
S-LOC AND MY ENVIRONMENT: A NEW LOCALIZATION SYSTEM FOR

AUTONOMOUS ROBOTS

by

Buluç Çelik

B.S. in Computer Engineering, Eastern Mediterranean University, 2003

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2005

ii

S-LOC AND MY ENVIRONMENT: A NEW LOCALIZATION SYSTEM FOR

AUTONOMOUS ROBOTS

APPROVED BY:

Prof. H. Levent Akın

(Thesis Supervisor)

Prof. Okyay Kaynak

Prof. Cem Say

DATE OF APPROVAL: 5.09.2005

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank to my supervisor Prof. H. Levent Akın for his

encouragement, guidance and enthusiastic support. This thesis would not be possible

without his contributions.

I would like to thank to the people of AILab and Cerberus Team, who has taken

place in every single moment of this work with their valuable friendship, discussions,

brilliant ideas and support. Their friendship and professional collaboration meant a

great deal to me.

My appreciations go to my sincere jury members Prof. Cem Say and Prof. Okyay

Kaynak.

I would like to thank all my teachers, who have shared their knowledge and ideas

with me over the years, and enlightened my path.

I would like to express my gratitude to my family for their endless love and

support as well as helping me to form my personality. I owe them everything.

In addition, I am also grateful to my real friends for their morale support, friend-

ship and remarkable discussions about the life, universe and everything.

iv

ABSTRACT

S-LOC AND MY ENVIRONMENT: A NEW

LOCALIZATION SYSTEM FOR AUTONOMOUS ROBOTS

The localization problem is the detection of the pose of a robot relative to the

environment using the information about the environment sensed by the robot when

the starting position is unknown. In short, it is answering the question “Where am

I?”. Localization is an active field of study where many approaches are introduced into

the literature.

Robot soccer is a good platform to develop and test localization techniques since

the robots have limited and noisy sensorial information as in the real life and the

environment is also highly dynamic.

In this work, a new module that will stand between the perception module and

the other modules that uses its output and a new localization technique are introduced,

and they are together proposed as a new localization system.

The proposed new module is My Environment, which stores the perceptional data

and provides a filtered and more robust data, and the new localization technique is

S-Loc, which is a sample based localization technique where only one sample is used

for each perception data.

This system is implemented in Cerberus’05, which won the Technical Challenges

in the RoboCup 2005 - Sony Four-Legged League. This success, together with the

experimental study, has shown that the proposed solution has a high performance for

the application domain.

v

ÖZET

S-LOC VE MY ENVIRONMENT: OTONOM ROBOTLAR

İÇİN YENİ BİR LOKALİZASYON SİSTEMİ

Lokalizasyon problemi, başlangıç konumunun bilinmediği durumlarda çevreden

algınan bilgileri kullanarak bir robotun çevresine göre konumunu belirlemesidir. Kısaca,

“Neredeyim?” sorusunu yanıtlamaktır. Lokalizasyon, birçok yöntemin literatüre dahil

edildiği aktif bir çalışma alanıdır.

Robotların gerçek hayattaki gibi sınırlı ve gürültülü algısal bilgilere sahip ol-

malarından ve çevrelerinin oldukça hareketli olmasından dolayı, robot futbolu lokali-

zasyon tekniklerinin geliştirilmesi ve denenmesi için iyi bir ortamdır.

Bu çalışmada, yeni bir lokalizasyon tekniği ve algılama modülüyle algılama modü-

lünün çıkışını kullanan öteki modüller arasında bulunacak yeni bir modül oluşturulmuş,

bunların ikisi birlikte yeni bir lokalizasyon sistemi olarak önerilmiştir.

Önerilen yeni modül, My Environment, algısal verileri depolar ve filtrelenmiş,

daha sağlıklı veriler sağlar. Yeni lokalizasyon tekniği olan S-Loc ise her algısal veri için

sadece bir örneğin kullanıldığı örnek tabanlı bir lokalizasyon tekniğidir.

Bu sistem, RoboCup 2005 - Sony Dört-Ayaklılar Ligi’nin Teknik Yarışmalar

kategorisini kazanan Cerberus’05 bünyesinde gerçekleştirilmiştir. Bu başarı, deney-

sel çalışmalarla birlikte önerilen çözümün uygulama alanı için yüksek bir performansa

sahip olduğunu göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. BACKGROUND . 4

2.1. Localization Problem . 4

2.2. Localization Techniques . 5

2.2.1. Triangulation . 5

2.2.2. Fuzzy-Localization . 6

2.2.3. Kalman Filter Method . 7

2.2.4. Markov Localization Method 8

2.2.5. Monte Carlo Localization . 9

2.2.6. Markov Localization - Extended Kalman Filter 10

2.2.7. Reverse - Monte Carlo Localization 11

3. MY ENVIRONMENT . 12

3.1. Introduction . 12

3.2. General Outline of ME . 13

3.3. Architecture of ME . 15

3.4. Procedures of ME . 17

3.4.1. Initialization . 17

3.4.2. Perception Update . 17

3.4.3. Odometry Update . 17

3.4.4. Current Pose Estimation for Static Objects 18

3.4.5. Current Pose Estimation for Dynamic Objects 20

3.5. Advantages and Disadvantages of ME 21

4. S-LOC: SIMPLE LOCALIZATION . 23

vii

4.1. Introduction . 24

4.2. General Outline of S-Loc . 25

4.3. Architecture of S-Loc . 26

4.4. Procedures of S-Loc . 28

4.4.1. Initialization . 28

4.4.2. Perception Update . 28

4.4.3. Odometry Update . 31

4.5. Advantages and Disadvantages of S-Loc 32

5. APPLICATION DOMAIN . 34

5.1. Robotic Soccer Domain . 34

5.1.1. RoboCup Soccer . 34

5.1.1.1. Simulation League . 35

5.1.1.2. Small-Size Robot League (f-180) 36

5.1.1.3. Middle-Size Robot League (f-2000) 36

5.1.1.4. Sony Four-Legged Robot League 36

5.1.1.5. Humanoid League . 36

5.2. Sony Four-Legged League . 36

5.2.1. SONY’s AIBO . 36

5.2.2. Soccer Rules . 37

5.2.2.1. Setup of the Environment 37

5.2.2.2. Structure of the Game 38

5.2.3. Technical Challenges . 39

5.2.3.1. The Open Challenge 39

5.2.3.2. The Variable Lighting Challenge 39

5.2.3.3. The Almost SLAM Challenge 39

5.3. Cerberus’05 . 40

5.3.1. Cerberus Station . 40

5.3.2. Cerberus Player . 40

5.3.2.1. Core Object . 41

5.3.2.2. Locomotion . 41

5.3.2.3. Communication . 41

5.3.2.4. Dock Object . 41

viii

6. EXPERIMENTAL STUDY . 42

6.1. Test Environment . 42

6.2. Offline Testing Tool . 43

6.3. Experiment 1: Robustness Test . 43

6.4. Experiment 2: Sparsity Test . 46

6.5. Experiment 3: Kidnapping Data . 48

6.6. Experiment 4: Running Time . 48

6.7. Final Discussion on the Proposed System’s Performance 49

7. CONCLUSIONS . 50

REFERENCES . 52

ix

LIST OF FIGURES

Figure 2.1. Triangulation using only distances 5

Figure 2.2. Triangulation using two angle measurements and one distance mea-

surement . 6

Figure 2.3. Trapezoidal fuzzy sets . 7

Figure 3.1. Buffering the poses of objects: (a) Buffering actual poses, and (b)

Buffering the relative poses . 13

Figure 3.2. Interaction of ME with the other modules 14

Figure 3.3. The data structure of ME . 15

Figure 3.4. Data structures of (a) static objects, and (b) dynamic objects . . . 16

