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ABSTRACT 

 

 

THE DESIGN PRINCIPLES OF LINEAR FEEDBACK SHIFT 

REGISTER BASED CLOCK CONTROLLED STREAM CIPHERS    

 

 

Stream ciphers are one of the most important classes of encryption algorithms used 

to ensure security in digital communication. The design of many stream ciphers is based on 

use of Linear Feedback Shift Registers (LFSRs), due to their simplicity, speed of 

implementation in hardware and providing sequences with good statistical properties. A 

stream cipher can not be considered suitable for cryptographic applications unless its 

output sequences have large periods, large linear complexities and possess certain 

randomness properties. Moreover a stream cipher must provide high resistance against well 

known cryptanalytic attacks such as time-memory trade-off attacks, divide-conquer attacks 

and correlation attacks. The use of clock-controlled shift registers in key stream generators 

can be a good alternative for achieving these properties. 

 

 In this thesis, the design principles of a cryptographically secure LFSR based clock 

controlled stream ciphers are described and two new stream cipher algorithms ANER-H 

and CSDS are presented. In addition, key stream properties of these algorithms and their 

resistance with respect to some well known cryptographic attacks are investigated. From 

the mathematical expressions and simulation results, it is shown that the two algorithms 

produce key stream sequences with satisfying basic security requirements and provide high 

resistance against currently known styles of attacks. Within their security powers, the 

CSDS is also designed to be very fast, especially for software usage. On the other hand, the 

stream cipher ANER-H can be applicable for both in hardware and software, due to its 

conceptually simple design.   
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ÖZET 

 

 

DOĞRUSAL GERİ BESLEMELİ KAYAN SAKLAÇ TABANLI SAAT 

KONTROLLÜ DİZİ TİP ŞİFRELERİN TASARIM İLKELERİ 

 

 

Dizi tip şifreleme algoritmaları güvenli sayısal haberleşme uygulamalarında 

kullanılan en yaygın şifreleme metotlarındandır. Bu tip şifreleme algoritmaların çoğunluğu 

basitliğinden, donanımdaki hızından ve iyi istatistiksel özelliklere sahip olduğundan 

Doğrusal Geri Beslemeli Kayan Saklaçları (LFSRs) tasarımlarında kullanmaktadır.  

Yüksek periyotlu, yüksek doğrusal karmaşıklığa ve belirli rasgelelik özelliklerine sahip 

olmayan çıktı dizileri üreten dizi tip şifreleme algoritmaları güvenlik uygulamalarına 

uygun değildir. Bununla birlikte, bir dizi tip şifreleme algoritması bilinen saldırılara karşı 

örneğin; zaman-bellek ödünleşimi saldırıları, böl-fethet saldırıları ve ilinti saldırıları, 

yüksek direnç göstermelidir. Saat kontrollü kayan saklaçları bu tip şifreleme 

algoritmalarında kullanmak istenen özellikleri gerçekleştirmesi açısından iyi bir 

alternatiftir.  

 

Bu tezde, kriptografik olarak güvenli LFSR tabanlı saat kontrollü dizi tip şifrelerin 

tasarım ilkeleri anlatılmakta ve isimleri ANER-H ve CSDS olan iki tane yeni dizi tip 

şifreleme algoritması önerilmektedir. Ayrıca bu algoritmaların ürettikleri çıktı dizilerinin 

özellikleri ve algoritmaların bilinen bazı saldırılara karşı dirençleri çalışmada 

verilmektedir. Matematiksel açılımlar ve simülasyon sonuçları ışığında iki algoritmanın da 

istenen minimum çıktı özellikleri gereksinimleri yerine getirdiği ve bilinen bazı saldırılara 

karşı yüksek dirence sahip olduğu gösterilmektedir. Yüksek güvenlik sağlamalarının yanı 

sıra, CSDS özellikle yazılımda çok hızlı olacak şekilde tasarlanmıştır. Diğer yandan 

ANER-H basit eleman tasarımlarından dolayı hem donanım hem de yazılım ortamlarındaki 

uygulamalara imkan vermektedir.  
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1. INTRODUCTION  

 

 

Cryptosystems are mainly categorized into two groups according to the used key 

type, symmetric-key or public-key. In case of public-key cryptography, the sender uses 

publicly known information (public-key) in encryption process to send a message to the 

receiver and the receiver uses his secret information (private-key) to recover the message. 

On the other hand in the symmetric-key encryption systems, the sender and receiver have 

previously agreed on use of a secret key for both encryption and decryption. This key must 

be kept secret to avoid revealing of the secret information by the potential eavesdroppers.  

 

The symmetric-key crypto systems are also classified into two major subgroups that 

are block ciphers and stream ciphers. Block ciphers tend to simultaneously encrypt groups 

of characters of a plaintext message with a fixed transformation, whereas stream ciphers 

operate on individual plaintext digits (usually bits or sometimes byte) at a time with a time-

varying transformation [1]. In other words, block ciphers operate on large blocks of data, 

while stream ciphers typically operate on smaller units of plaintext. Stream ciphers seem to 

be one of the best alternatives to high-speed communications, since they offer required 

security for high data rate applications and have algorithms that are popular in fast 

implementations. They are generally faster than block ciphers in hardware and have less 

complex hardware circuitry. Furthermore, stream ciphers can be more appropriate, and in 

some cases mandatory (e.g., in some telecommunications applications), when buffering is 

limited or when characters must be individually processed as they are received. Since 

stream ciphers have limited or no error propagation, they can be advantageous in situations 

where transmission errors are highly probable [2].   

 

The rest of the chapter gives a general introduction to the topic. A review of the 

cryptography from a stream ciphers point of view is presented in Section 1.1. Section 1.2 

gives an explanation about symmetric key cryptography and a comparison between stream 

ciphers and block ciphers. In Section 1.3, the general structure of stream ciphers is 

introduced. Some different types of cryptanalytic attacks are discussed in Section 1.4. 

Finally, Section 1.5 gives the outline of the thesis.    
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1.1.  A Review of the Cryptography from a Stream Ciphers Point of View 

 

         Cryptology is the branch of mathematics that uses mathematical techniques for 

designing, attacking and analyzing information security services. It is consisted of two sub 

study fields; named as cryptography and cryptanalysis. Cryptography is the science that 

studies mathematical techniques keeping messages or information secure and providing 

security services. On the other hand, cryptanalysis is the study of how to attack 

cryptographic mechanisms to recover secret information or to defeat the security services 

[1]. Modern cryptography mostly concerns with the concepts; confidentiality, authenticity, 

data integrity and non-repudiation. In Table 1.1, some cryptographic terms and their short 

explanations are given to make the remained sections clear for the non-technical readers. 

 

For the ancient times, the application of cryptography is something transforming the 

letters or the symbols into different symbols or representations according to a simple rule 

to provide secrecy of the messages. Substitution ciphers and Caesar cipher can be nice 

examples to these approaches.  A classic example to these systems is Vigenère cipher 

which operates on the following formula: 

 

                                                26modiii KPC +=                                                 (1.1) 

 

  According to this cipher model, each letter in the alphabet can be thought as a 

number ranging from 0 to 25. Then the plaintext letter P is added to key letter K in mod 26 

to obtain corresponding ciphertext letter C.  The reason why mod 26 operation is used is 

obvious; to keep the produced ciphertext letter in the alphabet set. A message encrypted by 

such an algorithm can be easily cryptanalyzed, due to its simple rule and risk in reuse of 

the key. However, the importance of the algorithm comes from the fact that, this algorithm 

can be seen as the first algorithm that has some common points with today’s stream cipher 

structure. At the beginning of the 20th century, Gilbert Vernam proposed a new type of 

cipher known as Vernam cipher which uses a secret key as long as the plaintext [3]. The 

cipher relies on the algorithm that the plaintext is XOR’ed with a random or pseudorandom 
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        Table 1.1. Explanations of some cryptographic terms 

Term Explanation 

Authentication The process for identification of the data origin or destination 

Cipher A cryptographic algorithm used to encrypt and decrypt messages. 

Ciphertext Encrypted message of information 

Confidentiality Ensuring that the information is only available to authorized users 

Cryptosystem Mechanism for providing a secure means of information   

exchange. 

Data Integrity Ensuring that no one without any authorization can alter the 

message 

Decryption Recovering the actual message from the cipher 

Encryption Process of transforming the message into cipher 

Non-repudiation Ensuring that someone cannot deny a previous commitment or 

action. 

Plaintext The original message or information 

 

stream of data the same length to generate the ciphertext as shown in the equation below; 

where ⊕  denotes the XOR operation and M, K and C represent the message (plaintext), 

stream sequence and ciphertext respectively .  

 

                                                                 KMC ⊕=                                                      (1.2) 

 

If the data stream is truly random and used only once, this is called the one-time pad. 

Vigenère cipher and the Vernam cipher have two important common points; first- both of 

the algorithms use the symmetric key encryption, and second- both ciphers operate on 

plaintext with symbol by symbol which is an important feature of the stream ciphers.     

  

1.2.  Symmetric Key Cryptography 

 
There are two general types of key-based encryption techniques which are symmetric 

and public-key. Symmetric-key algorithms, sometimes called conventional algorithms, are 

algorithms where the encryption key can be calculated from the decryption key and vice 

versa [1]. For most of the symmetric algorithms, sender and receiver have the same key to 
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realize encryption and decryption. Since these systems require that both of the sender and 

receiver previously have agreed on a key to communicate securely and this key must be 

kept secret from any eavesdropper, these algorithms are also called secret-key algorithms, 

single-key algorithms, or one-key algorithms. The security power of a symmetric-key 

algorithm can depend on secrecy of the key, because anyone who obtains the key can 

encrypt and decrypt messages.  

 

In symmetric-key systems, if E denotes the encryption and D denotes decryption 

operations, then encryption and decryption can be formulated respectively by: 

 

      EK(M) = C                                                       (1.3) 

 

      DK(C) = M                                                       (1.4) 

 

As it is mentioned in previous sections, symmetric-key algorithms can be divided 

into two main categories as stream ciphers and block ciphers. Block ciphers operate on 

large blocks of plaintext data, while stream ciphers operate on individual plaintext 

characters or bits (or bytes).  Stream ciphers use a simple but dynamic transformation to 

one individual symbol or character at a time whereas block ciphers apply a more complex, 

but static transformation to a block of symbols at once. Stream ciphers can be designed to 

be faster than block ciphers, especially by using LFSRs (Linear Feedback Shift Registers) 

in hardware. Although the main difference between stream ciphers and block ciphers 

seems as the operational characteristics, a block cipher can operate as a stream cipher by 

using the CBC (cipher block chaining) mode. Moreover, by using different modes of block 

ciphers such as the CFB (cipher feedback) mode, the OFB (output feedback) mode, the 

KFB (key feedback) mode and the CTR (counter) mode, block ciphers can provide stream 

cipher like characteristics. The inverse is also true; one can obtain a block cipher operation 

from a stream cipher, though it is less efficient.  

 

The general structure of a simple block cipher can be summarized as shown in Figure 

1.1. This cipher takes n bit block of plaintext and secret key as its inputs, then transforms 

this block to n bit block of ciphertext, where n is called block size. To realize unique 

decryption, this transformation must be chosen as one to one. Most of the block ciphers 
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define a permutation on the set of n bit blocks. Some well known block ciphers are DES, 

FEAL, IDEA, RC5 and AES [1, 2]. 

 

 

Figure 1.1. General structure of a simple block cipher 

 

1.3.  General Structure of Stream Ciphers 

 

The Vernam cipher mentioned in Section 1.1. provides enough security, but it is not 

very practical considering its key length requirement  which must be as long as plaintext. 

Also, key distribution and management for Vernam cipher is not an easy matter. Therefore 

cryptographers proposed to use a reduced key size but still providing a reasonable level of 

security. To achieve this process; the key in Vernam cipher is replaced by a pseudo random 

sequence of bits produced by a generator which is initialized with a shorter key. Although 

the proposed method is not as secure as Vernam cipher model, it is very convenient 

considering practical requirements and still maintains a reasonable level of security.  In 

fact, this solution is not different from the notion of a basic stream cipher.  Figure 1.2 

shows the block diagram of general structure of a stream cipher. When we look at (1.2), it 

is seen that ciphertext is generated in a similar manner; instead of using the key directly, 

now key stream symbols Zi produced by the key stream generator are used in XOR 

operation with message symbols Mi to produce ciphertext symbols Ci.  

   

 

 

Figure 1.2. General structure of a simple stream cipher 
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1.4.  Different Types of Cryptanalytic Attacks 

 

As stated before, cryptanalysis is the study that uses mathematical techniques for 

breaking a cryptosystem and an attempted cryptanalysis is called an attack [1]. The aim of 

the attack can be recovering original message from the cipher, obtaining the secret key or 

revealing any secret information relating the message or cryptosystem. The Dutch linguist 

Auguste Kerckhoffs stated in his book that ‘The security of the encryption scheme must 

depend only on the secrecy of the key, and not on the secrecy of the algorithms’ which is 

known as Kerckhoffs’ principal [4]. In fact, this is a necessary rule for a secure 

cryptosystem. To understand security strength of a cipher, it is investigated against some 

well known attacks. So, by comparing its resistance against these attacks, one can conclude 

that whether or not the cipher is secure. Of course, providing high resistance to the 

currently known styles of attacks does not guarantee the security of the cipher, because it is 

always possible to break any cipher with an unknown attack. However, any proposed 

cipher design must provide high resistance against known attacks. These attacks can be 

classified into two main groups; generic attacks and specific attacks. Generic attacks are 

applicable even if the attacker does not know the design of the cryptosystem [5]. On the 

other hand, in order to apply specific attacks, whose examples will be given in following 

chapters, to a cryptosystem, its inner system and how it works have to be known the by the 

cryptanalyst. In this section, we explain five general attack types. 

