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Assoc. Prof. Osman S. Börekçi . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. Dr. Cem Avcı . . . . . . . . . . . . . . . . . . .

Asst. Prof. Yasin Fahjan . . . . . . . . . . . . . . . . . . .

Assoc. Prof. Emre N. Otay . . . . . . . . . . . . . . . . . . .
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ABSTRACT

NUMERICAL MODELING OF WATER WAVE

PROPAGATION USING THE MESHLESS

MULTIQUADRIC METHOD

In the present study, water wave propagation in two dimensions, where the flow

is irrotational, is numerically modeled using meshless multiquadric (MQ) method. In

the first part, the method is applied to the classical linear wave theory boundary value

problem. In the second part, the linear problem is modified to investigate how the

solutions are affected under fully nonlinear free surface boundary conditions where

the free surface deformation needs to be dealt with. The model that is developed in

the third part, uses the fully nonlinear free surface boundary conditions and accepts

nonlinear stream function wave input. The results of the numerical tests show that the

linear waves and nonlinear waves are predicted with excellent accuracy with meshless

MQ method.
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ÖZET

DOĞRUSAL VE DOĞRUSAL OLMAYAN SU DALGASI

İLERLEMESİNİN AĞSIZ MQ YÖNTEMİ İLE SAYISAL

MODELLENMESİ

Bu çalışmada akışın çevrintisiz olduğu iki boyutta su dalgası ilerlemesi ağsız

MQ yöntemi ile sayısal olarak modellenmiştir. İlk bölümde, yöntem klasik doğrusal

dalga teorisi sınır değeri problemine uygulanmıştır. İkinci bölümde doğrusal problem,

yüzey değişiminin hesaba katılmasının gerektiği doğrusal olmayan serbest yüzey sınır

şartları altında çözümlerin nasıl etkilendiğini araştırmak için değiştirilmiştir. Üçüncü

bölümde geliştirilen model doğrusal olmayan serbest yüzey sınır şartlarını kullanmakta

ve doğrusal olmayan akış fonksiyonlarını girdi olarak kabul etmektedir. Sayısal deney-

lerin sonuçları ağsız MQ yöntemi ile doğrusal ve doğrusal olmayan dalgaların mükemmel

doğrulukta tahmin edilebildiğini göstermiştir.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

1.1. Wave Modeling in General

The optimum utilization of the world’s coastal zones relies heavily on the under-

standing of processes that play a role in the evolution of coasts in response to the forces

of nature or human intervention. Of the natural forces, those due to waves are amongst

the most important ones since waves gather energy and momentum from winds blowing

over large ocean surfaces and transport them to the coast where they shape the coastal

zone. Thus, the generation, propagation and transformation of waves have attracted

researchers for more than a century. Along with field and laboratory studies of waves,

analytical and numerical models of waves have been developed.

Each model depends on the approach how to treat the water as a material, the

geometry of interested domain and certain characteristics involved in the wave prop-

agation phenomena. A detailed account of wave theories and models can be found

in texts such as those by Dingemans (1997a; 1997b), Kowalik and Murty (1993), Mei

(1989). Out of these, there are models treating water as viscous therefore trying to

simulate the wave propagation behavior through a set of equations that takes momen-

tum and viscosity into account. Such models are called Navier-Stokes (NS) models

owing its name to the field equation used in the model. However, analytical solutions

to NS models can be obtained under some specific conditions. There is still ongoing

research on NS models to apply it to a more general fluid flow. On the other side there

are several inviscid models which can be classified as models of Laplace equation origin

because the governing field equation contains the Laplacian of the velocity potential

that can be identified in the absence of viscosity. The simplest of these is the linear

wave theory based on the small wave amplitude oscillation and small wave steepness

assumptions. In fact simplifications due to these assumptions remove the difficulties in-

herent in the boundary conditions defined at the surface. Further attempts to simulate

more general conditions are realized by the introduction of higher order expansions of

the field parameter such as in the Stokes wave theories and cnoidal wave theory. Since
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these are approximate analytical theories, they have certain limitations. Parallel to

these analytically approximate models, there are numerical models that try to find the

coefficients of the higher order expansion of the field parameter to make it applicable

to more general situations. Another group of models are the purely numerical ones.

These using a certain technique try to solve the problem approximately. These tech-

niques make it possible to obtain results of more complicated problems compared to

the present analytical solutions. Some of these techniques through the use of known

local functions try to simulate the unknowns at the locations or on certain elements

obtained via domain or boundary discretization. However, performance of these nu-

merical techniques even the most traditional ones are highly dependent on the locations

that are predetermined to set up equation system of the model. Also, the order and

the known function itself are important to construct a solution. Thus, researchers tend

to develop more flexible methods to deal with problems with complicated or deforming

geometry. The so-called mesh free methods are devised to answer these necessities.

Over the last couple of decades, mesh free methods have begun to emerge. Of

these, the radial basis function (RBF) collocation method introduced by Kansa (1990a;

1990b) is one of the most promising. This method achieves greater accuracy by the

collocation at the locations scattered throughout the domain. Moreover, the locations

of the collocation points may be random in nature compared to regular mesh requiring

methods. This flexibility of the collocation points is especially useful in moving or

deforming boundary problems.

The aim of the present study is to investigate the viability of the RBF collocation

method in the development of a numerical model for the solution of the classical wave

boundary value problem. As such, the model should be able to accept as input any

unknown solution (linear or nonlinear) of the wave boundary value problem and to

propagate it without amplitude or phase error.

The model development was carried out in three phases. In the first phase, the

model developed was based on the linearized version of the wave boundary value prob-

lem and was solved using linear wave theory input. In the second phase, the model was
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modified for the nonlinear free surface boundary conditions. This required the intro-

duction of a method to update the position of the free surface and the corresponding

boundary conditions as the wave propagates. The model was run using a linear wave

input which represents the lowest order nonlinear input. In the last phase of the devel-

opment, the model was run using nonlinear input obtained from the stream function

wave theory.

1.2. Irrotational Wave Propagation

One particular class of models that makes use of the potential flow theory, realizes

the assumption that the velocity field can be derived from a scalar potential such as

in Equation 1.1 below,

u = 〈u, v, w〉 = ∇φ (1.1)

where u = u(x, y, z, t) or component-wise 〈u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)〉 denotes

the velocity field and φ denotes velocity potential in Cartesian coordinates. It is a

known fact that viscosity generates vorticity which is initially generated at the bot-

tom and surface boundaries. Since diffusion of vorticity from the boundaries to the

interior is quite slow as shown by Longuet-Higgins (1953; 1960), neglecting viscosity

and assuming the irrotational flow up to the breaking point may be a good approx-

imation. This implies that the change in wave energy is negligibly small. Also since

the dissipation of wave energy is excluded, it can be concluded that the wave ampli-

tude does not attenuate and the wave number or frequency does not change. Hence

inviscid, irrotational, frictionless are the definitions that can be used interchangeably

and the corresponding governing equation is the so-called Laplace Equation as shown

in Equation 1.2 below

∇2φ = 0 (1.2)

where φ is the velocity potential. The governing equation is a second order linear par-

tial differential equation(PDE) whose solution requires the specification of appropriate
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x

y

z

z = η(x, y, t)

h(x, y, t)

Figure 1.1. An illustration of wave boundary value problem

boundary conditions. Therefore, boundary conditions of this elliptic problem deter-

mine the characteristics of the solution and thus definition of them is a very important

task to describe the expected flow. An illustrative problem geometry in a vertical sec-

tion is given in Figure 1.1. Although not shown in the figure, in addition to the surface

and bottom, four vertical lateral boundaries limit the domain both along x and y. Free

surface can be expressed as a function of the horizontal spatial coordinates and time,

namely η(x, y, t). Similarly h(x, y, t) denotes the position of the bottom usually with

respect to an origin placed at the mean water level or at a certain elevation from a fixed

datum. For the purpose of this study the waves will be considered to be of infinite crest

length and as a consequence the y-direction (transverse to the direction of wave prop-

agation) will be excluded. In the direction of wave propagation, the solution domain is

delimited by two vertical boundaries extending over the depth. The up-drift boundary

will be used for the specification of the forcing while on the down-drift boundary those

conditions necessary to ensure purely outgoing waves will be specified. Since there are

no objects or restrictions in the simulations of this study, the figure does not contain

any object which may exist in a flow field. Also, in order to avoid going beyond the aim

of this study, only those boundary conditions related with a two dimensional problem

are discussed below.
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1.2.1. Bottom Boundary Condition

There are several factors that have to be considered for the specification of the

bottom boundary condition for an inviscid fluid. First of all it is important to know

whether the boundary is fixed or moving. Except in rare cases, the bottom boundary is

accepted as a fixed boundary. The next factor is the permeability of the bottom. If the

bottom is permeable or at least if its permeability considerably affects the flow, then

it is an important factor to consider. Finally, bottom geometry is another important

factor that has to be accounted for. In general, the normal component of fluid velocity

needs to be equal to the sum of the normal velocity of the boundary and the normal

seepage velocity through it. This is shown below in Equation 1.3.

u · n = ub + us (1.3)

where n is the surface normal, ub is normal velocity of the bottom boundary and us

is the normal component of the seepage through the boundary. Let the water depth

is expressed as h(x, y, t) as shown in Figure 1.1. Then, the bottom surface can be

expressed as

z = −h(x, y, t) (1.4)

or by surface

fb(x, y, z, t) = z + h(x, y, t) (1.5)

from here it follows that time rate of change of this surface vanishes if there is no

seepage through this surface, i.e.

Dfb

Dt
= 0 (1.6)
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or

−w =
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
(1.7)

where u,v and w are the velocity components as introduced before. If the bottom

boundary is fixed, time rate of change of depth vanishes so that the bottom boundary

condition can expressed in the form

−w = u
∂h

∂x
+ v

∂h

∂y
(1.8)

One other possible case here is that bottom boundary can be horizontal and straight.

Then fixed, impermeable and horizontal bottom boundary condition becomes

w = 0 (1.9)

1.2.2. Free Surface Boundary Condition(s)

The free surface boundary condition can either be represented as two independent

coupled conditions or as a combined condition. One of these independent coupled equa-

tions is the so-called dynamic free surface boundary condition. This is the unsteady

Bernoulli Equation combined with the dynamic condition that includes atmospheric

pressure and surface tension. The other one is the kinematic free surface boundary

condition which is a result of the assumption that a particle on the free surface re-

mains on the free surface. In fact, this assumption is realized neglecting micro-scale

effects such as net transport of vapor and salt molecules causes the particles leave the

surface. Therefore surface particles remain intact at the surface and move tangential to

the surface. Written with respect to an Eulerian frame, equations below are the kine-

matic free surface (KFSBC) and dynamic free surface boundary conditions (DFSBC)
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respectively.

