

THE DESIGN PRINCIPLES OF LINEAR FEEDBACK SHIFT REGISTER BASED

CLOCK CONTROLLED STREAM CIPHERS

by

İmran Ergüler

B.S., Electrical and Electronics Engineering, Boğaziçi University, 2003

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2005

 ii

THE DESIGN PRINCIPLES OF LINEAR FEEDBACK SHIFT REGISTER BASED

CLOCK CONTROLLED STREAM CIPHERS

APPROVED BY:

Prof. Dr. Emin Anarım …………………

(Thesis Supervisor)

Prof. Dr. Kemal Cılız …………………

Prof. Dr. Ufuk Çağlayan …………………

DATE OF APPROVAL: 02.08.2005

 iii

ACKNOWLEDGEMENTS

This work has been conducted at BUICS Laboratory of Electrical-Electronic

Engineering Department of Bogazici University. Many people have contributed and helped

me during my graduate study. Firstly, I would like to thank to my supervisor Prof. Emin

Anarım for his inspiring ideas, technical advice, guidance and help during my thesis. I am

grateful for the freedom he gave me in choosing my research area in the field of

cryptography. BUICS Lab. deserves a special mention for its comfortable working

environment.

 Also, I wish to thank all the faculty of the Department of Electronics &

Communications Engineering of Dogus University for the friendly atmosphere they

provided to work in and their morale support in the course of this thesis. I would also like

to thank my colleagues at the University that are excellent companions at social events,

and just good friends of mine. Special thanks to Mete Akgün for his effort and help in my

study. Also, many thanks to committee for their kindness and participation in my thesis.

The last but not least I would like to thank my parents, my sister and my brother,

Bahadır Ergüler, for their enthusiastic support, endless love, patience and encouraging me

in my choices in life.

 iv

ABSTRACT

THE DESIGN PRINCIPLES OF LINEAR FEEDBACK SHIFT

REGISTER BASED CLOCK CONTROLLED STREAM CIPHERS

Stream ciphers are one of the most important classes of encryption algorithms used

to ensure security in digital communication. The design of many stream ciphers is based on

use of Linear Feedback Shift Registers (LFSRs), due to their simplicity, speed of

implementation in hardware and providing sequences with good statistical properties. A

stream cipher can not be considered suitable for cryptographic applications unless its

output sequences have large periods, large linear complexities and possess certain

randomness properties. Moreover a stream cipher must provide high resistance against well

known cryptanalytic attacks such as time-memory trade-off attacks, divide-conquer attacks

and correlation attacks. The use of clock-controlled shift registers in key stream generators

can be a good alternative for achieving these properties.

 In this thesis, the design principles of a cryptographically secure LFSR based clock

controlled stream ciphers are described and two new stream cipher algorithms ANER-H

and CSDS are presented. In addition, key stream properties of these algorithms and their

resistance with respect to some well known cryptographic attacks are investigated. From

the mathematical expressions and simulation results, it is shown that the two algorithms

produce key stream sequences with satisfying basic security requirements and provide high

resistance against currently known styles of attacks. Within their security powers, the

CSDS is also designed to be very fast, especially for software usage. On the other hand, the

stream cipher ANER-H can be applicable for both in hardware and software, due to its

conceptually simple design.

 v

ÖZET

DOĞRUSAL GERİ BESLEMELİ KAYAN SAKLAÇ TABANLI SAAT

KONTROLLÜ DİZİ TİP ŞİFRELERİN TASARIM İLKELERİ

Dizi tip şifreleme algoritmaları güvenli sayısal haberleşme uygulamalarında

kullanılan en yaygın şifreleme metotlarındandır. Bu tip şifreleme algoritmaların çoğunluğu

basitliğinden, donanımdaki hızından ve iyi istatistiksel özelliklere sahip olduğundan

Doğrusal Geri Beslemeli Kayan Saklaçları (LFSRs) tasarımlarında kullanmaktadır.

Yüksek periyotlu, yüksek doğrusal karmaşıklığa ve belirli rasgelelik özelliklerine sahip

olmayan çıktı dizileri üreten dizi tip şifreleme algoritmaları güvenlik uygulamalarına

uygun değildir. Bununla birlikte, bir dizi tip şifreleme algoritması bilinen saldırılara karşı

örneğin; zaman-bellek ödünleşimi saldırıları, böl-fethet saldırıları ve ilinti saldırıları,

yüksek direnç göstermelidir. Saat kontrollü kayan saklaçları bu tip şifreleme

algoritmalarında kullanmak istenen özellikleri gerçekleştirmesi açısından iyi bir

alternatiftir.

Bu tezde, kriptografik olarak güvenli LFSR tabanlı saat kontrollü dizi tip şifrelerin

tasarım ilkeleri anlatılmakta ve isimleri ANER-H ve CSDS olan iki tane yeni dizi tip

şifreleme algoritması önerilmektedir. Ayrıca bu algoritmaların ürettikleri çıktı dizilerinin

özellikleri ve algoritmaların bilinen bazı saldırılara karşı dirençleri çalışmada

verilmektedir. Matematiksel açılımlar ve simülasyon sonuçları ışığında iki algoritmanın da

istenen minimum çıktı özellikleri gereksinimleri yerine getirdiği ve bilinen bazı saldırılara

karşı yüksek dirence sahip olduğu gösterilmektedir. Yüksek güvenlik sağlamalarının yanı

sıra, CSDS özellikle yazılımda çok hızlı olacak şekilde tasarlanmıştır. Diğer yandan

ANER-H basit eleman tasarımlarından dolayı hem donanım hem de yazılım ortamlarındaki

uygulamalara imkan vermektedir.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

ABSTRACT.. iv

ÖZET ..v

LIST OF FIGURES .. ix

LIST OF TABLES.. xi

LIST OF SYMBOLS/ABBREVIATIONS.. xii

1. INTRODUCTION ...1

 1.1. A Review of the Cryptography from a Stream Ciphers Point of View2

 1.2. Symmetric Key Cryptography...3

 1.3. General Structure of Stream Ciphers ...5

 1.4. Different Types of Cryptanalytic Attacks..6

 1.5. Thesis Outline ..8

2. STREAM CIPHERS..9

 2.1. Linear Feedback Shift Registers ..12

 2.2. Some Stream Cipher Designs ..15

 2.2.1. Nonlinear Combination Generators ..16

 2.2.2. Nonlinear Filter Generators ..18

 2.3. Clock-controlled Stream Ciphers...19

 2.3.1. Alternating Step Generator ...19

 2.3.2. Shrinking Generator..20

 2.3.3. A5/1 ..22

 2.3.4. ORYX ...23

3. REQUIRED KEY STREAM PROPERTIES OF A STREAM CIPHER........................26

 3.1. Period of Generated Key Stream Sequences ...26

 3.1.1. Period of a Basic Clock-controlled Generator ..27

3.1.1.1. Example 1 ...29

3.1.1.2. Example 2 ...29

 3.1.2. Period of Alternating Step(r,s) Generator...30

 3.1.3. Period of LILI Key Stream Generator ..31

 3.2. Linear Complexity of Generated Key Stream Sequences33

 vii

 3.2.1. Linear Complexity of the Stop and Go Generator ..33

 3.2.2. Linear Complexity of the Alternating Step(r,s) Generator34

 3.2.3. Linear Complexity of the LILI Stream Generator ..34

 3.3. Statistical Properties of Generated Key Stream Sequences.....................................35

 3.3.1. FIPS 140-2 ..36

3.3.1.1. Monobit Test...37

3.3.1.2. Poker Test ...37

3.3.1.3. Runs Test ..37

3.3.1.4. Long Run Test ..38

 3.3.2. NIST Statistical Test Suite..38

3.3.2.1. The Frequency (Monobit) Test ...38

3.3.2.2. Frequency Test within a Block ...39

3.3.2.3. Runs Test ..39

3.3.2.4. Test for the Longest-Run-of-Ones in a Block39

3.3.2.5. The Binary Matrix Rank Test ...39

3.3.2.6. The Discrete Fourier Transform (Spectral) Test.............................39

3.3.2.7. The Non-overlapping Template Matching Test..............................40

3.3.2.8. The Overlapping Template Matching Test40

3.3.2.9. Maurer's "Universal Statistical" Test ..40

3.3.2.10. The Lempel-Ziv Compression Test ..40

3.3.2.11. The Linear Complexity Test ...40

3.3.2.12. The Serial Test ..41

3.3.2.13. The Approximate Entropy Test ..41

3.3.2.14. The Cumulative Sums Test...41

3.3.2.15. The Random Excursions Test ...41

3.3.2.16. The Random Excursions Variant Test ..41

4. DESCRIPTION OF PROPOSED STREAM CIPHERS ...42

 4.1. The Stream Cipher ANER-H...42

 4.2. The Stream Cipher CSDS..45

5. SECURITY OF THE CIPHERS..49

 5.1. Key Stream Properties of ANER-H...49

 5.1.1. Period and Linear Complexity..49

 viii

 5.1.2. Statistical Properties ...50

 5.1.3. Throughput Rate ...52

 5.2. Key Stream Properties of CSDS..52

 5.2.1. Period and Linear Complexity..52

 5.2.2. Statistical Properties ...54

 5.2.3. Throughput Rate ...56

 5.3. Security of ANER-H..56

 5.3.1. Exhaustive Key Search ...56

 5.3.2. Time-Memory Trade-off Attacks ...56

 5.3.3. Divide and Conquer Attacks...57

 5.3.4. Correlation Attacks ...58

 5.4. Security of CSDS...59

 5.4.1. Time-Memory Trade-off Attacks ...59

 5.4.2. Divide and Conquer Attacks...60

 5.4.3. Correlation Attacks ...60

6. CONCLUSION..62

APPENDIX A: S-BOXES OF CSDS..63

REFERENCES ...65

 ix

LIST OF FIGURES

Figure 1.1. General structure of a simple block cipher ...5

Figure 1.2. General structure of a simple stream cipher ...5

Figure 2.1. A general model for synchronous stream cipher encryption with XOR

operation ...11

Figure 2.2. A general model for synchronous stream cipher decryption with XOR

operation ...11

Figure 2.3. A general model for self-synchronizing stream cipher encryption, with

XOR. ...11

Figure 2.4. A general model for self-synchronizing stream cipher decryption, with

XOR ...12

Figure 2.5. General structure of feedback shift register of length n................................13

Figure 2.6. General structure of linear feedback shift register of length n14

Figure 2.7. A nonlinear combination generator, where n LFSR outputs are combined

with a nonlinear Boolean function f to produce key stream sequence for

destroying linearity ...17

Figure 2.8. The Geffe generator ..18

Figure 2.9. A nonlinear filter generator, where a single n bit-LFSR’s bits are combined

with a nonlinear Boolean function f to produce key stream sequence..........19

Figure 2.10. The alternating step generator...20

 x

Figure 2.11. The shrinking generator ..21

Figure 2.12. The A5/1 stream cipher...22

Figure 2.13. The ORYX stream cipher ...24

Figure 3.1. The basic clock-controlled generator..27

Figure 3.2. Decimated sequence of GR output b ..28

Figure 3.3. The alternating step(r,s) generator..31

Figure 3.4. The LILI key stream generator ...32

Figure 4.1. The ANER-H stream cipher; R1, R2, R3 and R4 give input to the Clock

Controlling Mechanism and R2, R3 and R4 generate the key stream bits ...43

Figure 4.2. Clocking tap bit locations of the generator registers R2, R3 and R4............45

Figure 4.3. The CSDS stream cipher; R1 gives input to the Clock Controlling Unit and

R2, R3 and R4 generate the key stream bits within the chosen S-boxes......46

Figure 5.1. Autocorrelation test result of ANER key stream sequence51

Figure 5.2. Spectral test result of ANER; dashed line represents cutoff value as 122.47

..51

Figure 5.3. Autocorrelation test result of CSDS key stream sequence55

Figure 5.4. Spectral test result of CSDS; dashed line represents cutoff value as 122.47

..55

 xi

LIST OF TABLES

Table 1.1. Explanations of some cryptographic terms...3

Table 2.1. State transition of the 3-bit LFSR...15

Table 3.1. Passing intervals for the runs test ...37

Table 4.1. S-Box row-column method...48

Table 5.1. The statistical test results of ANER-H..51

Table 5.2. The statistical test results of CSDS...54

Table A.1. 8 DES-like S-boxes of s5 DES used in CSDS...63

 xii

LIST OF SYMBOLS/ABBREVIATIONS

C Ciphertext

iC Individual character of ciphertext

Ci(t) The number of clocking for i’th register according to fCi(t)

D Decryption

dmax Maximum number of clocking of generator register

E Encryption

f Next state function

Fq The field

f(x) The polynomial for the feedback function

g The function which produces key stream bits

K Secret key

L The length of an LFSR

LC Linear complexity

L(s) Linear complexity of sequence s

M Message

m The order of the Boolean function

P Period

Pd Deletion rate

iP Individual character of plaintext

Pz Period of the key stream sequence z

S The summation of clockings of GR in CR’s period

Si The present state of the generator

Sj_column Computed results for column decision for S-box j of CSDS

Sj_output Output of S-box j of CSDS

Sj_row Computed results for row decision for S-box j of CSDS

Sk_column Computed results for column decision for S-box k of CSDS

Sk_output Output of S-box k of CSDS

 xiii

Sk_row Computed results for row decision for S-box k of CSDS

v A fixed number of ciphertext symbols that key stream depends

iZ Key stream character

z(t) The key stream bit at time t

α Significance level

λ Period of the CR register

ANER-H The name of the first proposed algorithm

CBC Cipher block chaining

CFB Cipher feedback

CSDS Clock-controlled Stream cipher with Dynamic S-box Selective

CTR Counter

FIPS Federal Information Processing Standards

FSR Feedback Shift Register

gcd Greatest common divisor

KFB Key feedback

lcm Least common multiplier

LFSR Linear Feedback Shift Register

lsb Least significant bit

NIST National Institute of Standards and Technology

OFB Output feedback

 1

1. INTRODUCTION

Cryptosystems are mainly categorized into two groups according to the used key

type, symmetric-key or public-key. In case of public-key cryptography, the sender uses

publicly known information (public-key) in encryption process to send a message to the

receiver and the receiver uses his secret information (private-key) to recover the message.

On the other hand in the symmetric-key encryption systems, the sender and receiver have

previously agreed on use of a secret key for both encryption and decryption. This key must

be kept secret to avoid revealing of the secret information by the potential eavesdroppers.

The symmetric-key crypto systems are also classified into two major subgroups that

are block ciphers and stream ciphers. Block ciphers tend to simultaneously encrypt groups

of characters of a plaintext message with a fixed transformation, whereas stream ciphers

operate on individual plaintext digits (usually bits or sometimes byte) at a time with a time-

varying transformation [1]. In other words, block ciphers operate on large blocks of data,

while stream ciphers typically operate on smaller units of plaintext. Stream ciphers seem to

be one of the best alternatives to high-speed communications, since they offer required

security for high data rate applications and have algorithms that are popular in fast

implementations. They are generally faster than block ciphers in hardware and have less

complex hardware circuitry. Furthermore, stream ciphers can be more appropriate, and in

some cases mandatory (e.g., in some telecommunications applications), when buffering is

limited or when characters must be individually processed as they are received. Since

stream ciphers have limited or no error propagation, they can be advantageous in situations

where transmission errors are highly probable [2].

