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ABSTRACT 

 

POLAR CODE DECODING WITH SOFT DECISION ALGORITHMS 

 

ARLI, Ahmet Çağrı 

Ph.D., Department of Electronic and Communication Engineering 

Supervisor: Assoc. Prof. Dr. Orhan GAZİ 

 

January 2020, 129 pages 

 

Since the born of the field of information theory with the publication of Shannon's famous 

paper, a mathematical theory of communication, numerous channel codes have been 

developed to achieve the performance limits drawn by Shannon. Initially, the channel 

codes are constructed using the binary vector subspaces, i.e., block codes, and the 

performances of these codes are measured via computer simulations. The codes that show 

good simulation results are adapted in practical communication systems. A different class 

of channel codes, convolutional codes are discovered in 1955 by Elias. Convolutional 

codes show basic differences in encoding and decoding operations than block codes. In 

1993, turbo codes, parallel concatenated convolutional codes, are introduced. The 

astonishing performance of turbo codes is considered as a milestone in channel coding 

society, and a huge interest for the design of concatenated codes aroused among 

researchers. The designed codes are decoded in an iterative manner, which was one of the 

main reasons behind the superior performance of turbo codes. The common idea in the 

years of 2000 among the researchers was that iteratively decodable concatenated codes 

was the codes not to be overcame for long years. In 2009 polar codes are introduced by 

Erdal Arıkan. Polar codes are designed using the concepts of information theory, and their 

performances are proven mathematically. Polar codes can be considered as the only codes 
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designed in a non-trivial manner, which can be considered as a breakthrough in channel 

coding field.   

In this doctoral thesis, the decoding of polar codes with soft decision based algorithms is 

studied. The belief propagation algorithm, which is one of the soft decision based 

algorithms, has been investigated in details literature. Polar codes can be decoded using 

belief propagation algorithm. For communication systems decoding latency is a critical 

issue. Decoding latency can be reduced using parallel processors. Belief propagation 

algorithm is suitable for parallel processing operations. It is indicated in the literature that 

polar codes decoded by belief propagation algorithm show worse performance than the 

polar codes decoded by successive cancelation decoding algorithm. In this thesis, we aim 

to improve the performance of polar codes decoded by belief propagation algorithm so 

that once it is achieved, the suitability for parallel processing property of the belief 

propagation algorithm can gain significance.  

The propagation of the unreliable probabilities in belief propagation algorithm worsens 

the performance of polar codes. To improve the reliability of propagating messages, we 

made use of the artificially generated weak noise signals. It is seen from the simulation 

results that the addition of weak noise to the received signal enhances the performance of 

polar codes decoded by belief propagation algorithm. The proposed approach can be 

named as noise-aided belief propagation based list, i.e., Na-BPL, polar decoder.  With the 

proposed method, it is seen that the performance of polar codes with belief propagation 

decoders employing perfect knowledge based early termination approaches to the 

performance of state-of-the-art successive cancelation list polar decoders. The systematic 

versions of polar codes are also considered with belief propagation algorithm. The 

systematic encoding brings extra overheads to the successive cancellation polar decoder. 

On the other hand, when it is used with belief propagation algorithm, the extra overhead 

is not seen at the decoder part. In this way, we further improve the performance of the 

polar belief propagation decoders. Besides, when systematic polar codes are used with 

Na-BPL, better decoding performance is obtained. 
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Accurate calculation of splitted channel capacities is a critical issue affecting the 

performance of polar codes. We considered the genetic algorithm for the design of polar 

codes. It is indicated in the thesis that when the polar codes designed with genetic 

algorithm is decoded using Na-BPL, improved performance is achieved, and the obtained 

performance is only 0.1 dB away from the performance of state-of-the-art polar decoder, 

i.e., CRC aided SCL polar decoder, when perfect knowledge based early termination is 

employed. And it is seen that without perfect knowledge based early termination, Na-BPL 

cannot overcome CRC aided SCL polar decoder, however, its error correction 

performance is better than SCL. 

 

Keywords: Polar codes, belief propagation algorithm, error correction, list decoding, 

noise aid, soft decoding, stochastic perturbation. 
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ÖZ 

 

KUTUP KODLARININ YUMUŞAK KARAR TABANLI ALGORITMALARLA 

ÇÖZÜMLENMESİ 

 

ARLI, Ahmet Çağrı 

Doktora, Elektronik ve Haberleşme Mühendisliği 

Tez Yöneticisi: Doç. Dr. Orhan GAZİ 

 

Ocak 2020, 129 Sayfa 

 

Shannon’un haberleşmenin matematiksel teorisini anlattığı ünlü makalesi ile birlikte 

doğan bilgi teorisi kapsamında Shannon tarafından çizilen performans sınırlarına ulaşmak 

için çok sayıda kanal kodu geliştirilmiştir. Başlangıçta, kanal kodları ikili vektör alt 

uzayları, yani blok kodları kullanılarak oluşturulur ve bu kodların performansları 

bilgisayar simülasyonları ile ölçülmştür. İyi simülasyon sonuçlarına sahip kodlar pratik 

iletişim sistemlerine uyarlanmıştır.Farklı bir kanal kodu sınıfı olarak, evrişim kodları 1955 

yılında Elias tarafından keşfedilmiştir. Evrişimli kodlar, kodlama ve kod çözme 

işlemlerinde blok kodlara göre temel farklılıklar gösterir. 1993'te turbo kodlar, paralel 

sıralı evrişim kodları olarak tanıtıldı. Turbo kodların şaşırtıcı performansı kanal kodlama 

toplumunda bir kilometre taşı olmuştur ve araştırmacılar arasında sıralı kodların 

tasarımına büyük ilgi duymuştur. Tasarlanan kodlar, turbo kodların üstün performansının 

arkasındaki ana nedenlerden biri olan yinelemeli bir şekilde çözülür.Araştırmacılar 

arasında 2000 yıllarındaki ortak fikir, yinelenebilir şekilde deşifre edilmiş birleştirilmiş 

kodların uzun yıllar üstesinden gelinmeyecek kodlar olmasıydı. 2009 yılında Erdal Arıkan 

tarafından kutup kodları tanıtıldı. Kutupsal kodlar bilgi teorisi kavramları kullanılarak 

tasarlanmıştır ve performansları matematiksel olarak kanıtlanmıştır. Kutupsal kodlar, 
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önemsiz olmayan bir şekilde tasarlanan tek kanallar olarak kabul edilebilir ve kanal 

kodlama alanında bir atılım olarak düşünülebilir. 

Bu doktora tezinde, kutupsal kodların yumuşak karar tabanlı algoritmalarla çözümlenmesi 

incelenmiştir. Yumuşak karar temelli algoritmalardan biri olan karar yayılım algoritması 

ayrıntılı olarak literatürde incelenmiştir. Kutup kodları, karar yayılma algoritması 

kullanılarak çözülebilir. İletişim sistemleri için kod çözme gecikmesi kritik bir konudur. 

Kod çözme gecikmesi paralel işlemciler kullanılarak azaltılabilir. Bu bağlamda, karar 

yayılım algoritması paralel işleme operasyonları için uygundur. Literatürde, karar yayılma 

algoritması ile kodu çözülen kutup kodlarının, ardışık giderim algoritması tarafından kodu 

çözülen kutup kodlarından daha kötü performans gösterdiği belirtilmektedir. Bu tezde, 

karar yayılma algoritması tarafından çözülen kutup kodlarının performansını artırmayı 

hedefledik. Performans iyileştirmesi elde edildiği takdirde, inanç yayılma algoritmasının 

paralel işleme özelliğine uygunluğu öne çıkacaktır. 

Karar yayılma algoritmasında güvenilmez olasılıkların yayılması kutupsal kodların 

performansını kötüleştirir. İletilerin güvenilirliğini arttırmak için yapay olarak üretilen 

zayıf gürültü sinyallerini kullandık. Simülasyon sonuçlarından, alıcaya gelen sinyale zayıf 

gürültü eklenmesinin, karar yayılma algoritması tarafından çözülen kutup kodlarının 

performansını arttırdığı görülmektedir. Önerilen yaklaşım, gürültü destekli karar 

yayılımına dayalı liste, yani Na-BPL, kutupsal kod çözücü olarak adlandırılabilir. 

Önerilen yaklaşımla, karar yayılımı kod çözücüleri ile kutupsal kod performansının, en 

gelişmiş ardışık giderim liste kutup çözücüleri performansına yaklaştığı görülmektedir. 

Kutupsal kodların sistematik versiyonları da karar yayılma algoritmasına uygulanmıştır. 

Sistematik kodlama, ardışık giderim kutupsal kod çözücüsüne fazladan ek yükler getirir. 

Öte yandan, karar yayılma algoritması ile kullanıldığında, kod çözücü kısmında fazladan 

ek yük görülmez. Bu şekilde, kutupsal karar yayılım kod çözücülerinin performansını 

daha da geliştiriyoruz. Ayrıca, Na-BPL ile sistematik polar kodlar kullanıldığında, daha 

iyi kod çözme performansı elde edilir. 

Bölünmüş kanal kapasitelerinin doğru hesaplanması, kutupsal kod performansını 

etkileyen kritik bir konudur. Kutupsal kodlarının tasarımı için genetik algoritmayı da 

dikkate aldık. Tezde, genetik algoritma ile tasarlanan kutupsal kodların, mükemmel bilgi 

tabanlı erken tespit yöntemi kullanan Na-BPL ile çözüldüğünde, gelişmiş performans elde 
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edildiği ve elde edilen performansın, en son teknolojiye sahip kutupsal kod çözücünün, 

yani CRC ile desteklenmiş SCL kutupsal kod çözücü performansından sadece 0.1dB 

uzakta olduğu belirtilmiştir. Na-BPL kod çözücü mükemmel bilgi tabanlı erken tespit 

yöntemi kullanılmadığında CRC ile desteklenmiş SCL kod çözücüyle yarışamıyor fakat 

hata düzeltme performansı SCL kod çözücünün performansına kıyasla ileridedir. 

 

Anahtar Kelimeler: Kutup kodları, karar yayılım algoritması, hata düzeltme, liste 

çözümlemesi, gürültü yardımı, yumuşak tabanlı çözümleme, stokastik karışıklık. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

x 

 

 

 

 

 

ACKNOWLEDGEMENTS 

 

I would like to express my sincere gratitude to Assoc. Prof. Dr. Orhan Gazi for his 

supervision, special guidance, suggestions, and encouragement through the development 

of this thesis. 

This PhD thesis is supported by 2211-C Yurt İçi Öncelikli Alanlar Doktora Burs Programı. 

I would like to express my truthful respect to TÜBİTAK-Eğitim Burs ve Destekleri Grubu 

for their financial support to complete my study.  

This PhD study you will read is one of the strongest concrete indicators of my education. 

Thanks to my family, especially my mother who brought me into the world, I eagerly 

continued my education. Especially, I always felt that I had to go to the end for my mother 

Devrim Gül who left her career and spent best of her years to care my brother and me. I 

am very happy with the way my grandfather Ahmet Kaan, my grandmother Özgül Kaan 

and my father Fahrettin Arlı showed, since I was in a family of educators. Also, I want to 

thank my brother Anıl for his support. Finally, I offer my endless gratitude to my wife, 

Görkem, who has been my companion for 6 years, for the support she has given me to be 

able to do my work. As a result, I consecrate my doctorate to my family and country to 

which I have dedicated my existence. 

Lastly, due to his contributions to my thesis work, I would like to thank Prof. Dr. Erdal 

Arıkan. 

 

 

 

 

 

 



  

xi 

 

 

 

 

 

 

TABLE OF CONTENTS 

 

 

 STATEMENT OF NON-PLAGIARISM...................................................................... iii 

 ABSTRACT.................................................................................................................. iv 

 ÖZ…………………………………………………………………………………….. vii 

 ACKNOWLEDGEMENTS………………………………………………………...... x 

 TABLE OF CONTENTS…………………………………………………………….. xi 

 LIST OF FIGURES…………………………………………………………………... xv 

 LIST OF TABLES…………………………………………………………………… xviii 

 LIST OF ABBREVIATIONS……………………………………………………....... xix 

   

 CHAPTERS:  

   

 1. INTRODUCTION……………………………………………………………. 1 

  1.1. Background…………………………………………………………… 1 

  1.2. Motivation…………………………………………………………...... 4 

  1.3. Outline………………………………………………………………... 5 

 2. POLAR CODES……………………………………………………………… 6 



  

xii 

 

  2.1. Channel Polarization…………………………………………………. 7 

  2.2. Polar Code Construction……………………………………………... 9 

  2.3. Polar Encoder………………………………………………………… 11 

  2.4 Belief Propagation Based Decoding of Polar Codes…………………. 12 

 3. BELIEF PROPAGATION BASED DECODING OF POLAR CODES……. 21 

  3.1. Art of BP Polar Decoding……………………………………………. 21 

   3.1.1. Scaled Min-Sum BP polar decoder…………………………. 21 

   3.1.2. Parity-Check Matrix based BP polar decoders……………… 22 

   3.1.3. Modified BP Polar Decoder with Check Nodes…………….. 24 

   3.1.4. Concatenated Decoders……………………………………… 25 

   3.1.5. Hybrid Decoders…………………………………………….. 31 

   3.1.6. Multi-trellis BP decoding……………………………………. 32 

   3.1.7. Deep Learning based BP decoding of Polar Codes…………. 34 

   3.1.8. Noise-aided BP List Polar Decoder…………………………. 37 

  3.2.  Simplified BP decoding of Polar Codes……………………………… 38 

   3.2.1. Node Classification and Unification Based BP Polar 

Decoding……………………………………………………. 38 

   3.2.2. Stage-Combined BP decoding algorithm…………………… 40 

   3.2.3. Stochastic BP decoding of Polar Codes…………………….. 41 

   3.2.4. Improved BP decoding Algorithm with Modified Kernel 

Matrix………………………………………………………. 42 

  3.3. Increasing Decoding Speed ………………………………………….. 43 

   3.3.1. Early Detection and Termination Methods…………………. 43 



  

xiii 

 

   3.3.2. Scheduling…………………………………………………... 48 

  3.4. Polar Code Construction Methods……………………………………. 52 

  3.5. Errors in BP Polar Decoders…………………………………………. 56 

  3.6. Adaptive Strategies in BP Polar Decoder……………………………. 59 

  3.7. Hardware Implementation………………………................................ 61 

 4. NOISE AIDED BELIEF PROPAGATION LIST DECODING OF POLAR 

CODES............................................................................................................. 63 

  4.1. Constructing a BP polar decoder.......................................................... 64 

   4.1.1. Adding Frozen Check Nodes.................................................. 65 

   4.1.2. Scheduling………………………………………………….. 67 

   4.1.3. Early Detection and Termination Method………………….. 72 

   4.1.4. Systematic Coding of Polar Codes………………………….. 75 

  4.2. Polar Code Construction ……………………………………………. 79 

   4.2.1. Bhattacharyya parameter based polar code design………… 79 

   4.2.2. Decoder-tailored polar code design using Genetic Algorithm 83 

  4.3. Na-BPL Polar Decoder ……..……………………………………….. 89 

   4.3.1. Folded Na-BPL Polar Decoder…………………..………… 97 

   4.3.2. Systematic Na-BPL Polar Decoder………………..……….. 101 

   4.3.3. Na-BPL Polar Decoder with Genetic Algorithm based Code 

Construction…………….…………………….………….... 103 

  4.4. Na-BPL Polar Decoder for Practical Applications…………………… 106 

   4.4.1. Post Decision Mechanisms…………………………………. 106 



  

xiv 

 

   4.4.2. Simulation Results of Na-BPL Decoders with Different Early 

Detection Methods and Post Decision Mechanisms………… 108 

 5. CONCLUSION ……………………………………………………………… 116 

 REFERENCES……………………………………………………………………….. 118 

 CURRICULUM VITAE…………………………………………………….……….. 127 

  



  

xv 

 

 

 

 

 

LIST OF FIGURES 

FIGURES  
 

  
 

Figure 2.1 A continuous communication channel.……………………… 6 

Figure 2.2 A sample discrete channel…………………………………… 7 

Figure 2.3 (a) Channel combining, (b) channel combining with channel 

polarization…………………………………………………... 8 

Figure 2.4 Channel polarization examples (a) forming W2 , (b) forming 

W4…………………………………………………………… 8 

Figure 2.5 Plot Bhattacharyya parameter based polar code construction 

for N = 8……………………………………………………... 10 

Figure 2.6 Polar encoder for N = 2.……………………………………... 11 

Figure 2.7 Polar encoder and decoder units for N = 2……………........... 12 

Figure 2.8 Alternative demonstration of polar encoder and decoder 

for N = 2…………………………………………………….... 13 

Figure 2.9 Factor graph representation of  G2…………………………... 13 

Figure 2.10 (a) Signal flow diagram for BP polar decoder, (b) messages 

that are used to calculate âL………………………………….. 13 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background 

In 1948, C.E.Shannon showed that error-free transmission is possible with any code rate 

up to channel capacity [1]. Since then, numerous forward error correction (FEC) 

techniques have been developed to achieve the channel capacity. Hamming, Golay, Bose-

Chaudhuri-Hockenham (BCH), Reed-Solomon (RS), Reed-Muller (RM), low density 

parity check (LDPC), turbo and polar codes are the error correcting codes invented in the 

past 70 years. FEC methods are mainly used in wireless communication systems to 

improve the service quality. Moreover, various FEC methods are utilized for the 

frameworks from 2G to 5G. All channel codes up to polar codes are designed in a trivial 

manner. In 2009, Arıkan introduced polar codes, the first channel codes whose 

performance is mathematically proved [2]. 

Arıkan designed the polar codes in such a way that the probability of error for the 

transmitted bit can be calculated beforehand, thus considering the probability value, the 

decision is made to transmit the data bit or not. The bit transmission probabilities are 

closely related to the channel capacities between the bit to be transmitted and the received 

symbols and the previously decoded bits. These channel capacities are also named as 

splitted channel capacities. Splitted channel capacities are used to decide the location of 

parity bits called frozen bits for polar codes such that both the transmitter and the receiver 

knows the locations of frozen bits.  

Frozen bits are added to the data vector before the encoding operation. In all channel codes 

except polar codes, parity bits are generated during/after encoding. On the other hand, in 
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polar codes, parity bits are placed into data vector by taking into account the capacity of 

the divided channel before encoding. Channels with low capacities are used for parity bits, 

while high capacity channels are used to bear data bits, and this smart channel usage makes 

the polar codes perform better than turbo and LDPC codes. In his article [2], Arıkan also 

introduced the successive cancellation decoding of polar codes. After its introduction, 

polar codes have received great interest and have become an important topic of future 

communication standards. In addition, polar codes are selected to provide channel coding 

on the control channels of the new radio (NR) of the third generation partnership project 

(3GPP) [3]. It has been shown that polar codes can be used for source coding [4, 5, 6] as 

well as channel coding.  

Different decoding schemes are developed for polar codes in time after its release. There 

are four state-of-the-art polar decoding methods: successive cancellation (SC) [2], belief 

propagation (BP) [7], linear programming (LP) [8], and maximum likelihood (ML) [9]. In 

ML decoding, likelihood of all possible codewords are calculated. Then, the most 

probable codeword is determined. Since, ML decoding is based on searching all possible 

codewords, it is not applicable after a certain codeword length N, since in total there are 

2
N

 possible codewords are available, and for large N values it becomes impossible to 

handle the amount of calculations needed. SC decoding of polar codes is offered for its 

practical applicability in [2]. With its low error correction performance for short code 

lengths, SC algorithm offers lowest computational complexity. Performance of SC 

decoder is enhanced greatly with the introduction of SC list [10] decoder keeping the 

complexity low. As a general form of SC decoder and its soft decision based version, BP-

based polar decoder is proposed in [7]. BP decoder processes soft information in an 

iterative manner. Moreover, instead of performing sequential decoding like SC based 

decoders, BP decoder utilizes parallel decoding. Besides, parallel decoding can be 

implemented on electronic devices such as Field Programmable Gate Array (FPGA) and 

Graphical Processor Unit (GPU) easily. Consequently, despite its low performance on 

error correction with its soft decision based decoding process and parallel decoding 

capability, BP-based polar decoder is a promising candidate for communication standards. 

Decoding FEC codes with soft decision based decoders is widely used in communication 

systems to lower block/frame and bit error rate when compared hard decision based 
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decoders. Having the soft decision based decoders, LDPC and turbo codes are employed 

in 4G communication standards. Besides, LDPC and polar codes are going to be used in 

5G frameworks. 

Belief propagation is a message-passing algorithm based on graphical models such as 

Bayesian network and Markov random models. It is also widely used in coding theory 

with iterative approach as a soft decision based decoding algorithm. Recursive messaging 

causes decoders to converge, such that one can estimate the data bits correctly.  

Turbo decoder processes soft information in an iterative manner and this is the main 

reason behind the astonishing performance of turbo codes. Like turbo and LDPC decoders,  

BP-based decoding algorithms are based on an iterative message-passing structure and 

parallel decoding capabilities that provide fast convergence of the decoder. As an 

example, Forney has shown that RM codes can be represented graphically and can be 

decoded by using BP algorithms [11]. 

Motivating from the fact that a Reed-Muller code, RM(N, K),  is a polar code of length 2
N

  

with code rate K / N and it differs only in the choice of generator vector [4], hence, polar 

codes can be decoded using BP algorithm in an iterative manner as RM codes. Arıkan 

presented a BP polar decoder [7] that simply identifies the check nodes and variable nodes 

on Tanner graph of polar code and related message propagation equations.  

The performance of polar codes for ML and BP decoders is compared with RM codes for 

short lengths in [9]. Thanks to its larger minimum distance over polar code, RM codes 

yield a better error correction at high signal-to-noise ratio (SNR), while, polar codes 

outperforms RM codes at low SNR. For all code-word lengths, ML has the best error 

correction performance beating BP decoder. Since ML decoding follows a process 

searching all possible code-words, its large complexity will be a problem to implement 

for N > 64. With its acceptable computational complexity BP decoding of RM and polar 

codes can be considered. It is also important to state that minimum distance advantage of 

RM code over polar code tends to disappear as N  gets larger values. 

Polar codes with length 142N   do not show substantial error correction performance 

when compared to LDPC and turbo codes [12] if polar decoder type is selected as SC or 

BP. However, 1 dB gain over LDPC and turbo codes for code lengths N < 1000 is achieved 

when state-of-the-art cyclic redundancy check (CRC) aided SC List decoder introduced 
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in [10] is used. The excellent BER/BLER performance of polar codes with short lengths, 

i.e., N < 1000, makes them a good candidate to be utilized for the control plane of 5G 

frameworks [3]. 