Figure 4.1. The relationship of the S-Loc module with the other modules . . . 25

Figure 4.2. The perception update process . 26

Figure 5.1. SONY AIBO models: ERS-7 is on the left, and ERS-210 is on the

right . 37

Figure 5.2. Field colors and manual setup for kick-off 38

Figure 6.1. The soccer field of the test environment 43

Figure 6.2. The offline testing tool . 44

x

Figure 6.3. Results of the experiment 1 . 45

Figure 6.4. Results of the experiment 2 . 47

xi

LIST OF TABLES

Table 6.1. Results of the experiment 1 . 45

Table 6.2. Results of the experiment 2 . 47

Table 6.3. Results of the experiment 3 . 48

Table 6.4. Results of the experiment 4 . 49

xii

LIST OF SYMBOLS/ABBREVIATIONS

a The odometry data in ML

AAj
i The relative angle of the ith record of the jth object in ME

Bel(l) The belief that the robot is at the location l in ML

cj The confidence estimation of the jth object in ME

CAj
i The confidence of the ith record of the jth object in ME

d The previous relative distance in odometry update of ME

d′ The new relative distance in odometry update of ME

dj The relative distance estimation of the jth object in ME

DAj
i The distance of the ith record of the jth object in ME

fHP The function that returns a history coefficient according to

the number of percepts available in S-Loc

fwc(nj) The function which gives the weight for the confidence of an

objects with nj known records

fwpu1 The function that returns a weight component for a pose ac-

cording to the perception for which the pose sample is calcu-

lated

fwpu2 The function that returns a weight component for a pose ac-

cording to the current perceptions

fwpu3 The function that returns a value related to the difference in

the x-coordinate and the y-coordinate

fws(i) The function which gives the weight of the ith record for a

static object

KAj
i The flag which is equal to one if the ith record of the jth object

exists and zero otherwise in ME

nw The window size in ME

o The observation data in ML

PA The percepts array in S-Loc

PAi The perception data of the ith perceived landmark which is

stored as the ith element of the perception array

PAi
c The perception confidence of the ith landmark in the percepts

array

xiii

PAi
d The perceived relative distance of the ith landmark in the

percepts array

PAi
k The flag of perception array that is one if the ith object is

perceived

PAi
x The actual x-coordinate of the ith landmark in the percepts

array

PAi
y The actual y-coordinate of the ith landmark in the percepts

array

PAi
θ The perceived relative angle of the ith landmark in the per-

cepts array

PEc The confidence of the pose estimate before a perception or

odometry update in S-Loc

PE∗

c The confidence of the updated pose estimate in S-Loc

PEx The x-coordinate of the pose estimate before a perception or

odometry update in S-Loc

PE∗

x The x-coordinate of the updated pose estimate in S-Loc

PEy The y-coordinate of the pose estimate before a perception or

odometry update in S-Loc

PE∗

y The y-coordinate of the updated pose estimate in S-Loc

PEθ The orientation of the pose estimate before a perception or

odometry update in S-Loc

PE∗

θ The orientation of the updated pose estimate in S-Loc

PSi
c The confidence of the ith pose sample in S-Loc

PSi
w The weight of the ith pose sample in S-Loc

PSi
x The x-coordinate of the ith pose sample in S-Loc

PSi
y The y-coordinate of the ith pose sample in S-Loc

PSi
θ The orientation of the ith pose sample in S-Loc

sj The speed estimation in current pose estimation for dynamic

objects of ME

wj The total weight for the jth object in ME

∆x The signed distance the agent moved in sideways in odometry

update of ME

∆y The signed distance the agent moved on its orientation in

odometry update of ME

xiv

αj The relative direction of the speed estimation

θ The previous relative angle in odometry update of ME

∆θ The angle the agent has turned in odometry update of ME

θ′ The new relative angle in odometry update of ME

θj The relative angle estimation of the jth object in ME

AI Artificial Intelligence

A-MCL Adaptive Monte Carlo Localization

EKF Extended Kalman Filter

MCL Monte Carlo Localization

ME My Environment

Mix-MCL Mixture Monte Carlo Localization

ML Markov Localization

ML-EKF Markov Localization - Extended Kalman Filter

R-MCL Reverse Monte Carlo Localization

SLAM Simultaneous Localization And Mapping

S-Loc Simple Localization

SRL Sensor Resetting Localization

UDP User Datagram Protocol

1

1. INTRODUCTION

The localization problem can be defined as the detection of the pose (i.e. the po-

sition and the orientation) of a robot relative to the environment, using the information

about the environment sensed by the robot when the starting position is unknown. In

short, localization is the problem of having the robot answer the question: “Where am

I?” for itself.

A robot uses its sensors (such as infrared, camera, etc.) to gather information

about the environment. Except for specially designed toy problems, these sensors and

the environment are uncertain, and therefore the results are mainly erroneous and

inaccurate. For this reason, the localization problem still remains to be nontrivial and

challenging. Consequently, localization is an active field of study and although much

effort has been put into it, there is room for more.

Triangulation is one the basic localization approaches for mobile robots [1]. It is

a well-known technique for estimating the position of a robot using perception of fixed

points (i.e. landmarks) in the environment.

Another approach is based on fuzzy logic [2, 3]. This approach is a grid-based

one where uncertainty is represented in terms of fuzzy membership functions.

A well-known approach for localization is based on the Kalman filter (Kalman-

Bucy filter) [4, 5]. Kalman filter uses Gaussian distributions to represent all the den-

sities such as positions, odometric and sensory measurements. This way, it integrates

uncertainty into the computations.

Markov Localization (ML) is a grid based method which is similar to the Kalman

filter approach except that it does not make a Gaussian distribution assumption but

allows any kind of distribution to be used instead [6, 7]. Although this feature brings

flexibility, it also brings computational overhead.

2

Monte Carlo Localization (MCL) algorithms represent a robot’s belief by a set

of weighted samples [8, 9]. These samples approximate the posterior probability of the

robot’s pose by using a Bayesian formulation of the localization problem.

During the study of this thesis many such localization techniques were taken

into consideration especially for the RoboCup 2005 Sony Four-Legged Robot League.

Considering the advantages and the disadvantages of these techniques, it was decided

to implement a new localization technique, Simple Localization, together with a version

of MCL.

The RoboCup is an international organization which aims to build a fully au-

tonomous humanoid robot soccer team and beat the official human world soccer cham-

pion team by the year 2050 [10, 11]. Currently, a number of different RoboCup soccer

leagues that focus on different aspects of this challenge exist under RoboCup.

The Sony Four-Legged Robot League is one of these leagues. In the Sony four-

legged league, two teams each consisting of four Sony AIBO robotic dogs compete

against each other in a soccer game. Four unique bi-colored beacons are placed in the

game area, which is 6m by 4m, in order to provide information for the localization.

Robots operate fully autonomously. Any human intervention other than placing robots

on the field is strictly prohibited.

The localization module of the Cerberus Team (Boğaziçi University- Turkey) was

a test bed for this thesis. Other than the experiments presented in this report, the

proposed solution is tested at both the soccer competition and the technical challenges

of the RoboCup 2005 Sony Four-Legged League.

The Cerberus team participated with Sony Aibo ERS-210 robots whereas all

the other teams used Sony Aibo ERS-7 robots, which was a newer model with many

advances. This drawback caused the early elimination of the team from the soccer

competition.

3

At the technical challenges, the Cerberus team, having the highest total score

from three independent challenges, became the champion. The role of the localization

module, and of this thesis study, was significant in this success.

This thesis proposes a new localization approach together with an intermediate

module between the perception and localization modules. The proposed solution is the

use of these two modules.

Having the perception data buffered and filtered in the first module, called My

Environment module, and then using the output of this module the new localization

module, called Simple Localization module, very accurate results are shown to be ob-

tained by its performance in both the experiments and the RoboCup 2005 competitions.

In Chapter 2, the localization problem is discussed and some well-known tech-

niques are defined. My Environment module, which is an important part of the pro-

posed system, is explained in Chapter 3. The proposed localization algorithm, S-Loc,

is discussed in Chapter 4.

In Chapter 5, the application domain to which the proposed solution is applied

in practice is explained. The experiments and their results are discussed in Chapter

6. Finally, Chapter 7 contains the summary of the work and points the possible future

work.

4

2. BACKGROUND

Localization is an active field of robotics where many approaches are introduced

into the literature. Starting with a short description of localization, some of the most

common ones of these approaches are covered in this chapter.

2.1. Localization Problem

The global localization of autonomous robots is a very challenging issue, as the

sensing devices that provide the data are unreliable, the provided data are generally

highly noisy, the environment is dynamic and highly unpredictable, and the number of

useful (i.e. distinguishable, recognizable) features of the nature which could be used

for self-localization of the robot is inadequate.

There are two sub problems of the localization problem. They are position (pose)

tracking and global self-localization. Pose tracking is the problem of keeping track of

the robot’s pose (position and orientation) using odometry, assuming that the initial

pose of the robot is already known [12]. There are two main drawbacks. The first one

is that dead reckoning error grows cumulatively in time. The cumulative error in the

orientation of the robot is especially very critical as it may lead the future odometry

updates to be done in the wrong direction. The second drawback is actually the fact

that initial position is usually not likely to be known in real time applications.

On the other hand, global self-localization is the problem of making the robot

find its location in the environment where no priori information is available. Sensors

are used to make perceptions and gather information about the environment. Because

of the high uncertainty and noise of the sensors and the dynamic nature of the en-

vironment, global self-localization is a very hard task and is a challenging problem

for researchers. The proposed solutions range from the most basic methods based on

simple geometric calculations where uncertainty is not considered at all to complex

statistical methods using sophisticated models.

5

Some of the proposed solutions give sufficient results, but because of the limita-

tions of the memory and processing power they are not suitable for all applications.

Faster algorithms with less memory requirements are required especially for real-time

applications, such as robotic soccer competitions where the environment is highly dy-

namic and the robot’s computational capacity is limited with low onboard resources.

While the existing fast solutions generally give imprecise results, the accurate ap-

proaches suffer from slowness and high memory usage. Even though some of these fast

approaches may produce precise local results, they fail to find the global pose.

2.2. Localization Techniques

Many techniques have been introduced so far which range from the most basic

methods based on simple geometric calculations to complex statistical methods and

hybrid solutions using sophisticated models to integrate uncertainty. Below, some of

the well-known techniques are described briefly.

2.2.1. Triangulation

The triangulation technique uses the geometric properties of triangles to compute

the pose of a robot [1]. Triangulation can be done using only the distances or it can

be done using primarily angle measurements.

Figure 2.1. Triangulation using only distances

6

In the first way, the position of the robot is computed by measuring its distance

from multiple reference positions. Calculating a robot’s position in two dimensions

requires distance measurements from 3 non-collinear points as shown in Figure 2.1.

On the other hand, the orientation of the robot cannot be calculated without the use

of the angle measurement with respect to the reference points.

The second way is similar to the first one except that, instead of distances, angles

are used for determining the position of the robot. In general, for two dimensional

localization, two angle measurements and one distance measurement is required as

shown in Figure 2.2.

Figure 2.2. Triangulation using two angle measurements and one distance

measurement

Although two angle and one distance perceptions are enough for triangulation,

with noisy data, whenever there are more perception data available, they should be

used in order to reduce the error. In such cases there are more than one poses estimate.

There are different ways of combining these estimates to obtain a final position estimate.

One simple way is to compute their average.

2.2.2. Fuzzy-Localization

Fuzzy-Localization is another approach which is based on fuzzy logic [2, 3]. This

approach is grid-based and the uncertainty is represented in terms of fuzzy membership

functions. Fuzzy sets are used to represent the range r and heading θ of the robot. For

the representation of the uncertainty in sensor readings, the trapezoidal membership

7

functions are useful. Using an appropriate bias value helps recovering from kidnapping

problem, where the robot is kidnapped to test the robustness. Trapezoidal fuzzy sets

are represented with a tuple of the form (θ, ∆, α, h, b), where θ is the center, ∆ is the

width of the core, α is the slope, h is the height and b is the bias as in Figure 2.3.

Figure 2.3. Trapezoidal fuzzy sets

Bias is used to integrate the uncertainty that the solution might be somewhere

else. This technique does not critically rely on the accuracy of these parameters [2].