The rest of the chapter gives a general introduction to the topic. A review of the

cryptography from a stream ciphers point of view is presented in Section 1.1. Section 1.2

gives an explanation about symmetric key cryptography and a comparison between stream

ciphers and block ciphers. In Section 1.3, the general structure of stream ciphers is

introduced. Some different types of cryptanalytic attacks are discussed in Section 1.4.

Finally, Section 1.5 gives the outline of the thesis.

 2

1.1. A Review of the Cryptography from a Stream Ciphers Point of View

 Cryptology is the branch of mathematics that uses mathematical techniques for

designing, attacking and analyzing information security services. It is consisted of two sub

study fields; named as cryptography and cryptanalysis. Cryptography is the science that

studies mathematical techniques keeping messages or information secure and providing

security services. On the other hand, cryptanalysis is the study of how to attack

cryptographic mechanisms to recover secret information or to defeat the security services

[1]. Modern cryptography mostly concerns with the concepts; confidentiality, authenticity,

data integrity and non-repudiation. In Table 1.1, some cryptographic terms and their short

explanations are given to make the remained sections clear for the non-technical readers.

For the ancient times, the application of cryptography is something transforming the

letters or the symbols into different symbols or representations according to a simple rule

to provide secrecy of the messages. Substitution ciphers and Caesar cipher can be nice

examples to these approaches. A classic example to these systems is Vigenère cipher

which operates on the following formula:

 26modiii KPC += (1.1)

 According to this cipher model, each letter in the alphabet can be thought as a

number ranging from 0 to 25. Then the plaintext letter P is added to key letter K in mod 26

to obtain corresponding ciphertext letter C. The reason why mod 26 operation is used is

obvious; to keep the produced ciphertext letter in the alphabet set. A message encrypted by

such an algorithm can be easily cryptanalyzed, due to its simple rule and risk in reuse of

the key. However, the importance of the algorithm comes from the fact that, this algorithm

can be seen as the first algorithm that has some common points with today’s stream cipher

structure. At the beginning of the 20th century, Gilbert Vernam proposed a new type of

cipher known as Vernam cipher which uses a secret key as long as the plaintext [3]. The

cipher relies on the algorithm that the plaintext is XOR’ed with a random or pseudorandom

 3

 Table 1.1. Explanations of some cryptographic terms

Term Explanation

Authentication The process for identification of the data origin or destination

Cipher A cryptographic algorithm used to encrypt and decrypt messages.

Ciphertext Encrypted message of information

Confidentiality Ensuring that the information is only available to authorized users

Cryptosystem Mechanism for providing a secure means of information

exchange.

Data Integrity Ensuring that no one without any authorization can alter the

message

Decryption Recovering the actual message from the cipher

Encryption Process of transforming the message into cipher

Non-repudiation Ensuring that someone cannot deny a previous commitment or

action.

Plaintext The original message or information

stream of data the same length to generate the ciphertext as shown in the equation below;

where ⊕ denotes the XOR operation and M, K and C represent the message (plaintext),

stream sequence and ciphertext respectively .

 KMC ⊕= (1.2)

If the data stream is truly random and used only once, this is called the one-time pad.

Vigenère cipher and the Vernam cipher have two important common points; first- both of

the algorithms use the symmetric key encryption, and second- both ciphers operate on

plaintext with symbol by symbol which is an important feature of the stream ciphers.

1.2. Symmetric Key Cryptography

There are two general types of key-based encryption techniques which are symmetric

and public-key. Symmetric-key algorithms, sometimes called conventional algorithms, are

algorithms where the encryption key can be calculated from the decryption key and vice

versa [1]. For most of the symmetric algorithms, sender and receiver have the same key to

 4

realize encryption and decryption. Since these systems require that both of the sender and

receiver previously have agreed on a key to communicate securely and this key must be

kept secret from any eavesdropper, these algorithms are also called secret-key algorithms,

single-key algorithms, or one-key algorithms. The security power of a symmetric-key

algorithm can depend on secrecy of the key, because anyone who obtains the key can

encrypt and decrypt messages.

In symmetric-key systems, if E denotes the encryption and D denotes decryption

operations, then encryption and decryption can be formulated respectively by:

 EK(M) = C (1.3)

 DK(C) = M (1.4)

As it is mentioned in previous sections, symmetric-key algorithms can be divided

into two main categories as stream ciphers and block ciphers. Block ciphers operate on

large blocks of plaintext data, while stream ciphers operate on individual plaintext

characters or bits (or bytes). Stream ciphers use a simple but dynamic transformation to

one individual symbol or character at a time whereas block ciphers apply a more complex,

but static transformation to a block of symbols at once. Stream ciphers can be designed to

be faster than block ciphers, especially by using LFSRs (Linear Feedback Shift Registers)

in hardware. Although the main difference between stream ciphers and block ciphers

seems as the operational characteristics, a block cipher can operate as a stream cipher by

using the CBC (cipher block chaining) mode. Moreover, by using different modes of block

ciphers such as the CFB (cipher feedback) mode, the OFB (output feedback) mode, the

KFB (key feedback) mode and the CTR (counter) mode, block ciphers can provide stream

cipher like characteristics. The inverse is also true; one can obtain a block cipher operation

from a stream cipher, though it is less efficient.

The general structure of a simple block cipher can be summarized as shown in Figure

1.1. This cipher takes n bit block of plaintext and secret key as its inputs, then transforms

this block to n bit block of ciphertext, where n is called block size. To realize unique

decryption, this transformation must be chosen as one to one. Most of the block ciphers

 5

define a permutation on the set of n bit blocks. Some well known block ciphers are DES,

FEAL, IDEA, RC5 and AES [1, 2].

Figure 1.1. General structure of a simple block cipher

1.3. General Structure of Stream Ciphers

The Vernam cipher mentioned in Section 1.1. provides enough security, but it is not

very practical considering its key length requirement which must be as long as plaintext.

Also, key distribution and management for Vernam cipher is not an easy matter. Therefore

cryptographers proposed to use a reduced key size but still providing a reasonable level of

security. To achieve this process; the key in Vernam cipher is replaced by a pseudo random

sequence of bits produced by a generator which is initialized with a shorter key. Although

the proposed method is not as secure as Vernam cipher model, it is very convenient

considering practical requirements and still maintains a reasonable level of security. In

fact, this solution is not different from the notion of a basic stream cipher. Figure 1.2

shows the block diagram of general structure of a stream cipher. When we look at (1.2), it

is seen that ciphertext is generated in a similar manner; instead of using the key directly,

now key stream symbols Zi produced by the key stream generator are used in XOR

operation with message symbols Mi to produce ciphertext symbols Ci.

Figure 1.2. General structure of a simple stream cipher

 6

1.4. Different Types of Cryptanalytic Attacks

As stated before, cryptanalysis is the study that uses mathematical techniques for

breaking a cryptosystem and an attempted cryptanalysis is called an attack [1]. The aim of

the attack can be recovering original message from the cipher, obtaining the secret key or

revealing any secret information relating the message or cryptosystem. The Dutch linguist

Auguste Kerckhoffs stated in his book that ‘The security of the encryption scheme must

depend only on the secrecy of the key, and not on the secrecy of the algorithms’ which is

known as Kerckhoffs’ principal [4]. In fact, this is a necessary rule for a secure

cryptosystem. To understand security strength of a cipher, it is investigated against some

well known attacks. So, by comparing its resistance against these attacks, one can conclude

that whether or not the cipher is secure. Of course, providing high resistance to the

currently known styles of attacks does not guarantee the security of the cipher, because it is

always possible to break any cipher with an unknown attack. However, any proposed

cipher design must provide high resistance against known attacks. These attacks can be

classified into two main groups; generic attacks and specific attacks. Generic attacks are

applicable even if the attacker does not know the design of the cryptosystem [5]. On the

other hand, in order to apply specific attacks, whose examples will be given in following

chapters, to a cryptosystem, its inner system and how it works have to be known the by the

cryptanalyst. In this section, we explain five general attack types.

• Ciphertext-only attack: For this type of attack, the attacker has several ciphertexts

corresponding to several messages all of those have been encrypted using the same

encryption algorithm. The cryptanalyst tries to recover the plaintext of as many

messages as possible, or for some cases he tries to get the secret key, in order to

decrypt other messages encrypted with the same key. Within these processes, this

attack is the most difficult type of attack, since the attacker does not have enough

information compared to other attacks that will be discussed below.

• Known plaintext attack: This is the most probable type of attack for stream

ciphers. In known plaintext attack, the receiver knows a quantity of plaintext and

the corresponding ciphertext. The goal of the attacker is to recover the key used in

encrypting the messages or by using this information, an amount of known

 7

plaintext-ciphertext pairs, developing algorithm which deduces unknown parts of

the plaintext from the ciphertext. For example let the cryptanalyst has the following

plaintext-ciphertext pairs: (P1, C1), (P2, C2),…(Pi, Ci) where C1=EK(P1),

C2=EK(P2), Ci=EK(Pi) and K is the secret key. Then the attacker within this

information, can deduce the key K, or get an algorithm to find remained unknown

parts of the plaintext such as Pi+1 from Ci+1.

• Chosen plaintext attack: In this type of attack, the attacker has access to

encrypting a chosen plaintext, so he can obtain the ciphertext for a specific

plaintext. Due to this property, chosen plaintext attack is a more powerful attack

type than known plaintext attack. The aim of the attacker is the same as for case of

known plaintext attack that is deducing the key or revealing the unknown parts of

the plaintext.

• Chosen ciphertext attack: Compared the other three types of attacks, this method

is the most powerful one. The strength of the method stems from the fact that;

attacker can choose specific ciphertext samples and can decrypt these ciphertexts to

get corresponding plaintexts. The attacker’s job is deducing the secret key. For

example let the cryptanalyst chose the following ciphertext samples: C1, C2,…Ci

and decrypt these ciphertext samples to obtain corresponding plaintext pairs P1,

P2,…Pi where P1=DK(C1), P2=DK(C2), Pi=DK(Ci) and K is the secret key.

• Adaptive chosen-plaintext attack: This attack is a chosen-plaintext attack wherein

the choice of plaintext may depend on the ciphertext received from previous

requests [2]. In other words, the cryptanalyst can also modify his choice based on

the results of previous encryption.

The main goal of the attacks as described above is to recover the original message

from given ciphertexts or deduce the secret key.

 8

1.5. Thesis Outline

The thesis is consisted of six chapters. Chapter 1 gives an introduction about main

aspects of cryptography. Chapter 2 discusses characteristics of LFSR based stream cipher,

different applications of this type stream ciphers and presents detailed information about

clock-controlled stream ciphers. In Chapter 3, the minimum required features of a well

designed and secure stream cipher are given. Chapter 4 is devoted to description of the

proposed cipher models ANER-H and CSDS. In Chapter 5, the security analysis of the

proposed algorithms and their key stream properties such as statistical test results, period

and linear complexity of the sequences are given. Finally, Chapter 6 gives the conclusions

of the study.

 9

2. STREAM CIPHERS

In this thesis, we will deal with LFSR based stream ciphers, only and in

particular with stream ciphers in which the plaintext, the ciphertext and the key stream

sequence are all binary sequences, and in which the mixing operation, for both encryption

and decryption is XOR operation.

As it is given in the previous chapter, a stream cipher inspires the spirit of the one-

time pad by using a short key to produce the key stream which appears to be random. Such

a key stream sequence is often described as pseudo-random generation of which can be

thought as in the field of stream ciphers. Therefore key stream generator can also be known

as pseudo-random sequence generator or running key generator. Actually, producing

random look like sequences is necessary condition for a secure stream cipher design,

because the closer the key stream generator’s output is to random, the harder time a

cryptanalyst will have breaking it [1].

The stream cipher encryption and decryption can be formulated as follows: Let k1,

k2, k3,..., ki denote the sequence that key stream generator outputs and p1, p2, p3,..., pi denote

the plaintext bits. Then, if c1, c2, c3,..., ci represents the corresponding ciphertext bits,

encryption and decryption are realized according to the equations below respectively.

 iii kpc ⊕= (2.1)

 iiiiii pkkpkc =⊕⊕=⊕ (2.2)

Stream ciphers can be classified as synchronous or self-synchronizing stream ciphers

according to the relation between key stream generation and plaintext.

• Synchronous stream ciphers: A synchronous stream cipher is one in which the

key stream is generated independently of the plaintext message and of the

ciphertext [2]. In the encryption side, a key stream generator outputs the key stream

 10

bits, one after the other. On the decryption side, another key stream generator

produces the identical key stream bits, one after the other. To avoid false decryption

so error in communication, the two key stream generators must be synchronized. In

case of losing synchronization during transmission, every ciphertext character after

the error will be decrypted incorrectly. To solve this problem, the sender and

receiver must resynchronize their key stream generators before continue their

communication. Techniques for re-synchronization can be re-initialization or

placing special markers at regular intervals in the ciphertext. An advantage of the

synchronous stream cipher can be seen as; synchronous ciphers do not propagate

transmission errors. If a bit or bits are changed during transmission so error occurs,

then only error bits will be decrypted incorrectly, all preceding and subsequent bits

will be unaffected. The encryption and decryption of a synchronous stream cipher

are depicted in Figure 2.1 and Figure 2.2; where f denotes the next state function, g

is the function which produces key stream bits, Si is the present state of the

generator, K is the secret key, pi, ki and ci represent plaintext, key stream and

ciphertext bits respectively. Most of the stream ciphers are binary additive stream

ciphers that are synchronous stream ciphers in which the key stream, plaintext, and

ciphertext digits are binary digits, and the output function is the XOR of plaintext

and key stream sequence.

• Self-synchronizing stream ciphers: A self-synchronizing stream cipher is a finite

state machine for which the key stream is generated as a function of the key and a

fixed number of the previous ciphertext symbols [6]. In other words, for this type of

stream ciphers each key stream bit is produced within a function of a fixed number

of previous ciphertext bits. Since the key stream depends on a fixed number of the

previous ciphertext symbols say v, the cipher will resynchronize after v symbols if

there is a transmission error. In case of this, the next v symbols will be erroneous

and the error propagation is thus worse than for a synchronous stream cipher.

However, if some ciphertext symbols are deleted or inserted during transmission,

the self-synchronizing cipher will recover after v correct ciphertext symbols,

whereas the synchronous ciphers will never regain synchronization [6]. The

encryption and decryption of a self-synchronizing stream cipher is shown in Figure

 11

2.3 and Figure 2.4 respectively. As can be seen the ciphertext bits are given as input

to determine next state of the key stream generator.

