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ABSTRACT 

 

 

AN IRREGULAR CLOCK-CONTROLLED BINARY STREAM 

CIPHER WITH NONLINEAR FEEDBACK SHIFT REGISTERS 

‘THE SAFE STREAM CIPHER’ 

 

 

Stream ciphers are one of the most important classes of encryption algorithms used 

to ensure security in digital communication. The design of many stream ciphers is based on 

use of Linear Feedback Shift Registers (LFSRs), due to their simplicity, speed of 

implementation in hardware and providing sequences with good statistical properties. 

However, this efficient component is not sufficient when we consider security. The 

designer should use many nonlinear functions and mechanisms to make the system more 

resistant against cryptanalysis. A stream cipher should have high period, high linear 

complexity, good statistical properties and be resistant against most recent successful 

attacks such as algebraic attacks, correlation attacks, time/memory trade-off attacks, and 

divide and conquer attacks. 

 

In this thesis, a new stream cipher design is proposed. SAFE is designed to be 

resistant against algebraic and correlation attacks. In the design phase, the objective was to 

design a stream cipher with good randomness, high period and linear complexity and 

resistance against many attacks. The innovation in this thesis is the proposal of nonlinear 

feedback shift registers instead of linear feedback shift registers to provide resistance 

against correlation and algebraic attacks. In addition, another innovation is the use of a new 

irregular decimation algorithm, EBSGvariant, for increasing the security of the cipher. 

Keystream properties of the cipher and its resistance with respect to some well known 

cryptographic attacks are investigated. From the mathematical expressions and simulation 

results, it is shown that the cipher produces keystream sequences with satisfying basic 

security requirements and provides high resistance against well known attack types. 

Finally, we can say that SAFE can be appropriate for both software and hardware 

applications due to its simple design.  
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ÖZET 

 

 

DOĞRUSAL OLMAYAN GERİ BESLEMELİ KAYAN SAKLAÇLI 

DÜZENSİZ SAAT KONTROLLÜ İKİLİ DİZİ TİP ŞİFRELEYİCİ 

‘SAFE DİZİ TİP ŞİFRELEYİCİ’ 

 

 

Dizi tip şifreleme algoritmaları güvenli sayısal haberleşme uygulamalarında 

kullanılan en yaygın şifreleme metotlarındandır. Bu tip şifreleme algoritmaların çoğunluğu 

basitliğinden, donanımdaki hızından ve iyi istatistiksel özelliklere sahip olduğundan 

Doğrusal Geri Beslemeli Kayan Saklaçları (LFSRs) tasarımlarında kullanmaktadır. Fakat 

bu randımanlı bileşenler güvenliği dikkate aldığımızda yeterli olmamaktadır. Tasarımcı, 

sistemi kriptanalize karsı daha güçlü yapmak için birçok doğrusal olmayan fonksiyonlar ve 

mekanizmalar kullanmalıdır. Bir dizi tip şifreleyici yüksek periyoda, yüksek doğrusal 

karmaşıklığa, iyi istatistiksel özelliklere ve cebirsel saldırılar, ilinti saldırıları, zaman bellek 

ödünleşimi saldırıları, böl ve fethet saldırıları gibi birçok başarılı güncel saldırıya karsı 

dayanıklı olmalıdır. 

 

Bu tezde yeni bir dizi tip şifreleyici tasarımı önerilmektedir. SAFE cebirsel ve ilinti 

saldırılarına karsı güçlü olması için tasarlandı. Tasarım evresinde hedef, iyi rasgeleliğe, 

yüksek periyoda ve doğrusal karmaşıklığa sahip ve saldırılara karsı dayanıklı bir dizi tip 

şifreleyici tasarlamaktı. Bu tezde yapılan yeniliklerde birisi, ilinti ve cebirsel saldırılara 

karşı dayanıklılığı artırmak için doğrusal geri beslemeli kayan saklaçların yerine doğrusal 

olmayan geri beslemeli kayan saklaçların önerilmesidir. Buna ek olarak, başka bir yenilik 

ise yeni bir seyreltme algoritmasının, EBSGvariant, şifreleyicinin güvenliğini artırmak 

amacıyla kullanılmasıdır. Ayrıca bu algoritmaların ürettikleri çıktı dizilerinin özellikleri ve 

algoritmaların bilinen bazı saldırılara karsı dirençleri çalışmada verilmektedir. 

Matematiksel açılımlar ve benzetim sonuçları ışığında şifreleyicinin istenen minimum çıktı 

özelliklerinin gereksinimleri yerine getirdiği ve bilinen bazı saldırı tiplerine karşı yüksek 

dirence sahip olduğu gösterilmektedir. Sonuç olarak, SAFE basit tasarımı sayesinde 

donanım ve yazılım uygulamaları için uygundur diyebiliriz. 
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1. INTRODUCTION 

 

 

To many people, cryptography is a strange, secret code used by only military and 

secret agencies. This view is strengthened by the fact that many people normally do not 

know or care about the inherent mechanism of their daily-used technical gadgets. Today, 

cryptology is an integral part of our lives whether we know it or not. If you use the internet 

to do bank transfers you use cryptography methods to both identify yourself to the bank, 

and let the bank identify itself to you, as well as keep your transactions private form other 

uses of internet. Another common usage area is in cellular phones. In the Global System 

for Mobile communications (GSM), the mobile system used in Europe, there is a cipher 

called A5/1 to ensure that your conversation is secure. 

 

These are just a few examples of cryptology used in common public applications. Of 

course, military and government agencies still use strong cryptography to communicate 

and the military needs for secrecy have been the primary force behind the developments in 

this area. 

 

The search for new public-key schemes, improvements to existing cryptographic 

mechanisms, and proofs of security continues at a rapid pace. Various standards and 

infrastructures involving cryptography are being put in place. Security products are being 

developed to address the security needs of an information intensive society. 

 

The rest of the chapter is organised as follows: In section 1.1, general information 

about the cryptology is given. Section 1.2 describes symmetric-key ciphers, while section 

1.3 is focused on the cryptanalysis and the methods of attacks against the ciphers. In 

addition, section 1.4 gives the outline of the thesis. 
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1.1 Cryptology 

 

Cryptology is uniting name for a broad scientific field in which one studies the 

mathematical techniques of designing, analysing and attacking information security 

services. Cryptology is the study of cryptography and cryptanalysis. Cryptography is the 

study of mathematical techniques related to aspects of information security such as 

confidentiality, data integrity, entity authentication and data origin authentication. 

Cryptanalysis is the study of mathematical techniques for attempting to defeat 

cryptographic techniques and more generally information security services. Cryptography 

is not only means of providing information security but rather one set of techniques. 

Information security manifests itself in many ways according to the situation and 

requirement. Regardless of who is involved, to one degree or another, all parties to a 

transaction must have confidence that certain objectives associated with information 

security have been met. Some of these objectives are listed in Table 1.1. 

 

Table 1.1. Some information security objectives 

Privacy or 
confidentiality 

Keeping information secret from all but those who are authorized to see it. 

Data integrity Ensuring information has not been altered by unauthorized or unknown means. 
Entity 
authentication 
or identification 

Corroboration of the identity of an entity (e.g., a person, a computer terminal, a 
credit card, etc.). 

Message 
authentication 

Corroborating the source of information; also known as data origin authentication. 

Signature A means to bind information to an entity. 
Authorization Conveyance, to another entity, of official sanction to do or be something. 

Validation 
A means to provide timeliness of authorization to use or manipulate information 
or resources. 

Access control Restricting access to resources to privileged entities. 
Certification Endorsement of information by a trusted entity. 
Timestamping Recording the time of creation or existence of information. 

Witnessing 
Verifying the creation or existence of information by an entity other than the 
creator. 

Receipt Acknowledgement that information has been received. 
Confirmation Acknowledgement that services have been provided. 

Ownership 
A means to provide an entity with the legal right to use or transfer a resource to 
others. 

