-preserving languages is again

a supremal order-preserving language and these languages are nonconflicting.

Corollary 1 Consider alphabets Σin
i , Σout

i , Σi such that Σi = Σin
i ∪ Σout

i and

Σin
i ∩ Σout

i = ∅ for i = 1, . . . , n and assume that Σout
i = Σin

i+1 for i = 1, . . . , n− 1.

Further, let mi : Σin
i → Σout

i be defined as in Section 4.1. Assume that Li =

Lsup
Ci

(Σin
i ,Σ

out
i ,mi) with Ci > 0 for i = 1, . . . , n. Write Σin = Σin

1 , Σout = Σout
n , Σ =

Σin∪Σout and let p : (
⋃n

i=1 Σi)
? → Σ? as well as m : Σin → Σout such that m(s) =
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mn(· · ·m1(s)) for any s ∈ (Σin)?. Then, L = p(||ni=1Li) = Lsup
C1+···+Cn

(Σin,Σout,m)

and L1, . . . , Ln are nonconflicting.

We prove the corollary induction. To this end, we introduce the alphabets Γk =

Σin
1 ∪ Σout

k , Λk =
⋃k

i=1 Σi and Πk = Σin
1 ∪ Σk for k = 2, . . . , n. We further use

the natural projections pΛk,Γk
: Λ?

k → Γ?
k, pΠk,Γk

: Π?
k → Γ?

k and the languages

L1,k = pΛk,Γk
(L1 · · ·Lk) for k = 2, . . . , k.

For the initialization, we know that L1,2 = pΛ2,Γ2(L1||L2) = Lsup
C1+C2

from Theorem

4 and L1, L2 are nonconflicting from Theorem 5.

For the induction step, we assume that L1,k = Lsup
C1+···+Ck

and L1, . . . , Lk are

nonconflicting. Since L1,k = Lsup
C1+···+Ck

and Lk+1 = Lsup
Ck+1

, it directly follows from

Theorem 4 that

pΛk+1,Γk+1
(L1|| · · ·Lk||Lk+1)

=pΠk+1,Γk+1
(pΛk,Γk

(L1|| · · · ||Lk)||Lk+1)

=pΠk+1,Γk+1
(L1,k||Lk+1)

=pΠk+1,Γk+1
(Lsup

C1+···+Ck
||Lsup

Ck+1
) = Lsup

C1+Ck+1
.

With the same argument, Theorem 5 implies that L1|| · · ·Lk and Lk+1 are non-

conflicting. Hence, L1, · · · , Lk+1 are non-conflicting.

In order to discuss the practical implication of Corollary 1, we consider a produc-

tion system with an arbitrary number of production components that exchange

products and that are modeled by supremal order-preserving languages. Then, it

holds that the composition of the production components is again represented by

the supremal order-preserving languages and the joint operation of the production

components is nonblocking.

4.4 Usage of Composed Order-preserving Models in Supervisory Con-

trol

The previous section indicates that supremal order-preserving languages are non-

conflicting and their composition again leads to a supremal order-preserving lan-
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guage. In this section, we argue that it is possible to efficiently use composed

order-preserving models for nonblocking supervisory control. As the first step,

we recall the notion of a natural observer [30] that is commonly used for the

supervisor synthesis based on abstracted system models [12, 13, 19].

Definition 3 Let L ⊆ Σ? be a language, and let p : Σ∗ → Σ̂ be the natural

projection for Σ̂ ⊆ Σ. p is a natural observer for L if it holds for all s ∈ L and

t ∈ Σ̂? that

p(s)t ∈ p(L)⇒ ∃u ∈ Σ? s.t. su ∈ L ∧ p(u) = t.

In words, p is a natural observer for L if any string s that belongs to the prefix-

closure L of L can be extended to a string in L whenever its projection p(s) can be

extended to a string in p(L). We next show that the projection p : (Σ1 ∪ Σ2)? →
Σ?, which is used for computing the composed order-preserving language p(L1||L2)

in the previous section, is a natural observer for L1||L2.

Theorem 6 Assume that L1 = Lsup
C1

and L2 = Lsup
C2

for C1, C2 > 0. Let p :

(Σ1 ∪ Σ2)? → Σ?, Σin = Σin
1 , Σout = Σout

2 and Σout
1 = Σin

2 be introduced as above.

Then, p : (Σ1 ∪ Σ2)? → Σ? is a natural observer for L1||L2.