 

• Ciphertext-only attack: For this type of attack, the attacker has several ciphertexts 

corresponding to several messages all of those have been encrypted using the same 

encryption algorithm. The cryptanalyst tries to recover the plaintext of as many 

messages as possible, or for some cases he tries to get the secret key, in order to 

decrypt other messages encrypted with the same key. Within these processes, this 

attack is the most difficult type of attack, since the attacker does not have enough 

information compared to other attacks that will be discussed below.  

 

• Known plaintext attack: This is the most probable type of attack for stream 

ciphers. In known plaintext attack, the receiver knows a quantity of plaintext and 

the corresponding ciphertext. The goal of the attacker is to recover the key used in 

encrypting the messages or by using this information, an amount of known 
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plaintext-ciphertext pairs, developing algorithm which deduces unknown parts of 

the plaintext from the ciphertext. For example let the cryptanalyst has the following 

plaintext-ciphertext pairs: (P1, C1), (P2, C2),…(Pi, Ci) where C1=EK(P1), 

C2=EK(P2), Ci=EK(Pi) and K is the secret key. Then the attacker within this 

information, can deduce the key K, or get an algorithm to find remained unknown 

parts of the plaintext such as Pi+1 from Ci+1.  

 

• Chosen plaintext attack:  In this type of attack, the attacker has access to 

encrypting a chosen plaintext, so he can obtain the ciphertext for a specific 

plaintext. Due to this property, chosen plaintext attack is a more powerful attack 

type than known plaintext attack. The aim of the attacker is the same as for case of 

known plaintext attack that is deducing the key or revealing the unknown parts of 

the plaintext.   

 

• Chosen ciphertext attack:  Compared the other three types of attacks, this method 

is the most powerful one. The strength of the method stems from the fact that; 

attacker can choose specific ciphertext samples and can decrypt these ciphertexts to 

get corresponding plaintexts. The attacker’s job is deducing the secret key. For 

example let the cryptanalyst chose the following ciphertext samples: C1, C2,…Ci 

and decrypt these ciphertext samples to obtain corresponding plaintext pairs P1, 

P2,…Pi where P1=DK(C1), P2=DK(C2), Pi=DK(Ci) and K is the secret key.  

 

• Adaptive chosen-plaintext attack: This attack is a chosen-plaintext attack wherein 

the choice of plaintext may depend on the ciphertext received from previous 

requests [2]. In other words, the cryptanalyst can also modify his choice based on 

the results of previous encryption. 

  

The main goal of the attacks as described above is to recover the original message 

from given ciphertexts or deduce the secret key. 
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1.5.  Thesis Outline 

 

The thesis is consisted of six chapters. Chapter 1 gives an introduction about main 

aspects of cryptography. Chapter 2 discusses characteristics of LFSR based stream cipher, 

different applications of this type stream ciphers and presents detailed information about 

clock-controlled stream ciphers. In Chapter 3, the minimum required features of a well 

designed and secure stream cipher are given. Chapter 4 is devoted to description of the      

proposed cipher models ANER-H and CSDS. In Chapter 5, the security analysis of the 

proposed algorithms and their key stream properties such as statistical test results, period 

and linear complexity of the sequences are given. Finally, Chapter 6 gives the conclusions 

of the study.  
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2. STREAM CIPHERS  

 

 

In  this  thesis,  we  will  deal with LFSR based stream  ciphers,  only  and  in  

particular  with  stream ciphers in which the plaintext, the ciphertext and the key stream 

sequence  are all binary sequences, and in which the mixing operation, for both encryption  

and decryption is XOR operation.    

 

As it is given in the previous chapter, a stream cipher inspires the spirit of the one-

time pad by using a short key to produce the key stream which appears to be random. Such 

a key stream sequence is often described as pseudo-random generation of which can be 

thought as in the field of stream ciphers. Therefore key stream generator can also be known 

as pseudo-random sequence generator or running key generator. Actually, producing 

random look like sequences is necessary condition for a secure stream cipher design, 

because the closer the key stream generator’s output is to random, the harder time a 

cryptanalyst will have breaking it [1].  

 

The stream cipher encryption and decryption can be formulated as follows: Let  k1, 

k2, k3,..., ki denote the sequence that key stream generator outputs and p1, p2, p3,..., pi denote 

the plaintext bits. Then, if c1, c2, c3,..., ci represents the corresponding ciphertext bits, 

encryption and decryption are realized according to the equations below respectively. 

 

                                                                  iii kpc ⊕=                                                     (2.1) 

 

                                                      iiiiii pkkpkc =⊕⊕=⊕                                          (2.2) 

 

Stream ciphers can be classified as synchronous or self-synchronizing stream ciphers 

according to the relation between key stream generation and plaintext.  

 

• Synchronous stream ciphers: A synchronous stream cipher is one in which the 

key stream is generated independently of the plaintext message and of the 

ciphertext [2]. In the encryption side, a key stream generator outputs the key stream 
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bits, one after the other. On the decryption side, another key stream generator 

produces the identical key stream bits, one after the other. To avoid false decryption 

so error in communication, the two key stream generators must be synchronized. In 

case of losing synchronization during transmission, every ciphertext character after 

the error will be decrypted incorrectly. To solve this problem, the sender and 

receiver must resynchronize their key stream generators before continue their 

communication. Techniques for re-synchronization can be re-initialization or 

placing special markers at regular intervals in the ciphertext. An advantage of the 

synchronous stream cipher can be seen as; synchronous ciphers do not propagate 

transmission errors. If a bit or bits are changed during transmission so error occurs, 

then only error bits will be decrypted incorrectly, all preceding and subsequent bits 

will be unaffected. The encryption and decryption of a synchronous stream cipher 

are depicted in Figure 2.1 and Figure 2.2; where f denotes the next state function, g 

is the function which produces key stream bits, Si is the present state of the 

generator, K is the secret key, pi, ki and ci represent plaintext, key stream and 

ciphertext bits respectively. Most of the stream ciphers are binary additive stream 

ciphers that are synchronous stream ciphers in which the key stream, plaintext, and 

ciphertext digits are binary digits, and the output function is the XOR of plaintext 

and key stream sequence. 

 

• Self-synchronizing stream ciphers: A self-synchronizing stream cipher is a finite 

state machine for which the key stream is generated as a function of the key and a 

fixed number of the previous ciphertext symbols [6]. In other words, for this type of 

stream ciphers each key stream bit is produced within a function of a fixed number 

of previous ciphertext bits. Since the key stream depends on a fixed number of the 

previous ciphertext symbols say v, the cipher will resynchronize after v symbols if 

there is a transmission error. In case of this, the next v symbols will be erroneous 

and the error propagation is thus worse than for a synchronous stream cipher. 

However, if some ciphertext symbols are deleted or inserted during transmission, 

the self-synchronizing cipher will recover after v correct ciphertext symbols, 

whereas the synchronous ciphers will never regain synchronization [6]. The 

encryption and decryption of a self-synchronizing stream cipher is shown in Figure 
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2.3 and Figure 2.4 respectively. As can be seen the ciphertext bits are given as input 

to determine next state of the key stream generator.  

 

 

Figure 2.1. A general model for synchronous stream cipher encryption with XOR operation 

 

 

Figure 2.2. A general model for synchronous stream cipher decryption with XOR operation 

 

Figure 2.3. A general model for self-synchronizing stream cipher encryption, with XOR  
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Figure 2.4. A general model for self-synchronizing stream cipher decryption, with 

XOR 

 

 For most of the stream ciphers, key stream sequence is generated independently 

from plaintext; so in some applications key stream sequence can be produced prior to 

encryption or decryption to speed up the process. Due their simple designs, low hardware 

complexity, high speed encryption characteristic and having low error propagation rate, 

stream ciphers are dominantly preferred in wireless communications such as in the 

applications of GSM, US Cellular Systems, WLAN, Bluetooth [7-10]. Also, majority of 

the stream ciphers relies on the use of LFSRs in their design. Therefore before going on 

different stream cipher types, in Section 2.1 LFSRs (Linear Feedback Shift Registers) and 

the reasons why they are used will be discussed. Next, some important variants of LFSR 

based stream ciphers will be presented in Section 2.2. The last section, Section 2.3, will 

give detailed information about clock-controlled stream ciphers that are the main skeleton 

models for the proposed stream ciphers ANER-H and CSDS.    

 

2.1.  Linear Feedback Shift Registers 

  

An FSR (Feedback Shift Register) is a device made up by registers that produces 

binary sequences or symbols from a field Fq where q=2k and k is the symbol size (for our 

case and most of the stream ciphers q is chosen as 2). These registers are the main 

components of many key stream generators and they are used both in coding and 

cryptography. A feedback shift register is made up of two parts; a shift register s and a 

feedback function f. If the shift register s has a length of n bits or consists of n stages as s1, 

s2, ..., sn  which contains one bit 0 or 1, it is called an n-bit shift register. The feedback 
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function maps the state of the shift register according to its bits content. When the register 

is clocked at a time interval, all of the bits in the shift register are shifted one bit to the 

right. The new value of the left-most bit is computed by applying the feedback function to 

the contents of the register before clocking. At each clock, the right most bit of the register 

can be concerned as its output. The period of a shift register is the length of the output 

sequence before it starts repeating [1]. A general structure of a feedback shift register is 

depicted in Figure 2.5.   

 

 

Figure 2.5. General structure of feedback shift register of length n 

 

The simplest kind of feedback shift register is a linear feedback shift register. In that 

case, the feedback function can be written as nn scscscsc ⊕⊕⊕ K332211 , where s values 

are the contents of the register at time t  and c values are the feedback coefficients. As can 

be seen the feedback function is linear and simply the XOR of the appropriate bits in the 

register according to whether or not ci is equal to 1 or not; the list of the bits that have 

feedback coefficient value as 1 is called a tap sequence. An example of an LFSR is shown 

in Figure 2.6. Since the feedback function is linear and simple, many mathematical theories 

have been applied to analyzing LFSRs. The mathematical expression for the period of the 

shift register depends on its characteristic feedback function. If the feedback function is a 

primitive polynomial, then the period of the register becomes 2n-1, where n is the length of 

the register. An irreducible polynomial f(x) ∈ Fq[x] of degree l is said do be primitive if the 

root of f(x) in the splitting field lq
F is a generator of multiplicative group *

q lF ; where a 

polynomial g(x)∈ Fq[x]  is defined as irreducible polynomial over Fq, if it can not be 

factored into polynomials of smaller positive degrees in the ring of polynomials Fq[x] [6].  
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Figure 2.6. General structure of linear feedback shift register of length n 

 

For our binary case, we can restrict the definition of irreducible polynomial and 

primitive polynomial as:  A polynomial  f(x) over GF(2)  is  said  to  be  an  irreducible  

polynomial  over GF(2)  if  the only polynomials over GF(2) which divide f(x) are 1 and 

itself. An irreducible polynomial f(x) of degree n, which is also the length of the shift 

register, over GF(2) is said to be a primitive polynomial,  if (2n -1) is the least positive 

integer p such that f(x) divides (1 + xp) over GF(2).   

 

If we start with a non-zero state as the initial state of the LFSR and the register has a 

primitive feedback polynomial, then all possible states except the all-zero state will appear 

during a period and the length of the period will be 2n-1 as stated before. An LFSR with a 

primitive feedback polynomial is also called a maximum-length LFSR, and the sequence 

generated is called a maximum-length sequence. Notice that to say the sequence is 

maximum length, the initial state of the register must be non-zero and hereafter it is 

assumed that the starting state is as such. For example if the register has a length of 3 bits 

and a primitive feedback polynomial then the period of the register will be 23-1=7. To 

realize this example, let the register have a primitive feedback polynomial as x2+x+1 in 

GF(2), tapped at the second and third bit; the state of the LFSR begins with ‘101’and 

changes as shown in Table 2.1. As can be seen, after 7 clockings the register repeats itself.  

 

Most of the practical stream ciphers use LFSRs in their designs. There can be several 

reasons for this: Firstly, LFSRs are well suited for hardware implementation, because an 

LFSR is nothing more than an array of bit memories and its feedback function is just use of 

a series of XOR gates. Therefore, within a few logic gates an LFSR based stream cipher 

can be realized. Second reason is LFSRs can generate sequences with large period. An L-

bit maximal length LFSR can produce a sequence of   2L-1, so as L increases the length of  
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                                  Table 2.1. State transition of the 3-bit LFSR 

State of  the LFSR 

101 

110 

111 

011 

001 

100 

010 

 

the period becomes incredibly large. The last reason why cryptographers use LFSRs in 

their stream generator models can be the fact that LFSRs produce sequences with good 

statistical properties. That is, they can produce random-looking key stream sequences. 