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
= 0 at z = η(x, y, t) (1.10)

∂φ

∂t
+

1

2
|∇φ |2 +

p

ρ
+ gη = C ′(t) at z = η(x, y, t) (1.11)

where η(x, y, t) is the free surface displacement, p is the pressure term containing atmo-

spheric pressure and the surface tension at the free surface, C(t) is the time dependent

Bernoulli constant and g is the gravitational acceleration. When the pressure at the

free surface is the ambient pressure of the air above the surface and the free surface

does not possess large curvatures as a result of very short waves, the pressure term

drops out of the DFSBC by setting the ambient pressure to zero. Even under these

assumptions, the free surface boundary conditions preserve their nonlinearity which is

always an issue unless small amplitude oscillations can be assumed.

In the case of small amplitude oscillation, given the amplitude of the wave is a,

the order of magnitude of some characteristic parameters a/L and a/h are much less

than unity. That is, if O denotes the order of its argument,

O(
a

L
) << 1 and O(

a

h
) << 1 (1.12)

where L is the wave length and h is the water depth. This implies that higher order

terms expressed in terms of a/L are much smaller and can be neglected. Another

implication is that the free surface parameters can be expressed in terms of their value

at the mean water level which is a direct result of expanding free surface parameters

about the mean water level using Taylor’s expansion and dropping out the negligible

higher order terms. This also means that the mean water level is stationary so that

the free surface boundary is treated as fixed and becomes easier to deal compared to a

deforming boundary.

If nonlinear terms were to remain, then the forms of the free surface boundary

conditions expressed in an Eulerian frame are difficult to model due to their non-



8

linearity. One other difficulty arises when the surface elevation becomes multivalued

in the case of overturning and irrotationality is still accepted to exist instead of a

dissipative model that deals with the wave breaking in more detail. During model-

ing, this is however not always a desired situation because breaking or overturning

of waves involves energy dissipation that cannot be neglected. However, in practice

when wave overtopping and wave loads on structures are calculated, the wave front

geometry is particularly required. To overcome these difficulties, Longuet-Higgins and

Cokelet (1976) introduced Lagrangian variables to keep track of the surface particles

in time and extract information from their positions for the coincident Eulerian surface

necessary to calculate the velocity field.

If a surface particle at a position (x0, z0) starts its motion at time t0, its position

(x, z) at a later time t in the Lagrangian view becomes

x = x0 +
∫ t

t0
uL(x0, z0, t)dt (1.13)

z = z0 +
∫ t

t0
wL(x0, z0, t)dt (1.14)

where uL(x0, z0, t) and wL(x0, z0, t) are the Lagrangian velocity components of the

particle along the horizontal and vertical respectively. Hence, at the instant t the

Eulerian surface passing through (x, z) will have the same velocities and potentials as

that of the Lagrangian particle. It has to be noted here that although positions of

the particles will determine several points of the surface passing through them during

the numerical implementation of the approach, the medium can still be treated as a

continuum. This is how a continuous Eulerian surface is numerically obtained from

the positions of Lagrangian particles. Therefore, instead of the free surface boundary

conditions specified with respect to an Eulerian frame in Equations 1.10 and 1.11, the

following set of equations can be used.

DxL

Dt
= uL (1.15)

DzL

Dt
= wL (1.16)

DφL

Dt
=

1

2
|∇φL|2 − gzL (1.17)
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Here, xL and zL are the Lagrangian positions of the particles, φL is the Lagrangian

potential of a particle and uL and wL are the velocity components along the horizontal

and the vertical respectively. This approach is sometimes referred to as the fully

Lagrangian descriptions of the surface. This description keeps track of the movement

of surface particles along both vertical and horizontal. However, it is possible to keep

track of only the vertical movement of the surface at a fixed horizontal position as seen

in the study by Kennedy and Fenton (1996; 1997) and Fenton and Kennedy (1996) and

this approach is called semi-Lagrangian approach. Again expressed in two dimensions,

the surface velocity potential at a fixed point xf in the horizontal also depends on the

vertical coordinate and time, i.e.

φs = φ(xf , z, t) on z = η (1.18)

where η corresponds to the free surface displacement. And its time rate of change

becomes,

∂φs

∂t
= C ′(t)− gη − 1

2
|∇φ |2 +

∂φ

∂z

∂η

∂t
on z = η (1.19)

This equation is used coupled with the KFSBC introduced before in Equation 1.10 to

keep track of the change of the free surface in the vertical at a fixed position along the

horizontal. It has to be noted here that the semi-Lagrangian description also lacks the

capability to simulate overturning like the fully Eulerian expressions of the free surface

boundary conditions introduced before in Equations 1.10 and 1.11.

1.2.3. Truncation Boundary Conditions

These boundary conditions are used for a complete definition of the problem.

Concentrating on the case that there are no objects or obstacles in the domain where a

local boundary condition specification would be necessary, it can be assumed that there

are only outgoing waves at the infinity. This assumption requires a radiation boundary

condition(RBC) at the outflux section of the domain. However, since it is not practical

to simulate at infinity, the boundary is truncated and a radiation boundary condition is
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applied at some distance from the influx section in order to approximate the behavior

at infinity. At the influx section any kind of suitable boundary condition that carries

the information about the propagating wave can be used. For example the following

conditions are the most conventionally used Dirichlet and Neumann type boundary

conditions respectively.

φ = φi(x0, z, t) (1.20)

∂φ

∂x
= ui(x0, z, t) (1.21)

where φi is the input wave potential and ui is the input water particle velocity at the

position of the influx boundary with its normal along x, say at x = xi.

There are also other ways to treat the radiation boundary by using the so-called

absorbing boundary condition. One possibility here is that if the waves are periodic

in space and time, one can make use of periodic boundary conditions. For example if

Dirichlet type of boundary condition is going to be used, periodic boundary condition

in both space and time is

φ(x, t) = φ(x + L, t) (1.22)

φ(x, t) = φ(x, t + T ) (1.23)

where L and T are the wave length and the wave period respectively. In the study

by Longuet-Higgins and Cokelet (1976), the periodic boundary condition is used to

transform the free surface into a circle for use in the boundary integral method. Another

way of introducing absorbing boundary condition is by selection of the boundary far

away from the area of interest. This way the wave field can be correctly predicted until

the reflected waves spoil the solution. However, this means a simulation time limitation

as in Isaacson (1982). As can be seen in the study by Israeli and Orszag (1981), some

damping term, which works like a sponge filter, can be added to the PDE to simulate

the absorbing boundary. Yet another technique is to use simple outer field solutions

at the boundary. For instance, Lin et al. (1984) used linear waves outside the field
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for nonlinear computations inside the domain of interest. A widely used approach to

the absorbing boundary is through the use of a PDE as in Sommerfeld (1949) where

a scattering wave potential and thus the wave amplitude are shown to vanish for the

radial distance going to infinity. Sommerfeld’s radiation boundary condition when time

dependence and only outgoing waves are present takes the form below.

∂φs

∂r′
+

1

C

∂φs

∂t
= 0 (1.24)

where φs is the potential of the scattering wave field along a radial distance r′, and

C is the phase speed of the waves. This form is the first order and normally incident

case of the higher order non-reflecting boundary condition proposed by Higdon (1986;

1987) as shown below.

(

C0

cos θn

∂φs

∂r
+

∂

∂t

)n

o
φs = 0 (1.25)

where C0 is the linear phase speed, θn is the angle between the boundary normal and

the direction of outgoing waves and no is the order of accuracy. And it is clear that

Sommerfeld’s condition corresponds to case where n = 1 and θn = 0. Higdon (1986;

1987) is in fact a generalization of the boundary conditions presented by Engquist and

Majda (1977). In their study, Engquist and Majda (1977) developed a local boundary

condition that minimizes the reflection. These conditions are practical compared to

nonlocal conditions which are difficult to use in numerical applications. However, one

particular disadvantage of these studies is that they assumed that the wave form is

available at hand. Broeze and Van Daalen (1992), without using a priori knowledge

about the form of the waves, derived a boundary condition using variational principles

and obtained improved accuracy in the panel method. A numerical approach to Som-

merfeld’s boundary condition was used in Orlanski (1976) where the phase speed of the

wave is numerically calculated in the vicinity of the boundary and this condition has

started to be called the Sommerfeld/Orlanski boundary condition. A detailed account

of the literature on these type of boundary conditions can be found in Romate (1989).
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1.3. Linear Wave Theory

A linear solution to the wave propagation problem, can be obtained through

linearization of the free surface boundary conditions. As stated before in Equation

1.12, if the characteristic arguments a/L and a/h are very small, then higher order

terms in the free surface boundary conditions vanish because they lead to much more

smaller values. As illustrated in the Figure 1.2, the two dimensional periodic water

wave boundary problem solution which can be found in most wave mechanics text

books such as the one by Dean and Dalrymple (1984), is given. Since the wave is

periodic in space and time, one wavelength is taken under consideration. The bottom

is impervious and horizontal and the surface tension is neglected. Also ambient air

pressure above the free surface is taken to be zero. The linearized KFSBC and DFSBC

at the mean water level are respectively given below.

∂η

∂t
= −∂φ

∂z
on z = 0 (1.26)

∂φ

∂t
= gη on z = 0 (1.27)

The time dependent Bernoulli constant vanishes because there is no change in the

mean water level. The small amplitude assumption lets these boundary conditions to

be written at the mean water level. In addition, the bottom boundary condition for a

horizontal and impervious bottom is expressed as

∂φ

∂z
= 0 on z = −h (1.28)

and the lateral periodicity conditions are already given in Equations 1.22 and 1.23.

Under these conditions the Laplace equation is solved using the method of separa-

tion of variables. Depending on the selections it is possible to obtain the free surface

displacement in space x and time t, such as

η(x, t) =
H

2
cos(kx− ωt) (1.29)
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x

z

η(x, t)

h

H

L

Figure 1.2. Some two dimensional periodic wave characteristics

where H is the wave height, k is the number of waves per unit length or wavenumber

and ω is the wave angular frequency. Then, the corresponding velocity potential is

φ(x, z, t) = −H

2

g

ω

cosh k(h + z)

cosh kh
sin(kx− ωt) (1.30)

1.4. Stream Function Wave Theory

The analytical solution for linear waves is restricted mainly by the smallness of the

wave steepness. This has led to development of theories where the small wave steepness

criterion is relaxed so that waves of “finite amplitude” are obtained using the nonlinear

boundary conditions at the free surface. Recently after Airy’s (1845) work in which

the solution to the linear problem is given for the first time, higher order analytically

approximate expansions were proposed in the study by Stokes (1847). Several other

nonlinear higher order approximations such as cnoidal theory have been proposed to

model more general waves found in the nature. However, all these approximations also

have some limitations in their applicability. Stokes theory assumes that the variation

in the horizontal can be expressed in terms of a Fourier series and the coefficients

of these series are expressed as perturbation expansions in terms of wave amplitude.