The tuples of the form (r, ∆, α, h) represent the distance from the observed landmark

to every grid. A two-dimensional fuzzy grid map Gt(x, y), where each grid measures the

degree of possibility is used to represent the robot’s position at time t. For perception

update, the probability distribution St(x, y|r) represents the possibility of having the

robot be in (x, y) using the information that the observed landmark is at distance r

from the robot.

A predict-observe-update cycle is followed in this approach. In the observe step

the perception information is used to calculate the probability distribution of the grids,

whereas the predict step makes use of the odometric information to update the cur-

rent position. Finally, in the update step the probability distribution of the grids is

integrated into the fuzzy grid map.

2.2.3. Kalman Filter Method

Another well-known approach for the localization problem is the Kalman filter

(Kalman-Bucy filter), which makes the assumption of Gaussian distributions to repre-

sent all densities including positions, odometric and sensory measurements to integrate

uncertainty into the computations.

8

Odometry updates and perception updates are performed on the pose estimations

using the property that Gaussian distributions can be combined using multiplication

[4, 5].

Kalman filter method fails to make global localization, and it can not recover

from total localization failures because of the drawback that only one pose hypothesis

can be represented [13]. Therefore, this method is usually used to locally track the ob-

ject’s pose together with another method, which is in charge of the global localization,

forming hybrid approaches.

However, it is a very efficient algorithm that gives precise results in the absence

of kidnapping and total localization failures. On the other hand, additional coefficient

and covariance computations can increase the computational time undesirably [5].

For non-linear and potentially numerically unstable system models, Extended

Kalman Filter (EKF) is more useful where uncertainty is represented by the first and

second moments of the density [14].

2.2.4. Markov Localization Method

Markov Localization (ML) is a localization method similar to the Kalman filter

approach, on which many studies are based in the literature. ML differs from the

Kalman filter approach with not making a Gaussian distribution assumption but al-

lowing any kind of distribution to be used [6, 7]. This aspect brings flexibility, however

it also adds a computational overhead.

ML is a grid based method that uses odometry measurements a and perceptional

measurements o [15]. The key idea is that the robot maintains a belief over its position.

The belief of the robot at time t will be denoted as Bel(t)(L). Here L is a three-

dimensional random variable composed of the robot’s x-y position and its heading

direction θ. This way, Bel(t)(L = l) is the belief that the robot is at the location1 l.

1The pose and location are used interchangeably

9

The initial knowledge of the robot is reflected by Bel(0)(L). When the initial pose of

the robot is not known, Bel(0)(L) is initialized by a uniform distribution. Bel(t)(L) is

the posterior with respect to all data collected up to time t as in Equation 2.1.

Bel(t)(L) = P (L(t)|d(t)) (2.1)

where d(t) denotes the data collected up to time t. For the perception update, the last

item in d(t) is a perception data, o(t). Using the Markov assumption, Bel(t)(L = l) is

calculated for each l as in Equation 2.2, and it is updated as in Equation 2.3.

Bel(t)(L = l) = P (L(t) = l|d(t))

= α P (o(t)|L(t) = l) Bel(t−1)(L = l) (2.2)

Bel(l) ← α P (o|l) Bel(l) (2.3)

where α is a normalizer independent from l; P (o(t)|L(t) = l) is the probability of making

the perception o(t) given that the robot is at l at the time t; and Bel(t−1)(L = l) is the

belief that the robot was at l at the time t− 1.

For the odometry update, the last item in d(t) is an odometry data, a(t). Using

the Theorem of Total Probability and exploiting the Markov property, Bel(t)(L = l) is

calculated for each l as in Equation 2.4, and it is updated as in Equation 2.5.

Bel(t)(L = l) = P (L(t) = l|d(t))

=

∫

P (L(t) = l|a(t), L(t−1) = l′) Bel(t−1)(L = l′) dl′ (2.4)

Bel(l) ←
∑

for each l′

P (l|a, l′) Bel(l′) (2.5)

2.2.5. Monte Carlo Localization

Monte Carlo Localization (MCL) is very similar to Markov localization, but ap-

proximates belief functions using a Monte Carlo method. Instead of dividing the space

10

into grids, MCL uses a sample-based representation [8, 9]. In MCL, beliefs are rep-

resented by a set of K weighed samples (particles) which are of the type ((x, y, θ),

p), where p ≥ 0 is a numerical weighting factor and sum of all p is 1. Odometric and

sensory updates are similar to ML.

Most of the MCL based approaches suffer from the kidnapping problem, since the

main theory converges to a pose and then it collapses when the current estimate does

not fit observations. There are some extensions to MCL that addresses this problem

such as adding random samples at each iteration. Sensor Resetting Localization (SRL),

Mixture MCL (Mix-MCL), and Adaptive MCL (A-MCL) are some examples to such

methods.

In SRL, a small amount of uniformly distributed random samples is added when

the likelihood of the current observation is below than a threshold [16]. Mix-MCL,

which has been developed for extremely accurate sensor information, additionally gives

weights to these random samples according to the current probability density p(l) [13].

The key idea of the Adaptive MCL is to use a combination of two smoothed

estimates (long term and short term) of the observation likelihoods [13]. In A-MCL,

samples are added only when the difference between short-term estimate (slow changing

noise level in the environment and the sensors) and the long-term estimate (rapid

changes in the likelihood due to a position failure) is above a threshold. In 2002,

University of Washington team applied this approach to the RoboCup domain [17].

2.2.6. Markov Localization - Extended Kalman Filter

Markov Localization - Extended Kalman Filter (ML-EKF) method is a hybrid

method of ML and EKL. Taking into consideration the fact that ML is more robust

and EKF is more accurate, it aims to make use of the advantages of both methods. So

ML-EKF finds the location of the robot roughly using grid based ML, and then uses

EKF inside this area to find a more accurate solution [13].

11

2.2.7. Reverse - Monte Carlo Localization

Although ML is robust and converges fast, it is also coarse and computationally

complex. On the other hand, sample based MCL is not as computationally complex

as ML, and gives accurate results; but it can not converge to a position as fast as

ML, especially in the case of an external impact on the position of the robot such as

kidnapping. In addition, the number of samples used in MCL is generally very high

for covering the complete space and converge to the right position.

There are several extensions to MCL for adaptive sample size usage, but these

techniques still do not solve the slow coverage problem. To address this issue, Reverse

- Monte Carlo Localization (R-MCL) converges to several cells by ML, and then inside

these bulk of grids, produces a limited number of samples to find the final position

[18, 19, 20]. The average of these samples gives the final position and the standard

deviation might give the uncertainty of the final position as in the MCL based methods.

12

3. MY ENVIRONMENT

My Environment is the first module introduced in this thesis work. This module

was initially designed as a part of the localization module and to increase the perfor-

mance of the localization. It was decided to be a separate module as not only the

localization module, but the other modules could also benefit from its output.

3.1. Introduction

For a human to predict his/her pose, i.e. his/her coordinates and the orientation,

vision is the primary input. Estimating the distance and the orientation with respect

to known static objects, he/she can calculate his/her pose. These estimates are valid

not only when they are seen, but also for a period of time after they were perceived,

with having the estimates’ confidence decreasing in time.

The buffering of objects in the environment can be done either with their actual

poses or their poses with respect to the observer. Buffering the actual poses of objects

in time, the coordinates of the objects with respect to the environment are calculated

using the current perceptions, and stored in an array of data structures as shown in

Figure 3.1.a. The odometry update and the instantaneous pose calculations are very

simple and could be done at a low cost.

Buffering the relative poses of the objects, the perceived distances and relative

angles are directly stored in an array of data structures which are used as buffers

as shown in Figure 3.1.b. This way, the odometry update and the instantaneous

pose calculations are relatively more complex, and since they require trigonometric

functions, their cost is higher.

Even though the cost of buffering relative poses of objects is more than the

cost of buffering actual poses of objects in time, as buffering relative poses does not

involve localization it is more robust. Involving localization in the calculation results

13

Figure 3.1. Buffering the poses of objects: (a) Buffering actual poses, and (b)

Buffering the relative poses

in involving localization error in the output. For each stored value on an object’s

pose history, having instantaneous localization error added to the perception error, the

estimations on the current pose of the object would involve more noise.

In addition, buffering the relative poses of the objects makes it meaningful to

buffer the poses of the static objects. This is very valuable for localization in two ways.

First, the processed static object poses would be more robust and lead to more accurate

agent pose estimations. Secondly, this buffering will make it possible to process more

static objects than that are seen in any moment of time, as long as the buffered relative

poses could give a proper estimate for the current pose of the static object.

3.2. General Outline of ME

My Environment (ME) is a module between the perception module, or any other

module that handles the perception of the environment objects, and the other mod-

ules that use the output of the perception module as shown in Figure 3.2. In some

14

Figure 3.2. Interaction of ME with the other modules

exceptional cases, where the position and the relative angle data are not sufficient, the

perception data may be needed to be used directly. For instance, in the robot soccer

domain, the ball tracking behavior for the head, where the coordinates of the perceived

ball region on the camera frame image may be used to calculate the next pan - tilt

parameters, uses the perception output directly.

Localization is one of the modules that require the perception data. During the

perception update of the localization module, the perceived static objects are used to

estimate the current pose of the agent.

The input of the perception module is the current internal state of the agent

and the latest camera frame image. Input from a camera is often very noisy and may

cause false perceptions. Not only the distance of an object could be perceived wrong,

sometimes the object could be recognized as another object. If the data from the

perception module are used as they are, these errors could result in unwanted behavior

in other modules.

Filtering the output of the perception module in time using the past perceptions of

the objects, more stable and robust data could be provided for the localization module

15

Figure 3.3. The data structure of ME

as well as other modules. This way the effect of false perceptions and recognitions

would be decreased.

It should be kept in mind that for a mobile agent, using the past perceptions could

lead to problems if the motion of the agent is not reflected on the past perceptions.

3.3. Architecture of ME

There are two kinds of objects in the ME architecture: static objects and dynamic

objects. Each object, either static or dynamic, has a buffer window for storing the

most recent perception data for that object, and an additional buffer for the current

estimation for that object. The data structure of ME is shown in Figure 3.3.