In order to show that p is a natural observer for L1||L2, we take an arbitrary

string t ∈ L1||L2 = L1||L2 and u ∈ Σ? such that su = p(t)u ∈ p(L1||L2). We

next show by induction that there is a v ∈ (Σ1 ∪ Σ2)? such that p(v) = u and

tv ∈ L1||L2. To this end, we write u = σ1 · · ·σ|u| with σk ∈ Σ for k = 1, . . . , |u|.
For the initialization, we note that there is a v1 ∈ (Σ1 ∪ Σ2)? such that tv1 ∈
L1||L2 and p(v1) = σ1 because of Lemma 3. For the induction step, we consider

that tk−1 = tv1 · · · vk−1 ∈ L1||L2 such that p(v1 · · · vk−1) = σ1 · · · σk−1. Applying

Lemma 3, it directly follows that there exists a vk ∈ (Σ1 ∪ Σ2)? with p(vk) = σk

and such that tv1 · · · vk ∈ L1||L2 and p(v1 · · · vk) = σ1 · · ·σk. That is, for k = |u|,
it holds for v = v1 · · · v|u| that tv ∈ L1||L2 and p(v) = σ1 · · ·σ|u|. It remains to

show that tv ∈ L1||L2. Since su ∈ p(L1||L2), it must be the case that |f(su)| = 0.

In addition, tv ∈ L1||L2 implies that tv ∈ s1||s2 for some s1 ∈ L1, s2 ∈ L2.

Then, according to Lemma 2, we have that f(s) = m−11
1 (f2(s2))f1(s1) and hence,
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|f2(s2)|+ |f1(s1)| = 0. Accordingly, f2(s2) = f1(s1) = ε, which shows that s1 ∈ L1

and s2 ∈ L2. Therefore, tv ∈ s1||s2 ⊆ L1||L2, which concludes the proof.

Two main features of the observer property are used in this thesis. Consider

canonical recognizers G and Ĝ such that Lm(G) = L and Lm(Ĝ) = p(L) in

Definition 1. First, it is the case that Ĝ cannot have more states (and generally

has fewer states) than G if p is a natural observer for L [30]. Second, it holds that

nonblocking supervisors computed using the smaller automaton Ĝ instead ofG are

as well nonblocking for the original modular system with G [13, 19]. That is, when

computing supervisors for modular systems, where order-preserving components

are composed, it is possible to use the composed order-preserving model with a

smaller state count than the composition of the original order-preserving models.

We illustrate the discussed features by the example automaton G47 in Fig. 4.4

that is computed such that Lm(G47) = p(Lm(G4||G7)) with G4 in Fig. 4.1 and G7

in Fig. 4.3. Assuming that G4 and G7 are components of a modular system, it

is not required to use the automaton G4||G7 with 21 states for the nonblocking

supervisor synthesis. Instead, it is possible to use G47 in Fig. 4.4 with 15 states.

We finally extend the result in Theorem 6 to the case of an arbitrary number of

supremal order-preserving languages similar to Corollary 1.

Corollary 2 Consider the setting in Corollary 1. Then, p : (Σ1∪· · ·∪Σn)? → Σ?

is a natural observer for L1||L2.

As the main implication of Corollary 2, it is possible to use the automaton Ĝ with

Lm(G) = p(L1|| · · · ||Ln) with a smaller state count than the automaton G with

Lm(G) = L1|| · · · ||L2 for the nonblocking supervisor computation.
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CHAPTER 5

MODELING OF MODULAR PRODUCTION SYSTEMS

Based on the discussion in the previous chapter and the results on order-preserving

languages, this chapter systematically addresses the problem of modeling produc-

tion systems with multiple product types and production components with a ca-

pacity greater than one. Section 5.1 formalizes the notion of an order-preserving

DES model and proposes an algorithm for determining such models. Section 5.2

discusses further properties of the order-preserving model and Section 5.3 provides

an illustrative FMS example.

5.1 Modular Production Systems and Order-preserving Models

We consider modular production systems (MPSs) with a set C = {C1, . . . ,Cm}∪
{I,O} of m production components and the virtual input component I and output

component O. We assume that the MPS is processing a set of n products P =

{P1, . . . ,Pn} and the main aim of this thesis is to model the flow of products in

such production system. To this end, we introduce PCi ⊆ P as the set of products

that pass component Ci. Considering production components Ci,Cj ∈ C such that

Ci 6= Cj, we define PCi,Cj ⊆ Pci as the set of products leaving component Ci to

Cj and PCj,Ci ⊆ Pci as the set of products arriving at Ci from component Cj. In

particular, PCi,Cj = ∅ if no products are transported from Ci to Cj and it must

hold that ⋃
Cj∈C

PCj,Ci =
⋃

Cj∈C

PCi,Cj. (5.1)
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That is, all products entering component Ci should also be able to leave Ci.

For the example in Fig. 3.3, we have C = {C,M1,M2, I,O}. Then, the sets PCi,Cj

depend on the product flow. Consider for example the scenario in Fig. 3.5 (d).

Here, PI,C = {P1,P2,P3}, PC,M1 = {P1,P3}, PC,M2 = {P2}, PM1,O = {P1,P3},
PM2,O = {P2}. The remaining sets are PI,M1 = PI,M2 = PI,O = PO,I = PO,M1 =

PO,M2 = PO,C = PM1,I = PM2,I = PC,I = ∅.