Calculation of these coefficients is a very tedious task so that the orders up to which
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these coefficients are calculated are not always accurate enough that this theory breaks

down in shallow water and high waves. In order to get more accurate results, instead of

using perturbation expansions, coefficients of the Fourier series can be determined using

numerical techniques to solve a nonlinear set of equations formed accordingly. In the

study (Dean, 1965), the stream function solution of the Laplace equation that satisfies

the bottom boundary condition was used. The best possible coefficients fitting the

KFSBC and the DFSBC were calculated using a nonlinear least squares method. On

the other hand Rienecker and Fenton (1981) utilized the stream function to construct

a set of equations which are then solved by nonlinear Newton method to calculate

the coefficients approximating nonlinear steady waves. In the study by Rienecker

and Fenton (1981), entries of the Jacobian matrix are computed exactly. In a more

recent study by Fenton (1988), the entries of the Jacobian matrix are calculated using

numerical derivatives. Fenton (1988) removed the difficulties due to the calculation of

the Jacobian matrix inherent in the study by Rienecker and Fenton (1981) so that it

is applicable to more general situations.

According to Fenton (1988), the horizontal and vertical velocity components with

respect to a stationary physical frame were obtained as

u(x, z, t) = C − u + (g/k)1/2
Ns
∑

j=1

jBj
cosh jk(h + z)

cosh jkh
cos jkx (1.31)

v(x, z, t) = (g/k)1/2
Ns
∑

j=1

jBj
sinh jk(h + z)

cosh jkh
sin jkx (1.32)

Here C is the wave velocity, Bj are the unknown coefficients, k is the wave number of

the primary mode, u is the mean fluid speed relative to wave and Ns, being one less

than the number of points at which free surface displacements are calculated, is the

order of the stream function.

1.5. Numerical Methods

The wave propagation problem may also be solved using numerical methods.

Among others, numerical methods commonly used are the finite difference method, the
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finite element method, the finite volume method, and the boundary element method.

The first three can be classified as domain discretization methods using a mesh of

nodal points, area or volume elements generated so that they conform to the problem

boundaries. The boundary element method has the advantage that when applied to

the solution of linear PDEs requires meshing only on the curve or surface bounding

the solution domain. However, when the governing equation is nonlinear, integration

within the solution domain is required and the method formulation is revised so that

these integrals may be transformed to the boundary. This process involves nodes

within the solution domain. When the solution of a problem involving deformable

boundaries is required, all methods with the exception of the boundary element method

are difficult to use as the solution domain boundaries are part of their meshes which

were originally generated using certain rules. Although it is possible to speak of certain

guidelines in forming a boundary mesh for the boundary element method, in general the

placement and subsequent movement of boundary nodes is relatively simple. Overall,

regardless of the nature of the mesh required by a particular technique, meshing is a

time consuming effort that detracts the modeler from his efforts in developing a code

that better represents the physics of the problem at hand. To avoid meshing, the last

decade witnessed the development of meshless methods; meshless in the sense that the

rules of computational node placement are very few and flexible.

RBFs denoted by ϕ(‖x− xj‖) or sometimes by ϕ(r), are functions that depend

on the distance between nodes x and xj such that x ∈ ℜn and xj ∈ ℜn in n dimensions.

This is a scalar multivariate function dependent on the norm of its argument, i.e. ϕ

depends on r = ‖x− xj‖. As its definition suggests, an RBF is a function radially

symmetric about xj so that xj are called centers or nodes. Some RBFs depend on a

shape parameter c, and are then denoted as ϕ(r, c). Commonly used RBFs found in the

literature are tabulated in Table 1.1. It has to be noted here that all of the functions

listed in Table 1.1 are functions with global support. For the sake of efficiency in

computing matrix systems arising in a simulation problem, other RBFs with compact

support are also available. In order to illustrate, Wendland’s positive definite compactly

supported functions are tabulated in Table 1.2 as in (Wendland, 1995).
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Table 1.1. Some commonly used RBFs with global support

Piecewise Smooth RBFs ϕ(r)

Piecewise Polynomial |r|n, n odd

Thin Plate Spline |r|n ln ‖r‖, n even

Infinitely Smooth RBFs ϕ(r, c)

Multiquadric(MQ)
√

r2 + c2

Inverse Multiquadric 1√
r2+c2

Gaussian e−cr2

Table 1.2. Wendland’s positive definite functions with compact support

Dimension ϕ(r) Smoothness

1 (1− r) C0

(1− r)3
+(3r + 1) C2

(1− r)5
+(8r2 + 5r + 1) C4

2 (1− r)2
+ C0

(1− r)4
+(4r + 1) C2

(1− r)6
+(35r2 + 18r + 3) C4

(1− r)8
+(32r3 + 25r2 + 8r + 1) C6
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In Table 1.2 + operator is used to express ϕ(r) as a univariate polynomial p′(r)

or 0 depending on the values of r. Clearly,

ϕ(r) =











p′(r) if 0 ≤ r < 1

0 if r > 1
(1.33)

Utilization of RBFs roots back to the approximation of scattered n dimensional

data that is not necessarily located on a regular grid so that the methods using these

global functions to recover data using the pairwise distances between the centers at

which the data is located are called meshless methods. In other words, using N distinct

locations x1, . . . , xN ∈ Ω ⊂ ℜn at which the values y1, . . . , yN are defined, one can

construct a linear combination

f(x, c) =
N

∑

i=1

αiϕ(‖x− xj‖ , c) (1.34)

which best fits the data {xi, yi} for i = 1, 2, . . . , N . This combination is obtained by

solving a simultaneous set of equations as

Φα = y (1.35)

Here the, NxN coefficient matrix Φ is composed of entries Φij given by

Φij = ϕ(‖xi − xj‖ , c), where i, j = 1, 2, . . . , N (1.36)

α, the vector of coefficients is of length N and has the elements αi. The values yi form

the elements of vector y also of length N . The interpolant given in Equation 1.34 may

also be augmented by using polynomials pk(x) of order Ma, that is

f(x, c) =
N

∑

i=1

αiϕ(‖x− xj‖ , c) +
Ma
∑

j=1

βkpk(x) (1.37)

The form given in Equation 1.37 has now N + Ma unknown coefficients implying an
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underdetermined system matrix of Nx(N + Ma). Here necessary Ma more equations

can be obtained by requiring

N
∑

j=1

αjpi(xj) = 0 i = 1, . . . ,Ma (1.38)

In this case the system matrix becomes,

Φ′ =







Φ P

PT 0





 (1.39)

where P is the N by Ma matrix with entries Pij = pj(xi) and PT is the transpose of

P. And the resulting system of equations become,







Φ P

PT 0

















Φ

β











=











y

0











(1.40)

The choice of augmentation is left to the modeler depending on the requirements

of the problem, because no proof is present that supports its usage. The rest of this

text will only deal with the non-augmented form.

During the interpolation process, the most important issue a modeler will face is

the invertibility of the coefficient matrix. As pointed out in related texts, for example

in the text by Buhmann (2003), the solvability of the system in Equation 1.35 is

guaranteed if the quadratic form

αTΦα =
N

∑

i=1

N
∑

j=1

αiαjϕ(‖xi − xj‖ , c) (1.41)

is strictly positive when the vector of interpolation coefficients α is different than 0 and

data points are distinct. Moreover, this positive definiteness requirement for solvability

is guaranteed if the function ϕ(‖xi − xj‖ , c) is strictly completely monotonic.
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In particular, Hardy (1971) used the multiquadric radial basis function (MQRBF)

to interpolate topographical surfaces in a technique very similar to the technique in-

troduced above. Franke (1982) showed that Hardy’s MQ method was the best among

the 29 different algorithms used for the interpolation of scattered data. A more recent

study by Kansa (1990a) underlines the MQ method’s success and ease of its applica-

bility as long as scattered data interpolation is concerned. Kansa (1990b) dealt with

the application of MQ method to the solution of PDEs and stated that the method

can be applied to linear or nonlinear hyperbolic, elliptic, parabolic equations. Some

attractive properties of the MQRBF can be listed as follows:

• Continuously differentiable.

• Integrable.

• Capable of representing functions with steep gradients with very high accuracy.

• Better approximations can be obtained via adjusting the shape parameter.

• Exponential error convergence rate, (Madych and Nelson, 1990).

The shape parameter, which need not be constant is a key factor that affects the

solvability and accuracy of the method in that it affects the condition number of the

system matrix. Apart from the effect of the distance between two centers which leads to

approximately same rows of those centers when they are too close, selection of the shape

parameter is also important. MQs with shape parameters large in value generate more

flat functions and functions with small shape parameters are more cone like. In order

to get a better conditioned matrix, Kansa (1990b) used a variable shape parameter

that gives exponential variation. Golberg et al. (1996) used a statistical procedure

that optimizes for an efficient shape parameter. In some studies conventional values or

ranges for the shape parameter are given, see for example Hon et al. (1999). Most of

the time optimum shape parameter is expressed in terms of the average, maximum or

minimum values of the distances between the centers.

When a boundary value problem is defined, the approach to determine the un-

known coefficients depends on the preferences of the modeler and the complexity of

the problem. However owing to its easiness, collocation is the most common technique
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preferred by researchers. Here, three different collocation techniques applied to an n

dimensional linear elliptic problem, are presented as the nature of the target problem

of the study suggests. On an n dimensional domain Ω such that Ω ⊂ ℜn with the

boundary ∂Ω, the following problem can be posed.

Losu(x) = f(x) in Ω (1.42)

Bosu(x) = go(x) on ∂Ω (1.43)

where Lo and Bo are the field and boundary operators respectively. Let the first N of

the N + M centers selected lie inside the domain, namely xi ⊂ Ω for i = 1, . . . , N and

the rest on the boundary such that xi ⊂ ∂Ω for i = N + 1, . . . , N + M .