Anonymity Concealing the identity of an entity involved in some process. 
Non-repudiation Preventing the denial of previous commitments or actions. 
Revocation Retraction of certification or authorization. 
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Of all the information security objectives listed in Table 1.1, the following four form 

a framework upon which the others will be derived: (1) privacy or confidentiality; (2) data 

integrity; (3) authentication and (4) non-repudiation [4]. 

 

1. Confidentiality is a service used to keep the content of information from all but 

those authorized to have it. Secrecy is a term synonymous with confidentiality and privacy.  

 

2. Data integrity is a service that addresses the unauthorized alteration of data. To 

assure data integrity, one must have the ability to detect data manipulation by unauthorised 

parties. Data manipulation includes such things as insertion, deletion, and substitution. 

 

3. Authentication is a service related to identification. This function applies to both 

entities and information itself. Two parties entering into a communication should identify 

each other. Information delivered over a channel should be authenticated as to origin, date 

of origin, data content, time sent, etc. For these reasons, this aspect of cryptography is 

usually subdivided into two major classes: entity authentication and data origin 

authentication. Data origin authentication implicitly provides data integrity (for if a 

message is modified, the source has changed). 

 

4. Non-repudiation is a service that prevents an entity from denying previous 

commitments or actions. When disputes arise due to an entity denying that certain actions 

were taken, a means to resolve the situation is necessary. For example, one entity may 

authorise the purchase of property by another entity and later deny such authorisation was 

granted. A procedure involving a trusted third party is needed to resolve the dispute. 

 

A fundamental goal of cryptography is to adequately address these four areas in both 

theory and practice. Cryptography is about the prevention and detection of cheating and 

other malicious activities [4]. 

 

For the ancient times, the application of cryptography is something transforming the 

letters or the symbols into different symbols or representations according to a simple rule 

to provide secrecy of the messages. Substitution ciphers and Caesar cipher can be good 

examples to these approaches. A classic example to these systems is Vigenère cipher. 
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According to this cipher model, each letter in the alphabet can be thought as a number 

ranging from 0 to 25. Then the plaintext letter P is added to key letter K in mod 26 to 

obtain corresponding ciphertext letter C. The reason why mod 26 operation is used is 

obvious; to keep the produced ciphertext letter in the alphabet set. A message encrypted by 

such an algorithm can be easily cryptanalyzed, due to its simple rule and risk in reuse of 

the key. However, the importance of the algorithm comes from the fact that, this algorithm 

can be seen as the first algorithm that has some common points with today’s stream cipher 

structure. At the beginning of the 20th century, Gilbert Vernam proposed a new type of 

cipher known as Vernam cipher that uses a secret key as long as the plaintext [46]. The 

cipher relies on the algorithm that the plaintext is XORed with a random or pseudorandom 

stream of data the same length to generate the ciphertext. If the data stream is truly random 

and used only once, this is called the one-time pad. Vigenère cipher and the Vernam cipher 

have two important common points; first- both of the algorithms use the symmetric key 

encryption, and second- both ciphers operate on plaintext with symbol by symbol that is an 

important feature of the stream ciphers. 

 

1.2 Symmetric-key Ciphers 

 

A cryptosystem is a general term referring to a set of cryptographic primitives used to 

provide information security services. Most often, the term is used in conjunction with 

primitives providing confidentiality, i.e., encryption. Cryptosystems are mainly classified 

into two groups according to the key type being used, symmetric-key or public-key. In case 

of public-key cryptography, the sender uses publicly known information (public-key) in 

encryption process to send a message to the receiver and the receiver uses a secret 

information (private-key) to recover the message. On the other hand, in the symmetric-key 

encryption systems, the sender and receiver have previously agreed on the use of a secret 

key for both encryption and decryption. This key must be kept secret to prevent revealing 

of the secret information by the potential eavesdroppers. In symmetric-key algorithms, the 

encryption key can be calculated from the decryption key and vice versa [45].  

 

Public-key systems and symmetric-key systems have advantages over each other. 

The important points in practice are: 
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1. public-key cryptography facilitates efficient signatures (particularly non-

repudiation) and key management; 

 

2. symmetric-key cryptography is efficient for encryption and some data integrity 

applications. 

 

In symmetric-key systems, if E denotes the encryption and D denotes decryption 

operations, then encryption and decryption can be formulated respectively by: 

 

                                                            ( )
K

E P C=                                                             (1.1) 

 

                                                            ( )
K

D C P=                                                             (1.2) 

 

Symmetric key ciphers are divided into two main categories, block ciphers and 

stream ciphers. Throughout the thesis, we will mainly focus on the symmetric-key 

cryptosystems (ciphers). 

 

1.2.1 Block Ciphers 

 

Block ciphers operate on large blocks of plaintext data. They encrypt blocks of data 

using a fixed transformation. General structure of a block cipher is depicted in Figure 1.1. 

 

 

                           

 

Figure 1.1. General structure of a block cipher 

 

 



 6 

Most well known symmetric-key encryption techniques are block ciphers. Two 

important classes of block ciphers are substitution ciphers and transposition ciphers. 

Substitution ciphers are block ciphers, which replace symbols (or groups of symbols) by 

other symbols or groups of symbols; while transposition ciphers permute the symbols in a 

block [4]. Famous block ciphers include the DES (Data Encryption Standard) and the AES 

(Advanced Encryption Standard). One problem of block ciphers is that patterns in the 

plaintext are visible for a fixed key. That is; if two plaintext blocks are identical, the block 

cipher will encrypt them to identical ciphertexts. This is considered as a weakness for an 

encryption system. There are modes of operations that for example chain the output of one 

block encryption to the next. The ciphertext block of the first encryption is bitwise added 

to the plaintext block of the second before encryption. Then the second ciphertext block is 

added to the third plaintext before encryption, and so on. This solves the problem of 

patterns but introduces the severe problem of error propagation. If the ciphertext is 

distorted by noise during transmission, all subsequent plaintexts will be distorted during 

decryption due to this chaining [47].  

 

1.2.2 Stream Ciphers 

 

Stream ciphers form an important class of symmetric-key encryption schemes. They 

are, in one sense, very simple block ciphers having block length equal to one. A stream 

cipher operates on individual characters in the underlying alphabet, with a time-varying 

function. What makes them useful is the fact that the encryption transformation can change 

for each symbol of plaintext being encrypted. Since the encryption is done using a time-

varying function, the problem of patterns in the plaintext being encrypted to identical 

patterns in the ciphertext is avoided. General structure of a stream cipher is depicted in 

Figure 1.2. 

 

⊕

i
P

iz iC

 

 

Figure 1.2. General structure of a stream cipher 
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Since encryption is applied to each bit separately, stream ciphers have limited or no 

error propagation. In situations where transmission errors are highly probable, stream 

ciphers are advantageous because of this property. They can also be used when the data 

must be processed one symbol at a time [4]. 

 

1.3 Cryptanalysis and Methods of Attacks 

 

As stated before, cryptanalysis is the study of mathematical techniques for 

attempting to defeat cryptographic techniques and more generally information security 

services. When evaluating the strength of a cipher, we generally compare it to the generic 

attack of exhaustively searching over all possible keys to find the right one. This attack is 

called exhaustive key search. No practical cipher will be more secure than the time it takes 

to test all keys, so in a sense, this is the highest achievable strength of a cipher. There is 

however, one famous exception to this, the ultimately secure cipher; the one-time pad 

(OTP). The OTP is the Vigenère cipher with a key length equal to the length of the 

message. Shannon shown in 1949 that this system is unconditionally secure. This property 

means that no matter how big or fast a computer the attacker has, he can never find out 

which plaintext was sent. The obvious drawback of OTP is that the key must be as long as 

the message to be encrypted. This is in fact a necessary condition for any cipher claiming 

unconditional security. Since the key should be secret, one could argue that if we want to 

send an encrypted message, we first have to send a key that is as long as the message 

through a secure channel. The OTP is of course unpractical. 