However they can be easily analyzed using algebraic techniques, due to their linear 

structure. The Berlekamp-Massey algorithm can generate sequence of an n-bit LFSR after 

using only 2n bits of the key stream [11]. Thus, if an attacker gets 2n bits of key stream he 

can break the stream cipher which is based on a pure single n bit LFSR. Considering 

Berlekamp-Massey algorithm, the strength of an LFSR stream cipher against such an 

attack can be evaluated by using the metric linear complexity or linear span. The linear 

complexity of a sequence say s, denoted by L(s), is the length of the shortest LFSR that 

generates the same sequence. Linear complexity is very important, since the Berlekamp-

Massey algorithm, can generate the sequence of a stream cipher with a linear complexity n, 

after examining only 2n bits of the key stream. Note that a high linear complexity value 

does not indicate that the stream cipher is secure, while the lower one means that the cipher 

is weak and insecure. So, pure LFSR can not be used as a secure stream cipher, although it 

has nice properties. To eradicate linear complexity problems of the LFSRs and keeping 

their good characteristics, different approaches that will be discussed in the following 

section have been proposed.     

 

2.2.  Some Stream Cipher Designs 

 

An LFSR should never be used by itself as a key stream generator, since the output 

sequences of LFSRs are also easily predictable. Therefore for LFSR based stream ciphers 
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different techniques that can be can be divided into three general categories; nonlinear 

combination generators, nonlinear filter generators and clock-controlled generators have 

been presented to solve weaknesses of LFSRs. In first two of these techniques, stream 

generator design is simple; one or more LFSRs, generally of different lengths and with 

different feedback functions are used and their outputs or appropriate bits of the whole 

generator are taken by a nonlinear Boolean function to produce key stream sequence. Then 

the registers are regularly clocked and system works in this fashion. In case of the last 

category, clock-controlled generators, some LFSRs are clocked at different rates according 

to a rule or depending on the output of other LFSR; so they can be clocked irregularly. 

This property increases the linearity complexity of the system. The nonlinear combination 

generators and nonlinear filter generators will be explained in the following subsections. 

Since clock-controlled generators will be discussed in Section 2.3, there is no need to give 

brief information about it in this section.   

  

2.2.1. Nonlinear Combination Generators 

 

Nonlinear combination generators use several LFSRs in parallel to solve the linearity 

problem of LFSRs. They do this job by combining LFSR outputs with a nonlinear Boolean 

function f, which is also called combining function, as depicted in Figure 2.7. Before 

proceeding to an example of nonlinear combiner generator, it will be convenient to give 

some information about the Boolean functions. A product of m distinct variables is called 

an mth order product of the variables. Every Boolean function f(x1, x2, …, xn) can be given as 

a modulo 2 sum of distinct mth order products of its variables, nm ≤≤0 ; which is called 

the algebraic normal form of f. The nonlinear order of f is the maximum of the order of the 

terms appearing in its algebraic normal form [2]. For instance, 

4323114321 xxxxxx)x,x,x,x( ⊕⊕=f  has a nonlinear order 3. Therefore a nonlinear 

combination generator has a high linear complexity, if its nonlinear Boolean function has a 

high order nonlinear order. By using nonlinear combination generator, increase in linear 

complexity is achieved and it seems there is no problem. However, using output of 

different LFSRs into a nonlinear Boolean function also increases the possibility that one or 

more of the internal output sequences or just outputs of individual LFSRs can be correlated 

with the produced key stream and by means of this correlation the generator can be 

attacked which is often called a correlation attack. The metric indicating the strength of the  
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Figure 2.7. A nonlinear combination generator, where n LFSR outputs are combined 

with a nonlinear Boolean function f to produce key stream sequence for destroying 

linearity 

 

generator to the correlation attack can be defined as the correlation immunity whose details 

have been shown in [12]. Thus, we can say that there is a trade-off between high 

correlation immunity and high linear complexity. To understand the importance of the 

correlation immunity, let us give the description of a popular example of nonlinear 

combination generator as the Geffe generator [13].  The Geffe generator is consisted of 

three maximal length LFSRs of L1, L2 and L3 respectively as shown in Figure 2.8. The 

outputs of LFSRs are combined within the function 33221321 xxxxx)x,x,x( ⊕⊕=f .  

The key stream generator uses three LFSRs, combined in a nonlinear manner. If L1, L2 

and L3 are pairwise relatively prime, then the period of the generator is (2L1-1) (2L2-1) 

(2L3-1) and the linear complexity of the key stream sequence becomes L1L2 + L2L3 + L3. 

For the appropriate values of L1, L2 and L3 large period and high linear complexity is 

achieved, however when we look at the combining function f, if z(t) represents key stream 

bit at time t, one can realize the probabilistic relation between output of first LFSR and key 

stream bit as: 
4

3

2

1

2

1

2

1
))(x)(x()0)(x()1)(x())(x)(( 13221 =+===+=== ttPtPtPttzP .  

 

The output of first LFSR is equal to key stream bit at any time with a probability of 

3/4. Thus, one can see that Geffe generator has weaknesses considering correlation attack. 
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Figure 2.8. The Geffe generator 

 

Therefore, to have a secure nonlinear combination generator, the combining function f 

must have high algebraic degree, high nonlinearity and a high order of correlation 

immunity. Also f must be a balanced function, which has equal number of ones and zeros 

in the output column of its truth table, to provide key stream sequences with good 

statistical properties. 

   

2.2.2. Nonlinear Filter Generators 

 

This type of generator is not so different from nonlinear combining generators. In 

this case, instead of giving outputs of several LFSRs to nonlinear function f, appropriate 

bits of a single LFSR are given. A simple example of nonlinear filter generator is depicted 

in Figure 2.9, now the function f is called as the filter function. Actually, not all elements 

of the LFSR need to be taken as inputs to the filtering function. 

 

The period of the key stream sequence is 2n-1, if the LFSR is maximal length register 

and has a length of n bits. The maximum value for the linear complexity of the output 

sequence is computed as ∑ = 







=

m

i i

n
LC

1
, where LC and m denote the linear complexity 

and nonlinear order of the function. The same danger as low correlation immunity can be 

also valid for the nonlinear filter generators. Also, the same criteria must be concerned for 

the filter function as in the case of nonlinear combining function.  
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Figure 2.9. A nonlinear filter generator, where a single n bit-LFSR’s bits are 

combined with a nonlinear Boolean function f to produce key stream sequence  

 

2.3.  Clock-controlled Stream Ciphers 

 

The main idea behind an LFSR based clock-controlled stream cipher, is to control 

the number and time of clockings of the LFSRs using some irregular mechanism. This 

mechanism can depend on the output of another LFSR or some other internal variables of 

the cipher. By means of clocking the LFSRs at different rates, the linearity of the system is 

destroyed and attacks based on a regular clocking of the LFSR become harder. Many 

stream ciphers using non-linear combining functions are susceptible to the correlation 

attacks such as fast correlation attacks firstly described in [14]. On the other hand, using 

irregular clocking reduces the power of correlation attacks and provides practical 

resistance to the fast correlation attacks. To understand the properties of clock-controlled 

ciphers, let us give descriptions of some its popular applications. 

 

2.3.1. Alternating Step Generator 

 

Alternating step generator is consisted of three LFSRs denoted as R1, R2 and R3 

respectively [15]. The LFSR R1 controls the clocking of the other two, R2 and R3. In each 

clock cycle 1 bit key stream is generated by XOR’ing the outputs of R2 and R3. The 

clocking mechanism works as follows: Firstly, R1 is clocked, if its output is 1, then R2 is 

clocked and R3 is not clocked. On the other hand, if the output of R1 is 0, then R3 is 

clocked and R2 is not clocked. Whether or not a generator register (R2, R3) is clocked, it 

gives its output to key stream generation process; if it is not clocked, it repeats its output. 

The period of the produced key stream sequence can be expressed as: Let length of R1, R2 
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Figure 2.10. The alternating step generator 

 

and R3 be denoted by L1, L2 and L3 respectively. If the period of the output sequence (for 

any initial state) of a non-singular FSR of length L is 2L, then this output sequence is called 

a de Bruijn sequence [2]. If R1 produces a de Bruijn sequence with a period 2L1,  R2 and 

R3 are maximal length LFSRs, and gcd(L2,L3)=1, then  period of the key stream sequence 

becomes 2L1 (2L2-1) (2L3-1), where gcd(a,b) stands for greatest common divisor of a and b. 

For its linear complexity there are lower and upper bound within the same conditions. Let 

LC denote the linear complexity of the key stream sequence; then linear complexity 

becomes: L11 L1 2)3L2L()3L2L(2 +≤<+− LC . Thus if L1 is chosen enough high, the 

generator produces key stream sequences with large period and high linear complexity. 

From the point of a cryptanalyst; since the first register R1 controls the clocking of the 

other two, if the content of the register R1 is guessed, then an attacker can have 

information about future state transitions of R2 and R3. As a result, he can obtain the 

internal bits of R2 and R3 from just guessing the bits of R1 which costs approximately 2L1 

operations. However, if one chooses length of R1 enough high such as 128 bit, such an 

attack, which can be classified a guess-determine type attack, requires about 2128 steps and 

becomes infeasible.     

 

2.3.2. Shrinking Generator 

 

The shrinking generator is a relatively new stream generator [16]. It uses two LFSRs 

denoted as R1, R2 which have lengths of L1 and L2 respectively as depicted in Figure 

2.11. The generator produces key stream bits as follows: Firstly, both of the LFSRs are 

clocked. If the output of the first register is 1, then key stream bit takes the value of the 

output of the R2. If it is zero, no key stream bit is generated and output of second register 
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is discarded. The main principle of the generator is simple, but very effective, and looks 

secure. The period of the sequence produced by the shrinking generator is: 2L1-1 (2L2-1) if 

the gcd(L1,L2)=1. This stems from the fact that, R1 gives output 1 exactly 2L1-1 times out 

of its period 2L1-1, incase of it is a maximal length register. The proof of this theorem can 

be found in [16]. Also, within the conditions the lower and upper bounds for linear 

complexity of the key stream sequence generated by the shrinking generator 

is 2L22L2 1-L12 L1 ≤<−
LC . As can be seen by selecting the length of registers properly 

high period and high linear complexity can be realized. The generator also seems secure 

considering different type attacks. As in the case of alternating step generator, a guess-

determine type attack can be applied; firstly bits of R1 is guessed, then contents of R2 

deduced within known generated key stream sequence. By increasing the length of register 

the resistance of the cipher against such an attack is increased. Another important point for 

shrinking generator is its feedback polynomials must be dense, to avoid any vulnerability. 

Moreover, though it is not related security of the generator, one implementation problem is 

that the output rate is not regular, because generation of key stream bit depends on whether 

R1 outputs 1; if first LFSR has a long string of zeros then the generator outputs nothing. In 

[16], the use of buffering to solve this problem has been suggested.  

Actually, there is a variant of shrinking generator called the self-shrinking generator. 

In this case, instead of using two LFSRs, a single LFSR is used and pairs of bits are taken 

from it. System operates as follows: Clock the LFSR twice; if the first bit in the pair is 1, 

the output of the generator is the second bit. If the first bit is 0, discard both bits and try 

again. While the self-shrinking generator requires about half the memory space as the 

shrinking generator, it is also half the speed [1]. 

 

Figure 2.11. The shrinking generator 
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2.3.3. A5/1 

 

GSM uses A5 stream generator to encrypt digital user data transmitted from mobile 

station to the base station and base station to the mobile station. A5 stream cipher has two 

major variants:  A5/1 is the stronger version used in western European countries and A5/2 

is the weaker version used in the other countries. A5/1 stream cipher is a binary linear 

feedback shift register based key stream generator. It combines three LFSRs of lengths 19, 

22 and 23 bits which are denoted by R1, R2 and R3 respectively [8]. All of these registers 

have primitive feedback polynomials and each register is updated according to its own 

feedback polynomial. The taps of R1 are at bit positions 13, 16, 17, 18; the taps of R2 are 

at bit positions 20, 21; and the taps of R3 are at bit positions 7, 20, 21, 22. The three 

registers are maximal length LFSRs with periods 219 -1, 222 - 1, and 223 -1, respectively. 

The output of A5/1 is produced by XOR’ing the most significant bit of each register as 

shown in Figure 2.12. 

 

Each LFSR has a single clocking tap in bit 8 for R1, bit 10 for R2 and bit 10 for R3; 

denoted as C1, C2 and C3 respectively. Clocking mechanism of each LFSR is determined 

according to the majority rule: In each clock cycle majority of C1, C2, and C3 is calculated 

and two or three registers whose clocking tap value is the same as majority bit are clocked 

[8]. Since at each clock cycle at least two LFSRs are clocked, an individual LFSR moves 

with probability 3/4 and stops with probability 1/4. 

 

 

Figure 2.12. The A5/1 stream cipher 

 

The initial state of A5/1 is carried out as follows: All of the registers are first zeroed 

and then 64 bit secret session key K and 22 bit frame number Fn XOR'ed (ignoring 
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majority rule) in parallel into the least significant bits (lsb) of the three registers. In the 

next step, all LFSRs are clocked for 100 clock cycles according to majority rule, however 

no output is produced. Finally, three LFSRs are clocked according to majority rule to 

generate 228 bits of key stream sequence.  

 

Attacks against A5 algorithms have been presented in different papers [8, 17, 18, 19, 

20]. In [8], it is shown that cryptanalysis of A5/1 can be performed on a single PC with a 

few minutes of computational time and about 150-300 Gbytes of memory. Most of attacks 

against A5/1 make use of the security flaws in clocking mechanisms of the algorithm. In 

[17] and [18] divide & conquer attacks have been applied. According to these studies: Since 

the clocking tap positions of R1, R2 and R3 are known, linear equations about the LFSRs 

content can be obtained by guessing the some bits before the clocking tap bits. It is shown 

that by using these linear equations A5/1 can be cryptanalized. Considering these attacks, 

some designs have been proposed in different studies to overcome the weaknesses of A5/1      

such as in [21] and [22]. 