Using the information about the product transport between production compo-

nents, we suggest to define appropriate alphabets for the DES model of each

production component. Specifically, for any Ci ∈ C we introduce the input alpha-

bet Σin
Ci and the output alphabet Σout

Ci as

Σin
Ci =

⋃
Cj∈C

⋃
Pk∈PCj,Ci

Cj-CiPk ∪
⋃

Pk∈PI,Ci

inCiPk, (5.2)

Σout
Ci =

⋃
Cj∈C

⋃
Pk∈PCi,Cj

Ci-CjPk ∪
⋃

Pk∈PCi,O

outCiPk. (5.3)

In words, Σin
Ci contains events for each product transport from neighboring com-

ponents (including the input component I) and for each possible product type.

Similarly, Σout
Ci contains events for each product transport to neighboring compo-

nents (including the output component O) with each possible product type. Then,

the overall alphabet of any production component Ci ∈ C is ΣCi = Σin
Ci ∪ Σout

Ci .

We note that the alphabets of the models in Section 3.1.2 are selected according

to (5.2) and (5.3). For example, we have Σin
C = {inCP1, inCP2, inCP3} and Σout

C =

{C-M1P1, C-M2P2, C-M1P3} for component C in Fig. 3.9.

Finally, we write cCi for the product capacity of component Ci ∈ C (maximum

number of products that can be in component Ci simultaneously).

Using cCi, ΣCi, PCj,Ci and PCi,Cj for Cj ∈ C, we define a general automaton model

GCi = (XCi,ΣCi, δCi, x0,Ci, Xm,Ci) for a production component Ci with multiple

product types and a product capacity that is greater than one. Referring to GC

in Fig. 3.8 and 3.9, we note that each state of the automaton model represents a

possible sequence of products entering the component. For a production compo-
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nent Ci, with the capacity cCi, the state set XCi is hence given by

XCi = {E} ∪
cCi⋃
l=1

(l
k=1
PCi

)
. (5.4)

Hereby, E is the empty state and the Cartesian product with the set PCi represents

the combinations of products in the component. Then, the initial state is given

as x0,Ci = E and the set of marked states is Xm,Ci = {E} since it is always desired

to go back to the empty state of a production component in order to complete all

production tasks.

For example, the state set for component C in Fig. 3.8 with the products in PC =

{P1,P2} is found asXC = {E,P1,P2, (P1,P1), (P1,P2), (P2,P1), (P2,P2)}. Then,

x0,C = E and Xm,C = {E}.

It remains to determine the transition relation δCi. To this end, we first observe

that any input event in Σin
Ci adds one new product to the production compo-

nent and each output event in Σout
Ci removes the oldest product from the produc-

tion component. That is, assuming that the current state of Ci is (Pk, · · · ,Pl)

and an input event with product Pm occurs, the new state is (Pm,Pk, · · · ,Pl)

(adding the new product PM). Similarly, assuming that the current state of Ci

is (Pk, · · · ,Pl,Pm), then only output events with product Pm are possible and

the new state is (Pk, · · · ,Pl) (taking out the ”oldest” product Pm). Using this

observation, the transition relation is defined for any state x ∈ XCi and σPm ∈ ΣCi

as

δCi(x, σPm) =



(Pm) if x = E and σPm ∈ Σin
Ci

(Pm,Pk, · · · ,Pl) if x = (Pk, · · · ,Pl) and σPm ∈ Σin
Ci

E if x = (Pm) and σPm ∈ Σout
Ci

(Pk, · · · ,Pl) if x = (Pk, · · · ,Pl,Pm) and σPm ∈ Σout
Ci

undefined otherwise.

(5.5)

We note that this model coincides with the automaton model for a supremal order-

preserving language as introduced in Section 4.2 and formulated in the proof of

Theorem 2.

Consider for example the modelGC in Fig. 3.8. Here, the transitions δC(E, inCP1) =
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(P1), δC((P1), inCP2) = (P2,P1), δC((P1, outCP1) = E and δC((P1,P2), outCP2) =

(P1) are introduced according to the rules in (5.5).

5.2 Order-preserving Models

We recall that the main objective of this thesis is the modeling of production

components that can hold multiple products with different types, while preserving

the order to products entering and leaving the component. For the first time in

the literature, the model introduced in the proof of Theorem 2 and restated for

the special case of MPC in Section 5.1 fulfills this purpose. In particular, we

point out that the label of each state in GCi keeps track of the order of products

entering the component Ci. In the list [Pk, . . . ,Pl], old products appear on the

right, whereas new products appear on the left. On the one hand, any new

product Pm entering the component with an input event σPm ∈ Σin
Ci is added to

the state label from the left, to obtain the next state (Pm,Pk, . . . ,Pl) in (5.5).