1.2 Motivation 

The 3GPP decided that LDPC codes are more suitable for the physical data channels of 

5G enhanced mobile broadband (eMBB) communication service with its high throughput 

while polar codes are considered for uplink/downlink physical control channel with its 

low computational complexity [3]. Design of LDPC codes for 5G New Radio (NR) are 

presented in [13]. Polar codes are also one of the candidates of other 5G frameworks, 

ultra-reliable low latency communications (URLLC) [14] and massive machine-type 

communications (mMTC). Framework requirements change relatively with respect to the 

coverage area, data rate, energy saving and cost needs. It can be anticipated that the fate 

of polar codes will be determined in URLLC and mMTC frameworks when the next 

releases of 3GPP are announced. It is shown in [13, 15] that polar codes are appropriate 

choice for URLLC and mMTC scenarios.  

CRC aided SCL polar decoder is planned to be used in 5G eMBB frameworks, and polar 

decoding with BP-based decoder is a good candidate for low latency applications. One of 

the most important advantage of BP decoding over SC / SCL decoding is its suitability for 

parallel processing. Unlike SC / SCL, previously estimated bits are not used to decode the 

next bits. Even more, all bits are resolved simultaneously after a series of consecutive 

iterations. However, parallel processing increases the complexity in terms of the number 

of logical elements and memory requirements. The memory requirement comes from the 

usage of messages from the previous iteration of the node during current iteration.  

The aim of this thesis is to offer a BP-based polar decoding scheme in order to compete 

CRC-aided SCL polar decoder. We assume that if we can improve the performance of BP 

polar decoder such that it achieves the same performance with CRC-aided SCL decoder, 

then it can be a candidate for future communication standards due to its suitability for 

parallel processing and due to its flexibility for integration with other communication units 

having soft information processing property.  
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1.3 Outline 

The thesis consists of five chapters. Chapter 2 focuses on explanations of polar codes, 

polar encoder and polar decoder types. Furthermore, details of BP polar decoder are 

provided. In the chapter 3, a wide range literature survey that combines and classifies 

journal papers, conference papers, books, master and PhD theses and patents is provided. 

Approximately one hundred studies are examined carefully and these studies on BP polar 

decoder are presented with a reasonable classification. Classification is done to separate 

studies that focuses on performance improvement, complexity reduction and increasing 

decoding speed. Besides, every aspect of a BP polar decoder is argued and references of 

each subject are provided to lead readers better understanding. As the main part of the 

thesis, in chapter 4 noise-aided belief propagation list decoder is proposed. Before the 

proposition of the method, step-by-step construction of the decoder is explained. Proposed 

design is supported with comparative simulation results. Error correction of proposed 

decoder is also enhanced by introducing the systematic version of the decoder without 

adding complexity. Additional performance boost to our proposed decoder is provided by 

applying a new polar code construction that is based on genetic algorithm. Finally, thesis 

will end with the conclusion part. 
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CHAPTER 2  

 

POLAR CODES 

 

 

In communication theory, there are two different types of channel as continuous and 

discrete channels. A continuous communication channel can be regarded as an analogue 

channel and has two inputs and one output. Input signal s(t) and channel noise n(t)  are 

inputs whereas r(t) is the output of the continuous channel, Fig. 2.1.  

 

On the other hand, a discrete channel has a discrete input and a discrete output where a 

probability is defined for each bits/symbols to appear at the input and output of the discrete 

channel. Input alphabet is defined with X, while output alphabet is defined as 𝑌. As seen 

from the Fig. 2.2, relation between X and 𝑌 is defined with transition probabilities; denoted 

as ( )n nPr y x . 

 

 

Figure 2.1 A continuous communication channel 
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Now, we can introduce the philosophy of polar codes and its counterparts in a step-by-

step approach. Polar codes are defined on binary-discrete memoryless channels [2] for the 

first time. When a discrete memoryless channel, denoted as W, taken into consideration, 

input and output of the channel can be represented with discrete random variables, u and 

y, respectively. A discrete channel as shown in Fig. 2.2, can be separated into smaller 

channels like demonstrated in Fig. 2.4a. For instance, one discrete memoryless channel 

(DMC) is needed to send one symbol, while four separate DMCs can be utilized to handle 

four symbols.  

2.1 Channel Polarization 

Claude E. Shannon [1] provided a mathematical model that computes channel capacity. 

Capacity of a channel can be defined as the maximum mutual information between the 

input and output of any channel. In our case, each separate DMCs has its own capacity 

that changes between 0 and 1. Polar coding can be formed by combining these separate 

discrete channels such that capacities are transformed to examine channels. In this scope, 

channel polarization allows us to achieve extreme channels by transforming non-zero 

capacity channels. Extreme channels in other words polarized channels are the channels 

with zero capacity or the channels with capacity i.e. C(W ) =1 where 0 ≤ C(W ) ≤ 1 . 

Transformation process is called as channel combining. DMC channels that form bigger 

channels without and with transformation process are demonstrated in Fig. 2.3a and Fig. 

2.3b, respectively. G is the transformation matrix that will be introduced in the next sub-

section as generator matrix of the polar code. 

 
 

Figure 2.2 A sample discrete channel 
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Channel polarization is provided by a simple operation [2]. Operation includes a modulo-

2 addition that can be accomplished by using an exclusive-OR (XOR) gate. Fig. 2.4 shows 

two channel combining examples. Two binary-DMCs (B-DMC) are combined to create 

W2 as shown in Fig 2.4a where two W2 channels are combined to form W4 in Fig. 2.4b. It 

is obvious that for codeword lengths, power of two, encoding can be achieved in a 

recursive manner. 

 

 

 

Figure 2.3 (a) Channel combining, (b) channel combining with channel polarization 
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Figure 2.4 Channel polarization examples (a) forming W2 , (b) forming W4  
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Subsequently, channel capacities are polarized such that they close to 0 or 1. After 

introducing the polarization concept, we will explain how a polar code can be constructed 

for a Binary Erasure Channel (BEC). 

Channel splitting should also be introduced to show polarized channels have better or 

worse channel capacity than the original B-DMC W. Hence, we can split the combined 

channel into two sub channels and define the bad and good B-DMCs as 

 
 

 

   
2

1 2 2 1 2 11 1 2 2

0,1

1
,

2 u

W y y W y W yu u u y



   (2.1) 

 
     1 2 1 2 1 2 22 1 2 2

1
, , .

2
W y y u W y W yu u u y    (2.2) 

After some operation, channel capacity comparison between before and the after polar 

transform can be presented as, 

 ( ) ( ) ( ).C W C W C W    (2.3) 

 

2.2 Polar Code Construction 

Polar code construction is dependent on the type of the communication channel and 

decoder. A polar code construction method should focus on to polarize N independent 

copies of a given B-DMC channels to 0 or 1 such that synthetic i.e. polarized channels are 

formed. To measure success of polarization, quality of channel should be examined. 

Quality of synthetic channels can be evaluated by Bhattacharyya parameter, where it is 

donated as Z(W). As presented by Arıkan [2], we will demonstrate the Bhattacharyya 

parameter based polar code construction for BEC. It is important to state that after polar 

code construction, information and frozen bit places are decided. Usually, frozen bit 

places are zero/close to zero capacity channels that are known by receiver. Thus, 

Bhattacharyya parameter can be defined as  

 ( ) ( | 0) ( |1)
y Y

Z W w y w y


  (2.4) 

where y Y  is output alphabet. Polar code design can be done with recursive instructions 

as shown in Fig. 2.4. Mathematically, Bhattacharyya parameter can be calculated as 
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 ( 1) ( ) ( ) 2

2( ) 2 ( ) ( )i i i

N N NZ W Z W Z W    (2.5) 

 (2 ) ( ) 2

2( ) ( )i i

N NZ W Z W  (2.6) 

As expected, we should start recursive calculation by deciding on the value of W1
 i. W1

 i can 

be thought as initial step of the polar code construction. That is why, deciding on W1
 i  is 

vital to achieve successful polarization. Since we are dealing with BEC, we can set W1
 i  as 

erasure rate of the channel. As an example, we choose to use erasure rate α as 0.5 for code 

length N = 8. In order to lead better understanding, Bhattacharyya parameter calculation 

on a polar code is demonstrated in Fig. 2.5.  

 

Fig. 2.5. shows that Bhattacharyya parameter Z(W) is high for u1, u2, u3 and u5 while rest 

has lower values. Knowing Z(W)+C(W)=1, we can conclude that after polarization, u1, u2, 

u3 and u5  have lowest capacities and they should be selected as frozen bits. Overall, data 

sequence can be represented as u=[ f f f d f d d d ]  where f and d stand for frozen bit and 

data/information bit. Frozen bit values are usually set as 0. After determining frozen and 

information bit places for an exact communication channel and decoder, our data sequence 

u is ready for encoding operation. 

 

 
 

Figure 2.5 Bhattacharyya parameter based polar code construction for N = 8 
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2.3. Polar Encoder 

 

Polar encoder kernel unit is depicted in Fig. 2.6. 

 

From Fig. 2.6, we can write that 

x1=u1⊕u2     x2=u2 

For the information word  u=[u1u2], after polar encoding operation, the obtained 

codeword is x =[x1x2]  where  x1=u1⊕u2  and  x2=u2. For any encoder, the relation 

between u and x mathematically be expressed as 

 

x=uGN (2.7) 

 

where GN  is the generator matrix. For  N = 2 , GN is equal to 

 

1 1 2 2 2

1 0

1 1

.

2G

x u u x u

 
  
 

  

 

 

The generator matrix of the polar code is an involutory such that 

 

GN=GN
-1. (2.8) 

 

This property implies that  

 

x=uGN→u=xGN
-1

→u=xGN. 

 

 
 

Figure 2.6 Polar encoder for N = 2 
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GN can be formed in a recursive manner, starting from the mathematical equivalent of 

kernel polar encoder unit presented in Fig. 2.6. As the kernel matrix F is defined as 

F= [
1 0

1 1
]. Bigger polar code are achieved by GN=BNF

⊗n  where BN  is the permutation 

matrix also known as bit-reversal matrix. "⊗n" denotes Kronecker product of matrices 

and "⊗n" denotes the nth  Kronecker power of a matrix. BN can be calculated by using 

BN=RN(I2⊗BN/2)  where I2 is the identity matrix, and RN is the permutation operation, 

such that R4 maps the input {1,2,3,4} to {1,3,2,4}. 

In this scope of coding theory, parity bits are usually added to the codeword after the 

multiplication of G matrix where size of the G matrix is K×N and x=uG. N is the code 

length and K is the number of useful bits in the code. Parity check matrix, H, is also 

defined for any code. H is used to check whether decoding is successful or not by using 

the equality xH=0 where H has size of (N − K) × N. However, in polar coding, H and G 

matrices are combined into one matrix with size N×N. Moreover, parity bits are added to 

the data vector before encoding operation is completed. In this thesis, polar code with 

codeword length N and K information bits is denoted as Ƥ(N,K). 

2.4. Belief Propagation Based Decoding of Polar Codes 

Using BP algorithm in forward error correction is proposed by R.G.Gallager [16] for the 

first time in 1962. Besides, Tanner graph representation of this algorithm is offered by 

R.M.Tanner [17] in 1981. BP decoding scheme is iterative and based on message passing 

between check nodes and variable nodes placed on the right and left hand side of factor 

graph. For x =uGN  encoding operation, the kernel encoder and decoder units are shown 

in Fig. 2.7. 

 

 

 
 

Figure 2.7 Polar encoder and decoder units for  N = 2 
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Let a,b,c,d  be the random variables and assume that the bits c and d are transmitted 

through a discrete memoryless channel. At the decoder side, the flow of the signals change 

direction as shown in Fig. 2.7 where ĉ  and  d̂   are the outputs of a discrete memoryless 

channel, i.e., they are the received bits while  â   and  b̂   are the estimated data bits. 

Since GN equals GN
-1

, the encoding and decoding operations can also be interpreted as in 

Fig. 2.8. 

 

Additionally, as we know that an iterative structure is going to be used with BP decoding 

algorithm we can combine the Fig. 2.7 and Fig. 2.8 as shown in Fig. 2.9. By this way, 

factor graph representation of kernel polar encoder/decoder is constructed to be able to 

allow from both left and right direction propagation of information. 

 

Or using parallel arrows, factor graph will be modified as shown in Fig. 2.10a for better 

understanding. L stands for left propagation while R stands for right propagation. 

 

 
 

Figure 2.8 Alternative demonstration of polar encoder and decoder for N = 2 
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Figure 2.9 Factor graph representation of  G2 
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Figure 2.10 (a) Signal flow diagram for BP polar decoder, (b) messages that are used 

to calculate âL 
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At this point, signal flow on kernel BP polar decoder can be used to derive right and left 

propagation message equations. First step will be to define XOR and equality check 

operations in terms of probability functions. Probability functions are going to help us to 

form likelihood calculation equations. Let x,y,z,w  be the random variables, 

where  p
x
(x1)=Prob(x=x1)  is the probability mass function. The XOR operation equals,  

z=x⊕y, then 

(0) (0) (0) (1) (1)z x y x yp p p p p   

(1) (0) (1) (1) (0).z x y x yp p p p p   

 

On the other hand, the equality check box can be defined with operator ⊙ . If w=x⊙y , 

then 

0, 0
.

1, 1

if x y
w x y

if x y

  
   

  
 

From that, we can write  

(0) (0) (0)w x yp p p  

(1) (1) (1).w x yp p p  

Upon these descriptions of the operations, we can try to calculate likelihood ratio (LR) of 

aL by using 

( 0)
( ) .

( 1)

L
L

L

p a
LR a

p a





 

By using Fig. 2.10b, we can write that 

[ ].L L R La c b d   

From which, we can write the probabilities for aL as

 

( 0) ( 0) ([ ] 0) ( 1) ([ ] 1)L L R L L R Lp a p c p b d p c p b d        

( 0) ( 0) ( 0) ( 0) ( 1) ( 1) ( 1)L L R L L R Lp a p c p b p d p c p b p d          

( 1) ( 0) ([ ] 1) ( 1) ([ ] 0)L L R L L R Lp a p c p b d p c p b d        

( 1) ( 0) ( 1) ( 1) ( 1) ( 1) ( 0)L L R L L R Lp a p c p b p d p c p b p d          

( 1) ( 0) ( 1) ( 1) ( 1) ( 1) ( 0)L L R L L R Lp a p c p b p d p c p b p d          
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( 0)
( )

( 1)

L
L

L

p a
LR a

p a





 

( 0) ( 0) ( 0) ( 1) ( 1) ( 1)
( ) .

( 0) ( 1) ( 1) ( 1) ( 0) ( 0)

L R L L R L
L

L R L L R L

p c p b p d p c p b p d
LR a

p c p b p d p c p b p d

      


      
 

By dividing LR(aL)'s denominator and nominator to ( 1) ( 1) ( 1)L R Lp c p b p d   , we can 

get 

( 0) ( 0) ( 0) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1)
( )

( 0) ( 1) ( 1) ( 1) ( 0) ( 0)

( 1) ( 1) ( 1)

L R L L R L

L R L
L

L R L L R L

L R L

p c p b p d p c p b p d

p c p b p d
LR a

p c p b p d p c p b p d

p c p b p d

      

  


      

  

 

resulting that 

( 0) ( 0) ( 0)
1

( 1) ( 1) ( 1)
( ) .

( 0) ( 0) ( 0)

( 1) ( 1) ( 1)

L R L

L R L
L

L R L

L R L

p c p b p d

p c p b p d
LR a

p c p b p d

p c p b p d

  


  


  


  

 

Now equation is ready to be represented by likelihoods such as 

( ) ( ) ( ) 1
( ) .

( ) ( ) ( )

L R L
L

L R L

LR c LR b LR d
LR a

LR c LR b LR d





 

 

Inspiring from the calculation of LR(aL), we can form the equations of LR(bL), LR(cR)  and 

LR(dR) by using 

[ ]L R L Lb a c d   

[ ]R R R Lc a b d   

[ ] .R R L Rd a c b   

In this scope, with a similar approach using 

[ ]L R L Lb a c d   

we calculate LR(bL) as 

( 0) ([ ] 0)L R L Lp b p a c d     

( 0) ([ ] 0) ( 0)L R L Lp b p a c p d      

( 0) [ ( 0) ( 0) ( 1) ( 1)] ( 0)L R L R L Lp b p a p c p a p c p d         
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( 1) ([ ] 1)L R L Lp b p a c d     

( 1) ([ ] 1) ( 1)L R L Lp b p a c p d      

( 1) [ ( 0) ( 1) ( 1) ( 0)] ( 1)L R L R L Lp b p a p c p a p c p d         

( 0)
( )

( 1)

L
L

L

p b
LR b

p b





 

[ ( 0) ( 0) ( 1) ( 1)] ( 0)
( )

[ ( 0) ( 1) ( 1) ( 0)] ( 1)

R L R L L
L

R L R L L

p a p c p a p c p d
LR b

p a p c p a p c p d

     


     
 

1 ( ) ( )
( ) ( ) .

( ) ( )

R L
L L

R L

LR a LR c
LR b LR d

LR a LR c





 

 

In a similar manner, using 

[ ]R R R Lc a b d   

we can calculate LR(cR)   as 

 

( 0) ( 0) ([ ] 0) ( 1) ([ ] 1)R R R L R R Lp c p a p b d p a p b d        

( 0) ( 0) ( 0) ( 0) ( 1) ( 1) ( 1)R R R L R R Lp c p a p b p d p a p b p d          

( 1) ( 0) ([ ] 1) ( 1) ([ ] 0)R R R L R R Lp c p a p b d p a p b d        

( 1) [ ( 0) ( 1) ( 1) ( 1) ( 0) ( 0)]R R R L R R Lp c p a p b p d p a p b p d          

( 0)
( )

( 1)

R
R

R

p c
LR c

p c





 

( 0) ( 0) ( 0) ( 1) ( 1) ( 1)
( )

( 0) ( 1) ( 1) ( 1) ( 0) ( 0)

R R L R R L
R

R R L R R L

p a p b p d p a p b p d
LR c

p a p b p d p a p b p d

      


      
 

 

( ) ( ) ( ) 1
( ) .

( ) ( ) ( )

R R L
R

R R L

LR a LR b LR d
LR c

LR a LR b LR d





 

In a similar manner, using  

[ ]R R L Rd a c b   

LR(dR) can be calculated as 

( 0) ([ ] 0)R R L Rp d p a c b     
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( 0) ([ ] 0) ( 0)R R L Rp d p a c p b      

( 0) [ ( 0) ( 0) ( 1) ( 1)] ( 0)R R L R L Rp d p a p c p a p c p b         

( 1) ([ ] 1)R R L Rp d p a c b     

( 1) [ ( 0) ( 1) ( 1) ( 0)] ( 1)R R L R L Rp d p a p c p a p c p b          

( 0)
( )

( 1)

R
R

R

p d
LR d

p d





 

[ ( 0) ( 0) ( 1) ( 1)] ( 0)
( )

[ ( 0) ( 1) ( 1) ( 0)] ( 1)

R L R L R
R

R L R L R

p a p c p a p c p b
LR d

p a p c p a p c p b

     


     
 

1 ( ) ( )
( ) ( ) .

( ) ( )

R L
R L

R L

LR a LR c
LR d LR b

LR a LR c





 

 

Finally, the derived formulas for the belief propagation algorithm can be written together 

like shown in (2.9)-(2.12). 

 

Polar encoding and decoding operations can be graphically demonstrated as in Fig. 2.11 

via factor graph formation. The factor graph of G8, N = 8, in Fig. 2.11 consists of 2×2 

basic computational blocks (BCB), in other words, processing elements (PE). Each stage 

of graph includes four PEs where iterative process is followed. As noticed number of 

stages n, determined by log
2
N. 

( ) ( ) ( ) 1
( )

( ) ( ) ( )

L R L
L

L R L

LR c LR b LR d
LR a

LR c LR b LR d





 

(2.9) 

1 ( ) ( )
( ) ( )

( ) ( )

R L
L L

R L

LR a LR c
LR b LR d

LR a LR c





 

(2.10) 

( ) ( ) ( ) 1
( )

( ) ( ) ( )

R R L
R

R R L

LR a LR b LR d
LR c

LR a LR b LR d





 

(2.11) 

1 ( ) ( )
( ) ( )

( ) ( )

R L
R L

R L

LR a LR c
LR d LR b

LR a LR c





 

(2.12) 
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Generalized version of the kernel polar decoder, PE, contains two inputs and two outputs 

as shown in Fig. 2.12 where R represents the messages propagating rightward where 

L represents the messages propagating to the leftward. Messages are in the form of LR as 

shown by (2.9)-(2.12). 

 

The propagating messages for any PE on a factor graph like in Fig. 2.11, use equations 

(2.13)-(2.16) which are adapted from the derived likelihood ratios in (2.9)-(2.12) of the 

kernel iterative decoder unit of Fig. 2.12. Thus, 

1,2 1 1,2 , /2

,

1,2 1 1,2 , /2

1 i j i j i j N

i j

i j i j i j N

L L R
L

L L R

   

   





 (2.13) 

, 1,2 1

, /2 1,2

, 1,2 1

1 i j i j

i j N i j

i j i j

R L
L L

R L

 

 

 





 (2.14) 

 
 

Figure 2.11 Encoder and decoder structure for N = 8 
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Figure 2.12 Basic processing element (PE) of BP-based polar decoder 
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, 1,2 , /2

1,2 1

, 1,2 , /2

1 i j i j i j N

i j

i j i j i j N

R L R
R

R L R

 

 

 





 (2.15) 

, 1,2 1

1,2 , /2

, 1,2 1

1 i j i j

i j i j N

i j i j

R L
R R

R L

 

 

 





 (2.16) 

can be expressed as 

, 1,2 1 1,2 , /2( , )i j i j i j i j NL g L L R      (2.17) 

, /2 1,2 , 1,2 1( , )i j N i j i j i jL L g R L      (2.18) 

1,2 1 , 1,2 , /2( , )i j i j i j i j NR g R L R    
 

(2.19) 
 

1,2 , /2 , 1,2 1( , )i j i j N i j i jR R g R L      (2.20) 

where g(x,y) function defined as 

 1
( , ) .

xy
g x y

x y





  (2.21) 

The initial value of the messages should be determined before the iterations start, for 

instance, R1,2,…,n+1 values should be set to a positive number for frozen indexed nodes. 

Initial frozen value can be set to 10, 100 or 1000 according to magnitude of code length. 

Similarly Ln+1,j   values should be initialized to the channel likelihoods which are 

calculated as 

 
1,

( | 0)
.

( | 1)

i i
n j

i i

p y x
L

p y x






 (2.22) 

( )i ip y x  is the channel transition probability for channel input  xi and channel output  y
i
. 

When the M number of iterations are completed, a hard decision is made according to  

 
,11 1

ˆ
0

i

i

L
u

otherwise

 
  
 

  (2.23) 

where  ûi  is estimated bit. 