The first technique is the direct collocation method that assumes the approximate

interpolant s(x, c) for the unknown su(x). As such

s(xi, c) =
N+M
∑

j=1

αjϕ(‖xi − xj‖ , c) (1.44)

and its collocations at the interior and boundary centers respectively are

Los(xi, c) =
N+M
∑

j=1

αjLoϕ(‖xi − xj‖ , c) = f(xi) i = 1, . . . , N (1.45)

Bos(xi, c) =
N+M
∑

j=1

αjBoϕ(‖xi − xj‖ , c) = g(xi) i = N + 1, . . . ,M (1.46)

The resulting system matrix is unsymmetrical and a representation of the system can

be given as







Loϕ

Boϕ





 {α} =











f

g











(1.47)

The straight collocation technique is the one used in all of the problems solved in this

study. Also, it has to be noted that since the system matrix is unsymmetric, invert-

ibility is not guaranteed and the selection of the shape parameter is quite important.
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In order to guarantee nonsingularity, a symmetric system of equations is con-

structed in the second technique. The idea behind the symmetric collocation technique

is that the field operator is used at the centers corresponding to the interior points and

the boundary operator at the boundary centers in the definition of the interpolant and

the system is set up using this modified interpolant as shown below.

s(xi, c) =
N

∑

j=1

αjLoϕ(‖xi − xj‖ , c) +
N+M
∑

j=N+1

αjBoϕ(‖xi − xj‖ , c) (1.48)

and the corresponding collocation set of equations are,

Los(xi, c) =
N

∑

j=1

αjL
2
oϕ(‖xi − xj‖ , c) +

N+M
∑

j=N+1

αjLoBoϕ(‖xi − xj‖ , c) (1.49)

= f(xi) i = 1, . . . , N

Bos(xi, c) =
N

∑

j=1

αjBoLoϕ(‖xi − xj‖ , c) +
N+M
∑

j=N+1

αjB
2
oϕ(‖xi − xj‖ , c) (1.50)

= g(xi) i = N + 1, . . . , N + M

A schematic representation of the system for this case can also be given as







L2
o LoBo

BoLo B2
o






{α} =











f

g











(1.51)

Hence, the system matrix becomes symmetrical.

Since the errors near the boundaries are largest as shown in the study by Fornberg

et al. (2002), Fornberg et al. (2002) developed the third approach, namely the PDE

collocation on the boundary(PDECB) method which not only collocates boundary con-

ditions but also the field equation at the boundary points. Applying the field equation

to the boundary centers brings about new equations which necessitates an increase in

the unknowns so that the authors took additional centers outside the boundary which

they may have also taken inside. Let N ′ be the number of collocation centers both on

the boundary and inside, i.e. N ′ = N + M . Then taking M additional centers outside
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the boundary following interpolant is used to form the equations,

s(xi, c) =
N ′+M
∑

j=1

αjϕ(‖xi − xj‖ , c) (1.52)

and the corresponding system is

Los(xi, c) =
N ′+M
∑

j=1

αjLoϕ(‖xi − xj‖ , c) = f(xi) i = 1, . . . , N ′ (1.53)

Bos(xi, c) =
N ′+M
∑

j=1

αjBoϕ(‖xi − xj‖ , c) = g(xi) i = N + 1, . . . , N + M (1.54)

where the first N centers are inside the boundary followed by M centers on the bound-

ary first, and additional M centers outside. The schematic representation for this

technique is quite similar to that of the direct collocation technique except the number

of equations.

For time-dependent problems, the evolution of the interpolant is achieved through

the variation of coefficients in time. Hence, the general form of the interpolant given

in Equation 1.34, is rewritten below taking the time variation into account. Since the

RBF is only a spatial function, time variation is simply attributed to the coefficients.

s(x, t, c) =
N

∑

i=1

αi(t)ϕ(‖x− xj‖ , c) (1.55)

Accordingly, time derivative of the interpolant becomes,

∂s(x, t, c)

∂t
=

N
∑

i=1

∂αi(t)

∂t
ϕ(‖x− xj‖ , c) (1.56)

1.6. Initial Value Problem

When the problem at hand dictates that the solution evolves in time the solution

technique is accordingly modified. The unsteady nature of the problem is accounted
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for by introducing time dependency in the α-vector and by using appropriate time

integration scheme. There are a number of self starting(single step) schemes such as

Euler method, modified Euler method, Heun method, Runge-Kutta methods, Taylor

polynomial method as well as multi-step methods such as Adams-Basforth method,

Adams-Moulton method. However, since the predictor-corrector type equations uses

past information they lack the ability to start initial value problems. Self-starting

schemes are used at the beginning until information necessary for predictor-corrector

schemes is produced. Also, there are extrapolation schemes such as Blurisch-Stoer

method. These numerical schemes are cited in the related literature by Press et al.

(1992), Burden and Faires (1993), Durran (1998). As a time integration method, fourth

order Runge-Kutta method is used in this study because it is known to work well for

smooth problems. Moreover, it is a self starting method so that the initial input will

be sufficient to proceed in time. It involves 4 evaluations per time step and local

truncation error is fourth order(Burden and Faires, 1993). Also, since the expected

results are smooth, adaptive step size control is not deemed necessary. To construct

an approximate solution to the initial-value problem

y′ = fd(t, y) a ≤ t ≤ b, y(a) = y0 (1.57)

the fourth order Runge-Kutta method poses the following for y at some time step i+1

using value of y at the step i.

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) (1.58)

where k1,k2,k3 and k4 are

k1 = hfd(t
i, yi) (1.59)

k2 = hfd(t
i +

h

2
, yi +

1

2
k1) (1.60)

k3 = hfd(t
i +

h

2
, yi +

1

2
k2) (1.61)

k4 = hfd(t
i+1, yi + k3) (1.62)
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in terms of the time step h.
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2. WATER WAVE PROPAGATION PROBLEM

2.1. Objective and Scope

In this study the two dimensional irrotational wave propagation over a horizontal,

fixed, impermeable bottom is numerically modeled using the unsymmetric MQ method.

During the three different phases of the study, three different numerical models are

developed. In all of the models the Sommerfeld radiation boundary condition is used

and the shape parameter of the MQRBF is taken as constant. The first model differs

from the others in two aspects. It is the linearized version of the wave propagation

problem therefore it has some characteristics peculiar to linearization and therefore its

numerical implementation is different. The other model use the fully nonlinear forms

of the surface boundary conditions. To override the inherent difficulties in the fully

nonlinear surface boundary conditions, mixed coordinate systems are used where the

instantaneous boundary value problem is approximated in an Eulerian frame whereas

the surface is evolved in a fully or semi Lagrangian frame. The second model uses fully

Lagrangian descriptions to evaluate the evolution of the surface in time. Centers except

those on the surface are stationary and the input wave is a linear cosine wave which can

be used since the linear wave is a limiting case of nonlinear waves. The third model uses

semi Lagrangian descriptions of the surface and can take a nonlinear stream function

wave input. The positions of the collocation centers except the bottom nodes change

in time. Time evolution is simulated using the fourth order Runge-Kutta method in

all of the models. During the solution of the instantaneous boundary value problems

at the surface and at the radiation boundary Dirichlet type boundary conditions are

used and for the rest of the boundaries, namely at bottom and influx lateral boundary,

Neumann type boundary conditions are used. All of the models are compared with the

expected solutions and errors in the wave amplitude and phase speed are inspected.

As a result in order to fulfill the purpose of this study, it is shown that MQ method is

an efficient way to simulate the wave propagation phenomenon.
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2.2. Assumptions

In the following, the assumptions for the problem at hand are summarized prior

to the definition of the boundary value problem.

• The fluid is inviscid and incompressible.

• The flow is unsteady and irrotational.

• There is no generation or dissipation of wave energy. That is, energy is conserved.

• The waves have infinite crest length so that the problem is rendered two-dimensional.

• The bottom boundary is fixed, impervious and horizontal.

• The horizontal extent of the solution domain is truncated at a vertical section

where wave radiation to infinity can be modeled using the Sommerfeld radiation

condition.

• For the linear model the wave steepness is small, that is O(ak) << 1.

• The air pressure above the free surface is constant and is taken to be zero.

2.3. Problem Definition

According to the assumptions above, the problem can be defined on a domain Ω

where boundaries are respectively as the surface, bottom, influx and radiation bound-

aries ∂Ωs, ∂Ωb, ∂Ωi, ∂Ωr. Here a Cartesian coordinate system, whose origin is placed

at the mean water level of the entrance section as illustrated in the Figure 2.1 is used.

To formulate the general problem to be solved, the classical problem is augmented by

the radiation condition on ∂Ωr, the wave input on ∂Ωi, initial conditions for the wave

potential of the free surface. The equations defining the problem are,

∇2φ = 0 in Ω (2.1)

∂φ

∂t
+ gη +

1

2
|∇φ |2 = 0 on ∂Ωs (2.2)

∂η

∂t
+

∂φ

∂x

∂η

∂x
− ∂φ

∂z
= 0 on ∂Ωs (2.3)

∂φ

∂z
= 0 on ∂Ωb (2.4)
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∂φ

∂t
+ C

∂φ

∂x
= 0 on ∂Ωr (2.5)

∂φ

∂x
= u(x = 0, z, t) on ∂Ωi (2.6)

η(x, t0) = η0 on ∂Ωs (2.7)

φ(x, z, t0) = φ0 on ∂Ωs, ∂Ωr (2.8)

where φ = φ(x, z, t) is the velocity potential, η = η(x, t) is the free surface displacement,

C is the phase velocity of the wave main mode, φ0 and η0 are the initial values of

the potentials and displacements at time t0. The elliptic governing equation, namely

Laplace’s equation is given in Equation 2.1. The DFSBC and KFSBC are respectively

given by Equations 2.2 and 2.3. Equation 2.4 is the no-flux condition defined at the

impermeable bottom boundary. The information about the input wave is defined at the

influx boundary with the condition Equation 2.6. The input wave information is carried

downstream solving the boundary value problems at each time step of computation.

Necessary initial values for the initial value problems at the surface are specified by

Equations 2.7 and 2.8. The nonlinearity of the problem originates at the free surface

boundary and a fairly simple approach to deal with the problem was addressed in

the previous chapter. The Sommerfeld condition posed on the radiation boundary is

given by Equation 2.5. Although at the beginning the models are developed using the

Sommerfeld boundary condition, there was no clue about whether this condition works

well for the fully nonlinear case or not. It is a well known fact that this first order

condition only allows the fundamental mode of a wave to pass through the radiation

boundary. Therefore as the nonlinearity increases, the efficiency of the Sommerfeld

radiation boundary condition decreases. In order to meet the objective of the study

periodic boundary condition is used alternatively. These conditions assume the velocity

potential is periodic in space and time. Hence along a wavelength L, the influx and

radiation boundary conditions are taken as,

φ(x = L, z, t) = φ(x = 0, z, t) on ∂Ωr (2.9)
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x

z

∇2φ = 0

∂φ
∂z

= 0

∂η
∂t

+ ∂φ
∂x

∂η
∂x
− ∂φ

∂z
= 0∂φ

∂t
+ gη + 1

2
|∇φ |2= 0

∂φ
∂x

= u(x = 0, z, t) ∂φ
∂t

+ C ∂φ
∂x

= 0

Figure 2.1. Two dimensional irrotational wave propagation over horizontal bottom
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3. LINEAR WAVE PROPAGATION

3.1. Introduction

In the first phase of the study a numerical model for linear waves is developed to

simulate the water wave propagation problem defined in the previous chapter. However,

the effect of linearization is used so that instead of the full form of the nonlinear sur-

face boundary conditions the linearized conditions are used. Due to this linearization,

the numerical approach is simplified as the surface parameters can now be expressed

in terms of their values at the stationary mean water level. Therefore, the problem

geometry does not deform in time and thus computationally expensive boundary up-

dating procedures which require inversion or linear system solution at each time step

are avoided. In other words, once the positions of the centers are determined and the

necessary system matrices are set up, they can be used in time without any change.