Hence, indeed, the state label always correctly characterizes the order of incoming

products. On the other hand, any product that leaves the system at some state

(Pk, . . . ,Pl,Pm) must be the oldest product Pm on the right of the tuple as

stated in (5.5). Hence, products indeed leave the component in the same order

as entering the component. Accordingly, we denote the model in Section 5.1 as

an order-preserving DES model since its marked language is the supremal order-

preserving language for the respective alphabet.

As a further interesting feature of the proposed model, it is possible to determine

the number of states |XCi| depending on the product capacity cCi and the number

of products |PCi|. Inspecting (5.4) and the proof of Theorem 2, it holds that

|XCi| = 1 +

cCi∑
k=1

|PCi|k =

cCi∑
k=0

|PCi|k. (5.6)

In particular, for each possible number k of products in the component with

0 ≤ k ≤ nCi, there are |PCi|k combinations of product types.

For example, an order-preserving model for a production component Ci with

capacity nCi = 2 and |PCi| = 3 product types, the model has 1 + 3 + 9 = 13 states
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(see Fig. 3.9) and the model of a production component with capacity nCi = 4

and |PCi| = 2 product types has 1 + 2 + 22 + 23 + 24 = 31 states.

5.3 Illustrative Example

In this section, we apply the modeling technique introduced in Section 5.1 to an

FMS example that is adapted from [8, 15]. Section 5.3.1 describes the components

of the example system and Section 5.3.2 determines suitable automata models.

The supervisor computation for the FMS is discussed in Section 5.3.3.

5.3.1 FMS Example

The FMS example consists of 3 robots R1, R2, R3 and two machines M1 and

M2. That is, C = {R1,R2,R3,M1,M2, I,O} including the virtual input and

output components. Hereby, it is assumed that the capacity of the robots is

cR1 = cR2 = cR3 = 1 whereas the machines can hold up to cM1 = cM2 = 2

products. There are two product types P1 and P2 that arrive at the FMS from

the virtual input component I and leave the FMS to the virtual output component

O. P1 is picked from I by R3, moved to M2, then transported to M1 by R2 and

finally transported to O by R1. P2 is picked from I by R1, moved to M1, then

transported to M2 by R2 and finally transported to O by R3. That is, both

product paths overlap and both products are processed by M1 and M2, whose

capacity is two. Hence, the models for these machines need to keep track of the

product order.

5.3.2 Order-preserving Model for the Example System

In order to model the FMS, we first determine the sets PCi,Cj that characterize the

product exchange between neighboring components. It holds that PI,R3 = {P1},
PR3,M2 = {P1}, PM2,R2 = {P1}, PR2,M1 = {P1}, PM1,R1 = {P1}, PR1,O = {P1},
PI,R1 = {P2}, PR1,M1 = {P2}, PM1,R2 = {P2}, PR2,M2 = {P2}, PM2,R3 = {P2},
PR3,O = {P2}. All remaining sets are empty.
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Figure 5.1: Schematic of the FMS.

Accordingly, it is possible to define the input and output alphabets of different

production components according to (5.2) and (5.3) as Σin
R1 = {inR1P2, M1-R1P1},

Σout
R1 = {R1-M1P2, outR1P1}, Σin

R2 = {M2-R2P1, M1-R2P2}, Σout
R2 = {R2-M1P1, R2-M2P2},

Σin
R3 = {inR3P1, M2-R3P2}, Σout

R3 = {R3-M2P1, outR3P2}, Σin
M1 = {R2-M1P1, R1-M1P2},

Σout
M1 = {M1-R1P1, M1-R2P2} and Σin

M2 = {R3-M2P1, R2-M2P2}, Σout
M2 = {R2-R2P1, M2-R3P2}.

Considering that the robots all have a capacity of one product, their models

according to (5.4) and (5.5) have 3 states as shown in Fig. 5.2.

(P1)

E

(P2)R1-M1P2

M1-R1P1

outR1P1

inR1P2

GR1

(P1)

E

(P2)R2-M2P2

M2-R2P1

R2-M1P1

M1-R2P2

GR2

(P1)

E

(P2)outR3P2

inR3P1

GR3

M2-R3P2

 R3-M 2  P   1  

Figure 5.2: Robot models.

Differently, the machines have a capacity of two product and two product types

pass M1 and M2. Hence, their models need to remember the product order similar

to the model in Fig. 3.8. The resulting models for M1 and M2 are shown in Fig.

5.3 and 5.4, respectively.

The overall model G of the FMS is then given by the synchronous composition

51



E

(P1)

(P1,P1) (P2,P1)(P2,P1) (P1,P2)(P1,P2) (P2,P2)

(P2)

R2-M1P1

R2-M1P1

M1-R1P1

M1-R1P1

R1-M1P2

R1-M1P2

M1-R2P2

M1-R2P2

R2-M1P1R1-M1P2

M1-R1P1M1-R2P2

GM1

Figure 5.3: Model of machine M1.
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Figure 5.4: Model of machine M2.

of the component models are

G = GR1||GR2||GR3||GM1||GM2. (5.7)

Since this model has 2368 states, it is not displayed in the thesis.