Each static object entry has a distance, relative angle and a confidence regarding

its perception. In the case when a static object has its own orientation, the orientation

16

Figure 3.4. Data structures of (a) static objects, and (b) dynamic objects

values are also to be stored in the buffer. For dynamic objects, the velocity should also

be calculated, but as it is not directly extracted from a single camera frame, it is not

necessary to be buffered. In Figure 3.4a and 3.4b the data structures for static and

dynamic objects are defined.

The window size is a hyper-parameter of ME. The noise in odometry, the dy-

namicity of the agent’s pose, and the frequency of the processed vision frames play an

important role in the selection of a good window size parameter. For dynamic objects,

the speed of such objects should also be taken into account.

For instance, for Cerberus’05, the robots used have a maximum speed of ap-

proximately 30 cm/s (with ERS 210s), the odometry is quite noisy as the robots are

legged, and the average vision frame processing time was 18 fps. For such conditions,

the windows size for static objects and dynamic objects were chosen to be 32 and 12

respectively.

17

3.4. Procedures of ME

There are five main procedures of ME. Other than initialization, the first two

procedures, perception update and odometry update, are triggered as new perception

data from the perception module and new odometry data from the locomotion module

arrive. The other two, current pose estimation for static objects and the current pose

estimation for dynamic objects, are called inside the perception update procedure.

3.4.1. Initialization

As an initialization, it is necessary for the pose estimations to set all the buffers

in the windows of all the objects, for both the static objects and the dynamic objects.

If there is no prior information about the pose of an object when the system starts, all

the buffers in its window are to be marked as unknown. If the initial pose of an object

is known a priori, then this can be provided to the system by filling the buffers in its

windows according to that knowledge.

3.4.2. Perception Update

For each dynamic and static object, the oldest record on the buffer is deleted and

a new record is stored from perception if the object is seen at the moment, otherwise it

is marked that there is information available about the pose of the object at that time.

After updating the buffer with the latest perception output, an estimation is done for

each object concerning its pose by calling the appropriate procedure in Section 3.4.4

or Section 3.4.5.

3.4.3. Odometry Update

For the odometry update of each record, three trigonometric functions and a

square root is used. For a ME with no number of objects and a window size of nw,

there are no × nw number of records. These calculations increase the cost of ME, but

they are mandatory for reasonable ME estimations.

18

Since all the information in the buffers of all objects’ windows is relative to the

agent, on each movement of the agent, they need to be modified. For each record new

relative distance and the relative angle values have to be calculated using Equations

3.3 and 3.4.

c = cos(θ)× d−∆x (3.1)

s = sin(θ)× d−∆y (3.2)

d′ =
√

c2 + s2 (3.3)

θ′ = tan−1(s/c) + ∆θ (3.4)

where θ, d, ∆x, ∆y and ∆θ are the previous relative angle, previous relative distance,

the signed distance the agent moved in sideways, the signed distance the agent moved

on its orientation and the angle the agent has turned, respectively. The new relative

distance and the new relative angle are represented with d′ and θ′ respectively.

3.4.4. Current Pose Estimation for Static Objects

For each static object, this function is called once in every perception update.

Using the window sized perception data records; a pose estimation is made for its use

in other modules of the agent’s architecture like localization and planning.

In Equations 3.9, 3.10 and 3.11 the confidence estimation, the relative distance

and relative angle of the static object are calculated.

wj =
nw
∑

i=0

KAj
i × CAj

i × fws(i) (3.5)

∆xj =

∑nw

i=0 KAj
i ×DAj

i × cos(AAj
i)× fws(i)

wj

(3.6)

∆yj =

∑nw

i=0 KAj
i ×DAj

i × sin(AAj
i)× fws(i)

wj

(3.7)

19

nj =
nw
∑

i=0

KAj
i (3.8)

cj =

∑nw

i=0 KAj
i × CAj

i × fws(i)

wj

× fwc(nj) (3.9)

dj =
√

∆x2
j + ∆y2

j (3.10)

θj = tan−1(∆yj/∆xj) (3.11)

where j is the index of the object, nw is the window size; wj is the total weight for

the jth object, fws(i) gives the weight of the ith record for a static object; fwc(nj) gives

the weight for the confidence of an object with nj known records in its windows; KAj
i

is a flag which is equal to one if the ith record of the jth object exists (i.e. the object

was perceived at the time that record was buffered) and zero otherwise; DAj
i is the

distance of the ith record of the jth object; AAj
i is the relative angle of the ith record

of the jth object; CAj
i is the confidence of the ith record of the jth object; cj is the

confidence estimation of the jth object; dj is the relative distance estimation of the jth

object; and θj is the relative angle estimation of the jth object.

The function fws(i) is a monotonically increasing function. The value of fws(i)

is to be arranged such that the more recent a record is the more weight it will receive,

but at the same time it will not let too small number of records (i.e. one or two)

dominate the value of the weight. Although a linear function could easily be used for

that purpose, a sigmoid function could be expected to give better results if configured

properly for the application.

The function fwc(i) is also a monotonically increasing function for favoring the

confidence with respect to the number of records of which poses are available.

If nj is zero, meaning that none of the buffers in the window stores a perceived

pose, then no estimation could be made and the object’s pose is set as unavailable.

After the confidence is calculated, if it is below a predefined threshold, the object’s

pose is also set as unavailable.

20

3.4.5. Current Pose Estimation for Dynamic Objects

The procedure of the current pose estimation for the dynamic objects is the same

as the current pose estimation for the static objects except that for dynamic objects

the speed and the direction of the speed should also be calculated when possible. For

each dynamic object, this function is called once in every perception update. Using

the same equations in the Section 3.4.4 the pose estimation, with the exception of the

speed related variables, is made, but the fws(i) function is replaced with fwd(i), which

gives the weight of the ith record for a dynamic objects.

If an object is dynamic, perceiving the object in different poses may be either

due to noisy perception or the object’s movement. If the object’s recent poses are

buffered and used for the estimation of the current pose, the weights of the most recent

records should be higher than they are for static objects, where they should be always

perceived in the same pose. As a remark, it should be noted that the effect of the

movement of the agent is eliminated with the motion update procedure.

The function fwd(i) is also a monotonically increasing function as the function

fws(i) is, but favors the most recent records more than fws(i). Since the older records

are less important for the dynamic objects, the window size for the dynamic objects

could be set less than the window size set for the static objects.

The speed of a dynamic object is estimated only if the pose of the object was

available from the previous run, otherwise the speed is set as unavailable.

In Equations 3.13 and 3.14 the speed and relative direction of the speed of the

dynamic object are calculated.

hj = d2
j + d2

j−1 − 2× dj × dj−1 × cos(θj − θj−1) (3.12)

αj = Π− cos−1(
hj − d2

j + d2
j−1

2× hj × dj−1

)− θj−1 − θj (3.13)

sj =

√

hj

∆t
(3.14)

21

where j is the index of the object, dj is the relative distance estimation of the jth

object; θj is the relative angle estimation of the jth object; αj is the relative direction

of the speed estimation; and sj is the speed estimation.

3.5. Advantages and Disadvantages of ME

ME provides more stable results for both static and dynamic objects. For static

objects, especially in the case when localization does not give accurate results, the

pose of the static object at ME would be more robust. For localization, the ME output

poses can be used as if they were perceived from the sensors at that time. This way,

perceived objects are not forgotten just after they are perceived, but remain in ME for

a period of time. In addition, the noisy perception, which from time to time may lead

to false object detections, could be stabilized.

ME provides more stable results for dynamic objects as well. Using the ME

output instead of the perception output directly, instantaneous fluctuations in the

pose of the object are smoothened. Losing the dynamic object in some camera frames

and perceiving it again frequently, which is not a rare thing in robotics perception

modules, could lead to oscillations in the operations and the outputs of some of the

modules. ME smoothens these oscillation with its pose estimation, where it uses the

recent perceptions to calculate the current pose.

These advantages have a cost. The space needed to store the pose buffers and

current estimations of objects in ME grows linearly with the product of window size

of the pose buffers and the number of objects in ME. The complexity of the ME

procedures is O(nw×no), where nw is the window size and no is the number of objects

in ME. Using the output of the perception module, both the processing and memory

expenses of ME will be saved, but if the system can afford these expenses, the benefits

of ME could be worthwhile.

It should also be noted that using ME, the agent would observe dynamic objects

slower than they are. This is because of using the previous poses of the dynamic object

22

in the calculation of the current pose. This problem could be minimized theoretically

by adding the velocity of the previous estimation times the time passed to the previous

records of that object, but this could bring more noise than it corrects as the velocity

estimations could be noisier than the relative position estimations.

23

4. S-LOC: SIMPLE LOCALIZATION

S-Loc is the localization technique proposed by this thesis. It used not only in

experiments but in also the Cerberus’05, which participated in RoboCup 2005 - Sony

Four-Legged League and won the technical challenges.

During the development of the localization module of Cerberus’05, many tech-

niques were taken into consideration.

• Triangulation is a simple and accurate technique, but is not robust. It is too

much effected by noise, specially by the false perceptions [1].

• Fuzzy localization techniques generally have high computational complexity, and

does not give accurate enough results that are worth that cost [2, 3].

• The major disadvantage of Kalman Filter methods is that they do not have the

capability of recovering from kidnapping [4, 5].

• ML approaches are generally expensive, where false perceptions could be big

problems [6, 7].

• Raw MCL cannot recover from kidnapping, but a version of it, SRL is imple-

mented [8, 9, 16].

• ML-EKF is also another expensive technique, which would not be preferred in a

case where a much lower cost algorithm could give accurate and robust results

[13, 21].

• R-MCL is also another technique, which is used in the experiments for comparison

purposes [18, 19, 20].

Considering the points above, it was decided to implement S-Loc together with

a version of SRL. The existing R-MCL module implemented in our laboratory is also

used in the experiments.

24

4.1. Introduction

In general, the localization process has two main steps. The first one is the

perception update, which is based on the perceptions in order to calculate the estimated

pose of the agent. Since the movement of the agent changes its pose, the second step,

the odometry update, is necessary for reflecting the effect of the movement on the

calculations and the estimations.