As the code length increases, the implementation of (2.9) to (2.12) requires significant 

amount of hardware resource and results in latency for BP decoder. To alleviate the large 

complexity and latency issues, logarithmic version of the formulas (2.9) to (2.12) are 

considered for hardware implementations, i.e., multiplications are converted to 
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summations while divisions are converted to subtractions. The g(x,y) function defined in 

(2.18) is expressed in log domain [18] as   

  ( , ) s ( ) ( ) min ,gl x y ign x sign y yx  (2.24) 

for BP decoding of LDPC codes. Log-Likelihood Ratio is used to represent new version 

of the propagation messages. Additionally, initial conditions and likelihood calculations 

should be expressed in log domain. The log domain equivalent of (2.9) to (2.12) can be 

written as 

, 1,2 1 1,2 , /2( , )i j i j i j i j NL gl L L R      (2.25) 

, /2 1,2 , 1,2 1( , )i j N i j i j i jL L gl R L      (2.26) 

1,2 1 , 1,2 , /2( , )i j i j i j i j NR gl R L R      (2.27) 

1,2 , /2 , 1,2 1( , )i j i j N i j i jR R gl R L      (2.28) 

 

where the gl(.) function is defined in (2.24). 

Although the main aspect of this thesis is on BP-based decoding of polar codes, we need 

to introduce SC and SCL polar decoders. Since, our aim is to catch the error correction 

performance of a SC based technique e.g. state-of-the-art CRC aided SCL polar decoder, 

we should give a brief introduction to understand the methods.  

In SC algorithm [2], information bits are decoded step by step. Briefly, decoding decision 

on current bit is done by using channel output and all previously estimated information 

bits. Unlike ML decoding, changing previous decisions is not allowed in SC decoding so 

that decoding process continues with already estimated bits. This feature of the algorithm, 

lower its complexity while reducing its error correction performance.  

SC list decoding of polar codes is proposed in [10] to lead better error correction. Instead 

of tracking one best decoding path like in SC, L best decoding paths are followed in 

parallel in SCL decoder. By utilizing list concept, performance closes to ML decoder’s. 

Even more, SCL decoder enhanced by introducing CRC aid. If list size L is large enough, 

ML decoding performance is shown to be achieved [10]. 
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CHAPTER 3 

 

BELIEF PROPAGATION BASED DECODING OF POLAR CODES 

 

3.1 Art of BP Polar Decoding 

The proven potential of BP-based decoding algorithms has led researchers to improve the 

performance of the BER / BLER polar BP decoder. As stated before, the BP polar decoder 

has weak error correction performance. On the other hand, LPDC codes with BP-based 

iterative decoding gives excellent results. Because of the low performance on BER / 

BLER and high complexity, a BP-based polar decoder has bandwidth issue when 

compared to SC-based polar decoders. Over the last five years, new approaches have been 

developed to adapt the BP algorithm to polar codes with high error correction capabilities. 

We categorize these new approaches in eight sub-sections, and explain them in detail. 

3.1.1 Scaled Min-Sum BP Polar Decoder 

Complexity of encoders and decoders is an important indicator whether it is applicable on 

hardware or not. In order to lower complexity, logarithmic approximations of equations 

are used in decoders. Logarithmic versions of the node messages are presented with Log-

Likelihood Ratio (LLR). LLR values can also be used in log domain implementation of 

the BP algorithm. Despite its advantage over complexity, using log domain equivalent of 

the equations causes BER/BLER performance degradation due to approximations. In this 

scope, a study to improve log domain version of BP algorithm called as scaled min-sum 

(SMS) decoding algorithm is proposed in [19] where log domain equations of the 

propagating messages are given as 

 , 1,2 1 1,2 , /2 1,2 1 1,2 , /2( ) ( )min ,i j i j i j i j N i j i j i j NL s sign L sign L R L L R            (3.1) 
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 , /2 1,2 , 1,2 1 , 1,2 1 1,2 1( ) ( )min ,i j N i j i j i j i j i j i jL L sign R sign L R L L           (3.2) 

 1,2 1 , 1,2 , /2 , 1,2 , /2( ) ( )min ,i j i j i j i j N i j i j i j NR s sign R sign L R R L R          (3.3) 

 1,2 , /2 , 1,2 1 , 1,2 1( ) ( )min , .i j i j N i j i j i j i jR R sign R sign L R L        

  

(3.4) 

Scaling factor s is added to propagation equations to compensate the performance loss. It 

is shown that with scaling factor 0.9375s  , performance improvement is achieved when 

compared to the conventional BP decoder utilizing Ƥ(1024,512) on AWGN channel 

0.9375s  [19, Fig. 2]. Error correction performance is increased by using scaling factor 

but complexity in term of logic gate count is increased with inserted extra multiplication. 

Besides, critical path delay caused by gate latency is also increased. SMS based BP 

method is used as standard decoder in the studies [20, 21, 22, 23, 24, 25, 26, 27, 28]. Even 

more, processing element (PE) of SMS BP polar decoder is optimized by using high-speed 

parallel prefix. Ling adder is used instead of carry ripple adder to reduce logic gate delay 

i.e. critical path delay. Overall, critical path of a PE of SMS BP polar decoder is decreased 

from 2.594 ns to 0.959 ns [26, Table II]. 

Similar to SMS BP decoder, different approximations of the logarithmic version of the 

propagating message equations are presented in [29]. All three approximations achieved 

better BLER performance over MS BP decoder with a margin of complexity increment. 

3.1.2 Parity-Check Matrix Based BP Polar Decoders 

Parity check matrix of a polar code H can be obtained from the columns of the generator 

matrix of polar code G considering the frozen bit locations [8]. It is not applicable to use 

H during BP decoding because of its high density. Instead of using H through decoding 

stages, its use as an early detection and termination method is proposed [30]. Nonetheless, 

An H based BP polar decoder employing an adaptive approach is introduced in [31]. 

Adaptive approach to generate sparse version of H is presented to increase the 

convergence accuracy of the iterative decoder. Adaptive approach can be outlined as:  

 Method is presented for the logarithmic version of the BP polar decoder, so firstly 

calculate the absolute values of received LLRs, 
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 Sort these absolute values in ascending order and name resulting sequence as y,  

 A vector B of length N − K denoting the indices of least reliable bits of y is 

generated, 

 HB  is constructed from the columns of H using B, 

 Gauss elimination is applied on HB to reduce the matrix to be an identity matrix, 

 New matrix Hnew is formed. 

By using Hnew in the decoding, better error correction performance in terms of BER and 

BLER is obtained when compared with the state-of-the-art SCL decoder. Unfortunately, 

adaptive matrix construction causes complexity and latency increment. Moreover, 

operations like absolute value calculation, sorting, Gauss elimination for each received 

codeword are not feasible for long length codes. Therefore, a simpler parity-check matrix 

based BP decoder is presented in [32]. Simpler version of the parity-check matrix based 

BP decoder is achieved by converting its factor graph from high-density factor graph to 

sparse graph as shown in Fig. 3.1b. 

As mentioned before, there are variable nodes denoted by VN1,j and check nodes denoted 

by CNi,j on the factor graph of polar decoder as depicted in Fig. 3.1. Messages, used to 

estimate original data, propagate from left to right and right to left. In this scope, variable 

node messages are multiplied with their previous values during iterations to improve 

reliability [32]. By using this idea, 1-2 dB gain is achieved over original BP scheme. 

Moreover, average number of iterations is reduced by 10-25 even though no early 

detection method is applied. 
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3.1.3 Modified BP Polar Decoder with Check Nodes 

Check nodes can be inserted into both kind of nodes i.e., frozen and information nodes. 

Check node addition into factor graph of the polar decoder can improve error correction 

performance [33]. In this study, check nodes are used to keep already converged nodes 

stable. Keeping converged nodes same avoids oscillation errors. Frozen and information 

check nodes denoted by c(i,j) are depicted in Fig. 3.2. 

 

Frozen nodes, filled with dashed lines in Fig. 3.2, shouldn’t be updated during decoding 

stages. Otherwise, less reliable or falsely converged frozen node likelihoods can be 

obtained. In order to avoid false convergence of frozen nodes, addition of frozen check 

 

 

 

Figure 3.1 (a) Variable and check nodes for G4, (b) sparse Tanner graph of BP polar 

code, G4 
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Figure 3.2 Factor graph representation involving frozen and information check 

nodes for N = 4 
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nodes is proved useful [33]. Employment of check node for information nodes is a useful 

approach such that they increase the reliability of the messages from previous information 

nodes. It is also demonstrated that the modified BP decoder utilizing Ƥ(2048,1024) 

achieves 0.5 dB gain over conventional BP polar decoder with 60 iterations at 10
−6

 BER. 

Similar to check node concept, threshold value check is introduced to the nodes of BP 

polar decoder in [34]. A threshold value for each node is calculated using Gaussian 

approximation. During decoding process, if likelihood of any node reaches this threshold, 

then this node is set to infinity. This modification lead decoder to reach convergence faster 

than the conventional approach.  

A multi-stage decoding process is proposed in [35] with the name of BP-bit strengthening 

(BPBS). In this method, bit strengthening is applied when decoding fails after pre-defined 

number of iterations are performed. Bit strengthening is provided by sub-factor graph 

based check. In this approach, already converged information bits are set to infinite. After 

bit strengthening is completed, another decoding process takes place. Overall, error 

correction performance close to SCL and 0.4 dB better BER performance over 

conventional BP is achieved. 

3.1.4 Concatenated Decoders 

Concatenated codes, as a sub-class of error correcting codes, are constructed by combining 

an inner code and an outer code. Concatenated codes are offered by Forney [36] to avoid 

exponential decoding complexity for large block lengths of the codes. In theory, two 

relatively short codes can decrease error probability as low as a long error correcting code 

can do.  

A concatenated code utilizing a RS code as outer code and a polar code as inner code is 

presented in [37] where BP polar decoder is used for decoding operation. It is shown that 

with high rate RS code, high probability of block error of concatenated code decays sub-

exponentially with increasing block length. Since asymptotic cases are considered in [37], 

concatenated decoders for practical communication systems that involve polar codes and 

LDPC codes are studied in [38, 39, 40, 41, 42, 43, 44, 45, 46]. 
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LDPC codes are one of the linear codes consisted of message and check nodes that can be 

represented using sparse bipartite graphs. Fig. 3.3 shows a sample LDPC code for better 

visualization. There are n message nodes (nodes on the left) and check nodes (nodes on 

the right). An LDPC code is designed to generate codewords associated with the n 

message nodes. Sum of each generated codeword in check nodes equal to zero.  

 

With its near Shannon’s capacity and being able to be decodable by iterative BP-based 

algorithm, make LDPC codes a good candidate to be concatenated with BP-based polar 

decoders. Besides, LDPC codes are utilized in large scale of frameworks like Worldwide 

Interoperability for Microwave Access (WiMAX), 10GBASE-T 10 Gbit/s (1,250 MB/s) 

Ethernet over unshielded twisted pair (802.3AN), Digital Video Broadcasting — Second 

Generation Terrestrial (DVB-T2), Digital Multimedia Broadcast-Terrestrial/Handheld 

(DMB-T/H), and Digital Terrestrial Multimedia Broadcast (DTMB). 

 

 

 
 

Figure 3.3 An LDPC code 
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Figure 3.4 Concatenated code structure involving polar and LDPC codes 
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Fig. 3.4 demonstrates a concatenated encoder and decoder design consisting of polar code 

as outer code and LDPC code as inner code. The terms u, x, y,û   represent data, encoded 

data, received data and estimated data, respectively. It is known that although LDPC code 

has decent waterfall characteristics, it suffers from error floor. Since polar codes shows 

no error floor up to 10
−12 BER, it will be a good idea to concatenate LDPC and BP polar 

decoders [41].  The proposed method deals with error floor problem of LDPC and 

implemented on optical fiber links that supports data rates up to 100 Gbps. RS, LDPC and 

BCH codes have already been standardized for different optical transport networks. 

Similar error probability is achieved with code rate 0.93 when polar-LDPC code is used. 

It is also an advantage that both scheme can be decoded using soft decision based BP 

algorithm when hardware implementation is considered. 

[38, Fig.4] demonstrates that polar-LPDC code is a good candidate to cover optical 

transport network standard’s requirements in terms of BER performance and 

interchangeable code-rates. Hardware implementation of polar-LPDC code [38, 39] is 

performed in [42]. Moreover, a modification to polar-LDPC cascaded structure of [38, 39] 

is presented in [43]. Modification is done by adding an influence factor to the junction of 

two decoders’ factor graphs. Soft messages coming from polar decoder are multiplied with 

this influence factor. Various influence factor values are studied in [43] and better BER 

performance is observed. 

A cleverer concatenated scheme that involves polar and LDPC code is introduced in [44]. 

In this scheme, LDPC code is only applied to the non-polarized bit channels as depicted 

in Fig. 3.5. Other channels of the polar code stay untouched. Non-polarized (intermediate) 

channels are selected by introducing two threshold values that separate good and bad 

channels from intermediate channels. Three channel types can be defined considering the 

threshold values
1  and 

2 as  

 good channels, ugood, Z(WN
 i ) < δ1   

 intermediate channels, uinter, δ1 < Z(WN
 i ) < δ2 

 bad channels, ubad, Z(WN
 i ) > δ2 
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where 0 < δ1 ≤ δ2 < 1 and where Z(WN
 i ) stands for Bhattacharyya parameter that is 

accepted as an upper bound for the maximum probability of transmission errors [2]. In 

order to perceive the effect of partially coding with LDPC code, two different scheduling 

schemes to be utilized for BP polar decoder are introduced, where one of them is the 

conventional BP algorithm, and other one is the soft successive cancelation (SCAN) BP 

algorithm.  

Decoding speed of a BP-based decoder is strictly related with the average number of 

iterations performed. A conventionally scheduled BP polar decoder over-performed the 

improved BP polar decoder (polar-LDPC concatenated) of [44] in terms of average 

number of iterations [44, Fig.4]. However, when BP polar decoding is scheduled with 

SCAN algorithm polar-LDPC structure has lower average number of iterations than 

simple BP polar decoder. Success of SCAN scheduled polar-LDPC decoder comes from 

the polar code construction method. Bhattacharyya parameter based code construction 

method used in [44] is optimized for SC algorithm in [2]. Since SCAN is a soft version of 

SC algorithm, using SCAN scheduling in BP polar decoder is a beneficial approach. 

However, SCAN scheduling is a slow algorithm when compared conventional scheduling. 

SCAN decodes codewords bit by bit while conventional BP has parallel decoding 

capability. 
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EXIT charts are used to design short LDPC codes using scattered extrinsic information 

transfer. An LDPC code designed using EXIT chart is used in a polar-LDPC cascaded 

design in [45]. Simulation results showed that the proposed design achieves 0.4 dB 

performance gain over conventional BP while 0.2 dB improvement is observed over polar-

LDPC code of [44] at 10
−5

 BER.  

As mentioned before, LDPC code is utilized for intermediate capacity bit channels of the 

inner polar code [44] to improve concatenated code performance. Furthermore, 

intermediate channels are sorted with respect to their capacities and then LDPC coding is 

applied [46]. A bit mapper is used to sort bit channels. Bit mapper makes sorting by 

comparing intermediate channels’ leaf set sizes. It is shown in [39] that leaf set size is 

directly proportional with the protection rate of a bit channel. Since Bhattacharyya 

parameter based selection does not show its optimal performance on BP polar decoder, 

this kind of bit mapper that takes advantage of leaf set size shows better performance. As 

a result, the suggested structure of [46] has 0.3 dB gain over the study with EXIT charts 

in [44] and 0.5 dB gain over conventional BP scheme at 10
−5

 BER. 

Another method that includes the use of LPDC codes for intermediate channels is 

proposed in [47].  Bit channels having the same leaf set size are sorted in descending order 

 

 
 

Figure 3.5 Factor graph for improved BP decoding algorithm 
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based on Bhattacharyya parameter. After sorting, the number of bit channels are selected 

to be used for the outer LDPC code. When compared to the similar studies of [44], [46], 

and [47], it is obvious that leaf set size is an important parameter on BP decoder’s 

performance. 

As Arıkan stated in [2] polar codes are constructed in a recursive manner by using a kernel 

unit. Moving from this fact, larger polar codes as a concatenation of several smaller polar 

codes can also be constructed [48]. [48, Fig.2] demonstrates the code generation via 

concatenated code structures. A joint structure involving a short auxiliary polar code, an 

interleaver and an inner polar code is introduced in [48] where the aim of the interleaver 

is to force the likelihood values that flows from one polar encoder/decoder to another to 

be statistically independent of each other. As expected, auxiliary polar code is used to 

protect long polar code’s semi-polarized information bits. Factor graph representation of 

the method is given in Fig. 3.6 where y stands for likelihood ratio of received data and û 

represents estimated data of decoder. Besides, polar code structures are connected to each 

other using interleaver/deinterleaver -1(π/π ) blocks. 

 

A different version of [48] involving one auxiliary and two inner polar codes is presented 

in [49]. Proposed scheme achieves a gain of 0.3 dB at 10
−5

 BER when compared to the 

conventional BP polar decoder. 

 

 
 
 

Figure 3.6 Shorter length polar codes are used as auxiliary codes for larger length polar 

code 
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Two fundamental schemes that use belief propagation algorithm, sparse code multiple 

access (SCMA) and polar code decoder are combined in [50]. Proposed method combines 

the factor graphs of two schemes in a way such that the probability information between 

them can be circulated. Overall, a decoder with higher precision and faster convergence 

is achieved. 

3.1.5 Hybrid Decoders 

Hybrid decoding approach is applied with different types of polar decoders.  Two different 

hybrid decoding approaches are studied in order to make BP-based polar decoders 

preferable in 5G frameworks. In this scope, first type of hybrid decoder follows a flexible 

process such that only one type decoder works and the other one works if and only if the 

first one fails. A hybrid decoding approach that utilizes both BP decoding and SC 

decoding is presented in [51, 52]. Whenever BP decoder fails, SC decoding algorithm is 

performed. As a result, 0.2 dB improvement over basic BP-based polar decoder is 

achieved. 

Following the introduction of BP-SC hybrid decoding approach, hybrid decoding of BP-

SCL is introduced in [53, 54]. When throughput of the decoder is paramount, it is obvious 

that a BP-SCL decoder is more advantageous than SCL algorithm. To avoid unnecessary 

iterations of BP decoder when it is already converged, CRC control is unified with BP-

SCL hybrid decoder. If CRC is not satisfied for maximum number iteration M on BP 

decoder, then CRC aided SCL is performed. Proposed BP-SCL scheme is utilized [36] on 

Ƥ(4096,2048), and same BER performance is achieved when compared to SCL decoding 

with  list size L = 32. Despite its handicap on decoding speed, it is also demonstrated that 

the presented hybrid structure has lower latency after certain SNR [36, Fig.5a]. 

Second type of hybrid approach is presented for 5G NR eMBB where LDPC codes are 

used to correct errors on data channel while polar codes are utilized for the protection and 

correction of the control channel information. Since BP-based algorithms are used to 

decode LDPC codes if we use BP-based decoding for polar codes, then a combined, 

hardware friendly structure can be achieved. Instead of utilizing two separate decoder for 

data and control channels, employing one decoder for two separate channels will lower 

hardware consumption. Besides, time division duplexing (TDD) is going to be used in 
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eMBB communication services, control and data channel information will flow in separate 

time slots. If the polar codes are chosen to be decoded by BP-based algorithm, then a 

single hybrid decoder can handle whole operation [55, 56]. When the results of these 

studies are evaluated, it is seen that the combined polar code and LPDC decoders are 

promising for future studies. 

3.1.6 Multi-trellis BP Decoding 

There can be n! different Tanner graph representation of BP polar decoder [4, 57] where 

N is code length and 
2log .n N  By using different permutation of the n layers of the 

connection, multi-trellis representations can be achieved. In this scope, Fig. 3.7a 

represents original factor graph of the generator matrix of the polar code G8, and Fig. 3.7b 

and Fig. 3.7c depict its two differently permutated trellis.  It is important to state that 

output of each trellis stays the same when the same information bits are used [58]. 

 

In [59], multi-trellis approach is used to eliminate error floor problem. In this study, 

whenever the decoder fails, a different permutation of the trellis structure is tried. 

Permuted factor graph is also utilized as an early detection and termination method to BP 

decoding of polar codes [60]. Overall, multi-trellis approach decreases the average 

number of iterations of BP polar decoder. It is also observed that 0.4 dB gain at BER 

10
−6 over SCL with list size L = 32 is achieved. However, CRC aided SCL still 

outperforms the proposed scheme [60, Fig.4]. 

Further improvement on multi-trellis approach of [60] is given in [61] by selecting 

permuted factor graphs more cleverly. A process to pick permutations that lead to better 
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Figure 3.7 Permutations of trellis structure for G8 
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error correction performance is introduced in [61]. It is shown that 0.2 dB improvement 

is achieved at 10
−4  BLER for 10t  , where t is number of different permutations 

considering the case in which  t  number of alternative permutations are selected randomly. 

If a large number of alternative factor graphs are used, more improvement is observed. 

As mentioned before, the main advantage of BP algorithm over SC/SCL algorithms is that 

its parallel decoding ability allows high throughput of decoding. Parallel decoding ability 

is defected when different permutations are used to get the correct codewords. As the 

number of utilized permutations is increased, throughput of the multi-trellis BP decoder 

decreases. In order to overcome this drawback, a BP-list (BPL) approach is introduced in 

[62]. BPL process saves the parallel decoding capability of the BP structure while adding 

complexity to the system. Proposed BPL algorithm has a good error correction 

performance and it is only 0.5 dB worse than the state-of-the-art SCL decoder at 

10
−5 BLER. Block diagram of the operation is given in Fig. 3.8 where L parallel BP 

decoders and for each of them G-matrix-based early detection and termination method are 

utilized. Each parallel branch runs at the same time, and BP decoders are all different from 

each other with respect to trellis structure. Different permutations are achieved by using k 

cyclic shifts of the original factor graph where 1< k ≤ L. Estimated data and codewords, 

ûi and 𝐱̂i, are compared to channel output , y, in terms of Euclidean distance. Among them 

the minimum one is chosen to be output of the BPL decoder. Moreover, different polar 

code construction method called as RM-Polar code is applied on BPL decoder in [62]. 

RM-Polar code construction leads to better error correction performance, and it is shown 

that Bhattacharyya parameter based polar code construction is optimum for SC decoder 

but not BP-based decoder. Detailed explanation for the RM-Polar codes can be found in 

[62]. One disadvantage of BPL decoding that is needed to be beaten is its complexity over 

SCL algorithm. Since both decoders use list decoding concept, their approach to list 

decoding is different. In BPL, list decoding capability is provided by using parallel 

decoders however, there is no parallel decoder that is utilized in SCL decoding. 