 

2.3.4. ORYX 

 

The ORYX cipher is a stream cipher that is used to encrypt wireless digital data as a 

key stream generator. The output of the generator is a pseudo-random stream of bytes. The 

generated key stream is XORed with the plaintext to get the ciphertext. As in case of the 

most stream ciphers, to recover the plaintext from the ciphertext, same key stream 

sequence is XOR’ed with the ciphertext at the receiver side. 

 

The ORYX cipher is consisted of three 32-bit LFSRs denoted as LFSRA, LFSRB, and 

LFSRK, and uses an S-box [10]. The S-box is used for a permutation operation of the 

numbers between 0 – 255. The block diagram of ORYX is shown Figure 2.13, where PK, 

PB, PA1 and PA2 represent the feedback functions of LFSRK, LFSRB, and LFSRA 

respectively. 

 

The primitive feedback polynomial of LFSRK is as follows: 

 x32 + x28 + x19 + x18 + x16 + x14 + x11 + x10 + x9 + x6 + x5 + x +1  
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LFSRA uses two different primitive feed back functions which are: 

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1  

and 

x32 +x27 +x26 +x25 +x24 +x23 +x22 +x17 +x13 +x11 +x10 +x9 +x8 +x7 +x2 +x +1 

 

Finally, the  LFSRB  has the following feedback function: 

x32 + x31 + x21 + x20 + x16 + x15 + x6 + x3 + x + 1 

 

The algorithm works in the following manner: Firstly, LFSRK is clocked once with 

its feedback function. LFSRA is stepped once using either one of its two feedback 

polynomials.  The decision of which polynomial depends on one of the high eight bits of 

LFSRK. Also, LFSRB is clocked either once or twice depending on another one of the high 

eight bits of LFSRK. Then, the last eight bits of LFSRK is added to the last eight bits of 

LFSRA after being permuted with S-box and the last eight bits of LFSRB after being 

permuted with S-box, with modulus 256 to create 8 bits of key stream.  

 

 

Figure 2.13. The ORYX stream cipher [23] 

 

ORYX was firstly cryptanalyzed by D. Wagner et. al. in [10]. It is shown that by 

using a divide and conquer attack with an amount of 25-27 byte known plaintext; the 
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stream cipher can be easily cryptanalyzed in 216 time complexity. Thus, one can say that 

ORYX is not a secure stream cipher.  
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3. REQUIRED KEY STREAM PROPERTIES OF A STREAM 

CIPHER  

 

 

A stream cipher can not be considered as secure and convenient for stream cipher  

applications  unless  its  produced key stream sequences  have  large  periods, high  linear  

complexities  and  provides  certain  good statistical  properties. In other words, the 

produced key stream sequence must have a guaranteed minimum period which is longer 

than the length of the message. Also the ciphertext must appear to be random, so that an 

attacker can not reveal any information about the plaintext from it.  

 

In this chapter, we will focus on these properties from a clock-controlled stream 

ciphers point of view. In Section 3.1, the period concept and its mathematical expressions 

for some clock-controlled generators will be given. The linear complexity and linear 

complexity profile will be discussed with its upper and lower bounds for some clock-

controlled generators in Section 3.2. Finally, Section 3.3 will present the details of some 

important statistical test suits such as FIPS 140-2, NIST that are used to determine whether 

or not the generated key stream sequences posses some randomness properties [24, 25].  

 

3.1.  Period of Generated Key Stream Sequences 

 

The LFSR based stream generators can be thought as a type of finite state machines 

and since any finite-state machine produces a sequence that is eventually periodic, we can 

from now on assume that the binary key stream sequence has a period P. For example, if 

we have a periodic sequence with period P like s1, s2, ..., sP  then each element of the 

sequence repeats itself after P elements as: si = si+P  for Pi ≤≤1 .  

 

In previous chapter, it is mentioned that a maximal length LFSR with n bits length 

has a period of 2n-1. Also, an LFSR can obtain maximal period if it feedback function is a 

primitive polynomial. Although algebraically analyzing of LFSRs is simple, mathematical 

modeling and expression for some LFSR based clock-controlled generators is not an easy 

matter such as mutual clock-controlled stream ciphers. In the following subsections, we 
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will give period expressions for some clock-controlled generators and these expressions 

will be used in period evaluation of ANER-H and CSDS in Chapter 5. 

 

3.1.1. Period of a Basic Clock-controlled Generator  

 

In this part, our basic clock controlled generator is consisted of two LFSRs denoted 

as CR and GR. The CR is the control register which controls the clocking of the second 

register and the GR is the generator register which is responsible for generating key stream 

bits. Let the period of the CR be λ, and GR be a maximal length register with length m and 

period PGR. Also, the GR generates sequence of 0}{ ≥= iibb  and the CR produces sequence 

of integers 0}{ ≥= iiaa , not necessarily to be binary . The stream cipher works as follows: 

In each clock cycle, the GR is clocked according to the value of ia . For example if 

....}1,3,2{=a , then GR is clocked twice in the first cycle, three times in the following, 

once in the next and so on.  After each clocking of GR, the output of GR becomes the key 

stream bit as shown in Figure 3.1. Let us continue on the example: If the GR outputs the 

sequence ...}0,1,1,0,1,1,0,0,1{=b , the key stream sequence, z, becomes as z={0,0,1…}, 

since it is clocked 2, 3, 1 and so on according to the sequence ....}1,3,2{=a . So, the key 

stream is produced as: Firstly, the initial key stream is z(0) = b(a0). After output z(t) has 

been produced, the CR determines the nonnegative integer a(t) and  the GR is clocked a(t)  

 

 

Figure 3.1. The basic clock-controlled generator 

 

times. Next, it produces the next output z(t+1). Lastly, the CR is clocked once and become 

ready for the next iteration. This operation can be formulated as below: 

                                         

                                                       0for   ,)()(
0

≥= ∑
=

 tabtz
t

i

i                                           (3.1) 

 



 28 

In fact, z is the ‘*’marked bits of the sequence b as shown in Figure 3.2. Thus the key 

stream sequence is the decimated sequence of GR output b with depending on CR 

sequence a .  

 

 

Figure 3.2. Decimated sequence of GR output b 

 

The period of such a system can be shown in terms of GR and CR parameters. Let  S 

denote the summation of clockings of GR in CR’s period duration which is λ. Then S can 

be expressed as: 

 

                                                                        
1

0
∑

−

=

=
λ

k

kaS                                                   (3.2) 

 

In [26], it is shown that the key stream sequence produced by such a generator can 

have a maximum period as Pz: 

 

                                                                  
),gcd( GR

GR

z
PS

P
P

λ
=                                             (3.3) 

 

According to [26], the generator can reach this limit, if one of two conditions are 

satisfied: 

• Degree m of f(x) is prime and S is not a multiple of 
)1,gcd( −qP

P

GR

GR , where f(x) is 

the feedback function of GR over GF(q). 
 
 

• f(x) is a primitive polynomial and 2/),gcd( m

GR qPS ≤ . 

 
For our case, the feedback function is defined over GF(2), so q = 2. To make the 

subject clearer, let us give two examples, one violates the conditions and the other satisfies. 
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3.1.1.1. Example 1.  Let the GR have a primitive feedback polynomial over GF(2) as 

1xx)( 4 ++=xf . Also, the CR produces the sequence ,...}3,2,3,2{}3,2{ == ∞a with a 

period of two, so λ=2. Since the GR has a primitive feedback polynomial and {1,1,1,1} as 

its initial state, it outputs the sequence ∞= }0,1,0,1,1,0,0,1,0,0,0,1,1,1,1{b with a period of 15. 

When we decimate sequence b according to a , we obtain the key stream sequence as 

∞= }1,0,1{z . As can be seen the period of the sequence is 3.  If it satisfied one of the two 

conditions given above, it would have a period according to (3.3). For this example, S is 5 

and PGR  is 15, m, the degree of f(x), is 4 and q is 2 due to f(x) is defined over GF(2) . From 

here, 5)15,5gcd(),gcd( ==GRPS which exceeds q
m/2=4. Thus, the second condition is not 

satisfied, although f(x) is a primitive polynomial. When we look at whether or not first 

condition is met, we can see that the degree m of f(x) is not a prime number, though S is not 

a multiple of 15
)1,gcd(

=
−qP

P

GR

GR . So, first condition is also not satisfied. If one of these 

two conditions were satisfied, the period would be  6
5

15*2
 

),gcd(
===

GR

GR

z
PS

P
P

λ
. 

However, a sequence can have the maximum period, although neither of the two 

conditions is met. Therefore we can say that, satisfaction of one of the two conditions 

guarantees the maximum period given in (3.3), but they are not the necessary conditions. 

For example, let the CR sequence be ,...}2,3,2,3{}2,3{ == ∞a , no other thing changes. 

Now the key stream sequence becomes as ∞= }1,1,1,0,0,1{z which has period of 6. As can 

be seen the S value and the feedback polynomial are not changed, so still two conditions 

are not met; but now the sequence has the maximum period as 6.  

 

3.1.1.2. Example 2.  For this example, the GR have a feedback polynomial over GF(2) as 

1xxx)( 23 +++=xf . The clock control register CR generates the sequence 

...}1,3,1,2,1,3,1,2{}1,3,1,2{ == ∞a with a period of 4, so for this case λ=4. The GR begins 

with the state {1,1,1,1} and produces the sequence ∞= }1,1,0,0{b with a period of 4, so PGR  

is 4. When we decimate sequence b according to a , the key stream sequence becomes as 

∞= }0,1,0,1,0,0,0,0,1,0,1,0,1,1,1,1{z . As can be seen the period of the sequence is 16.  For this 

example; S value is 7, m the degree of f(x) is 3, and 1)4,7gcd(),gcd( ==GRPS . The 
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feedback polynomial of the GR f(x) is not a primitive polynomial, so the second condition 

does not hold. On the other hand, the degree m of f(x) is prime and S is not a multiple of 

4
)1,gcd(

=
−qP

P

GR

GR .  Thus, the first condition holds and by using (3.3) we get the 

maximum period of the sequence as 16 which agrees with observed period.  

 

3.1.2. Period of Alternating Step(r,s) Generator 

 

In [27], a new stream generator named as Alternating Step(r,s) Generator has been 

introduced. This generator is consisted of three FSRs denoted as A, B, C. The first register 

has a length of L1 and produces a de Bruijn sequence, which is defined in Section 2.3.1, of 

period 2L1. The registers B and C are maximal length-LFSRs with length of L2 and L3; so 

with periods of 2L2-1 and 2L3-1 respectively. The generator works as follows: If the output 

of register A is 1, then B is clocked r times and C is not clocked. However, if the output of 

register A is 0, then C is clocked s times and B is not clocked. The XOR of outputs of B 

and C sets the key stream bit as shown in Figure 3.3. 

 

The register A generates exactly 2L1-1 ones and zeros in its period 2L1 which is 

denoted as PA. That means, B is clocked r 2L1-1 times and C is clocked s 2L1-1 times. If SB 

represents the summation of clockings of B in PA duration and SC represents the 

summation of clockings of C, then we obtain the following equations: 

 

                                                                        2 11L rSB

−=                                                (3.4) 

 

                                                                        2 11L
sSC

−=                                                (3.5) 

 

Let PB and PC denote the periods of B and C respectively. Also it can be easily 

computed that gcd(SB, PB)=gcd(r 2L1-1, PB)= gcd(r, PB) and gcd(SC, PC)=gcd(s 2L1-1, PC)= 

gcd(s, PC). Let us firstly find the period of decimated version of output of B, defined as 

PDB, ignoring existence of C. If gcd(r, PB)=1, by using (3.3), one can obtain the value for 

the period as:  
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                                                         )12(2 L2L1 −== BADB PPP                                        (3.6) 

 

By making the same assumptions for C, assuming gcd(s, PC)=1, and ignoring 

existence of B, it can be obtained that the period of the decimated version of sequence of C 

defined as PDC  is: 

 

                                                          )12(2 L3L1 −== CADC PPP                                       (3.7) 

 

If  gcd(L2,L3)=1, gcd(r, PB)=1 and gcd(s, PC)=1, the period of the key stream 

sequence represented as  Pz will be lcm(PDB,PDC), where lcm(a,b) stands for the least 

common multiplier of a and b. By using (3.6) and (3.7), the period of the key stream 

sequence is found as: 

          

                                      )12)(12(2 ),(lcm L3L2L1 −−=== CBADCDBz PPPPPP                  (3.8) 

 

 

 

Figure 3.3. The alternating step(r,s) generator 

 

3.1.3. Period of LILI Key Stream Generator 

 

The LILI key stream generator is a simple and fast key stream generator that uses 

two binary LFSRs and two functions to produce a pseudorandom binary key stream 

sequence as shown in Figure 3.4 [28]. The first register represented as LFSRc controls the 

clocking of the second register which is LFSRd. The second register gives input bits to 

nonlinear function fd that generates key stream bits. LFSRc is a regulary clocked register 

that gives k bits of inputs to the function fc which determines how many times the LFSRd is 
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Figure 3.4. The LILI key stream generator 

 

clocked. This function outputs c(t) which is an integer such that }2,,2,1{)( ktc L∈ . The 

function fc is a bijective mapping }2,,1{}1,0{ kk
L→ , thus the distribution of integers c(t) is 

close to uniform. fc can be expressed as: k

k

kcf x2x2x1)x,,x,x( 1
2121

−++++= KL , 

where ‘x’s are the input bits that come from LFSRc. At each instant firstly c(t) is computed 

by fc and then LFSRd is clocked c(t) times. Key stream generation is realized by the 

function fd which takes n bits of inputs from the LFSRd and using its nonlinear 

characteristics produces one key stream bit. 