Figure 2.1. A general model for synchronous stream cipher encryption with XOR operation

Figure 2.2. A general model for synchronous stream cipher decryption with XOR operation

Figure 2.3. A general model for self-synchronizing stream cipher encryption, with XOR

 12

Figure 2.4. A general model for self-synchronizing stream cipher decryption, with

XOR

 For most of the stream ciphers, key stream sequence is generated independently

from plaintext; so in some applications key stream sequence can be produced prior to

encryption or decryption to speed up the process. Due their simple designs, low hardware

complexity, high speed encryption characteristic and having low error propagation rate,

stream ciphers are dominantly preferred in wireless communications such as in the

applications of GSM, US Cellular Systems, WLAN, Bluetooth [7-10]. Also, majority of

the stream ciphers relies on the use of LFSRs in their design. Therefore before going on

different stream cipher types, in Section 2.1 LFSRs (Linear Feedback Shift Registers) and

the reasons why they are used will be discussed. Next, some important variants of LFSR

based stream ciphers will be presented in Section 2.2. The last section, Section 2.3, will

give detailed information about clock-controlled stream ciphers that are the main skeleton

models for the proposed stream ciphers ANER-H and CSDS.

2.1. Linear Feedback Shift Registers

An FSR (Feedback Shift Register) is a device made up by registers that produces

binary sequences or symbols from a field Fq where q=2k and k is the symbol size (for our

case and most of the stream ciphers q is chosen as 2). These registers are the main

components of many key stream generators and they are used both in coding and

cryptography. A feedback shift register is made up of two parts; a shift register s and a

feedback function f. If the shift register s has a length of n bits or consists of n stages as s1,

s2, ..., sn which contains one bit 0 or 1, it is called an n-bit shift register. The feedback

 13

function maps the state of the shift register according to its bits content. When the register

is clocked at a time interval, all of the bits in the shift register are shifted one bit to the

right. The new value of the left-most bit is computed by applying the feedback function to

the contents of the register before clocking. At each clock, the right most bit of the register

can be concerned as its output. The period of a shift register is the length of the output

sequence before it starts repeating [1]. A general structure of a feedback shift register is

depicted in Figure 2.5.

Figure 2.5. General structure of feedback shift register of length n

The simplest kind of feedback shift register is a linear feedback shift register. In that

case, the feedback function can be written as nn scscscsc ⊕⊕⊕ K332211 , where s values

are the contents of the register at time t and c values are the feedback coefficients. As can

be seen the feedback function is linear and simply the XOR of the appropriate bits in the

register according to whether or not ci is equal to 1 or not; the list of the bits that have

feedback coefficient value as 1 is called a tap sequence. An example of an LFSR is shown

in Figure 2.6. Since the feedback function is linear and simple, many mathematical theories

have been applied to analyzing LFSRs. The mathematical expression for the period of the

shift register depends on its characteristic feedback function. If the feedback function is a

primitive polynomial, then the period of the register becomes 2n-1, where n is the length of

the register. An irreducible polynomial f(x) ∈ Fq[x] of degree l is said do be primitive if the

root of f(x) in the splitting field lq
F is a generator of multiplicative group *

q lF ; where a

polynomial g(x)∈ Fq[x] is defined as irreducible polynomial over Fq, if it can not be

factored into polynomials of smaller positive degrees in the ring of polynomials Fq[x] [6].

 14

Figure 2.6. General structure of linear feedback shift register of length n

For our binary case, we can restrict the definition of irreducible polynomial and

primitive polynomial as: A polynomial f(x) over GF(2) is said to be an irreducible

polynomial over GF(2) if the only polynomials over GF(2) which divide f(x) are 1 and

itself. An irreducible polynomial f(x) of degree n, which is also the length of the shift

register, over GF(2) is said to be a primitive polynomial, if (2n -1) is the least positive

integer p such that f(x) divides (1 + xp) over GF(2).

If we start with a non-zero state as the initial state of the LFSR and the register has a

primitive feedback polynomial, then all possible states except the all-zero state will appear

during a period and the length of the period will be 2n-1 as stated before. An LFSR with a

primitive feedback polynomial is also called a maximum-length LFSR, and the sequence

generated is called a maximum-length sequence. Notice that to say the sequence is

maximum length, the initial state of the register must be non-zero and hereafter it is

assumed that the starting state is as such. For example if the register has a length of 3 bits

and a primitive feedback polynomial then the period of the register will be 23-1=7. To

realize this example, let the register have a primitive feedback polynomial as x2+x+1 in

GF(2), tapped at the second and third bit; the state of the LFSR begins with ‘101’and

changes as shown in Table 2.1. As can be seen, after 7 clockings the register repeats itself.

Most of the practical stream ciphers use LFSRs in their designs. There can be several

reasons for this: Firstly, LFSRs are well suited for hardware implementation, because an

LFSR is nothing more than an array of bit memories and its feedback function is just use of

a series of XOR gates. Therefore, within a few logic gates an LFSR based stream cipher

can be realized. Second reason is LFSRs can generate sequences with large period. An L-

bit maximal length LFSR can produce a sequence of 2L-1, so as L increases the length of

 15

 Table 2.1. State transition of the 3-bit LFSR

State of the LFSR

101

110

111

011

001

100

010

the period becomes incredibly large. The last reason why cryptographers use LFSRs in

their stream generator models can be the fact that LFSRs produce sequences with good

statistical properties. That is, they can produce random-looking key stream sequences.

However they can be easily analyzed using algebraic techniques, due to their linear

structure. The Berlekamp-Massey algorithm can generate sequence of an n-bit LFSR after

using only 2n bits of the key stream [11]. Thus, if an attacker gets 2n bits of key stream he

can break the stream cipher which is based on a pure single n bit LFSR. Considering

Berlekamp-Massey algorithm, the strength of an LFSR stream cipher against such an

attack can be evaluated by using the metric linear complexity or linear span. The linear

complexity of a sequence say s, denoted by L(s), is the length of the shortest LFSR that

generates the same sequence. Linear complexity is very important, since the Berlekamp-

Massey algorithm, can generate the sequence of a stream cipher with a linear complexity n,

after examining only 2n bits of the key stream. Note that a high linear complexity value

does not indicate that the stream cipher is secure, while the lower one means that the cipher

is weak and insecure. So, pure LFSR can not be used as a secure stream cipher, although it

has nice properties. To eradicate linear complexity problems of the LFSRs and keeping

their good characteristics, different approaches that will be discussed in the following

section have been proposed.

2.2. Some Stream Cipher Designs

An LFSR should never be used by itself as a key stream generator, since the output

sequences of LFSRs are also easily predictable. Therefore for LFSR based stream ciphers

 16

different techniques that can be can be divided into three general categories; nonlinear

combination generators, nonlinear filter generators and clock-controlled generators have

been presented to solve weaknesses of LFSRs. In first two of these techniques, stream

generator design is simple; one or more LFSRs, generally of different lengths and with

different feedback functions are used and their outputs or appropriate bits of the whole

generator are taken by a nonlinear Boolean function to produce key stream sequence. Then

the registers are regularly clocked and system works in this fashion. In case of the last

category, clock-controlled generators, some LFSRs are clocked at different rates according

to a rule or depending on the output of other LFSR; so they can be clocked irregularly.

This property increases the linearity complexity of the system. The nonlinear combination

generators and nonlinear filter generators will be explained in the following subsections.

Since clock-controlled generators will be discussed in Section 2.3, there is no need to give

brief information about it in this section.

2.2.1. Nonlinear Combination Generators

Nonlinear combination generators use several LFSRs in parallel to solve the linearity

problem of LFSRs. They do this job by combining LFSR outputs with a nonlinear Boolean

function f, which is also called combining function, as depicted in Figure 2.7. Before

proceeding to an example of nonlinear combiner generator, it will be convenient to give

some information about the Boolean functions. A product of m distinct variables is called

an mth order product of the variables. Every Boolean function f(x1, x2, …, xn) can be given as

a modulo 2 sum of distinct mth order products of its variables, nm ≤≤0 ; which is called

the algebraic normal form of f. The nonlinear order of f is the maximum of the order of the

terms appearing in its algebraic normal form [2]. For instance,

4323114321 xxxxxx)x,x,x,x(⊕⊕=f has a nonlinear order 3. Therefore a nonlinear

combination generator has a high linear complexity, if its nonlinear Boolean function has a

high order nonlinear order. By using nonlinear combination generator, increase in linear

complexity is achieved and it seems there is no problem. However, using output of

different LFSRs into a nonlinear Boolean function also increases the possibility that one or

more of the internal output sequences or just outputs of individual LFSRs can be correlated

with the produced key stream and by means of this correlation the generator can be

attacked which is often called a correlation attack. The metric indicating the strength of the

 17

Figure 2.7. A nonlinear combination generator, where n LFSR outputs are combined

with a nonlinear Boolean function f to produce key stream sequence for destroying

linearity

generator to the correlation attack can be defined as the correlation immunity whose details

have been shown in [12]. Thus, we can say that there is a trade-off between high

correlation immunity and high linear complexity. To understand the importance of the

correlation immunity, let us give the description of a popular example of nonlinear

combination generator as the Geffe generator [13]. The Geffe generator is consisted of

three maximal length LFSRs of L1, L2 and L3 respectively as shown in Figure 2.8. The

outputs of LFSRs are combined within the function 33221321 xxxxx)x,x,x(⊕⊕=f .

The key stream generator uses three LFSRs, combined in a nonlinear manner. If L1, L2

and L3 are pairwise relatively prime, then the period of the generator is (2L1-1) (2L2-1)

(2L3-1) and the linear complexity of the key stream sequence becomes L1L2 + L2L3 + L3.

For the appropriate values of L1, L2 and L3 large period and high linear complexity is

achieved, however when we look at the combining function f, if z(t) represents key stream

bit at time t, one can realize the probabilistic relation between output of first LFSR and key

stream bit as:
4

3

2

1

2

1

2

1
))(x)(x()0)(x()1)(x())(x)((13221 =+===+=== ttPtPtPttzP .

The output of first LFSR is equal to key stream bit at any time with a probability of

3/4. Thus, one can see that Geffe generator has weaknesses considering correlation attack.

 18

Figure 2.8. The Geffe generator

Therefore, to have a secure nonlinear combination generator, the combining function f

must have high algebraic degree, high nonlinearity and a high order of correlation

immunity. Also f must be a balanced function, which has equal number of ones and zeros

in the output column of its truth table, to provide key stream sequences with good

statistical properties.

2.2.2. Nonlinear Filter Generators

This type of generator is not so different from nonlinear combining generators. In

this case, instead of giving outputs of several LFSRs to nonlinear function f, appropriate

bits of a single LFSR are given. A simple example of nonlinear filter generator is depicted

in Figure 2.9, now the function f is called as the filter function. Actually, not all elements

of the LFSR need to be taken as inputs to the filtering function.

The period of the key stream sequence is 2n-1, if the LFSR is maximal length register

and has a length of n bits. The maximum value for the linear complexity of the output

sequence is computed as ∑ = 







=

m

i i

n
LC

1
, where LC and m denote the linear complexity

and nonlinear order of the function. The same danger as low correlation immunity can be

also valid for the nonlinear filter generators. Also, the same criteria must be concerned for

the filter function as in the case of nonlinear combining function.

 19

Figure 2.9. A nonlinear filter generator, where a single n bit-LFSR’s bits are

combined with a nonlinear Boolean function f to produce key stream sequence

2.3. Clock-controlled Stream Ciphers

The main idea behind an LFSR based clock-controlled stream cipher, is to control

the number and time of clockings of the LFSRs using some irregular mechanism. This

mechanism can depend on the output of another LFSR or some other internal variables of

the cipher. By means of clocking the LFSRs at different rates, the linearity of the system is

destroyed and attacks based on a regular clocking of the LFSR become harder. Many

stream ciphers using non-linear combining functions are susceptible to the correlation

attacks such as fast correlation attacks firstly described in [14]. On the other hand, using

irregular clocking reduces the power of correlation attacks and provides practical

resistance to the fast correlation attacks. To understand the properties of clock-controlled

ciphers, let us give descriptions of some its popular applications.

2.3.1. Alternating Step Generator

Alternating step generator is consisted of three LFSRs denoted as R1, R2 and R3

respectively [15]. The LFSR R1 controls the clocking of the other two, R2 and R3. In each

clock cycle 1 bit key stream is generated by XOR’ing the outputs of R2 and R3. The

clocking mechanism works as follows: Firstly, R1 is clocked, if its output is 1, then R2 is

clocked and R3 is not clocked. On the other hand, if the output of R1 is 0, then R3 is

clocked and R2 is not clocked. Whether or not a generator register (R2, R3) is clocked, it

gives its output to key stream generation process; if it is not clocked, it repeats its output.

The period of the produced key stream sequence can be expressed as: Let length of R1, R2

 20

Figure 2.10. The alternating step generator

and R3 be denoted by L1, L2 and L3 respectively. If the period of the output sequence (for

any initial state) of a non-singular FSR of length L is 2L, then this output sequence is called

a de Bruijn sequence [2]. If R1 produces a de Bruijn sequence with a period 2L1, R2 and

R3 are maximal length LFSRs, and gcd(L2,L3)=1, then period of the key stream sequence

becomes 2L1 (2L2-1) (2L3-1), where gcd(a,b) stands for greatest common divisor of a and b.

For its linear complexity there are lower and upper bound within the same conditions. Let

LC denote the linear complexity of the key stream sequence; then linear complexity

becomes: L11 L1 2)3L2L()3L2L(2 +≤<+− LC . Thus if L1 is chosen enough high, the

generator produces key stream sequences with large period and high linear complexity.

From the point of a cryptanalyst; since the first register R1 controls the clocking of the

other two, if the content of the register R1 is guessed, then an attacker can have

information about future state transitions of R2 and R3. As a result, he can obtain the

internal bits of R2 and R3 from just guessing the bits of R1 which costs approximately 2L1

operations. However, if one chooses length of R1 enough high such as 128 bit, such an

attack, which can be classified a guess-determine type attack, requires about 2128 steps and

becomes infeasible.

2.3.2. Shrinking Generator

The shrinking generator is a relatively new stream generator [16]. It uses two LFSRs

denoted as R1, R2 which have lengths of L1 and L2 respectively as depicted in Figure

2.11. The generator produces key stream bits as follows: Firstly, both of the LFSRs are

clocked. If the output of the first register is 1, then key stream bit takes the value of the

output of the R2. If it is zero, no key stream bit is generated and output of second register

 21

is discarded. The main principle of the generator is simple, but very effective, and looks

secure. The period of the sequence produced by the shrinking generator is: 2L1-1 (2L2-1) if

the gcd(L1,L2)=1. This stems from the fact that, R1 gives output 1 exactly 2L1-1 times out

of its period 2L1-1, incase of it is a maximal length register. The proof of this theorem can

be found in [16]. Also, within the conditions the lower and upper bounds for linear

complexity of the key stream sequence generated by the shrinking generator

is 2L22L2 1-L12 L1 ≤<−
LC . As can be seen by selecting the length of registers properly

high period and high linear complexity can be realized. The generator also seems secure

considering different type attacks. As in the case of alternating step generator, a guess-

determine type attack can be applied; firstly bits of R1 is guessed, then contents of R2

deduced within known generated key stream sequence. By increasing the length of register

the resistance of the cipher against such an attack is increased. Another important point for

shrinking generator is its feedback polynomials must be dense, to avoid any vulnerability.