Nevertheless, BPL algorithm is a more promising technique than SCL with its high 

throughput capability. BPL is a soft decision based decoding algorithm that can be 

advantageous when joint forward error correction methods. 
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As known, a factor graph consists of variable and check nodes. As expected, multi-trellis 

approach changes the number of frozen variable nodes for different rates of polar codes 

[58]. Frozen variable nodes are demonstrated in Fig. 3.10a with black color. As the 

number of frozen variable nodes increase, better BER performance is achieved. It is 

obvious that factor graphs with different trellis structures do not have same frozen variable 

nodes. As the code rate changes, frozen node number is calculated among permutations, 

and the largest one is selected as the best permuted trellis. It is shown in [63] that choosing 

the best permuted trellis helps use the list concept by giving this trellis a priority during 

decoding [63]. 

3.1.7 Deep Learning Based BP Decoding of Polar Codes 

As a general decoding method for linear codes, it has been shown that a BP decoder may 

be the subject of deep learning. It has been shown that deep learning methods are useful 

for detecting and tracking objects based on image and video processing and achieve 

remarkable results with machine translation, which provides automatic translation from 

one language to another. In addition, significant results are observed in speech processing 

and recognition. Deep learning concept is also utilized in forward error correction to be 

able to reach Shannon's capacity. First adaptation of a BP-based decoder to deep learning 

concept is demonstrated in [64]. In this scope, BP-based decoding of BCH code is taken 

into consideration. A data set combination of  2
45

 codewords are used to train the system 

for BCH (63, 45) code. Huge amount of codewords makes system training difficult to 

 

 
 

Figure 3.8 The block diagram of the multi-trellis belief propagation list decoding 

algorithm utilized for polar codes 
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achieve. Less training data becomes sufficient by adding weights to the edges of BP 

decoder [64]. Adding weights means injecting multiplicative terms to BP decoder 

structure. By using this approach, an acceptable decoding performance is observed.  To 

be clear, 0.4 dB gain is achieved at 10
−2 BER for a BCH (63, 36) code over original BP-

based decoder. Since multiplication terms increase complexity of the decoder, converting 

them into terms that are more applicable is offered in [65]. Hardware consumption is 

reduced by converting multiplicative weights to additive offset parameters. In addition to 

the hardware consumption reduction, 0.1 dB gain is achieved over the method presented 

in [64].   

Presented studies of [64, 65] have not a complete full-scale deep learning approach such 

that a deep learning approach need to take care about a nonlinear activation function, 

hidden layers, loss function etc. [66] offers a complete deep learning process that is 

depicted in Fig. 3.9. Deep learning system consists of an encoder, a virtual communication 

channel that adds noise to the codeword, and a neural network decoder (NND). Input, 

hidden and output layer of NND are sorted from left to right, Fig. 3.9. For example, three 

hidden layers are introduced in the NND at Fig. 3.9. Unlike BP decoder, NND finds the 

estimates of the transmitted codeword and information bits without any iteration, and it is 

called as one shot decoding. Thanks to the one shot decoding feature, NND structure has 

superiority over BP polar decoder in terms of decoding latency and BER performance. 

However, large number of data set during training creates a serious deficiency. 
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Number of training data for a polar code Ƥ(16,8) ranges from 2
10

  to 2
18

  [66]. As the 

training data set size increases, NND’s performance approaches to the Maximum a 

posteriori probability decoder’s error correction performance. Although, training 

complexity and time increases exponentially, performance of a NND is marvelous with 

its one-shot decoding feature. In this scope, reducing training time of a NND is studied 

via partitioning in [67]. Instead of training long polar codewords, dividing it into smaller 

parts lowers the overall training time. Polar code with length N = 128 is divided into eight-

bit NND structures. Same error correction performance is achieved when compared to SC 

and BP-based decoders. Since one shot decoding is utilized, throughput of NND is much 

higher than SC and BP-based polar decoders. Neural SC decoding utilizing smaller neural 

networks is studied in [68] where decoding latency is reduced up to 42.5% for Ƥ(128,64). 

Previously mentioned SMS BP polar decoder [19] is proposed to compensate the 

performance loss on error correction caused by converting decoder process into 

logarithmic scale. In SMS BP, message propagation equations are modified by injection 

of a scaling parameter α. Inspired form SMS BP, applying different α values into different 

nodes of the decoder is proposed in [69]. NND structure, proposed in [69], is constructed 

using 2k+1 hidden layers, where k is the iteration number that decoder is to be trained 

with. In other words, hidden layers are formed by tying the decoding stages to the other's 

tails. Training takes place to find α𝑖 parameters where 1 < i ≤ 2k+1 for polar code 

Ƥ(64,32). It is also studied that BER performance of NND based decoder increases, as k 

is incremented. However, it is important to state that the structure with 6 iterations 

achieves the error correction performance of NND with 7 iterations [69, Fig. 6].  
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Figure 3.9 A complete deep learning setup 
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A concatenated code formed by CRC and polar code is utilized for NND based decoder 

in [70] where hidden layer of CRC is integrated into the hidden layers of polar decoder. 

A more detailed presentation of [70] is provided in [71, Fig. 5]. It is seen that 0.4 dB BER 

gain is achieved when Ƥ(128,80) is used. Alternatively, a hybrid polar-LDPC decoder 

enhanced by deep learning is proposed for 5G eMBB framework in [72]. In 5G eMBB 

framework, LDPC codes are utilized in data channels whereas polar codes are utilized in 

control channels. In order to train a hybrid polar-LDPC decoder, an indicator section is 

added to choose the active one at the moment of the deep learning process. Since time 

division duplexing is going to be used in 5G eMBB framework, adding indication section 

and training both decoders together is a logical approach. Consequently, BER gain is 

observed for short length codes. 

A smart post-processing method to increase the performance of the BP polar decoder is 

also introduced by the aid of deep learning in [73]. In this approach, bit flipping is applied 

as post-processing method when CRC on estimated data is not satisfied after maximum 

iterations performed. By using bit flipping enhanced by deep learning, BER/BLER 

performance is improved [73]. 

Original multi-trellis factor graph of BP polar decoder, depicted in Fig. 2.11, can be 

converted to an LDPC-like structure as presented in Fig. 3.1b. Unlike LDPC, polar factor 

graph is dense causing poor error correction performance. The study [74] offers a method 

to convert dense factor graph of polar decoder to its sparse version by applying pruning 

techniques on G to get H.  Performance and throughput gain is achieved by using sparse 

Tanner graphs. Furthermore, sparse decoding structure is combined with neural networks 

using deep learning concept in [75].  Sparse neural network decoder is created for 10 

iterations as shown in [75, Fig.3]. Sparse NND is designed for Ƥ(256,128). Simulation 

results show that sparse NND outperforms MS and SMS BP polar decoders. As a result, 

we can state that although BP-based neural network offers one shot decoding, its long 

training time avoid its applicability for long code lengths, i.e., N ≥ 256. 

3.1.8 Noise-Aided BP List Polar Decoder 

This type of decoder is the main subject of this thesis. Detailed explanations and 

performance results about noise-aided BP list polar decoder are going to take place in 
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chapter 4. It is important to state that noise-aided BP list polar decoder is the only BP-

based decoder that approaches to the error correction performance of the state-of-art CRC 

aided SCL polar decoder.  

3.2 Simplified BP Decoding Algorithm for Polar Codes 

The complexity of the BP algorithm is a drawback for its utilization on polar codes in 

practical communication systems. For this reason, researchers focus on reducing the 

hardware consumption of the BP algorithm. 

3.2.1 Node Classification and Unification Based BP Polar Decoding 

Node classification seems possible when the BP factor graph of the polar decoder is 

inspected. There are three cases for classification.  First node class is formed by frozen 

nodes when both of the inputs of a PE carry frozen likelihood. Second node class is formed 

when both of the processing element inputs carry information likelihoods. Third, a mixed 

node that has both frozen and information likelihood as inputs. Three different classes are 

depicted in Fig. 3.10a.  

The first aim of the classification of the nodes is to avoid unnecessary calculations during 

message propagation on PEs [30]. Node labeling is applied, i.e., frozen nodes are labeled 

as N0 while information nodes are labeled as N1. Before the starting of the decoding 

operation, N0 nodes are set to ∞ for initialization. PEs with two N0 nodes have also two 

N0 nodes at the output of the PE, Fig. 3.10a. In Fig. 3.10, frozen nodes are demonstrated 

with black color while white nodes are shown in white color. In this scope, the PE which 

has two N1 nodes, has also N1 nodes at the output. Messages on PEs consisting of the same 

kind of nodes are not updated during iterations to avoid unnecessary calculations. 

Moreover, further classification is done by introducing repetition nodes, NREP, and single 

parity check nodes, NSPC. Repetition nodes have single information bit and three frozen 

bits, Fig. 3.10b. Single parity check nodes have three information bits and single frozen 

bit, in other words, parity bit. Simplified versions of NREP and NSPC nodes are presented 

in Fig. 3.10c. By using node classification and simplification methods, authors aim to 

lower the complexity of the BP polar decoder [30]. Simulation results show that the 

average number of iterations is smaller than the average number of iterations performed 

for the MS and SMS BP decoders. Besides, it achieves similar error correction 



 

39 

 

performance as MS BP decoder with round trip (RT) scheduling [30]. The complexity of 

the BP decoding is reported to be reduced by 92.8% compared to SMS algorithm while 

BLER performance remains the same [30].  

Node classification and simplification is presented in [76] where four different PE 

structures are considered. Fig. 3.11 depicts these PE structures where vi  and vo represent 

input and output variable nodes respectively. 

 

Equations for left and right propagating messages are simplified. [76, Table I] shows that 

PE simplification provides a reduction in complexity of about 75% in terms of 

multiplications and summations performed. In addition, the performance of the classical 

BP decoding algorithm is achieved. 

 

 
 

Figure 3.11 Four possible variable node permutations 
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Figure 3.10 (a) Frozen nodes are in black color and information nodes are in white 

color (b) NREP nodes are striped and NSPC nodes are dashed (c) simplified NREP and NSPC 

nodes 
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3.2.2 Stage-Combined BP Decoding Algorithm 

As known, there are log
2

N stages in a BP polar decoder and each stage has N / 2 

processing elements. Despite its parallel decoding capability of the BP polar decoder at 

one clock cycle, only one stage is processed. By aiming to reduce latency of the decoder, 

idea of combining adjacent stages is proposed in [22]. Therefore, it is possible to reduce 

the latency, complexity and memory requirement of the decoder.  

As depicted before, BP decoder consists of stages and each stage has a number of process 

elements. Parallel decoding property of the BP algorithm enables to process a stage at a 

time. It is clear that by combining adjacent stages, it may be possible to reduce the latency, 

complexity, and memory requirement for LLR values. Following this idea, a memory 

efficient BP decoding algorithm is proposed in [22] by merging four 2 × 2 PEs into a 

single 4 × 4 PE as shown in Fig. 3.12. 

 

Left and right propagating messages of the newly formed 4 × 4 PE are generated by 

modifying the message equations of 2 × 2  kernel [22, Eq.9-10]. A polar code with length 

16 is constructed using 4 × 4 PEs as depicted in Fig. 3.13. As noticed, two less stages are 

used for implementation when compared to the original scheme. Besides, number of clock 

cycles needed to perform an iteration decreased from 2( log
2

N)  to 2( log
2

N − 1). 

 

 
 

Figure 3.12 4 × 4  Basic processing element consisting of 2 × 2  PEs 
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Implementation of stage-combined decoder design presented in [22] is accomplished by 

using TSMC 45 nm Low Power CMOS technology. Overall, 18.4% area reduction is 

observed when compared to the implementation of original structure with code length 212. 

On the other hand, critical path number increases in stage-combined approach. It can be 

seen as a drawback when throughput of the design is the critical factor. Moreover, another 

stage-combined design is presented in [77], and approximately 0.2 dB gain is achieved at  

10
−4

 BER for Ƥ(1024, 512), and storage requirement is halved. 

3.2.3 Stochastic BP Decoding of Polar Codes  

Another method to lower the complexity of the BP-based polar decoder is considered 

using stochastic computing in [78] where it is indicated the decreased complexity reduces 

the silicon area and power consumption of the decoder. In stochastic computing, 

magnitude of a probability is expressed by a number of 1’s e.g. 0.6 can be represented by 

streams 0110110101, 1101001011 or 0111100101 and 0.5 can be represented by 

0101100011 or 0111000011 [78]. In this scope, study [79] offers a stochastic BP decoding 

algorithm. Improvement on stochastic process is done by increasing bit streams’ length, 

re-randomization of bit streams. As a result, BP decoder utilizing stochastic structure can 

be used to decrease the amount of computational complexity. 

 

 
 

Figure 3.13 16×16 decoder consists of 4×4 PEs 
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Throughput increment on stochastic BP polar decoder is studied by the proposed method 

of bit-wise iterative stochastic decoding architecture in [80]. Additionally, an optimized 

version of proposed scheme of [80] is introduced in [81] in order to reduce the hardware 

consumption and to obtain faster convergence. 

3.2.4 Improved BP Decoding Algorithm with Modified Kernel Matrix 

As mentioned before, two-input two-output (2 × 2) kernel is the base of a polar code. In 

a polar code, there are 
2log N  stages of PEs with N / 2 PEs at each stage where N is the 

code length. When the message propagation equations of a BP-based iterative decoder are 

inspected, it is obvious that iterative decoding operation needs memory units. If memory 

requirement of the decoder can be reduced, then BP polar decoder becomes more suitable 

for real time applications. To decrease the memory requirement, a decoder with 3 × 3   

kernel is proposed in [24, 82]. Fig. 3.14 demonstrates the code structures with 2 × 2 PEs 

and 3 × 3  PEs. 

 

PE with 3 × 3 kernel is reported to reduce the memory requirement and decoding delay 

by 37% [24]. Moreover, error correction performance remains the same when compared 

to the original structure with 2 × 2 kernel. Because of this part, it will be concluded that 

studies that try to lower the complexity of the BP polar decoder are not sufficient. 

However, node classification and unification based BP polar decoding seems suitable for 

practical applications considering the hardware implementation. 
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Figure 3.14 (a) 2x2 PE based encoder/decoder representation (b) 3x3 PE based 

encoder/decoder representation 
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3.3 Increasing Decoding Speed 

Despite its advantage on keeping decoding latency low with its parallel processing 

capability, BP-based decoders suffer from its iterative processing nature. Thus, decreasing 

the number of iterations to be performed by avoiding unnecessary iterations on already-

converged nodes has been studied extensively. Originated form the idea such that well-

known early detection and termination methods are valid for LDPC and turbo decoders, 

they are also applicable for BP polar decoder. In this section, different types of methods 

are presented. 

Way of the message propagation, i.e. scheduling, is also vital for faster convergence of 

the decoder. Moreover, selected scheduling method guides the decoder into true 

convergence or not. 

3.3.1 Early Detection and Termination Methods 

An iterative BP-based decoder, either for polar codes or for LDPC codes, performs the 

iterations until a pre-defined number M. Most of the time, related of the channel signal-

to-noise ratio, BP decoder converges before M is reached. Thus, this convergence has to 

be detected using some methods. Detecting convergence of the decoder and stopping its 

process improves the throughput of the BP decoder. In this scope, average number of 

iterations is an important indicator of the decoder's success. A number of techniques tries 

to detect the correct convergence of the BP polar decoder. A significant aspect of the 

techniques are their complexities.  Complexity of the technique is a decisive factor on 

whether an early detection and termination method is applicable or not. In this section, 

proposed techniques in the literature are explained and a performance table is depicted for 

better guidance to the readers. 

In general, encoding of data, u, is accomplished multiplying it with the generator matrix, 

i.e., x = uG. In the decoder, estimation of data û and codeword x̂ can be used to check 

whether convergence is achieved or not. If  x̂ = ûG is satisfied, then the decoder should 

be stopped. This type of test is proposed in [20] and it is named as G-matrix-based 

detection. In factor graph of the decoder, leftmost nodes stand for x̂ while û is valid on the 

rightmost part of the decoder. At each iteration, x̂ = ûG is checked. If condition is 
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satisfied, then the decoding process is stopped. Despite its complexity, it’s reported that 

the average number of iterations is reduced by 42.5% when SNR is 3.5 dB [20]. 

Estimation results for the variable nodes are obtained using their likelihood values. 

Likelihood of variable node a is calculated by using  

( 0)
( ) .

( 1)

p a
LR a

p a





 

Upon calculation of ( )LR a , a decision or an estimation can be made by using  

 1 ( ) 1
ˆ .

0

LR a
a

otherwise

 
  
 

  (3.5) 

According to (3.5), â  equals 1 if ( )LR a is smaller than 1 otherwise it equals 0. As 

mentioned before, decoder’s operations can be performed in logarithmic domain. When 

likelihood calculation and message propagation equations are converted into log domain, 

estimation of information bits are done according to 

 1 LLR( ) 0
ˆ .

0

a
a

otherwise

 
  
 

  (3.6) 

Logarithmic domain conversion of BP decoder also affects the accuracy of the estimation 

of variable nodes. When equation (3.6) is inspected, it is seen that a hard decision can be 

made by only looking to the sign of the LLR(a). Estimation of data bits, ûi, can be 

calculated using (3.6), and the estimated data vector û is used on G-matrix-based early 

detection and termination methods.  Apart from this methodology, the addition of the  

magnitude part of the LLR(a) for the detection of the converged nodes for the BP polar 

decoder is offered in [20]. Absolute value of LLR(a), |LLR(a)|, can be utilized for the 

early detection and termination process such that when magnitude of LLR(a) is greater 

than a predefined threshold, β, the result of (3.6) is accepted as estimated value.  Method 

in [20] is named as min𝐿𝐿𝑅. It is also important to state that the choice of threshold value 

is very crucial. [20, Fig. 7, 8] state that different β values have considerable effects on 

both BLER performance and average number of iterations. Besides, an adaptive method 

is proposed to get an optimum threshold called as min𝐿𝐿𝑅 for early detection. Channel 

estimation is employed for this purpose. It is shown in [20, Fig. 7] that an adaptive min𝐿𝐿𝑅 
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algorithm with β = 2.5 when 3SNR   dB and with β = 9.5, when 3.5SNR   dB gives 

better results, and the average number of iterations is reduced by 32.5%. To sum it up, 

despite to its simplicity over G-matrix-based detection method, the method in [20] is still 

worse in terms of average number of iterations performed and error correction 

performance. 

Following the presentation of G-matrix-based early termination using the equality of x̂ = 

ûG, a quantity of studies that utilizes the G-matrix method on BP polar decoder are 

proposed in [21, 25, 26, 27, 44, 83, 84]. One of the reasons to use the G-matrix method is 

to compare it with the newly discovered detection method, and the other reason is simply 

to provide better error correction performance. 

Apart from the methods of G-matrix and min𝐿𝐿R, there are other proposed methods to 

avoid unnecessary iterations of the BP polar decoder. In this scope, a method that observes 

the decisions of the three consecutive iterations (we will call it as Observation of 

Consecutive Iteration results-OCI) to check whether a change on bit decisions is observed 

or not is proposed in [83]. If no change is detected, then it means that the decoder is 

converged and decoding can be terminated.  

Similar to G-matrix-based detection, an H-matrix-based early detection and termination 

method to avoid unnecessary iterations is proposed in [31]. Parity check matrix H can be 

derived from the generator matrix G. Consequently, early termination can be applied using 

the criteria x̂H = 0, similar to x̂ = ûG [31]. 

As presented in [31], min𝐿𝐿𝑅-based detection method can be used as an early detection 

and termination method in a BP decoder. Inspiring from the min𝐿𝐿𝑅-based detection, 

LLR-Magnitude aided (LMA) is proposed in [23]. In this method, LLR values of the last 

nodes of the BP decoder are compared with their previous values, and decoding operation 

is terminated if they are same. For the maximum iteration number Mmax = 30, it is 

observed that, 69.4% decrement in iteration number is achieved at 
0/ 3.5bE N  dB.  

It is also important to state that, LMA and G-matrix-based early detection and termination 

methods can make wrong decisions due to falsely converged LLRs.  
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CRC is a powerful technique to detect whether a received word is erroneous or not. CRC 

is widely used in digital networks like LAN and WAN. Usually, when CRC is not satisfied 

then re-transmission of the data is required. Moreover, a well-designed CRC can check 

perfectly whether decoder is successful or not. In this area, a 32 bit wide CRC utilized to 

make robust decision about whether BP polar decoder is converged or not is considered 

in [23, 85] i.e. early detection and termination. The use of CRC-32 decreases the average 

number of iterations by 82.8% at 
0/ 3.5bE N  dB [23]. Although performance remains 

the same, the use of CRC reduces the decoding latency compared to LMA. Further usage 

of CRC as an early detection method can be found in [60,124,125]. 

G-matrix-based detection requires a matrix multiplication; however, matrix multiplication 

after each iteration increase the latency. Thus, a simplified version of G-matrix-based 

detection is proposed in [84]. Convergence check, in other words, success in decoding is 

checked observing a cluster of information bits that is polarized to the highest error 

probabilities. Method in [84] is called as worst of information bits (WIB) and WIB method 

can be configured using two parameters; nWIB  , number of WIB information bits, and M

, the number of last iterations where the sign of the WIB remains the same. Performance 

of the WIB method depends on these two parameters. It is stated that choosing nWIB =

N/8 where N = 2048, successful decoding is achieved using WIB [84]. Selection of the 

information bits that are checked by WIB method is done using [84, Eq.(5)]. As mentioned 

before, aim of the introduction of WIB method is its simplicity over G-matrix-based 

method. Despite to its simplicity, the performance of the WIB method is worse than G-

matrix-based detection.  In order to overcome this defect, a channel adaptive approach for 

WIB is presented in [84]. 

A practical early detection of decoder nodes’ convergence is proposed in [83, 84, 86].  In 

this method hard decision made on m consecutive iterations are observed to see whether 

likelihood value stays stable or not. WIB method also follows a similar approach, 

however, all information and frozen bits are observed in [83, 86] instead of observing 

estimation of a number of information bits. A more accurate but still simple method that 

is about observing consecutive iteration (OCI) results is presented in [87]. In this study a 
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threshold, (ϵ), is defined and the relation between three consecutive iterations are given 

as 

 0.5 × [(Li,1
t − Li,1

t-1) + (Li,1
t+1 − Li,1

t )] <∈ (3.7) 

where Li,1
t  stands for the current node message. Equation (3.7) utilizes three consecutive 

iteration probabilities for the decision.  When all estimated bit nodes satisfy the equation 

(3.7), then decoding stops. With this method, average number of iterations is reduced by 

80% at 3 dB for Ƥ(2048,1024) [87]. 