 

Let Lc and Ld denote the length of the registers LFSRc and LFSRd respectively. If g(t) 

represents the output of regularly clocked LFSRd with nonlinear function fd and z(t) stands 

for the key stream sequence of LILI system, then z(t) can be expressed as: 

∑
=

=
t

i

icgtz
1

))(()( , where g() is the LFSRd sequence. Moreover, let Pc, Pd, and Pz denote the 

periods of LFSRc, LFSRd and z(t) respectively. In [28], it is assumed that LFSRc and 

LFSRd have primitive feedback polynomials, so 12 −= cL

cP , 12 −= dL

dP .  If Sd represents 

the summation of clockings of LFSRd in Pc duration, one can evaluate that 

1)12(2 1 −+= − kL

d
cS . According to [28]; if Pd  is a prime and fd is not a constant function 

or if fd is balanced and Sd is relatively prime to Pd, then the period of the output sequence z 

is given by: 

 

                                                    )12)(12( −−== dc LL

dcz PPP                                        (3.9) 
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3.2.  Linear Complexity of Generated Key Stream Sequences 

 

The linear complexity of a sequence kssss L,, 21= ∈ Fq, represented L(s) as given in 

Section 2.1, is the length of shortest LFSR, defined over ∈ Fq, that generates the same 

sequence. If s is the zero sequence s=0,0,…, then L(s)=0 and if no LFSR generates s, then 

L(s)= ∞. The linear complexity of a sequence can be determined with the Berlekamp-

Massey algorithm [11] which finds the feedback function of the shortest LFSR given at 

least 2L(s) symbols.  Since a pure LFSR has low linear complexity as stated in Section 2.1, 

it can not be a suitable stream generator design. For example, a 100 bit maximal length 

LFSR has a high period of 2100-1, however by using the Berlekamp-Massey attack, its 

known 200 bits will be enough to find the coefficients of feedback polynomial that 

produces the same sequence. 

 

Considering the sequence s given above, let LN denote the linear complexity of the 

subsequence s
N = s0, s1,…,sN-1, for 0≥N . The sequence L1, L2, is called the linear 

complexity profile of s [2]. The linear complexity profile of a sequence can be evaluated 

by using the Berlekamp-Massey algorithm. The expected linear complexity of a random 

sequence should closely follow the line L = N/2, where L is the linear complexity profile. 

Of course, that does not mean that a sequence is random if its linear complexity profile 

follows the line L = N/2. The linear complexity profile indicates the manner in which the 

complexity changes while the bits are being processed. 

 

In the following subsections, we will give linear complexity bounds and expressions 

for some clock-controlled generators. 

 

3.2.1. Linear Complexity of the Stop and Go Generator  

 

The basic clock-controlled generator is described in Section 3.1.1. For this type, if ai 

takes on the values of 1 and 0, then this generator becomes the arrangement of a stop and 

go generator described in [29]. Let us assume the length of the register CR is n and it has a 

primitive feedback polynomial. Since ai takes the value of 1 2n-1 times in period of the CR 

as λ, S denoting the summation of clockings of GR in CR’s period becomes  S=2n-1. The 

period of the GR is given Section 3.1.1 as PGR=2m -1, where m is the length of GR. Now 
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the period of the sequence from (3.3) becomes multiplication of the two individual periods 

as GRz PP λ= , since  gcd(S, PGR)=gcd(2n-1, 2m -1) = 1. For the particular case when n=m,    

λ = PGR and the linear complexity of the key stream sequence has its largest possible value 

which is n(2n -1). 

 

3.2.2. Linear Complexity of the Alternating Step(r,s) Generator 

 

The alternating step(r,s) generator is described in Section 3.1.2. The linear 

complexity of a purely periodic sequence is equal to the degree of its minimal polynomial. 

The minimal polynomial is the feedback polynomial of the shortest LFSR that can generate 

the given sequence. Using the same notations of Section 3.1.2, we can give the following 

the notations: Firstly let us assume that the register C is ignored and key stream is the 

decimated version of output of B. If gcd(r, PB)=1, then the minimal polynomial of the 

sequence is of the form I(x)
β , where 1L11L 22 ≤<− β  and I(x) is an irreducible polynomial of 

degree L2. In particular, the linear complexity of the sequence, LCB, becomes as 

2L22)L2( 1L11L ≤<−
BLC . The same assumptions and ignorance of B can be made for the 

linear complexity expression of the sequence of register C. For that case it can be written 

that 3L23)L2( 1L11L ≤<−

CLC , if  gcd(s, PC)=1. Finally, if gcd(L2,L3)=1, gcd(r, PB)=1 and 

gcd(s, PC)=1, the linear complexity of the key stream sequence represented as  LC will be: 

 

                                     )3L(L22)3L)(L22( 1L11L +≤<+− LC                              (3.10) 

 

The proofs of the statements mentioned above have been given in [27]. 

 

3.2.3. Linear Complexity of the LILI Stream Generator 

 

In Section 3.1.3, the description of LILI stream generator has been given, and for this 

section also the same notations are valid. In [30], the upper bound on the linear complexity 

of irregularly decimated maximum-length sequences is given. The lengths of the LFSRs 

are represented as Lc and Ld and their periods are denoted as Pc, Pd. When a maximum-

length sequence of period Pd is non-uniformly decimated by means of a decimating 

sequence of period Pc, if Sd represents the summation of clockings of LFSRd in Pc duration, 
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then the decimated sequence has a maximum linear complexity of Ld Pc, only if the 

multiplicative order of 2 modulo Pd / gcd(Pd ,S) is equal to Ld. Notice that  if gcd(Pd ,S)= 1, 

this condition will be satisfied. According to [30]; it has been shown that if the decimating 

sequence is randomly chosen, then the probability that maximum linear complexity is 

obtained can be made arbitrarily close to one for appropriately chosen Ld and Pc. For the 

LILI stream generator, the key stream bit is not exactly a pure decimation of output of 

LFSRd; a nonlinear filter is also used to generate key stream bits. Thus, this effect has to be 

considered in linear complexity computation. For a non-uniformly decimated nonlinearly 

filtered sequence can have a maximum linear complexity of cd PL
'  where '

dL is related to 

maximum linear complexity of a regularly clocked nonlinear filtered sequence. This term 

depends on the order of nonlinear function and the bit positions of the register which are 

taken as inputs to the nonlinear function. This relation can be expressed as 








m

Ld , where m 

is the nonlinear algebraic order of the nonlinear function, as the lower bound of the linear 

complexity. For the LILI key stream generator, it is presented that the linear complexity of 

the sequence is lower bounded by   c

d
P

m

L








, also lower bounded by Ld Pc.  

 

3.3.  Statistical Properties of Generated Key Stream Sequences 

 

A stream generator can not be regarded as a suitable stream cipher for security 

applications unless its generated key stream sequences possess certain randomness 

properties. A binary key stream sequence should be a realization of independent identically 

distributed random variables with the parameter equal to 0.5. As the key stream deviates 

from these distributions, it does not seem as a random look like sequence and an attacker 

can use this weakness to obtain future key stream bits.  

 

Golomb defined a PN-sequence (pseudo-noise sequence) to be a binary sequence of 

period P that satisfies the three randomness postulates [31]. Actually, they were one of the 

first attempts to show some necessary conditions for a periodic pseudorandom sequence to 

look random. It is emphasized that these conditions are far from being sufficient for such 

sequences to be considered random [2].  Before giving the three postulates, it seems more 

sensible to give the definitions of run, gap and block. A run of a sequence is a subsequence 
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of the sequence consisting of consecutive 0’s or consecutive 1’s which is neither preceded 

nor succeeded by the same symbol. A run of 0’s is called a gap and a run of 1’s is called a 

block. The three postulates are given below for: 

 

• The number of 1’s differs from the number of 0’s by at most 1 in a cycle. 
 
• At least half the runs have length 1, at least one-fourth have length 2, at least one 

eighth have length 3, etc., as long as the number of runs so indicated exceeds 1. 

Moreover, for each of these lengths, there are (almost) equally many gaps and 

blocks [2].  

 
• The out-of-phase of the autocorrelation should be constant. 

 

These randomness postulates apply to a complete cycle of a key stream sequence. 

However, in most stream ciphers systems a complete cycle of the enciphering sequence 

may never be used. Thus; although the global properties, properties in a complete cycle, 

should not be discarded, local randomness properties, which are the properties of 

subsequences shorter length than the whole period, can be more important. Usually, testing 

the local randomness of a key stream sequence can be realized by using some major 

statistical tests.  

 

In this thesis, two important test suites which are FIPS 140-2 and NIST Statistical 

Test Suite [24, 25], are applied to key stream sequences generated by the proposed stream 

ciphers ANER-H and CSDS.  In the following subsections the details of these tests will be 

given. 

 
3.3.1. FIPS 140-2 

 

FIPS 140-2 test suite is consisted of four statistical tests that are monobit test, poker 

test, runs test and long run test for randomness. For each trial of the test, a sequence of 

length 20000 bits are produced from the stream generator. Then the four tests mentioned 

above are applied to this sequence. If any of the tests fail, then the sequence of the 

generator fails the test. The descriptions of the tests are given below for a sequence of 

length 20000 bits. 

 



 37 

3.3.1.1. Monobit Test.  By means of this test, it is determined that whether or not  the 

number of 0’s and 1’s in the sequence are approximately equal as would be expected for a 

random sequence. Let X1 denote the number of 1’s in the sequence, if the inequality     

9725 < X1 < 10275 is satisfied, the sequence passes this test; otherwise it fails.  

 

3.3.1.2. Poker Test.  The purpose of poker test is determining whether the sequences of 

length 4 bits each appear approximately the same number of times in the stream, as would 

be expected for a random sequence. It can be done as follows: Firstly the 20000 bit stream 

is divided into 5000 contiguous 4 bit segments. Then compute the number of each 4-bit 

segment in the sequence denoting as in  for 150 ≤≤ i . At the last step, calculate the term 

kn
k

X
i

i −







= ∑

=

15

0

2
4

2

2
, where k=20000/4=5000. If 2.16 < X2 < 46.17 is satisfied, sequence 

passes this test. 

 

3.3.1.3. Runs Test.  This test is used to determine whether the number of runs (of either 

zeroes or ones) of different lengths in the sequence as expected for a random sequence. It 

is done as: A run is defined as a maximal sequence of consecutive bits of either all ones or 

all zeros that is part of the 20,000 bit stream. The occurrences of runs of all lengths in the 

stream sequence should be counted and stored. If the number of occurrences for each 

length is in the interval given in Table 3.1, then the sequence passes the test, otherwise it 

fails. 

 

Table 3.1. Passing intervals for the runs test 

Length of run Required interval 

1 2343-2657 

2 1135-1365 

3 542-708 

4 251-373 

5 111-201 

6 111-201 

 



 38 

3.3.1.4. Long Run Test.  A long run is defined to be a run of length 26 or more. So, the 

long run test is passed if there are no runs of length 26 or more. 

 

3.3.2. NIST Statistical Test Suite 
 

The NIST Test Suite is a statistical package consisting of 16 tests that were 

developed to test the randomness of (arbitrarily long) binary sequences produced by either 

hardware or software based cryptographic random or pseudorandom number generators 

[25]. These tests determine whether or not a variety of different types of non-randomness 

exists in a sequence.  The 16 tests are; The Frequency (Monobit) Test, Frequency Test 

within a Block, The Runs Test, Test for the Longest-Run-of-Ones in a Block, The Binary 

Matrix Rank Test, The Discrete Fourier Transform (Spectral) Test, The Non-overlapping 

Template Matching Test, The Overlapping Template Matching Test, Maurer's "Universal 

Statistical" Test, The Lempel-Ziv Compression Test, The Linear Complexity Test, The 

Serial Test, The Approximate Entropy Test, The Cumulative Sums (Cusums) Test, The 

Random Excursions Test and The Random Excursions Variant Test. For these tests, firstly 

a P-value, which is the probability that a perfect random number generator would have 

produced a sequence less random than the sequence that was tested, given the kind of non-

randomness assessed by the test, is computed. Then according the specified bound for P-

value by the user, the sequence passes the test or fails. If a P-value for a test is determined 

to be equal to 1, then the sequence appears to have perfect randomness. On the other hand, 

a P-value of zero means that the sequence seems to be completely nonrandom. A 

significance level denoting as α can be chosen for the tests. If P-value < α then the 

sequence fails the test. For example if α chosen as 0.001, this means P-value < 0.001 is 

required for a failure; thus the sequence would be considered to be non-random with a 

confidence of 99.9 %. Also the test with a P-value < 0.01 indicates that the sequence is 

non-random with a confidence of 99%. In this thesis, α is chosen as 0.01 for the tests 

applied on the stream sequences generated by ANER-H and CSDS. The descriptions and 

their use of purposes but not their computations are explained in the following parts. 

 

3.3.2.1. The Frequency (Monobit) Test.  The purpose of this test is to determine whether 

the number of ones and zeros in a given sequence are approximately the same as would be 
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expected for a random sequence. For a random look like sequence it is expected that the 

ratio of number of ones to number of zeros should be close to 1/2.  