Moreover, though it is not related security of the generator, one implementation problem is

that the output rate is not regular, because generation of key stream bit depends on whether

R1 outputs 1; if first LFSR has a long string of zeros then the generator outputs nothing. In

[16], the use of buffering to solve this problem has been suggested.

Actually, there is a variant of shrinking generator called the self-shrinking generator.

In this case, instead of using two LFSRs, a single LFSR is used and pairs of bits are taken

from it. System operates as follows: Clock the LFSR twice; if the first bit in the pair is 1,

the output of the generator is the second bit. If the first bit is 0, discard both bits and try

again. While the self-shrinking generator requires about half the memory space as the

shrinking generator, it is also half the speed [1].

Figure 2.11. The shrinking generator

 22

2.3.3. A5/1

GSM uses A5 stream generator to encrypt digital user data transmitted from mobile

station to the base station and base station to the mobile station. A5 stream cipher has two

major variants: A5/1 is the stronger version used in western European countries and A5/2

is the weaker version used in the other countries. A5/1 stream cipher is a binary linear

feedback shift register based key stream generator. It combines three LFSRs of lengths 19,

22 and 23 bits which are denoted by R1, R2 and R3 respectively [8]. All of these registers

have primitive feedback polynomials and each register is updated according to its own

feedback polynomial. The taps of R1 are at bit positions 13, 16, 17, 18; the taps of R2 are

at bit positions 20, 21; and the taps of R3 are at bit positions 7, 20, 21, 22. The three

registers are maximal length LFSRs with periods 219 -1, 222 - 1, and 223 -1, respectively.

The output of A5/1 is produced by XOR’ing the most significant bit of each register as

shown in Figure 2.12.

Each LFSR has a single clocking tap in bit 8 for R1, bit 10 for R2 and bit 10 for R3;

denoted as C1, C2 and C3 respectively. Clocking mechanism of each LFSR is determined

according to the majority rule: In each clock cycle majority of C1, C2, and C3 is calculated

and two or three registers whose clocking tap value is the same as majority bit are clocked

[8]. Since at each clock cycle at least two LFSRs are clocked, an individual LFSR moves

with probability 3/4 and stops with probability 1/4.

Figure 2.12. The A5/1 stream cipher

The initial state of A5/1 is carried out as follows: All of the registers are first zeroed

and then 64 bit secret session key K and 22 bit frame number Fn XOR'ed (ignoring

 23

majority rule) in parallel into the least significant bits (lsb) of the three registers. In the

next step, all LFSRs are clocked for 100 clock cycles according to majority rule, however

no output is produced. Finally, three LFSRs are clocked according to majority rule to

generate 228 bits of key stream sequence.

Attacks against A5 algorithms have been presented in different papers [8, 17, 18, 19,

20]. In [8], it is shown that cryptanalysis of A5/1 can be performed on a single PC with a

few minutes of computational time and about 150-300 Gbytes of memory. Most of attacks

against A5/1 make use of the security flaws in clocking mechanisms of the algorithm. In

[17] and [18] divide & conquer attacks have been applied. According to these studies: Since

the clocking tap positions of R1, R2 and R3 are known, linear equations about the LFSRs

content can be obtained by guessing the some bits before the clocking tap bits. It is shown

that by using these linear equations A5/1 can be cryptanalized. Considering these attacks,

some designs have been proposed in different studies to overcome the weaknesses of A5/1

such as in [21] and [22].

2.3.4. ORYX

The ORYX cipher is a stream cipher that is used to encrypt wireless digital data as a

key stream generator. The output of the generator is a pseudo-random stream of bytes. The

generated key stream is XORed with the plaintext to get the ciphertext. As in case of the

most stream ciphers, to recover the plaintext from the ciphertext, same key stream

sequence is XOR’ed with the ciphertext at the receiver side.

The ORYX cipher is consisted of three 32-bit LFSRs denoted as LFSRA, LFSRB, and

LFSRK, and uses an S-box [10]. The S-box is used for a permutation operation of the

numbers between 0 – 255. The block diagram of ORYX is shown Figure 2.13, where PK,

PB, PA1 and PA2 represent the feedback functions of LFSRK, LFSRB, and LFSRA

respectively.

The primitive feedback polynomial of LFSRK is as follows:

 x32 + x28 + x19 + x18 + x16 + x14 + x11 + x10 + x9 + x6 + x5 + x +1

 24

LFSRA uses two different primitive feed back functions which are:

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

and

x32 +x27 +x26 +x25 +x24 +x23 +x22 +x17 +x13 +x11 +x10 +x9 +x8 +x7 +x2 +x +1

Finally, the LFSRB has the following feedback function:

x32 + x31 + x21 + x20 + x16 + x15 + x6 + x3 + x + 1

The algorithm works in the following manner: Firstly, LFSRK is clocked once with

its feedback function. LFSRA is stepped once using either one of its two feedback

polynomials. The decision of which polynomial depends on one of the high eight bits of

LFSRK. Also, LFSRB is clocked either once or twice depending on another one of the high

eight bits of LFSRK. Then, the last eight bits of LFSRK is added to the last eight bits of

LFSRA after being permuted with S-box and the last eight bits of LFSRB after being

permuted with S-box, with modulus 256 to create 8 bits of key stream.

Figure 2.13. The ORYX stream cipher [23]

ORYX was firstly cryptanalyzed by D. Wagner et. al. in [10]. It is shown that by

using a divide and conquer attack with an amount of 25-27 byte known plaintext; the

 25

stream cipher can be easily cryptanalyzed in 216 time complexity. Thus, one can say that

ORYX is not a secure stream cipher.

 26

3. REQUIRED KEY STREAM PROPERTIES OF A STREAM

CIPHER

A stream cipher can not be considered as secure and convenient for stream cipher

applications unless its produced key stream sequences have large periods, high linear

complexities and provides certain good statistical properties. In other words, the

produced key stream sequence must have a guaranteed minimum period which is longer

than the length of the message. Also the ciphertext must appear to be random, so that an

attacker can not reveal any information about the plaintext from it.

In this chapter, we will focus on these properties from a clock-controlled stream

ciphers point of view. In Section 3.1, the period concept and its mathematical expressions

for some clock-controlled generators will be given. The linear complexity and linear

complexity profile will be discussed with its upper and lower bounds for some clock-

controlled generators in Section 3.2. Finally, Section 3.3 will present the details of some

important statistical test suits such as FIPS 140-2, NIST that are used to determine whether

or not the generated key stream sequences posses some randomness properties [24, 25].

3.1. Period of Generated Key Stream Sequences

The LFSR based stream generators can be thought as a type of finite state machines

and since any finite-state machine produces a sequence that is eventually periodic, we can

from now on assume that the binary key stream sequence has a period P. For example, if

we have a periodic sequence with period P like s1, s2, ..., sP then each element of the

sequence repeats itself after P elements as: si = si+P for Pi ≤≤1 .

In previous chapter, it is mentioned that a maximal length LFSR with n bits length

has a period of 2n-1. Also, an LFSR can obtain maximal period if it feedback function is a

primitive polynomial. Although algebraically analyzing of LFSRs is simple, mathematical

modeling and expression for some LFSR based clock-controlled generators is not an easy

matter such as mutual clock-controlled stream ciphers. In the following subsections, we

 27

will give period expressions for some clock-controlled generators and these expressions

will be used in period evaluation of ANER-H and CSDS in Chapter 5.

3.1.1. Period of a Basic Clock-controlled Generator

In this part, our basic clock controlled generator is consisted of two LFSRs denoted

as CR and GR. The CR is the control register which controls the clocking of the second

register and the GR is the generator register which is responsible for generating key stream

bits. Let the period of the CR be λ, and GR be a maximal length register with length m and

period PGR. Also, the GR generates sequence of 0}{ ≥= iibb and the CR produces sequence

of integers 0}{ ≥= iiaa , not necessarily to be binary . The stream cipher works as follows:

In each clock cycle, the GR is clocked according to the value of ia . For example if

....}1,3,2{=a , then GR is clocked twice in the first cycle, three times in the following,

once in the next and so on. After each clocking of GR, the output of GR becomes the key

stream bit as shown in Figure 3.1. Let us continue on the example: If the GR outputs the

sequence ...}0,1,1,0,1,1,0,0,1{=b , the key stream sequence, z, becomes as z={0,0,1…},

since it is clocked 2, 3, 1 and so on according to the sequence}1,3,2{=a . So, the key

stream is produced as: Firstly, the initial key stream is z(0) = b(a0). After output z(t) has

been produced, the CR determines the nonnegative integer a(t) and the GR is clocked a(t)

Figure 3.1. The basic clock-controlled generator

times. Next, it produces the next output z(t+1). Lastly, the CR is clocked once and become

ready for the next iteration. This operation can be formulated as below:

 0for ,)()(
0

≥= ∑
=

 tabtz
t

i

i (3.1)

 28

In fact, z is the ‘*’marked bits of the sequence b as shown in Figure 3.2. Thus the key

stream sequence is the decimated sequence of GR output b with depending on CR

sequence a .

Figure 3.2. Decimated sequence of GR output b

The period of such a system can be shown in terms of GR and CR parameters. Let S

denote the summation of clockings of GR in CR’s period duration which is λ. Then S can

be expressed as:

1

0
∑

−

=

=
λ

k

kaS (3.2)

In [26], it is shown that the key stream sequence produced by such a generator can

have a maximum period as Pz:

),gcd(GR

GR

z
PS

P
P

λ
= (3.3)

According to [26], the generator can reach this limit, if one of two conditions are

satisfied:

• Degree m of f(x) is prime and S is not a multiple of
)1,gcd(−qP

P

GR

GR , where f(x) is

the feedback function of GR over GF(q).

• f(x) is a primitive polynomial and 2/),gcd(m

GR qPS ≤ .

For our case, the feedback function is defined over GF(2), so q = 2. To make the

subject clearer, let us give two examples, one violates the conditions and the other satisfies.

 29

3.1.1.1. Example 1. Let the GR have a primitive feedback polynomial over GF(2) as

1xx)(4 ++=xf . Also, the CR produces the sequence ,...}3,2,3,2{}3,2{ == ∞a with a

period of two, so λ=2. Since the GR has a primitive feedback polynomial and {1,1,1,1} as

its initial state, it outputs the sequence ∞= }0,1,0,1,1,0,0,1,0,0,0,1,1,1,1{b with a period of 15.

When we decimate sequence b according to a , we obtain the key stream sequence as

∞= }1,0,1{z . As can be seen the period of the sequence is 3. If it satisfied one of the two

conditions given above, it would have a period according to (3.3). For this example, S is 5

and PGR is 15, m, the degree of f(x), is 4 and q is 2 due to f(x) is defined over GF(2) . From

here, 5)15,5gcd(),gcd(==GRPS which exceeds q
m/2=4. Thus, the second condition is not

satisfied, although f(x) is a primitive polynomial. When we look at whether or not first

condition is met, we can see that the degree m of f(x) is not a prime number, though S is not

a multiple of 15
)1,gcd(

=
−qP

P

GR

GR . So, first condition is also not satisfied. If one of these

two conditions were satisfied, the period would be 6
5

15*2

),gcd(
===

GR

GR

z
PS

P
P

λ
.

However, a sequence can have the maximum period, although neither of the two

conditions is met. Therefore we can say that, satisfaction of one of the two conditions

guarantees the maximum period given in (3.3), but they are not the necessary conditions.

For example, let the CR sequence be ,...}2,3,2,3{}2,3{ == ∞a , no other thing changes.

Now the key stream sequence becomes as ∞= }1,1,1,0,0,1{z which has period of 6. As can

be seen the S value and the feedback polynomial are not changed, so still two conditions

are not met; but now the sequence has the maximum period as 6.

3.1.1.2. Example 2. For this example, the GR have a feedback polynomial over GF(2) as

1xxx)(23 +++=xf . The clock control register CR generates the sequence

...}1,3,1,2,1,3,1,2{}1,3,1,2{ == ∞a with a period of 4, so for this case λ=4. The GR begins

with the state {1,1,1,1} and produces the sequence ∞= }1,1,0,0{b with a period of 4, so PGR

is 4. When we decimate sequence b according to a , the key stream sequence becomes as

∞= }0,1,0,1,0,0,0,0,1,0,1,0,1,1,1,1{z . As can be seen the period of the sequence is 16. For this

example; S value is 7, m the degree of f(x) is 3, and 1)4,7gcd(),gcd(==GRPS . The

 30

feedback polynomial of the GR f(x) is not a primitive polynomial, so the second condition

does not hold. On the other hand, the degree m of f(x) is prime and S is not a multiple of

4
)1,gcd(

=
−qP

P

GR

GR . Thus, the first condition holds and by using (3.3) we get the

maximum period of the sequence as 16 which agrees with observed period.

3.1.2. Period of Alternating Step(r,s) Generator

In [27], a new stream generator named as Alternating Step(r,s) Generator has been

introduced. This generator is consisted of three FSRs denoted as A, B, C. The first register

has a length of L1 and produces a de Bruijn sequence, which is defined in Section 2.3.1, of

period 2L1. The registers B and C are maximal length-LFSRs with length of L2 and L3; so

with periods of 2L2-1 and 2L3-1 respectively. The generator works as follows: If the output

of register A is 1, then B is clocked r times and C is not clocked. However, if the output of

register A is 0, then C is clocked s times and B is not clocked. The XOR of outputs of B

and C sets the key stream bit as shown in Figure 3.3.

The register A generates exactly 2L1-1 ones and zeros in its period 2L1 which is

denoted as PA. That means, B is clocked r 2L1-1 times and C is clocked s 2L1-1 times. If SB

represents the summation of clockings of B in PA duration and SC represents the

summation of clockings of C, then we obtain the following equations:

 2 11L rSB

−= (3.4)

 2 11L
sSC

−= (3.5)

Let PB and PC denote the periods of B and C respectively. Also it can be easily

computed that gcd(SB, PB)=gcd(r 2L1-1, PB)= gcd(r, PB) and gcd(SC, PC)=gcd(s 2L1-1, PC)=

gcd(s, PC). Let us firstly find the period of decimated version of output of B, defined as

PDB, ignoring existence of C. If gcd(r, PB)=1, by using (3.3), one can obtain the value for

the period as:

 31

)12(2 L2L1 −== BADB PPP (3.6)

By making the same assumptions for C, assuming gcd(s, PC)=1, and ignoring

existence of B, it can be obtained that the period of the decimated version of sequence of C

defined as PDC is:

)12(2 L3L1 −== CADC PPP (3.7)

If gcd(L2,L3)=1, gcd(r, PB)=1 and gcd(s, PC)=1, the period of the key stream

sequence represented as Pz will be lcm(PDB,PDC), where lcm(a,b) stands for the least

common multiplier of a and b. By using (3.6) and (3.7), the period of the key stream

sequence is found as:

)12)(12(2),(lcm L3L2L1 −−=== CBADCDBz PPPPPP (3.8)

Figure 3.3. The alternating step(r,s) generator

3.1.3. Period of LILI Key Stream Generator

The LILI key stream generator is a simple and fast key stream generator that uses

two binary LFSRs and two functions to produce a pseudorandom binary key stream

sequence as shown in Figure 3.4 [28]. The first register represented as LFSRc controls the

clocking of the second register which is LFSRd. The second register gives input bits to

nonlinear function fd that generates key stream bits. LFSRc is a regulary clocked register

that gives k bits of inputs to the function fc which determines how many times the LFSRd is

 32

Figure 3.4. The LILI key stream generator

clocked. This function outputs c(t) which is an integer such that }2,,2,1{)(ktc L∈ . The

function fc is a bijective mapping }2,,1{}1,0{ kk
L→ , thus the distribution of integers c(t) is

close to uniform. fc can be expressed as: k

k

kcf x2x2x1)x,,x,x(1
2121

−++++= KL ,

where ‘x’s are the input bits that come from LFSRc. At each instant firstly c(t) is computed

by fc and then LFSRd is clocked c(t) times. Key stream generation is realized by the

function fd which takes n bits of inputs from the LFSRd and using its nonlinear

characteristics produces one key stream bit.