Another early detection and termination method is proposed in [21, 25] with the concept 

of subfactor-graph freezing on BP polar decoder. Subfactor-graph freezing leads to faster 

convergence by freezing already converged nodes to avoid unnecessary oscillations on 

variable nodes of the decoder. Decision for freezing is made by observing node messages 

in every iteration, and frozen nodes are not updated anymore. Same error correction 

performance is achieved when compared with conventional BP polar decoder with G-

matrix-based early detection. Even more, average number of iterations are lowered. 

A technique similar to the WIB method [84] is mentioned in [27]. As known, a number of 

information bits are observed to see whether they are converged or not in WIB method. 

Similarly, a number of frozen bits that have largest capacity (after polarization) among all 

frozen bits are selected to be observed [27] where if a number of frozen bit places are 

converged, then decoding is assumed to be successful and decoding operation is 

terminated. It is shown that the average number of iterations needed is less than when 

WIB is utilized [27, Fig. 4]. However, G-matrix-based method has still the best 

performance. Another early detection and termination method that uses convergence of 

the frozen nodes is presented in [123] with name Best Frozen Bits (BFB). If a number of 

best frozen bits i.e., NBFB = 128  at Ƥ(1024,512) are converged correctly then all 

information bits are assumed to be converged successfully. 
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In Table 3.1 the early detection and termination methods are compared in terms of 

accuracy, complexity and whether a rate loss is valid or not. It can be concluded that 

despite to its complexity, G-matrix-based detection has the best performance. Its 

complexity, which increases with N, is mostly due to the matrix multiplication.  

Perfect knowledge based (PKB) early detection and termination method is used to show 

a BP decoder’s real potential to correct errors [60, 124]. In this method, BP polar decoder 

stops when estimated data û and user data u are equal to each other. Similar comparison 

can be made between estimated codeword x̂ and x. Although, it is not possible to utilize 

PKB method in any decoder, it is used to demonstrate lower bound of decoder error 

correction performance [60, 124]. 

3.3.2 Scheduling 

Scheduling is a type of roadmap that follows by BP-based decoder during iterations. 

Proper scheduling can lead to improved performance of the iterative decoder. 

Improvement on performance can be measured in terms of BER/BLER performance, 

complexity of the decoder and throughput. Applying different scheduling techniques has 

immediate effect on the convergence speed of the BP-based decoder. Scheduling methods 

are extensively studied for BP-based LDPC decoders. Two-way scheduling 

(conventional) and flooding scheduling are introduced for the first time in [88] to be 

applied to the LDPC decoder. There are six scheduling methods defined to be used in 

Table 3.1 Performance of early detection and termination methods 

 

Early Detection 

and Termination 

Method 

Complexity Accuracy Rate Loss 

G-matrix-based [16] Highest High No 

minLLR based [16] Intermediate Intermediate No 

LMA [19] High Inter. No 

CRC 

[23,60,85,124,125] 
Low 

Highest 

(depends on 

CRC length) 

Yes 

WIB [66] Intermediate Low No 

 OCI  [65] Lowest Intermediate No 
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polar decoder, and these methods are two-way, flooding, round-trip, half-way, quarter-

way and SCAN scheduling. In this sub-section, some of these scheduling methods are 

going to be explained for further understanding. 

In two-way(conventional) scheduling, message propagation from left to right and right to 

left occurs at the same time. As known there are 
2logn N  stages for a polar code with 

length N. Each stage consists of Z shaped subgraphs. In each subgraph, the messages, i.e., 

probabilities or likelihoods are updated starting from lower horizontal edge and continued 

with diagonal edge, and finally upper horizontal edge is updated. A modified scheduling 

is proposed in [4, 28] that uses a multi-level update process to lead faster convergence. 

Overall, average iteration number is decreased from 31.7 % to 36.5 % in the range of 2-

3.5 dB when compared with conventional BP algorithm. 

Unlike conventional parallel BP decoders, SCAN decoders [89] offer sequential decoding 

like SC, but unlike SC; it uses soft messages for decoding. Thus, SCAN can be regarded 

as a serial version of BP polar decoder, and can also be considered as another scheduling 

method [44]. It is shown that, SCAN scheduling can improve the performance and reduce 

complexity of the design [46, 90, 91]. As with the soft version of SC, SCAN scheduling 

takes the precedence over flood BP when Bhattacharyya parameter are used to construct 

the polar codes [2]. However, SCAN timing causes a much larger decoding delay when 

compared to other scheduling methods. 

RT scheduling is recommended in [83] and is studied in [30] to reduce the average number 

of iterations performed, and to enhance the performance of the BP decoder. In 

conventional scheduling of BP decoders, messages are calculated from left to right and 

from right to left at the same time as shown in Fig. 3.15a. In  RT scheduling,  first messages  

Li,1 to Li,n are calculated, then the messages Ri,2 to Ri,n+1 are calculated as illustrated in 

Fig. 3.15b. 

As it is seen from Fig. 3.15, the number of steps needed to perform RT scheduling is two 

times greater than the conventional scheduling. By utilizing RT scheduling on BP polar 

decoder, the average number of iterations is reduced when compared to the conventional 

BP decoder [83]. The same error correction performance is observed with respect to SMS 
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BP [30]. There are other studies that uses RT scheduling [27, 90, 92] which show that it 

is a proper method to use. 

 

Other two well-known scheduling methods are the half-way and quarter-way scheduling 

methods. In half-way scheduling, information flow starts at the same time from leftmost 

and rightmost part of the factor graph. Propagating messages are exchanged in the middle 

of the BP factor graph, and flow direction is reversed. Information flow for both of the 

half-way and quarter-way scheduling is depicted in Fig-3.16. Quarter-way scheduling is 

nothing but divided version of half-way scheduling. Both methods can be considered as a 

modified version of RT scheduling. The aim of both methods is to decrease the latency of 

BP decoder and to lead to faster convergence. 
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Figure 3.15 (a) Two-way (conventional) scheduling (b) round-trip scheduling. 

 

 
 

Figure 3.16 Half-way and quarter-way scheduling 
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In most of the scheduling algorithms, one or two stages of the decoder are utilized at the 

same time while PEs on other stages stay idle. In other words, conventional BP decoder 

activates PEs stage-by-stage from left to right and right to left in each iteration. In order 

to achieve 100% utilization, folding approach is presented in [93]. n-level folded decoding 

scheme is presented in Fig. 3.17 where K1,(1…n)
1,…n

 stands for decoding stage and variable 

node. 

 

When all four stages of polar code with length N =16 are folded, decoding can be 

completed in 12 clock cycles using one stage of PEs. 100% utilization of PEs is achieved, 

but latency is increased. Folding scheduling can be adjusted by adding some stages to the 

decoder in order to lower latency. For an example, Fig. 3.18 demonstrates 2-level folded 

scheme for N =16.  

 

By using folding approach, total logic gate number to implement BP decoder and latency 

of the decoder can be decreased significantly [93, Table I].  

SCAN scheduling is proposed in [89] as a soft version of SC algorithm [2]. As known, bit 

by bit decoding of the information bits takes place in a SC based decoder. In other words, 

to decode mth bit, all the bits from 1 to  mth − 1 must be decoded. Despite to the increment 

on latency, SCAN scheduling achieves lower BER. N log
2
N cycles are needed for 

SC/SCAN algorithms do decode the polar code Ƥ(N,K). However, M log
2
N cycles are 

 

 
 

Figure 3.17 4-level folded decoding scheme for N =16. 
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Figure 3.18 2-level folded decoding scheme for N =16. 
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needed to decode Ƥ(N,K) with  BP-based polar decoder where M is the iteration number 

which is usually 10-20 times smaller than N. However, SCAN algorithm is still a strong 

candidate among soft decision based polar decoders to achieve high BER/BLER 

performance when throughput is the second importance criteria. 

When all the decoders in this sub-section are inspected, it is seen that scheduling method 

has significant effect on decoders’ BER/BLER and throughput performances. RT 

scheduling shows the best results while folded decoding scheme offers a trade margin 

between throughput and complexity to the developers. 

3.4 Polar Code Construction Methods 

The capacity of the split channels presented in [2] are calculated using the Bhattacharyya 

parameter for SC decoding. As for the BP decoder, there is no proposal in the literature to 

calculate the capacities of split channels. The need to use different methods for the 

calculation of channel capacities arises from the fact that recursive prediction approaches 

based on the Bhattacharyya boundaries, Gaussian approach (GA) and density evolution 

(DE) are appropriate for the SC decoding scheme. There is still no definite method for the 

selection of frozen bits for continuous channels like AWGN, Rayleigh fading channels 

etc. It is also important to note that computational-based selection algorithms such as GA 

and DE show similar performance compared to Arıkan's recursive prediction approach 

based on Bhattacharyya parameter. In the remainder of this section, Monte Carlo 

simulation (MC) based polar code construction methods that provide better performance 

for BP-based decoding will be discussed.  

As mentioned earlier, a stopping set consists of a set of variable nodes, and each 

neighboring check node is associated with at least two variable nodes. A stopping tree can 

be considered as a subset of stopping set. A sample stopping tree for variable node v(1,6)  

is shown in bold lines in Fig. 3.19.  

Leaf size is related to the stopping tree concept, and it is a significant parameter for the 

decoder. To find leaf size of a variable node, tree structure of the decoder can be followed. 

For example, leaf size of variable node v(1,6)  presented in Fig. 3.19 is four. Leaf set size 

based frozen bit selection is proposed in [39] where information bit channels whose leaf 

set sizes are smaller than 2
8
 are taken as frozen bit channels for N = 2

13
. Also, previously 
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selected frozen bit channels with leaf sizes greater than 2
8 are converted to the information 

bit channels. By using leaf set size based code construction method [39], BP polar decoder 

outperforms the BP polar decoder constructed using Bhattacharyya parameter. Leaf set 

size based construction is used by Reed-Muller codes, which can be seen as an inspiration 

for the idea. 

 

To improve the error correction capabilities of BP decoding schemes, a method for 

selecting frozen bits via MC tests is proposed in [90, 94, 95, 96]. In these studies, better 

performance is obtained for decoders that use BP decoding. In [95], the selection of frozen 

bits according to MC trials is utilized for data lengths 128 and 256. Due to its complexity, 

the structure based on MCs trials is not offered for large block lengths. 

Alternatively, a scheduling-adapted method for generating polar code is presented in [90]. 

RT scheduling in the factor graph of a BP decoder has its own characteristics. The authors 

use two different approaches to generate the polar code. In the first one, MC trials are 

performed using BP decoding with an RT schedule. Since the MC approach takes time, 

an alternative algorithm is proposed to generate the polar code. In the second algorithm, a 

jump-start MC based polar code construction is proposed. In this method, an initial index 

setting is set using RM(3,8) which provides an index set corresponding to the indices of 

the rows of G of the largest Hamming weight. After initial index is chosen, MC trials start. 

Overall, better error correction performance for the polar decoder with RT scheduling at 

0/ 3bE N   dB is achieved over GA based polar code construction. Besides, authors show 

 

 
 

Figure 3.19 Stopping tree for the variable node (1,6)v  

 

v(1,1)

v(1,2)

v(1,3)

v(1,4)

v(1,5)

v(1,6)

v(1,7)

v(1,8)

c(1,1)

c(1,2)

c(1,3)

c(1,4)

c(1,5)

c(1,6)

c(1,7)

c(1,8)

v(2,1)

v(2,2)

v(2,3)

v(2,4)

v(2,5)

v(2,6)

v(2,7)

v(2,8)

1x

2x

3x

4x

5x

6x

7x

8x



 

54 

 

that there might be some systematic methods to optimize iterative polar decoder design 

under a specific scheduling method [90]. 

It is shown in [90, 95] that MC trial based polar code construction requires huge amount 

of time for block lengths greater than N = 256. FPGA is used to lower time consumption 

by accelerating MC trials in [96] where it is reported that three month length simulation 

time is reduced to 6.3 hours for N = 1024 and three different MC trial based approach is 

presented, and these approaches can be briefly explained as: 

 In One-Time Rank and Freeze Method: 

1. Set all bits as information bits. 

2. Run MC on BP decoding simulations and measure the error rate of each bit. 

3. Rank the bits based on error rate and freeze the N − K  least reliable bits to obtain 

the bit selection for a Ƥ(N,K) polar code. 

 In Iterative Rank and Freeze Method: 

1. Set all bits as information bits. 

2. For i = 1 to Nit where Nit is maximum iteration number of BP decoder: 

a. Calculate error rate for each non-frozen bit after MC simulations. 

b. Sort non-frozen bits according to step 2.a calculations, and freeze Mi least 

reliable one. 

 In-order Bit Selection Algorithm: 

1. For i = 1 to N − 1 

a. When i = 1, set all bits as information. 

b. When i > 1 , freeze u0
i−1 and set bits ui

N−1 as non-frozen. 

c. Calculate error rate of  ui after MC simulations. 

2. Sort the bits according to error rate and freeze N − K least reliable bits. 

Polar code constructed with “In-order bit selection algorithm” is shown to outperform the 

polar code that is constructed with DE method when BP-based decoding is applied. 

Another MC based frozen bit selection method is presented in [24] which is explained as 

follows: 

1. Set code rate to R = 1/ N, i.e., one information bit for N different codes. 
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2. Perform simulations and observe the error correction performance of N different 

codes. 

3. Record and sort error rates. 

4. Choose the best one as information bit. 

5. Increase the number of information bits and return to step 2. 

6. Finish simulation when N − K information bits are selected.  

MC based frozen selection method presented in [24] is performed for the code Ƥ(243,121). 

As mentioned previously, MC-based methods are applicable to short blocks if the delay 

reduction algorithm is not utilized. Therefore, to achieve the best performance during BP-

based decoding, a more efficient polar code generation method need to be developed. 

A new polar code construction method, LLR-based bit-swapping is presented in [91] as 

an alternative to MC trial based code construction. In this approach, final log-likelihood 

ratio (LLR) of each channel after each iteration is observed, and twelve best-converged 

ones are chosen to be used as information bits. Similarly, twelve worst-converged ones 

are chosen to be used as frozen bits. The remaining frozen and information bits are 

determined using Bhattacharyya parameter based selection method. With this approach it 

is seen that error correction performance of the code improves when compared with 

conventional BP, BP with SCAN scheduling and SCL decoding [91]. To sum up, MC trial 

based frozen bit selection for different decoder types is still an attractive topic that draws 

researcher’s interest. 

RM and polar code construction relies on the matrix F⨂n where construction of F⨂n is 

mentioned in the chapter 2. The difference between them lies in the selection of channels 

carrying information bits. The construction of the polar code is based on the calculation 

of the Bhattacharyya parameter to minimize the error probabilities for SC decoding. This 

is not an appropriate method for the selection of information bits for BP decoding. Bearing 

this in mind and knowing that the structure of RM is based on the greatest minimum 

Hamming distance, it is shown in [97] that for finite length codes, the Hamming distance 

is more important than the polarizing effect. Thus, a method for generating a hybrid RM-

polar code is provided. This method can be applied in three stages: 
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a) The index of the frozen bits is decided considering the Hamming weights of the 

rows of G matrix having Hamming weight less than a definite threshold d. 

b) N − K number of information bits are chosen according to smallest Bhattacharyya 

parameter from the remaining set. 

c) Finally, remaining set of bits are chosen as frozen. 

[62, Fig. 4] shows that a hybrid RM-polar code provides slightly better performance than 

the Bhattacharyya parameter based code under BPL and SCL decoding. Hybrid RM-polar 

code yields better error correction performance due to increased minimum distance. 

However, they do not show the best result in the literature, since the performance of the 

linear code in the iterative decoding process is determined by the stop sets on the Tanner 

graph of the code [98], not just by the minimum distance of the code. 

Deep learning approach is also used to construct polar codes for any Ƥ(N,K) [71]. It is 

shown that the polar codes constructed using the deep learning method show similar 

performance to the polar codes employing Bhattacharyya parameter based polar code 

construction for Ƥ(1024,512) in AWGN channel. Nevertheless, deep learning based 

estimation is a promising candidate. 

One of the best methods for the construction of a polar code for the BP polar decoder is 

proposed in [99], where a genetic algorithm is used to for the code construction. The polar 

code developed using the genetic algorithm considers the structure of the stopping sets in 

the Tanner graph of the BP decoder. BP polar decoder whose frozen bit locations are 

selected using genetic algorithm achieves SCL decoder’s error correction performance on 

AWGN channel for Ƥ(2048,1024).  As we are going to mention in the next chapter of this 

thesis, polar codes constructed using the genetic algorithm have the best performance 

results when compared with the other polar. 

3.5 Errors Types of BP Polar Decoders 

It is important to understand why bit errors occur in a BP polar decoder. The structure of 

the encoding, decoding algorithm/scheduling, and SNR of the communication channel are 

important factors that affect the BER performance of any forward error correction code. 

In the field of BP-based polar decoder, literature focuses on changing, upgrading the 
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decoder structure, and the decoding schedule to avoid errors. Error sources, error types, 

and methods for resolving various error types are described in this section. 

Stopping sets are introduced with the Tanner graph representation of LDPC code for first 

the first time. A stopping set, S, is a subset of V, the set of variable nodes such that all 

neighbors of S are connected to S at least twice [100].  Fig. 3.20 depicts a sample of 

stopping set in a polar code. It is shown in [75] that smaller stopping sets play an important 

role in the decoding process and cause error floor. In other words, stopping sets are 

strongly related with the probability of error such that when nodes in a stopping set are 

erased or decoded wrongly, then Pe increases. It can be concluded that larger stopping sets 

yield lower BER values in Tanner graph based decoders. 

 

Smaller stop sets usually cause error floor problem especially in LDPC and turbo 

decoders. When the SNR increases, the BER decreases exponentially, but if the decoder 

encounters the error floor problem [38, 59, 101, 102], then the BER remains unchanged 

or decreases at a low speed. Thanks to the size of the stop set, it is shown in [101] that the 

polar codes show excellent minimum error floor performance such that error floor is not 

observed even at a BER value of 10
−9

. In [39, 59] it has been shown that the fixed bit 

selection and the size of the stop set are closely related. A modified algorithm for selecting 

frozen bits is developed by increasing the stopping distance of the polar code in [39]. 

Girth of a factor graph is another source of error floor [38, 39]. Girth is defined as the 

shortest cycles on the factor graph. Shortest cycles prevent BP decoders to reach 

 

 
 

Figure 3.20 A sample stopping set on a polar code Tanner graph 
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convergence state. Thus, shortest cycles, i.e. paths are considered as deficiency of the BP-

based decoders. 

The aim of using logarithmic versions of the propagating message equations in BP-based 

decoders is to lower the complexity of the decoders. In logarithmic domain, multiplication 

operations are converted to additions and divisions are converted to the subtractions. Word 

lengths (bit length) of the LLR values are also decisive on the accuracy of the decision 

made by decoder. In some cases, bit length of the messages need to be clipped to keep the 

overall complexity low. However, clipping of log-likelihood values can cause error floor 

problem [59]. Clipping into shorter lengths is shown to lead to error floor in [59, Fig. 3]. 

Therefore, four different algorithms are presented to avoid error floor caused by clipping 

operation, and these algorithms can be outlined as: 

a. Guessing algorithm is based on finding oscillating LLR values. After finding an 

indication of oscillation, a threshold is assigned to follow and lead to correct 

convergence. 

b. Adding virtually generated noise to the input received from the channel can lead to 

correct convergence. 

c. A scaling constant (𝛼 i.e., 0 < 𝛼 < 1) is injected to the PE of the BP polar decoder. 

Changing this constant can avoid saturation that is known to be the reason of error 

floor.  

d. Multi-trellis BP decoder is proposed for the first time in [4] where it is stated that when 

conventional factor graph fails to converge, then a differently oriented trellis can be 

utilized. Multi-trellis BP decoder is a promising candidate to improve the BER 

performance significantly. 

Although mentioned methods avoid error floor caused by low clipping value [59], 

complexity increment should be taken into consideration when these methods are to be 

used in practical systems. 

On the other hand, the BP decoding scheme is a promising method with a parallel structure 

that provides higher throughput and lower latency. It is also important to understand how 

the BP decoder fails. An error classification is made in [102] such that BP decoder can 

handle them intuitively, and three error types are introduced. These error types are: 
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a. Unconverged errors: If the decoder fails to resolve the error and other iterations do not 

work, this error is called an unconverged error. This type does not have a specific error 

pattern. 

b. Converged errors: Converged errors occur if convergence results to the wrong 

codeword or BP decoder stays in local minima such that hard decisions coincide with 

repeated repetitions. Such errors cannot be corrected using further repetitions [102]. 

c. Oscillation errors: The BP decoding scheme suffers from the propagation of wrong 

messages due to the loop structure. If the solutions of these incorrect messages change 

periodically, then this error type is defined as oscillation error. 

By following hard decisions in sequential iterations, unconverged and oscillation errors 

can be detected, while errors that are falsely converged cannot be detected. At different 

SNR levels, error distributions show difference. According to [102], unconverged errors 

are dominant at low SNR, converged and oscillation errors become dominant as SNR 

increases. When CRC is used in the BP decoding process, it appears that some of the 

unconverged and oscillation errors have been successfully resolved, but converged errors 

are still not discussed. 

In the study [90], the authors use [102]’s error type definitions and investigate the error 

distributions under different scheduling (RT and SCAN) and polar code construction 

methods such as GA and MC. Simulation results show that similar results are obtained 

under RT and SCAN scheduling. It is also seen that most decoding errors are caused by 

unconverged errors in low SNRs, and as the SNR increases, converged errors become 

dominant. However, unconverged errors are less effective when RT scheduling is used. 

Alternatively, three separate post-processing (PP) methods are provided to avoid any type 

of errors in [103] where it is shown that the BP decoder employing PP methods achieves 

better BER performance than the SC decoder [103, Fig. 12]. 

3.6. Adaptive Strategies in Polar Decoders 

The need for adaptive strategies in any coding scheme results from the desire to achieve 

better error correction performance. Therefore, a wide variety of adaptive strategies has 

been developed. In any decoder, the SNR of any channel is an important factor in the BER 
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/ BLER performance and bandwidth of the decoder. Adaptive SNRs based BP polar 

decoders are being investigated to further performance improvement. 

An adaptive early detection and termination method has been proposed for the minimum 

LLR-based detection approach in [20]. Different thresholds are applied to possible SNRs 

to determine the optimal convergence condition. Another early detection method adapted 

to alter SNR is WIB [84]. With adaptive WIB, the average iteration is reduced compared 

to a fixed WIB. 

In [31], a method of channel estimation based on the creation of a motivated parity check 

matrix is presented with the fact that adaptive LLR values are closely related to channel 

SNR. In general, parity check matrix-based decoding with adaptive approach shows better 

BER performance than SCL decoder. 

Adaptive quantization is studied in [86] to reduce the complexity of the polar BP decoder. 

Simulation results show that accurate precision is required in low SNRs, while coarse 

precision is sufficient in high SNRs. 