Since the computational cost of the inversion process or linear system solution is con-

siderably high in comparison to those of the other necessary numerical operations, the

linear problem is easy to implement by requiring expensive procedures only once at

the beginning. Also the difficulties associated with the nonlinear form do not exist

in the linear case and the surface boundary conditions can be numerically simulated

easily and without any other coordinate definition such as in the case of the mixed

Lagrangian Eulerian models.

Updating of the boundary conditions on the free-surface and on the radiation

boundary is accomplished using the fourth order Runge-Kutta method. Besides the

built-in computation error of the method and the truncation error, there are two other

possible sources of errors. The first of these involves the time evolution of the free

surface and the velocity potentials at the surface, and the potentials of the radiation

boundary condition. All of these are updated concurrently although the parameters are

dependent on each other. Hence, the concurrent marching scheme uses previous values

of the other dependent parameters. The second source is due to the consecutive solution

of the boundary value problem and the initial value problems. Because the velocity field
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of a given time is obtained from the concurrent solution of the boundary value problem

which uses the surface and radiation boundary conditions derived from the previous

time step. All of these errors described here are tried to be kept at a minimum by

selecting sufficiently small time steps. The so-called Courant-Friedrichs-Lewy condition

is the most common convergence criteria necessary for wave propagation problems is

satisfied in the models developed in this study.

Since the expected solution of the problem involves sinusoids which are smooth

functions, the Runge-Kutta method can be used with a constant time step size. If this

had not been the case, versions of the integrator which use variable time steps based

on a preset error criterion would be required for the non-smooth functions resulting in

increased computational time.

The solution of the problem is started by specifying initial conditions obtained

from the analytical solution of the linear wave theory boundary value problem. The

model is then run for several periods and the amplitude and phase errors are checked.

It is also possible to start computations with an initial free surface coinciding with the

mean water level. However, in this case the compatibility of the free surface configu-

ration with the wave input on ∂Ω is achieved slowly. In order to avoid excessively long

simulation times and since the wave input will always be well defined the specification

of initial conditions using the known input wave is satisfied. The phase velocity used

in the radiation boundary condition also belongs to the input wave. This may also

have been calculated using the methodology in the previously referred study (Orlan-

ski, 1976). This is not preferred because the phase velocity of the input wave is well

defined.

3.2. The 2D Irrotational Linear Wave Propagation Problem

Here the full problem will be divided into two consecutive problems as the numer-

ical approach suggests. The time dependent PDEs at the free surface and the radiation

boundary condition constitutes the initial value problem and the governing equation

and boundary conditions of Neumann and Dirichlet type constitutes the boundary
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value problem. These two problems are solved consecutively in time supplying the

necessary values to each other. Starting with initial values, the time dependent bound-

ary conditions are updated to the next time step solving both the initial value problems

at the free surface and radiation boundary condition. The known velocity profile at

the influx section is also updated. This process is then followed by the solution of

the boundary value problem using the updated boundary conditions. Boundary value

problem solution is used to calculate the necessary values, most of the time velocities,

for the initial value problems for the solution of the next time step. Using the previous

chapter’s coordinate system and origin on a domain Ω where boundaries are respec-

tively identified as the surface, bottom, influx, radiation boundaries ∂Ωs, ∂Ωb, ∂Ωi,

∂Ωr, the initial value problem without the initial conditions is

∂φ

∂t
+ gη = 0 on ∂Ωs (3.1)

∂η

∂t
− ∂φ

∂z
= 0 on ∂Ωs (3.2)

∂φ

∂t
+ C

∂φ

∂x
= 0 on ∂Ωr (3.3)

and the boundary value problem at time t is

∇2φ = 0 in Ω (3.4)

φ = φ(xs, t) xs ∈ ∂Ωs (3.5)

∂φ

∂z
= 0 on ∂Ωb (3.6)

φ = φ(xr, t) xr ∈ Ωr (3.7)

∂φ

∂x
= u(xi, t) xi ∈ Ωi (3.8)

(3.9)

Compared to the original problem, the nonlinear terms of order (ak)2 in the DFSBC

and KFSBC given in Equations 3.1 and 3.2 are dropped. Also, in the boundary value

problem Dirichlet type boundary conditions are used on the free surface and on the

radiation boundary, and Neumann type boundary conditions are specified at the influx

boundary and on the bottom boundary. Here the horizontal velocities at the influx
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boundary are denoted by u(xi, t)

3.3. Numerical Formulation of the Linear Problem

In the formulations that follow, index notation is used wherever necessary for

the sake of simplicity. Therefore coordinates are sometimes be labeled as 1 for the

horizontal and 2 for the vertical instead of x and z. Although the numerical approach is

approximate, the same parameter names will be used in the formulation. Accordingly

the field parameter velocity potential can be expressed at the ith center located at

(xi, zi) ∈ Ω ∪ ∂Ω in the form,

φi = Φijαj i, j = 1, . . . , N (3.10)

αj’s are the coefficients of the interpolant, N is the number of centers taken. Φij is the

matrix with entries composed of MQs as shown below.

Φij = [(xi − xj)
2 + (zi − zj)

2 + c2]1/2 (3.11)

Once the coefficients are determined at the original centers, it is possible to find the

derivatives at the locations of the centers easily. According to the definition in Equation

3.10 above, the velocity components, (ui, wi) and the Laplacian of the velocity potential

at the ith center becomes,

ui = Φij,1αj (3.12)

wi = Φij,2αj (3.13)

∇2φi = Φij,kkαj (3.14)

where i, j = 1, . . . , N , k = 1, 2 and subscripts following the comma indicate the di-

rections along which differentiation is performed. For the boundary value problem

given by Equations 3.4 through 3.8 above, the asymmetrical system of equations can
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be defined at instant t as

Aijαj = bi (3.15)

where

Aij =







































Φij (xi, zi) ∈ ∂Ωs ∪ ∂Ωr

Φij,1 (xi, zi) ∈ ∂Ωi

Φij,2 (xi, zi) ∈ ∂Ωb

Φij,kk (xi, zi) ∈ Ω

(3.16)

and

bi =



























φ(xi, zi, t) (xi, zi) ∈ ∂Ωs ∪ ∂Ωr

u(xi, zi) (xi, zi) ∈ ∂Ωi

0 (xi, zi) ∈ ∂Ωb ∪ Ω

(3.17)

bi is the component of time dependent right hand side vector. Using the definitions

of φ given in Equation 3.10, one can construct the velocity potentials and the velocity

components at the centers as shown below.

φi = Φijαj = ΦijA
−1
jk bk (3.18)

ui = Φij,1αj = Φij,1A
−1
jk bk (3.19)

wi = Φij,2αj = Φij,2A
−1
jk bk (3.20)

Here, A−1
ij corresponds to an entry of the inverse of Aij. As noted previously, the

unsymmetrical system matrix Aij and its inverse A−1
ij as well as the interpolation

matrix Φij and its derivatives are set up once at the beginning of the computations

so that their products are calculated once and in time, the only thing left is to fill in

and update the entries of the right hand side vector. Multiplying appropriate matrices

with the right hand side vector gives the approximate solution to the field unknowns.

These unknowns are then used to determine the necessary input for the initial value
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problems at the boundaries.

The time integration using the Runge-Kutta method can be formulated at a

center i between two consecutive time steps differing by ∆t as follows. For the free

surface velocity potentials, free surface displacements and radiation boundary velocity

potential

(kφs

1 )i = −g∆t ηi (3.21)

(kη
1)i = ∆t wi (3.22)

(kφr

1 )i = −∆t ui (3.23)

whenever ηi, wi and ui are the values at time t. The time is then set to t = t + 0.5∆t,

and

(kφs

2 )i = −g∆t ηi (3.24)

(kη
2)i = ∆t wi (3.25)

(kφr

2 )i = −∆t ui (3.26)

whenever ηi, wi and ui are calculated after ηi ← ηi + 0.5(kη
1)i, and φi ← φi + 0.5(kφ

1 )i

both at the free surface and radiation boundary centers. In order to differentiate

between the velocity potentials at the free surface and radiation boundary superscripts

φs and φr are used. Again at time t = t + 0.5∆t,

(kφs

3 )i = −g∆t ηi (3.27)

(kη
3)i = ∆t wi (3.28)

(kφr

3 )i = −∆t ui (3.29)

whenever ηi, wi and ui are calculated after ηi ← ηi + 0.5(kη
2)i, and φi ← φi + 0.5(kφ

2 )i

both at the free surface and radiation boundary centers. Finally, at time t = t + ∆t

(kφs

4 )i = −g∆t ηi (3.30)
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(kη
4)i = ∆t wi (3.31)

(kφr

4 )i = −∆t ui (3.32)

whenever ηi, wi and ui are calculated after replacements such that ηi ← ηi +(kη
3)i, and

φi ← φi + (kφ
3 )i both at the free surface and radiation boundary centers. Hence, the

updated values can be expressed as,

φi|t+∆t = φi| t +
1

6
(kφs

1 + 2kφs

2 + 2kφs

3 + kφs

4 )i (xi, zi) ∈ ∂Ωs (3.33)

ηi|t+∆t = ηi| t +
1

6
(kη

1 + 2kη
2 + 2kη

3 + kη
4)i (xi, zi) ∈ ∂Ωs (3.34)

φi|t+∆t = φi| t +
1

6
(kφr

1 + 2kφr

2 + 2kφr

3 + kφr

4 )i (xi, zi) ∈ ∂Ωr (3.35)
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4. NONLINEAR WAVE PROPAGATION

In this part of the study, the full form of the boundary conditions as introduced

in Chapter 2 is used without any simplifications. The model to be developed here,

compared to the linear model, requires a free surface updating scheme since the small

amplitude wave assumption is no longer used and as a consequence Taylor’s expansions

of the free surface boundary conditions about the mean water level are no longer

possible.

The first model was developed so that the implementation of the full free surface

boundary conditions and the free surface updating scheme could be facilitated without

having to deal with a nonlinear input. Some error, on the order of (ak)2, was accepted

a priori since the nonlinear input wave can only satisfy the nonlinear free surface

conditions up to order ak. A brief presentation of the results obtained using this

model will be included.

With the experience gained from the first model, nonlinear wave input from the

stream function wave theory was introduced in the development of the second model.

The second model aims to show that even with a nonlinear wave input such as that

from the stream function wave theory, the MQ based numerical method simulates wave

propagation with sufficient accuracy.