5.3.3 Supervisor Computation for the Example System

The FMS model G already represents all the possible product paths as specified

in Fig. 5.1. However, it turns out that G is a blocking automaton, that is, the

uncontrolled FMS will encounter deadlock situations. Two examples of such

deadlock situation are illustrated in Fig. 5.5. The figure shows the production

components (robots and machines), whereby, the machines are displayed in the

form of a FIFO (first-in-first-out) queue that can hold up to two products and

such that the product entering the component first will also leave first. Products

of type P1 are represented by blue disks, whereas products of type P2 are shown

as green triangles.
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Consider the scenario on the left-hand side of Fig. 5.5. Here, two products of

type P1 are present in M1 and one product of type P2 is present in R1. That

is, the products in M1 need to be picked by R1, whereas the product in R1 must

be placed in M1. This is not possible since both M1 and R1 are fully occupied.

Hence, the FMS will deadlock when reaching this scenario. Similarly, the FMS

deadlocks in the scenario on the right-hand side of Fig. 5.5. Here, M2 is fully

occupied and the first product of type P2 has to be picked by R3. However, R3

is already occupied by a product of type P1, which has to move to M2.

R3
M2

R2
M1

R1 R3
M2

R2
M1

R1

Figure 5.5: Two examples of deadlock situations.

In order to avoid such deadlock situations, we design a maximally permissive and

nonblocking supervisor as described in Section 2.2. The supervisor automaton

S for this case has 72 states and restricts the behavior of G in order to avoid

deadlocks. Since the supervisor S is too large it cannot be displayed in this

thesis.

We next illustrate the operation of the computed supervisor S and demonstrate

the practicability of the proposed modeling technique. To this end, we compare

the designed supervisor with a supervisor that is computed for a plant model

without keeping track of the product order. In the modified plant, the robot

models in Fig. 5.2 remain the same, whereas the machine models are replaced by

the automata ĜM1 and ĜM2 in Fig. 5.6. Here, both products can leave the respec-

tive production component in the state (P1,P2) independent of the arrival order

of the products. In that case, the modified plant Ĝ = GR1||GR2||GR3||GM1||GM2

has 24 956 states and the corresponding maximally permissive and nonblocking

supervisor Ŝ has 564 states.

We next compare the operation of the supervisor S for the order-preserving

model G and the supervisor Ŝ for the modified model Ĝ by following an ex-

ample product path. Here, the left-hand side of Fig. 5.7 shows the operation
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Figure 5.6: Model of the machines M1 and M2 without preserving the product
order.

of S and the right-hand side shows the operation of Ŝ. In both cases, we con-

sider two products of type P1 and P2. The product of type P2 step by step

approaches M1 and enters this machine first. The product of type P1 also

moves towards M1 and enters this machine after the other product. In Fig.

5.7, this state of the FMS is reached at the step that is shaded in gray. After

this step, both supervisors may exhibit a different operation. Since S is order-

preserving, it must be the case that the product of type P2 which entered M1

first must also leave M1 first. That is, this product next moves to R2. After

that, the product of type P1 can move to R1 and leave the FMS. Differently,

the product of type P1 can move to R1 first and leave the FMS if Ŝ is used

since Ŝ does not keep track of the product order. Re-visiting the discussion in

Section 5.2, we further note that the realization of the supervisor Ŝ needs addi-

tional information compared to the realization of S. In the described situation

with two products in M1, Ŝ needs to know which product leaves M1 first. This is

only possible by installing a sensor for identifying products leaving M1. No such

sensor is required when using the proposed order-preserving supervisor S.
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Figure 5.7: Example product path: Order-preserving case (left) and case with
arbitrary product order (right).
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CHAPTER 6

APPLICATION EXAMPLES

This chapter applies the order-preserving modeling technique introduced in the

previous chapters to different example systems. Section 6.1 considers an FMS

with multiple robots, machines and three product types. In addition, FMS whose

behavior can be validated in a simulation environment are taken into account in

Section 6.2. Hereby, Section 6.2 focuses on changes in the capacity of production

components.

6.1 Flexible Manufacturing Systems Example

In this section, we apply the proposed modeling framework to the FMS example

in [8, 15]. This example is chosen since it offers different product types that share

machines and robots. We first describe the original FMS in Section 6.1.1 and

then provide order-preserving models of the relevant system components and a

supervisor design in Section 6.1.2. Finally, Section 6.1.3 performs a modification

of the FMS that illustrates the advantage of composing order-preserving models.

6.1.1 FMS Description

The outline of the FMS in [8, 15] is shown in Fig. 6.1. It consists of 3 robots

R1, R2, R3 and 4 machines M1, M2, M3, M4. The robots are able to transport

products from/to the machines.
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In addition, the robots can take products from the input buffers I1, I2, I3 and

deliver them to the output buffers O1, O2, O3.

