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ABSTRACT

PARALLEL AND UNSTRUCTURED COMPUTATION OF

2-D AND 3-D VORTEX FLOWS

Vortex flows are main flows which lead to turbulence phenomenon. Turbulence is

a complicated and many-faceted problem of fluid dynamics. These flows have striking

and varied spatial organizations. Nearly every flow that can be observed in nature

has turbulent character. Consequently, engineering systems in various applications

are affected by turbulence. Significant examples of such cases are severe efficiency

decreases of pumps and turbines which are designed for a specific design load. There

are many cases in combustion or mixing applications where the high mixing and heat-

transfer rates of the turbulent boundary layer are desirable. So, better understanding

of turbulent flow regimes requires further investigation of vortex flows. Consistent with

this purpose, several groups of study were performed to cover different types of vortex

flows within the context of this study.

Firstly, a basic vortex flow is analyzed with various numerical techniques in this

study. This test problem is lid driven cavity flow. An implicit finite volume dis-

cretization technique is used in terms of primitive variables for the unstructured code.

Unstructured grids are handled with staggered grid arrangement for irregular domains

in 2D. Fractional step method is used as a velocity-pressure coupling.

Finally, in addition to these analysis Taylor vortex flows in two different 3D

geometries and 3D Centrifugal Pump flow analysis are conducted with the aid of vari-

ous turbulence models. LES (Large Eddy Simulation), k-epsilon, k-omega turbulence

models are used. Analysis that are mentioned above is conducted with parallel process-

ing technique.
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ÖZET

İKİ VE ÜÇ BOYUTLU GİRDAPLI AKIŞLARIN PARALEL

VE YAPISAL OLMAYAN ÇÖZÜM AĞI İLE HESABI

Girdaplı akışlar, türbülanslı akışlara yol açan başlıca akış türüdürler. Türbülanslı

akışkanlar kompleks ve çok yüzlülüğe sahip akışkanlar mekaniği problemidir. Bu akışlar

çarpıcı ve çeşitli uzaysal organizasyonlara sahiptirler. Doğada görülen hemen her

akış türbülans karakterine sahiptir. Bunun sonucu olarak birçok mühendislik uygu-

laması türbülans tarafından etkilenmektedir. Bu durumların en çarpıcı olanları pompa

ve türbinlerin belli bir yükleme noktası için tasarlanmış verimlerindeki düşüşlerdir.

Türbülanslı sınır tabakalarındaki yüksek karışım ve ısı transferi değişim oranlarının

özellikle istenildiği birçok yanma ve karışım uygulamaları mevcuttur. Bu nedenler-

den dolayı türbülanslı akışların daha iyi anlaşılabilmesi, vorteks akışların daha detaylı

incelenmesini gerektirmektedir. Belirtilen amaca uyumlu olmak üzere bu çalışma kap-

samında, çok farklı vorteks akışları incelemek üzere dört farklı çalışma yapılmıştır.

İlk olarak, bu çalışmada değişik nümerik teknikler kullanılarak bir temel girdap

akışı incelenmiştir. Bu akış kapak tahrikli akışıdır. Yapısal olmayan çözüm ağını esas

alan yazılım için ilkel değişkenler üzerinden kapalı sonlu hacimler yöntemi ile ayrıştırma

yapılmıştır. Yapısal olmayan çözüm ağ yapısı iki boyutta düzgün olmayan geometriler

için şaşırtmalı ağ yapısı düzeninde gerçekleştirilmiştir. Kademeli bölme metodu hız-

basınç karşılıklı bütünlemesi için kullanılmıştır.

Son olarak, yukardaki analizlere ek olarak; değişik türbülans modellerinin kul-

lanıldığı, iki farklı üç boyutlu geometride Taylor girdap akışları ile santrifüj pompa akış

analizleri gerçekleştirilmiştir. LES (Büyük Girdap Simülasyonu), k-ε, k-w türbülans

modelleri kullanılmıştır. Analizlerin birçoğu parallel olarak gerçekleştirilmiştir.
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1. INTRODUCTION

Fluid flows are present everywhere in nature and are widely experienced by those

people who observe nature with open eye. Evidently, it can be easily recognized that

many processes in our natural environment are essentially dependent on the convective

transport of heat and mass. Hence, without fluid motion, life on earth in the form we

know it on could not exist.

Turbulence with an infinite scale exists in environmental studies which are me-

teorology, oceanography and astronomy. The boundary layer in earth’s atmosphere is

turbulent except where extreme stable conditions exist. Jet streams in the upper tro-

posphere are turbulent; cumulus clouds are in turbulent motion. Anyone who observes

flow of water in rivers and canals can easily finds that these flows are turbulent. The

water currents below the surface of the ocean and rivers are also turbulent. Unique

demonstration of this kind of turbulent flow is Gulf Stream. Gulf Stream is itself a

turbulent wall-jet kind of flow. Turbulence can even be observed in outer space. The

photosphere of the sun and photospheres of similar stars are in turbulent motion; in-

terstellar gas clouds(gaseous nebulae) are turbulent. Currently there is a research that

wake of the earth in solar wind is a turbulent wake [1].

The technical importance of fluid flows is also easily observable in many engi-

neering fields where heat and mass transfer processes are strongly controlled by fluid

motions. Most combustion processes involve turbulence. The flow of natural gas and

oil in pipelines is turbulent. A study of turbulent flows is also important in combustion

where enhancement in mixing of chemical species are needed. Chemical engineers use

turbulence to mix and homogenize fluid mixtures to accelerate chemical reaction rates

in liquid and gas enviroments. This technique is used in automobile engines to ensure

an efficient combustion. Similarly, a good prediction of turbulent flow is also important

for applications related to the aerodynamics of cars, trains and planes. Turbulent flow

control finds numerous applications in aeronautics conjunction with drag reduction,

thrust improvement, noise limitation, and increased freedom of movement.
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Turbulent flows are in the context of more than one century in the time line of

fluid mechanics. There are pioneers in this time line who made unique contributions to

the investigation of turbulence but we have still have no unique model to simulate the

turbulent flows today. Because of its complex nature, study of turbulent flows remains

one of the most challenging problems of fluid mechanics. As a result, it continues to

remain a research topic for the industry as well as the academic world [2].

Figure 1.1. Historical record of scientists contributing to the development of fluid

mechanics [2].

All flows ranging from simple ones such as two dimensional jets, wakes, pipe flows

and flat plate boundary layers to more complicated three dimensional ones become

unstable above certain Reynolds number. These hydrodynamic instabilities lead to

vortex formations. These vortices interact with the mean flow and extract energy from

it. This is called vortex stretching. During these processes, rotation rate of the large

vortices increase whereas radius of their cross-section decrease. This leads to energy

transfer from large vortices to smaller vortices. These actions undergoes a chaotic

transition regime and the fully developed turbulent character achieved [3].

Closer investigation of initial vortex formation and their interaction gains essen-

tial importance to predict the whole behavior of the turbulent flow. These vortex

formations can occur with infinite number of ways depending on infinite number of

factors. Geometry, boundary conditions and type of the fluid are the main factors that

can be counted. Various kinds of vortex and turbulent flows are covered with different
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Figure 1.2. Turbulent flow formation [3].

numerical techniques in this study to investigate effect of these factors.

Decay of a simple eddy was studied as an introductory case. This subject was

firstly studied by G. I. Taylor and H. A. Webb as indicated in reference [4]. The analyt-

ical solution of incompressible viscous fluid motion was an interesting and challenging

scientific problem for these scientists. They thought that an analytical solution can be

derived if the behavior of a simple eddy studied in a detailed way. Their study lead to

important and fascinating results. The discussion of the properties of the eddy indi-

cates that there is a slight analogy between the theory of eddies in a viscous fluid and

the quantum theory of radiation. The analogy was constructed between the critical

values of the angular momentum in Bohr’s atomic theory with critical values of the

Reynolds number in viscous fluid motion. The similarity is significant as the angular

momentum has the same dimensions as Reynolds number multiplied by a mass. The

mass quantity that is used to construct the analogy is electron mass and viscosity of the

ether respectively. Another exact solution of the equations of motion of a viscous fluid

yields a result which reminds one of the well known condition for instability in the case

of a horizontally stratified atmosphere. The analytical solution they have introduced

in equation 1.1, solution states very important results.

u = keλt−kycos(qx) ,v = keλt−kysin(qx) (1.1)
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Wavelength λ is defined by the following equality. Table 1.1 states the behavior

of the solution in equation 1.1. Decaying eddy condition has been issued in this study.

λ = ν(k2 − q2) (1.2)

Table 1.1. Behavior of a vortex

k = 0 Irrotational flow

k < q Decaying eddy

k > q Motion is becoming more violent

The numerical setup of the problem is a set of Taylor vortex array which decay

with time. One of the cell inside the Taylor vortex array focused on rather than to

examine whole vortex array in this study. The decay of the vortex with time simulated.

Results are compared by the analytical solution. One of the many fascinating instabili-

Figure 1.3. Taylor vortex array [6].

ties that occur in hydrodynamics is the formation of toroidal vortices in a fluid confined

to an annular gap between concentric rotating cylinders. The phenomenon is named

after Taylor, who carried out experimental studies and provided a hydrodynamic sta-

bility analysis of the effect [5]. Taylor quantitatively predicted and experimentally

confirmed the existence of a flow instability when the inner cylinder reaches a crit-

ical speed. For low cylinder speeds, the fluid simply moves azimuthally around the

cylinders. Taylor observed that when this simple flow becomes unstable, it is replaced

by a cellular pattern in which the fluid travels in helical paths around the cylinders

in layers of vortices known as Taylor Vortices. If the outer cylinder is taken to be
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Figure 1.4. The geometry of the flow in cylindrical coordinates system. [7].

at rest, and the angular velocity of the inner cylinder is Ω1, then the nature of the

flow depends on the dimensionless Taylor number, Ta number defined according to the

formula 1.3 Reynolds number defined according to kinematic viscosity, average angular

velocity between inner cylinder and outer cylinder(Ωa) and annular width denoted by

d in equation 1.4.

Ta =
Ωa

2rid
3

ν2
(1.3)

Re =
riwad

ν
, d = ro − ri, (1.4)

Several researchers worked on this kind of flow instability after the pioneer research

of G. I. Taylor, theoretically, experimentally and numerically. These researchers fo-

cused on different aspects of this flow. This is because the nonlinear behavior of each

configuration leads to different vortex structures. These different flows had been iden-

tified taxonomically with respect to the increasing Taylor and Reynolds numbers and

illustrated in maps.