 

For practical ciphers, the situation is not as clear as for the OTP. Often we talk about 

computationally secure ciphers instead. This means that given the possibilities of today’s 

computers and predicted increase in performance of tomorrow’s computers, the adversary 

cannot defeat the system. We also define the computationally security of a cipher to be the 

computational effort required, by the best currently known attacks, to break the cipher. 

Another way of describing the security of a cipher is to try to prove that breaking the 

cipher is equivalent to solving a difficult mathematical problem, like factoring integers or 

solving discrete log problem. This way of arguing is called provable security, which is 

somewhat misleading since there is never a proof of the complexity of the underlying 
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problem. The notion is that these problems are studied by mathematicians for centuries and 

are probably very difficult to solve. 

 

The first and most important rule for the designer of a cryptographic primitive is 

called Kerckhoff’s Principal: “The security of the encryption scheme must depend only on 

the secrecy of the key, and not on the secrecy of the algorithms.” From Kerckhoff’s 

Principal it is assumed that an attacker knows everything concerning the cryptographical 

system and the protocols, except the secret key. Then we can classify the methods of attack 

according to the amount of information to the adversary and goal of the attack. 

 

• Ciphertext-only attack: All the adversary sees is the ciphertext communicated 

between sender and receiver. This is the most difficult attack since the attacker has the 

least amount of information. 

 

• Known plaintext attack: In this scenario, the adversary knows both the plaintext 

and the corresponding ciphertext. It might seem slightly that improbable that both the 

plaintext and the ciphertext are revealed, but there are many situations where this could 

happen. 

 

• Chosen plaintext attack: Here the adversary has access to an oracle, which can 

encrypt any given plaintext under the correct key. This is an even more powerful attack 

than the known plaintext attack, since the attacker can now choose plaintexts that are 

especially favourable for breaking the cipher. 

 

• Chosen ciphertext attack: This is similar to the chosen plaintext attack, but now the 

adversary has access to two oracles instead, one that encrypts any given plaintext and one 

that decrypts any given ciphertext except the ones the attack is trying to break. This attack 

is naturally more powerful than all the previous attacks, since the adversary has more 

freedom. 
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1.4 Thesis Outline 

 

The thesis consists of six chapters. Chapter 1 gives the main aspects about the 

cryptology. Chapter 2 discusses the characteristics of stream ciphers and present 

information about the types of stream ciphers. Chapter 3 gives information about the 

nonlinear feedback shift registers. Chapter 4 discusses the irregular decimation algorithms 

used in stream cipher applications. Chapter 5 consists of the design and hardware 

considerations of the proposed cipher SAFE. In chapter 6, the security analysis of the 

proposed cipher is given in detail. Finally, in chapter 7 the conclusion of the study is given. 
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2. STREAM CIPHERS 

 

 

As it is given in the previous chapter, a stream cipher inspires the spirit of the 

onetime pad by using a short key to produce the keystream which appears to be random. 

Such a keystream sequence is often described as pseudorandom generation of which can be 

thought as in the field of stream ciphers. Therefore keystream generator can also be known 

as pseudorandom sequence generator or running key generator. Actually, producing 

random look like sequences is necessary condition for a secure stream cipher design, 

because the closer the keystream generator’s output is to random, the longer time a 

cryptanalyst will have breaking it [45]. 

 

The stream cipher encryption and decryption can be formulated as follows: Let 

1 2, ,...,
i

z z z  denote the sequence that keystream generator outputs and 1 2, ,...,
i

P P P  denote 

the plaintext bits. Then, if 1 2, ,...,
i

C C C  represents the corresponding ciphertext bits, 

encryption and decryption are realized according to the equations below respectively. 

 

                                                        
i i i

C P z= ⊕                                                                 (2.1) 

 

                                              
i i i i i i

C z P z z P⊕ = ⊕ ⊕ =                                                     (2.2) 

 

Stream ciphers can be classified as synchronous or self-synchronising stream ciphers 

according to the relation between keystream generation and plaintext. 

 

• Synchronous stream ciphers: A synchronous stream cipher is a finite state machine 

for which the keystream is generated from the key, independently of the plaintext message 

and of the ciphertext [4]. In the encryption side, a keystream generator outputs the 

keystream bits, one after the other. On the decryption side, another keystream generator 

produces the identical keystream bits, one after the other. To avoid false decryption so 

error in communication, the two keystream generators must be synchronised. In case of 

losing synchronisation during transmission, every ciphertext character after the error will 

be decrypted incorrectly. To solve this problem, the sender and receiver must 
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resynchronise their keystream generators before continuing their communication. 

Techniques for resynchronisation can be reinitialisation or placing special markers at 

regular intervals in the ciphertext. An advantage of the synchronous stream cipher can be 

seen as; synchronous ciphers do not propagate transmission errors. If a single bit or group 

bits are changed during transmission so error occurs, then only erroneous bits will be 

decrypted incorrectly, all preceding and subsequent bits will be unaffected. The encryption 

and decryption of a synchronous stream cipher are depicted in Figure 2.1 and Figure 2.2; 

where f denotes the next state function, g is the function that produces keystream bits, 
i

S  is 

the present state of the generator, 
C

K  is the secret key, 
i

P , 
i

z  and 
i

C  represent plaintext, 

keystream and ciphertext bits respectively. Most of the stream ciphers are binary additive 

stream ciphers that are synchronous stream ciphers in which the keystream, plaintext, and 

ciphertext digits are binary digits and the output function is the XOR of plaintext and 

keystream sequence.  

 

• Self-synchronising stream ciphers: A self-synchronising stream cipher is a finite 

state machine for which the keystream is generated as a function of the key and a fixed 

number of the previous ciphertext symbols [47]. In other words, for this type of stream 

ciphers each keystream bit is produced within a function of a fixed number of previous 

ciphertext bits. Since the keystream depends on a fixed number of the previous ciphertext 

symbols say hj, the cipher will resynchronise after hj symbols if there is a transmission 

error. In case of this, the next hj symbols will be erroneous and the error propagation is 

thus worse than the case of a synchronous stream cipher. However, if some ciphertext 

symbols are deleted or inserted during transmission, the self-synchronising cipher will 

recover after hj correct ciphertext symbols, whereas the synchronous ciphers will never 

regain synchronisation [47]. The encryption and decryption of a self-synchronizing stream 

cipher is shown in Figure 2.3 and Figure 2.4 respectively. As can be seen the ciphertext 

bits are given as input to determine next state of the keystream generator. 
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Figure 2.1. A general model for synchronous stream cipher encryption with XOR  

 

g: Generator     

   function

Si

Si+1

+
zi

Pi

Ci

Kc

 

 

Figure 2.2. A general model for synchronous stream cipher decryption with XOR  

 

 

 

Figure 2.3. A general model for self-synchronising stream cipher encryption with XOR 

operation 
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Figure 2.4. A general model for self-synchronising stream cipher decryption with XOR 

operation 

 

For most of the stream ciphers, keystream sequence is generated independently from 

plaintext; so in some applications keystream sequence can be produced prior to encryption 

or decryption to speed up the process. Due their simple designs, low hardware complexity, 

high speed encryption characteristic and having low error propagation rate, stream ciphers 

are dominantly preferred in wireless communications such as in the applications of GSM, 

US Cellular Systems, WLAN, Bluetooth. Also, majority of the stream ciphers relies on the 

use of LFSRs in their design. Therefore before going on different stream cipher types, in 

Section 2.1 LFSRs (Linear Feedback Shift Registers) and the reasons why they are used 

will be discussed. Next, some important variants of LFSR based stream ciphers will be 

presented in Section 2.2. The last section, Section 2.3, will give information about clock-

controlled stream ciphers that are the main skeleton models for the proposed stream cipher 

SAFE. 