Let Lc and Ld denote the length of the registers LFSRc and LFSRd respectively. If g(t)

represents the output of regularly clocked LFSRd with nonlinear function fd and z(t) stands

for the key stream sequence of LILI system, then z(t) can be expressed as:

∑
=

=
t

i

icgtz
1

))(()(, where g() is the LFSRd sequence. Moreover, let Pc, Pd, and Pz denote the

periods of LFSRc, LFSRd and z(t) respectively. In [28], it is assumed that LFSRc and

LFSRd have primitive feedback polynomials, so 12 −= cL

cP , 12 −= dL

dP . If Sd represents

the summation of clockings of LFSRd in Pc duration, one can evaluate that

1)12(2 1 −+= − kL

d
cS . According to [28]; if Pd is a prime and fd is not a constant function

or if fd is balanced and Sd is relatively prime to Pd, then the period of the output sequence z

is given by:

)12)(12(−−== dc LL

dcz PPP (3.9)

 33

3.2. Linear Complexity of Generated Key Stream Sequences

The linear complexity of a sequence kssss L,, 21= ∈ Fq, represented L(s) as given in

Section 2.1, is the length of shortest LFSR, defined over ∈ Fq, that generates the same

sequence. If s is the zero sequence s=0,0,…, then L(s)=0 and if no LFSR generates s, then

L(s)= ∞. The linear complexity of a sequence can be determined with the Berlekamp-

Massey algorithm [11] which finds the feedback function of the shortest LFSR given at

least 2L(s) symbols. Since a pure LFSR has low linear complexity as stated in Section 2.1,

it can not be a suitable stream generator design. For example, a 100 bit maximal length

LFSR has a high period of 2100-1, however by using the Berlekamp-Massey attack, its

known 200 bits will be enough to find the coefficients of feedback polynomial that

produces the same sequence.

Considering the sequence s given above, let LN denote the linear complexity of the

subsequence s
N = s0, s1,…,sN-1, for 0≥N . The sequence L1, L2, is called the linear

complexity profile of s [2]. The linear complexity profile of a sequence can be evaluated

by using the Berlekamp-Massey algorithm. The expected linear complexity of a random

sequence should closely follow the line L = N/2, where L is the linear complexity profile.

Of course, that does not mean that a sequence is random if its linear complexity profile

follows the line L = N/2. The linear complexity profile indicates the manner in which the

complexity changes while the bits are being processed.

In the following subsections, we will give linear complexity bounds and expressions

for some clock-controlled generators.

3.2.1. Linear Complexity of the Stop and Go Generator

The basic clock-controlled generator is described in Section 3.1.1. For this type, if ai

takes on the values of 1 and 0, then this generator becomes the arrangement of a stop and

go generator described in [29]. Let us assume the length of the register CR is n and it has a

primitive feedback polynomial. Since ai takes the value of 1 2n-1 times in period of the CR

as λ, S denoting the summation of clockings of GR in CR’s period becomes S=2n-1. The

period of the GR is given Section 3.1.1 as PGR=2m -1, where m is the length of GR. Now

 34

the period of the sequence from (3.3) becomes multiplication of the two individual periods

as GRz PP λ= , since gcd(S, PGR)=gcd(2n-1, 2m -1) = 1. For the particular case when n=m,

λ = PGR and the linear complexity of the key stream sequence has its largest possible value

which is n(2n -1).

3.2.2. Linear Complexity of the Alternating Step(r,s) Generator

The alternating step(r,s) generator is described in Section 3.1.2. The linear

complexity of a purely periodic sequence is equal to the degree of its minimal polynomial.

The minimal polynomial is the feedback polynomial of the shortest LFSR that can generate

the given sequence. Using the same notations of Section 3.1.2, we can give the following

the notations: Firstly let us assume that the register C is ignored and key stream is the

decimated version of output of B. If gcd(r, PB)=1, then the minimal polynomial of the

sequence is of the form I(x)
β , where 1L11L 22 ≤<− β and I(x) is an irreducible polynomial of

degree L2. In particular, the linear complexity of the sequence, LCB, becomes as

2L22)L2(1L11L ≤<−
BLC . The same assumptions and ignorance of B can be made for the

linear complexity expression of the sequence of register C. For that case it can be written

that 3L23)L2(1L11L ≤<−

CLC , if gcd(s, PC)=1. Finally, if gcd(L2,L3)=1, gcd(r, PB)=1 and

gcd(s, PC)=1, the linear complexity of the key stream sequence represented as LC will be:

)3L(L22)3L)(L22(1L11L +≤<+− LC (3.10)

The proofs of the statements mentioned above have been given in [27].

3.2.3. Linear Complexity of the LILI Stream Generator

In Section 3.1.3, the description of LILI stream generator has been given, and for this

section also the same notations are valid. In [30], the upper bound on the linear complexity

of irregularly decimated maximum-length sequences is given. The lengths of the LFSRs

are represented as Lc and Ld and their periods are denoted as Pc, Pd. When a maximum-

length sequence of period Pd is non-uniformly decimated by means of a decimating

sequence of period Pc, if Sd represents the summation of clockings of LFSRd in Pc duration,

 35

then the decimated sequence has a maximum linear complexity of Ld Pc, only if the

multiplicative order of 2 modulo Pd / gcd(Pd ,S) is equal to Ld. Notice that if gcd(Pd ,S)= 1,

this condition will be satisfied. According to [30]; it has been shown that if the decimating

sequence is randomly chosen, then the probability that maximum linear complexity is

obtained can be made arbitrarily close to one for appropriately chosen Ld and Pc. For the

LILI stream generator, the key stream bit is not exactly a pure decimation of output of

LFSRd; a nonlinear filter is also used to generate key stream bits. Thus, this effect has to be

considered in linear complexity computation. For a non-uniformly decimated nonlinearly

filtered sequence can have a maximum linear complexity of cd PL
' where '

dL is related to

maximum linear complexity of a regularly clocked nonlinear filtered sequence. This term

depends on the order of nonlinear function and the bit positions of the register which are

taken as inputs to the nonlinear function. This relation can be expressed as 








m

Ld , where m

is the nonlinear algebraic order of the nonlinear function, as the lower bound of the linear

complexity. For the LILI key stream generator, it is presented that the linear complexity of

the sequence is lower bounded by c

d
P

m

L








, also lower bounded by Ld Pc.

3.3. Statistical Properties of Generated Key Stream Sequences

A stream generator can not be regarded as a suitable stream cipher for security

applications unless its generated key stream sequences possess certain randomness

properties. A binary key stream sequence should be a realization of independent identically

distributed random variables with the parameter equal to 0.5. As the key stream deviates

from these distributions, it does not seem as a random look like sequence and an attacker

can use this weakness to obtain future key stream bits.

Golomb defined a PN-sequence (pseudo-noise sequence) to be a binary sequence of

period P that satisfies the three randomness postulates [31]. Actually, they were one of the

first attempts to show some necessary conditions for a periodic pseudorandom sequence to

look random. It is emphasized that these conditions are far from being sufficient for such

sequences to be considered random [2]. Before giving the three postulates, it seems more

sensible to give the definitions of run, gap and block. A run of a sequence is a subsequence

 36

of the sequence consisting of consecutive 0’s or consecutive 1’s which is neither preceded

nor succeeded by the same symbol. A run of 0’s is called a gap and a run of 1’s is called a

block. The three postulates are given below for:

• The number of 1’s differs from the number of 0’s by at most 1 in a cycle.

• At least half the runs have length 1, at least one-fourth have length 2, at least one

eighth have length 3, etc., as long as the number of runs so indicated exceeds 1.

Moreover, for each of these lengths, there are (almost) equally many gaps and

blocks [2].

• The out-of-phase of the autocorrelation should be constant.

These randomness postulates apply to a complete cycle of a key stream sequence.

However, in most stream ciphers systems a complete cycle of the enciphering sequence

may never be used. Thus; although the global properties, properties in a complete cycle,

should not be discarded, local randomness properties, which are the properties of

subsequences shorter length than the whole period, can be more important. Usually, testing

the local randomness of a key stream sequence can be realized by using some major

statistical tests.

In this thesis, two important test suites which are FIPS 140-2 and NIST Statistical

Test Suite [24, 25], are applied to key stream sequences generated by the proposed stream

ciphers ANER-H and CSDS. In the following subsections the details of these tests will be

given.

3.3.1. FIPS 140-2

FIPS 140-2 test suite is consisted of four statistical tests that are monobit test, poker

test, runs test and long run test for randomness. For each trial of the test, a sequence of

length 20000 bits are produced from the stream generator. Then the four tests mentioned

above are applied to this sequence. If any of the tests fail, then the sequence of the

generator fails the test. The descriptions of the tests are given below for a sequence of

length 20000 bits.

 37

3.3.1.1. Monobit Test. By means of this test, it is determined that whether or not the

number of 0’s and 1’s in the sequence are approximately equal as would be expected for a

random sequence. Let X1 denote the number of 1’s in the sequence, if the inequality

9725 < X1 < 10275 is satisfied, the sequence passes this test; otherwise it fails.

3.3.1.2. Poker Test. The purpose of poker test is determining whether the sequences of

length 4 bits each appear approximately the same number of times in the stream, as would

be expected for a random sequence. It can be done as follows: Firstly the 20000 bit stream

is divided into 5000 contiguous 4 bit segments. Then compute the number of each 4-bit

segment in the sequence denoting as in for 150 ≤≤ i . At the last step, calculate the term

kn
k

X
i

i −







= ∑

=

15

0

2
4

2

2
, where k=20000/4=5000. If 2.16 < X2 < 46.17 is satisfied, sequence

passes this test.

3.3.1.3. Runs Test. This test is used to determine whether the number of runs (of either

zeroes or ones) of different lengths in the sequence as expected for a random sequence. It

is done as: A run is defined as a maximal sequence of consecutive bits of either all ones or

all zeros that is part of the 20,000 bit stream. The occurrences of runs of all lengths in the

stream sequence should be counted and stored. If the number of occurrences for each

length is in the interval given in Table 3.1, then the sequence passes the test, otherwise it

fails.

Table 3.1. Passing intervals for the runs test

Length of run Required interval

1 2343-2657

2 1135-1365

3 542-708

4 251-373

5 111-201

6 111-201

 38

3.3.1.4. Long Run Test. A long run is defined to be a run of length 26 or more. So, the

long run test is passed if there are no runs of length 26 or more.

3.3.2. NIST Statistical Test Suite

The NIST Test Suite is a statistical package consisting of 16 tests that were

developed to test the randomness of (arbitrarily long) binary sequences produced by either

hardware or software based cryptographic random or pseudorandom number generators

[25]. These tests determine whether or not a variety of different types of non-randomness

exists in a sequence. The 16 tests are; The Frequency (Monobit) Test, Frequency Test

within a Block, The Runs Test, Test for the Longest-Run-of-Ones in a Block, The Binary

Matrix Rank Test, The Discrete Fourier Transform (Spectral) Test, The Non-overlapping

Template Matching Test, The Overlapping Template Matching Test, Maurer's "Universal

Statistical" Test, The Lempel-Ziv Compression Test, The Linear Complexity Test, The

Serial Test, The Approximate Entropy Test, The Cumulative Sums (Cusums) Test, The

Random Excursions Test and The Random Excursions Variant Test. For these tests, firstly

a P-value, which is the probability that a perfect random number generator would have

produced a sequence less random than the sequence that was tested, given the kind of non-

randomness assessed by the test, is computed. Then according the specified bound for P-

value by the user, the sequence passes the test or fails. If a P-value for a test is determined

to be equal to 1, then the sequence appears to have perfect randomness. On the other hand,

a P-value of zero means that the sequence seems to be completely nonrandom. A

significance level denoting as α can be chosen for the tests. If P-value < α then the

sequence fails the test. For example if α chosen as 0.001, this means P-value < 0.001 is

required for a failure; thus the sequence would be considered to be non-random with a

confidence of 99.9 %. Also the test with a P-value < 0.01 indicates that the sequence is

non-random with a confidence of 99%. In this thesis, α is chosen as 0.01 for the tests

applied on the stream sequences generated by ANER-H and CSDS. The descriptions and

their use of purposes but not their computations are explained in the following parts.

3.3.2.1. The Frequency (Monobit) Test. The purpose of this test is to determine whether

the number of ones and zeros in a given sequence are approximately the same as would be

 39

expected for a random sequence. For a random look like sequence it is expected that the

ratio of number of ones to number of zeros should be close to 1/2.

3.3.2.2. Frequency Test within a Block. By means of this test, it can be evaluated whether

the frequency of ones in an M-bit block is approximately M/2, as would be expected for a

random sequence. For a sequence of length n and N=n/M, where N is number of non-

overlapping M blocks, it is recommended that to choose M and N values as 20≥M , M >

0.01n and N < 100.

3.3.2.3. Runs Test. The purpose of the runs test is to determine whether the number of

runs, whose definition has been given in Section 3.3, of ones and zeros of various lengths

is as expected under an assumption of randomness. In particular, this test determines

whether the oscillation between such zeros and ones is too fast or too slow.

3.3.2.4. Test for the Longest-Run-of-Ones in a Block. This test focuses on the longest run

of ones within M-bit blocks. The purpose of this test is to determine whether the length of

the longest run of ones within the tested sequence is approximately the same as with the

length of the longest run of ones that would be expected in a random sequence. Notice that

an irregularity in the expected length of the longest run of ones implies that there is also an

irregularity in the expected length of the longest run of zeroes. Therefore, only a test for

ones is necessary.

3.3.2.5. The Binary Matrix Rank Test. The purpose of this test is to check for linear

dependence among fixed length substrings of the original sequence. It focuses on the rank

of disjoint sub-matrices of the entire sequence.

3.3.2.6. The Discrete Fourier Transform (Spectral) Test. The purpose of this test is to

detect periodic features, i.e., repetitive patterns that are near each other, in the tested

sequence that would indicate a deviation from the assumption of randomness. The

intention is to detect whether the number of peaks exceeding the 95 % threshold is

significantly different than 5 % [25].