Two important characteristics of the configuration shows its effect significantly.

The flow with non-zero axial through flow leads to traveling Taylor vortices. The
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Figure 1.5. Flow regimes for cylindrical Couette flow with an imposed axial flow for η

= 0.85. Symbols represent measurement points: CP=stable Couette Poiseuille flow;

LV=laminar vortices; HV=helical vortices; HWV=helical wavy vortices;

SHV=stationary helical vortices; WV=wavy vortices; RWV=random wavy

vortices. (Reprinted with permission of AIP). [9].

second characteristic is the relation between the number of vortices and the size of the

annular gap. We focused on the second parameter in this study.

Industrial applications of Taylor vortex flow takes place between the rotating sur-

faces of machinery, as well as in the operation of chemical engineering process equip-

ment. The inclusion of a very small axial motion leads to plug-flow reactor. The yield

of continuous reactors is maximized, if very good radial mixing is combined with mini-

mal amount of longitudinal mixing. Such an ideal mixing environment can be obtained

by annular flow through rotating concentric cylinders with Taylor vortex formation [8].

Taylor vortex flow tried to be extended to an analogical geometry for industrial

application purposes. This application takes place in fluid couplings as seen by the

figures 1.7, 1.8.

Torque that is created by an external electric motor is transformed by the primary

side of the fluid coupling that is directly connected to the motor shaft directly into

kinetic energy. This kinetic energy is converted again into mechanical energy by the

secondary side of the coupling. No wear occurs and no mechanical contact of the power

transmitting parts occurs The torque that is exerted to the secondary side increases

with the cube of the input speed. The applications of these fluid couplings varies
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Figure 1.6. Phase diagram of flow states obtained by setting the outer cylinder speed

and then slowly increasing the inner cylinder speed. The inner and outer cylinder

speeds are expressed as Reynolds numbers Re1 and Re2, respectively, as defined in the

text. The experimental system had radius ratio η = 0.883 and aspect ratio 30. [10].

Figure 1.7. Fottinger fluid coupling [11]

extensively from hydraulic power transmission systems to retarder break systems and

damping systems where huge amount of power applications take place.

Vortex formations on a simplified geometry has been analyzed. Simplified geom-

etry constituted by a torus with annulus. Blade assembly had not been taken under

considerations since the main goal in here is not to investigate the full system but

to visualize the behavior of the general system to the given boundary conditions in

terms of vortex flow. Torus divided into two equal parts. These parts are rotated with

different speeds with respect to each other to obtain some vortex formations similar to

Taylor Couette vortex flow between concentric cylinders.
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Figure 1.8. Transmission components [11].

Figure 1.9. An industrial application of fottinger fluid coupling [11].

Parallel processing technique has been conducted on the analysis of these vortex

flows to demonstrate essential role of parallel processing. The demonstration made

over different mesh sizes for different processor numbers. The time balance between

message time and processing time discussed to mention where parallel processing is

extremely important in the analysis of these kind of big numerical systems.

Another industrial application where vortex flows take place is in turbo machinery

applications. The internal flow that develops in a centrifugal pump impeller is one of

these flows and has this kind of character. Furthermore, flow is often influenced by

rotor-stator interaction mechanisms or other unsteady effects. Vortex formations in

the impeller passages cause dramatic decrease in the efficiency for design and off-design

conditions. This is the major reason why fluid flows on these systems are still under

investigation extensively both by experimentally and numerically.

These complex type of systems are analyzed by two very important experimental

techniques which are Laser Doppler Velocimetry(LDV) and Particle Image Velocime-
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Figure 1.10. Simplified model for fotttinger fluid coupling

Figure 1.11. Two stages of an industrial multistage pump with the shrouded

centrifugal pump [12].

try(PIV). These techniques found to be revealing extensive data about the complex

behavior of these systems even in turbulent case.

There are several studies conducted over the centrifugal pumps for design and off

design conditions by experimental studies. Akin and Rockwell [13] used PIV to work

on the wake formation originate on a model impeller in a simulated rotating machine.

They analyzed the interaction between stationary diffuser blade and this wake. Their

work emphasized flow separation and reattachment events by instantaneous streamline

patterns and vorticity contours. Eisele et al.[14] implemented another useful method

called particle tracking velocimetry (PTV) to a vaned diffuser. They have found some

interesting flow behavior. Flow separation in the diffuser channel and a recirculating

backflow from the diffuser into the impeller at partial load conditions are some examples

to these behaviors. Recently Sinha and Katz [15] and Sinha et al. [16] used PIV
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Figure 1.12. LDV measurement over a shrouded centrifugal pump [12].

technique for rotor-stator interactions between a centrifugal pump impeller and a vaned

diffuser. They concluded with some flow structure and turbulence modeling issues.

Oldenburg and Pap [17] performed PIV measurements in the impeller and in the volute

of a purpose-made two-dimensional centrifugal pump. Data that is taken from the mid

height cross section for three different orientations of the impeller. Some separations

from the vanes are observed. This indicated a departure from potential flow patterns.

Hayami et al. [18] and Aramaki and Hayami [19] applied PIV with a CCD(charge

coupled device) camera which is rotating with the impeller with 30 rpm. They measured

relative velocity and time dependent spatial variation of the impeller flow.

Some researchers also worked numerically on the impeller flows. These kind of

works are however far less than experimental ones. The methodology in numerics which

is considered to be sufficient enough to solve these kind of flows is the unsteady approach

which resolves the vorticial and turbulent character development through time. There

is technique called Large Eddy Simulation(LES) which uses this approach rather than

steady approach for industrial applications. This technique is between RANS(Reynolds

Averaged Navier Stokes) and DNS(Direct Numerical Simulation). LES takes advantage

of high accuracy of DNS where appropriate and decreases the computational time by

RANS properties. Computational time of these kind of systems are one of the major

important factors in these kind of analysis [20].

Eggels [21] investigated the impact of a mechanical impeller on the turbulent

flow field in a baffled stirred tank reactor using the Smagorinsky model and found

good agreement with experimental data. Revstedt et al. [22] used implicit model to
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Figure 1.13. An example grid generated over a impeller stage [20].

solve similar systems and achieved coherent results of Eggels work. LES of the flow

through the spiral casing, impeller, and exit section of a Francis turbine system at

different operating conditions have been conducted by Chen and Song [24] giving first

an insight into the flow field present in each unit separately and later also taking into

account the mutual interaction between the rotating and stationary parts. Kato et al.

[25] presented the first achievements of LES of the flow in a complete stage of a mixed

flow pump at design flow percentage of 60 and 100. Again the Smagorinsky model was

used. For both operating conditions the unsteady fluid forces on the impeller agreed

well with measured values.

In this study a geometry ,which is nearly identical to the references [12],[20] is used

as a model. Only design load case is analyzed. The time history of the system resolved

with LES technique till steady state solution achieved. Good agreement achieved with

respect to the references [12],[20] in terms of velocity field. The transient behavior of

the system discussed. Coherent structures are extracted with a vortex identification

method given in [44].

The core of this study focuses on the vortex flows with incorporation of variety

of numerical methods. Code development has been performed within the context of

this goal. Some important characteristics of the code is worthy to be stated. Code has

the capability of using the unstructured grids for a future implementation of complex

geometry applications. Code takes advantage of various Newton-Krylov techniques and
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preconditioners that is used widely as advanced numerical techniques today. There are

some new approaches that has been implemented in the code in terms of numerics

with respect to the references from literature that will be cited in section 3.3 . Most

important of these approaches is the implementation of a fractional step approach to

a hybrid staggered numerical scheme with Newton-Krylov methods. Since this code

development is not continuation of a previously written code, validation of the results

was essential. One of the widely used benchmark tests has been implemented. This

problem concerns the lid driven cavity for various Re numbers. Limits of the code has

been detected where accuracy of the solver starts to have problems. Further numerical

enhancements has been discussed. Parallel implementation of this test case with PETSc

on ASMA cluster has been conducted also for the demonstration of parallelism. The

schematics of this problem can be seen in the next figure.

Figure 1.14. Lid cavity boundary conditions with the basic features of cavity flow [26].
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2. MATHEMATICAL AND PHYSICAL MODELLING

Analysis of vortex flows starts with the identification of the relevant set of equa-

tions. Navier Stokes equations are the governing equations for this implementation,

full set of these equations are given with the following in a conservative form [27].

Conservation of mass:

∂(ρ)

∂t
+ ∇.(ρV ) = 0 (2.1)

Conservation of x momentum:

∂(ρu)

∂t
+
∂(ρu2)

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= −∂p

∂x
+

∂

∂x
(λ∇.V + 2µ

∂u

∂x
) (2.2)

+
∂

∂y

[
µ

(
∂v

∂x
+
∂u

∂y

)]
+

∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]
+ ρfx (2.3)

Conservation of y momentum:

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2)

∂y
+
∂(ρvw)

∂z
= −∂p

∂y
+

∂

∂x

[
µ

(
∂v

∂x
+
∂u

∂y

)]
(2.4)

+
∂

∂y
(λ∇.V + 2µ

∂v

∂y
) +

∂

∂z

[
µ

(
∂w

∂y
+
∂v

∂z

)]
+ ρfy (2.5)

Conservation of z momentum:

∂(ρw)

∂t
+
∂(ρuw)

∂x
+
∂(ρvw)

∂y
+
∂(ρw2)

∂z
= −∂p

∂z
+

∂

∂x

[
µ

(
∂u

∂z
+
∂w

∂x

)]
(2.6)

+
∂

∂y

[
µ

(
∂w

∂y
+
∂v

∂z

)]
+

∂

∂z
(λ∇.V + 2µ

∂w

∂z
) + ρfz (2.7)
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There are 2D and 3D test problems covered within this study. The assumptions

that are valid for each of these cases are given in the following chart:

• Flows considered to be incompressible for both 2D and 3D cases.

• Gravitational effects neglected for both 2D and 3D cases.

• Flows considered to be unsteady.

• No external force are induced inside the flow.

Governing equations simplify to the following vectorial form under the assump-

tions stated above.