 

2.1. Linear Feedback Shift Registers 

 

Recalling the keystream generator and its similarity to the OTP, we state that the 

fundamental property of a keystream generator is to produce as random looking symbols as 

possible. The distribution of symbols should be uniform and unpredictable. A good start is 

to use a Linear Feedback Shift Register (LFSR) for achieving a good distribution. The 

direct output of an LFSR is not a good keystream generator since each symbol produced is 
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simply a linear combination of the previous symbols, and thus very easy to predict. 

Nevertheless, LFSRs are widely used components inside stream ciphers.  

 

An FSR (Feedback Shift Register) is a device made up by registers that produce 

binary sequences or symbols from a field
q

F  where 2kq =  and k is the symbol size (most 

of the stream ciphers q is chosen as 2). These registers are the main components of many 

keystream generators and they are used both in coding and cryptography. A feedback shift 

register is made up of two parts; a shift register s and a feedback function f. If the shift 

register s has a length of n bits or consists of n stages as 1 2, ,...,
n

s s s  which contains one bit 

of 0 or 1, it is called an n-bit shift register. The feedback function maps the state of the 

shift register according to its content. When the register is clocked at a time interval, all of 

the bits in the shift register are shifted one bit to the right. The new value of the left-most 

bit is computed by applying the feedback function to the contents of the register before 

clocking. At each clock, the right most bit of the register can be concerned as its output. 

The period of a shift register is the length of the output sequence before it starts repeating 

[4]. A general structure of a feedback shift register is depicted in Figure 2.5. 

 

 

 

Figure 2.5. General structure of a feedback shift register of length n 

  

The simplest kind of feedback shift register is a linear feedback shift register. In that 

case, the feedback function can be written as 1 1 2 2 ...
n n

c s c s c s⊕ ⊕ ⊕ , where s values are the 

contents of the register at time t and c values are the feedback coefficients. As can be seen 

the feedback function is linear and simply the XOR of the appropriate bits in the register 

according to whether or not 
i

c  is equal to 1 or not; the list of the bits that have feedback 

coefficient value as 1 is called a tap sequence. An example of an LFSR is shown in    
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Figure 2.6. Since the feedback function is linear and simple, many mathematical theories 

have been applied to analyzing LFSRs. The mathematical expression for the period of the 

shift register depends on its characteristic feedback function. If the feedback function is a 

primitive polynomial, then the period of the register becomes 2 1n − , where n is the length 

of the register. An irreducible polynomial ( ) [ ]
q

f x F x∈  of degree l is said do be primitive 

if the root of f(x) in the splitting field 1
q

F  is a generator of multiplicative group 1

*

q
F ; where 

a polynomial ( ) [ ]
q

g x F x∈  is defined as irreducible polynomial over 
q

F , if it can not be 

factored into polynomials of smaller positive degrees in the ring of polynomials [ ]
q

F x [47]. 

 

⊕⊕⊕⊕

 

 

Figure 2.6. General structure of a linear feedback shift register of length n 

 

For the binary case, the definition of irreducible polynomial and primitive 

polynomial can be restricted as: A polynomial f(x) over GF(2) is said to be an irreducible 

polynomial over GF(2) if the only polynomials over GF(2) which divide f(x) are 1 and 

itself. An irreducible polynomial f(x) of degree n, which is also the length of the shift 

register, over GF(2) is said to be a primitive polynomial, if 2 1n −  is the least positive 

integer p such that f(x) divides (1 )px+ over GF(2). 

 

If we start with a non-zero state as the initial state of the LFSR and the register has a 

primitive feedback polynomial, then all possible states except the all-zero state will appear 

during a period and the length of the period will be 2 1n −  as stated before. An LFSR with a 

primitive feedback polynomial is also called a maximum-length LFSR, and the sequence 

generated is called a maximum-length sequence. Notice that to say the sequence is 

maximum length, the initial state of the register must be non-zero and here after it is 

assumed that the starting state is as such. For example if the register has a length of 3 bits 
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and a primitive feedback polynomial then the period of the register will be 32 1 7− = . To 

realize this example, let the register have a primitive feedback polynomial as 2 1x x+ +  in 

GF(2), tapped at the second and third bit; the state of the LFSR begins with ‘101’and 

changes as shown in Table 2.1. As can be seen, after 7 clockings the register repeats itself. 

 

Table 2.1. State transition of the 3-bit LFSR 

 

 

Most of the practical stream ciphers use LFSRs in their designs. There can be several 

reasons for this: Firstly, LFSRs are well suited for hardware implementation, because an 

LFSR is nothing more than an array of bit memories and its feedback function is just use of 

a series of XOR gates. Therefore, within a few logic gates an LFSR based stream cipher 

can be realized. Second reason is LFSRs can generate sequences with large period. An L-

bit maximal length LFSR can produce a sequence of 2 1L − , so as L increases the length of 

the period becomes incredibly large. The last reason why cryptographers use LFSRs in 

their stream generator models can be the fact that LFSRs produce sequences with good 

statistical properties. That is, they can produce random-looking keystream sequences. 

However they can be easily analyzed using algebraic techniques, due to their linear 

structure. The Berlekamp-Massey algorithm can generate sequence of an n-bit LFSR after 

using only 2n bits of the keystream [43]. Thus, if an attacker gets 2n bits of keystream he 

can break the stream cipher which is based on a pure single n bit LFSR. Considering 

Berlekamp-Massey algorithm, the strength of an LFSR stream cipher against such an 

attack can be evaluated by using the metric linear complexity or linear span. The linear 

complexity of a sequence say s, denoted by L(s), is the length of the shortest LFSR that 

generates the same sequence. Linear complexity is very important, since the Berlekamp-

Massey algorithm, can generate the sequence of a stream cipher with a linear complexity n, 



 17 

after examining only 2n bits of the keystream. Note that a high linear complexity value 

does not indicate that the stream cipher is secure, while the lower one means that the cipher 

is weak and insecure. So, pure LFSR cannot be used as a secure stream cipher, although it 

has nice properties. To prevent linear complexity problems of the LFSRs and keeping their 

good characteristics, different approaches that will be discussed in the following section 

have been proposed. 

 

2.2. Some Stream Cipher Designs 

 

An LFSR should never be used by itself as a keystream generator, since the output 

sequences of LFSRs are also easily predictable. Therefore for LFSR based stream ciphers 

different techniques that can be divided into three general categories; nonlinear 

combination generators, nonlinear filter generators and clock-controlled generators have 

been presented to solve weaknesses of LFSRs. In first two of these techniques, keystream 

generator design is simple; one or more LFSRs, generally of different lengths and with 

different feedback functions are used and their outputs or appropriate bits of the whole 

generator are taken by a nonlinear Boolean function to produce keystream sequence. Then 

the registers are regularly clocked and system works in this fashion. In case of the last 

category, clock-controlled generators, some LFSRs are clocked at different rates according 

to a rule or depending on the output of other LFSR; so they can be clocked irregularly. 

This property increases the linearity complexity of the system. The nonlinear combination 

generators and nonlinear filter generators will be explained in the following subsections.  