Perception update, as it depends on the perceptional information, usually includes

high amount of noise. Although the agent is dynamic, its pose should not be highly

unstable, i.e. the pose should not jump to different far poses on the field frequently.

Using a memory for the previous pose estimate, and updating it with the current

estimate could handle the big fluctuations and increase the robustness to the false

perceptions of static landmarks.

In order to use triangulation, three objects, of which perceptions are not available

so often at the same time, are needed to be perceived. Also, even if three objects are

available, in the case where one of the perceptions is wrong or is highly noisy, the

calculation will lead to a very noisy pose estimation.

In the MCL, there is a large number of sample poses, for which many calculations

should be made in order to find their confidences. Generally, most of these samples

do not hold any useful information. Also, noisy perception data may lead to unstable

pose estimations.

The principle of ML leaves open how the robot’s belief is represented and how

the conditional probabilities are computed. Existing ML approaches mainly differ in

the representation of the state space and the computation of the perceptual model.

These approaches are generally expensive, since the space is discretized and for each

perception and for each location, the probabilities should be calculated at each frame.

False perceptions could also be major problems.

25

Figure 4.1. The relationship of the S-Loc module with the other modules

In the perfect, noiseless case, the odometry data should be continuous and the

pose should be updated continuously as the agent moves. On the other hand, in the real

world case, the odometry data is generally very noisy, especially when the agent uses

legs for locomotion; and arrives at discrete times, for instance after a step is completed.

Both of these make the previous pose estimates less confident for the current estimate

calculations.

4.2. General Outline of S-Loc

S-Loc is a localization module. It needs the perception data and the odometry

data for updating the pose estimate, which it provides as the output. This pose estimate

is then used in other modules. The relationship of the S-Loc module with the other

modules is shown in Figure 4.1.

The perception data can be supplied directly from a vision module (or any other

perception module), or they can be supplied by the ME module where they are buffered

and estimates using them are produced. It could perform better if the perceptional

input is provided by the ME module, because the ME module provides more stable

and robust data.

26

Figure 4.2. The perception update process

The locomotion module provides the odometry data at certain times, which is

generally less frequent than the perception data. The effect of the movement of the

agent should also be reflected on the pose estimate.

4.3. Architecture of S-Loc

The perception update of the S-Loc depends on the perception of landmarks and

the previous pose estimate. The perception update process is shown in Figure 4.2.

Even if the initial pose estimate is provided wrong, it acts as a kidnapping problem

and is not a big problem as S-Loc will converge to the actual pose in a short period of

time if enough perception could be made during this period.

For each perceived landmark, a sample pose is calculated according to this per-

ception and the previous pose estimate of the agent. The previous pose estimate is

also taken as a sample pose.

27

For each sample pose, using all the landmarks, the likelihood of this sample pose

is calculated. This is done by assuming that the agent’s actual pose is the sample pose

being processed and calculating the difference of the perceived landmarks positions

and their actual positions. Also, the confidence of the perception is reflected on the

likelihood.

After these likelihood calculations are done for each sample pose, these likelihoods

are used for calculating the weights of the corresponding sample poses, and a new pose

is calculated as the weighted average of these sample poses.

The weighted average of these sample poses is then used together with the previ-

ous pose estimate to calculate the current pose estimate. The purpose of not using the

weighted average of these sample poses directly is to provide system enough memory

to prevent big jumps of the pose estimate and make it more stable.

After the current position of the agent is estimated, it could be safer to calculate

the current orientation of the agent using the current position estimation and the

perceptions.

In the case of having no perception at a certain time, decreasing the confidence of

the previous pose estimate, the current pose estimate could be obtained as no further

data are available.

The odometry update process is as simple as updating the pose estimation with

the odometry data. As only the pose estimation is used from the previous cycle of

every estimation, no more update or calculation is necessary. On the other hand, if the

frequency of the odometry update is much less than the frequency of the perception

update, then it may be better to lower the weight of the odometry data accordingly.

This is because of having the original odometry data to be the result of the motion

during more than one perception update.

28

4.4. Procedures of S-Loc

There are three main procedures of S-Loc. The initialization is the first one.

Other two procedures, perception update and odometry update, are triggered as new

perception data from the perception module and new odometry data from the locomo-

tion module arrive.

4.4.1. Initialization

The only thing to be done in the initialization procedure is to initialize the pose

estimate to initial value. It does not have to be the actual pose the agent will have at

the beginning, since S-Loc module can recover from kidnapping. On the other hand,

it shall still be set to a valid pose initially in order not to cause a problem in the

proceeding calculations.

4.4.2. Perception Update

As shown in Equations 4.1, 4.2, 4.3, 4.4 and 4.5, the first pose sample is the

previous pose estimate.

PSA0
x = PEx (4.1)

PSA0
y = PEy (4.2)

PSA0
θ = PEθ (4.3)

PSA0
c = PEc (4.4)

PSA0
w = PEc × fwpu2(PSA0

x, PSA0
y, PSA0

θ, PA) (4.5)

PA0
k = 1 (4.6)

where PS0
x, PS0

y , PS0
θ , PS0

c and PS0
w are the x-coordinate, y-coordinate, orientation,

confidence and weight of the first pose sample; PEx, PEy PEθ, and PEc are the x-

coordinate, y-coordinate, orientation and confidence of the pose estimate before the

perception update; PA, percepts array, is the collection of perception data of all the

29

perceived landmarks together with their coordinates that are known initially; fwpu2

is the function that returns a weight component for a pose according to the current

perceptions; and PA0
k is set to one in order to have the first element of pose sample

array included in the proceeding calculations.

Then, a separate pose sample is calculated for each perception as in the Equations

4.8, 4.9, 4.11, 4.12 and 4.13.

αi = tan−1

(

PEy − PAi
y

PEx − PAi
x

)

(4.7)

PSAi
x = PAi

x + PAi
d × cos(αi) (4.8)

PSAi
y = PAi

y + PAi
d × sin(αi) (4.9)

βi = tan−1

(

PSAi
y − PAi

y

PSAi
x − PAi

x

)

(4.10)

PSAi
θ = π + βi − PAi

θ (4.11)

PSAi
c = PAi

c (4.12)

PSAi
w = fwpu1(PAi)× fwpu2(PSAi

x, PSAi
y, PSAi

θ, PA) (4.13)

where αi and βi are dummy angle variables; PSAi
x, PSAi

y, PSAi
θ, PSAi

c and PSAi
w

are the x-coordinate, y-coordinate, orientation, confidence and weight of the ith pose

sample; PAi
x, PAi

y are the actual x-coordinate and y-coordinate of the ith landmark

in the percepts array; PAi
d, PAi

θ and PAi
c are the perceived relative distance, relative

angle and the perception confidence of the ith landmark in the percepts array; PAi is

the perception data of the ith perceived landmark which is stored as the ith element of

the Perception Array; and fwpu1 is the function that returns a weight component for a

pose according to the perception for which the pose sample is calculated.

The function fwpu1 returns the first component of the PSAi
w for the argument

PAi. It may return PAi
c directly or any other number that gives the confidence that

the perception is correct. Since how accurate the pose sample is will be taken into

account by the function fwpu2, this function is independent of the corresponding pose

sample. The purpose of this function is to decrease the weight of the pose samples, of

which perception is less confident. In the case where the perception module does not

30

provide healthy confidence values, the perceived relative distance of the landmark can

be used for the calculation of the return value. In such a case, a properly configured

sigmoid function could be very suitable. If the landmarks are of different types and

are known to be of different perception accuracy, then this could also be reflected on

the return value.

The function fwpu2 returns the second component of the PSAi
w. The return value

is related to the accuracy the pose sample according to all the perceived landmarks.

For each perceived landmark, the position of the perceived landmark is calculated

by adding the perceived distance on the perceived relative angle to the pose sample,

and the resulting position is compared to the actual position of the landmark. The

difference gives the error. The return value should be a function of the error as in

Equation 4.16.

parj
x =

∣

∣PAj
x − (PSAi

x + PAj
d × cos(PSAi

θ + PAj
θ))
∣

∣ (4.14)

parj
y =

∣

∣PAj
y − (PSAi

y + PAj
y × sin(PSAi

θ + PAj
θ))
∣

∣ (4.15)

fwpu2 =

NL
∏

j=1

PAj
k × fwpu3

(

parj
x, parj

y

)

(4.16)

where NL is the number of landmarks; PAj
k is one if the perception of the jth landmark

is available, and zero otherwise; and fwpu3 is a function that returns a value related to

the difference in the x-coordinate and the y-coordinate.

The return value of the function fwpu3 is a value for the confidence of the cor-

responding sample pose for the corresponding perceived landmark. The greater the

x-coordinate and y-coordinate differences provided as parameter to this function, the

worse the sample pose fits to that landmark perception and therefore the less confidence

the function shall return.

The calculation of the new pose estimate is the last step of the perception update.

Except the new orientation estimate, all the estimation values are the weighted average

of the recent calculation, which is in turn a weighted average of sample poses, and the

31

corresponding previous estimate value. The new orientation estimate is calculated

using the new coordinate estimates and the perceptions. The new values of pose

estimate are calculated from the Equations 4.19, 4.20, 4.23, and 4.24.

hp = fHP

(

NL
∑

j=1

PAj
k

)

(4.17)

tw =

NL
∑

j=0

(

PAj
k × PSAj

w

)

(4.18)

PE∗

x = hp× PEy + (1− hp)×
∑NL

j=0

(

PAj
k × PSAj

x × PSAj
w

)

tw
(4.19)

PE∗

y = hp× PEy + (1− hp)×
∑NL

j=0

(

PAj
k × PSAj

y × PSAj
w

)

tw
(4.20)

βi = tan−1

(

PE∗

y − PAi
y

PE∗

x − PAi
x

)

(4.21)

wai = fwpu1(PAi)× fwpu2(PE∗

x, PE∗

y , βi, PA) (4.22)

PE∗

θ = tan−1

(

∑NL

i=1 (PAi
k × sin(βi)× wai)

∑NL

i=1 (PAi
k × cos(βi)× wai)

)

(4.23)

PE∗

c = hp× PEc + (1− hp)×
∑NL

j=0

(

PAj
k × PSAj

c × PSAj
w

)

tw
(4.24)

where PE∗

x, PE∗

y , PE∗

θ and PE∗

c are the updated x-coordinate, y-coordinate and ori-

entation of the pose estimate; and fHP is a function that returns a history coefficient

according to the number of percepts available.