Conservation of mass:

�∇.�V = 0 (2.8)

Conservation of momentum:

ρ(
∂�V

∂t
) + ρ(�V .�∇)�V = −�∇p+ µ∇2�V (2.9)

Although Navier Stokes equations seems to simplified in a very short form, when the Re

number increases they become highly nonlinear with the convective terms. Beginning

from the vortex formation to transient flow and finally to turbulent motion, flow field

becomes extremely hard to predict. Some strategy can be introduced to identify these

motions in terms of statistical point of view. Two ways of averaging the physical flow

quantities is ensemble and time average which can be seen in the following equations

consecutively:

Ensemble average:

< V (t) >= lim
N→∞

1

N
Σi=1,NV (t

′
i + t) (2.10)
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Time average for a finite T:

V i =
1

T

∫ τ+T

τ

Ui(t+ τ).dt (2.11)

Ensemble averages takes too much time but gives the realistic results. If V i is indepen-

dent of τ then process can be called stationary and time average can be used to average

the quantities. If the time and ensemble averages coincide, the system is called ergodic.

Vortex flows show good agreement with this concept, whereas it is not necessarily true

for turbulent flows.

There are two approaches to solve these set of equations for the case of vortex and

turbulent flows [28]. Both approaches have been conducted in this study for different

Figure 2.1. Approaches of solving vortex and turbulent flows [28].

case problems. Ensemble averaging is valid for the code development where small time

steps regarding the physical time scale implemented to resolve the vortex formations.

Code development on unstructured grids uses this approach. Reynolds decomposition

which decompose the mean and fluctuating quantities has been implemented for the
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3D cases. Taylor vortex flows have been analyzed with this approach. LES calculations

on the centrifugal pump model is a bridge between these two techniques, which will

be explained in section 2.5. Next section is devoted to the mathematical and phys-

ical modeling of RANS(Reynolds averaged Navier-Stokes) technique in terms of k-ε

realizable with non-equilibrium wall functions and k-w SST modeling. k-ε modeling

used for the concentric cylinder whereas k-w SST used for the concentric torus analysis

respectively.

2.1. k-ε Standard Model

It is essential to introduce the basics of the standard k-ε model, which is derived

semi-empirically, before going on the more complex models. This is because other

models are obtained by upgrading the physics of this model by different approaches.

Further discussion of theoretical basis can be found from the reference [29]. Two

transport models are used for the k(turbulent kinetic energy) and ε(dissipation rate)

respectively in k-ε modeling. Main assumptions of this model is to consider the flow as

fully turbulent and neglect the molecular viscosity. Due to the fully turbulent assump-

tion transitional effects are not available with this model. Two transport equations are

given with following equations.

∂(ρk)

∂t
+
∂(ρUik)

∂xi
=

∂

∂xj

[(
µ+

µt

σk

)
∂k

∂xj

]
+Gk +Gb − ρε− YM + Sk (2.12)

∂(ρε)

∂t
+
∂(ρUiε)

∂xi
=

∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+ C1ε

ε

k
(Gk +Gb) − C2ε ρ

ε2

k
+ Sε (2.13)

Turbulent viscosity calculated by the information of k and ε values that are

maintained by the equations (2.12) (2.13). It is modeled according to expression (2.14)
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where the Cµ is considered to be model constant.

µt = ρCµ
k2

ε
(2.14)

There are different terms inside these equations which can be interpreted for

some physical quantity. Gk represents the generation of turbulence kinetic energy due

to the mean velocity gradients. Gb is the generation of turbulence kinetic energy due to

buoyancy. YM represents the contribution of the fluctuating dilatation in compressible

turbulence to the overall dissipation rate. C1ε and C2ε are model constants. σk and

σε are the turbulent Prandtl numbers for k and ε, respectively. Sk and Sε are source

terms.

The Navier Stokes equations are not closed due to the new unknowns induced by

the Reynolds stress terms and model constants. The constants in the model has to be

determined by the experimental data and given by the following:

Table 2.1. Standard k-ε model

C1ε 1.44

C2ε 1.92

C2µ 0.09

σk 1.0

σε 1.0

2.2. k-ε Realizable Model

k-ε realizable model derived over standard model by forcing the model to satisfy

certain mathematical constraints on the normal stresses, consistent with the physics of

turbulent flows. In the case of eddy viscosity definition (2.14) and Boussinesq relation-

ship (2.15) manipulated mathematically to obtain a relation for the Reynolds stress
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terms with equation 2.16.

ρu
′
iu

′
j = µt(

∂ui

∂xj
+
∂uj

∂xi
) − 2

3
(ρk + µt

∂ui

∂xi
)δij (2.15)

ρu2 =
2

3
k − 2νt

∂U

∂x
(2.16)

This last equation says that if the shear stress is sufficiently high enough the

Reynolds stresses,which conceptually cannot be negative with its definition, can be

negative. This problem can be solved if Cµ is not a constant as it was in standard

model but a variable quantity. The main difference of this model with respect to

others is this property. The new Cµ definition is given with the following expression

(2.17).

Cµ =
1

Ao + As
(kU∗)

ε

(2.17)

where,

U∗ =

√
SijSij + Ω̃ijΩ̃ij (2.18)

Ω̃ij = Ωij − εijkwk (2.19)

The last quantity (Ωij) is the mean rate-of-rotation tensor viewed in a rotating reference

frame with the angular velocity ωk for rotating flows.

Another enhancement of this model is a new model equation for dissipation ε
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based on the dynamic equation of the mean-square vorticity fluctuation. New equa-

tion has been derived for this model to handle spreading rate for axisymmetric jets.

Equation for the turbulent kinetic energy is same with the k-ε standard model. New

transport equation for ε is given as following. Model constants are also given by (table

2.2).

∂(ρε)

∂t
+
∂(ρUiε)

∂xi

=
∂

∂xj

[(
µ+

µt

σε

)
∂ε

∂xj

]
+ ρC1εSε − ρC2ε

ε2

k +
√
νε

+ C1ε
ε

k
C3εGb + Sε

(2.20)

Table 2.2. Model Constants for k-ε realizable model

C1ε 1.44

C2ε 1.9

σk 1.0

σε 1.2

2.3. Standard and Non Equilibrium Wall Functions for k-ε Models

There were different wall treatments available in the FLUENT software. Non-

Equilibrium wall functions implemented for a higher accuracy near wall for k-ε real-

izable model which is used for the analysis of the Taylor vortex flows in concentric

cylinders. Theoretical background of these wall function are given in sections 2.3.1

and 2.3.2. Comparison, with respect to the standard wall function will be emhasized.

2.3.1. Standard Wall Functions for k-ε Models

Standard wall functions defined according to value of y∗ and U∗ called non-

dimensional groups. Definitions of these groups at a certain point P are given in the
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equations 2.21, 2.22.

U∗ ≡ UPC
1
4
µ k

1
2
P

τw

ρ

(2.21)

y∗ ≡ ρUPC
1
4
µ k

1
2
PyP

µ
(2.22)

Table 2.3. Definitions of non-dimensional groups

κ von Ka
′
rma

′
n constant≈0.42

E Emprical constant for≈9.793

UP Mean velocity of the fluid at point P

kP Turbulent kinetic energy of the fluid at point P

yP Distance from point P to the wall

If y∗ < 11.225 the laminar stress-strain relationship(2.23) is used which models

the near wall region that is given by the equation 2.23.

U∗ = y∗ (2.23)

2.3.2. Non Equilibrium Wall Functions for k-ε Models

This wall function has two features with respect to standard wall functions.

Firstly, log law is upgraded to be sensitive to the pressure gradient effects. The new

expression can be seen in the 2.24.

ŨC
1
4
µ k

1
2

τw

ρ

=
1

κ
ln(E

ρC
1
4
µ k

1
2 y

µ
) (2.24)
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Pressure gradient effects on 2.24 can be directly seen in the term Ũ by 2.25 which

enables the wall function pressure sensitive. Final expression is a function of quantitiy

called physical viscous sublayer thickness(yυ), given by equation 2.26.

Ũ = U − 1

2

dp

dx
[
yν

ρκ
√
k
ln(

y

yν
) +

y − yν

ρκ
√
k

+
y2

ν

ν
] (2.25)

yν ≡ µy∗ν

ρC
1
4
µ k

1
2
P

(2.26)

The second and important enhancement is the two layer approach to calculate the

Gk which is needed to solve equation 2.12 and identify the value of average dissipation

rate(ε) near the the boundary cells.

2.4. k-w STT(Shear Stress Transport) Model

This model is reported to be better than both k-ε and other standard k-w models

due to its capability to modify the definition of the turbulent viscosity with respect

to the transport of the principal turbulent shear stress. Model associates the specific

dissipation rate(w) rather than the dissipation rate. Specific dissipation rate defined

as the rate of dissipation of turbulence kinetic energy in unit volume and time. The

transport equations of the model is given by the following (2.27)(2.28) ;

∂(ρk)

∂t
+
∂(ρuik)

∂xi

=
∂(Γk

∂k
∂xj

)

∂xj

+Gk − Yk + Sk (2.27)
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∂(ρw)

∂t
+
∂(ρuiw)

∂xi
=
∂(Γw

∂k
∂xj

)

∂xj
+Gw − Yw +Dw + Sw (2.28)

Again different terms can be seen, each represent a physical quantity. These terms

are Gk represents the generation of turbulence kinetic energy due to mean velocity

gradients. Gw represents the generation of w. Γk and Γw represent the effective diffu-

sivity of k and w, respectively. Yk and Yw represent the dissipation of k and w due to

turbulence. Dw represents the cross-diffusion term. Sk and Sw are source terms.

Although there are several differences between this model and others in theoretical

basis, there are two that are significantly important. Firstly the effective viscosity

defined in a manner that definition of turbulent viscosity is flexible rather than its

usual form. This expression is given with in (2.29).

Γk = µ+
µt

σk
(2.29)

Γw = µ+
µt

σw
(2.30)

µt =
ρk

w

1

max[ 1
α∗ ,

ΩF2

a1w
]

(2.31)

Coefficient, denoted by α∗ is called low Reynolds correction coefficient which de-

pends on the turbulent Reynolds number. It damps the turbulent viscosity. Definition

of this coefficient is given by (2.32).