 

2.2.1. Nonlinear Combination Generators 

 

Nonlinear combination generators use several LFSRs in parallel to solve the linearity 

problem of LFSRs. They do this job by combining LFSR outputs with a nonlinear Boolean 

function 
C

f , which is also called combining function, as depicted in Figure 2.7. Before 

proceeding to an example of nonlinear combiner generator, it will be convenient to give 

some information about the Boolean functions. A product of m distinct variables is called 

an th
m  order product of the variables. Every Boolean function 1 2( , ,..., )

C n
f x x x  can be 

given as a modulo 2 sum of distinct th
m  order products of its variables, 0 ≤ m ≤  n ; which 
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is called the algebraic normal form of 
C

f . The nonlinear order of 
C

f  is the maximum of 

the order of the terms appearing in its algebraic normal form [4]. For instance, 

1 2 3 4 1 1 3 2 3 4( , , , )
C

f x x x x x x x x x x= ⊕ ⊕  has a nonlinear order 3. Therefore a nonlinear 

combination generator has a high linear complexity, if its nonlinear Boolean function has a 

high order nonlinear order. By using nonlinear combination generator, an increase in linear 

complexity is achieved and it seems there is no problem. However, using output of 

different LFSRs into a nonlinear Boolean function also increases the possibility that one or 

more of the internal output sequences or just outputs of individual LFSRs can be correlated 

with the produced keystream and by means of this correlation the generator can be attacked 

which is often called a correlation attack. The metric indicating the strength of the 

generator to the correlation attack can be defined as the correlation immunity whose details 

have been shown in [48]. Thus, we can say that there is a trade-off between high 

correlation immunity and high linear complexity. To understand the importance of the 

correlation immunity, let us give the description of a popular example of nonlinear 

combination generator, the Geffe generator [2]. The Geffe generator is consisted of three 

maximal length LFSRs of 1L , 2L  and 3L  respectively as shown in Figure 2.8. The outputs 

of LFSRs are combined within the function 1 2 3 1 2 2 3 3( , , )
C

f x x x x x x x x= ⊕ ⊕ . The keystream 

generator uses three LFSRs, combined in a nonlinear manner. If 1L , 2L  and 3L  are 

pairwise relatively prime, then the period of the generator is 31 2(2 1)(2 1)(2 1)LL L− − −  and 

the linear complexity of the keystream sequence becomes 1L 2L  + 2L 3L  + 3L . For the 

appropriate values of 1L , 2L  and 3L , large period and high linear complexity is achieved. 

However when we look at the combining function 
C

f , if z(t) represents keystream bit at 

time t, one can realize the probabilistic relation between output of first LFSR and 

keystream bit as: 1 2 2 3 1

1 1 1 3
( ( ) ( )) ( ( ) 1) ( ( ) 0) ( ( ) ( ))

2 2 2 4
P z t s t P s t P s t P s t s t= = = + = = = + = . 

The output of first LFSR is equal to keystream bit at any time with a probability of 3/4. 

Thus, one can see that Geffe generator has weaknesses considering the correlation attack. 
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Figure 2.7. A nonlinear combination generator, where n LFSR outputs are combined with a 

nonlinear Boolean function 
C

f   

 

Therefore, to have a secure nonlinear combination generator, the combining function 

C
f  must have high algebraic degree, high nonlinearity and a high order of correlation 

immunity. Also 
C

f  must be a balanced function, which has equal number of ones and 

zeros in the output column of its truth table, to provide keystream sequences with good 

statistical properties. 

 

2.2.2. Nonlinear Filter Generators 

 

This type of generator is not so different from nonlinear combining generators. In 

this case, instead of giving outputs of several LFSRs to nonlinear function 
F

f , appropriate 

bits of a single LFSR are given. A simple example of nonlinear filter generator is depicted 

in Figure 2.8, now the function 
F

f  is called as the filter function. Actually, not all elements 

of the LFSR need to be taken as inputs to the filtering function. 

 

The period of the keystream sequence is 2 1n − , if the LFSR is maximal length 

register and has a length of n bits. The maximum value for the linear complexity of the 

output sequence is computed as 
1

( )
m

i

n
LC

i=

=∑ , where LC and m denote the linear 

complexity and nonlinear order of the function, respectively. The same danger as low 

correlation immunity can be also valid for the nonlinear filter generators. Also, the same 
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criteria must be concerned for the filter function as in the case of nonlinear combining 

function. 

 

LFSR

OutputfF
 

 

Figure 2.8. A nonlinear filter generator, where a single n bit-LFSR’s bits are combined 

with a nonlinear Boolean function 
F

f  to produce keystream sequence 

 

2.3. Clock-controlled Stream Ciphers 

 

The main idea behind an LFSR based clock-controlled stream cipher is to control the 

number and time of clockings of the LFSRs using some irregular mechanism. This 

mechanism can depend on the output of another LFSR or some other internal variables of 

the cipher. By means of clocking the LFSRs at different rates, the linearity of the system is 

destroyed and attacks based on a regular clocking of the LFSR become harder. Many 

stream ciphers using nonlinear combining functions are susceptible to the correlation 

attacks such as fast correlation attacks firstly described in [26]. On the other hand, using 

irregular clocking reduces the power of correlation attacks and provides practical 

resistance to the fast correlation attacks. To understand the properties of clock-controlled 

ciphers, let us give descriptions of some its popular applications. 

 

2.3.1 A5/1 

 

GSM uses A5 stream generator to encrypt digital user data transmitted from mobile 

station to the base station and base station to the mobile station. A5 stream cipher has two 

major variants: A5/1 is the stronger version used in western European countries and A5/2 

is the weaker version used in the other countries. A5/1 stream cipher is a binary linear 

feedback shift register based keystream generator. It combines three LFSRs of lengths 19, 
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22 and 23 bits which are denoted by 1R , 2R  and 3R  respectively [15]. All of these registers 

have primitive feedback polynomials and each register is updated according to its own 

feedback polynomial. The taps of 1R  are at bit positions 13, 16, 17, 18; the taps of 2R  are 

at bit positions 20, 21; and the taps of 3R  are at bit positions 7, 20, 21, 22. The three 

registers are maximal length LFSRs with periods 192 1− , 222 1−  and 232 1− , respectively. 

The output of A5/1 is produced by XORing the most significant bit of each register as 

shown in Figure 2.9. 

 

 

 

Figure 2.9. The A5/1 stream cipher 

 

The initial state of A5/1 is carried out as follows: All of the registers are first zeroed 

and then 64 bit secret session key 
S

K  and 22 bit frame number 
n

F  XORed (ignoring 

majority rule) in parallel into the least significant bits (lsb) of the three registers. In the 

next step, all LFSRs are clocked for 100 clock cycles according to majority rule, however 

no output is produced. Finally, three LFSRs are clocked according to majority rule to 

generate 228 bits of keystream sequence. 

 

2.3.2 ORYX 

 

The ORYX cipher is a stream cipher that is used to encrypt wireless digital data as a 

keystream generator. The output of the generator is a pseudorandom stream of bytes. The 

generated keystream is XORed with the plaintext to get the ciphertext. As in case of the 

most stream ciphers, to recover the plaintext from the ciphertext, same keystream sequence 

is XORed with the ciphertext at the receiver side. The ORYX cipher is consisted of three 

32-bit LFSRs denoted as 
A

R , 
B

R , and 
K

R , and uses an S-box [49]. The S-box is used for a 

permutation operation of the numbers between 0 – 255. The block diagram of ORYX is 
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shown Figure 2.10, where 
K

f , 
B

f , 1A
f  and 2A

f represent the feedback functions of 
K

R , 

B
R , and 

A
R , respectively. 

 

The algorithm works in the following manner: Firstly, 
K

R  is clocked once due to its 

feedback function. 
A

R  is stepped once using either one of its two feedback polynomials. 

The decision of which polynomial depends on one of the high eight bits of 
K

R . Also, 
B

R  is 

clocked either once or twice depending on another one of the high eight bits of 
K

R . Then, 

the last eight bits of 
K

R  is added to the last eight bits of 
A

R  after being permuted with S-

box and the last eight bits of 
B

R  after being permuted with S-box, with mod 256 to create 

8 bits of keystream. 

 

 

 

Figure 2.10. The ORYX stream cipher 

 

ORYX was firstly cryptanalyzed by D. Wagner et. al. in [49]. It is shown that by 

using a divide and conquer attack with an amount of 25-27 byte known plaintext; the 

stream cipher can be easily cryptanalyzed in 162  time complexity. Thus, one can say that 

ORYX is not a secure stream cipher. 
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2.3.3 The Alternating Step Generator 

 

The alternating step generator uses an LFSR 1R  to control the stepping of two 

LFSRs, 2R  and 3R . The keystream produced is the XOR of the output sequences of 2R  

and 3R . The alternating step generator is shown in Figure 2.11. 