In the meantime, the adaptive design of the polar code has been developed for the “In-

order bit selection method” [96] as presented in sub-section 3.4. Frozen bits are selected 

for five SNR values ranging from 1 dB to 5 dB in the AWGN channel. Simulation results 

show that in high SNRs, polar codes generated with 4 dB and 5 dB give better BLER 

performance, but there is no significant difference in BER characteristics. Channel SNR 

adapted strategies for a BP-based polar decoder have been classified according to 

performance improvement and complexity reduction. In addition, the applied scheduling 

technique is the subject of adaptive research. 

In SNR channel estimation process adaptive methods are vital to use. In [20], a novel 

algorithm is proposed that is based on Hamming distance between ûG and 𝐱̂. A new 

parameter λ is introduced and the new parameter λ equals to 0 when 𝐱̂ = ûG. As expected, 

λ takes large values at low SNR values, and it takes small values at high SNR region. As 

a result, the relationship between λ and channel SNR is utilized for the presented adaptive 

method. 
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3.7. Hardware Implementation 

Efficient hardware implementation of BP-based polar decoders is an important issue to 

prove its superiority to SC and SCL structures. Implementations are accomplished on 

three different hardware platforms: FPGA, GPU and Application Specific Integrated 

Circuit (ASIC) applications. BP-based algorithms can be processed in a parallel manner 

in these platforms. 

The first hardware implementation of the BP polar decoder is proposed in [104] using an 

FPGA device. Typically, an FPGA consists of a matrix of configurable logic blocks 

connected by programmable interconnects and is mainly used to process parallel 

operations. This is one of the best candidates for hardware decoding to perform BP 

decoding. The performance of a BP decoder is compared to the convolution turbo code 

(CTC) used in the IEEE 802.16 wireless broadband standard. It can be seen that the BP 

decoder is better in complexity and bandwidth, but not better than CTC in BER 

performance. Additionally, the designed BP decoder achieves 27.83 Mbps for polar code 

Ƥ(1024,512) [104]. 

Based on the fact that there are similarities between the polar BP decoder and the fast 

Fourier transform, a fully parallel BP decoder is provided, including a pipeline BP decoder 

and feedback and pipeline BP decoder in [105]. Most pipeline architectures are 

implemented in FPGAs and a desired trade-off between performance, efficiency, latency, 

and coverage of the decoder is achieved. 

A modified implementation of the BP decoder yielding a throughput of 9.45 Gbit/s is 

performed on the FPGA platform in [26] where an early stopping criteria is used using a 

high-speed Ling adder with a parallel prefix, and a simplified processing element. 

Another hardware platform for implementation of BP decoders is the graphics processor 

especially designed for fast mathematical calculations for rendering. It is capable of 

performing parallel calculations that are very important for BP decoder. A GPU consists 

of a series of processors that can perform calculations in parallel. The first example of a 

GPU-based polar BP decoder is presented in [66] for Ƥ(1024,512) and a throughput of 

3.55 Mbit/s is reported. A higher 34 Mbit/s throughput is observed in [53] where the 
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hybrid structure of BP-SCL was applied to the GPU using NVIDIA CUDA C 

programming. 

In [122], it is shown that 1 Gbit/s throughput for 5 dB with polar code of length 1024N   

in AWGN channels can be achieved using a device (GPU) with a graphics processor. In 

[59], the authors examine the effect of clipping on error floor when decoding BP polar 

codes on the GPU platform. ASIC-based applications provide better performance. ASICs 

are configured to meet the requirements of a parallel BP decoder structure and are 

presented in various scheduling methods [20, 22, 25, 83, 93]. Table 3.2 shows the 

outcomes of the ASIC applications in terms of frequency, area, average number of 

iterations, latency, energy per-bit and average efficiency. Further comparisons with other 

decoding schemes (SC, SCL) and other hardware platforms are also examined in [107]. 

finFet technology has emerged as an alternative to CMOS devices. finFet-based designs 

can lead to low power consumption and decoding delays. Therefore, finFet technologies 

and near-threshold calculations are used to obtain high-speed, low-power BP polar 

decoders [108]. With finFet technology, the critical path delay can be reduced to 110 ps. 

For comparison, the critical path delay at 45 nm TMSC is 1050 ps. 

Table 3.2 ASIC implementation results of BP decoder for Ƥ(1024,512) 

Reference 

Design 
[16] [65] [18] [21] 

Architecture Overlapped Double Column Stage Combined 
Subfactor-Graph 

Freezing 

Schedule 5-stage folded Round-trip Round-trip Quarter-way 

Technology 45nm 65 nm 45nm 65 nm 

Frequency (MHz) 500 300 197 334 

Area N/A 1,476 0,747 1,6 

Avg. number of 

iterations 
23 6,57 N/A 6,34 

Latency 56 65,7 N/A 31,7 

Energy per bit 220 102 N/A 40 

Avg. throughput 

(Gbps) 
4,5 4,67 1,683 10,7 
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CHAPTER 4 

 

NOISE AIDED BELIEF PROPAGATION 

 LIST DECODING OF POLAR CODES 

 

Noise in communication systems is generally considered as a negative phenomenon and 

countermeasures are taken to eliminate it. On the other hand, the concept of stochastic 

perturbation opens a new perspective that would benefit from the artificially generated 

noise into a nonlinear system. The addition of white noise to a nonlinear system to obtain 

a stable model was firstly studied in [110]. Generally, a stochastic perturbation system has 

three elements, which are a weak input signal, a noise signal, and a bistable nonlinear 

system. Since its introduction, noise is used as a useful phenomenon in detecting a weak 

electrical signal using stochastic distortion, i.e. stochastic resonance, in EMG, EEG based 

measurements, in signal detection on nano-scale devices like nano-wire FETs and CNT-

FETs, in object detection in images, and in even for the explanation of neural transmission 

of human brain. Thus, stochastic perturbation is not a new idea as a useful phenomenon. 

However, it is new for forward error correction.  

Polar codes, which are the first mathematically proven error correcting codes achieving 

Shannon's capacity, are introduced by Arıkan in [2]. After its introduction, polar codes are 

adopted to be used in uplink/downlink control channels of 5G framework of eMBB 

introduced by 3GPP group [3]. There are different decoding schemes for polar codes. 

Arıkan in [2] introduces the first decoding algorithm, SC decoding algorithm, for general 

channels. In addition to SC decoding algorithm, other decoding methods such as CRC-

aided SC List [10] decoding, belief propagation (BP) based decoding [7], SC stack (SCS) 

decoding [111], and linear programming [8] based decoding of polar codes are proposed. 

It is shown that polar codes utilizing CRC aided SCL decoding outperforms maximum 

likelihood bound of polar code with a large list size and is able to compete LDPC codes 
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[10]. However, SC and SCL decoders suffer from their serial decoding nature. In other 

words, to decode mth bit, all bits indexed from 1 to m − 1 must be decoded to successfully 

accomplish the decoding of current bit dm where 1 ≤ m ≤ N bit. To overcome this 

drawback and giving another perspective to researchers, BP algorithm based polar decoder 

is proposed by Arıkan [7]. The basic feature of the BP polar decoder is its ability to decode 

bits in parallel. Although BP decoder have higher complexity than SC based decoders 

(SCL, SCS), its throughput achievement is remarkable when compared with the state-of-

the-art SC based decoders. 

Another advantage of BP polar decoder is its soft information flow. Soft information flow 

at each step of the BP decoding allows us to use it jointly with other well-known code 

schemes like LPDC and Reed-Solomon codes. List decoding concept is also used in BP-

based decoding of polar codes [62] as in SC decoder [10], but in a different manner. In 

SC list decoding, the list size is doubled at each decoding stage until the maximum list 

size. On the other hand, L number of BP polar decoders for L parallel branches are utilized 

by a BPL decoder [62]. In this thesis, we propose a BPL decoder having independent BP 

decoders enhanced by the virtually generated noise intensities at each parallel branch, such 

that it is named as Noise-aided Belief Propagation List polar decoder. Up to know, we 

tried to enlighten the path and motivation for the Na-BPL polar decoder. In section 4.1 the 

parameters we prefer to use for the BP polar decoder are explained by making some 

analyzes. In the section, 4.2, two different polar code construction methodologies are 

presented to enhance the BP decoder’s performance. In section 4.3, our Na-BPL decoder 

is introduced, and its maximum error correction capacity is demonstrated. Finally, in 

section 4.4, Na-BPL decoder with practical and realistic parameters are studied and a 

comparison with state of art studies is made. 

4.1 Constructing a BP Polar Decoder 

Suggestions on error correction improvement for BP polar decoders are briefly explained 

in chapter 3.  Besides, to improve its performance, countermeasures are taken into 

consideration in terms of adding extra check nodes, chosen scheduling type, chosen early 

detection and termination method, and chosen polar code construction method etc. We 

have used some of the methods presented in the literature survey, i.e., chapter 3. Among 
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these methods, we have chosen the most feasible and accurate methods to improve the 

performance of BP polar decoder. In this sub-section, we are going to explain the methods 

selected and explain the reason why we chose them. 

4.1.1 Adding Frozen Check Nodes 

BP polar decoders as presented in the previous chapters, have iterative processing nature. 

At each iteration, it is expected that the decoder’s likelihood values converge to reliable 

values for better estimation. Thus, the nodes with known likelihoods should be bypassed 

for faster convergence. In polar codes, some of the nodes are frozen nodes, and the outputs 

of these nodes are known and they are usually zeros. If the likelihood values of the frozen 

nodes are calculated during the iterations, they can be badly affected due to the wrongly 

converged nodes, and the likelihood values of the frozen nodes may oscillate. Despite its 

oscillation, frozen nodes can be correctly decoded at the end of the decoding. However, if 

we do not evaluate the likelihood values of the frozen nodes, and accept them as constant 

values during iterations, decoder’s convergence is achieved with less iterations. To show 

this, we performed the simulations using BPSK modulation and AWGN channel, and the 

results are given in Fig. 4.1, Fig. 4.2 and Fig. 4.3. 

 

 

Figure 4.1 BER/BLER comparison between original BP polar decoder and BP polar 

decoder with frozen check nodes for Ƥ(512,256) 
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Figure 4.2 BER/BLER comparison between original BP polar decoder and BP polar 

decoder with frozen check nodes for Ƥ(1024,512) 

 

 

 
 

Figure 4.3 BER/BLER comparison between original BP polar decoder and BP polar 

decoder with frozen check nodes for Ƥ(2048,1024) 
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As it is seen from the Fig. 4.1, Fig. 4.2 and Fig. 4.3 that the use of frozen check nodes 

with fixed likelihoods does not affect BER or BLER performance of the decoder. In Table 

4.1, the average number of iterations performed for different code lengths are given. It is 

obvious from Table 4.1 that, the use of frozen check nodes with fixed likelihoods leads to 

faster convergence. After this point, all BP polar decoders utilized in the thesis will have 

frozen check nodes. 

 

4.1.2 Scheduling 

Updating strategy of variable and check nodes on an iterative BP decoder affects the 

decoding speed. Thus, choosing the best scheduling method for our decoder is a prominent 

issue. In the previous chapter, different scheduling techniques are explained briefly as 

conventional scheduling, half-way scheduling, quarter-way scheduling, SCAN scheduling 

and round-trip scheduling. In this sub-section, after briefly mentioning scheduling 

techniques, comparison in terms of error correction performance and issued average 

number of iterations will be done. Meanwhile, Fig. 4.4 shows the message propagation 

strategies of different scheduling methods. 

We made a comparison of the scheduling methods in terms of error correction 

performance i.e. BER and BLER. Fig. 4.5, Fig. 4.6 and Fig. 4.7 depict the simulation 

 

Table 4.1 Average number of iterations comparison for different code lengths 
 

Polar Code/ SNR(dB)  1 1.25 1.5 1.75 2 2.2 2.4 2.6 

Original Ƥ (512,256) 40.3 35.0 30.3 24.4 21.08 19.0 16.8 15.4 

Ƥ (512,256) with frozen 

check nodes 
35.8 28.7 21.8 16.0 11.8 9.3 7.7 6.6 

Original Ƥ (1024,512) 42.7 37.0 30.8 25.6 21.7 19.5 17.8 16.0 

Ƥ (1024,512) with frozen 

check nodes 
38.5 29.6 21.6 15.6 11.4 9.3 7.9 6.98 

Original Ƥ (2048,1024) 45.1 38.4 31.1 25.7 22.1 20.1 18.4 17.1 

Ƥ (2048,1024) with frozen 

check nodes 
42.7 31.6 21.8 14.9 11.3 9.75 8.5 7.6 
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results obtained using BPSK modulated signal and AWGN channel for N = 512, N =

1024, and N = 2048. 

 

 

 

Stage 1 Stage nStage n/2 Stage n/2+1

(a) conventional scheduling

Stage 1 Stage nStage n/2 Stage n/2+1

Stage 1 Stage nStage n/2 Stage n/2+1

(b) half-way scheduling

(c) round-trip scheduling  
 

 

Figure 4.4 Scheduling strategies for BP polar decoder; (a) conventional scheduling, (b) 

half-way scheduling and (c) round-trip scheduling 

 

Figure 4.5 Scheduling strategy comparison for Ƥ(512,256) in terms of BER and BLER 
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Figure 4.6 Scheduling strategy comparison for Ƥ(1024,512) in terms of BER and BLER 

. 

 

 

Figure 4.7 Scheduling strategy comparison for Ƥ(2048,1024) in terms of BER and 

BLER 

. 
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Simulation results show that round-trip scheduling has the best error correction 

performance. On the other hand, convergence speed of the decoder is an important 

property that is inversely proportional with the latency of the decoder. We also observed 

the average iteration number for each scheduling strategy during simulations. Besides, we 

employed G-matrix-based early detection and termination method for the BP polar 

decoders. Fig. 4.8, Fig. 4.9 and Fig. 4.10 show the average number of iterations performed 

for each scheduling method for different code lengths when maximum number of 

iteration, M is set as 50. 

 

 

 
 

Figure 4.8 Scheduling strategy comparison in terms of average number of iterations for 

Ƥ(512,256) 

 

 

 
 

Figure 4.9 Scheduling strategy comparison in terms of average number of iterations for 

Ƥ(1024,512) 
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It can be inspected from the Fig. 4.4 that RT scheduling needs 2n cycles for an iteration 

while conventional and half-way scheduling need n cycles. Thus, comparing RT 

scheduling with others having the same maximum iteration number is not fair. Therefore, 

for a meaningful comparison on Ƥ(2048,1024); we set M = 50 for RT scheduling 

(equivalent of M = 100 ) and set M = 100 for other two scheduling types. As a result, Fig. 

4.11 shows that BER performance of all three scheduling types are the same, and half-

way scheduling has the lowest average iteration number. It can be concluded that using 

half-way scheduling can be advantageous if throughput of the decoder is a critical factor 

for communication systems. On the other hand, the use of RT scheduling can be the 

preferred choice if the computational complexity of the decoder is the critical issue. In 

half-way scheduling, two stages must be performed at the same time, while in RT 

scheduling, only one stage is active at each step of the decoding. In this thesis study, all 

three scheduling strategies are followed. 

 

 
 

Figure 4.10 Scheduling strategy comparison in terms of average number of iterations for 

Ƥ(2048,1024) 

. 
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4.1.3 Early Detection and Termination Method 

BP-based polar decoding operation is assumed to be successful when all the nodes are 

converged. Hence, the convergence of the nodes should be checked at every iteration to 

avoid unnecessary iterations. Early detection and termination methods can be used to 

decrease the total iteration number. Early detection and termination methods utilized for 

the BP polar decoder should be accurate and easy to implement. As a result of the lessons 

learned from the literature survey, we decided to use two methods, G-matrix-based 

detection and CRC in our Na-BPL polar decoder. 

As it is explained in [20] that G-matrix-based early detection checks the estimated data 

and estimated codeword using the equality x̂ = ûG. Since BP polar decoder estimates both 

dataword and codeword, this equality can be used as an early detection method. On the 

other hand, since this method involves a matrix multiplication, it increases the hardware 

implementation complexity.  

The cyclic redundancy check (CRC), which is easier to implement when compared with 

G-matrix-based estimation for early detection, is employed in [23,85,60,124,125]. Two 

different approaches can be followed in order to use CRC for early detection. 

 
 

Figure 4.11 Scheduling strategy comparison for Ƥ(2048,1024) the when number of 

maximum iterations are kept same for all methods 

. 
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Approach I (CRC1): In the first approach, for a polar code Ƥ(N, K) where  K is the length 

of the information bits, and N−K is the number of frozen bits, the number of information 

bits decreases from K to K−R  where R is the number of  CRC parity bits and the number 

of frozen bits is kept same. Thus, the code rate ranges from K/N to K−R/N causing rate 

penalty. 

Approach II (CRC2): In this approach, code rate is be kept the same i.e., K/N. Number 

of frozen bits ranges from N−K to N−K−R. 

Both approaches are used in the literature, in [10, 60, 124] the first approach (CRC1) is 

employed, while in [125] the second approach CRC2 is considered. In our work, we 

utilized both approaches to present fair comparison with literature. Structure of CRC, i.e., 

its polynomial representation, and its length are important parameters that affect the 

performance of the decoder. We choose CRC-6 for N = 128, CRC-8 for N = 512, CRC-

16 for N = 1024 and N = 2048. Polynomials are selected referring to papers and 5G 

standards documents [10, 60, 124] as: 

 CRC-6  p(x) = x6 + x5 + 1 

 CRC-8  p(x) = x8 + x2 + 1 

 CRC-16 p(x) = x16 + x15+ x2 + 1 

Despite the code rate penalty, CRC usage is practical when compared with G-matrix-

based early detection method. Besides, better error correction performance is achieved as 

it is to be shown in the incoming figures. 

Simulations are performed to compare the performances of early detection methods in 

terms of BER, BLER and average iteration number. BER and BLER results are presented 

in Fig. 4.12. Two different code lengths N = 1024 and  N = 2048  are used in simulations. 

It is observed that BER performance of BP polar decoder with G-matrix-based early 

detection is better than CRC based one for a single BP polar decoder. During simulations, 

CRC1 approach is employed. The other performance comparison factor, average number 

of iterations for both early detection methods are given in Table 4.2 where it is seen that 

G-matrix-based detection leads to faster decoding process with maximum iteration 

number limited to 50. 
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Table 4.2 Comparison of average iteration number for different early detection and 

termination methods 

 

Polar Code/ SNR(dB)  1 1.25 1.5 1.75 2 2.2 2.4 2.6 2.8 3 

Ƥ (1024,512) with G-

matrix-based early 

detection 

40.4 32.5 24.2 17.4 13.6 11.2 9.4 8.3 7.47 6.76 

Ƥ (1024,512) with CRC 

based early detection 
42.4 34.8 25.6 17.6 12.8 10.1 8.3 7.1 6.31 5.76 

Ƥ (2048,1024) with G-

matrix-based earl 

detection 

43.3 34.0 25.1 17.9 13.5 11.4 10.0 9.1 8.22 7.61 

Ƥ (2048,1024) with CRC 

based early detection 
45.4 36.0 25.6 17.3 12.4 10.1 8.7 7.69 6.98 6.42 

 
 

 

 
 

  

Figure 4.12 BER/BLER comparison of BP-based polar codes under different early 

detection and termination methods for Ƥ(1024,512) and Ƥ(2048,1024) 

. 
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BER performance of G-matrix-based early detection method is better than CRC based 

detection, however, they achieve the same BLER performance when Eb/N0 is larger than 

2.4 dB. Complexity is another factor to be taken into account while choosing the 

appropriate early detection method. Complexity of the methods is directly related to 

hardware implementation cost. In Table 4.3 we provide the hardware complexity of the 

early detection methods. Hence, considering the performance graphs and complexity 

tables, we conclude that both methods have the potential to be utilized for practical 

systems. Besides, CRC is proved to be useful in list decoding. 

 

4.1.4 Systematic Coding of Polar Code 

In systematic codewords of any error correction code, the locations of the information bits 

are known a-priori. This feature of systematic codes can be advantageous over non-

systematic codes if receiver quickly determines whether error free transmission occurred 

or not. Although original version of polar codes is offered in non-systematic form [2], 

Arıkan also offered a systematic form of the polar code, and showed that BER/BLER 

improvement can be achieved via systematic polar codes [112]. When systematic and non-

systematic polar codes are compared in terms of BER performance, it is observed that 0.3 

dB gain is achieved for Ƥ(256,128) at BER 10
−5

. However, the same BLER performance 

is achieved for both type of codes. 

Systematic polar encoding can be achieved considering the following steps [113]. 

 Let u be the data vector to be used by Ƥ(N,K). 

 

Table 4.3 Hardware blocks that are needed to implement early detection methods 

 

Early Detection and Termination 

Method  
Add Compare 

N N  matrix 

multiplication 

G-Matrix-based detection 2N  N  1  

CRC-L based detection 

(L is the length of the CRC parity 

bits) 

N  N  - 
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 Multiply this u with the generator matrix, w = uG. 

 Force frozen bits, chosen according to your polar code construction method, to 

zero on w. 

 Perform a second encoding on w, i.e. x = wG. 

For the decoding of systematic polar code, a method, easy to implement, is proposed in 

[113] where a non-systematic polar decoder along with a non-systematic encoder are used 

as systematic polar decoder. Fig. 4.13 illustrates the systematic encoding and decoding 

operations. 

In Fig. 4.13, systematic decoding includes a non-systematic decoding and a non-

systematic encoding. As it is mentioned before, BP polar decoder estimates both the 

dataword and codeword. Inspired by this fact of the BP polar decoder, we propose that if 

the systematic decoding is performed using BP polar decoder, we don’t need to use non-

systematic encoding along with our non-systematic decoder, and a single BP polar 

decoder is sufficient. This results in no additional complexity to the decoder. Fig. 4.14 

shows the achievement of a systematic decoder if a BP-based polar decoder is utilized. 
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AWGN,...)
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encoder
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Figure 4.13 Systematic encoding/decoding of polar codes 
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In this scope, simulations are performed to show the effect of systematic approach in terms 

of error correction. In our simulations, BP polar decoder employs frozen check, uses G-

matrix-based early detection and RT scheduling with maximum iteration number M = 50. 
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Figure 4.14 Systematic decoding of polar codes 

 

 

 
 

Figure 4.15 BER/BLER comparison of systematic and non-systematic BP polar decoder 

for Ƥ(1024,512) 
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Fig. 4.16 and Fig. 4.17 show that BER performance gain achieved by systematic approach 

while BLER performance stays same when compared with non-systematic BP polar 

decoder. Average iteration number comparison is done in Table 4.4 between non-

systematic and systematic polar codes when BP decoder with M = 50 is employed. 

Overall, average iteration number for both cases are similar. 