α∗ = α∗
∞(
α∗

0 + Ret

Rk

1 + Ret

Rk

) (2.32)

Ret =
ρk

µw
(2.33)
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These definitions shows mathematically that the turbulent viscosity value and

definition will change inversely proportional with maximum value of the denominator

of (2.31). This is established by low Reynolds correction coefficient and some blending

functions (F2) are used. As an example, if the α∗ is low, which means flow is low

Reynolds flow, the turbulent viscosity will decrease according to (2.31). As the value

of α∗ goes to 1, it is considered to have high reynolds number flow.

Second important modification is theDw represents the cross-diffusion term. This

term enables the k−w SST model switch from k−w modeling to k− ε modeling. This

term mathematically given with (2.34).

Dw = 2(1 − F1)ρσw,2 (2.34)

Model constants are also given in the table 2.4.

Table 2.4. Model Constants for k-w SST model

σk,1 1.176 σw,1 2.0

σk,2 1.0 σw,2 1.168

a1 0.31 βi,1 0.075

βi,2 0.0828 Rk 6

2.5. LES(Large Eddy Simulation) Modeling

Approaches that are emphasized above were depending on the Reynolds averaged

Navier Stokes equations. There is another approach that is called LES(Large eddy

simulation) which depends on the modeling of scales of vortex structures. There may

occur small and large scale vortex structures that can occur in an such an example

flow 2.2.

Basic approach is the separation of these scales in terms of grid size. Smaller

scales which are beyond the grid resolution should be modeled with a universal model.
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Figure 2.2. Scales of turbulence [30].

Larger scales that are bigger than the grid resolution should be computed on the grid.

Filtering functions used to distinguish the large and smaller scales. Mean part of

the quantities according to the reynolds decomposition are filtered according to the

equation 2.35 with filtering equation G∆(x, ζ) over domain D.

ui =

∫
D

G∆(x, ζ)ui(ζ)dζ (2.35)

Introducing the filtering functions, filtered Navier-Stokes equations can be ob-

tained. Filtered incompressible continuity and momentum equations are given in equa-

tions 2.36, 2.37.

∂ui

∂xi
= 0 (2.36)

∂ui

∂t
+
∂uiuj

∂xj

= − ∂p

∂xi

+
1

Re

∂2ui

∂xi∂xj

− ∂τij
∂xj

+ f i (2.37)

Unresolved smaller scales are called subgrid scales(SGS). The energy of these

scales can be shown in a diagram 2.3 by the wave number in spectral space. These

scales need to be modeled to close the filtered Navier-Stokes equations.



25

Figure 2.3. SGS(subgrid scales) in spectral space with respect to wave number [30].

SGS (Subgrid Scale) stresses defined by the expression 2.38.

τij = uiuj − uiuj (2.38)

Functionality associated by τij , is to predict the small scale eddies from the re-

solved large eddy motion. This term can be decomposed into three different parts with

the following [31].

τij = Lij + Cij +Rij (2.39)

Lij = uiui − uiuj (2.40)

Cij = uiu
′
j + u

′
jui (2.41)

Rij = u
′
iu

′
j (2.42)

Following table shows the names of these terms.
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Decomposed elements of SGS stresses

Lij Leonard stresses

Cij Cross stresses

Rij Reynolds stresses of SGS

SGS modeling is especially important near the solid walls. The energy is absorbed

from the large eddies to small eddies in these kind of regions so there is loss production

of kinetic energy exist at this point. SGS model has to resolve this satisfactorily. If

the transport equation written for the where q is the resolved kinetic energy.

q2 = uiui (2.43)

Transport equation for the q given by the equation 2.44.

∂q2

∂t
+
∂q2uj

∂xi
=

∂

∂xj

(
−2puj − 2τijui +

1

Re

∂q2

∂xj

)
− 2

Re

∂ui

∂xj

∂ui

∂xj
+ 2τijSij (2.44)

The basic point in the modeling is the correlation of the subgrid stresses to large

strain rate tensor . The correlation between these two established by the following

expression:

τij = 2νSGSSij (2.45)

νSGS = Cs∆f
2
∣∣Sij

∣∣ (2.46)
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Sij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
(2.47)

∆f = (∆1∆2∆3)
1
3 (2.48)

Main problem is the identification of Cs. This constant depends on the geometry

and type of the flow that is under interest. It can be determined adaptively as reported

in [32]. It is taken to be 0.09 in this study according to the reference paper that the

geometry and setup of the problem taken [20].
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3. COMPUTATIONAL MODELLING

Governing equations concerned in this study becomes highly nonlinear as the Re

number increases. Vortex structures that originate by time inside the domain, add

difficulty to solve the system that is under interest. Interaction of these structures

even adds more nonlinearity by time.

Discretization of the governing equations are the first essential point that has to be

considered. Finite difference and finite volume discretization methods are associated by

the vortex problems via test problems in two separated code. Difference and behavior

of these techniques are tried to be identified.

Finite difference discretication technique coupled by ADI(Alternating Direction

Implicit) technique in terms of stream function-]. Tri-Diagonal Matrix Algorithm

(TDMA) used as the solver.

Finite Volume discretization coupled with the fractional step techniques with

preconditioning in terms of primitive variables. Powerful Newton-Krylov techniques

accompanied by the preconditioning in a staggered grid approach used as the solver.

Another essential difference between these codes is the type of the grid that has

been used. Structured grids used for the finite difference formulation whereas, unstruc-

tured grids used for the finite volume technique. Discussion of the finite difference and

finite volume techniques will be stated in sections 3.1, 3.2 and 3.3.
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3.1. Finite Difference Discretization and Stream Function - Vorticity

Formulation

It is important to state the definitions of stream function(ψ) and vorticity(Ω)

since finite difference calculations are conducted in terms of them.

u =
∂ψ

∂y
(3.1)

v = −∂ψ
∂x

(3.2)

Ω =
∂v

∂x
− ∂u

∂y
(3.3)

It is possible to nondimensionalize these two definitions by the following expressions.

ψ
′
=
ψL

u∞
(3.4)

Ω
′
=

ΩL

u∞
(3.5)

Stream function and vorticity definitions can be introduced into the governing equa-

tions of this study (equations 2.8 and 2.9) to obtain the stream function-vorticity

formulation with nonconservative form in cartesian coordinates.

∂Ω
′

∂t
+ u

′ ∂Ω
′

∂x′ + v
′ ∂Ω

′

∂y′ =
1

Re

(
∂2Ω

′

∂x′2 +
∂2Ω

′

∂x′2

)
(3.6)

∂2ψ
′

∂x′2 +
∂2ψ

′

∂x′2 = −Ω
′

(3.7)
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Primitive variables in equations 3.6, 3.17 are nondimensionalized according to the fol-

lowing expressions. These expressions will be valid for the nondimensional form of the

primitive variables in finite volume method implementation.

u
′
=

u

u∞
(3.8)

v
′
=

v

u∞
(3.9)

x
′
=
x

L
(3.10)

y
′
=
y

L
(3.11)

t
′
=
tu∞
L

(3.12)

Re
′
=
ρ∞u∞L
µ∞

(3.13)

Navier-Stokes equations are decoupled into one elliptic equation and one parabolic

equation which can be sequentially solved. This leads a one way coupling of these

equations. Pressure term eliminated in these equations. Velocity field determined by

this approach. It is not easy to implement the boundary conditions in terms of ψ

and Ω. Furthermore, there is no simple stream function for the 3D cases [33]. This

unfortunately indicates the flexibility limitation of this formulation.

Test case that was tested by this solver was Taylor vortex array and decay of

adjacent process of adjacent vortices. Decay process of single eddy has been simulated

by this technique. Since this is a decay process, only viscous terms can be taken under
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interest. This leads the assumption of decomposition on the derivative of vorticity in

equations 3.14 and 3.15. Convective terms vanish in equation 3.6 when this assumption

inserted inside it. Decay process concerns the dissipation of the kinetic energy with

the viscosity.

∂Ω
′

∂x′ =
∂Ω

′

∂ψ′
∂ψ

′

∂x′ (3.14)

∂Ω
′

∂y′ =
∂Ω

′

∂ψ′
∂ψ

′

∂y′ (3.15)

Governing equations that is under interest are given in the following simplified

set of equations by these assumptions.

∂Ω
′

∂t
=

1

Re

(
∂2Ω

′

∂x′2 +
∂2Ω

′

∂y′2

)
(3.16)

∂2ψ
′

∂x′2 +
∂2ψ

′

∂y′2 = −Ω
′

(3.17)

Finite difference technique decompose the continuous domain into discrete points.

Stream function-vorticity equations are discretized according to this decomposition.

Discretization takes place on a certain stencil. Five point stencil is implemented for

this study. Discretization has been conducted by ordinary central difference formulas

which are derived by the taylor series expansion. Given a function f(x) in a ∆x change

represented by the Taylor series expansion.

f(x+ ∆x) = f(x) + ∆x
∂f

∂x
+

(∆x)2

2!

∂2f

∂x2
+ +

(∆x)3

3!

∂3f

∂x3
+ ... = f(x) +

∞∑
n=1

(∆x)n

n!

∂nf

∂xn

(3.18)
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Figure 3.1. Five point stencil for structure grid [33].

Central differencing for the second order derivate s of diffusive terms defined by

the previous and following nodes of the interested node. Mathematically this expressed

with the following formula for second order accuracy(O(∆x2) in x direction.

∂2f

∂x2
=
f(x+ ∆x) − 2f(x) + f(x− ∆x)

(∆x)2 +O(∆x)2 (3.19)

Temporal discretization made according to two consecutive nodes which are rep-

resented as previous(n) and next time(n + 1) to be solved.

∂f

∂t
=
f(x)n+1 − f(x)n

∆t
+O(∆t) (3.20)

Discretized form of the equations 3.16 and 3.17 can be given by the aid of spatial

and temporal discretizations in terms of indices dictated with figure 3.1.
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Ωn+1
i,j − Ωn

i,j

∆t
=

1

Re

(
Ωn+1

i+1,j − 2Ωn+1
i,j + Ωn+1

i−1,j

(∆x)2 +
Ωn+1

i,j+1 − 2Ωn+1
i,j + Ωn+1

i,j−1

(∆y)2

)
+O(∆t,∆x2,∆y2)

(3.21)

ψn+1
i+1,j − 2ψn+1

i + ψn+1
i−1,j

(∆x)2 +
ψn+1

i,j+1 − 2ψn+1
j + ψn+1

i,j−1

(∆y)2 = Ωn+1
i,j (3.22)

This discretization coupled by the ordinary ADI numerical scheme. The resulting

discretized equations solved by the TDMA solver. Implicit treatment of the numerical

scheme has been conducted. Although, these techniques are well known techniques of

CFD, they are relatively old and inefficient in terms of efficiency and robustness.