Input 1

Input 2

Input 3

Machine 1

Machine 2

Output 3

Output 2

Output 1

Machine 3

Machine 4

Robot 1

Robot 2

Robot 3

Figure 6.1: FMS overview.

In principle, it is desired to process 3 different product types using the FMS in

Fig. 6.1. For the first product type, R1 takes a product from I1 and moves it to

M2. Then, R2 delivers the product from M2 to O1. The second product is taken

from I2 by R3 and transported to M4. Then, R2 moves the product to M3 and

R1 delivers the product to O2. The third product has two alternative paths that

start from I3. On the first path, R1 moves the product to M3, R2 moves the

product to M4 and R3 delivers the product to O3. On the second path, R1 moves

the product to M1, R2 moves the product to M2 and R3 delivers the product to

O3. The product paths are also indicated below.

• P1: I1→R2→M2→R2→O1,

• P2: I2→R3→M4→R2→M3→R1→O2,

• P3: I3→R1→M3→R2→M4→R3→O3 or

I3→R1→M1→R2→M2→R3→O3.
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6.1.2 Modeling of the FMS

According to the FMS setup, it is clear that several production components share

different product types. For example, R1 moves P2 and P3, R2 transports P1,

P2, P3 and R3 delivers P2, P3. In addition, M2 processes P1, P3, M3 processes

P2, P3 and M4 processes P2, P3. That is, it is clear that order-preserving models

are needed for R1, R2, R3, M2, M3 and M4. Following the description in [8], the

robots can hold a single product, whereas the machines are able to hold up to

two products simultaneously. That is, a simple order-preserving model as in Fig.

6.2 is suitable to represent the robots. Hereby, we use the following convention

for the event names: each event name captures the component name, where the

product comes from, the component name that holds the product after delivery

and the product type. For example, the name for the event that characterizes

moving a product of type P3 from I3 to R1 is written as I3-R1P3.

0

2

M3-R1P2R1-O2P2

1

I3-R1P3
R1-M3P3

R1-M1P3

20

4

GR2
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R2-M2P1

R2-M2P3

3 5

M2-R2P1

R2-O1P1

R2-M3P2

M3-R2P3

R2-M4P3

M1-R2P3

1

M4-R2P2

0 2
M4-R3P3

R3-O3P3

1

I3-R1P3 R3-O3P3

3

I2-R3P2 R3-M4P2

GR3GR1

Figure 6.2: Robot models.

Different from the robots, an order-preserving model with capacity 2 is needed to

capture the behavior of M2, M3 and M4 as is shown in Fig. 6.3. Since there are

two different product types on each of these machines, the resulting model has 7

states. Note that no order-preserving model is needed for M1 since this machine

only processes a single product type.

Finally, [8] provides models for the input and output buffers that limit the num-

bers of products of a certain type that can enter the FMS to 3 for P1, 7 for P2
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Figure 6.3: Order-preserving machine models.

and 11 for P3. These buffer models are shown in Fig. 6.4.

In this context, we note that [8] does not employ order-preserving models for

M2, M3, M4. The respective models in [8] are shown in Fig. 6.5. That is, these

models assume that, even a certain product type (such as P1 on M2) enters M2

before P3, it is possible that P3 leaves M2 first. In practice this means that a

product can overtake another product when moving through the FMS. Although

this might be possible, it is then required to determine the type of each product

leaving such machine (since the event indicating the departure of a product is

directly related to the product type). This requires additional sensor information

and implementation effort. Differently, the order-preserving models in Fig. 6.5

naturally keep track of the products entering and leaving each machine.

We next discuss the supervisor computation for the FMS according to Section

2.2. To this end, we first note that the aim of this thesis is not an efficient

supervisor design method but the usage of order-preserving models as introduced

in Chapter 5. In addition, it holds that the product paths are already encoded in
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Figure 6.4: Buffer models.

the component models such that no additional specification is required. That is,

we compute the overall plant as

G = GR1||GR2||GR3||GM1||GM2||GM3||GM4||GB1||GB2||GB3. (6.1)

Then, we compute a nonblocking supervisor S such that Lm(S||G) =

SupC(Lm(G), G,Σu) with Σu = ∅ with 30 692 states.

In addition, we recall that the machine models in [8] as shown in Fig. 6.5 are not

order-preserving. For comparison, we also compute the nonblocking supervisor S̃

for the original model

Ĝ = GR1||GR2||GR3||G̃M1||G̃M2||G̃M3||G̃M4||GB1||GB2||GB3. (6.2)

with 27 770 states. In addition, it can be verified that Lm(S||G) ⊆ Lm(Ŝ||Ĝ).

This is due to the fact that the machine models in [8] do not preserve the order
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Figure 6.5: Machine models.

of products. That is, the allow products to enter and leave the machines in an

arbitrary order, which is observed as additional behavior in Lm(Ŝ||Ĝ).