  

3.3.2.2. Frequency Test within a Block.  By means of this test, it can be evaluated whether 

the frequency of ones in an M-bit block is approximately M/2, as would be expected for a 

random sequence. For a sequence of length n and N=n/M, where N is number of non-

overlapping M blocks, it is recommended that to choose M and N values as 20≥M , M > 

0.01n and N < 100. 

 

3.3.2.3. Runs Test.  The purpose of the runs test is to determine whether the number of 

runs, whose definition has been given in Section 3.3, of ones and zeros of various lengths 

is as expected under an assumption of randomness. In particular, this test determines 

whether the oscillation between such zeros and ones is too fast or too slow. 

 

3.3.2.4. Test for the Longest-Run-of-Ones in a Block.  This test focuses on the longest run 

of ones within M-bit blocks. The purpose of this test is to determine whether the length of 

the longest run of ones within the tested sequence is approximately the same as with the 

length of the longest run of ones that would be expected in a random sequence. Notice that 

an irregularity in the expected length of the longest run of ones implies that there is also an 

irregularity in the expected length of the longest run of zeroes. Therefore, only a test for 

ones is necessary. 

 

3.3.2.5. The Binary Matrix Rank Test.  The purpose of this test is to check for linear 

dependence among fixed length substrings of the original sequence. It focuses on the rank 

of disjoint sub-matrices of the entire sequence. 

 
 

3.3.2.6. The Discrete Fourier Transform (Spectral) Test.  The purpose of this test is to 

detect periodic features, i.e., repetitive patterns that are near each other, in the tested 

sequence that would indicate a deviation from the assumption of randomness. The 

intention is to detect whether the number of peaks exceeding the 95 % threshold is 

significantly different than 5 % [25]. 
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3.3.2.7. The Non-overlapping Template Matching Test.  The purpose of this test is to 

detect generators that produce too many occurrences of a given non-periodic pattern. For 

this test an m-bit window block is used to search for a specific m-bit pattern. If the pattern 

is not found, the window slides one bit position. If the pattern is found, the window is reset 

to the bit after the found pattern, and the search resumes. 

 

3.3.2.8. The Overlapping Template Matching Test.  This test focuses on determining the 

number of occurrences of specified target strings. Both this test and the Non-overlapping 

Template Matching test of Section 3.3.2.7 use an m-bit window to search for a specific m-

bit pattern. As with the test in Section 3.3.2.7, if the pattern is not matched in the sequence, 

the window slides one bit position. The difference between this test and the non-

overlapping template matching test is that when the pattern is obtained, the window slides 

only one bit before resuming the search. 

 

3.3.2.9. Maurer's "Universal Statistical" Test.  The main idea behind Maurer’s universal 

statistical test is that it should not be possible to significantly compress the output sequence 

of a random generator, without loss of information. So it tests whether or not the sequence 

can be significantly compressed without loss of information. A significantly compressible 

sequence is evaluated as a non-random sequence. 

  

3.3.2.10. The Lempel-Ziv Compression Test.  The purpose of the test is to determine how 

far the tested sequence can be compressed. This test compresses the candidate random 

sequence using the Lempel-Ziv algorithm presented in [32]. If the reduction is statistically 

significant when compared to a theoretically expected result for a random sequence, then 

the sequence is evaluated as a non-random sequence. 

 

3.3.2.11. The Linear Complexity Test.  This test uses linear complexity, which is defined 

in Section 2.1, to test for randomness. The purpose of this test is to determine whether or 

not the sequence is complex enough to be considered random. Random sequences are 

characterized by longer LFSRs. An LFSR that is too short means that the sequence is non-

random. 
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3.3.2.12. The Serial Test.  This test is based on testing the uniformity of distributions of 

patterns of given lengths. In other words, it tests to determine whether the number of 

occurrences of the 2m
 m-bit overlapping patterns is approximately the same as would be 

expected for a random sequence. Random sequences have uniformity; that is, every m-bit 

pattern has equal probability for appearing in the sequence. 

 
3.3.2.13. The Approximate Entropy Test.  The purpose of the test is to compare the 

frequency of overlapping blocks of two consecutive/adjacent lengths (m and m+1) against 

the expected result for a random sequence. 

 

3.3.2.14. The Cumulative Sums Test.  The focus of this test is the maximal excursion (from 

zero) of the random walk defined by the cumulative sum of adjusted (-1, +1) digits in the 

sequence. The purpose of the test is to determine whether the cumulative sum of the partial 

sequences occurring in the tested sequence is too large or too small relative to the expected 

behavior of that cumulative sum for random sequences. This cumulative sum may be 

considered as a random walk. For a random sequence, the excursions of the random walk 

should be near zero. For certain types of non-random sequences, the excursions of this 

random walk from zero will be large [25]. 

 

3.3.2.15. The Random Excursions Test.  The focus of this test is the number of cycles 

having exactly K visits in a cumulative sum random walk. It is based on considering 

successive sums of the binary bits (plus or minus simple ones) as a one-dimensional 

random walk. The test detects deviations from the distribution of the number of visits of 

the random walk to a certain \state," i.e., any integer value.  So the purpose of this test is to 

determine if the number of visits to a particular state within a cycle deviates from what one 

would expect for a random sequence.  

 

3.3.2.16. The Random Excursions Variant Test.  The focus of this test is the total number 

of times that a particular state is visited (i.e., occurs) in a cumulative sum random walk. 

The purpose of this test is to detect deviations from the expected number of visits to 

various states in the random walk. 
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4. DESCRIPTION OF PROPOSED STREAM CIPHERS  

 

 

In this section, the designs of two new binary stream cipher algorithms suitable for 

high speed communication applications, referred to as ANER-H and CSDS (Clock-

controlled Stream cipher with Dynamic S-box Selective) are described. ANER-H stream 

cipher is a simple and fast stream cipher that consists of four binary LFSRs and uses a 128 

bit secret key with a 208-bit initial vector which can be public. The CSDS cipher consists 

of four LFSRs and uses a 128 bit secret key K with a 136 bit initialization vector (IV). The 

CSDS generates four bits about 2.5 clocking of each shift register, where as ANER-H one 

bit. Both of the designs satisfy minimal security requirements (long period, high linear 

complexity, good statistical properties) and provide high resistance to currently known 

attacks. The main idea behind ANER-H is its characteristic mutual clock control 

mechanism, while the core of CSDS is the clock-controlling mechanism for the shift 

registers and the S-boxes that are selected dynamically. 

 

In Section 4.1, a detailed description of ANER-H is given and Section 4.2 discusses 

the design of CSDS stream cipher.  

 

4.1.  The Stream Cipher ANER-H 

 

The ANER-H stream cipher is a simple key stream generator that uses four binary 

LFSRs to produce a pseudorandom binary key stream sequence as shown in Figure 4.1. 

This stream cipher has been designed from ideas around the clock controlled generator [2]. 

Key stream sequence is generated according to the bits come from the three LFSRs 

(generator LFSRs) of lengths 61, 127, 89 bits denoted by R2, R3 and R4 respectively. The 

job of the remained LFSR, denoted as R1, is to control the clocking of R2, R3 and R4. 

Length of the R1 is 59 bits, so LFSRs of ANER-H is totally 336 bits length. 
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Figure 4.1. The ANER-H stream cipher; R1, R2, R3 and R4 give input to the Clock 

Controlling Mechanism and R2, R3 and R4 generate the key stream bits 

 

R1 is a regularly clocked LFSR and it has a primitive feedback polynomial as:  

 

                          g(x) = x59 +x52 +x44 +x36 +x29 +x22 +x14 +x7 +1                               (4.1) 

 

R1 gives two bit-input to the each of three clock control functions which are denoted 

as fC2, fC3 and fC4. These functions are given by:  

 

                           2)37(1)19(12))37(1),19(1(2 ++= RRRRfC                                    (4.2) 

 

                          2)49(1)27(12))49(1),27(1(3 ++= RRRRfC                                  (4.3) 

 

                         2)56(1)32(12))56(1),32(1(4 ++= RRRRfC                                   (4.4) 

 

where R1(i) represents the i’th tap bit of R1 at time instant t. fC2, fC3 and fC4 give integer 

numbers that are the numbers of clocking of R2, R3 and R4 at time t respectively. If Ci(t) 
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represents the number of clocking for i’th register according to fCi(t) at time t, then              

}5,4,3,2{)( ∈tCi . As can be seen from (4.2), (4.3) and (4.4), the distribution of the integers 

Ci(t) is close to uniform. If the clocking mechanism of the generator were like that, each of 

R2, R3 and R4 would be clocked at least twice and at most five times between the 

generations of two consecutive key stream bits according to specified bit values of R1. 

However for ANER-H, clocking mechanism also depends on R2, R3 and R4 as follows: 

For each key stream bit generation majority of k’th clocking tap bit of R2, R3 and R4, T2k, 

T3k and T4k respectively, is calculated and only those registers whose clocking tap value is 

the same as majority result are clocked Ci(t) times. If there exists a register whose clocking 

tap value is not equal to majority, it is clocked once. So each of R2, R3 and R4 is clocked 

at least once and at most five times before each key stream bit is produced. The tap bit 

locations of the registers are shown in Fig. 4.2. The value of ‘k’ is determined according 

the result of  4R1(23)+2R1(34)+R1(52). For example, let the R1(23), R1(34) and R1(52) 

be 0, 1 and 1 respectively. Then ‘k’ is evaluated as 3. Thus, for this case clocking tap bits 

of R2, R3 and R4 become T23, T33 and T43. Majority of these clocking tap bits is 

calculated and two or three registers whose clocking tap value is the same as majority 

result are clocked Ci(t) times. By using this clocking mechanism non-linearity of the 

system is increased and stop and go clocking mechanism which may permit attacks is 

avoided.  

 

Key stream generation of ANER-H is simple; each key stream bit z(t) is generated by 

XOR’ing the last bits of R2, R3 and R4; 60’th, 126’th and 88’th bits respectively. 

Following the bit generation, clockings of R1, R2, R3 and R4 are done. The operation of 

the stream cipher is as follows: Firstly in the initialization part, 128 bit secret key K is 

mixed with 208 bit initial vector to form the initial states of LFSRs. Next, one key stream 

bit is produced by XOR’ing last bits of R2, R3 and R4. After that, C2(t), C3(t) and C4(t) 

values (how many times each register is clocked) are obtained according to appropriate tap 

values of R1. Then, which clocking tap bits of R2, R3 and R4, used in majority rule, are 

determined with depending on specified bits of R1. After majority of the clocking tap bits 

T2k, T3k and T4k is calculated and the registers whose clocking tap value agrees with 

majority result are clocked Ci(t) times. If clocking tap value of a register is not same as 

majority result, it is clocked once. Finally R1 is clocked once. Next key stream bit is 

generated and the operation continues in this fashion. The maximum allowed length of the  



 45 

 

 

Figure 4.2. Clocking tap bit locations of the generator registers R2, R3 and R4 

 

running key stream sequence set to 254 bits, and then the cipher must be rekeyed 

(reinitialized). Producing a key stream sequence of length greater than 254 bits in practice is 

quite unlikely to happen. 

 

R2, R3 and R4 have primitive feedback polynomials as:  

 

                         LFSR R2: g(x) = x61 +x53 +x45 +x38 +x30 +x23 +x15 +x7 + 1                       (4.5) 

 

                  LFSR R3: g(x) = x127 +x103 +x96 +x87 +x66 +x51 +x41 +x35 +x23 +x3 + 1            (4.6) 

 

                        LFSR R4: g(x) = x89 +x83 +x80 +x55 +x53 +x42 +x39 +x + 1                         (4.7) 

 

4.2.  The Stream Cipher CSDS 

 

CSDS stream cipher is a simple and fast key stream generator which has four binary 

LFSRs denoted by R1, R2, R3 and R4 respectively as shown in Fig. 4.3. According to their 

functions in the algorithm, these four LFSRs can be categorized into three classes; clock-

controlling, S-box selection and key stream generation. R1 has a length of 61 bits and 

controls the clocking of the other three registers. In each clock cycle, it computes the 

functions fC2, fC3 and fC4, each of those determines how many times R2, R3 and R4 are 

clocked respectively as given below: 

 

                           1)38(1)8(12))38(1),8(1(2 ++= RRRRfC                                        (4.8) 
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                       1)56(1)22(12))56(1),22(1(3 ++= RRRRfC                                      (4.9) 

 

                        1)42(1)16(12))42(1),16(1(4 ++= RRRRfC                                   (4.10) 

 

Let Ci(t) represent the number of clocking of Ri according to fCi(t) at time t for  

}4,3,2{∈i . As it can be seen from (4.8), (4.9) and (4.10), }4,3,2,1{)( ∈tCi whose 

distribution of elements is close to uniform. So, each of R2, R3 and R4 is clocked at least 

once and at most four times in each clock cycle. Following the clocking of the R2, R3 and  

 

 

Figure 4.3. The CSDS stream cipher; R1 gives input to the Clock Controlling Unit and R2, 

R3 and R4 generate the key stream bits within the chosen S-boxes. 

 

R4, R1 is clocked once. In key stream generation CSDS uses 4x16 S-boxes of s5DES that 

are given in Table A.1 of Appendix A [33]. In each clock cycle, R4 decides which S-boxes 

are used by R2 and R3, according to the values of the functions fS2 and fS3  : 

 

                                  1)24(4R)12(4R2)6(4R42 +++=Sf                                    (4.11) 

 

                                  1)29(4R)17(4R2)10(4R43 +++=Sf                                  (4.12) 
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(4.11) and (4.12) determines the orders of S-boxes to use among eight S-boxes for 

R2 and R3 respectively. For example; if fS2  is 4 and fS3  is 7, then R2 uses S-box S4 and R3 

uses S-box S7 in producing the key stream. R4 has a length of 31 bits and it is irregularly 

clocked depending on the bits of R1. 