 

 
 

Figure 2.11. The alternating step generator 

 
The clocking mechanism works as follows: Firstly, 1R  is clocked, if its output is 1, 

then 2R  is clocked and 3R  is not clocked. On the other hand, if the output of 1R  is 0, then 

3R  is clocked and 2R  is not clocked. Whether or not a generator register ( 2R , 3R ) is 

clocked, it gives its output to keystream generation process; if it is not clocked, it repeats 

its output. Suppose that 1R  produces a de Bruijn sequence of period 12L  . Furthermore, 

suppose that 2R  and 3R  are maximum length LFSRs of lengths 2L  and 3L , respectively, 

such that gcd( 2L ; 3L ) = 1. The period of the keystream is then 31 22 (2 1)(2 1)LL L − − . 

Considering the same conditions, the linear complexity becomes 

1 11
2 3 2 3( )2 ( )2L L

L L LC L L
−+ < < + . The LFSRs 1R , 2R , 3R  should be chosen to be 

maximum-length LFSRs whose lengths 1L , 2L , 3L  are pairwise relatively prime: gcd( 1L ; 

2L ) = 1, gcd( 2L ; 3L ) = 1, gcd( 1L ; 3L ) = 1. Moreover, the lengths should be about the 

same. If 1L  ≈ L, 2L  ≈ L, and 3L  ≈ L, the best-known attack on the alternating step 

generator is a divide-and-conquer attack on the control register 1R , which takes 

approximately 2L  steps. Thus, if L ≈ 128, the generator is secure against all presently 

known attacks. 
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3. NONLINEAR FEEDBACK SHIFT REGISTERS (NFSRS) 

 

 

Combination of several small Linear Feedback Shift Registers (LFSRs) is a well- 

known method for building stream ciphers. The outputs of the registers are generally 

combined with a function F, in order to produce one keystream bit (Figure 3.1). A popular 

example is the algorithm E0, which is used in the Bluetooth technology. Unfortunately, 

such constructions have some problems that originate from the linearity of the LFSRs. For 

instance, correlation attacks exploit linear approximations of the function F to attack the 

whole stream cipher. Another method is algebraic attacks that take advantage of low 

degree polynomial equations satisfied by F. 

 

Criteria that should be satisfied by the Boolean function F, in order to counter such 

attacks have been widely studied. However, there appears to be limitations that cannot be 

overcome like the trade-off between the correlation immunity and high algebraic degree. 

To improve the designs, it is often suggested to replace linear registers by nonlinear 

registers [1].  

 

 

 

Figure 3.1. Stream cipher built by combination of LFSRs 

 

A (general) feedback shift register (FSR) of length L consists of L stages (or delay 

elements) numbered 0,1,..., 1L − , each capable of storing one bit and having one input and 

one output, and a clock which controls the movement of data. During each unit of time the 

following operations are performed: 

 

• the content of stage 0 is output and forms part of the output sequence 
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• the content of stage i is moved to stage i − 1 for each i, 1 1i L≤ ≤ −  

• the new content of stage L − 1 is the feedback bit 1 2( , ,..., )
j j j j L

s f s s s− − −= , 

 

where the feedback function f is a Boolean function and
j i

s − is the previous content of stage 

L i− , 1 i L≤ ≤ . If the initial content of stage i is {0,1}
i

s ∈ for each 0 1i L≤ ≤ − , then 

1 1 0[ ,..., , ]
L

s s s− is called the initial state of the FSR. Figure 3.2 depicts an FSR. Note that if 

the feedback function f is a linear function, then the FSR is an LFSR. Otherwise, the FSR 

is called a nonlinear FSR [4]. 

 

An FSR is said to be non-singular if and only if every output sequence of the FSR 

(i.e., for all possible initial states) is periodic. An FSR with feedback function 

1 2( , ,..., )
j j j L

f s s s− − −  is non-singular if and only if f is of the form  

 

                                      1 2 1( , ,..., )
j L j j j L

f s F s s s− − − − += ⊕                                         (3.1) 

 

for some Boolean function F. The period of the output sequence of a non-singular FSR of 

length L is at most 2L . 

 

 

 

Figure 3.2. A feedback shift register of length L 

 

The state diagram of a non-singular FSR may have many small cycles, and the output 

sequence becomes insecure when the generator falls into one of them. A countermeasure is 

to design L-stage shift registers that generate sequences of the largest possible period 2L  

[5]. If the period of the output sequence (for any initial state) of a non-singular FSR of 

length L is 2L , then the FSR is called a de Bruijn FSR, and the output sequence is called a 
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de Bruijn sequence [4]. The following is a De Bruijn sequence of period 24, generated by 

the four-stage NFSR of Figure 3.3. 

 

1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 ... 

 

 

 

Figure 3.3. A four-stage De Bruijn sequence generator 

 

However, De Bruijn sequences constructible by known algorithms either are 

technically difficult to implement for fast generation or suffer from severe weaknesses 

related to their autocorrelational characteristics. For example, with an extensive class of 

sequences amenable to fast generation, the coincidence probability between ( )
i

s t  and 

( )
i

s t L−  for an L-stage FSR is much greater than 1/2. The opponent cryptanalyst can make 

good use of this feature [5]. In addition, the combination of several such sequences 

(combined by some Boolean combining function) does not lead to a sequence of larger 

period. This is obvious, considering that all sequences have periods that are powers of 2. 

To avoid such weaknesses of de Bruijn sequences, four types of NFSRs are defined by 

Gammel and Göttfert in [22] for usage in cipher designs, namely type A, type B, type C and 

type D. Some important properties of those registers are given in Table 3.1. 
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Table 3.1. Properties of certain NFSRs 

NFSRs of type A B C D 

Length of the 
shift register 

L L L L 

Period of output 
sequence 2 1L −  2 1L −  2 2L −  2 2L −  

Forbidden 
initialisations 

(0,0,…,0) (1,1,…,1) 
(0,0,…,0) 
(1,1,…,1) 

(0,1,0,…) 
(1,0,1,…) 

Linear 
Complexity 2 2L −  2 1L −  2 2L −  2 2L −  

Feedback 
function contains 
constant term 1 

no yes no yes 

Distribution of 
0’s and 1’s in the 
full period 

almost 
equidistributed 

almost 
equidistributed 

equidistributed equidistributed 

 

Among these NFSRs, the ones with period at least 2 1L −  are important for a variety 

of reasons: (i) they exist, (ii) their output sequences have good statistical properties; (iii) 

the output sequences have minimal polynomials with a simple algebraic structure [23]. A 

non-singular binary L-stage feedback shift register is called primitive if for any nonzero 

binary initial state vector 0 0 1 1( , ,..., )
L

s s s s −=
���

 the corresponding output sequence 

0( )
n n

sσ ∞

==  has least period 2 1L − . If ( )f x  is the feedback function of a primitive L-stage 

FSR, then we clearly must have (0) 0f = . That is, a primitive FSR fixes the all-zero state. 

In other words, the zero sequence is an output sequence of any primitive FSR.  

 

Two periodic sequences that are shifted versions of each other (such sequences are 

called cyclically equivalent) have the same minimal polynomial and, therefore, also the 

same least period and linear complexity. We mention three basic facts concerning binary 

primitive FSRs. 

 

• The number of different L-stage feedback shift registers producing de Bruijn 

sequences is given by 
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122

L
L

L
B

− −=                                                          (3.2) 

 

This was shown by Flye Sainte-Marie in 1894 but the result went unnoticed for a long time 

until it was rediscovered by De Bruijn. 

 

Although the number 
L

B  is very large, the portion of primitive FSRs among all 

binary non-singular L-stage FSR s is only 1/ 2L . One must also take into account that most 

primitive FSRs are not suitable for a low-cost hardware implementation as their feedback 

functions are too complex. 