 40

3.3.2.7. The Non-overlapping Template Matching Test. The purpose of this test is to

detect generators that produce too many occurrences of a given non-periodic pattern. For

this test an m-bit window block is used to search for a specific m-bit pattern. If the pattern

is not found, the window slides one bit position. If the pattern is found, the window is reset

to the bit after the found pattern, and the search resumes.

3.3.2.8. The Overlapping Template Matching Test. This test focuses on determining the

number of occurrences of specified target strings. Both this test and the Non-overlapping

Template Matching test of Section 3.3.2.7 use an m-bit window to search for a specific m-

bit pattern. As with the test in Section 3.3.2.7, if the pattern is not matched in the sequence,

the window slides one bit position. The difference between this test and the non-

overlapping template matching test is that when the pattern is obtained, the window slides

only one bit before resuming the search.

3.3.2.9. Maurer's "Universal Statistical" Test. The main idea behind Maurer’s universal

statistical test is that it should not be possible to significantly compress the output sequence

of a random generator, without loss of information. So it tests whether or not the sequence

can be significantly compressed without loss of information. A significantly compressible

sequence is evaluated as a non-random sequence.

3.3.2.10. The Lempel-Ziv Compression Test. The purpose of the test is to determine how

far the tested sequence can be compressed. This test compresses the candidate random

sequence using the Lempel-Ziv algorithm presented in [32]. If the reduction is statistically

significant when compared to a theoretically expected result for a random sequence, then

the sequence is evaluated as a non-random sequence.

3.3.2.11. The Linear Complexity Test. This test uses linear complexity, which is defined

in Section 2.1, to test for randomness. The purpose of this test is to determine whether or

not the sequence is complex enough to be considered random. Random sequences are

characterized by longer LFSRs. An LFSR that is too short means that the sequence is non-

random.

 41

3.3.2.12. The Serial Test. This test is based on testing the uniformity of distributions of

patterns of given lengths. In other words, it tests to determine whether the number of

occurrences of the 2m
 m-bit overlapping patterns is approximately the same as would be

expected for a random sequence. Random sequences have uniformity; that is, every m-bit

pattern has equal probability for appearing in the sequence.

3.3.2.13. The Approximate Entropy Test. The purpose of the test is to compare the

frequency of overlapping blocks of two consecutive/adjacent lengths (m and m+1) against

the expected result for a random sequence.

3.3.2.14. The Cumulative Sums Test. The focus of this test is the maximal excursion (from

zero) of the random walk defined by the cumulative sum of adjusted (-1, +1) digits in the

sequence. The purpose of the test is to determine whether the cumulative sum of the partial

sequences occurring in the tested sequence is too large or too small relative to the expected

behavior of that cumulative sum for random sequences. This cumulative sum may be

considered as a random walk. For a random sequence, the excursions of the random walk

should be near zero. For certain types of non-random sequences, the excursions of this

random walk from zero will be large [25].

3.3.2.15. The Random Excursions Test. The focus of this test is the number of cycles

having exactly K visits in a cumulative sum random walk. It is based on considering

successive sums of the binary bits (plus or minus simple ones) as a one-dimensional

random walk. The test detects deviations from the distribution of the number of visits of

the random walk to a certain \state," i.e., any integer value. So the purpose of this test is to

determine if the number of visits to a particular state within a cycle deviates from what one

would expect for a random sequence.

3.3.2.16. The Random Excursions Variant Test. The focus of this test is the total number

of times that a particular state is visited (i.e., occurs) in a cumulative sum random walk.

The purpose of this test is to detect deviations from the expected number of visits to

various states in the random walk.

 42

4. DESCRIPTION OF PROPOSED STREAM CIPHERS

In this section, the designs of two new binary stream cipher algorithms suitable for

high speed communication applications, referred to as ANER-H and CSDS (Clock-

controlled Stream cipher with Dynamic S-box Selective) are described. ANER-H stream

cipher is a simple and fast stream cipher that consists of four binary LFSRs and uses a 128

bit secret key with a 208-bit initial vector which can be public. The CSDS cipher consists

of four LFSRs and uses a 128 bit secret key K with a 136 bit initialization vector (IV). The

CSDS generates four bits about 2.5 clocking of each shift register, where as ANER-H one

bit. Both of the designs satisfy minimal security requirements (long period, high linear

complexity, good statistical properties) and provide high resistance to currently known

attacks. The main idea behind ANER-H is its characteristic mutual clock control

mechanism, while the core of CSDS is the clock-controlling mechanism for the shift

registers and the S-boxes that are selected dynamically.

In Section 4.1, a detailed description of ANER-H is given and Section 4.2 discusses

the design of CSDS stream cipher.

4.1. The Stream Cipher ANER-H

The ANER-H stream cipher is a simple key stream generator that uses four binary

LFSRs to produce a pseudorandom binary key stream sequence as shown in Figure 4.1.

This stream cipher has been designed from ideas around the clock controlled generator [2].

Key stream sequence is generated according to the bits come from the three LFSRs

(generator LFSRs) of lengths 61, 127, 89 bits denoted by R2, R3 and R4 respectively. The

job of the remained LFSR, denoted as R1, is to control the clocking of R2, R3 and R4.

Length of the R1 is 59 bits, so LFSRs of ANER-H is totally 336 bits length.

 43

Figure 4.1. The ANER-H stream cipher; R1, R2, R3 and R4 give input to the Clock

Controlling Mechanism and R2, R3 and R4 generate the key stream bits

R1 is a regularly clocked LFSR and it has a primitive feedback polynomial as:

 g(x) = x59 +x52 +x44 +x36 +x29 +x22 +x14 +x7 +1 (4.1)

R1 gives two bit-input to the each of three clock control functions which are denoted

as fC2, fC3 and fC4. These functions are given by:

 2)37(1)19(12))37(1),19(1(2 ++= RRRRfC (4.2)

 2)49(1)27(12))49(1),27(1(3 ++= RRRRfC (4.3)

 2)56(1)32(12))56(1),32(1(4 ++= RRRRfC (4.4)

where R1(i) represents the i’th tap bit of R1 at time instant t. fC2, fC3 and fC4 give integer

numbers that are the numbers of clocking of R2, R3 and R4 at time t respectively. If Ci(t)

 44

represents the number of clocking for i’th register according to fCi(t) at time t, then

}5,4,3,2{)(∈tCi . As can be seen from (4.2), (4.3) and (4.4), the distribution of the integers

Ci(t) is close to uniform. If the clocking mechanism of the generator were like that, each of

R2, R3 and R4 would be clocked at least twice and at most five times between the

generations of two consecutive key stream bits according to specified bit values of R1.

However for ANER-H, clocking mechanism also depends on R2, R3 and R4 as follows:

For each key stream bit generation majority of k’th clocking tap bit of R2, R3 and R4, T2k,

T3k and T4k respectively, is calculated and only those registers whose clocking tap value is

the same as majority result are clocked Ci(t) times. If there exists a register whose clocking

tap value is not equal to majority, it is clocked once. So each of R2, R3 and R4 is clocked

at least once and at most five times before each key stream bit is produced. The tap bit

locations of the registers are shown in Fig. 4.2. The value of ‘k’ is determined according

the result of 4R1(23)+2R1(34)+R1(52). For example, let the R1(23), R1(34) and R1(52)

be 0, 1 and 1 respectively. Then ‘k’ is evaluated as 3. Thus, for this case clocking tap bits

of R2, R3 and R4 become T23, T33 and T43. Majority of these clocking tap bits is

calculated and two or three registers whose clocking tap value is the same as majority

result are clocked Ci(t) times. By using this clocking mechanism non-linearity of the

system is increased and stop and go clocking mechanism which may permit attacks is

avoided.

Key stream generation of ANER-H is simple; each key stream bit z(t) is generated by

XOR’ing the last bits of R2, R3 and R4; 60’th, 126’th and 88’th bits respectively.

Following the bit generation, clockings of R1, R2, R3 and R4 are done. The operation of

the stream cipher is as follows: Firstly in the initialization part, 128 bit secret key K is

mixed with 208 bit initial vector to form the initial states of LFSRs. Next, one key stream

bit is produced by XOR’ing last bits of R2, R3 and R4. After that, C2(t), C3(t) and C4(t)

values (how many times each register is clocked) are obtained according to appropriate tap

values of R1. Then, which clocking tap bits of R2, R3 and R4, used in majority rule, are

determined with depending on specified bits of R1. After majority of the clocking tap bits

T2k, T3k and T4k is calculated and the registers whose clocking tap value agrees with

majority result are clocked Ci(t) times. If clocking tap value of a register is not same as

majority result, it is clocked once. Finally R1 is clocked once. Next key stream bit is

generated and the operation continues in this fashion. The maximum allowed length of the

 45

Figure 4.2. Clocking tap bit locations of the generator registers R2, R3 and R4

running key stream sequence set to 254 bits, and then the cipher must be rekeyed

(reinitialized). Producing a key stream sequence of length greater than 254 bits in practice is

quite unlikely to happen.

R2, R3 and R4 have primitive feedback polynomials as:

 LFSR R2: g(x) = x61 +x53 +x45 +x38 +x30 +x23 +x15 +x7 + 1 (4.5)

 LFSR R3: g(x) = x127 +x103 +x96 +x87 +x66 +x51 +x41 +x35 +x23 +x3 + 1 (4.6)

 LFSR R4: g(x) = x89 +x83 +x80 +x55 +x53 +x42 +x39 +x + 1 (4.7)

4.2. The Stream Cipher CSDS

CSDS stream cipher is a simple and fast key stream generator which has four binary

LFSRs denoted by R1, R2, R3 and R4 respectively as shown in Fig. 4.3. According to their

functions in the algorithm, these four LFSRs can be categorized into three classes; clock-

controlling, S-box selection and key stream generation. R1 has a length of 61 bits and

controls the clocking of the other three registers. In each clock cycle, it computes the

functions fC2, fC3 and fC4, each of those determines how many times R2, R3 and R4 are

clocked respectively as given below:

 1)38(1)8(12))38(1),8(1(2 ++= RRRRfC (4.8)

 46

 1)56(1)22(12))56(1),22(1(3 ++= RRRRfC (4.9)

 1)42(1)16(12))42(1),16(1(4 ++= RRRRfC (4.10)

Let Ci(t) represent the number of clocking of Ri according to fCi(t) at time t for

}4,3,2{∈i . As it can be seen from (4.8), (4.9) and (4.10), }4,3,2,1{)(∈tCi whose

distribution of elements is close to uniform. So, each of R2, R3 and R4 is clocked at least

once and at most four times in each clock cycle. Following the clocking of the R2, R3 and

Figure 4.3. The CSDS stream cipher; R1 gives input to the Clock Controlling Unit and R2,

R3 and R4 generate the key stream bits within the chosen S-boxes.

R4, R1 is clocked once. In key stream generation CSDS uses 4x16 S-boxes of s5DES that

are given in Table A.1 of Appendix A [33]. In each clock cycle, R4 decides which S-boxes

are used by R2 and R3, according to the values of the functions fS2 and fS3 :

 1)24(4R)12(4R2)6(4R42 +++=Sf (4.11)

 1)29(4R)17(4R2)10(4R43 +++=Sf (4.12)

 47

(4.11) and (4.12) determines the orders of S-boxes to use among eight S-boxes for

R2 and R3 respectively. For example; if fS2 is 4 and fS3 is 7, then R2 uses S-box S4 and R3

uses S-box S7 in producing the key stream. R4 has a length of 31 bits and it is irregularly

clocked depending on the bits of R1.

The remaining two LFSRs R2 and R3 whose lengths are 89 and 83 bits respectively

generate the key stream according to the S-boxes decided by R4 as follows: Let Sj

represent the selected S-box for R2 and Sk represent the S-box for R3 where j and k denote

the order of selected S-box for R2 and R3, so 81 ≤≤ j and 81 ≤≤ k . Sj uses six bits of

R2 and Sk uses six bits of R3 as input bits with respect to the row-column method shown in

Table 4.1. In this table, variables Sj_row and Sk_row save the computed results for row

decision of Sj and Sk respectively. In a similar fashion, Sj_column and Sk_column save the

computed values for column decision of Sj and Sk. Each of Sj_output and Sk_output keeps

the appropriate four bits output. The output of the S-boxes is XOR’ed and constructs four

bits of string. Another four bits of sequence is produced by combining the last two bits of

R2 and R3. The first two bits of the sequence come from last two bits of R3 and the

remained two bits of the sequence come from last two bits of R2. Then by XOR’ing the

two 4-bit sequences that are produced by the S-boxes and combination of last bits of the

two LFSRs, four bits of key stream is generated. In the following part, whole algorithm is

summarized:

• The functions fC2, fC3 and fC4 are computed according to the specified bits of R1.

• R2, R3 and R4 are clocked with respect to the results of fC2, fC3 and fC4.

• R1 is clocked once.

• fS2 and fS3 are evaluated according to the specified bits of R4; Sj and Sk are

determined.

• Each of Sj and Sk contributes four bits output by using appropriate bits of R2 and

R3; by XOR’ing them four bits of sequence is constructed.

• Another four-bit sequence is generated by combining the last two bits of R2 and R3

• By XOR’ing these two 4-bit sequences, 4 bits of key stream is generated.

 48

Table 4.1. S-Box row-column method

Sj_row = 2R2(26)+ R2(70)

Sk_row = 2R3(12)+ R3(32)

Sj_column = 8R2(6)+ 4R2(22)+2R2(46)+R2(64)

Sk_column = 8R3(21)+ 4R3(40)+2R3(3)+R3(61)

Sj_output = Sj(Sj_row)(Sj_column)

Sk_output = Sk(Sk_row)(Sk_column)

The maximum allowed length of the running key stream sequence is set to 258 bits.

Then the stream cipher must be rekeyed. In practice, generating a key stream sequence of

length greater than 258 bits is quite unlikely to happen. In the initialization process, CSDS

uses a 128 bit secret key K with a 136 bit initialization vector (IV). The contents of the S-

boxes are mixed by adding an integer to all of the elements of S-boxes in mod 16. The

value of this integer depends on the secret key K and the initialization vector (IV).

The primitive characteristics polynomials of the LFSRs used in the proposed CSDS

system are as follows:

 LFSR R1: g1(x) = x61 +x53 +x45 +x38 +x30 +x23 +x15 +x7 + 1 (4.13)

 LFSR R2: g2(x) = x89 +x83 +x80 +x55 +x53 +x42 +x39 +x + 1 (4.14)

 LFSR R3: g3 (x) = x83 +x72 +x61 +x51 +x41 +x30 +x20 +x10 + 1 (4.15)

 LFSR R4: g4 (x) = x31 +x27 +x23 +x19 +x15 +x11 +x7 +x3 + 1 (4.16)

 49

5. SECURITY OF THE CIPHERS

A suitable stream cipher should be resistant against different known-plaintext

attacks. In a known-plaintext attack, the cryptanalyst attempts to reproduce the whole key

stream or deduce the secret key somehow, from given samples of plaintext and the

corresponding ciphertext. Also for cryptographic applications, generated key streams must

provide some basic security requirements: large period, high linear complexity and good

statistics regarding the distribution of ones and zeroes in the key stream sequence.