6.1.3 Composed Order-preserving Models for the FMS

In order to illustrate the benefits of composing order-preserving models as de-

scribed in Section 4.4, we consider a slightly modified version of the FMS in

Section 6.1.2. To this end, we replace the machines M2, M3, M4 by correspond-

ing workcells W2, W3, W4 that consist of two conveyor belts (CBs) and one

machine. The outline of these workcells is shown in Fig. 6.6.

That is, products enter the workcell from the input CB (CB2i, CB3i, CB4i), are

then processed by the respective machine (M2, M3, M4) and leave the workcell

from the output CB (CB2o, CB3o, CB4o). Assuming a capacity of 1 for each

of the workcell components, we use the following order-preserving models in Fig.

6.7.
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Figure 6.6: Workcell outline.

Then, we first determine the state sizes of the original and reduced workcell

models. We write

GW2 = GCB2i||GM2||GCB2o,

GW3 = GCB3i||GM3||GCB3o,

GW4 = GCB4i||GM4||GCB4o

for the original workcell models with the alphabets ΣW2 = ΣCB2i ∪ ΣM2 ∪ ΣCB2o,

ΣW3 = ΣCB3i∪ΣM3∪ΣCB3o and ΣW4 = ΣCB4i∪ΣM4∪ΣCB4o. According to Section

4.4, we also introduce the alphabets of the reduced order-preserving models for

the workcells as Σ̂W2 = ΣW2 \ ΣM2, Σ̂W3 = ΣW3 \ ΣM3 and Σ̂W4 = ΣW4 \ ΣM4

with the related natural projections pW2 : Σ?
W2 → Σ̂?

W2, pW3 : Σ?
W3 → Σ̂?

W3 and

pW4 : Σ?
W4 → Σ̂?

W4. That is, the reduced models only contain the external events of

the workcells that are shared with the robots. Then, we write ĜW2, ĜW3 and ĜW4

for the reduced order-preserving models such that Lm(ĜW2) = pW2(Lm(GW2)),

Lm(ĜW3) = pW3(Lm(GW3)) and Lm(ĜW4) = pW4(Lm(GW4)).

It holds that GW2, GW3 and GW4 have 27 states, whereas ĜW2, ĜW3 and ĜW4

have only 15 states (which complies with (4.10)). Accordingly, a nonblocking

supervisor for the overall system with the original workcell models GW2, GW3 and

GW4 has 2 444 288 states, whereas a nonblocking supervisor for the overall system

with the reduced workcell models ĜW2, ĜW3 and ĜW4 has 643 100 states. That is,

in addition to correctly modeling the order of products traveling to the FMS, it is

possible to reduce the size of the required models using the particular properties

of composed order-preserving languages.

62



0

2

1

GCB2i

0

2

1

GM2

0

2

1

GCB2o

0

2

1

GCB3i

0

2

1

GM3

0

2

1

GCB3o

0

2

1

GCB4i

0

2

1

GM4

0

2

1

GCB4o

Figure 6.7: Workcell models.

63



6.2 Simulation of Flexible Manufacturing Systems

In this section, we investigate FMS models that can be simulated using the soft-

ware library libfaudes and the manufacturing system simulator FlexFact [31, 32].

Section 6.2.1 considers a small FMS and Section 6.2.2 extends the small FMS by

a long conveyor belt.

6.2.1 Small FMS Model

In this section, we consider the FMS in Fig. 6.8. It consists of two stack feeders

(SF1 and SF2), two machines (M1 and M2), one rotary table (RT1) and two exit

slides (XS1). The stack feeders are production components that can hold a certain

number of products and then deliver these products to the FMS. In this example,

we assume that SF1 and SF2 hold products of type P1 and P2, respectively. The

machines process the products and deliver them to RT1. RT1 is a rotary table,

that is, RT1 can rotate and hence deliver products to 4 different directions. The

exit slides are simply storage areas that receive products from RT1.

XS2 SF1

SF2

XS1

P1:

M1

M2

RT1

P2:

Figure 6.8: FMS model with different production components.

We next present order-preserving automata models for the small FMS. Fig. 6.9
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shows the machine models GM1 and GM2 of M1 and M2. In particular, each

machine receives products from the neighboring stack feeder and delivers them to

RT1. Here, the event M1-wpar and M2-wpar characterize the arrival of a product

at the machine. In addition, Fig. 6.9 shows models for the stack feeders and the

exit slides.

0 1
GM1 RT1-M1

2

M1-wpar

M1-start

SF1-M1

M1-RT1

0
GSF1

0 1
GM2 RT1-M2
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M2-RT1

SF1-M1

0
GSF2

SF2-M2

0
GXS1

RT1-XS1

0
GXS2

RT1-XS2

Figure 6.9: Machine, stack feeder and exit slide models of the small FMS.

The rotary table model GRT1 is given in Fig. 6.10. It captures that products

can arrive at RT1 from M1 or M2. In addition, the model of RT1 captures that

RT1 has to rotate clockwise (cw) or counter-clockwise (ccw) in order to deliver

products to different directions.