 

• Let 0( )
n n

sσ ∞

==  be a nonzero output sequence of a binary primitive L-stage FSR. Let 

1 k L≤ ≤ and 1 2( ,..., ) k

i k
b b b F= ∈ . Let ( )

i
Z b  be the number of n in {0,1,..., 2 2}L − such 

that 1 1( , ,..., )
n n n k i

s s s b+ + − = . Then 

 

2 1 0
( ) (3.3)

2 0
{

L k

i

i L k

i

for b
Z b

for b

−

−

− =
=

≠

                               

Proof. Since the binary sequence σ  has least period 2 1L −  and is generated by an L-stage 

FSR which fixes the all-zero state, every nonzero binary L-tuple occurs precisely once in a 

full portion of the period of σ . From this, the assertion follows at once. 

 

• The minimal polynomial of a binary primitive L-stage FSR is the product of distinct 

irreducible binary polynomials whose degrees divide L and are greater than 1. 

 

In other words, the minimal polynomial is the characteristic feedback polynomial of 

the shortest FSR that can produce the given sequence [24]. In particular, the minimal 

polynomial of σ  contains no repeated factors.  

 

NFSR sequences use the monomial spectrum in a more efficient way. Let the initial 

state of the shift register be given by 0 0 1 1( , ,..., )
L

s s s s −=
���

. If the shift register is linear, then 

each output bit 
n

s , n ≥ 0, of the shift register is the sum of a certain number of initial state 
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bits taken from the set 0 1 1{ , ,..., }
L

s s s −  If the shift register is nonlinear then the output bit 
n

s , 

n ≥ 0, is the sum of monomials taken from the set 

 

0 1 1 0 1 0 2 2 1 1 2 1{ , ,..., , , ,..., ,..., ... }
L L L L

s s s s s s s s s s s s− − − − , 

 

where, for most shift registers, each monomial of the set will occur in the representation of 

some 
n

s . The set has cardinality 2 2L −  and contains all monomials that can be formed out 

of the initial state bits 0 0 1 1( , ,..., )
L

s s s s −=
���

except the two monomials 1 and 0 1 1...
L

s s s − . The 

monomial 1 does not occur because the feedback function 0 1( ,..., )
L

f x x −  of the NFSR has 

the property (0,...,0) 0f = . The monomial 0 1 1...
L

s s s −  of degree L does not occur because the 

feedback function f is balanced [23]. 

 

The fact that all the other 2 2L −  monomials will occur in the representation of some 

n
s  is not guaranteed for every nonlinear binary FSR. However, it is a typical property that 

most NFSRs have. For instance, consider the 4-stage primitive LFSR given by 

0 1 2 3 0 1( , , , )f x x x x x x= + . Let the initial state of the shift register be ( , , , )a b c d . The output 

bits of the shift register appearing in the first period are 

 

                      
, , , , , , , , , , , ,

, , .

a b c d a b b c c d a b d a c b d a b c b c d

a b c d a c d a d

+ + + + + + + + + + +

+ + + + + +
            (3.4) 

 

Now consider the 4-stage primitive NFSR given 

by 0 1 2 3 0 1 2 1 3( , , , )f x x x x x x x x x= + + + . With the same initial state, the output bits of the shift 

register appearing in the first period are 

 

          

, , , , , , , ,

, ,

, ,

, , .

a b c d a b c bd b d ac bc bcd a b acd b c abd bcd

c d cd abc acd bcd a b c d ad bd abd acd

a b c d ab ac abc abd bcd a d bc cd abc acd

a c ad bd abd c d ab ac bd abc a b d ac

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + +

          (3.5) 
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The sequence of the first 2 1L −  output bits of a binary L-stage primitive feedback 

shift register, where each output bit is expressed as a multivariate polynomial in the initial 

state bits, is called the monomial spectrum of the shift register. Figure 3.4 displays the 

monomial spectra of the two primitive feedback shift registers, of which the feedback 

polynomials are given as examples. 

 

 

 

Figure 3.4. Comparison between a primitive LFSR and a primitive NFSR 

 

It is given as an experimental result in [23] that for 2 2 jL

j jL k L≤ ≤ − , the kth entry 

in the monomial spectrum of 
j

R  contains close to 
1

2 jL −
 different monomials and has in 

general degree 1
j

L − . 
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4. IRREGULAR DECIMATION ALGORITHMS 

 

 

The usual way to design a stream cipher consists in combining the output of one or 

several LFSRs in order to obtain a pseudorandom sequence of bits having good properties. 

Among these properties, the most regarded ones are the period and the linear complexity. 

These properties are obviously not sufficient, as they do not guarantee that the resulting 

sequences will resist algebraic or correlation attacks. Usual design techniques to obtain 

cryptographically suitable pseudorandom sequences include applying (sufficiently) 

complicated Boolean functions on the outputs or the internal states of several LFSRs. 

Another interesting technique is to decimate the output of an LFSR in an irregular way. 

This is the point of two well-known pseudorandom generators: the Shrinking Generator 

and the Self-Shrinking Generator. Recently a new irregular decimation, the bit-search 

generator (BSG) is presented by Gouget and Sibert. In addition, to improve the security 

with the same rate or the rate with the same level of security of the BSG, different variants 

like Alternative BSG (ABSG), Modified BSG (MBSG) and Editing BSG (EBSG) are 

proposed. 

 

This section is organised as follows: In section 4.1 the shrinking generator and in 

section 4.2 the bit-search generator and its variants are described. 

 

4.1 The Shrinking Generator 

 

The shrinking generator (SG) [33] is a well-known keystream generator for stream 

cipher applications. It consists of two regularly clocked binary linear feedback shift 

registers. Denote these 
A

R  and 
S

R , as shown in Figure 4.1, and denote the lengths of these 

LFSRs as LA and LS, respectively. The shrinking generator output is a "shrunken" version 

or subsequence of the output from 
A

R , with the subsequence elements selected according 

to the position of 1's in the output sequence of 
S

R : the keystream sequence z consists of 

those bits of the sequence 
A

s  for which the corresponding bit of sequence 
S

s  is 1. The 

other bits of 
A

s , for which the corresponding bit of s is 0, are deleted. Under certain 
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conditions, the output sequences possess a long period, a high linear complexity, and good 

statistical properties. 

 

 

 

Figure 4.1. The shrinking generator 

 

More precisely, let 1{ }
iA A isσ ∞

==  denote the 
A

R  sequence produced from a nonzero 

initial state 1{ } A

i

L

A is = , and 1{ }
is S isσ ∞

==  denote the 
S

R  sequence produced from a nonzero 

initial state 1{ } S

i

L

S is = . Let 1{ }
k k

z z
∞

==  denote the output sequence of the shrinking generator. 

Then 
kk Ai

z s= where 
k

i  is the position of the kth 1 in the sequence 
s

σ . The keystream 

sequence z is an irregularly decimated version of the 
A

R  sequence 
A

σ , with the decimation 

controlled by the 
S

R  sequence 
s

σ . 

 

If the LFSR feedback polynomials are primitive, then a and s are maximum length 

sequences with periods 2 1AL −  and 2 1SL − , respectively. If in addition 
A

L  and 
S

L are 

relatively prime, the period of the keystream is 1(2 1)2 SA LL −−  and the linear complexity 

(LC) of the keystream satisfies  2 12 2S SL L

A A
L LC L

− −< ≤  [27]. 

 

If the LFSR feedback polynomials are fixed, then the secret key of the generator is 

only the initial states of the two LFSRs. Assuming that all zero initial states are avoided for 

either LFSR, the total number of secret keys for the generator is (2 1)(2 1)SA LL − − . In the 

worst-case brute force attack, this is the number of trials required to recover the key. 

 

As pointed out in [33], a basic divide-and-conquer attack on the shrinking generator 

is the linear consistency attack [34] on 
S

R  that requires the exhaustive search through all 

possible initial states and feedback polynomials of 
S

R . On the other hand, a probabilistic 
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correlation attack targeting 
A

R  that requires the exhaustive search through all possible 

initial states and feedback polynomials of 
A

R  is proposed in [32] and analyzed by 

computer simulations in [27]. A reduced complexity method based on searching for 

specific subsequences of the output sequence is suggested in [35], but both the complexity 

and the required keystream segment length are exponential in the length of 
A

R . 