3.2. Finite Volume Discretization and Primitive Variables Formulation

Structured grids are good in terms of accuracy whereas their application needs

transformation of the equations for geometries other than the rectangular domain.

This constitutes the consideration of two grid systems. These are physical and com-

putational grid systems which can be seen by the following double airfoil configuration

example.

Figure 3.2. Physical domain of for a double airfoil [33].
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Figure 3.3. Computational domain of for a double airfoil [33].

There should be a connection between these two domains during the computations

of the flow. This is only possible if the transformation of the governing equations

in terms of metrics. This transformation established by the specifying a generalized

coordinate system which will map the non rectangular grid system in the physical space

to the rectangular computational space. This transformation is usually complex and

hard to establish. In the case of stretching in certain regions, the implementation of this

transformation becomes even much more harder for the complex physical domains. You

should be also providing a physical grid system before establishing the transformation.

Typical example of physical grid system for the double airfoil configuration is given in

the next figure.

Figure 3.4. Physical grid on the double airfoil [33].

Unstructured grids are the alternative gateway to the complex geometry applica-

tions. Unstructured grid methods have become increasingly popular in the development

of CFD technology to solve complex flow problems of industrial relevance. Within the

unstructured grid method, the definition of a coordinate system is not necessary. In-

stead, a different data structure has to be adopted to handle geometrical data in figure
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3.5.

Figure 3.5. Unstructured grid

Design of this data structure is the essential point in the implementation of un-

structure methods. It should be carrying the connectivity of grid points for any configu-

rations both for interior and boundary cells while providing necessary but, not excessive

information for the discretization. This makes the implementation of this technique

very complex when compared with structure grids. Once this technique defined for

the interior and boundary cells for any combination of the situation, it is possible to

proceed with the complex geometries for future multi physics implementations.

In this study unstructured grids are implemented accompanied with the Finite

Volume approach. Finite volume methods directly utilize the conservation laws with

the integral formulation of the Navier-Stokes/Euler equations. It was first employed

by McDonald[34] for the simulation of 2-D inviscid flows. Finite volume method dis-

cretized the governing equations by first dividing the physical space into a number

of arbitrary polyhedral control volumes. This polynomial control volumes can take

various shapes like given in the figure 3.6.

Finite volume technique states that conservation law for a general vector quan-

tity(W) can be written in integral form for a continuous medium in equation 3.23 where
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Figure 3.6. Different control volumes for unstructured grid application

�Fc and �Fv represent the convective and diffusive fluxes respectively [35].

∂ �W

∂t
= − 1

Ωc

[∮
∂Ωc

(Fc − Fv) dS −
∫

Ωc

�QdΩc

]
(3.23)

Time derivative of the conservative variables can be cast according to the following

form in equation 3.24.

∂

∂t

∫
Ωc

�WdΩc = Ωc
∂ �W

∂t
(3.24)

Integral form stated above, can be rewritten for the discrete domain in terms of

finite volumes with the equation 3.25. The integration constitutes traveling over the

the surfaces of the control volume with the aid of surface normals which can be seen

in figure 3.7.

d �W

dt
= − 1

Ωc

[
NF∑
n=1

(
�Fc − �Fv

)
∆S − �QΩc

]
(3.25)

In this study triangle type has been used for 2D code development. It is essen-

tial to emphasize the governing equations and velocity-pressure coupling method to
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Figure 3.7. Control volume and surface normals

identify the associated data structure. Code development works in terms of primitive

variables. Navier-Stokes equations in cartesian grid system are directly representing the

governed equations independent of the geometry due to the unstructured grid system.

Governed equations can be nondimensionalized according to 3.8-3.13. Additionally

pressure nondimensionalized with the expression.

p
′
=

p

ρ∞u∞
(3.26)

Final form of the equations after manipulations can be given in index notation with

equations 3.27 and 3.28.

Conservation of mass:

∂u
′
i

∂x
′
i

= 0 (3.27)

Conservation of momentum:

∂u
′
i

∂t′
+
∂(u

′
iu

′
j)

∂x
′
j

= −∂p
′

∂x
′
i

+
1

Re′
∂2u

′
i

∂x
′
j∂x

′
j

(3.28)

Velocity-pressure coupling is another aspect in finite volume formulation. Frac-
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tional step method has been used which is suitable for incompressible methods. This

method divides the computation of Navier-Stokes equations into predictor and cor-

rector steps. Tentative velocity which is denoted as u∗i in equation 3.29, is used in

predictor step [36]. Calculated divergent free velocity field used to guess the pressure

field with a poisson equation given by equation 3.30. Finally physical velocity corrected

by combination of tentative and calculated non dimensional pressure field in equation

3.31.

u∗i − u
′n
i

∆t′
+
∂(u

′n
j u

∗
j)

∂x
′
j

=
1

Re′
∂2u∗i
∂x

′
j∂x

′
j

(3.29)

∂2p
′(n+1)

∂x
′
j∂x

′
j

=
1

∆t′
∂u∗

∂x
′
i

(3.30)

u
′(n+1)

i = u∗i − ∆t
′ ∂p

′ (n+1)

∂x′
i

(3.31)

Discretization of the equations 3.29 and 3.30 should be regarded as another very

important aspect of CFD which is called staggered grid approach. The discretization

applied is again central differencing for finite volume code. It is reported by several

references ([35], [36], [37]) that velocity-pressure coupling can cause checkerboard os-

cillation on the solution for central differencing. Staggered grid approach implemented

for the code development. Pressure stored at the cell centers and velocity components

stored in the nodes of cells which can seen by the figure 3.8. Another important char-

acteristic in the figure 3.8 is, every index arranged in counterclockwise convention.

This convention is extremely important to identify the normal direction of each control
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volume edge correctly. Different stencils used for the velocity and pressure due to this

staggered position grid system.

Figure 3.8. Staggered grid and counterclockwise convention

Control volume for the velocity components at nodes are chosen to be polygonal

composed of arbitrary number of triangles that is presented in in figure 3.9. Convective

and diffusive terms for momentum conservation, are also discretized in different stencils.

Arbitrary number of cell centers around a node requires stencil to be adaptive to satisfy

the any geometry in 2D. This has been successfully satisfied by an adaptive algorithm

created for the interior nodes. Additionally, special algorithms developed inside the

code for the implementation of boundary nodes since implementation becomes more

difficult due to the combinations that may occur. An example polygonal discretization

of the first order derivatives in convective terms of 3.29 and 3.30 for the tentative

velocity components are given in 3.32 and 3.33 where u
′

denotes tentative velocity

components. Notation for index(i) represents the node number.

(
∂u

′

∂x′

)
c

=
1

Ac

∫
Sc

u
′
dy

′
=

1

Ac

6∑
i=1

u
′
i+1 − u

′
i

2
(y

′
i+1 + y

′
i) (3.32)

(
∂u

′

∂y′

)
c

=
1

Ac

∫
Sc

u
′
dx

′
=

1

Ac

6∑
i=1

u
′
i+1 − u

′
i

2
(x

′
i+1 + x

′
i) (3.33)
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Figure 3.9. Example stencil for the convective terms

Diffusive terms are discretized according to the stencil given in figure 3.10. Dis-

cretization of these terms needs the discretization of the first order derivatives before-

hand. First order derivative discretization, handled with a sub control volume, which

is extracted from the control volume stencil in figure 3.10, given in figure 3.11.

Figure 3.10. Example stencil for the diffusive terms

Discretization of the first order derivatives can be seen in equations 3.34 and 3.35

on sub control volume 3.11. Discretized first order terms are incorporated from every

sub control volume segment to achieve the second order diffusive terms which can be

seen in 3.36 and 3.37. Emphasized discretizations up to now can be found in reference
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Figure 3.11. Example stencil for the sub control volume of diffusive terms

[36]. Accuracy of these discretizations are reported to be second order in the same

reference. Temporal discretization implementation exactly same with equation 3.21.

(
∂u

′

∂x′

)
i+ 1

2

= − 1

Asc

∫
Sc

u
′
dy

′
=

1

Ac

4∑
i=1

u
′
i+1 − u

′
i

2
(y

′
i+1 − y

′
i) (3.34)

(
∂u

′

∂y′

)
i+ 1

2

= − 1

Asc

∫
Sc

u
′
dx

′
=

1

Ac

4∑
i=1

u
′
i+1 − u

′
i

2
(x

′
i+1 − x

′
i) (3.35)

(
∂2u

′

∂x2
′

)
c

=
1

Ac

∫
c

(
∂u

′

∂x′

)
dy

′
=

1

Ac

6∑
i=1

(
∂u

′

∂x′

)
i+ 1

2

(y
′
i+1 − y

′
i) (3.36)

(
∂2u

′

∂y2
′

)
c

=
1

Ac

∫
c

(
∂u

′

∂y′

)
dx

′
=

1

Ac

6∑
i=1

(
∂u

′

∂y′

)
i+ 1

2

(x
′
i+1 − x

′
i) (3.37)

Pressure terms are discretized different from the reference [36]. Poisson equation

given by the equation 3.30 has been opened on a stencil given 3.12. There is a special

treatment on the pressure in terms of grid points [38]. Although, pressure terms are
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said to be solved on the cell centers, these pressure values are interpolated to the nodes

in each iteration from the triangle centers covering around the node. These interpolated

node values are used as auxiliary points for the scheme to establish the finite volume

discretization on stencil giben in figure 3.30. Additionally it is remarkable to state that

these interpolated points are taken on the right hand side vector( b and has not been

included in the coefficient matrix A given linear system in equation 3.38. Interpolated

terms will be denoted with superscript (n), defining that they have been interpolated

in last known time step.