4.4.3. Odometry Update

As the odometry update, the only necessary thing is the update the current pose

estimation with the new odometry data. No more update or calculation is necessary,

because other than the pose estimation nothing is used from the previous cycle of

estimation.

It should also be noted that, in the case where the frequency of the odometry

update is much less than the frequency of the perception update, transforming the

odometry data to lower values may lead to better results since the original odometry

32

data is the result of the agent’s motion from the previous odometry update to the

current one, and this would last more than one perception update.

In Equations 4.25, 4.26 and 4.27 the new (updated) coordinates and orientation

of the pose estimate is calculated.

PE∗

x = PEx + ∆x× sin(PEθ) + ∆y × cos(PEθ) (4.25)

PE∗

y = PEy + ∆y × sin(PEθ)−∆x× cos(PEθ) (4.26)

PE∗

θ = PEθ + ∆θ (4.27)

where PE∗

x, PE∗

y and PE∗

θ are the updated x-coordinate, y-coordinate and orienta-

tion of the pose estimate; PEx, PEy and PEθ are the x-coordinate, y-coordinate and

orientation of the pose estimate before the odometry update; ∆x, ∆y and ∆θ are the

odometry data giving the change in the x-coordinate, y-coordinate and orientation.

4.5. Advantages and Disadvantages of S-Loc

In ML, for each landmark seen the probability distribution is modified accord-

ingly, and as a result, the final probability distribution is expected to give the agents

real pose. Instead of a probability distribution, a pose, which is most likely to be the

actual pose according to the previous pose estimate, is used in S-Loc. This way, as it

is in the ML, the pose estimate converges to the actual pose of the agent.

Considering only the most likely sample poses, S-Loc acts like a kind of ML but

with a local coverage. Although it has a local coverage, it responds in a fast manner

to the kidnapping problem, as the most likely sample poses could be far away from the

previous pose estimate. In addition, calculating only a sample pose for each landmark,

S-Loc has a much lower cost than ML.

Comparing with triangulation, S-Loc does not calculate the best estimate ac-

cording to the perception of the moment, but makes the estimation in a way that it

33

converges to that point in a short period of time. On the other hand, the effect of the

false perceptions is greatly decreased as the sample pose of such a perception would

have a rather small confidence and will not play a big role in the pose estimation. This

way, without decreasing the performance, the robustness is increased.

In a way, S-Loc works similar to the MCL as the sample poses are used in the

same way they are used in MCL. The main difference is the selection of these sample

poses. In MCL, there is a large number of pose samples, and they are populated

according to their confidences, and randomly mutated for small changes. In S-Loc

new pose samples are calculated for each estimation, and for each perceived landmark

a pose sample is calculated. This way S-Loc becomes a much lower cost localization

method with accurate pose estimation capability.

The memory used in the S-Loc increases the robustness of the system even further

and the big jumps of the pose estimate are prevented.

34

5. APPLICATION DOMAIN

The proposed solution is the use of S-Loc localization technique together with

a properly set ME module. It is applied on the Sony Aibo robots to compete in the

RoboCup 2005 - Sony Four-Legged League.

The Cerberus’05, which is the project of Cerberus team from Bogazici University

- Turkey, uses an implementation of S-Loc as its localization module, and ME as an

alternative for the direct use of vision module outputs.

5.1. Robotic Soccer Domain

With the technological advances of the use of robots in industrial environments,

scientists are often faced with issues on cooperation and coordination among homoge-

neous and/or heterogeneous robots and their autonomy in a workspace [10, 22]. These

issues lead to the developments in multi-robot cooperative autonomous systems.

The promoters of multi-robot autonomous systems needed a model to test the

theories being proposed, and to evaluate their efficacies and efficiencies. This way, they

started focusing on robot soccer domain. Robot soccer makes heavy demands in many

key areas of robot technology like mechanics, sensors and intelligence. It also provides

a competitive setting that people around the world can understand and enjoy.

Robot soccer can be described as a competition of advanced robot technologies

within a confined domain. It offers a challenging arena for the researchers who work

with autonomous mobile robotic systems.

5.1.1. RoboCup Soccer

RoboCup is an international joint project which intends to promote AI, robotics,

and related field [10]. It is an international research and education initiative which

35

attempts to foster AI and intelligent robotics research by providing a standard problem

where wide range of technologies can be integrated and analyzed.

Soccer game is chosen to be a central topic of research for RoboCup, aiming at

innovations to be applied for socially significant problems and industries. The ultimate

goal of the RoboCup project is to develop a team of fully autonomous humanoid robots

that can win against the human world champion team in soccer by 2050.

In order to have a robot team to perform a soccer game properly, various technolo-

gies must be incorporated including: design principles of autonomous agents, multi-

agent collaboration, strategy acquisition, real-time reasoning, robotics, and sensor-

fusion. RoboCup Soccer is a task for a team of multiple fast-moving robots under a

dynamic environment. RoboCup Soccer also offers a software platform for research for

the simulation competitions.

Although soccer game is chosen to be a central topic, there are two more domains

other than RoboCup Soccer. RoboCup initiated RoboCupRescue domain, which is

another major application of RoboCup for search and rescue in large scale disaster, to

specifically promote research in socially significant issues. The third domain, RoboCup

Junior, is a project-oriented educational initiative that sponsors robotic events for

young students.

The main focus of the RoboCup activities is competitive football, as the games are

important opportunities for researchers to exchange technical information. In addition,

they serve as a great opportunity to educate and entertain the public. RoboCup Soccer

is divided into five leagues:

5.1.1.1. Simulation League. Simulation League is one of the oldest leagues in RoboCup

Soccer, where independently moving software players (agents) play soccer on a virtual

field inside a computer. Matches are divided into five minute halves.

36

5.1.1.2. Small-Size Robot League (f-180). In Small-Size Robot League, team consists

of up to five small robots of no more than 18 cm in diameter play soccer with an orange

golf ball on a field with the size of bigger than a ping-pong table. Matches are divided

into 10-minute halves.

5.1.1.3. Middle-Size Robot League (f-2000). In Middle-Size Robot League, team con-

sists of up to four middle-sized robots of no more than 50 cm diameter play soccer

with an orange soccer ball on a field the size of 12x8 meters. Matches are divided into

10-minute halves.

5.1.1.4. Sony Four-Legged Robot League. Teams of four four-legged entertainment ro-

bots play soccer matches, which are divided into 10-minute halves, on a 4x6 meters

field. As the robots used are SONY’s AIBO, this is a software competition.

5.1.1.5. Humanoid League. This league was introduced in 2002. Biped autonomous

humanoid robots play in penalty kick, and 1 vs. 1, 2 vs. 2 matches whereas free style

competitions are to be expected as well.

5.2. Sony Four-Legged League

Teams to participate in this league first go through a qualification, if they are not

prequalified for their success in the previous year. Then, 24 qualified teams participate

to the league, where SONY AIBO entertainment robots are used.

5.2.1. SONY’s AIBO

The SONY AIBO models allowed in the Sony Four-Legged League are ERS-210

and ERS-7 that are shown in Figure 5.1, whereas the ERS-7 robots are recommended

as they have a faster processor, a higher camera resolution, and they are the only

models currently being sold that are permitted in RoboCup.

37

Absolutely no modification or addition to the robot hardware is permitted. No

additional hardware is allowed including any off-board sensing or processing system.

Besides the originally installed sensors on the robots, no additional sensor is likewise

allowed.

Figure 5.1. SONY AIBO models: ERS-7 is on the left, and ERS-210 is on the right

5.2.2. Soccer Rules

Sony Four-Legged League has two competitions. The first one is the Soccer

Competition [23]. At the first round robins, there are eight groups of three teams. The

leaders of each group qualify for the second round robin. The seconds and thirds play

an intermediate round, where the winners go to the second round robins.

In the second round robin, four teams constitute each one of four groups, where

the first two teams from each group plays in the quarter-finals. Then, following semi-

finals and the final game, the winner becomes the champion.

5.2.2.1. Setup of the Environment. The colors of the soccer field and the manual setup

of the teams for kick-off are shown in Figure 5.2 [23]. All items on the RoboCup field

are color-coded as follows:

• The field (carpet) is green.

• The field lines are white.

• The yellow goal is defended by the red team.

38

• The sky-blue goal is defended by the blue team.

• Four cylindrical beacons are placed on the edge of the field. The bottom part is

always white. Each beacon is bi-colored and is unique with color sequence.

Figure 5.2. Field colors and manual setup for kick-off

5.2.2.2. Structure of the Game. Each team consists of no more than four completely

autonomous robots including the goal keeper. As long as it uses the access points

provided by the event organizers, any form of wireless robot-to-robot communication

is allowed. GameController messages will be sent to the robots by a computer that will

be provided by the event organizers. Other than this, the robots are to be completely

autonomous. Any manual interaction with the robots, either directly or using some

kind of communications mechanism, is not allowed. Team members can only handle

one of their robots when an assistant referee gives it to them after they request for

pick-up.

The games consist of three parts: the first half, a half-time break, and the second

half. Each half is 10 minutes. The extra time over is referred to as lost time. The

half-time break is another ten minutes, during which both teams may change robots,

change programs, or anything else that can be done. A game can finish in a draw, if

it is in the preliminaries. In the finals, penalty shoot-out employing sudden death is

started after a five minute break follows any game that ends in a draw.

39

5.2.3. Technical Challenges

At the RoboCup 2005 Four-Legged League Technical Challenges Competition,

three technical challenges were held [24]. The team that gets the highest overall score

becomes the champion of the Technical Challenges. These challenges are as follows:

• The Open Challenge

• The Variable Lighting Challenge

• The Almost SLAM Challenge

5.2.3.1. The Open Challenge. This challenge is introduced to encourage creativity

within the Legged League, in which teams are allowed to demonstrate an interesting

research in the field of autonomous systems. Each team is expected to demonstrate

their research on the RoboCup field during the three minutes of time given to them.