Therefore in Section 5.1 and Section 5.2, we analyze the key stream properties of ANER-H

and CSDS respectively, considering the security requirements. Moreover, we attempt to

justify the security of the ANER-H and CSDS by investigating some known-plaintext

attacks on the stream ciphers under the assumption that the cryptanalyst knows the whole

internal structure of stream cipher in Section 5.3 and Section 5.4 respectively.

5.1. Key Stream Properties of ANER-H

5.1.1. Period and Linear Complexity

All LFSRs of the ANER-H stream cipher have primitive feedback polynomials, so

periods of R1, R2, R3 and R4 which are represented as P1, P2, P3 and P4 are 259-1, 261-1,

2127-1 and 289-1 respectively. Due to mutual clock control, it does not seem possible to

establish mathematical results about the period and linear complexity of the cipher.

However, we can give upper bounds for the period and linear complexity of the algorithm

with ignoring the mutual clock controlling effect. One can see that P2, P3 and P4 are

Mersenne Prime. Let Si represent sum of clockings of i’th register in P1 duration for

i ∈{2,3,4}. Since Si can not be a multiple of Pi and degree of the feedback polynomials of

R2, R3 and R4 are prime, we can make an analogy with alternating step (r,s) generator and

can use the equations from (3.4) to (3.8). Then, the period of the generated key stream

sequence z can be written as
)gcd()gcd()gcd(443322

4321

PSPSPS

PPPP
Pz = . Notice that, P2, P3 and

P4 are prime and Si can not be a multiple of Pi, so gcd(Si,Pi) =1. Therefore Pz becomes:

 50

 4321 PPPPPz = (5.1)

If we set the values of P1, P2, P3 and P4 in (5.1), period of the sequence z becomes

about 2336. It can be seen that, the period of the sequence is enough high by considering the

security requirements.

According [30]; since gcd(Pi, Si) =1 for i∈{2,3,4}, the period of the clock control

register becomes a multiplier in the upper bound on the linear complexity of the non-

uniformly decimated sequence. Also in [28], it is given that if the decimating sequence is

randomly chosen, then the probability that maximum linear complexity is obtained can be

made arbitrarily close to one for appropriately chosen generator register lengths and the

period of the clock control register. For ANER-H, the clock control register is R1 whose

period is 259-1. Thus; if LC denotes the linear complexity of the key stream sequence

generated by ANER-H, LC is very likely to lower bounded by 259-1. It is obvious that

linear complexity of the sequence is high enough considering the fact that about 260 known

plaintext bits must be intercepted in order to perform the Berlekamp-Massey attack [11].

Since the registers will be reinitialized with a different initial vector well before this

amount of data is generated, ANER-H is considered to be secure from such an attack.

5.1.2. Statistical Properties

Key stream sequence of the ANER-H stream cipher is investigated by using the

statistical tests of FIPS 140-2 and NIST Statistical Test Suite which are explained in

Section 3.3, to determine its randomness properties [24, 25]. The FIPS tests are based on

performing a pass/fail statistical test on 10000 sequences of 20000 bits each produced by

our proposed stream cipher. Also, autocorrelation test (Golomb’s 3rd postulate) is applied

to the stream sequences of ANER-H and result of one sequence is depicted in Figure 5.1.

As can be seen, there is no significant peak compared to the value at the origin. For the

NIST tests, 1000 keys for ANER-H cipher are randomly chosen to produce key streams of

length 106 bits. ANER-H passes FIPS 140-2 in proportion of 99.52%. For the ANER-H,

the generated sequences pass the NIST Tests with a significance level of α=0.01. The

spectral test result of a sequence is shown in Figure 5.2; as can be seen no more than 5% of

 51

the peaks surpass the 95% cutoff value, so the sequence passes the test. The statistical test

results of ANER-H are summarized in Table 5.1.

Figure 5.1. Autocorrelation test result of ANER key stream sequence

Figure 5.2. Spectral test result of ANER; dashed line represents cutoff value as

122.47

Table 5.1. The statistical test results of ANER-H

The Test Suite Success Rate

FIPS 140-2 99.52 %

NIST 99 %

 52

5.1.3. Throughput Rate

Each of R2, R3 and R4 does not agree with the majority result with a probability of

1/4 for a single key stream bit generation. Therefore, each of R2, R3 and R4 is clocked

once with a probability of 1/4. In other words, each of R2, R3 and R4 agrees with the

majority with a probability of 3/4. In this case, registers that agree with the majority are

clocked Ci(t) times where Ci(t)∈{2,3,4,5}. Since the distribution of the integers Ci(t) is

close to uniform, P(Ci(t) = j) ≈1/4 for j ∈{2,3,4,5}. So each of R2, R3 and R4 is clocked

with one of Ci(t) values with a probability of 3/4x1/4 =3/16. If di(t) represents the number

of clockings of i’th generator register at time t, di(t) ∈{1,2,3,4,5}, then expected value of

di(t) becomes:

 875.2
16

46
5

16

3
4

16

3
3

16

3
2

16

3
1

4

1
)}({ ==++++=tdE i

 (5.2)

So, on average each of generator LFSRs is clocked about 2.87 times per key stream

bit produced. The throughput rate is approximately 348.0875.2/1 ≈ of the rate at which

each generator LFSR is clocked. Reduced throughput relative to the LFSRs speed can be a

problem when fast data encryption is used and high throughput is required from the cipher.

For this problem, using multiple copies of the feedback function of each LFSR for each

possible value of di(t) can be a solution which is described in [34]. By means of this

method, 1 output bit per clock pulse can be achieved; however it results in a moderate cost

in hardware. Notice that if the clock is fast enough considering the required application, the

offered method may not necessary at all.

5.2. Key Stream Properties of CSDS

5.2.1 Period and Linear Complexity

All LFSRs of the CSDS have primitive feedback polynomials as given in (4.13),

(4.14), (4.15), (4.16) and the lengths of those registers denoted as L1, L2, L3 and L4 (61,

89, 83 and 31 bits) are prime numbers. If P1, P2, P3 and P4 represent the periods of the

registers R1, R2, R3 and R4, then they take the values 261-1, 289-1, 283-1 and 231-1

 53

respectively. Notice that, P1, P2 and P4 are Mersenne prime and P3 is relatively prime to

them. Let S represent sum of clocking of each register R2, R3 and R4 in P1 duration. R1

has primitive feedback polynomial, so any given stage of R1 takes the value 1 for 261/2

times and the value 0 for 261/2 -1 times over period P1. Therefore considering (4.8), (4.9)

and (4.10); each of R2, R3 and R4 is clocked once for 261/4-1 cases, clocked twice for 261/4

cases, three times for 261/4 cases and four times for 261/4 cases in P1 duration. Thus, the

value of S becomes: 125)432(2)12(605959 −=+++−=S . According to (3.4) and (3.8);

since S is not a multiple of P2 , P3 and P4 and the degrees of the primitive feedback

polynomials of R2, R3 and R4 are prime, the period of the key stream generator Pg can be

written as:

),gcd(),gcd(),gcd(432

4321

PSPSPS

PPPP
Pg = (5.3)

After Pg duration, the key stream generator repeats itself. One can see that

1),gcd(2 =PS and 1),gcd(4 =PS , because P2 and P4 are Mersenne prime and S is not a

multiple of P2 or P4. Notice that P3 is not a prime number, however we know that

)12,12gcd()12,125gcd(),gcd(83608360
3 −−=−−=PS . This term can be written as

112)12,12gcd()83,60(gcd8360 =−=−− . So period of the key stream generator reduces to:

 4321 PPPPPg = (5.4)

If we set the values of P1, P2, P3 and P4 in (5.4), the period of the generator becomes

)12)(12)(12)(12(31838961 −−−− , which is about 2264. In fact, we know that in each clock

cycle 4 bits are produced; so period of the key stream sequence is a multiple of Pg.

Therefore, the period of the sequence is enough high by considering the security

requirements.

According [30]; since 1),gcd(=iPS for }4,3,2{∈i , the period of the clock control

register become a multiplier in the upper bound on the linear complexity of the

nonuniformly decimated sequence. Also in [28], it is mentioned that if the decimating

 54

sequence is randomly chosen, then the probability that maximum linear complexity is

obtained can be made arbitrarily close to one for appropriately chosen generator register

lengths and the period of the clock control register. For CSDS, the clock control register is

R1 whose period is 261-1. Thus; if LC represents the linear complexity of the key stream

sequence generated by CSDS, LC is very likely to lower bounded by (261 -1) A, where A

denotes the effect of register lengths L2, L3, L4 and the substitution boxes in the linear

complexity LC. So if one considers Berlekamp-Massey attack [11] for CSDS, he needs to

intercept at least 262 known plaintext bits to realize the attack. Since registers of CSDS will

be reinitialized with a different initial vector, before this amount of key stream is

generated, CSDS is secure enough for such an attack.

5.2.2 Statistical Properties

In this subsection, key stream sequence of the CSDS stream cipher is investigated by

using the statistical tests of FIPS 140-2, NIST Statistical Test Suite and autocorrelation test

to determine its randomness properties. For FIPS 140-2, the test is based on performing a

pass/fail statistical test on 10000 sequences of 20000 bits each produced by CSDS stream

cipher (software implementation in C++ and MATLAB). CSDS passes FIPS 140-2 in

proportion of 99.62 %. For the NIST tests, 1000 keys for CSDS cipher are randomly

chosen to produce key streams of length 106 bits. Also the generated sequences pass the

NIST Tests with a significance level of α=0.01. The statistical test results of ANER-H are

summarized in Table 5.2. Such a result provides evidence that the tested sequences of

CSDS have certain characteristics of randomness. In addition, autocorrelation test and

spectral test results of one sequence of CSDS are depicted in Figure 5.3 and Figure 5.4

respectively.

Table 5.2. The statistical test results of CSDS

The Test Suite Success Rate

FIPS 140-2 99.62 %

NIST 99 %

 55

As can be seen, the autocorrelation is normalized to one at the origin and there is no

significant peak compared to the value at the origin and for the spectral test no more than

5% of the peaks surpass the 95% cutoff value. Thus, these tests support the hypothesis that

the CSDS stream cipher produces random-looking key stream sequences.

Figure 5.3. Autocorrelation test result of CSDS key stream sequence

Figure 5.4. Spectral test result of CSDS; dashed line represents cutoff value as

122.47

 56

5.2.3 Throughput Rate

Let di(t) represent the number of clocking of i’th generator register of CSDS at time

t, }4,3,2,1{)(∈td i for }3,2{∈i , then expected value of di(t) becomes:

 5.2
4

10
4

4

1
3

4

1
2

4

1
1

4

1
})({ ==+++=tdE i (5.5)

So on average each of generator LFSRs is clocked about 2.5 times and produces 4

bits in each cycle. The output rate of the stream cipher becomes 4/2.5=1.6 of the rate at

which each generator LFSR is clocked. Therefore CSDS can be considered as a fast key

stream generator. Alternatively, using multiple copies of the feedback function of each

LFSR for each possible value of di(t) can increase the output rate as described in [34].

5.3. Security of ANER-H

In cipher design, the most crucial point that a designer must consider is its resistance

against different attacks. Therefore, in this sub-section we consider a number of attacks

with respect to ANER-H stream cipher. These attacks are known-plaintext attacks

conducted under the assumption that the cryptanalyst knows the whole internal structure of

the generator.

5.3.1 Exhaustive Key Search

ANER-H has a key length of 128 bit, so there are 2128 possible keys which is

approximately 3 1038 keys. Therefore, such an attack appears impractical.

5.3.2 Time-Memory Trade-off Attacks

Golic [17] and Babbage [35] independently described a time-memory trade-off

attack to stream cipher. This attack has complexity T = D = N/M and P = M= N/D, where

T is the time for the actual attack stage, D is the amount of observed key stream, N is total

number of solution space for the LFSRs’ internal state, M is the amount of required

 57

memory, and P is the time for the preprocessing stage of the attack. Also a new type of

time-memory trade-off attack which has the trade-off formula M
2
TD = N

2
/4, has been

described by I. Erguler and E. Anarim [36]. In [37], A. Biryukov and A. Shamir presented

an improved time-memory trade-off attack as biased birthday attack. They presented

techniques for saving memory, offering a more flexible tradeoff M
2
TD

2
 = N

2 for

any NTD ≤≤2 . These kinds of attacks can be practical if the state space of the stream

cipher is small, for example A5/1 GSM stream cipher [8]. We note that these kinds of

attacks do not seem to be applicable to ANER-H, because the solution space N is enough

large (2336). Let us consider Biryukov’s trade-off: if we choose M=240 (about terabytes),

equation M
2
TD

2
 = N

2 becomes TD
2
 = 2592. So time-memory trade-off attacks not seem

practical for the ANER-H stream cipher, although an attacker may have large amount of

known key stream sequences with NTD ≤≤2 .

5.3.3 Divide and Conquer Attacks

Divide and conquer attacks are based on “guess some bits and determine the others”

principle. The procedure of this type of attack can change according to internal structures

of stream ciphers, variations of this technique are presented in different studies such as:

[10], [17] and [18]. For clock-controlled registers, attacker usually guesses the initial state

of the clock control register, and then deduces the unknown bits of generator register. If

attacker applies a similar method on ANER-H, firstly he has to guess all bits of R1 to

determine clocking tap bit location and Ci(t) value of each generator register. Since length

of R1 is 59 bits, this operation requires 259 workload. Although required complexity is

enough high for guessing part, this step does not provide recovering the states of R2, R3

and R4. The reason is obvious; clocking of the generator registers is not only controlled by

R1 but also by themselves with the majority rule. Attacker must also make guesses from

the generator registers and when total length of three registers, 277-bit, is considered, the

difficulty of the attack can be realized. Moreover, since each register is clocked about 2.87

times for each key stream bit, some guessed bits from generator registers may not be useful

as expected. So, we can say that divide and conquer attacks do not seem feasible for the

ANER-H stream cipher, due to long internal sizes of the registers, and characteristic

clocking mechanism.

 58

5.3.4 Correlation Attacks

The most important general attacks on LFSR-based stream ciphers are correlation

attacks. Basically, the principle of the attack is based on detecting in some way a

correlation between the known output sequence and the output of one individual LFSR.

Key stream generators that are based on regularly clocked LFSRs are susceptible to

correlation attacks, including fast correlation attacks, firstly described in [14]. On the other

hand, key stream generators consisting of irregularly clocked LFSRs have resistance to this

type of correlation attack. There are different types of correlation attacks that can be

effective on irregular clocking LFSRs based key stream generators such as unconstrained

embedding attack, constrained embedding attack, edit distance attack and edit probability

attack. Before proceeding to correlation attack resistance of ANER-H, let’s define some

parameters that will be used in the remainder of this section. Expectation number of

clockings of i’th generator register at time t, E{di(t)}, is given in (5.2). Then deletion rate,

Pd becomes:

 652.0
875.2

1
1

)}({

1
1 ≈−=−=

tdE
P

i

d (5.6)

Also let dmax =max(di(t)) =5. Considering the unconstrained embedding attack

described in [38], the cryptanalyst tries to embed the known key stream Y of length n into a

string of length m of X which is the sequence generated by the initial state of the generator

register for m ≥n. The attack can be successful, if the deletion rate is smaller than 1/2. Since

deletion rate, Pd, of ANER-H is about 0.652 which is greater than 1/2, such an attack can

not be successful on the ANER-H stream cipher.