Initially, the Sommerfeld radiation boundary condition was employed in both of

these models and the phase velocity of the fundamental mode of the nonlinear wave

was used in the computations. The Sommerfeld radiation boundary condition is known

to work well with linear wave propagation normal to boundaries. Thus the utility of

this boundary condition in the models developed was limited. The results were in

good agreement with the initially assumed wave form for only a very limited time.

As the simulation time increased, even the initially successful cases fail because of

the nonlinearities allowed in the radiation boundary conditions. The nonlinear terms,

even for the very small amplitude case, produce errors that develop in time so that
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the Sommerfeld radiation boundary condition fails. Overall, the results obtained from

the nonlinear stream function input model with the Sommerfeld boundary condition

was not in good agreement with the assumed wave form. Therefore, the Sommerfeld

radiation boundary condition was replaced with the periodic boundary condition and

the solutions were generated over a domain of one wavelength in the horizontal.

As mentioned previously, the implementation of the nonlinear free surface bound-

ary conditions necessitates the updating of the computational centers located on it. If

the fully Lagrangian algorithm is used for this purpose, the updated locations of the

surface centers are found directly using Equations 1.15 through 1.17. As the surface

centers execute their motions, there is the chance that those centers closest to the

vertical boundaries may leave the solution domain. This means that in order to be

able to represent the free surface using a given number of centers, new ones need to be

introduced. In addition, centers as they move may become very close to one another

resulting in ill conditioned system matrices. To deal with these problems, the new loca-

tions of the free surface centers must be inspected every time step, new ones introduced

as necessary and the locations of the problematic ones adjusted using interpolation.

The technique adopted here was to adjust the new locations of all centers so that they

coincide with their original horizontal locations.

On the other hand, as the semi-Lagrangian algorithm keeps track of the vertical

displacements of the surface centers located at fixed horizontal positions, additional

checking and adjusting of center locations at the free surface are avoided.

In the computations it is possible to use fixed or varying locations for centers

within the solution domain. For the nonlinear model with linear input(NMLI), all cen-

ters inside the solution domain were placed and kept fixed well below the input wave

trough level. This approach avoids the necessity of checking for centers that may be

left outside the solution domain as the wave propagates. For the nonlinear model with

nonlinear input(NMNI) following the determination of the free surface configuration

through the application of the semi-Lagrangian algorithm, internal centers were redis-

tributed over the depth from the bottom to the free surface. Thus, a fixed number of



38

centers were maintained at every vertical section.

4.1. Numerical Formulation

The numerical solution of the nonlinear wave propagation problem follows along

the lines of that of linear wave propagation problem. That is, the solution of the

boundary value problem and the initial value problems on the boundaries are interlaced.

The set up of the system equations to be solved is

Aijαj = bi i, j = 1, . . . , N (4.1)

where the wave input(linear or nonlinear) is contained in the right hand side vector

b. The system matrix Aij is unsymmetrical as before. The solution of the system

above is followed by the updating process. For the NMLI, entries of the system matrix

dependent on the surface node locations are updated. When stream function wave

theory input is used in the nonlinear model, updating at all the nodes except those on

the bottom boundary is required.

Whereas the solution of the linear wave problem involved a single matrix inversion

followed by matrix vector multiplications as time progressed, the updating process

involved in the solution of the nonlinear wave propagation problem necessitates matrix

inversion each time step. Since matrix inversion is a costly process, both in terms of

time and computer resources and particularly as the size of the system matrix increases,

the overall cost of running the nonlinear model can be relatively high for large-scale

problems or extended simulation times.

Once the velocity potentials are determined from the boundary value problem,

initial value problems are solved to determine the positions of the surface at the next

time step and the velocity potentials both the free surface and the radiation boundary

to be used as Dirichlet type boundary conditions for the solution of the potentials of

the next time step throughout the domain.
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The free surface boundary conditions for the fully Lagrangian approach are,

DxL

Dt
= uL (4.2)

DzL

Dt
= wL (4.3)

DφL

Dt
=

1

2
|∇φL|2 − gzL (4.4)

Their corresponding time discretizations, between the time steps at times t and t+∆t,

are

(xL)i|t+∆t = (xL)i|t+∆t +
1

6
(kxL

1 + 2kxL

2 + 2kxL

3 + kxL

4 )i (xi, zi) ∈ ∂Ωs (4.5)

(zL)i|t+∆t = (zL)i|t+∆t +
1

6
(kzL

1 + 2kzL

2 + 2kzL

3 + kzL

4 )i (xi, zi) ∈ ∂Ωs (4.6)

(φL)i|t+∆t = (φL)i|t+∆t +
1

6
(kφL

1 + 2kφL

2 + 2kφL

3 + kφL

4 )i (xi, zi) ∈ ∂Ωs (4.7)

One important point that has to be noted is that while the equations above use

Lagrangian coordinates, the identification of where the ith center located is made using

the coincident Eulerian frame. The main connection between the time discretization

with respect to Eulerian coordinate system and Lagrangian coordinate system is real-

ized considering that the particles are the centers for one moment and the Lagrangian

positions at a later time gives the positions of the centers over which the Eulerian

surface passes.

The initial value problem on the radiation boundary remains the same in all of

the models (see Equation 3.3),therefore its numerical formulation is omitted here to

avoid repetition. The computation of the free surface k1s at the ends and middle of a

time step during the computation are as follows.

(kxL

1 )i = ∆t (uL)i (4.8)

(kzL

1 )i = ∆t (wL)i (4.9)

(kφL

1 )i =
1

2
∆t |∇(φL)i|2 − g∆t (zL)i (4.10)
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whenever uL, wL, φL and zL belong to time t. There are two important steps before

passing to the evaluation of k2s. First, the positions and potentials of the centers are

updated via the assignments xL ← xL + 0.5kxL

1 , zL ← zL + 0.5kzL

1 , φL ← φL + 0.5kφL

1 .

Second, using these values, the boundary value problem is solved to get the velocities

at the interpolated centers as the algorithm suggests. The interpolation is performed in

two steps. In the first step, elevations which are a function of the horizontal positions

at an instant are interpolated at the fixed coordinates xf
Ls using the updated values,

namely xLs and zL. Given the set of points xL, zL at the free surface, the coefficients

of the interpolant for the elevations are computed by,

αi = Φ−1
ij (zL)j (4.11)

where

Φij = [((xL)i − (xL)j)
2 + c2]1/2 (4.12)

Then the elevations (zf
L)is of the horizontally fixed centers at (xf

L)is are

(zf
L)i = [((xf

L)i − (xL)j)
2 + c2]1/2αj (4.13)

where xLs are updated coordinates used in the interpolant Equation 4.12 above and αjs

are the coefficients evaluated by Equation 4.11. In the second step, velocity potentials

of these interpolated centers are obtained by interpolation using the updated positions

(xL, zL)s and the corresponding potentials φLs. The potentials are interpolated in a

similar manner, but this time the interpolation is performed in two dimensions because

the potentials at an instant are a function of the horizontal and vertical coordinates.

Hence the interpolation coeffients become,

αi = Φ−1
ij (φL)j (4.14)
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where

Φij = [((xL)i − (xL)j)
2 + ((zL)i − (zL)j)

2 + c2]1/2 (4.15)

Then the potentials, (φf
L)is, of the horizontally fixed centers at ((xf

L)i, (z
f
L)i)s are

(φf
L)i = [((xf

L)i − (xL)j)
2 + ((zf

L)i − (zL)j)
2 + c2]1/2αj (4.16)

At this point, the boundary value problem is solved to get velocity components

uL and wLs and calculations at the mid-time step t ← t + 0.5∆ t. The k2s may be

given as

(kxL

2 )i = ∆t (uL)i (4.17)

(kzL

2 )i = ∆t (wL)i (4.18)

(kφL

2 )i =
1

2
∆t |∇(φL)i|2 − g∆t (zL)i (4.19)

where zL and φL are used instead of zf
L and φf

L

Next, the k3s are evaluated after updating the positions and the potentials of the

previous time step by half of the k2s found above and interpolating the necessary values

at locations fixed in the horizontal. If the positions and potentials of the previous time

step are denoted by xL,zL and φL, the updated positions and potentials can be denoted

by xL + 0.5kxL

2 , zL + 0.5kzL

2 and φL + 0.5kφL

2 . This is followed by the interpolation

process of the positions and potentials to fixed locations along the horizontal in a

similar manner as described above before the calculation of the k2s. Hence,

(kxL

3 )i = ∆t (uL)i (4.20)

(kzL

3 )i = ∆t (wL)i (4.21)

(kφL

3 )i =
1

2
∆t |∇(φL)i|2 − g∆t (zL)i (4.22)
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where zf
L and φf

L are replaced by zL and φL.

Finally k4s given below are evaluated at the end of the time step with the assign-

ment t← t + ∆ t.

(kxL

4 )i = ∆t (uL)i (4.23)

(kzL

4 )i = ∆t (wL)i (4.24)

(kφL

4 )i =
1

2
∆t |∇φL|2 − g∆t zL (4.25)

where uL and wL are derived from the potentials obtained from the solution of boundary

value problem in which the positions and potentials of the surface centers are found by

the interpolation to the fixed locations along the horizontal of the updated positions

and potentials. The positions and potentials of the previous time step that can be

denoted by xL,zL and φL after updating will become xL + kxL

3 , zL + kzL

3 and φL + kφL

3 .

On the other hand, NMNI uses the full form of the originally introduced Eulerian

KFSBC in Equation 2.3, whereas the DFSBC is modified so that only vertical displace-

ments of the surface particles are kept track of. Here only the time discretizations of

the free surface boundary conditions are given. Recalling the free surface boundary

conditions,

∂φs

∂t
= −gη − 1

2
|∇φ |2 +

∂φ

∂z

∂η

∂t
(4.26)

∂η

∂t
= −∂φ

∂x

∂η

∂x
+

∂φ

∂z
(4.27)

their time marching scheme between time steps t and t+∆t will be expressed as follows.

(kφ
1 )i = ∆t

[

− gηi −
1

2
|∇φi|2 + wiηi,t

]

(4.28)

(kη
1)i = ∆t

[

− uiηi,x + wi

]

(4.29)

All the necessary values, ηi, φi, wi, ηi,t, ui and ηi,x, belong to time level t. The
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next set at time t ← t + 0.5∆ t is calculated after the computation of wi, ηi,t, ui and

ηi,x where the surface centers at fixed horizontal positions are carried to their new

elevations ηi ← ηi + 0.5(kη
1)i with their newly updated potentials φi ← φi + 0.5(kφ

1 )i.