Each team should also prepare a short, one page description of their demonstration.

The teams are voted by the other entrants.

5.2.3.2. The Variable Lighting Challenge. The Variable Lighting Challenge is the sec-

ond challenge which is intended to encourage teams to increase the robustness of their

vision to illumination changes. It is based on a penalty shoot out where the team at-

tempting the challenge places a single robot on the field. The team whose robot scores

more goals into the opposite goal in three minutes gets more points. There are also

two additional opponent robots placed on the field. Both of these robots are paused.

One is placed in a goalie position whereas the other is placed in a defender position.

5.2.3.3. The Almost SLAM Challenge. The Almost SLAM challenge is intended to be

a step towards moving the league away from strictly defined beacons to more generic

localization information as in a soccer stadium. In order to achieve this, additional and

initially unknown landmarks are placed around the field. The challenge is made of two

stages. In the first stage, the robot is given time to explore the field while all existing

and new landmarks are still in their positions. In the second stage, the regular beacons

40

and goals are covered up or removed and only the additional ones exist around the field.

The robot must then move to a series of points, which were given at the beginning of

the challenge, on the field using the information it learned during the first stage.

5.3. Cerberus’05

The entire software system of Cerberus was designed and developed from scratch

for RoboCup 2005. The work began with developing a framework which makes all of

the modules platform and hardware independent allowing the transfer from or to the

robot any input, output or intermediate data of the modules. It was decided to divide

the project into two main parts:

• Cerberus Station

• Cerberus Player

5.3.1. Cerberus Station

Cerberus Station is the offline development platform where the algorithms and

ideas are developed and tested. The record and replay facilities are also provided which

allows testing the implementations without deploying the code on the robot each time.

The station was developed using Microsoft .NET technologies and it contains a set of

monitors which enable visualizing several phases of image processing, localization and

locomotion information.

5.3.2. Cerberus Player

The part of the project that runs on the robots is the Cerberus Player. Most of the

classes in CerberusPlayer are implemented in a platform independent manner allowing

the cross-compilation of them in various operating systems like OPEN-R, Windows

or Linux. The software architecture of Cerberus Player consists of the following four

objects:

41

5.3.2.1. Core Object. The main part of the player code is the Core Object which

coordinates the communication and synchronization between the other objects. All

other objects are connected to Core Object. It takes camera image as its main input

and as a result of its processing, it sends the corresponding actuator commands to

the locomotion engine. Core Object is the container and hardware interface of Vision,

My Environment, Localization and Planner modules, where all of them are executed

for each received camera frame. The basic input-output dependency and execution

sequence is as follows:

V ision→MyEnvironment→ Localization→ Planner

This is the basic linear illustration of the dependencies. For instance, ME module

is between Vision and Localization module, but it also provides valuable information

for the Planner module. The complete dependency of the modules is naturally more

complex than this.

5.3.2.2. Locomotion. Locomotion object is responsible for all the actuator related

operations on the robot, which performs a certain type of walk with certain parameters,

a predefined special action, or sets the indicators according to the commands it receives

from the Core Object.

5.3.2.3. Communication. Communication object is responsible for communication of

the robot with the external entities during the games, which includes receiving game

data provided by the game controller and managing robot to robot communication.

Both communication mechanisms use UDP as the communication protocol.

5.3.2.4. Dock Object. Dock object is the object which manages the communication

between the robot and the Cerberus Station and is used only for debugging purposes.

During the games, this object is not installed on the robots. It sends the debug messages

to the station and redirects the received messages to Core Object.

42

6. EXPERIMENTAL STUDY

Three localization modules used in the experimental study are developed and

optimized to be run on actual robots of the Cerberus Team. On the other hand, the

experimental data used are gathered in 2002 where the field setup was very different

from it is in 2005 [13].

This leads to some changes between the test environment and the environment

for which the modules are designed and optimized. In the data set used: the goal

perceptions are also not available, the number of beacons and their positions in the

field are different, even the size of the field is smaller. The frequency of odometry

data’s arrival is also higher than it is in Cerberus’05.

However, no modifications were made on the localization modules. In fact, these

modules take the definition concerning the field setup from outside, and for the ex-

periments, only these definitions are changed. They are optimized for this different

environment.

6.1. Test Environment

The colors of the soccer field of the test environment are shown in Figure 6.1. The

perception data contains relative positions of six landmarks which are located around

the field. Goals and lines are not perceived. The field is three meters long and two

meters wide. There are five points on the field that are visited by the robot in order.

The data set is recorded on this test field. Some other versions of the dataset

where noise is added or the data is sparse are also used for experiments.

43

Figure 6.1. The soccer field of the test environment

6.2. Offline Testing Tool

The offline testing tool is developed during the thesis preparation for making the

experimental study. It can perform four different tests on the data set using one of the

available localization algorithms implemented in the Cerberus Station of Cerberus’05.

This tool is embedded to the Cerberus Station. Its visual interface is as shown in

Figure 6.2.

There are three display windows at the bottom of the visual interface. The first

window is for monitoring the perception of the last frame. The second one shows the

latest ME output. Finally, the third window shows the current pose estimation on the

test field.

The tests can run on the data set in different speeds for analyzing the performance

of the algorithm as well as debugging the implementation to fix it. For carrying large

number of tests, this tool can also perform a given number of tests in batch mode.

6.3. Experiment 1: Robustness Test

Nine different data sets are used in the first experiment where 0 per cent, 10 per

cent, 20 per cent, 30 per cent, 40 per cent, 50 per cent, 60 per cent, 70 per cent and 80

44

Figure 6.2. The offline testing tool

per cent noise is added to the raw data [13]. The addition of noise is done by replacing

a certain fraction of landmark observations by random landmark data. The aim is to

measure the robustness of the algorithms.

0 per cent noisy data set contains the raw data, where S-Loc outperforms the

others. However, increasing the noise increases the error for S-Loc faster than SRL up

to 70 per cent, and at 80 per cent S-Loc gives the best results again as shown in Figure

6.3 and Table 6.1. For SRL and R-MCL, the error distances are calculated over ten

runs where in each run number of mark visits is 143. For S-Loc only one run is used,

since no randomization is used in the algorithm.

During the design and implementation of the S-Loc algorithm, some observations

are made on the actual robots and the data provided to the localization module in the

actual application domain, which is Cerberus’05. It was noticed that the perception

noise in the relative angle of the landmarks is much less than the noise in the dis-

45

Figure 6.3. Results of the experiment 1

Table 6.1. Results of the experiment 1

Noise Error of Error of Error of

percentages S-Loc (mm) SRL (mm) R-MCL (mm)

0 128.1 ± 66.2 142.8 ± 100.5 346.5 ± 264.0

10 287.9 ± 221.0 139.7 ± 99.3 427.2 ± 368.2

20 377.9 ± 271.9 144.1 ± 111.5 477.5 ± 330.0

30 475.1 ± 318.3 159.0 ± 160.2 546.7 ± 375.2

40 535.5 ± 370.0 184.8 ± 229.1 584.5 ± 410.5

50 587.3 ± 405.7 262.2 ± 348.3 595.4 ± 415.4

60 656.2 ± 419.6 469.9 ± 493.1 673.1 ± 496.5

70 671.0 ± 453.2 633.4 ± 590.5 660.9 ± 503.9

80 749.0 ± 474.6 830.0 ± 633.9 751.5 ± 498.6

46

tance. The main problem with the perception was the noise in the distance estimation.

Occasionally, false perceptions were also present.

It was also observed that using the ME module, the effect of infrequent false

perceptions could be decreased. They are generally not a big problem for ME module,

as not only the last perception but a window of the last perceptions are used to calculate

the output.

Since the false perceptions are relatively rare, and having the relative angle per-

ceptions the most reliable source of information about the environment, the S-Loc

algorithm is optimized on the actual robots for depending on the relative angle data

more than others.

In the way noisy data sets are prepared for the experimental study, only the false

perception of the beacons is modeled, which constitutes only a small part of the noise

problem and occurs infrequently [13]. Noise in the perception of the distance and the

relative angle of the landmarks are not modeled. This way, only the robustness of the

algorithms with respect to the false perceptions is evaluated.

6.4. Experiment 2: Sparsity Test

In the experiment 2, the accuracy of different methods are evaluated under sensor

data sparsity. By discarding landmark observations from sensor data, new data sets

are prepared. The test results are as shown in Figure 6.4 and Table 6.2. As in the

first experiment, the error distances are calculated over ten runs for SRL and R-MCL

where in each run number of mark visits is 143. For S-Loc only one run is used. The

results are in millimeters.

The first data set, 1/1 fraction, is the raw data set. The other data sets are pre-

pared using the raw data set by removing a certain fraction of the sensory information.

For instance, 1/256 means that only one of each 256 sensory inputs is taken from the

raw data set.

47

Figure 6.4. Results of the experiment 2

Table 6.2. Results of the experiment 2

Error of Error of Error of

Fraction S-Loc (mm) SRL (mm) R-MCL (mm)

1/1 128.1 ± 66.2 142.8 ± 100.5 346.5 ± 264.0

1/2 138.6 ± 69.5 151.0 ± 91.6 327.8 ± 269.4

1/4 141.2 ± 78.5 173.0 ± 109.9 313.7 ± 257.5

1/8 155.9 ± 89.1 218.0 ± 146.0 289.4 ± 232.2

1/16 175.0 ± 97.3 278.2 ± 181.6 330.8 ± 243.9

1/32 198.9 ± 107.9 350.8 ± 193.3 354.9 ± 242.6

1/64 260.1 ± 161.3 497.9 ± 298.8 352.9 ± 201.7

1/128 374.3 ± 273.0 686.8 ± 401.9 491.0 ± 370.9

1/256 513.2 ± 381.8 805.6 ± 484.1 531.4 ± 334.6

48

The results show that S-Loc outperforms the others in all cases. It should also be

noted that S-Loc is using the ME output instead of using the perception data directly.