 

The remaining two LFSRs R2 and R3 whose lengths are 89 and 83 bits respectively 

generate the key stream according to the S-boxes decided by R4 as follows: Let Sj 

represent the selected S-box for R2 and Sk represent the S-box for R3 where j and k denote 

the order of selected S-box for R2 and R3, so 81 ≤≤ j   and 81 ≤≤ k  . Sj uses six bits of 

R2 and Sk uses six bits of R3 as input bits with respect to the row-column method shown in 

Table 4.1. In this table, variables Sj_row  and Sk_row save the computed results for row 

decision of Sj  and Sk respectively. In a similar fashion, Sj_column and Sk_column save the 

computed values for column decision of Sj and Sk. Each of Sj_output and Sk_output keeps 

the appropriate four bits output. The output of the S-boxes is XOR’ed and constructs four 

bits of string. Another four bits of sequence is produced by combining the last two bits of 

R2 and R3. The first two bits of the sequence come from last two bits of R3 and the 

remained two bits of the sequence come from last two bits of R2. Then by XOR’ing the 

two 4-bit sequences that are produced by the S-boxes and combination of last bits of the 

two LFSRs, four bits of key stream is generated. In the following part, whole algorithm is 

summarized: 

 

• The functions fC2, fC3 and fC4  are computed according to the specified bits of R1.  

• R2, R3 and R4 are clocked with respect to the results of fC2, fC3 and fC4.  

• R1 is clocked once. 

• fS2  and fS3  are evaluated according to the specified bits of R4; Sj and Sk are 

determined.  

• Each of Sj and Sk contributes four bits output by using appropriate bits of R2 and 

R3; by XOR’ing them four bits of  sequence is constructed. 

• Another four-bit sequence is generated by combining the last two bits of R2 and R3  

• By XOR’ing these two 4-bit sequences, 4 bits of key stream is generated. 
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Table 4.1. S-Box row-column method 

Sj_row = 2R2(26)+ R2(70) 

Sk_row = 2R3(12)+ R3(32) 

Sj_column = 8R2(6)+ 4R2(22)+2R2(46)+R2(64) 

Sk_column = 8R3(21)+ 4R3(40)+2R3(3)+R3(61) 

Sj_output = Sj(Sj_row)(Sj_column) 

Sk_output = Sk(Sk_row)(Sk_column) 

 

The maximum allowed length of the running key stream sequence is set to 258 bits. 

Then the stream cipher must be rekeyed. In practice, generating a key stream sequence of 

length greater than 258 bits is quite unlikely to happen. In the initialization process, CSDS 

uses a 128 bit secret key K with a 136 bit initialization vector (IV). The contents of the S-

boxes are mixed by adding an integer to all of the elements of S-boxes in mod 16. The 

value of this integer depends on the secret key K and the initialization vector (IV). 

 

The primitive characteristics polynomials of the LFSRs used in the proposed CSDS 

system are as follows: 

 

         LFSR R1: g1(x) = x61 +x53 +x45 +x38 +x30 +x23 +x15 +x7 + 1                        (4.13) 

 

                     LFSR R2:  g2(x) = x89 +x83 +x80 +x55 +x53 +x42 +x39 +x + 1                        (4.14) 

 

                      LFSR R3: g3 (x) = x83 +x72 +x61 +x51 +x41 +x30 +x20 +x10 + 1                    (4.15) 

 

                      LFSR R4: g4 (x) = x31 +x27 +x23 +x19 +x15 +x11 +x7 +x3 + 1                       (4.16) 
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5. SECURITY OF THE CIPHERS  

 

 

A suitable stream cipher should be resistant against different known-plaintext 

attacks. In a known-plaintext attack, the cryptanalyst attempts to reproduce the whole key 

stream or deduce the secret key somehow, from given samples of plaintext and the 

corresponding ciphertext. Also for cryptographic applications, generated key streams must 

provide some basic security requirements: large period, high linear complexity and good 

statistics regarding the distribution of ones and zeroes in the key stream sequence. 

Therefore in Section 5.1 and Section 5.2, we analyze the key stream properties of ANER-H 

and CSDS respectively, considering the security requirements. Moreover, we attempt to 

justify the security of the ANER-H and CSDS by investigating some known-plaintext 

attacks on the stream ciphers under the assumption that the cryptanalyst knows the whole 

internal structure of stream cipher in Section 5.3 and Section 5.4 respectively.  

 

5.1.  Key Stream Properties of ANER-H 

 

5.1.1. Period and Linear Complexity  

 

All LFSRs of the ANER-H stream cipher have primitive feedback polynomials, so 

periods of R1, R2, R3 and R4 which are represented as P1, P2, P3 and P4 are 259-1, 261-1,   

2127-1 and 289-1 respectively. Due to mutual clock control, it does not seem possible to 

establish mathematical results about the period and linear complexity of the cipher. 

However, we can give upper bounds for the period and linear complexity of the algorithm 

with ignoring the mutual clock controlling effect. One can see that P2, P3 and P4 are 

Mersenne Prime. Let Si represent sum of clockings of i’th register in P1 duration for            

i ∈{2,3,4}. Since Si can not be a multiple of Pi and degree of the feedback polynomials of 

R2, R3 and R4 are prime, we can make an analogy with alternating step (r,s) generator and 

can use the equations from (3.4) to (3.8). Then, the period of the generated key stream 

sequence z can be written as 
)gcd()gcd()gcd( 443322

4321

PSPSPS

PPPP
Pz = . Notice that, P2, P3 and 

P4 are prime and Si can not be a multiple of Pi, so gcd(Si,Pi) =1. Therefore Pz becomes: 
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                                                                 4321 PPPPPz =                                                   (5.1) 

 

If we set the values of P1, P2, P3 and P4 in (5.1), period of the sequence z becomes 

about 2336. It can be seen that, the period of the sequence is enough high by considering the 

security requirements. 

 

According [30]; since gcd(Pi, Si) =1 for i∈{2,3,4}, the period of the clock control 

register becomes a multiplier in the upper bound on the linear complexity of the non-

uniformly decimated sequence. Also in [28], it is given that if the decimating sequence is 

randomly chosen, then the probability that maximum linear complexity is obtained can be 

made arbitrarily close to one for appropriately chosen generator register lengths and the 

period of the clock control register. For ANER-H, the clock control register is R1 whose 

period is 259-1. Thus; if LC denotes the linear complexity of the key stream sequence 

generated by ANER-H, LC is very likely to lower bounded by 259-1. It is obvious that 

linear complexity of the sequence is high enough considering the fact that about 260 known 

plaintext bits must be intercepted in order to perform the Berlekamp-Massey attack [11]. 

Since the registers will be reinitialized with a different initial vector well before this 

amount of data is generated, ANER-H is considered to be secure from such an attack. 

 

5.1.2. Statistical Properties 

 

Key stream sequence of the ANER-H stream cipher is investigated by using the 

statistical tests of FIPS 140-2 and NIST Statistical Test Suite which are explained in 

Section 3.3, to determine its randomness properties [24, 25]. The FIPS tests are based on 

performing a pass/fail statistical test on 10000 sequences of 20000 bits each produced by 

our proposed stream cipher. Also, autocorrelation test (Golomb’s 3rd postulate) is applied 

to the stream sequences of ANER-H and result of one sequence is depicted in Figure 5.1. 

As can be seen, there is no significant peak compared to the value at the origin. For the 

NIST tests, 1000 keys for ANER-H cipher are randomly chosen to produce key streams of 

length 106 bits. ANER-H passes FIPS 140-2 in proportion of 99.52%. For the ANER-H, 

the generated sequences pass the NIST Tests with a significance level of α=0.01. The 

spectral test result of a sequence is shown in Figure 5.2; as can be seen no more than 5% of 
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the peaks surpass the 95% cutoff value, so the sequence passes the test. The statistical test 

results of ANER-H are summarized in Table 5.1.  

 

 

Figure 5.1. Autocorrelation test result of ANER key stream sequence 

 

                         

Figure 5.2. Spectral test result of ANER; dashed line represents cutoff value as 

122.47 

 

Table 5.1. The statistical test results of ANER-H 

The Test Suite Success Rate 

FIPS 140-2 99.52 % 

NIST 99 % 
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5.1.3. Throughput Rate 

 

Each of R2, R3 and R4 does not agree with the majority result with a probability of 

1/4 for a single key stream bit generation. Therefore, each of R2, R3 and R4 is clocked 

once with a probability of 1/4. In other words, each of R2, R3 and R4 agrees with the 

majority with a probability of 3/4. In this case, registers that agree with the majority are 

clocked Ci(t) times where Ci(t)∈{2,3,4,5}. Since the distribution of the integers Ci(t) is 

close to uniform, P(Ci(t) = j) ≈1/4 for j ∈{2,3,4,5}. So each of R2, R3 and R4 is clocked 

with one of Ci(t) values with a probability of 3/4x1/4 =3/16. If di(t) represents the number 

of clockings of i’th generator register at time t, di(t) ∈{1,2,3,4,5}, then expected value of 

di(t) becomes:  
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So, on average each of generator LFSRs is clocked about 2.87 times per key stream 

bit produced. The throughput rate is approximately 348.0875.2/1 ≈ of the rate at which 

each generator LFSR is clocked. Reduced throughput relative to the LFSRs speed can be a 

problem when fast data encryption is used and high throughput is required from the cipher. 

For this problem, using multiple copies of the feedback function of each LFSR for each 

possible value of di(t) can be a solution which is described in [34]. By means of this 

method, 1 output bit per clock pulse can be achieved; however it results in a moderate cost 

in hardware. Notice that if the clock is fast enough considering the required application, the 

offered method may not necessary at all. 

 

5.2.  Key Stream Properties of CSDS 

 

5.2.1 Period and Linear Complexity  

 

All LFSRs of the CSDS have primitive feedback polynomials as given in (4.13), 

(4.14), (4.15), (4.16) and the lengths of those registers denoted as L1, L2, L3 and L4 (61, 

89, 83 and 31 bits) are prime numbers. If P1, P2, P3 and P4 represent the periods of the 

registers R1, R2, R3 and R4, then they take the values 261-1, 289-1, 283-1 and 231-1 
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respectively. Notice that, P1, P2 and P4 are Mersenne prime and P3 is relatively prime to 

them. Let S represent sum of clocking of each register R2, R3 and R4 in P1 duration. R1 

has primitive feedback polynomial, so any given stage of R1 takes the value 1 for 261/2 

times and the value 0 for 261/2 -1 times over period P1. Therefore considering (4.8), (4.9) 

and (4.10); each of R2, R3 and R4 is clocked once for 261/4-1 cases, clocked twice for 261/4 

cases, three times for 261/4 cases and four times for 261/4 cases in P1 duration. Thus, the 

value of S becomes: 125)432(2)12( 605959 −=+++−=S . According to (3.4) and (3.8); 

since S is not a multiple of P2 , P3 and P4 and the degrees of the primitive feedback 

polynomials of R2, R3 and R4 are prime, the period of the key stream generator  Pg  can be 

written as:  

 

                                     
),gcd(),gcd(),gcd( 432

4321

PSPSPS

PPPP
Pg =                                 (5.3)  

 

After Pg duration, the key stream generator repeats itself. One can see that 

1),gcd( 2 =PS  and 1),gcd( 4 =PS , because P2  and P4 are  Mersenne prime and S is not a 

multiple of P2 or P4. Notice that P3 is not a prime number, however we know that 

)12,12gcd()12,125gcd(),gcd( 83608360
3 −−=−−=PS . This term can be written as 

112)12,12gcd( )83,60(gcd8360 =−=−− . So period of the key stream generator reduces to: 

 

                                                                       4321 PPPPPg =                                             (5.4) 

 

If we set the values of P1, P2, P3 and P4 in (5.4), the period of the generator becomes 

)12)(12)(12)(12( 31838961 −−−− , which is about 2264. In fact, we know that in each clock 

cycle 4 bits are produced; so period of the key stream sequence is a multiple of Pg. 

Therefore, the period of the sequence is enough high by considering the security 

requirements.  

 

According [30]; since 1),gcd( =iPS  for }4,3,2{∈i , the period of the clock control 

register become a multiplier in the upper bound on the linear complexity of the 

nonuniformly decimated sequence. Also in [28], it is mentioned that if the decimating 
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sequence is randomly chosen, then the probability that maximum linear complexity is 

obtained can be made arbitrarily close to one for appropriately chosen generator register 

lengths and the period of the clock control register. For CSDS, the clock control register is 

R1 whose period is 261-1. Thus; if LC represents the linear complexity of the key stream 

sequence generated by CSDS, LC is very likely to lower bounded by (261 -1) A, where A 

denotes the effect of  register lengths L2, L3, L4 and the substitution boxes in the linear 

complexity LC. So if one considers Berlekamp-Massey attack [11] for CSDS, he needs to 

intercept at least 262 known plaintext bits to realize the attack. Since registers of CSDS will 

be reinitialized with a different initial vector, before this amount of key stream is 

generated, CSDS is secure enough for such an attack. 