These updated potentials are used as an input to the boundary value problem besides

some other necessary input such as the potentials of the radiation boundary. Therefore,

(kφ
2 )i = ∆t

[

− gηi −
1

2
|∇φi|2 + wiηi,t

]

(4.30)

(kη
2)i = ∆t

[

− uiηi,x + wi

]

(4.31)

The surface centers at fixed positions are carried to their new elevations ηi ← ηi+

0.5(kη
2)i with their newly updated potentials φi ← φi+0.5(kφ

2 )i. Similar to the previous

step but without updating the time, the k3s are evaluated after the determination of

wi, ηi,t, ui and ηi,x solving the boundary value problem before. Hence,

(kφ
3 )i = ∆t

[

− gηi −
1

2
|∇φi|2 + wiηi,t

]

(4.32)

(kη
3)i = ∆t

[

− uiηi,x + wi

]

(4.33)

Finally, the time is updated to t← t+∆ t. The surface centers are carried to their

new elevations ηi ← ηi +(kη
3)i with their newly updated potentials φi ← φi +(kφ

3 )i and

used as an input to the boundary value problem which is followed by the computation

of wi, ηi,t, ui and ηi,x for the k4s as expressed below.

(kφ
4 )i = ∆t

[

− gηi −
1

2
|∇φi|2 + wiηi,t

]

(4.34)

(kη
4)i = ∆t

[

− uiηi,x + wi

]

(4.35)

Using all these kis, time discretizations of the velocity potential and the free
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surface displacements are given below.

φi|t+∆t = φi| t +
1

6
(kφ

1 + 2kφ
2 + 2kφ

3 + kφ
4 )i (4.36)

ηi|t+∆t = ηi| t +
1

6
(kη

1 + 2kη
2 + 2kη

3 + kη
4)i (4.37)
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5. NUMERICAL TESTS and RESULTS

In this chapter, the results of some selected numerical tests are given and com-

pared with the known solution in terms of the free surface displacements. Besides

targeting a free surface conforming to the known surface, it is also aims to show the

effects of various parameters affecting the solutions. There are several parameters in-

volved in the problem. These are input wave dependent ones such as wave steepness,

problem dimensions such as the length, height of the domain, computationally neces-

sary parameters such as the time step and the shape parameter of the MQ function.

Since we are dealing with wave propagation, the well established Courant-Friedrichs-

Lewy (CFL)condition linking the spatial and temporal step sizes must be adhered to.

As the models developed here involve centers which move in time, the varying ratio

of the spatial to temporal step size may violate the CFL condition during program

execution. To avoid any such violation, a small time step of one-hundredth of a second

was chosen and found to work well. Naturally, each case that was run has a longest

possible time step, but no attempt was made to determine its value. Time steps of

smaller that one-hundredth of a second were tried and found not to contribute toward

increasing accuracy of the results.

Wave steepness is the most critical parameter in the construction of the numerical

solution. As long as the steepness criterion of the linear model is satisfied, wave steep-

ness has no effect on the accuracy of the results. On the other hand, in the nonlinear

models, parallel to the well known fact that the steeper the wave, the steeper the wave,

the harder it is to obtain accurate results, the numerical tests performed in this study

have shown that beyond a limiting steepness the accuracy of the results deteriorates.

One of the important reasons for the loss in accuracy may be attributed to the con-

stant shape parameter, c, used. As c depends on the distribution of centers within the

solution domain, the constant value chosen at the beginning of the simulation actually

needs to be modified as the centers move.
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Given a wave, resolution of the centers is another important factor in obtaining

accurate results. Centers very sparsely distributed throughout the domain may not

suffice to provide accurate solutions. In all of the three models a certain number

of points along the horizontal and the vertical are placed during the computation.

Since the linear model uses all the time fixed centers, a regular grid is formed over the

rectangular solution domain. It has been experienced that the steeper waves demanded

higher resolution than those required by the less steep waves. On the other hand, too

high resolutions not only result in unacceptably long computation times but also lead

ill-conditioned system matrices and to non-converging schemes.

Once the adequate resolution is maintained for a given wave, one other adjustment

necessary to obtain accurate solution is on the shape parameter. Despite the fact that

there are some studies that suggest values of the shape parameter (Wu and Hon, 2003),

there is no general agreement as to the optimum value of c2. In particular, none of

these studies was done for a case where a moving boundary and moving centers were

present. Therefore, the strategy adopted here was to use the suggested c2’s as rough

indicators of where to hunt for the optimum c2 and then to refine this value by trial and

error. It has been determined that if the spacings between the consecutive centers in

the vertical range from 0.25 m to 0.5 m and the spacings in the horizontal are 1.5 times

of the vertical spacing, the optimum squared shape parameter ranges from 2 to 12.

This observation strengthens the fact that the selection of a constant shape parameter

in the simulation affects the accuracy of the interpolation. Because given a wavelength

increasing the wave height to increase the steepness affects the aspect ratio of vertical

to horizontal consecutive center spacings as the vertical spacings below the trough are

different from those below the crest while the horizontal spacing is uniform throughout

the domain.

The tests are performed using desktop computers with Pentium IV processors

operating at internal speeds of 3.0 GHz and 2.6 GHz. The physical memories of the

desktops were sufficient to store the variables and matrices so virtual memory is not

used during the simulations performed in this study. Therefore the difference between

the internal speeds is not important to require desktop computer specific classification
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of the tests.

5.1. Linear Model Results

Twenty-one different numerical tests are selected to show the performance of

the linear model and summarized in Table 5.1 to Table 5.3. The results in Table 5.1

correspond to a shallow water wave and Table 5.2 to a deep water wave and Table

5.3 to an intermediate water wave. Here, besides the wave parameters H, L, T , H/L

and depth d, the horizontal length of the domain, W , the number of centers along

the horizontal and vertical, nx, nz, consecutive center spacings along the horizontal

and vertical dx, dz, the square of the MQRBF shape parameter, c2, the run-rime,

R.T., maximum percentage relative error in terms of wave height ǫ% at the instant nT

where nT is the actual computation duration are also given. The simulation times of

these tests range from 4 seconds to 357 seconds. The horizontal length of the solution

domain was selected as one wave length so that the Sommerfeld radiation condition and

the periodic boundary conditions would be employed interchangeably for any given test

case. The computation centers were placed so that the ratio of the horizontal to vertical

spacing was 1.5. The last column is the number of periods after which computation is

stopped and at which the maximum relative errors are calculated in terms of the wave

height.

As a demonstration of how the optimum shape parameter was determined, Figure

5.1, showing the variation of maximum relative errors in the first eight tests with

respect to c2, is given. After 8 trials, c2 = 12 was found to be the optimum value for

the configuration of the tests given in detail in Table 5.1. Figure 5.1 shows that beyond

the optimum c2 = 12, the relative error increases sharply. From personal experience

reported in studies such as those by Wu and Hon (2003), Hon et al. (1999), it is known

that errors will continue to increase beyond the optimum point and finally the system

matrix will become singular as c2 dominates the RBF. The resulting free surfaces of

the best and the worst of these 8 test cases as well as the assumed profile are plotted

in the Figure 5.2. Also, phase errors, besides the computed relative amplitude errors

at the given instants could have been given but they are negligibly small as seen in the
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figure.

As summarized in Table 5.1, tests T09 to T15 share the same maximum relative

error while their steepness values change. Starting from a steepness of 0.0071, the same

accuracy is obtained up to 0.14 with test T15. Although the waves become steeper,

the results are almost not affected for the linear model. For the same purpose, tests

T19 to T21 given in the Table 5.3 can also be noted where simulations are performed

up to 20 periods.

On the other hand, the tests T16 to T19 are given to show that even the cal-

culations are performed at various instants, the accuracy of the models cannot be

distinguished. To illustrate this observation, Figure 5.3 is given.
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Table 5.1. Summary of some selected linear model tests performed with a shallow water wave

ID H[m] L[m] T [s] H/L d[m] W [m] nx nz dx dz c2 ǫ% ǫrms[mm] R.T.[s] nT

T01 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 7.000 2.56 1.3 357 5

T02 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 6.000 3.54 1.7 357 5

T03 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 8.000 1.86 0.9 357 5

T04 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 9.000 1.39 0.7 357 5

T05 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 10.000 1.06 0.5 357 5

T06 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 11.000 0.81 0.4 358 5

T07 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 12.000 0.6 0.3 357 5

T08 0.1 103.5 15 0.001 5 103.5 141 11 0.74 0.50 14.000 2.63 1.7 357 5
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Table 5.2. Summary of some selected linear model tests performed with a deep water wave

ID H[m] L[m] T [s] H/L d[m] W [m] nx nz dx dz c2 ǫ% ǫrms[mm] R.T.[s] nT

T09 0.1 14 3 0.0071 10 15 38 41 0.41 0.25 3.000 0.94 0.6 213 5

T10 0.2 14 3 0.0142 10 15 38 41 0.41 0.25 3.000 0.94 1.2 303 5

T11 0.3 14 3 0.0214 10 15 38 41 0.41 0.25 3.000 0.94 1.8 361 5

T12 0.4 14 3 0.0285 10 15 38 41 0.41 0.25 3.000 0.94 2.3 353 5

T13 0.5 14 3 0.0356 10 15 38 41 0.41 0.25 3.000 0.94 2.9 250 5

T14 1 14 3 0.0712 10 15 38 41 0.41 0.25 3.000 0.94 5.8 260 5

T15 2 14 3 0.1424 10 15 38 41 0.41 0.25 3.000 0.94 1.2 323 5



51

Table 5.3. Summary of some selected linear model tests performed with an intermediate water wave

ID H[m] L[m] T [s] H/L d[m] W [m] nx nz dx dz c2 ǫ% ǫrms[mm] R.T.[s] nT

T16 0.1 30.3 5 0.0033 5 30.4 41 11 0.76 0.50 12.000 1.16 0.6 4 1

T17 0.1 30.3 5 0.0033 5 30.4 41 11 0.76 0.50 12.000 0.73 0.5 6 2

T18 0.1 30.3 5 0.0033 5 30.4 41 11 0.76 0.50 12.000 0.7 0.4 18 10

T19 0.1 30.3 5 0.0033 5 30.4 41 11 0.76 0.50 12.000 0.72 0.4 34 20

T20 0.2 30.3 5 0.0066 5 30.4 41 11 0.76 0.50 12.000 0.72 0.8 35 20

T21 0.4 30.3 5 0.0132 5 30.4 41 11 0.76 0.50 12.000 0.72 1.6 34 20
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5.2. Nonlinear Model with Linear Input Results

Initially this model was developed with the Sommerfeld radiation boundary con-

dition. After several tests with this version of the model, it was observed that the

accuracy of the results decreased considerably in time. Neither an increase in resolu-

tion, nor the adjustments to the MQ via the shape parameter helped to control the

errors that developed in time. On the other hand, errors become unbounded in NMNI

earlier than in the NMLI. These observations lead to the conclusion that the Sommer-

feld radiation boundary condition fails to work well as long as nonlinear free surface

boundary conditions are introduced into the model even though a linear wave input

is used. This behavior can be attributed to the nature of the Sommerfeld radiation

boundary condition which is known to admit only the fundamental mode of a wave.