 

 

 

 
 

Figure 4.16 BER/BLER comparison of systematic and non-systematic BP polar decoder 

for Ƥ(2048,1024) 

 

 

Table 4.4 Average number of iterations comparison between systematic and non-

systematic BP polar decoders 

Polar Code/ SNR(dB)  1 1.25 1.5 1.75 2 2.2 2.4 2.6 

Non-Systematic Ƥ (1024,512) 38.2 29.9 21.7 15.6 11.4 9.3 7.9 7.02 

Systematic Ƥ (1024,512) 38.9 30.6 21.6 15.7 11.3 9.4 7.9 6.9 

Non-Systematic Ƥ (2048,1024) 42.2 32.5 21.9 15.1 11.5 9.6 8.5 7.6 

Systematic Ƥ (2048,1024) 42.2 31.7 21.8 15.3 11.48 9.6 8.5 7.7 
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4.2 Polar Code Construction 

Two different kind of methodologies can be followed to construct polar codes; first type 

follows analytical approach and the second one is Monte-Carlo (MC) simulation based 

approach can be used. As an analytical approach, Bhattacharyya parameter [2] is a well-

defined for the SC-based polar decoder for the binary erasure channel (BEC). Different 

decoders with different channel types cannot achieve optimal BER/BLER performance 

due to the absence of well-defined polar code construction methods [121]. To cover this 

deficit, some methods that relies on both analytic methods like density evolution (DE) 

[114], and Gaussian approximation for DE [115], and MC based designs [16, 90, 95, 96] 

are introduced.   

Among the polar code construction methods, two of them are utilized in our studies. One 

of them is Bhattacharyya parameter based construction [2], and the other one is a kind of 

MC based construction that is enhanced by the genetic algorithm [99].  

4.2.1 Bhattacharyya Parameter Based Polar Code Design 

Bhattacharyya parameter based estimation is designed for binary erasure channel, and it 

is not the optimum construction method for AWGN, Raleigh fading channels etc.  

Bhattacharyya parameter of a binary-discrete memoryless channel denoted by W is 

defined as  

 ( ) ( | 0) ( |1)
y Y

Z W w y w y


  (4.1) 

where y Y  is an output alphabet. The value of ( )Z W is closely related with the capacity 

of a channel, ( )C W , such that ( ) ( ) 1C W Z W  . Recursive calculations are performed to 

compute the channel capacities Bhattacharyya parameter can be recursively calculated as 

 ( 1) ( ) ( ) 2

2( ) 2 ( ) ( )i i i

N N NZ W Z W Z W    (4.2) 

 (2 ) ( ) 2

2( ) ( )i i

N NZ W Z W  (4.3) 

 

An example of combining channels is depicted in Fig. 4.17. 
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For the rightmost side, we have  W1
 i=W where 1 i N  . Erasure probability of the BEC 

can be used directly for W1
 i. However, initial value of Bhattacharyya parameter is difficult 

to find for Gaussian and Rayleigh channels since both channels are continuous. We prefer 

to use a practical construction method of polar codes in AWGN channels [116]. In [116], 

initial value of W1
 i is determined by bit error probability Pe of AWGN channel defined as 

Pe (
RsRsEb

N0
) where Rs is symbol rate, Rc is code rate and 0/bE N is the energy per-bit. We 

use BPSK and AWGN channel, that is Rs is 1 and the code rate is generally set to 0.5. It 

is important to state that the value of 0/bE N  in dB scale is always set to 0.5 dB, the design 

SNR, for the simulations of this thesis, unless otherwise indicated. 

As an example, frozen bit distribution for Ƥ(2048,1024) and Ƥ(1024,512) are calculated 

for both BEC and AWGN channels and frozen bit locations are illustrated in Fig. 4.18, 

Fig. 4.19, Fig. 4.20 and Fig. 4.21. 

 

 
 

Figure 4.17 Combining channels to get polarized channels  
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Figure 4.18 Frozen bit locations of Ƥ(1024,512) for BEC with erasure probability of 0.5 

 

 

Figure 4.19 Frozen bit locations of Ƥ(1024,512) for AWGN with design SNR of 0.5 dB 
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Figure 4.20 Frozen bit locations of Ƥ(2048,1024) for BEC with erasure probability of 

0.5 

 
 

 
 

Figure 4.21 Frozen bit locations of Ƥ(2048,1024) for AWGN with design SNR of 0.5 

dB 
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4.2.2 Decoder-tailored Polar Code Design using Genetic Algorithm 

The polar code design method using the Genetic Algorithm (GenAlg) is proposed in [99] 

where remarkable results are obtained. If the polar code is designed with GenAlg, then the 

error correction performance of the BP polar decoder achieves the performance of SCL 

polar decoder, and the structure of BP decoder stays the same. The only difference is on 

the location of the frozen bits. 

Genetic algorithm is proposed by Holland in 1975 [117] that is based on the concept of 

Darwin’s theory of evolution. Genetic algorithms are widely used to generate high quality 

solutions for optimization and search problems, based on biological terms like mutation, 

crossover and selection. In order to explain genetic algorithm’s usage in polar code 

construction accurately, we will explain these biological terms and the equivalents of these 

terms. 

Population, a collection of individuals, is the candidate solution of the optimization 

problem. In our case, population is the number of possible information sets that lead to 

the best optimization i.e., low BER, low BLER. There are two factors to pay attention to 

when a GenAlg is employed. The first one is diversity of the population. If the diversity 

of the population is not high, then optimized results cannot be achieved. Secondly, 

population size is also an important parameter to maintain a good mating pool. Small 

population sizes could cause to deceleration on the GenAlg process. 

Another factor in GenAlg is crossover. Crossover, the most important process of the 

algorithm, exchanges the genes of the families in the population. After crossover, two 

parents generate new offspring, in other words, child/children. Different types of 

crossovers are offered in the literature like one-point crossover, two-point crossover and 

uniform crossover. It is shown in Fig. 4.22 that in one-point crossover, genes of the parents 

are separated from one point, and the genes are transferred to the children. In two-point 

crossover, two different breaking points on parent’s genes are presented. Lastly, uniform 

crossover creates many (randomly selected) breaking points.  
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A simple crossover example presented in [99] is illustrated in Fig. 4.23 where one-point 

crossover is applied, and zeros represent frozen bit places while ones represent 

information bit places. It is seen that after crossover five frozen bit places appeared. Thus, 

a rate adjustment is necessary to keep coding rate at its constant value, i.e., 0.5. 

 

The outcomes of the crossovers often yield better solutions. If a generated offspring is not 

good enough, then it will be removed from the population through selection process. In 

decoder tailored polar code construction approach [99], offspring represent the location 

of frozen bits, and population competes with each other in terms of selected fitness 

function, i.e., BER/BLER performance. 

Mutation is an operation used in genetic algorithm; it is used to create genetic diversity 

between individuals of the population. In mutation, results usually change entirely in a 

bad or good way. Mutated individuals are eliminated in the selection part of the GenAlg. 

It is stated in [99] that mutation can be created flipping a bit of an information vector in a 

random position. Bit flipping converts frozen bit locations to data bit locations. However, 

to keep code rate the same, another bit flipping at a random data location is necessary. A 

sample mutation example is given in Fig. 4.24. 

 

 
 

Figure 4.22 Crossover types; (a) one-point crossover, (b) two-point crossover and (c) 

uniform crossover 
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Figure 4.23 A simple crossover example for Ƥ(8,4) 
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A genetic algorithm should have a proper fitness function. Fitness function is used as a 

decision mechanism on survival of individuals. The aim of the channel coding is to get 

the optimized error correction performance, such that BER or BLER performance can be 

selected as fitness function [99]. Fitness function deletes information sets that has high 

BER/BLER values after MC simulations with a specific decoder, specific channel type 

and a certain SNR. In our case, we use BP polar decoder, on AWGN channel with a design 

SNR of 1.25 dB. 

After population individuals are fed into the fitness function, a selection and population 

update operation should be performed. Since population size is a paramount factor to reach 

to accurate convergence on the optimization problem, we choose the population size as 

20 individuals, i.e., a vector that contains frozen and information bit places. 

Initial population content should be chosen with precision to lead GenAlg into a faster 

convergence. In decoder-tailored polar code design using GenAlg, the initial population 

is formed from splitted channel capacities constructed for AWGN channels for different 

design SNR using Bhattacharyya parameter based estimation. Our initial vectors that are 

constructed with five different design SNR as 0, 0.5, 1, 1.5 and 2 dB. 

Flowchart of the GenAlg [99] is visualized in Fig. 4.25. GenAlg of [99] is developed for 

different type of decoders like SCL and BP, and different types of communication 

channels like AWGN and Rayleigh fading channel. However, since we are dealing with 

BP-based polar decoders on AWGN channel, we configured the process according to our 

parameters. In order to achieve the optimum results, process repetition number, K, is 

determined to be a number between 20 and 40 where 1 ≤ i ≤ K. Alternatively, instead of 

using a constant number for K, GenAlg can work until the same information set with the 

best error correction performance is selected for three consecutive processes. We prefer 

to use BLER results of the individuals at 1.25 dB as fitness function under BP polar 

decoding for BPSK modulated AWGN channel. 

 

00010111 00110111 00100011Mutation AdjustRate   

 

Figure 4.24 A mutation example on Ƥ(8,4) 
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Frozen bit locations achieved utilizing GenAlg for polar code construction are depicted 

for the codes Ƥ(1024,512) and Ƥ(2048,1024) in Fig. 4.26 and Fig. 4.27, respectively.  
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Figure 4.25 Flowchart of GenAlg based polar code construction 

 

 

Figure 4.26 Frozen bit locations of Ƥ(1024,512) with design SNR of 1.25 dB for BPSK 

modulated AWGN channel 



 

87 

 

 

We can provide a comparison between performances of polar decoders when different 

polar code construction methods are utilized. Fig. 4.28 and Fig. 4.29 present error 

correction performances of polar codes constructed with Bhattacharyya parameter based 

estimation and GenAlg based approach. G-matrix-based detection, RT scheduling and 

M = 50 are applied during simulations. It is seen from these figures that GenAlg based 

polar construction at 1.25 dB SNR achieves better performance for different code lengths 

and channel SNRs. 

 

 

Figure 4.27 Frozen bit locations of Ƥ(2048,1024) with design SNR of 1.25 dB for 

BPSK modulated AWGN channel 

 



 

88 

 

 

 

 

 

Figure 4.28 BER/BLER comparison between Bhattacharyya parameter and GenAlg 

based polar code construction when BP polar decoder is utilized for Ƥ(1024,512) under 

BPSK modulated AWGN channel 

 

 

Figure 4.29 BER/BLER comparison between Bhattacharyya parameter and GenAlg 

based polar code construction when BP polar decoder is utilized for Ƥ(2048,1024)  

under BPSK modulated AWGN channel 
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4.3 Na-BPL Polar Decoder  

Shannon’s theorem [1] states that it is possible to achieve error-free communication for a 

given SNR and bandwidth. During the past many decades, numerous error detection and 

error correction schemes are developed. Error correcting codes are divided into two main 

categories; block codes and convolutional codes. Block codes include Hamming codes, 

repetition codes, BCH nodes, Reed-Solomon codes, Reed-Muller codes, LDPC codes, and 

polar codes. In convolutional coding, the codeword is formed using the convolution of 

dataword and impulse response. Convolutional codes are concatenated using interleavers 

to obtain more powerful like turbo codes and serially concatenated convolutional codes. 

In this thesis, we consider the use of weak noise for the enhancement of the error 

correction capability of the channel codes mainly targeting the polar codes.  

The decoders use the artificially generated noise. Different noise intensities are applied to 

L different decoders, and at least one decoder achieves correct decoding. It is also 

important to state that artificial noise should be small in power when compared with the 

communication channel noise. Otherwise, decoding failure occurs for all of the L 

decoders. Zero mean additive white Gaussian noise (AWGN) is chosen as the artificial 

noise. Although we use the artificially generated noise for BP-based polar decoders, the 

other type of code decoders can use our approach.  

BP polar decoder has three types of errors, unconverged, falsely converged, and 

oscillating errors. There are some proposed methods in the literature to avoid these type 

of errors. In order to avoid oscillating errors, noise injection into the propagating messages 

at the intermediate stages (have not to be a code system) is proposed in [118]. Noise 

injection in belief propagation based decoding is considered in [59] to overcome the error 

floor problem caused by small log-likelihood ratio clipping values.  Clipping threshold on 

LLR values is decisive on the complexity of the decoder. The addition of noise as a post 

processing method for BP polar codes is proposed in [19]. Post processing process is 

performed when CRC check fails, and an estimation is done to determine whether a falsely 

converged, an unconverged or an oscillating error occurred or not. The post processing 

operation is performed in accordance with the estimation. For each case of post processing 

operation, random sign changes are used to achieve accurate of the convergence. Different 
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from the studies of [19, 59, 118], we are going to propose a novel artificial noise injection 

method that boosts the performance of polar decoder significantly. 

Another aspect of our proposed method of noise-aided belief propagation based list (Na-

BPL) polar decoder is its list decoding property. List decoding is proposed by Elias in 

[119]. In list decoding, a number of candidate messages compete for the decoder's 

estimate. List decoding is shown to be effective especially in Reed-Solomon codes [120] 

and in successive cancellation decoding of polar codes [10]. 

BP-based list decoder (BPL) decoder is proposed in [62] with the multi-trellis approach. 

BPL polar decoder in [62] includes permutations of original factor graph. In [62], different 

permuted factor graphs are chosen randomly, or, cyclic shifts of the factor graph of the 

polar code shown in Fig. 3.7, are used. Fig. 4.30 presents the block diagram of the BPL 

decoding operation. List size changes with the number of differently constructed trellis 

structures. 

Our proposed approach called noise aided belief propagation based list (Na-BPL) polar 

decoder consists of three stages as shown in Fig. 4.30. The first stage includes L parallel 

(branch) BP polar decoders where L is the list size. The structure of the decoders 

BP1, BP2,…, BPN are the same,  and it is presented in Fig.13a. The proposed decoder 

structure is illustrated in Fig. 4.30 where y is channel output, n1, 2,…, L-1 is artificial noise, 

and ỹ
1, 2,…., L-1

 represent the artificial noise added version of channel output y. It is 

important to state that no artificial noise is used for the first branch. In the second stage of 

the decoder, early detection and termination methods to estimate decoder’s convergence 

are used. Different early detection and termination methods can be applied for our decoder 

i.e., perfect knowledge based (PKB), G-matrix-based, and CRC based. In the third stage 

of decoder, a post decision is applied to the output of each branch. A variety of post 

decision mechanisms can be utilized to lead Na-BPL to achieve more accurate results. In 

this manner, four different post decision mechanisms are utilized such as: argmin based, 

leader of converged decoders (LCD), average based assumption (ABA), and correlation 

based decision (Corr). Since we are going to utilize PKB method for our decoder in this 

section, there is no need to use any post decision mechanism. In this method, BP polar 

decoder stops when estimated data û and user data u are equal to each other. Similar 
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comparison can be made between estimated codeword x̂ and x. Thus, details of post 

decision mechanisms are posted to Section 4.4. 

We adapt a convention to indicate the type of decoder together with its parameters as in:  

Decoder_type(List size, Early Detection Mechanism, Post Decision Mechanism) 

Some examples of the convention are given as:  

 Na_BPL(L=10, G-matrix, Argmin): Noise aided belief propagation list decoder 

with list size 10. G-matrix based early detection is used with argmin based post 

decision mechanism.  

 Na_BPL(L=32, PKB): Noise aided belief propagation list decoder with list size 

32. Since PKB is used as early detection there is no need for a post decision 

mechanism. 

The key idea in Na-BPL decoder is to use weak artificial noise for perturbation. For 

artificial noise, zero mean additive Gaussian noise is used. Artificial noise is generated 

using  

 ni(x) = μ + σ𝑖 × wgn(x) (4.4) 

where 1 ≤ i ≤ L − 1 and 1 ≤ x ≤ N .  

Artificial noise, in other words, zero mean additive white Gaussian noise with standard 

deviation starting from 0 with 0.0125 incremental steps is added to the received signal, y, 

at each branch of the list decoder. Equation (4.4) is used for the generation of artificial 

noise. In (4.4), wgn(x) is the noise generator function for the zero mean and unity variance 

Gaussian noise samples, mean μ is set to zero to avoid any bias to the channel output. 

Standard deviation is denoted by σi.  
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Artificial noise added to the channel output should be too small compared to channel SNR. 

For instance, in our trials, standard deviation of the noise ranges from 0 to 0.3875, and the 

increment rate can change according to list size i.e. 0.0125, 0.00625. 

After each iteration of the decoding operation, an early detection and termination criteria 

is checked, if the criteria are satisfied in any branch, then decoding is assumed to be 

successful. Estimated data and codeword are obtained as the output of the system can be 

used for further processing if needed. On the other hand, if none of the parallel branches 

meets the early detection and termination criteria, then decoding is assumed unsuccessful. 

When an unsuccessful decoding occurs i.e. none of the branches is successful then, the 

output of the first branch on the Na-BPL decoder is accepted as estimated data. 
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Figure 4.30 Na-BPL polar decoder design 
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Up to this point, we discussed the Na-BPL polar decoder. From now on, we will work on 

different aspects of the proposed decoder. First of all, BER/BLER performance under 

different list sizes will be demonstrated. In Fig. 4.31 and Fig. 4.32, error correction 

performance in terms of BER of the Na-BPL polar decoder is demonstrated for 

Ƥ(1024,512) and Ƥ(2048,1024) respectively, and for these simulations the list sizes 

L = 1, 2, 4, 8, 16, 32 are used. Simulations are performed using BPSK modulated signal 

on AWGN channel and iteration number M equals to 50, PKB early detection method is 

selected, and RT scheduling is employed. Besides, frozen nodes are kept constant to 

provide faster convergence of the Na-BPL decoders. For the simulation results presented 

in Fig. 4.31 and Fig. 4.32, artificial noise ranging from 0 to 0.3875 is used. Standard 

deviations of the artificial noise are denoted by σ1, σ2, ...,σ32  and noise signals are 

indicated by n1, 2,…, L-1 for the list size of L = 32. For instance, σ1, σ2, ...,σ32 can take the 

values 0, 0.0125, 0.025,…., 0.3875, respectively. For L = 16, σ1, σ2, ...,σ16 can be chosen 

as 0, 0.0125, 0.025,…., 0.1875, respectively. 

Block error rate performance also improves as the list size increases. Simulations are held 

done for Ƥ(1024,512) and Ƥ(2048,1024), and the results are depicted in Fig. 4.33 and Fig. 

4.34 where the list sizes are chosen as L=1, 2, 4, 8, 16, 32.  
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Figure 4.31 BER performance of Na-BPL decoder with different list sizes Ƥ(1024,512)  

under BPSK modulated AWGN channel 

 
 

 

Figure 4.32 BER performance of Na-BPL decoder with different list sizes Ƥ(2048,1024)  

under BPSK modulated AWGN channel 
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Figure 4.33 BLER performance of Na-BPL decoder with different list sizes for 

Ƥ(1024,512) on BPSK modulated AWGN channel 

 

 
 

Figure 4.34 BLER performance of Na-BPL decoder with different list sizes for 

Ƥ(2048,1024) on BPSK modulated AWGN channel 
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High noise level can also be used when low-level artificial noise does not improve the 

error correction performance of the decoder. However, high noise levels may harm 

decoder’s performance. For this reason, we provide an example to show the effect of 

artificial noise intensities with different standard deviations. Three noise intensity ranges 

are utilized for Na-BPL decoder on Ƥ(1024,512) with list size 16 and M = 50. In this way, 

Na-BPL I, Na-BPL II and Na-BPL III decoders are constructed with standard deviation 

ranges of 

 (0, 0.00625, 0.025,…, 0.0938), (0, 0.0125, 0.025,…, 0.1875), (0, 0.125, 0.25,…., 1.875)  

respectively. The effects of selected noise intensities used to construct Na-BPL decoder 

are depicted in Fig. 4.35 from which it is seen that second design achieves the best error 

correction performance. It is seen from Fig. 4.35 that the magnitude of artificial noise 

intensity is a crucial factor on Na-BPL performance. 

 

The maximum number of iterations performed by a single BP decoder of Na-BPL unit has 

effect on the polar decoder’s performance. Different iteration numbers 50, 100, 200, 500, 

 

 
 

Figure. 4.35 BER/BLER performance of Na-BPL decoder with different noise 

intensities with fixed list size 16 for Ƥ(1024,512)  under BPSK modulated AWGN 

channel 
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1000 are used for Na-BPL decoder with L = 16 for Ƥ(1024,512). It is shown in Fig. 4.36 

that as the maximum iteration number increases, BER and BLER performance of the Na-

BPL decoder increase as well. We aim to replace CRC-aided SCL decoder via BP-based 

decoder considering its parallel decoding capability; however, the increase in iteration 

number eliminates the advantage of parallel decoding. Keeping maximum iteration 

number M between 50 and 200 seems to be reasonable to get optimized error correction 

performance without increasing latency significantly. 

 

4.3.1 Folded Na-BPL Polar Decoder 

Folding approach can also be used by Na-BPL polar decoder benefiting from the fact that 

Na-BPL decoder consists of L identical BP decoders. Folded Na-BPL structure presented 

in Fig. 4.37 can be employed when low complexity is the issue under concern where 

1 ≤ j ≤ L and 1 ≤ i ≤ M. However, in this case the throughput of the decoder is decreased, 

since different artificial noise intensities are added to the decoder one by one until a correct 

convergence of the decoder is provided. 

 

 
 

Figure 4.36 BER performance of Na-BPL decoder with different number of iterations 

for fixed list size 16 on Ƥ(1024,512)  under BPSK modulated AWGN channel 
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The working principle of folded Na-BPL is similar to the studies containing multi-trellis 

factor graphs obtained permuting the original factor graph [58, 60, 61, 63, 124]. In this 

type of decoder, each decoder runs until early detection criteria is satisfied. If criteria can’t 

be fulfilled for M  iteration number, then next decoder with different trellis structure starts 

to decoding operation. The proposed decoder of this thesis always use the same trellis 

structure with the aid of different weak artificial noise intensities. 

 

BER/BLER performance of the folded structure is similar with parallel structure, Fig. 

4.30. However, the use of folded Na-BPL increases average iteration number 

dramatically. Table 4.5 shows that huge difference on average number of iterations 

between parallel and folded Na-BPL is observed for low signal-to-noise ratio, i.e., 

SNR < 2 dB. Beyond 2 dB, decoding speed of the decoders approaches to each other. 