In case of constrained embedding attack, the attacker considers information of dmax as

opposed the idea behind the unconstrained embedding attack. In [38], it is shown that, the

constrained embedding attack is successful if the length of the observed output sequence is

greater than a value linear in the generator length and super exponential in dmax. The attack

can not be successful, if the minimum required key stream length is smaller than a value

linear in the in the length of the generator register and exponential in dmax. Therefore by

 59

making dmax sufficiently large, practical security can be improved significantly. For

ANER-H stream cipher dmax is 5 which requires prohibitively large amount of known key

stream. So we can say that constrained embedding attack on ANER-H stream cipher does

not seem practical, although it is theoretically possible.

Edit distance and edit probability correlation attacks proposed in [39] and [40] can be

considered for ANER-H stream ciphers. However, these attacks are correlation attacks on

the initial state of the generator registers implying an exhaustive search over all possible

initial states. So, their computational complexity remains exponential and applications of

these attacks on the ANER-H stream cipher are not practical either.

5.4. Security of CSDS

A suitable stream cipher should be resistant against different known-plaintext

attacks. In a known-plaintext attack, the cryptanalyst attempts to reproduce the whole key

stream or deduce the secret key somehow, from given samples of plaintext and the

corresponding ciphertext. In this subsection we attempt to justify the security of the CSDS

by investigating some known-plaintext attacks on the stream cipher under the assumption

that the cryptanalyst knows the whole internal structure of stream cipher. There is no need

to state that the cipher is secure against an exhaustive search attack, since its key length,

128 bit, is same those of ANER-H whose resistance is given before.

5.4.1. Time-Memory Trade-off Attacks

Generally in time-memory trade-off attacks, cryptanalyst generates a number of

output bits from certain states of the cipher and then keeps these cipher states and their

corresponding outputs in pairs in a sorted list. Then he scans a received output sequence to

find one of the stored output sequences in the received output sequence. If this occurs, the

corresponding cipher state is obtained and from this state the key can be successfully

recovered. Time memory trade off attacks can be practical if the state space of the stream

cipher is too small. However state space of the CSDS is 2264 which is simply too large

compared to the key size (2128). The improved time memory trade-off attack presented in

[37] can be considered. According to this study, state space N can be distributed between

 60

memory M, computational time T and known amount of data D with respect to the

equation M2
TD

2
 = N

2 for NTD ≤≤2 . This trade-off equation for CSDS may become as

follows; Let available memory to the cryptanalyst be 243 (about terabytes), also state space

of CSDS is 2264, N2 is 2528. The trade-off equation becomes TD
2
 =2442. So considering the

required time and known data, the time-memory trade-off attacks do not seem to be

applicable to CSDS.

5.4.2. Divide and Conquer Attacks

The main idea behind divide-and-conquer attacks is to guess the value of some

unknown parts of the stream cipher and from the guessed parts deduce the value of other

unknown parts. If the stream cipher has a clock-controlled mechanism, cryptanalyst

usually guesses the state of the register which controls clocking of the others. For the

CSDS system, the register that concerns with the clocking mechanism is R1 has a length of

61 bits. So if an attacker guesses all bits of the R1 to determine clock controlling functions

fC2, fC3 and fC4, this process requires 261 workload. Of course this process is not enough to

determine the initial state of the stream generator. Attacker also has to know the content of

the R4, to obtain the information about which S-boxes are used in the generator registers

R2 and R3. This part results in extra 231 workload, due to length of R4. Morover; when we

consider the total length of generator registers as 172 bits, the irregular clockings of the

three registers and effect of the S-boxes, divide-and-conquer attacks seem impractical for

the proposed CSDS system.

5.4.3. Correlation Attacks

The expected value of di(t) which is the number of clocking of i’th generator register

of CSDS at time t has been given in (5.5). Then one obtains the deletion rate Pd as:

 6.0
5.2

1
1

)}({

1
1 =−=−=

tdE
P

i

d (5.6)

 61

 Since the unconstraint embedding attack can be successful if and only if the deletion

rate Pd given below is smaller than 1/2 as given in Section 5.3.4, this attack is not

successful on CSDS stream cipher.

For the constrained embedding attack, the attacker considers maximum number di of

consecutive deletion (dmax) and as it is mentioned before; the constrained embedding attack

can be successful if the length of the observed output sequence is greater than a value

linear in the length of the generator register and super exponential in dmax. The attack can

not be successful, if the minimum required key stream length is smaller than a value linear

in the in the length of the generator register and exponential in dmax. Thus, by making dmax

sufficiently large, practical security can be improved significantly. For CSDS stream

cipher dmax is 4 which requires very large amount of known key stream. Therefore we can

say that the constrained embedding attack on CSDS stream cipher does not seem practical,

although it is theoretically possible.

Edit distance and edit probability type correlation attacks are also impractical attacks

for the CSDS stream cipher. Since these attacks are correlation attacks on the initial state

of the generator registers implying an exhaustive search over all possible initial states.

Consequently, the computational complexities of the attacks remain exponential. When we

consider this fact and the existence of two separate registers as R2 and R3 for key stream

generation, it can be seen that applications of these attacks on the CSDS stream cipher are

not practical.

 62

6. CONCLUSION

In this thesis, the theoretical background and two practical implementations of clock-

controlled LFSR based stream ciphers were described. The main idea behind these ciphers

named as ANER-H and CSDS is the use of characteristic irregular clocking mechanisms.

The ciphers demonstrate good key stream properties, such as large period, high linear

complexity, high throughput rate and good properties of randomness. The mathematical

expressions for the linear complexity, period and throughput rate are given and it is shown

that these values satisfy the required conditions. To investigate the randomness of the key

stream sequences generated by the proposed ciphers, we have used two test suites which

are FIPS 140-2 and NIST Statistical Test Suite. The test results show that; CSDS passes

the FIPS 140-2 in proportion of 99.62 % and passes the NIST tests with a significance

level of α=0.01 which means about 1 % of the sequences are expected to fail. On the other

hand, ANER-H passes the FIPS 140-2 in proportion of 99.52 % and passes the NIST tests

with a significance level of α=0.01.

 Furthermore, the ciphers offer high speed encryption, good scalability and

flexibility, so it can be suitable for various security applications. Also, security of the

stream ciphers have been analyzed with respect to currently some well known attacks such

as exhaustive key search, time-memory tradeoff attacks, divide-conquer type attacks and

correlation attacks. It has been shown that both of CSDS and ANER are secure enough

with respect to these known attacks. Finally, we can say that within these design

characteristics, we consider our stream ciphers ANER-H and CSDS useful for

cryptography.

 63

APPENDIX A: S-BOXES OF CSDS

Table A.1. 8 DES-like S-boxes of s5 DES used in CSDS

 64

 65

REFERENCES

1. Schneier, B., Applied Cryptography Second Edition: Protocols, Algorithms, and

Source Code in C, John Wiley & Sons, New York, 1996.

2. Menezes, A., P. C. van Oorschot and S. A. Vanstone, Handbook of Applied

Cryptography, CRC Press Inc., 1997.

3. Vernam, G. S., "Cipher Printing Telegraph Systems for Secret Wire and Radio

Telegraphic Communications", Journal of the IEEE, Vol. 55, pp. 109-115, 1926.

4. Singh, S., The Code Book, Fourth Estate, London, 1999.

5. Zenner, E., Cryptanalysis of LFSR-based Pseudorandom Generators - a Survey,

http://madoc.bib.uni-mannheim.de/madoc/portal/inst_inf/fulltext_link.php?id=727,

2004

6. Ekdahl, P., On LFSR Based Stream Ciphers, Ph.D. Thesis, Lund University, 2003.

7. Fluhrer, S., I. Mantin and A. Shamir, “Weaknesses in the Key Scheduling

Algorithm of RC4”, Eighth Annual Workshop on Selected Areas in Cryptography,

August 2001.

8. Biryukov A., A. Shamir and D. Wagner, “Real Time Cryptanalysis of A5/1 on a

PC”, Proceedings of FSE 2000, Lecture Notes in Computer Science, Vol. 1978, pp.

1–18, 2001.

9. Golic, J., V. Bagini and G. Morgari, "Linear Cryptanalysis of Bluetooth Stream

Cipher", Proceedings of EUROCRYPT 2002, Lecture Notes in Computer Science,

Vol. 2332, pp. 238-255, 2002.

 66

10. Wagner, D., L. Simpson, E. Dawson, J. Kelsey, W. Millan, and B. Schneier,

“Cryptanalysis of ORYX”, Proceedings SAC’98, Lecture Notes in Computer

Science, Vol. 1556, pp. 296-305, 1999.

11. Massey, J. L., “Shift-register Synthesis and BCH Decoding”, IEEE Transactions on

Information Theory, Vol. 15, pp. 122-127, 1969.

12. Siegenthaler, T., “Correlation-Immunity of Nonlinear Combining Functions for

Cryptographic Applications”, IEEE Transactions on Information Theory, Vol. 30,

No. 5, pp. 776-780, Sep. 1984.

13. Geffe, P.R., “How to Protect Data with Ciphers that are Really Hard to Break,”

Electronics, Vol. 46, No. 1, pp. 99–101, Jan 1973.

14. Meier, W. and O. Staffelbach, “Fast Correlation Attacks on Certain Stream

Ciphers”, Journal of Cryptology, Vol. 1, pp. 159–176, 1989.

15. Gunther, C.G., “Alternating Step Generators Controlled by De Bruijn Sequences”,

Proceedings of EUROCRYPT 1987, Lecture Notes in Computer Science, Vol. 304,

pp. 31-34, 1988.

16. Coppersmith, D., H. Krawczyk, and Y. Mansour, “The Shrinking Generator,”

Proceedings of CRYPTO 1993, Proceedings, , Lecture Notes in Computer Science,

Vol. 773, pp. 22-39, 1994.

17. Golic, J., “Cryptanalysis of Alleged A5 Stream Cipher”, Proceedings of

EUROCRYPT 1997, Lecture Notes in Computer Science, Vol. 1233, pp. 239-255,

1997.

18. Biham, E. and O. Dunkelman, “Cryptanalysis of the A5/1 GSM Stream Cipher”,

Proceedings of INDOCRYPT 2000, Lecture Notes in Computer Science, Vol. 1977,

pp. 43–51, 2000.

 67

19. Ekdahl, P. and T. Johansson,” Another Attack on A5/1”, IEEE Transactions on

Information Theory, Vol. 49, pp. 1-7, 2003.

20. Barkan, E., E. Biham and N. Keller, “Instant Ciphertext-Only Cryptanalysis of

GSM Encrypted Communication”, Proceedings of CRYPTO 2003, Lecture Notes in

Computer Science, Vol. 2729, pp. 600-616, 2003.

21. Erguler, I. and E. Anarim, “A Modified Stream Generator for the GSM Encryption

Algorithms A5/1 and A5/2”, 13th European Signal Processing Conference, 2005,

accepted to be presented.

22. Park, M.O., C.Y. Hee and M.S. Jun, “Modified A5 Stream Cipher Using S-boxes,”

The International Conference on Advanced Communication Technology 2004,

pp.508-511, 2004.

23. Neel, J., Cryptanalysis of Mobile Phone Cryptology, University of Maryland at

College Park, www.cs.umd.edu/Honors/reports/cryptanalysis.doc.

24. FIPS PUB 140-2 Security Requirements for Cryptographic Modules,

http://csrc.nist.gov/cryptval/140-2.htm.

25. Federal Information Processing Standards Publication FIPS PUB 140-2, Security

requirements for cryptographic modules, NIST, http://csrc.nist.gov/cryptval/140-

2.htm, 2001.

26. Kholosha, A., “Clock-controlled Shift Registers and Generalized Geffe Key-stream

Generator”, Proceedings of INDOCRYPT 2001, Lecture Notes in Computer

Science, Vol. 2247, pp. 287-296, 2001.

27. Kanso, A. A., “The Alternating Step(r,s) Generator”, Securite des Communications

sur Internet, pp. 29-38, Sep. 2002.

 68

28. Simpson, L. R., E. Dawson, J. Golic and W. Millan, “LILI Keystream Generator”,

Proceedings of SAC 2000, Lecture Notes in Computer Science, Vol. 2012, pp. 248-

261, 2001.

29. Beth, T. and F. C. Piper, “The Stop-and-Go Generator”, in T. Beth, N. Cot and I.

Ingemarsson (eds.), Proceedings of EUROCRYPT 1984, Lecture Notes in

Computer Science, Vol. 209, pp. 88-92, 1985.

30. Golic, J. and M. V. Zivkovic, “On the Linear Complexity of Nonuniformly

Decimated PN-Sequences”, IEEE Transactions on Information Theory, Vol. 34, pp.

1077-1079, 1988.

31. Golomb, S. W., Shift Register Sequences, Aegean Park Press, 1982.

32. Ziv, J. and A. Lempel, “A Universal Algorithm for Sequential Data Compression",

IEEE Transactions on Information Theory, Vol. 23, pp. 337-343, 1977.

33. Kim, K., S. Lee, S. Park and D. Lee, “Securing DES S-boxes against Three Robust

Cryptanalysis”, Proceedings of the Workshop on Selected Areas in Cryptography,

pp. 145-157, 1995.

34. Dawson, E., A. Clark, J. Golic, W. Millan, L. Pena and L. Simpson, “The LILI -

128 Keystream Generator”, Proceedings of. 1st NESSIE Workshop,

http://www.cosic.esat.kuleuven.ac.be/nessie/.

35. Babbage, S., “A Space/Time Trade-Off in Exhaustive Search Attacks on Stream

Ciphers”, European Convention on Security and Detection IEE Conference

Publication, No. 408, 1995.

36. Erguler, I. and E. Anarim, “A New Cryptanalytic Time-Memory Trade-Off for

Stream Ciphers” , The 20th International Symposium on Computer and Information

Sciences 2005, Lecture Notes in Computer Science, will be published.

 69

37. Biryukov, A. and A. Shamir, “Cryptanalytic Time/Memory/Data Trade-offs for

Stream Ciphers”, Proceedings of ASIACRYPT 2000, Lecture Notes in Computer

Science, Vol. 1976, pp.1-13, 2000.

38. Golic, J. and L. O'Connor, “Embedding and Probabilistic Correlation Attacks on

Clock-controlled Shift Registers”, Proceedings of EUROCRYPT 1994, Lecture

Notes in Computer Science, Vol. 950, pp. 230-243, 1995.

39. Golic, J. and M. J. Mihaljevic, “A Generalized Correlation Attack on a Class of

Stream Ciphers Based on the Levenshtein Distance”, Journal of Cryptology, Vol. 3,

pp. 201-212, 1991.

40. Golic, J. and S. Petrovic, “A Generalized Correlation Attack with a Probabilistic

Constrained Edit Distance”, Proceedings of EUROCRYPT 1992, Lecture Notes in

Computer Science, Vol. 658, pp. 472-476, 1993.