Ax = b (3.38)

Figure 3.12. Control volume and stencil for the poisson equation

Discretization has been conducted according to the following procedure given in

equations 3.39 and 3.40.
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(
∂2p

′

∂x′2

)
k

=
p
′(n+1)

1 (y
′
b − y

′
a)

2

2Aa1b4
+ p

′n
a

(
(y

′
1 − y

′
4)(y

′
b − y

′
a)

2Aa1b4
+

(y
′
4 − y

′
3)(y

′
a − y

′
c)

2Aa1b4

)

+
p
′(n+1)

2 (y
′
c − y

′
b)

2

2Ab2c4
+ p

′n
b

(
(y

′
2 − y

′
4)(y

′
c − y

′
b)

2Ab2c4
+

(y
′
4 − y

′
1)(y

′
b − y

′
a)

2Aa1b4

)

+
p
′(n+1)

3 (y
′
a − y

′
c)

2

2Ac3a4
+ p

′n
c

(
(y

′
4 − y

′
2)(y

′
c − y

′
b)

2Ab2c4
+

(y
′
3 − y

′
4)(y

′
a − y

′
c)

2Ac3a4

)

+ p
′(n+1)

3

(
(y

′
b − y

′
a)

2

2Aa1b4
+

(y
′
c − y

′
b)

2

2Ab2c4
+

(y
′
c − y

′
a)

2

2Ac3a4

)

(3.39)

(
∂2p

′

∂y′2

)
k

=
p
′ (n+1)

1 (x
′
b − x

′
a)

2

2Aa1b4

+ p
′n
a

(
(x

′
1 − x

′
4)(x

′
b − x

′
a)

2Aa1b4

+
(x

′
4 − x

′
3)(x

′
a − x

′
c)

2Aa1b4

)

+
p
′(n+1)

2 (x
′
c − x

′
b)

2

2Ab2c4
+ p

′n
b

(
(x

′
2 − x

′
4)(x

′
c − x

′
b)

2Ab2c4
+

(x
′
4 − x

′
1)(x

′
b − x

′
a)

2Aa1b4

)

+
p
′(n+1)

3 (x
′
a − x

′
c)

2

2Ac3a4
+ p

′n
c

(
(x

′
4 − x

′
2)(x

′
c − x

′
b)

2Ab2c4
+

(x
′
3 − x

′
4)(x

′
a − x

′
c)

2Ac3a4

)

+ p
′(n+1)

3

(
(x

′
b − x

′
a)

2

2Aa1b4
+

(x
′
c − x

′
b)

2

2Ab2c4
+

(x
′
c − x

′
a)

2

2Ac3a4

)

(3.40)
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3.3. Numerical Methods

Several methods had to be incorporated with the discretization techniques that

have been stated in the last chapters to get satisfactory results. Modern and robust

iterative solvers have been used extensively in this study. One of the main goal was

to incorporate efficient and flexible discretization with a robust iterative technique to

create powerful tool. Newton-Krylov Subspace methods are implemented as the major

solver. These methods has wide range of different types of solvers accompanied by the

various preconditioners. SPARSKIT(A basic tool-kit for sparse matrix computations)

libraries has been incorporated inside the code. Several iterative solver options to be

available inside the code. Overview of the available and already tested solver and

preconditioners are given in the following tables. Preconditioning can also be applied

from left, right or in split form via these libraries. GMRES(Generalized minimized

residual method) method with ILUT preconditioning has been found to be the most

efficient combination for the governing equations that are under interest after some

numerical tests. The next section states some background of this.

Table 3.1. Available Solvers

GMRES

Conjugate gradient method

Biconjugate gradient method

Biconjugate Stabilized method

Table 3.2. Available preconditioners for the subspace methods

ILU(0)

MLU(0)

ILUT

ILUK

ILUP

ILUD
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3.3.1. Krylov Methods

A particularly suitable class of iterative techniques for the solution of large linear

equation systems are the so-called Krylov-subspace methods. Several were proposed

for the inversion of matrices which arise in CFD. Examples are the Conjugate Gradi-

ent Squared (CGS) method, Bi-Conjugate Gradient Stabilized (Bi-CGSTAB) scheme

or Transpose-Free Quasi-Minimum residual (TFQMR) approach. However, the most

successful Krylov subspace method became the Generalized Minimal Residual (GM-

RES) technique, which was originally suggested by Saad and Schulz [39]. Since then,

the GMRES method was improved and augmented by several researchers.

These methods can be individually derived from optimization principles, but can

also be placed together under the common framework of projection methods. Pro-

jection methods for solving Ax = b determine an approximate solution xm from m-

dimensional subspace denoted by κm.

xm = xo + κm (3.41)

The term xo is an initial guess to the solution, by imposing the Petrov-Galerkin

condition given by the expression 3.42 where Lm denote the another subspace of di-

mension m.

b−Axm⊥Lm (3.42)

Initial residual defined by the ro and can be obtained by the following equation.

ro = b−Axo (3.43)

Krylov subspace defined by combination of coefficient matrix and initial guess as fol-
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lows.

Lm(A, ro) = span(ro, Aro, A
2ro, ..., A

m−1ro) (3.44)

κm subspace, projected over the second subspace Lm. The main goal in this study

is to minimize the two norm given by the equation 3.45 where Lm chosen as equation

3.46.

‖b− Axm‖2 (3.45)

Lm = Aκm (3.46)

3.3.2. Preconditioning

Preconditioning transforms the system Ax = b into an equivalent system, one

which has the same solution but better convergence properties. Given a preconditioner

M which is an approximation to A, transforms the system from left, right or split form.

First two types of preconditioning given respectively by equations 3.47, 3.48.

M−1Ax = M−1b (3.47)

AM−1u = b, x = M−1u (3.48)

Split preconditioning needs factorization of the preconditioning matrix. The in-

complete LU preconditioner obtains a factorization of M which is the close approxima-

tion of A into lower and upper triangular factors, the matrices L and U , respectively,

such that the following conditions are satisfied: Matrices L and U have the same
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nonzero structure as the matrix A. Nonzero elements of matrix A are equal to the cor-

responding element of the product LU . Implementation of this preconditioning given

in the equation 3.49. This kind of preconditioning used in this study.

L−1AU−1u = L−1b, x = U−1u (3.49)

3.4. Data Structure

Data structure is essebtial point for the definition of the ustructured grids. The

ijk notation of the structure grids are no more valid for the unstructured grids. There

should be a adressing due to this constraint. Grid generators creates these adressing

system for the main to read and process. The main structure of the data structure is

topological definition. Figure 3.13 shows the main topological levels of this definitions

in 2D and 3D. 2D topology has been used in this study. Data structure on whole

domain can be seen in the figure 3.14.

VERTEX

EDGE

SURFACE

2D DATA
STRUCTURE
TOPOLOGY

EDGE

SURFACE

VOLUME

3D DATA
STRUCTURE
TOPOLOGY

VERTEX

Figure 3.13. Data structure topology in 2D and 3D

Higher topological elements can be expressed by the lower ones. As an example,

a line can be exrpressed by adjacent two vertex in 2D. Figure 3.15 asserts that line 67

defined by the points 100 and 58. These three number uniquely defines the address of
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Figure 3.14. Data structure on a whole domain in 2D

the line 67 in 2D space.

text text

100 58
67

DEFINITION OF AN
EDGE IN TERMS OF

ADJACENT TWO
VERTEX

Address for line 67   67 100 58

Figure 3.15. Definition of an edge by vertex

The main idea of the data structure is to construct a suitable system, which is

efficient to process data during computation. The effiency determined according to

the fact that one data is not processed for several times. If same operation on the

data need to be made sevreal times data structure turns to be inefficent addreessing

system. Another aspect of the data structure constructing is to take consideration

of dicretization. Use of the adressing should take care of storing sufficient but not

excessive data. If the data stored excessively, big loads can not be handle by the

code whereas storing less data will lead same data to be processed several times. The

optimization should be handled.

Derived data types has been used in terms of coding to handle the suitable data

structure. Actually several data struture has been used due to the staggered grid ori-
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entation of the physical quantities for different control volumes. Additionally different

data structure used for the boundary cells. As an example, derived data type for the

data structure of a triangle control volume has been used according to the figure 3.16.

Two main data structures which are node and cell structures are constructed. These

two are coupled to each other with id of a cell or node. The coordinates of the cells and

nodes can be achieved by this. The coordinate values are used finally in discretization

once value has been reached correctly.

1

2

3

Cell

A B

C

Cell

Neighbour cell
ID

Neighbour nodes
ID

Cell coordinates

Cell

Node Node coordinates

Figure 3.16. Data structure for triangle control volume

3.4.1. Storage Scheme

Storage system is one of the very important aspect that has to be considered

in terms of unstructure grid system. A sparse matrix is a matrix that has very few

nonzero elements. By storing and operating on only the nonzero elements, it is possible

to achieve substantial savings in memory requirements and computation. In addition

to the nonzero elements, storage is also required for information that determines the

position of each nonzero element in the matrix. Unstructured grids has no definite

sparsity pattern. An example of this random sparsity can be visualized in figure 3.17.

It was essential to use such a storage system that can handle a random sparsity. The

compressed row storage format(CRS) has been implemented for this purpose.
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Figure 3.17. Random sparsity of unstructured grids

CRS is the most general storage system. It makes absolutely no assumptions

about the sparsity structure of the matrix, and it doesn’t store any unnecessary el-

ements. CRS is basicly implemented with the following format given in figure 3.18.

Each nonzero element is stored along with its row and column indices. Thus there is

a single array of matrix elements, AR, along with an array of row indices, IA, and an

array of the corresponding column indices, JA. As the matrix is stored by rows, the

row index for all the nonzero elements in a row is stored only once. The i-th element

of array IA points to the start of the i-th row in arrays JA and AR.

Figure 3.18. Compressed row storage format(CRS)

3.4.2. Parallel Processing

Many scientific applications make use of sparse linear algebra. Because they are

quite time consuming, they require an efficient parallel implementation on powerful

supercomputers. The rapid advances in parallel computer architectures , with their



51

large aggregate memory capacity and CPU power, have reached the point were such

calculations can be considered in a practical sense. This is particularly true for unstruc-

tured mesh techniques, which have been shown to scale very favorably on massively

parallel machines using hundreds of processors. Massively parallel processor(MPP)

architecture has been used within the context of this study. MPP composed of dif-

ferent processors with different memory, cache,bus and I/O devices communicated by

MPI(Message Passing Interface) [41]. Interconnection of these machines established by

the MPI. Example illustration of MPP given by the figure 3.19.