 

5.2.2 Statistical Properties 

 

In this subsection, key stream sequence of the CSDS stream cipher is investigated by 

using the statistical tests of FIPS 140-2, NIST Statistical Test Suite and autocorrelation test 

to determine its randomness properties. For FIPS 140-2, the test is based on performing a 

pass/fail statistical test on 10000 sequences of 20000 bits each produced by CSDS stream 

cipher (software implementation in C++ and MATLAB). CSDS passes FIPS 140-2 in 

proportion of 99.62 %. For the NIST tests, 1000 keys for CSDS cipher are randomly 

chosen to produce key streams of length 106 bits. Also the generated sequences pass the 

NIST Tests with a significance level of α=0.01. The statistical test results of ANER-H are 

summarized in Table 5.2. Such a result provides evidence that the tested sequences of 

CSDS have certain characteristics of randomness. In addition, autocorrelation test and 

spectral test results of one sequence of CSDS are depicted in Figure 5.3 and Figure 5.4 

respectively.  

 

Table 5.2. The statistical test results of CSDS 

The Test Suite Success Rate 

FIPS 140-2 99.62 % 

NIST 99 % 
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As can be seen, the autocorrelation is normalized to one at the origin and there is no 

significant peak compared to the value at the origin and for the spectral test no more than 

5% of the peaks surpass the 95% cutoff value. Thus, these tests support the hypothesis that 

the CSDS stream cipher produces random-looking key stream sequences.  

 

 

 

Figure 5.3. Autocorrelation test result of CSDS key stream sequence 

 

 

 

Figure 5.4. Spectral test result of CSDS; dashed line represents cutoff value as 

122.47 
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5.2.3 Throughput Rate 

 

Let di(t) represent the number of clocking of i’th generator register of CSDS at time 

t,  }4,3,2,1{)( ∈td i  for  }3,2{∈i , then expected value of di(t) becomes:  
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So on average each of generator LFSRs is clocked about 2.5 times and produces 4 

bits in each cycle. The output rate of the stream cipher becomes 4/2.5=1.6 of the rate at 

which each generator LFSR is clocked. Therefore CSDS can be considered as a fast key 

stream generator. Alternatively, using multiple copies of the feedback function of each 

LFSR for each possible value of di(t) can increase the output rate as described in [34].  

 

5.3.  Security of ANER-H 

 

In cipher design, the most crucial point that a designer must consider is its resistance 

against different attacks. Therefore, in this sub-section we consider a number of attacks 

with respect to ANER-H stream cipher. These attacks are known-plaintext attacks 

conducted under the assumption that the cryptanalyst knows the whole internal structure of 

the generator. 

 

5.3.1 Exhaustive Key Search 

 

ANER-H has a key length of 128 bit, so there are 2128 possible keys which is 

approximately 3 1038 keys. Therefore, such an attack appears impractical. 

 

5.3.2 Time-Memory Trade-off Attacks 

 

Golic [17] and Babbage [35] independently described a time-memory trade-off 

attack to stream cipher. This attack has complexity T = D = N/M and P = M= N/D, where 

T is the time for the actual attack stage, D is the amount of observed key stream, N is total 

number of solution space for the LFSRs’ internal state, M is the amount of required 
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memory, and P is the time for the preprocessing stage of the attack. Also a new type of 

time-memory trade-off attack which has the trade-off formula M
2
TD = N

2
/4, has been 

described by I. Erguler and E. Anarim [36]. In [37], A. Biryukov and A. Shamir presented 

an improved time-memory trade-off attack as biased birthday attack. They presented 

techniques for saving memory, offering a more flexible tradeoff M
2
TD

2
 = N

2 for 

any NTD ≤≤2 . These kinds of attacks can be practical if the state space of the stream 

cipher is small, for example A5/1 GSM stream cipher [8]. We note that these kinds of 

attacks do not seem to be applicable to ANER-H, because the solution space N is enough 

large (2336). Let us consider Biryukov’s trade-off: if we choose M=240 (about terabytes), 

equation M
2
TD

2
 = N

2 becomes TD
2
 = 2592. So time-memory trade-off attacks not seem 

practical for the ANER-H stream cipher, although an attacker may have large amount of 

known key stream sequences with NTD ≤≤2 . 

 

5.3.3 Divide and Conquer Attacks  

 

Divide and conquer attacks are based on “guess some bits and determine the others” 

principle. The procedure of this type of attack can change according to internal structures 

of stream ciphers, variations of this technique are presented in different studies such as: 

[10], [17] and [18]. For clock-controlled registers, attacker usually guesses the initial state 

of the clock control register, and then deduces the unknown bits of generator register. If 

attacker applies a similar method on ANER-H, firstly he has to guess all bits of R1 to 

determine clocking tap bit location and Ci(t) value of each generator register. Since length 

of R1 is 59 bits, this operation requires 259 workload. Although required complexity is 

enough high for guessing part, this step does not provide recovering the states of R2, R3 

and R4. The reason is obvious; clocking of the generator registers is not only controlled by 

R1 but also by themselves with the majority rule. Attacker must also make guesses from 

the generator registers and when total length of three registers, 277-bit, is considered, the 

difficulty of the attack can be realized. Moreover, since each register is clocked about 2.87 

times for each key stream bit, some guessed bits from generator registers may not be useful 

as expected. So, we can say that divide and conquer attacks do not seem feasible for the 

ANER-H stream cipher, due to long internal sizes of the registers, and characteristic 

clocking mechanism. 
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5.3.4 Correlation Attacks  

 

The most important general attacks on LFSR-based stream ciphers are correlation 

attacks. Basically, the principle of the attack is based on detecting in some way a 

correlation between the known output sequence and the output of one individual LFSR.  

 

Key stream generators that are based on regularly clocked LFSRs are susceptible to 

correlation attacks, including fast correlation attacks, firstly described in [14]. On the other 

hand, key stream generators consisting of irregularly clocked LFSRs have resistance to this 

type of correlation attack. There are different types of correlation attacks that can be 

effective on irregular clocking LFSRs based key stream generators such as unconstrained 

embedding attack, constrained embedding attack, edit distance attack and edit probability 

attack. Before proceeding to correlation attack resistance of ANER-H, let’s define some 

parameters that will be used in the remainder of this section. Expectation number of 

clockings of i’th generator register at time t, E{di(t)}, is given in (5.2). Then deletion rate, 

Pd becomes: 
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Also let dmax =max(di(t)) =5. Considering the unconstrained embedding attack 

described in [38], the cryptanalyst tries to embed the known key stream Y of length n into a 

string of length m of X which is the sequence generated by the initial state of the generator 

register for m ≥n. The attack can be successful, if the deletion rate is smaller than 1/2. Since 

deletion rate, Pd, of ANER-H is about 0.652 which is greater than 1/2, such an attack can 

not be successful on the ANER-H stream cipher. 

 

In case of constrained embedding attack, the attacker considers information of dmax as 

opposed the idea behind the unconstrained embedding attack. In [38], it is shown that, the 

constrained embedding attack is successful if the length of the observed output sequence is 

greater than a value linear in the generator length and super exponential in dmax. The attack 

can not be successful, if the minimum required key stream length is smaller than a value 

linear in the in the length of the generator register and exponential in dmax. Therefore by 
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making dmax sufficiently large, practical security can be improved significantly. For 

ANER-H stream cipher dmax is 5 which requires prohibitively large amount of known key 

stream. So we can say that constrained embedding attack on ANER-H stream cipher does 

not seem practical, although it is theoretically possible.  

 

Edit distance and edit probability correlation attacks proposed in [39] and [40] can be 

considered for ANER-H stream ciphers. However, these attacks are correlation attacks on 

the initial state of the generator registers implying an exhaustive search over all possible 

initial states. So, their computational complexity remains exponential and applications of 

these attacks on the ANER-H stream cipher are not practical either. 

 

5.4.  Security of CSDS 

 

A suitable stream cipher should be resistant against different known-plaintext 

attacks. In a known-plaintext attack, the cryptanalyst attempts to reproduce the whole key 

stream or deduce the secret key somehow, from given samples of plaintext and the 

corresponding ciphertext. In this subsection we attempt to justify the security of the CSDS 

by investigating some known-plaintext attacks on the stream cipher under the assumption 

that the cryptanalyst knows the whole internal structure of stream cipher. There is no need 

to state that the cipher is secure against an exhaustive search attack, since its key length, 

128 bit, is same those of ANER-H whose resistance is given before.  

 

5.4.1. Time-Memory Trade-off Attacks 

 

Generally in time-memory trade-off attacks, cryptanalyst generates a number of 

output bits from certain states of the cipher and then keeps these cipher states and their 

corresponding outputs in pairs in a sorted list. Then he scans a received output sequence to 

find one of the stored output sequences in the received output sequence. If this occurs, the 

corresponding cipher state is obtained and from this state the key can be successfully 

recovered. Time memory trade off attacks can be practical if the state space of the stream 

cipher is too small. However state space of the CSDS is 2264 which is simply too large 

compared to the key size (2128). The improved time memory trade-off attack presented in 

[37] can be considered. According to this study, state space N can be distributed between 
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memory M, computational time T and known amount of data D with respect to the 

equation M2
TD

2
 = N

2 for NTD ≤≤2 . This trade-off equation for CSDS may become as 

follows; Let available memory to the cryptanalyst be 243 (about terabytes), also state space 

of CSDS is 2264, N2 is 2528. The trade-off equation becomes TD
2
 =2442.  So considering the 

required time and known data, the time-memory trade-off attacks do not seem to be 

applicable to CSDS.  

 

5.4.2. Divide and Conquer Attacks 

 

The main idea behind divide-and-conquer attacks is to guess the value of some 

unknown parts of the stream cipher and from the guessed parts deduce the value of other 

unknown parts. If the stream cipher has a clock-controlled mechanism, cryptanalyst 

usually guesses the state of the register which controls clocking of the others. For the 

CSDS system, the register that concerns with the clocking mechanism is R1 has a length of 

61 bits. So if an attacker guesses all bits of the R1 to determine clock controlling functions   

fC2, fC3 and fC4, this process requires 261 workload. Of course this process is not enough to 

determine the initial state of the stream generator. Attacker also has to know the content of 

the R4, to obtain the information about which S-boxes are used in the generator registers 

R2 and R3. This part results in extra 231 workload, due to length of R4. Morover; when we 

consider the total length of generator registers as 172 bits, the irregular clockings of the 

three registers and effect of the S-boxes, divide-and-conquer attacks seem impractical for 

the proposed CSDS system.  

 

5.4.3. Correlation Attacks 

 

The expected value of di(t) which is  the number of clocking of i’th generator register 

of CSDS at time t has been given in (5.5). Then one obtains the deletion rate Pd as: 
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 Since the unconstraint embedding attack can be successful if and only if the deletion 

rate Pd given below is smaller than 1/2 as given in Section 5.3.4, this attack is not 

successful on CSDS stream cipher. 

 

For the constrained embedding attack, the attacker considers maximum number di of 

consecutive deletion (dmax) and as it is mentioned before; the constrained embedding attack 

can be successful if the length of the observed output sequence is greater than a value 

linear in the length of the generator register and super exponential in dmax. The attack can 

not be successful, if the minimum required key stream length is smaller than a value linear 

in the in the length of the generator register and exponential in dmax. Thus, by making dmax 

sufficiently large, practical security can be improved significantly. For CSDS stream 

cipher dmax is 4 which requires very large amount of known key stream. Therefore we can 

say that the constrained embedding attack on CSDS stream cipher does not seem practical, 

although it is theoretically possible. 

 

Edit distance and edit probability type correlation attacks are also impractical attacks 

for the CSDS stream cipher. Since these attacks are correlation attacks on the initial state 

of the generator registers implying an exhaustive search over all possible initial states. 

Consequently, the computational complexities of the attacks remain exponential. When we 

consider this fact and the existence of two separate registers as R2 and R3 for key stream 

generation, it can be seen that applications of these attacks on the CSDS stream cipher are 

not practical. 
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6. CONCLUSION 

 

 

In this thesis, the theoretical background and two practical implementations of clock-

controlled LFSR based stream ciphers were described. The main idea behind these ciphers 

named as ANER-H and CSDS is the use of characteristic irregular clocking mechanisms. 

The ciphers demonstrate good key stream properties, such as large period, high linear 

complexity, high throughput rate and good properties of randomness. The mathematical 

expressions for the linear complexity, period and throughput rate are given and it is shown 

that these values satisfy the required conditions. To investigate the randomness of the key 

stream sequences generated by the proposed ciphers, we have used two test suites which 

are FIPS 140-2 and NIST Statistical Test Suite. The test results show that; CSDS passes 

the FIPS 140-2 in proportion of 99.62 % and passes the NIST tests with a significance 

level of α=0.01 which means about 1 % of the sequences are expected to fail. On the other 

hand, ANER-H passes the FIPS 140-2 in proportion of 99.52 % and passes the NIST tests 

with a significance level of α=0.01.  

 

  Furthermore, the ciphers offer high speed encryption, good scalability and 

flexibility, so it can be suitable for various security applications. Also, security of the 

stream ciphers have been analyzed with respect to currently some well known attacks such 

as exhaustive key search, time-memory tradeoff attacks, divide-conquer type attacks and 

correlation attacks. It has been shown that both of CSDS and ANER are secure enough 

with respect to these known attacks. Finally, we can say that within these design 

characteristics, we consider our stream ciphers ANER-H and CSDS useful for 

cryptography. 
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APPENDIX A:  S-BOXES OF CSDS 

 

 

Table A.1. 8 DES-like S-boxes of s5 DES used in CSDS   
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