 

Stochastic perturbation provided by artificially generated noise intensities cause stochastic 

resonance to occur. A weak input signal and a nonlinear system are needed to achieve 
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Figure 4.37 Folded Na-BPL structure 

Table 4.5 Average number of iterations comparison between Na-BPL and folded Na-

BPL polar decoders (M = 50, L = 16) 
 

Polar Code/ SNR(dB)  
1 1.25 1.5 1.75 2 2.2 2.4 

Na-BPL Ƥ(1024,512) 33.7 22.8 15.3 10.7 8.2 7.11 6.33 

Folded Na-BPL Ƥ(1024,512) 765.5 416.7 172.5 68.19 28.63 17.73 12.23 
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stochastic resonance. Normally, weak signal cannot cause an output signal on nonlinear 

system. On the other hand, by the aid of artificially generated noise signals, weak signal 

becomes detectable. Amount of noise that enhances the input signal is vital in this process. 

In order to observe SR effect, noise signal with intensities (decided by standard deviation) 

from 0 to some value are mounted on the weak input signal before passing through the 

threshold part. At each trial, output performance is calculated. When noise intensity versus 

output performance graph is plotted, characteristic SR curve is observed. A valid SR curve 

has concave shape. Consequently, benefit of noise in signal detection becomes a fact for 

specific set of noise values. Notice that if there is no artificial noise signal introduced to 

nonlinear system, output performance will be zero since weak input signal has no effect 

on nonlinear system. 

Stochastic resonance curves can also be observed in our decoder. In this perspective, our 

Na-BPL decoder represents nonlinear system and received signal y, is weak input signal. 

As mentioned before, unsuccessful decoding occurs when decoder converges 

inaccurately. In order to beat inaccurate convergence, we add different levels of artificial 

noise into received signal. In Na-BPL decoder, there are L parallel identical BP polar 

decoders. Received signal y is fed to all decoders with only difference of artificial noise 

level. As a result, amplitude level of noise increases as the number of parallel decoders 

increases. In this scope, we try to observe stochastic resonance curves by using the 

accurate error correction results of the Na-BPL decoder. Fig. 4.38 shows the results of 

folded Na-BPL decoder with list size 32. The standard deviation of artificial noise ranges 

from 0 to 0.3875 with increment step size of 0.0125. Folded Na-BPL employs PKB 

method to detect the convergence of the decoder. For simulations Ƥ(256,128) is utilized 

for BPSK modulated AWGN channel, and seven different channel SNRs are used. 

Success rate is calculated by dividing successfully decoded frame number for a given 

noise level to the total decoded frame number.  

success ratei = 
successful frames in a certain arfticial noisei

total frame sent
 (4.5) 
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To observe stochastic resonance curve, we omitted the successful decoding results of 

artificial noise free branch of Na-BPL decoder. Ninety percent of the frames are decoded 

successfully in the first stage (artificial noise free) of the decoder. Fig. 4.38 contains 

resonance curves for the decoders that include artificial noise. Fig. 4.38 shows that 

stochastic resonance can be observed in a Na-BPL polar decoders. It can be concluded 

that as the AWGN channel SNR increases, a small level of artificial noise is sufficient to 

achieve accurate convergence of the decoder. 

 

 

 

Figure 4.38 Stochastic resonance curves achieved by folded Na-BPL polar decoder for 

Ƥ(256,128) with list size 32 under BPSK modulated AWGN channel 
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4.3.2 Systematic Na-BPL Polar Decoder 

Systematic coding is also applied for Na-BPL decoder. As it is illustrated in Fig. 4.14, the 

systematic decoder of [113] is well suited for BP-based polar decoder. Error correction 

performance is enhanced using systematic decoding for Na-BPL when compared with 

non-systematic one. BER and BLER performances of systematic and non-systematic 

codes involving Ƥ(1024,512) and Ƥ(2048,1024) for different list sizes are compared to 

each other. During simulations, BPSK modulated AWGN channel, Bhattacharyya 

parameter based polar code construction, RT scheduling, perfect knowledge based early 

detection and constant frozen node approach are employed. Fig. 4.39 and Fig. 4.40 show 

the BER/BLER achievements for Ƥ(1024,512) and Ƥ(2048,1024), respectively. 

 

 

 

Figure 4.39 BER/BLER performance comparison of non-systematic Na-BPL and 

systematic Na-BPL decoders for Ƥ(1024,512) 
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Another comparison is made with CRC aided SCL decoder, Fig. 4.41. Fig. 4.41 shows 

BER comparison of non-systematic Na-BPL, systematic Na-BPL, non-systematic CRC-

aided SCL decoder, and systematic CRC-aided SCL decoder for Ƥ(2048,1024) for which 

the list size is set to 32. Maximum iteration number, M, of Na-BPL decoders is set to 200. 

BER performance of the systematic Na-BPL decoder is 0.1 dB away from the state-of-

the-art non-systematic CRC-aided SCL decoder, but, it cannot compete with systematic 

CRC-aided SCL decoder yet. However, comparison between systematic Na-BPL and non-

systematic CRC-aided SCL decoder is not fair. Because, Na-BPL decoder uses perfect 

knowledge based early detection and termination method. On the other hand, no 

complexity is added to Na-BPL decoder by the use of systematic approach. 

 

 

 

Figure 4.40 BER/BLER performance comparison of non-systematic Na-BPL and 

systematic Na-BPL decoders for Ƥ(2048,1024) 
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4.3.3 Na-BPL Polar Decoder with Genetic Algorithm based Code Construction 

GenAlg based polar code construction, in other words frozen bit selection, is presented in 

section 4.2.2, and it is shown to be effective on BP polar decoding when BPSK modulated 

AWGN channel is used. We will use the same polar code that is constructed using a single 

BP polar decoder for Na-BPL decoder simulation. Simulation results show that Na-BPL 

decoder with GenAlg based polar code outperforms Na-BPL decoder with Bhattacharyya 

parameter based polar code. Fig. 4.42 and Fig. 4.43 depict the BER/BLER graphs to show 

the effect of GenAlg for Ƥ(1024,512) and Ƥ(2048,1024). 

GenAlg based polar code with Na-BPL(L = 32,PKB) decoder approaches to the 

performance of the CRC-aided SCL decoder employing Ƥ(2048,1024). It is shown in Fig. 

4.44 that there is 0.1dB difference for BER of 10
−6

. Same amount of BER gain is achieved 

with systematic decoding of polar codes. Thus, it is straightforward to arrive in the thought 

that decoder-tailored GenAlg based polar code construction can be applied to the 

systematic Na-BPL decoder. In the original paper of GenAlg based construction [10], it is 

 

 
 

Figure 4.41 BER performance comparison of BP, Na-BPL and CRC-aided SCL 

decoders for Ƥ(2048,1024) 
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stated that the proposed approach can also be applied to the systematic polar code when it 

is decoded with BP decoder on BPSK modulated AWGN channel. However, we observed 

that initial population has the best performance when systematic coding is applied thus, 

crossover and mutation could not achieve any further error correction performance 

improvement. 

 

 

Figure 4.42 BER/BLER performance comparison under different polar code 

construction methods for Ƥ(1024,512) at BPSK modulated AWGN channel 
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Figure 4.43 BER/BLER performance comparison under different polar code 

construction methods of Ƥ(2048,1024) for BPSK modulated AWGN channel 

 

 
Figure 4.44 BER performance comparison of different types of polar decoders for 

Ƥ(2048,1024) 
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4.4 Na-BPL Polar Decoder for Practical Applications 

For practical application of the Na-BPL decoder, it is critical to implement it in log-

domain for lower complexity and for ease of implementation. For these reason, the 

proposed Na-BPL decoder is implemented in log-domain and is simulated using log-

domain message propagation equations, early detection method and post decision 

mechanism. Simulation results that are depicted till this point are achieved using non-

logarithmic equations that includes multiplication and division operations. These 

operations are difficult to implement in hardware as the code length increases. For this 

reason, logarithmic versions of the propagation messages are considered in this sub-

section. Complexity of any decoder is an important factor that affects its utilization on 

practical communication devices. The complexity reduction technique, min-sum (MS) 

approximation of the BP polar decoder, is proposed in [104] to reduce the complexity of 

the decoder. Logarithmic versions of the message propagation equations are approximated 

for complexity reduction. Due to approximations, performance of the decoder decreases. 

In order to compensate the performance loss, a scaling factor is used in [19], and it is 

named as scaled MS (SMS) BP and is shown with equations from (3.1) to (3.4). Since, 

our Na-BPL decoder also suffers from the high complexity due to its parallel structure, 

we utilized SMS BP for our decoder, i.e., for Na-BPL.  

Furthermore, PKB method is utilized to detect early detection of convergence of Na-BPL 

decoder in the previous sub-section. Since PKB isn’t a realistic case for any decoder, other 

methods should be used for a fair comparison with the studies of the literature. Since polar 

codes will be used in communication systems (for now), it is important to present block 

error rate performances rather than bit error rate performances. In this context, BLER 

results are going to be shared in this section. 

4.4.1 Post Decision Mechanisms 

In this thesis, we used a set of post decision mechanism that boosts our Na-BPL decoders’ 

error correction performance. Since early detection criteria does not contain sufficient 

information for an accurate decision, the use of a post decision mechanism is vital for 

better judgement. In our study, we are going to use four different post decision 

mechanisms, and these post decision mechanisms are: 
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a. Argmin based post decision: Argmin based decision relies on Euclidian distance 

between received codeword and estimated codewords as formulated in 

 
x̂BPL=

arg

xi,i∈{1,…,L}
min‖y-x̂i‖

 
 

(4.6) 

 

Since list decoder has a number of estimated codewords, the Euclidian distances between 

the estimated codewords and the received codeword y give us a measure of success.  The 

branch with minimum Euclidian distance is selected as the winner decoder. Argmin based 

post decision is utilized in BPL polar decoder of [62]. 

b. Leader of Converged Decoders: In this approach, when an early detection condition 

is met on at least two branches, the branch with the less intensity of artificial noise is 

accepted as successfull. This method can be perceived as wasting the potential of the list-

based decoder, but its error correction performance is not low such that we measured the 

error correction performance of each branch separately in proposed Na-BPL decoder with 

a list length of 16, and BLER is calculated for 50000 frames. It can be seen from the results 

of Fig. 4.45 that the success of the first branch is normally higher in the Na-BPL structure. 

Thus, it can be concluded that LCD method seems to be a promising approach and it can 

be considered for practical applications. 

 

 
 

Figure 4.45 BLER performance of parallel branches of Na-BP list decoder Ƥ(512,256) 
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c. Average based Assumption (ABAtype): In this method, the branch results (in terms of 

bits or likelihood) that meet the early detection conditions are evaluated and selected when 

they are above a certain threshold value. This method can be applied in two different ways. 

Type 1: In ABA1, the decision results of the branches are considered and voting is 

performed. According to the vote, the value of the bit is determined. For example, for a 

list size of 16 assume that the result of 10 branches, e.g. û1,û2,û5,û6,û7,û9,û11,û14,û15,û16, 

satisfy the early detection condition. The results of 10 successful branches are summed bit 

by bit and denoted by ûsum. As a result, there is a contribution between 0 and 10 for each 

bit in the vector ûsum. The result can be achieved by applying a predetermined threshold 

value (e.g. 8 (80%)) on ûsum. 

Type 2: In ABA2, the absolute log-likelihood values of the branches that satisfy early 

detection criteria are summed [126]. For example, let’s assume that for a list size of 16, 

five branches (û1,û9,û11,û15,û16) achieve convergence. The sum of the absolute values of 

the vector elements is  calculated, e.g. ∑|û1|. The branch giving the maximum summation 

result is accepted as the winner decoder. 

d. Correlation based decision (Corr): Correlation between the codewords x̂i  estimated  

by Na-BPL branches satisfying early detection criteria and the channel output y is 

calculated. Then, the branch with maximum correlation is accepted as the winner decoder.  

4.4.2 Simulation Results of Na-BPL Decoders with Different Early Detection 

Methods and Post Decision Mechanisms 

In section 4.3, the theoretical PKB approach is used in the Na-BPL decoder. In this section, 

we consider the use of Na-BPL for realistic scenarios. First, comparison between different 

scenarios that can be applied to Na-BPL decoder is inspected. Next, comparison with 

literature is presented in order to show that our idea works and it is a promising candidate 

for upcoming 5G frameworks. Fig. 4.46 shows the different cases of Na-BPL decoder. 
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In Fig. 4.46, list size is kept the same as 16 for all cases. Noise intensities ranges from 0 

to 0.1875 with increment step size of 0.0125. Maximum iteration number is set to 50. For 

simulations employing G-matrix-based method, CRC and PKB early detection techniques 

are utilized. ML decoder lower bound is also evaluated.  Half-way scheduling is applied. 

From Fig. 4.46, we can infer that 

 Na-BPL decoder with approach-I of CRC-8 and post decision ABA1 almost 

achieves the BLER performance of ML decoder after 3.2 dB. With CRC approach-

I, code rate becomes 0.484.  

 Correlation based post decision mechanism has the worst error correction 

performance while LCD approach is promising as mentioned in 4.4.1.  

 

 
Figure 4.46 BLER performance comparison of different types of Na-BPL polar 

decoders for Ƥ(512,256) 
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 Post decision mechanism of argmin and LCD can be utilized together, argmin is 

applied whenever at least two branch of the Na-BPL decoder satisfies G-matrix-

based stopping condition. 

It is possible to evaluate a lower bound for the error probability of linear codes under ML 

decoding [10]. To do this, each time BP decoding fails then it is checked that whether 

decoded codeword was more likely close to transmitted codeword rather than received 

codeword or not. After making this comparison, if decoded codeword dominates then we 

understand that the optimal ML decoder would surely misdecode received codeword, y, 

as well. Frequency of this event is counted as the lower bound on the error probability of 

the ML decoder and so ML bound curve is constructed. 

The performance comparison between the proposed Na-BPL decoder and BPL decoder in 

[62,125] is presented in Fig. 4.47 where two variants of Na-BPL and BPL structure with 

CRC based stopping are compared. CRC approach-II is utilized for all the cases and in 

this approach code rate is kept the same. Besides, conventional scheduling, list size of 32 

and maximum iteration number of 200 is used in order to lead fair comparison. Artificial 

noise intensities of Na-BPL ranges from 0 to 0.3875 with increment step size of 0.0125. 

Simulation results show that the proposed Na-BPL decoder achieves the same error 

correction performance as the original BPL structure when a decent post decision 

mechanism is selected. In addition, CRC control is performed for every iteration after the 

completion of 20th iteration to achieve accurate convergence of Na-BPL. 
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Another comparison for the proposed Na-BPL decoder is done with the literature results 

using the code Ƥ(1024,512). We use simulation results provided in [124] which uses 

multi-trellis structures presented in [60,62] and selects permuted trellis structures in a 

cleverer manner. The same simulation scenarios of [124] are used to show that our Na-

BPL decoder is a promising candidate among BP-based polar decoders. Convectional 

scheduling, maximum iteration number of 200 and equal list size (10) are utilized. Noise 

intensities of Na-BPL ranges from 0 to 0.225 with increment step size of 0.025. The same 

CRC polynomial with approach-I, CRC1, is utilized. Method presented in [124] is named 

as MAXSON and it uses 10 different factor graphs (FG) to increase error correction 

performance of the BP-based polar decoder. Results of MAXSON and Na-BPL with 

perfect knowledge based early detection is also depicted in Fig. 4.48 and Fig. 4.49 which 

is a zoomed version of Fig. 4.48. 

 

 

 
Figure 4.47 BLER performance comparison of different types of Na-BPL and BPL 

polar decoders for Ƥ(128,64) 
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Figure 4.48 BLER performance comparison of different types of Na-BPL, MAXSON 

and SCL polar decoders for Ƥ(1024,512) 

 

 

Figure 4.49 Zoomed BLER performance comparison of different types of Na-BPL, 

MAXSON and SCL polar decoders for Ƥ(1024,512) 
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Simulation results in Fig. 4.48 and Fig. 4.49 show that Na-BPL decoder employing the 

same simulation parameters as MAXSON methods has better error correction 

performance. Even, BLER of Na-BPL (L=10, CRC1-16, Argmin) is very close to 

MAXSON (10-FG, PKB). Moreover, the performance of SCL decoder with list size 32 is 

achieved. Further comparison can be accomplished using other studies on multi-trellis BP 

polar decoder’s outcomes. In this manner, we are going to use the studies of [10,60,62] on 

polar code Ƥ(2048,1024). In Fig. 4.50, four different decoder results are shown. First of 

them is multi-trellis approach with CRC based early detection method [60]. In this 

approach, 100 different permuted factor graphs (FG) are used in a sequential manner until 

CRC is satisfied. BPL [62] and SCL [10] results are also given. The proposed Na-BPL 

decoder utilizes half-way scheduling, maximum iteration number of 200, and list size of 

32. Artificial noise intensities ranges from 0 to 0.1938 with increment step size of 0.00625. 

Early detection, in this case it is CRC, is activated after 20th iteration. 

 

As a result, Na-BPL decoder with list size 32 achieves 0.3 dB advantage at 10-4 BLER 

over other polar decoders shown in Fig. 4.50. 

 

Figure 4.50 BLER performance comparison of different types of polar decoders for 

Ƥ(2048,1024) 
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GenAlg based polar code construction is also applied for SMS BP polar decoder. GenAlg 

is employed for polar codes Ƥ(512,256) and Ƥ(1024,512) on BPSK modulated AWGN 

channel with channel SNR 2 dB. Maximum iteration of SMS BP polar decoder is set to 

200. Moreover, G-matrix-based early detection, keeping frozen nodes constant and 

conventional scheduling strategies are used during GenAlg based polar code construction. 

The flowchart shown in Fig. 4.25 is used. It is important to state that GenAlg uses single 

BP polar decoder, however, we use its results (choice of frozen set) for our Na-BPL 

structure and achieve significant error correction performance as shown in Fig. 4.51. 

Moreover, despite to the fact that GenAlg is run for G-matrix-based early detection, it 

achieves better results even with CRC based early detection. On the other hand, 

performance of polar code that is designed by using GenAlg for 2 dB SNR, degrades after 

3 dB SNR and closes to the performance of polar code with Bhattacharyya based 

construction which is designed for 0.5 dB. 

 

 

Figure 4.51 Genetic algorithm based polar code construction comparison for 

Ƥ(512,256) and Ƥ(1024,512) 
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In [92] Na-BPL polar decoder with PKB early detection, which is one of the best BP-

based decoder having BER/BLER performance close to the performance of the state-of-

the-art CRC-aided SCL decoder, is introduced. Operation of Na-BPL is simple and it is 

similar to BPL of [62] in the way of using list concept. Na-BPL decoder diagram is 

depicted in Fig. 4.30 where it is seen that there are L parallel decoders, and each parallel 

branch is fed with artificially generated noise, n, and after each decoding operation an 

early detection and termination criteria is applied. A post decision is applied among the 

branches that satisfies early detection condition. It is also important to state that the factor 

graphs of the polar decoders are the same of each other (not permuted versions as utilized 

in [62]), and artificial noise level increases as the list size increases. Na-BPL with list size 

32, maximum iteration number M = 200, utilizing realistic early detection techniques and 

post decision mechanisms has a BLER performance advantage of 0.3 dB when compared 

to SCL and BPL decoders employing Ƥ(2048,1024). Moreover, further improvement is 

achieved applying new polar code construction method. In brief, the proposed approach 

is a promising candidate to substitute CRC-aided SCL decoder, which is used in 5G 

physical layer as the forward error correction method of control channels. 
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CHAPTER 5 

 

 CONCLUSION  

 

 

 

Channel codes are used to overcome the degrading effects of channel noise and maintain 

reliable communication. Polar codes are chosen for control channels of eMBB 

communication services in 5G standard, and they are candidate for data and control 

channels of mMTC and URLLC. It is anticipated that polar coding will be a promising 

technique for the future communication standards. Belief propagation decoders employed 

for polar codes have parallel decoding capability, and they can be integrated with other 

decoders processing soft information. 

 In this thesis, different types of BP polar decoders are inspected. The design of BP polar 

decoders show difference considering throughput, latency, complexity and BER or BLER 

performance issues. Although BP polar decoder has parallel processing advantage, it has 

two main disadvantages, which are lower BER/BLER performance over CRC aided SCL, 

and higher complexity over SC. For this reason, to further enhance the performance of BP 

decoder; SMS BP decoder, parity-check matrix based decoder, modified BP polar decoder 

with check nodes, concatenated polar decoder, hybrid decoders and multi-trellis BP 

decoders are presented in the literature. Besides, improved BP decoder with modified 

kernel matrix, node classification and unification-based decoder, stage combined decoders 

and stochastic BP polar decoder are presented to decrease the complexity of the BP 

scheme without any performance loss. A variety of early detection and termination 

methods to decrease the iteration number of BP decoders are also studied in the literature. 

Decoding latency decrement and throughput increment are possible if an early detection 

method is performed when decoder is converged.  Another topic of interest is the selection 

of frozen bits in polar code design process. As mentioned before, Bhattacharyya parameter 

based selection is designed for SC decoding scheme, and it is shown that it is not the 
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optimal method when other decoding schemes, and scheduling algorithms are used. A 

number of polar code construction methods are presented to handle the need for an optimal 

model for BP-based polar decoder. To sum up, if performance improvement of BP over 

CRC aided SCL is achieved with acceptable complexity, then polar codes will be subject 

to 5G and 6G framework standards that needs low latency, high reliability and low 

complexity.  

In belief propagation algorithm, messages, i.e., probabilities, propagate forward and 

backward in an iterative manner, and in these propagations some messages may enter into 

deadlocks, and the reasons for these deadlocks are the initial unreliable messages obtained 

from the received signal. To prevent the appearance of deadlocks, or at least to decrease 

its probability of occurrence, we can use the weak noise for the received signal as a 

perturbation factor. Motivating from this fact, we consider the use of weak noise for the 

belief propagation decoders used for polar codes. The proposed decoder used for polar 

codes is called as noise aided belief propagation list decoder, i.e., Na-BPL. It is shown via 

simulation results that the proposed decoder improves the performance of polar codes. It 

is well-known in the literature that the systematic polar codes outperform non-systematic 

polar codes with additional complexity increment at the decoder side. However, due to 

the structure of belief propagation decoders, the systematic polar codes do not bring extra 

overhead at the decoder side. Motivating from this fact, we employed systematic polar 

codes for Na-BPL decoders to achieve better performance. The design strategy of the polar 

code is a very critical issue for the performance of the polar decoder. We considered the 

design of polar codes using the genetic algorithm. It is shown via simulation results that 

the polar codes designed by genetic algorithm show improved performance for Na-BPL 

decoders. The Na-BPL decoder employing perfect knowledge based early detection with 

polar code designed by genetic algorithm has a performance achievement only 0.1 dB 

away from the performance of the state-of-the-art polar decoder. On the other hand, Na-

BPL decoder with realistic early detection and post decision mechanisms cannot compete 

with the state-of-the-art polar decoder of CRC aided SCL. However, its performance is 

still much better than the performance of SCL and BPL polar decoders. For future work, 

the controlled addition of weak noise to the received signals, and to the propagating 

messages showing unreliability can be a forthcoming study. 
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