0 1
GRT1
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4

6
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Figure 6.10: Rotary table model of the small FMS.
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The overall model of the small FMS is given by the synchronous composition

GFMS = GSF1||GM1||GSF2||GM2||GRT1||GXS1||GXS2. (6.3)

Different form the previous example, we next use an additional feature of order-

preserving languages. Instead of using order-preserving languages for only mod-

eling DES, we specify the desired behavior of the FMS by the order-preserving

language GC1 in Fig. 6.11. This specification indicates that products arriving at

M1 and M2 should move to RT1 in the order of arrival.
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Figure 6.11: Order-preserving specification for the small FMS.

UsingGFMS in (6.3) andGC1, it is now possible to compute a maximally permissive

supervisor SFMS for the FMS such that

Lm(S||G) = supC(Lm(GC1), GFMS, ∅). (6.4)

For this example, S has 52 states and is hence to large to be shown in the thesis.

Nevertheless, we are next able to illustrate the operation of S by showing the

sequence of products in Fig. 6.12 and 6.13.

It is readily observed that the product keep the order of entering M1 and M2.
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Figure 6.12: Snapshots of the FMS operation.
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Figure 6.13: Snapshots of the FMS operation (continued).
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6.2.2 FMS with a Long Conveyor Belt

We finally consider the FMS in Fig. 6.14 which is a modification of the small FMS

in the previous section. It contains an additional long conveyor belt CB with a

capacity of two products and a rotary table RT1.

M1RT2

SF2

M2

XS2

XS1

RT1

P2:
P1:

Figure 6.14: FMS model with different production components.

The models of M1, M2, SF1 and SF2 are identical to the models for the small

FMS in Fig. 6.9. RT1 is now connected to the conveyor belt CB such that its

model is modified to the automaton GRT1 in Fig. 6.15.
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Figure 6.15: Model of RT1.
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A similar model is used for the rotary table RT2 in Fig. 6.16.
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Figure 6.16: Model of RT2.

Finally, Fig. 6.17 shows the automata models of the long conveyor belt CB and

the exit slides. Since CB has a capacity of 2, the model has 7 states in order to

remember the order of incoming products of type P1 or P2.
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Figure 6.17: CB and exit slide models.

Using the previous models, the overall plant model of the extended FMS is given

by

GFMS = GSF1||GSF2||GM1||GM2||GRT1||GCB||GRT2||GXS1||GXS2. (6.5)

However, instead of computing a supervisor for the overall model, it is convenient
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to divide the system into two modular components. We use the plant model

G1 = GSF1||GSF2||GM1||GM2||GRT1 (6.6)

to represent the modular component of the FMS until RT1. For this modular

component, we employ the order-preserving specification C1 in Fig. 6.18 similar

to the small FMS.
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Figure 6.18: Order-preserving specification for the small FMS.

No additional specification is required for the second module

G2 = GCB||GRT2||GXS1||GXS2 (6.7)

of the FMS since the order of products is already captured by the plant models.

We finally compute modular supervisors S1 and S2 for the two modular compo-

nents. For this example, it turns out that S1 has 35 states and S2 has 18 states. It

is further ensured that the Overall closed loop is nonconflicting. Fig. 6.19 and 6.20

show snapshots of the FMS operation, preserving the order of products entering

the system from SF1 and SF2.
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Figure 6.19: Snapshots of the FMS operation.
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Figure 6.20: Snapshots of the FMS operation (continued).
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CHAPTER 7

CONCLUSIONS

The subject of this thesis is the development of a new discrete event system (DES)

model for the supervisory control of flexible manufacturing systems (FMS). The

new model considers that FMS consist of various production components such as

machines and robots that exchange products among each other. In addition, the

model accounts for the fact that FMS are able to manufacture different product

types that potentially share various production components such as machines and

robots. Different from the existing literature, the proposed model also addresses

the case where a production component can hold multiple products and then

processes these products sequentially. Specifically, if the capacity of a production

component is greater than one, any product that enters the production component

first is processed first and also leaves the production component first.

In order to formalize this scenario, the thesis introduces the new class of order-

preserving formal languages. We show that a supremal order-preserving language

exists and can be represented by a finite state automaton. In addition, we prove

that it is possible to compose order-preserving languages to again obtain an order-

preserving language. Accordingly, we suggest to employ order-preserving language

as a model for FMS that keeps track of the different product types entering and

leaving production components. After presenting an algorithmic procedure for

constructing such order-preserving model depending on the processed product

types and the capacity of a production component, the thesis demonstrates the

practicability of the proposed method by several FMS application examples, in-
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cluding a comparison to existing models that allow products to enter and leave a

production component in an arbitrary order.

Possible ideas for future work include the study of nonblocking system behav-

ior depending on the connectivity of production components of order-preserving

FMS.
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