Table 5.4 summarizes the results of three tests performed using the Sommerfeld radia-

tion boundary condition. Maximum relative error, which is 1.8% after one period the

simulation has started, increased to 16.7% in three periods of run time and to very

high levels in five periods of run time. These errors developed despite the fact that the

input wave had a rather low steepness of 0.0031. The tests of Table 5.4 are plotted in

Figure 5.6.

As a remedy, the Sommerfeld radiation boundary condition was replaced by a

periodic boundary condition where the input wave data was duplicated at a distance

of one wavelength. The wave input used was identical to the one given above. The

results of the runs made are summarized in Table 5.5, and plotted in Figure 5.7.

These results indicate noticeable improvement whereas the errors tended to increase

and become unbounded in the previous case, here the errors are bounded and below

3% for a run over 6 wave periods.

Further testing of the NMLI model was discontinued as it was thought that

it served its purpose of providing insight for the fully nonlinear model NMNI. The

improvement in the accuracy of the results by replacing the Sommerfeld RBC with the

periodic boundary condition in the model NMLI may seem to be due to the change

in the number of centers and the optimum c2 but replacing the input wave with a
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steeper wave showed that accurate results are still obtained when the periodic boundary

condition is used whereas the model with the Sommerfeld RBC could not produce

reliable results.
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Table 5.4. Summary of some selected NMLI tests with the Sommerfeld radiation boundary condition

ID H[m] L[m] T [s] H/L d[m] W [m] nx nz dx dz c2 ǫ% ǫrms[mm] R.T.[s] nT

T22 0.1 32.2 5 0.0031 6 60.0 41 7 1.5 1 85 1.79 0.9 142 1

T23 0.1 32.2 5 0.0031 6 60.0 41 7 1.5 1 85 8.33 2.8 142 2

T24 0.1 32.2 5 0.0031 6 60.0 41 7 1.5 1 85 16.73 3.7 142 3

T25 0.1 32.2 5 0.0031 6 60.0 41 7 1.5 1 85 7.42 3.0 528 4

T26 0.1 32.2 5 0.0031 6 60.0 41 7 1.5 1 85 >100 >100 660 5
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Table 5.5. Summary of some selected NMLI tests with the periodic boundary condition

ID H[m] L[m] T [s] H/L d[m] W [m] nx nz dx dz c2 ǫ% ǫrms[mm] R.T.[s] nT

T27 0.1 32.2 5 0.0031 6 32.2 20 16 1.7 0.4 10 2.5 1.7 216 1

T28 0.1 32.2 5 0.0031 6 32.2 20 16 1.7 0.4 10 1.8 1.0 858 4

T29 0.1 32.2 5 0.0031 6 32.2 20 16 1.7 0.4 10 2.7 1.6 1072 5

T30 0.1 32.2 5 0.0031 6 32.2 20 16 1.7 0.4 10 2.3 1.0 1286 6
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5.3. Nonlinear Model with Nonlinear Input Results

For the implementation of the nonlinear model, the stream function wave theory

was chosen to provide the wave input. The reason for the choice is that the stream

function wave theory provides a best fit to the dynamic free surface boundary condi-

tion for all relative depths whereas for theories like Stokes V or Cnoidal I there are

zones of validity (Dean and Dalrymple, 1984). The formulation of the stream function

theory by Fenton (1988) was chosen as it allows the most straightforward computer

implementation.

Although the MNLI runs indicated the inadequacy of the Sommerfeld RBC a

single run was made using it to confirm the conclusion. All test reported here have

been carried out using the periodic boundary condition.

Two waves approaching breaking in intermediate water were selected. Based on

their primary modes, the first wave is in relatively deeper water, d/L = 0.186, and is less

steep, H/L = 0.078. For the second wave d/L = 0.094 and H/L = 0.0119. Accordingly

the two waves are represented by second and fourth order stream functions.

Table 5.6 corresponds to the tests of a second order stream function wave. The

input wave with a wave height of 0.25 meters have its crest at 0.13 meters above and

its trough level 0.12 meters below the mean water level. Tests T31 and T32 are run

with the mesh constructed using 44 nodes along the horizontal and 12 nodes along the

vertical. The maximum relative error is about 1% of the wave height and each period

of simulation took about 15 minutes. The effect of using a coarser mesh to reduce

the run time was investigated. Instead of the 528 centers used previously a new mesh

consisting of 158 centers (22 in the horizontal by 7 in the vertical) was tried. The error,

even at 8 periods of simulation was under 2%. Thus it can be seen that at a cost of

1% in the error the run time for one period is reduced from 885 seconds to 46 seconds.

The test results are summarized in Table 5.6 and plotted in Figure 5.8 for tests T31

and T32, and in Figure 5.9 for tests T33 to T35.
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The results given in the Table 5.7 corresponds to a fourth order stream function

wave. This time the crest level is 0.15 meters above and the trough level is 0.1 meters

below the mean water level for this wave of 0.25 meters in height. In all of the tests,

maximum relative error in terms of wave height is around half of a percent even even

after a simulation of 5 periods. The results are in perfect agreement with the input

wave profile. The simulation of a single period took about 13 minutes using 448 centers.

Variation of root mean square error corresponding to test T38 is also plotted in Figure

5.11.
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Table 5.6. NMNI tests of a second order stream function wave

ID Order H[m] L[m] T [s] H/L d[m] W [m] nx nz dx dz c2 ǫ% ǫrms[mm] R.T.[s] nT

T31 2 0.25 32.2 5 0.0078 6 32.2 44 12 0.7 0.5 15 0.63 0.8 885 1

T32 2 0.25 32.2 5 0.0078 6 32.2 44 12 0.7 0.5 15 0.97 1.2 4585 5

T33 2 0.25 32.2 5 0.0078 6 32.2 22 7 1.4 0.9 40 1.80 2.4 46 1

T34 2 0.25 32.2 5 0.0078 6 32.2 22 7 1.4 0.9 40 1.72 2.2 92 2

T35 2 0.25 32.2 5 0.0078 6 32.2 22 7 1.4 0.9 40 1.93 2.2 369 8
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Table 5.7. NMNI tests of a fourth order stream function wave

ID Order H[m] L[m] T [s] H/L d[m] W [m] nx nz dx dz c2 ǫ% ǫrms[mm] R.T.[s] nT

T36 4 0.25 21.1 5 0.0119 2 21.1 56 8 0.38 0.25 6 0.31 0.9 755 1

T37 4 0.25 21.1 5 0.0119 2 21.1 56 8 0.38 0.25 6 0.62 0.5 1544 2

T38 4 0.25 21.1 5 0.0119 2 21.1 56 8 0.38 0.25 6 0.62 0.8 3307 5



69

0 10 20 30 40 50 60

−0.1

−0.05

0

0.05

0.1

0.15

Node Number

η[
m

]

Stream F.(O4)
T36
T37
T38

Influx boundary Radiation boundary

Figure 5.10. Variation of the free surface according to tests T36 to T38 of Table 5.7 (NMNI with fourth order stream function wave

input and periodic boundary conditions)



70

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8
x 10

−4

t [s]

ε rm
s [m

m
]

Figure 5.11. Variation of root mean square error corresponding to test T38 in time during 5 periods of real time computation



71

6. CONCLUSIONS AND RECOMMENDATIONS

This study shows that meshless MQ method can be applicable to the water wave

propagation problem. The term applicability can be elaborated in terms of the effi-

ciency and accuracy of the models developed in this study.

The MQ method here has proved itself to be an efficient method in the sense of

the programming effort and the computation times. In general, two important tasks

involved in numerical modeling, namely mesh generation and equation system con-

struction requires much less effort than most of the counterpart modeling techniques.

Even mesh generation for a problem with fixed boundaries, which is the linear problem

in this study, the programming effort is almost negligible when compared to the time

spent on the physics of the problem and time spent on complex mesh generation requir-

ing techniques. Moreover, the nonlinear models that necessitate the inclusion of the

surface deformation are handled easily. Therefore the efficiency of MQ method in terms

of programming effort can be attributed to the fact that meshes are generated easily.

Besides, computation times are also an important issue to talk about the efficiency of

the models. Only considering tests using the waves with a period of 5 seconds, it can

be said that relative error levels less than 1% of the wave height, are achieved on the

average with 1 minute of simulation per period for the linear model and 15 minutes of

simulation per period for the nonlinear models. Similarly, relative error levels around

2% of the wave height are achieved on the average with 5 seconds of simulation per

period for the linear model and 40 seconds of simulation per period for the nonlinear

models. Hence, according to these statistics, the method can be considered as efficient

for the propagation of the waves investigated within the scope of this study.

Another important factor that determines the applicability of a method is the

accuracy. The results are presented with the amplitude errors without mentioning the

phase errors. As it was obvious from the free surfaces plotted at various instants the

phase errors are negligible. The amplitude errors on the other hand are in acceptable

levels and almost all of the maximum errors computed in the test are at the centers that
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are close to the trough. This fact can be attributed to various reasons. One these is

that the trough point is a critical point where the derivatives change sign so this may be

a problem for the models making prediction using numerical approximations. Another

reason is due to the nature of the methods using globally supported functions. Because

pinning down smooth functions at its ends causes an increase in the errors at peak

points. This can be observed by comparing the results of the NMLI with Sommerfeld

radiation boundary condition and NMLI with periodic boundary condition. However

in the case Sommerfeld radiation boundary condition is used, it has been observed that

the solutions start to lack accuracy at the radiation boundary. In time this errors have

grown and affected the solutions inside and eventually ended up with no solution.

At this point applicability of the model can be widened testing other known non-

linear models such as the Stokes waves of some order and the cnoidal waves. Also

the wave steepness limits of the nonlinear model can be determined and if necessary

improvements can be made in the model. The most important argument that needs

fine tuning for steep waves is the shape parameter. Because it is taken as constant

during the simulations, the optimum value of it is not adjusted to account for the

center displacements in the vertical due to moving surface boundary. Given a wave-

length, increasing the wave height increases the wave steepness, however this increases

the difference between the vertical center spacings below the trough and crest. Hence,

the high the wave is, the more the optimum ratio of consecutive center spacing in

the horizontal to those in the vertical is affected. Therefore using variable shape pa-

rameter can be an improvement. Alternatively, sigma transformation can be used to

make solutions at a uniform vertical distance. The sigma transformation may also be

necessary if the wave is run over arbitrary profiles, instead of the horizontal bottom.

On the other hand, augmenting the interpolation surface especially with the surfaces

containing sines and cosines may improve the solutions.
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