This also has an important advantage especially against sparsity.

6.5. Experiment 3: Kidnapping Data

In the experiment 3, the ability of the methods to solve the kidnapped robot

problem is analyzed. To do so, the average time the methods needed for re-localizing

the robot after it has been manually displaced is computed over 22 kidnapping tests.

For SRL and R-MCL, ten runs are used.

The results are shown in Table 6.3, where the results are in seconds. According

to the experimental results, SRL recovers the earliest from kidnapping. It is followed

by R-MCL and S-Loc.

Table 6.3. Results of the experiment 3

S-Loc SRL R-MCL

Recover Time 4.28 ± 2.38 s 2.80 ± 2.44 s 3.26 ± 3.64 s

As S-Loc is a geometric method, where a large number of samples are not dis-

tributed over the field, the average time for recovering from kidnapping is longer than

others, but it is still in an acceptable interval for robotic soccer domain.

6.6. Experiment 4: Running Time

In this experiment, which is carried on a Pentium 4 2.6 GHz computer with 512

MB ram, average processing time of the methods are tested. The average processing

times and the number of processed frames per second are calculated for each method

over the complete raw data set that contains 51523 frames ten times.

For SRL and R-MCL, the processing time interval is the average of each frame’s

time intervals for the motion and vision updates for localization module; whereas for

S-Loc, the time intervals include motion and vision updates for the ME module as well.

49

As it is shown in the Table 6.4, where results are in microseconds, the total

processing time for S-Loc and ME is much less than both SRL and R-MCL. S-Loc,

SRL and R-MCL processed 8849.56, 1416.43 and 5291.00 frames per second respec-

tively. The high speed of the proposed system makes is a very important characteristic

especially for real-time systems.

Table 6.4. Results of the experiment 4

S-Loc SRL R-MCL

Processing Time 113 µs 706 µs 189 µs

6.7. Final Discussion on the Proposed System’s Performance

The experimental results show that the proposed system is a very fast system,

and it gives satisfactory results even with sparse data. Because of its analytic nature

with small number of perception based samples, it takes longer time to recover from

kidnapping, but it is still a reasonable time compared with the other approaches.

Experiments show that the proposed system is not as robust as the other ap-

proaches used in the experiments against false landmark perceptions. However, the

practical experiences show that when working on actual robots, where the noise on

the perception data is different from it is modeled in the experiment 1, the proposed

system is robust. The raw data set, where the proposed system outperforms the others,

already contains the noise of the vision system and error made due to measurements

and timing during recording it.

The proposed system is also used in Cerberus’05. In the RoboCup 2005 - Sony

Four-Legged League, Cerberus Team won the Technical Challenges, where S-Loc and

ME played an important role in the success.

Being the only team that is participating with the ERS-210s, the soccer compe-

tition was much harder for Cerberus Team. All of the opponents used ERS-7s with

faster CPUs, higher resolution and frame rate cameras, stronger servo motors, and a

new neck-head design that lets the robot control the ball much better.

50

7. CONCLUSIONS

Currently, localization is an active field of study and many approaches are being

introduced into the literature, because it is a critical part of any autonomous mobile

robotics research.

Due to the noisy characteristic of every real life environment, the localization

modules of such projects need to be robust enough to handle the noisy perception

data. The localization technique should also satisfy the accuracy requirements and be

able to work real time with the available resources.

Robot soccer is a suitable test bed where localization techniques could be devel-

oped and tested as the robots have limited and noisy sensorial information as in the

real life situation and their environment is also highly dynamic.

ME module, which is designed to buffer the perceptional information and calcu-

late more robust estimates over them, and S-Loc technique, which is a sample based

localization technique where only one sample is used for each perception data, are

introduced in this work. Together, they are proposed as a new localization system,

especially for the application area of robotic soccer.

The proposed system is implemented in Cerberus’05. The experimental study

shows that the system is:

• very fast,

• able to work fine with sparse data,

• able to recover from kidnapping at a reasonable time,

• not as robust as sample based techniques against false landmark perceptions.

About the robustness of the system, the experiments only evaluate the performance

against false landmark perception levels. However, observations on the actual robots

51

show that the main source of noise in perceptional data is the distance estimation. The

practical experiences show that while working on actual robots, the proposed system

is robust.

In the RoboCup 2005 - Sony Four-Legged League, Cerberus Team won the Tech-

nical Challenges, where the proposed system played an important role in the success.

This success, together with the results of the experimental study, has shown that the

proposed system has a high performance for the application domain.

As a future work, consideration of linear landmarks could also be added to the

proposed system. The possibility of equivalent landmarks is also not discussed in this

work. These two are necessary for the use of field lines in the robotic soccer, which is

the application domain of this work.

52

REFERENCES

1. Hightower, J., and G. Borriello, A Survey and Taxonomy of Location Systems for

Ubiquitous Computing, Technical Report UW-CSE Tech Report #01-08-03, 2001.

2. Buschka, P., A. Saffiotti, and Z. Wasik, “Fuzzy Landmark-Based Localization for

a Legged Robot” Proc. of the IEEE/RSJ Intl. Conf. on Intelligent Robots and

Systems (IROS) Takamatsu, Japan, July 2000, pp. 1205-1210, 2000.

3. Saffiotti, A., A. Bjorklund, S. Johansson, and Z. Wasik, “Team Sweden”, RoboCup

2001: Robot Soccer World Cup V, Springer-Verlag, Seattle, Washington, Lecture

Notes in Computer Science Series, Vol. 2377, pp 725-729, 2002. 2001.

4. Stroupe, A. W., and T. Balch, “Collaborative Probabilistic Constraint Based Land-

mark Localization”, Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intel-

ligent Robots and Systems EPFL, Lausanne, Switzerland, pp. 447-452, 2002.

5. Stroupe, A.W., K. Sikorski, and T. Balch, “Constraint-Based Landmark Local-

ization”, RoboCup 2002: Robot Soccer World Cup VI, Springer-Verlag, Fukuoka,

Busan, Lecture Notes in Computer Science Series, Vol. 2752, pp 8-24, 2003. 2001.

6. Fox, D., W. Burgard, and S. Thrun, “Markov Localization for Mobile Robots in

Dynamic Environments”, Journal of Artificial Intelligence Research, Vol. 11, pp.

391-427, 1999.

7. Schulz, D., and W. Burgard, “Probabilistic State Estimation of Dynamic Objects

with a Moving Mobile Robot”, Robotics and Autonomous Systems 34, Elsevier, pp.

107-115, 2001.

8. Thrun, S., D. Fox, W. Burgard, and F. Dellaert, “Robust Monte Carlo Localization

for Mobile Robots”, Artificial Intelligence, Elsevier, Vol. 128, pp. 99-141, 2001.

53

9. Schulz, D., and W. Burgard, “Probabilistic State Estimation of Dynamic Objects

with a Moving Mobile Robot”, Robotics and Autonomous Systems, Elsevier, Vol.

34, pp. 107-115, 2001.

10. Robocup Organization, http://www.robocup.org/, 2005.

11. Sony Four-Legged Robot League, http://www.tzi.de/4legged/, 2005.

12. Fox, D., W. Burgard, H. Kruppa, and S. Thrun, A Monte Carlo Algorithm for

Multi-Robot Localization, Technical Report CMS-CS-99-120, 1999.

13. Gutmann, J.S., and D. Fox, “An Experimental Comparison of Localization Meth-

ods Continued”, In Proc. of the 2002 IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems (IROS’02), Lausanne, Switzerland, pp 454-459, 2002.

14. Maybeck, P. S., “The Kalman Filter: An Introduction to Concepts”, I. Cox and G.

Wilfong, editors, Autonomous Robot Veficles, Springer-Verlag, pp 194-204, 1990.

15. Fox, D., W. Burgard, F. Dellaert, and S. Thrun, “A Probabilistic Approach to

Collaborative Multi-Robot Localization”, Special issue of Autonomous Robots on

Heterogeneous Multi-Robot Systems, Vol. 8, No. 3, pp. 325-344, 2000.

16. Lenser, S., and M. Veloso, “Sensor Resetting Localization for Poorly Modelled

Mobile Robots”, Proc. ICRA 2000, IEEE, Vol. 2, pp. 1225-1232, 2000.

17. Crisman, Z., E. Curre, C. T. Kwok, L. Meyers, N. Ratliff, L. Tsybert, and D. Fox,

“Team Description: UW Huskies-01”, RoboCup 2001: Robot Soccer World Cup V,

Springer-Verlag, Seattle, Washington, Lecture Notes in Computer Science Series,

Vol. 2377, pp 721-724, 2002.

18. Köse, H., and H. L. Akin, “Experimental Analysis and Comparison of Reverse-

Monte Carlo Self-Localization Method”, Proceedings of CLAWAR/EURON Work-

shop on Robots in Entertainment, Leisure and Hobby, December 2 - 4, Vienna,

Austria, pp. 85-90, 2004.

54

19. Köse, H., and H. L. Akin, “Robots from Nowhere”, 2004 Robocup Robot World

Congress, Lisbon, Portugal, Springer-Verlag, Lecture Notes in Computer Science

Series, Vol. 3276, pp.594-601, 2005.

20. Köse, H., and H. L. Akin, “A Fuzzy Touch to R-MCL Localization Algorithm”,

RoboCup International Symposium 2005, Osaka, July 18-19, 2005. (Accepted).

21. Gutmann, J. S., “Markov-Kalman Localization for Mobile Robots”, Int. Conf. on

Pattern Recognition (ICRP), Vol. 2, No. 2, pp. 601-604, 2002.

22. FIRA, http://www.fira.net/, 2005.

23. Sony Four Legged League Technical Commitee, “Sony Four Legged Robot Foot-

ball League Rule Book”, http://www.tzi.de/4legged/pub/Website/Downloads/

Rules2005.pdf, 2005.

24. Sony Four Legged League Technical Commitee, “Technical Challenges for the

RoboCup 2005 Legged League Competition”, http://www.tzi.de/4legged/pub/

Website/Downloads/Challenges2005.pdf, 2005.