Figure 3.19. Massively parallel processor(MPP) architecture [41]

First step of parallel implementation is the domain decomposition. Domain de-

composition can be made by a useful tool called METIS. METIS is a software package

for partitioning large irregular graphs, partitioning large meshes, and computing fillre-

ducing orderings of sparse matrices. METIS based on multilevel graph partitioning

[40] which is a procedure of coarsening and refinement given in in figure 3.20. METIS

algorithms reduce the size of the graph and then partition the smaller graph. Finally

it refines the partition to obtain the partition of the given original graph.

Figure 3.20. Metis methodology for grid partitioning architecture [40]



52

Test case problem of Taylor vortex flows between concentric cylinder implemented

on the MPP cluster with at most 9 processors. Each of these processors has Pentium

4 2.0 Ghz processors with 256 mb random access memory. The partitioning of this

problem made with METIS tool. The resulting partitioning of METIS for 9 processor

given in the figure 3.21.

Figure 3.21. Partitioned concentric cylinders by METIS

Additionally, lid driven cavity flow has been performed in parallel in ASMA clus-

ter with PETSc libraries. There were at most 6 processors available in the cluster for

the computation. These processors were P4 2.0 Ghz with 128 random access memory.

Performance of the parallel processing determined according to some termino-

logical terms. Speedup factor, efficiency, cost and scalability are the most important

performance parameters. Definitions of these parameters are given below:

Speed up factor

Sn =
Execution time using one processor

Execution time using a multiprocessor with n number of processors
(3.50)

=
ts
tp

(3.51)
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Efficiency

Ep =
Execution time using one processor

(Execution time using a multiprocessor processors)(Number of processors)

(3.52)

=
ts
tpn

(3.53)

Cost

Cp = (Execution time)(Total number of processors used) (3.54)

=
ts
Ep

(3.55)

Scalability There are different scalability definitions for the hardware or algo-

rithmic point of view. The scalability in this study defined in terms of the algorithmic

scalability. An algorithm said to be scalable if it can accommodate increased data items

with low and bounded increase in computational time. This parameter can be figured

out if the information about speedup factor, efficiency and cost graphs are available.
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4. RESULTS AND DISCUSSION

Firstly, Grid and geometrical considerations will be stated. Boundary conditions

will be emphasized following this information. Results will be validated with respect

to data provided from literature. Residual history of the numerical simulation will

be introduced for each case. Parallel data which has been post processed in terms of

parallel processing terminological terms, inserted on charts for a further discussion.

4.1. Vortex Flows with Unstructured Grids (Code Development)

Lid driven cavity problem was defined by boundary conditions of the figure 1.14.

Lid-driven cavity flow of a Newtonian fluid has occupied the attention of the scientific

computational community. Over the years the problem has spawned a huge number of

papers; mainly concerned with the development of computational algorithms where, in

a continuous drive to demonstrate the superior accuracy and stability properties of their

latest numerical method. Several researchers have applied it to one of the problems two-

dimensional rectangular or three-dimensional cubic forms. This made this problem a

suitable benchmark study test for a newly developed codes. Additionally, this problem

chosen to be the test case due to the interaction of the vortex structures are included

in the physics of the problem. Parallel implementation of this problem, which will

be emphasized in a following section, also implemented. Basic flow diagram of the

sequential code can be seen in figure 4.1.

4.1.1. Validation of Results

Widely used benchmark paper in literature for this test case is given by the

reference [42]. The model paper of the code development [36] also uses this reference

as the validation. Spectral methods has been used by this method. These methods

leads convergence in the order of 10−20. Convergence criteria of 5 ∗ 10−7 has been used

by this study. Residual norm history for u and v velocity at Re = 400 obtained by the

solver given in the figures 4.2 and figures 4.3 respectively.
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GRID GENERATER
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CRITERIA WAS NOT
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POST
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STEADY STATE
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Figure 4.1. Flow diagram of the sequential unstructured grid code
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Figure 4.2. Residual norm history for u velocity at Re=400

Figure 4.3. Residual norm history for v velocity at Re=400
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Convergence criteria is in terms of two norm for this study. Velocity profile

of horizontal direction has been extracted and compared with the reference [42] for

different Reynolds numbers. Additionally pressure contours from available in reference

[36] for Re = 100 and Re = 400 are compared with the results obtained by the code.

Finally results are discussed in terms physical and numerical point of view. Following

three subsections introduce the validations for three different Reynolds numbers.

4.1.1.1. Validation at Re=100. Stream trace and velocity vector field calculated by

the solver given in the figure 4.4 for Reynolds number 100. Pressure contours are

compared with the reference [36] in figure 4.6.

Figure 4.4. Streamtaces and velocity vectors for Re=100 at steady state

Figure 4.5. U velocity validation for Re=100 at steady state
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Figure 4.6. Pressure contours for Re=100 at steady state [36]

4.1.1.2. Validation at Re=400. Same validations conducted for the Re = 400 in same

way for Re = 100. The validation graphics are given through figures 4.7- 4.9.

Figure 4.7. Streamtaces and velocity vectors for Re=400 at steady state
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[h]

Figure 4.8. U velocity validation for Re=400 at steady state

[h]

Figure 4.9. Pressure contours for Re=400 at steady state [36]
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4.1.1.3. Validation at Re=1000. Re = 1000 is highest point which simulations con-

ducted. There were no pressure data available for Re = 1000 but other validations on

velocity has been conducted as seen in figure 4.11.

Figure 4.10. Streamtaces and velocity vectors for Re=1000 at steady state

Figure 4.11. U velocity validation for Re=1000 at steady state

4.1.1.4. Discussion of Results. Reynolds number of around 100, the primary vortex

moves to wards the right-hand wall and the downstream secondary eddy starts to en-

large in size. At a Reynolds number of 400, the primary vortex starts to move to
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wards the cavity center and it continues to move to the center at even higher Reynolds

numbers. Evidence of growth in the upstream secondary eddy at a Reynolds number

of 400 is also now visible. If the Reynolds number is increased further to 1000 another

secondary eddy emerges on the upper left-hand cavity wall. These three vortices are

effecting to each other in a implicit form and increasing the nonlinearity. This is the

point where solver and discretization starts to have problems. Solver found to be ca-

pable of providing sufficiently satisfactory results up to a high Reynolds numbers like

1000. Convergence of in terms of residual norm is smooth and very rapid. Approxi-

mately in 40 iterations solver converges to the next time step with 0.1s step size to a

unchanging residual norm of 5x10−7. It is reported in [36] approximately 500 Gauss-

Seidal iterations needed to converge to the next time second with 10−4 criteria. This

study confirms that only 41 iterations sufficient to reach convergence of 5x10−7. This

states that the method is highly robust and efficient.

4.2. Taylor Vortex Flows

4.2.1. Taylor Vortex Array and Decay of Adjacent Vortices (Code De-

velopment)

Only one cell of the array that was previously given in figure 1.3 has been simu-

lated. Analytic solution of decay of an eddy was given in the equation 1.1 with k = 0

and q = π. This leads the stream function to take the form in equation 4.1.

ψ = e−0.00887tCos(πx) (4.1)

The flow diagram of the developed code can be seen in figure 4.12
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Figure 4.12. Flow chart for the code development on Taylor vortex array

Associated boundary conditions become all zero in equation 4.1 if the domain

chosen as in the figure 4.13.

The error that is associated with the simulation with respect to analytical solution

given by the following graph. Decay process with respect to three extracted time

seconds can be visualized in figures 4.15-4.17.
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, which is identically simulation of a single eddy. [h]

Figure 4.13. Domain for the single element of taylor vortex array

Figure 4.14. Error with respect to analytical solution

Figure 4.15. Decay of a eddy at time 0.01s
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Figure 4.16. Decay of a eddy at time 0.07s

Figure 4.17. Decay of a eddy at time 0.1s

Simulation dictated that eddy totally decays in 0.12 seconds. Energy, associated

by the kinetic energy inside the eddy dissipate by the viscosity. Numerical scheme

converges to the total error integrated from each cell to a value of approximately order

of 7x10−5. Although, numerical scheme seems to work satisfactorily, the nonlinear

terms are lacking in this simulation. Introduction of highly nonlinear terms may alter

the convergence dramatically.
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4.2.2. Taylor Couette Flows (FLUENT Simulation)

Taylor vortex flows are interesting flows where vertical vortex formations are

occurring with respect to the driven motion. The current interest of this study is

to identify an analogical vortex formations on a concentric torus system. Once same

vortex formations obtained, optimization for the control of these vortex structures can

be established for a future implementation. This can constitute an opportunity for

more efficient hydraulic systems in terms of industrial application.

Boundary conditions for the the concentric cylinder and concentric torus are

same. Annular gap defined by the following expression 4.2. Annular gap(η) of 1.05

and 5 has been used for the concentric cylinders. Inner cylinder radius(ri) is taken as 1

m. Cylinder heights are taken to be 2 m. The upper and lower walls of the concentric

cylinder is stationary imposing nonslip condition.

η =
ro

ri
(4.2)

The outer cylinder or torus stays silent. Inner cylinder turns with angular velocity

of 25 rad
s

. Taylor number (Ta) for the concentric cylinder is taken as the 3125. Re

number can be identified by 1250. If the outer Reynolds number(Re2) taken as zero

and this Reynolds number taken as inner wall Reynolds number (Re1)directly indicates

that we are in Taylor vortex region in flow map was given in figure 1.6.

Firstly, validation for the Taylor vortex flow between two concentric cylinder for

η = 1.05 and residual history will be indicated. Effect of the annular gap has been

investigated. Secondly, it will be worthy to emphasize the relation between number

of vortex formation and the annulus width between cylinders. Results of the same

analysis for the concentric torus will be given in the last part.
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4.2.3. Validation and Residual History

Analysis conducted for the η = 1.05. System reached steady state at time 48 s

. Resolved vortex structures can be visualized from one side of cross sectional view.

Vorticial structures that has been resolved from the top or bottom end walls and

middle of the concentric cylinders are given in the figures 4.18 and 4.19 respectively.

It is evident that the vortex that is attached to the top or bottom wall is bigger than

the inner vortex structure. Reason for this can be investigated in figure 4.20, where

turbulent viscosity can be visualized. It is clear that stationary wall increases the

turbulent viscosity near the wall region. This extracts more kinetic energy from the

flow field and consequently vortex forms in a bigger magnitude.

Figure 4.18. Velocity vectors at the middle of the concentric cylinders with η=1.05

Figure 4.19. Velocity vectors at the top or bottom end walls of the concentric

cylinders with η=1.05
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Figure 4.20. Turbulent viscosity at the top or bottom end walls of the concentric

cylinders with η=1.05

Validation of these results can be established via maximum streamline amplitude

history(A(t)) in the middle plane in time from reference [43]. This concept extracted

from the mid plane different time seconds till the steady state reached. This amplitude

history can be seen in the figure 4.21. Similar configuration which exists in reference

[43] which amplification history given with figure 4.22. It can be observed that the

amplitudes and the creation history of vortex structures are similar.

A(t) = ψmax|mid (4.3)

Figure 4.21. Amplitude history from the mid plane
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Figure 4.22. Amplitude history from the mid plane from the literature

Residual history of the system with convergence criteria of 10−3 can be seen in

the following figure.

Figure 4.23. Residual history of Taylor vortex flow for concentric cylinders with

η=1.05

4.2.4. Effect of the Annulus Gap

Several vortex structures has been obtained by the η of 1.05. If the same analysis

with concentric cylinder keeping the cylinder height as same but changing the annular

η to 5, only two big vortex formation occurs at the steady state. This can be seen
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from in figure 4.24. This indicates that number of vortex structures increases by the

decrease of the annulus gap.

Figure 4.24. Velocity vectors of the concentric cylinders with η=5.0

4.2.5. Analysis with Analogical Concentric Torus Configuration

Concentric torus geometry with the η=2.5. Tetrahedral mesh with 248253 ele-

ments used on the geometry. System observed to reach to steady state at time step

9.9 s. Vortex structures at steady state can be visualized in figure 4.25. This analysis

asserts that similar structures are forming in time in the case of torus configuration

analogically to concentric cylinders.

Figure 4.25. Velocity vectors of the concentric torus with η=2.5 at 9.9 s



70

4.3. Parallel Implementations of Vortex Flows

Parallel implementation of the vortex flows conducted for both 2D and 3D cases.

Limited amount of parallel computing resources tried to be used in maximum level.

Department computers are connected and configured to establish parallel processing.

Taylor Vortex flows between concentric cylinders has been conducted with this cluster

as test case, which uses windows operating system. Totally 9 processors found to

be successively working for the simulation. Lid driven cavity problem simulated in a

ASMA cluster. The interconnection network of this system was more dedicated than

the department cluster. Unfortunately, the number of available processors were 6 for

the parallel processing at the time simulations conducted. Results will be stated in the

next subsections.

4.3.1. Parallel Simulation of Taylor Vortex Flow between Concentric Cylin-

ders (FLUENT Simulation)

Simulation repeated for 1-9 processors. This is also repeated for three different

grid levels from coarse to fine. Totally 27 simulations conducted. Each simulation

starts from the initial state to the steady state. Sequential computation took 8.46,

31.47 and 34.75 hours for 120000, 270000, 325000 hexahedral grid models respectively.

Maximum grid size kept as 32500 due to virtual memory requirement limit of a single

processor after this limit. Terminological terms introduced in chapter 4 extracted to

charts with the following figures.

Interpretation of the results reveals good results. Speedup factor of 6.2 with 9

processor obtained as maximum. This value can increase if the grid size could have been

increased more or the interconnection limit can be designed in a dedicated manner.

Efficiency graph in figure 4.27 states that, efficiency decreases when the number of

processor increase but decrease rate slows down by the increase of the grid size. This

is an indication that parallel processing can become essential technique when grid size

becomes sufficiently big. Cost graphics in figure 4.28 shows always increase with the

increasing processor number. Such a increase seems to be bounded to a limit value
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Figure 4.26. Speedup factor for concentric cylinders with η=1.05

Figure 4.27. Efficiency for concentric cylinders with η=1.05

by the increase of the grid size. Increase of the grid size does not increase the cost

anymore. Another important information can be provided by the data transfer rate by

MPI. Following figure emphasize the data transfer per iteration for different grid sizes.

Data transfer rate increase is also limited by the increasing grid size. When all these

informations added up. Finally it can be stated that, simulations performed made in

a scalable way.
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Figure 4.28. Cost for concentric cylinders with η=1.05

Figure 4.29. Data transfer per iteration for concentric cylinders with η=1.05
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4.3.2. Parallel Simulation of 2D Lid Driven Cavity Problem (PETSc Code

Development)

Lid driven cavity problem simulated in the dedicated ASMA cluster. Residual

history of this simulation given in figure 4.30. Peak shows an update of the solution in

the Scalable Nonlinear Equations Solvers(SNES) of PETSc tool.

Figure 4.30. Residual history for the parallel simulation of 2D lid driven cavity

problem on ASMA cluster

Results that will be given in here is important because they symbolize the effect

of a dedicated network on the parallelism. Terminological terms again extracted to the

graphs in the following figures.

Figure 4.31. Speedup factor for 2D lid driven cavity problem

Speedup figure shows that parallelism is always beneficial in the case of a dedi-

cated interconnection network. Efficiency decrease again takes effect with the increas-

ing processor number. Cost is even not increasing by the increase of the number of
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Figure 4.32. Efficiency for 2D lid driven cavity problem

Figure 4.33. Cost for 2D lid driven cavity problem

the processors. Additionally, increase in the magnitude of cost with respect to grid

size seems to become bounded as the grid size increases in figure 4.33. Results of the

simulation reveals that the dedicated network can increase the performance of paral-

lel processing technique dramatically. Unfortunately it is not possible to derive more

information from these charts due to limited amount of processors that had to be used.
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4.4. LES Simulation on a 3D Centrifugal Pump (FLUENT Simulation)

Centrifugal pump impeller investigated at the design load at a Re=1.4x106. Im-

peller were turning with 725 rpm speed. Mass inflow rate to the impeller was 3.06 l
s
.

The Flow is no more vortex flow in this range, but turbulent. It was very complex to

handle such a problem. Reference [20] simulates only two passage accompanied with

experimental data feeded in the boundaries in each time step, where this study simu-

lates all six passages without any experimental data. Additionally, vortex identification

on the final flow field has been established to extract the coherent structures.

Geometrical model of the impeller can be visualized in the figure 4.34. Grid that

is generated has 1100000 hexahedral elements. Generating the grid was very difficult

on the channels due to changing height of the impeller passage and essential stretching

on the wall. View of the grid can be seen in figure 4.35.

Figure 4.34. Geometrical model of centrifugal pump impeller

Time step that is used by the solver was 10−5 s. Simulations continued for three

months to the time second of 7 s. It was possible to solve the system with convergence

criteria of 10−5 with the generated grid. Time constraints of the study allowed only

10−3 criteria to be used.
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Figure 4.35. Grid generation on centrifugal pump impeller

4.4.1. Validation of the Results

Results tried to be validated at the r/R2=0.5 station for scaled radial and tan-

gential PIV(Particle Image Velocimetry) data available in reference [12]. Following

figures are giving the validations. Since this station locates just after the leading age

of the impeller blade, validations preferred at this station.

Figure 4.36. Scaled tangential velocity validation at station r/R2=0.5 with

respect to PIV data

Although, results are showing some poor results it gives at least some idea about

the maximum values of the velocity to be expected. It is worthy to note that the

average velocity magnitude achieved at the outflow section is calculated as 3.99 m
s
.



77

Figure 4.37. Radial velocity validation at station r/R2=0.5 with respect to PIV data

This is very close to the value of 4 m
s

given in reference [20]. Radial velocity seems to

have real problems on the basis of grid spacing in radial position. The radial data for

statistical distribution is not sufficient enough to resolve the velocity field. Another

problem can originate from the assumption on the convergence criteria due to time

constraints. Higher tolerance on convergence directly causes insufficient numerical

accuracy over 70000 time steps. This study at least encounter a first attempt for such

a complex industrial flow application. Furthermore, simulation can be repeated as a

future implementation to achieve better results.

4.4.2. Vortex Identification and Coherent Structures

Assuming the simulation characterize the flow field up to a some extend, vortex

identification can be implemented on the flow field. Vortex identification method from

the reference [44] has been coded up in a script to post process the instantaneous flow

field at time second 7.018 s. All the coherent structures are given in the figure 4.38.

Extracted coherent structures are refined to extract the fastest coherent structures

extracted in figure 4.39.
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Figure 4.38. Coherent structures on centrifugal impeller at 7.018 s

Figure 4.39. Fastest coherent structures on centrifugal impeller at 7.018 s
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5. CONCLUSIONS

Several cases has been issued within the context of vortex flows in this study.

Simulations has been conducted with validations to extract some valuable data for

the interpretation of results and for a future implementation purpose. Unstructured

code development in 2D has been established with advanced and modern numerical

methods. Validation of the code development gave satisfactory results. These methods

to are highly efficient and flexible and robust. Parallel processing technique introduced

to the simulation to speedup the computational time. Effect of a dedicated cluster on

parallel processing technique also tried to be demonstrated up to some extend. An

attempt has been made to resolve turbulence on a centrifugal pump impeller which

constitutes a feasibility study for a future implementation.

Finite Volume methods are used to develop an incompressible code in staggered

grid arrangement, which can solve the governing equations up to high Reynolds num-

bers with a good accuracy. Fractional step methods used as the velocity-pressure

coupling in terms of primitive variables. Code development based on the unstructured

grids, which gives an opportunity to complex geometry applications. Robust solvers of

Newton-Krylov methods combined with preconditioning has been implemented with

success. Complex geometry applications with multi physics can be directly imple-

mented with this code in short period of time. Domain decomposition has already

been implemented on the code where parallelization can now be implemented directly.

Adaptive methods and turbulence modeling may be implemented on this study on a

long term period. Compressible solvers can be added to achieve all speed flow code.

Algebraic multigrid methods can be another option for a further enhancement.

Decay history of a eddy simulated with a finite difference code. Limitations of

the stream function-vorticity and moderate solvers which are used in this formulation

stated.
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Taylor vortex flows are simulated for concentric cylinder and torus geometries.

Results are validated and interpreted. Analogical vortex structures in two configura-

tions reported. These vortex formations in concentric torus medium can be studied

more deeply to make an optimization on the hydraulic transmission systems. Parallel

implementation of these flows performed. Results are interpreted in terms of parallel

processing terminology.

An attempt has been made to resolve turbulence on a centrifugal pump impeller

which constitutes a feasibility study for a future implementation. Possible enhance-

ments on a future implementation emphasized. Vortex identification implemented on

the flow field.
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