 

It is shown in [36] that the output sequence may have a detectable linear statistical 

weakness if the feedback polynomial of 
A

R  has low-weight polynomial multiples of 

moderately large degrees. It is suggested in [37] that this weakness may even be used for 

recovering the 
A

R  feedback polynomial. A theoretical framework for a fast correlation 

attack targeting the initial state of 
A

R  is also proposed in [37], but the attack is not 

implemented as it requires a search for specific polynomial multiples of the 
A

R  feedback 

polynomial. 

 

In [8] Meier and Staffelbach presented a different approach to the shrinking 

generator. They presented a generator doing the same operation with a single LFSR rather 

than using two LFSRs. The generator is called the self-shrinking generator (SSG). In self-

shrinking generator instead of single output bits, pairs of output bits are considered. If a 

pair happens to take the value 10 or 11, this pair is taken to produce the pseudo random bit 

0 or 1, depending on the second bit of the pair. On the other hand, if a pair happens to be 

01 or 00 it will be discarded. The shrinking generator and the self-shrinking generator can 

be implemented as a special case of the other. 

 

4.2 The Bit-Search Generator 

 

One can consider that both the SG and SSG are methods for bit-search-based 

decimation. Indeed, both generators use a search for ones along an input bit sequence in 

order to determine the output bit. Instead of using a search of 1’s along a bit sequence in 

order to determine the output bit as in the case of shrinking and self-shrinking generator, 

the bit search generator uses the search of some bit b, where b varies during the process, 

and the variations depend on the bit sequence. This explains the name of the generator, 
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which is Bit-Search Generator (BSG). BSG is similar to the Self-Shrinking Generator [8] 

by using a single LFSR for the decimation process. The BSG operates as follows: The 

principle of the BSG consists in searching for some bit along the input sequence, and to 

output 0 if the search ended immediately (that is, if the first bit read during the search was 

the good one), and 1 otherwise. Consider a window that is located before the first bit on the 

input sequence. The window moves on to read the first bit of the sequence, and then moves 

along the sequence until it encounters this bit again. If the window has read only two bits 

(i.e., the first bit read by the window was followed by the same bit), then the BSG outputs 

0, otherwise it outputs 1. The window then reads the next bit following its position, then 

moves along the input sequence to find it, and so on [7]. For example, for an input 

sequence 0101001110100100011101 the output is found as follows: 

 

��������

0 01 1 1 1 0 1

0101001110100100011101 11011001
BSG

⇒  

 

The advantage of BSG over its predecessors SG and SSG that it operates at a rate of 

1

3
 instead of 

1

4
 (i.e. producing n bits of the output sequence requires, on average, 3n bits 

of the input sequence). The comparison between the BSG and other well-known generators 

is shown in Table 4.1. However, the disadvantage of the generator is its output can be 

expressed by using the differential sequence of the input. By using this weakness, basic 

probabilistic attacks can be efficient against the BSG. To improve the security of the BSG 

with keeping the same rate, modified versions of BSG are introduced, which are known as 

MBSG and ABSG. 

 

Table 4.1. Comparison between the BSG and some well-known generators 

Generator Number of LFSRs needed Rate 

Alternating Step 3 1 

Shrinking 2 1/2 

Self-Shrinking 1 1/4 

BSG 1 1/3 
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The action of the MBSG on the input sequence σ  consists in splitting up σ  into 

subsequences of the form ( ,0 ,1)ib , with i ≥ 0 and b ∈  {0, 1}. For every pattern of the form 

( ,0 ,1)ib , the output bit is b. The action of the ABSG on σ  consists in splitting up σ  into 

subsequences of the form ( , , )ib b b , with i ≥ 0 and b ∈  {0, 1}. For every subsequence 

( , , )ib b b , the output bit is b  for i = 0, and b otherwise. Both the MBSG and the ABSG 

clearly have a rate of 
1

3
, like the BSG [42]. For example, for an input sequence 

0101001110100100011101, the action of the MBSG and the ABSG is as follows: 

 

���������

1 10 0 0 0 0 0 0

0101001110100100011101 000100010
MBSG

⇒  

 

��������

1 11 0 1 1 0 0

0101001110100100011101 10111010
ABSG

⇒  

 

As can be seen from the examples above, the action of the ABSG on an input 

sequence σ  is identical to that of the BSG, but their outputs are produced differently. As a 

result, the main weakness of BSG stemming from the fact that the BSG output can also be 

expressed by differential of its input sequence is avoided and the ABSG provides higher 

security in this regard. 

 

In [7], the period of the BSG as an experimental result is given for a maximum 

length LFSR of length L. The period of the BSG is very close to 
2 1

3

L −
 or 

2 1
2

3

L

x
−

 

depending on whether the period is read on one or two periods of the input sequence. In 

addition, for linear complexity no theoretical bounds are given but experimentally, it is 

given that the linear complexity is usually equal to the period. 

 

In [42] it is given that by making a small change in the BSG algorithm, its rate can be 

increased from 
1

3
 to 

1

2
. However, the security of such an algorithm is slightly lower than 

the BSG algorithm. To improve the rate of the ABSG with keeping its security level, a new 

algorithm namely the editing bit-search generator is proposed. 
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4.2.1. The Editing Bit-Search Generator 

 

As mentioned before, the EBSG is a modified version of the bit-search generator 

proposed by A. Gouget and H. Sibert [7]. It is developed to increase the average rate of the 

BSG from 
1

3
to 

1

2
 with the same level of security. The main difference of the EBSG from 

the other BSG variants is the use of insertion operation in addition to the decimation used 

in the BSG and its variants.  The algorithm of EBSG is identical to the ABSG except that 

after the generation of each output bit, a bit is inserted to the input string. The value of 

inserted bit is the complementary of searched bit b for each step.  An example for the 

algorithm is given below: 

 

�������

0 1 0 1 0 1

10 0 0 1 0 1

^ ^ ^ ^ ^ ^1001 0 001 10 01 10 1 0001011
EBSG

⇒  

 

For the EBSG any output bit zk is produced after i+1 input bits with probability 2-i for 

i ≥ 1. So that the average number of input bits needed to produce one output bit is 3. Since 

at each output generation one bit is inserted, the net average number of used input bits is 3-

1=2. Therefore, the rate of the EBSG is 
1

2
. 

 

The EBSG does not provide the same level of security compared to the ABSG. The 

required keystream length in the case of a basic attack against the EBSG is shorter than the 

case against the ABSG.  So that, a new variant of the EBSG is introduced, the EBSGvariant. 

The difference of the variant from the EBSG is the way the inserted bits are computed. For 

this variant, each output is produced from the pattern k
bb b  for k ≥ 0 and inserted bit is t. If 

k is odd then the value of t is changed to its complementary as t t= , otherwise nothing 

changes. An example of the EBSGvariant is given below. Let σ  = 101100011111001101001 

be the input sequence and t which is the value of the inserted bit be set to 0 initially. 

 

�� ����

1 1 0 0 0 0 1 var

10 0 1 1 00 1

^ ^ ^ ^ ^ ^ ^101 1 0001 11110 0 110 10 01 01010110
EBSG iant

⇒��������
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5. DESCRIPTION OF THE PROPOSED SYNCHRONOUS STREAM 

CIPHER: SAFE 

 

 

In this section, the design of a new stream cipher referred to as SAFE is described. 

The stream cipher SAFE is a keystream generator with a dynamic clock-controlling 

scheme and an irregular decimation algorithm at the output. It consists of three nonlinear 

feedback shift registers (NFSRs).  In addition, an updated version of 16x16 S-box of 

Advanced Encryption Standard (AES) is used for permutation of bits of 1R , 2R  and 3R  

which are used for dynamic clock-controlling scheme. SAFE uses key length of 128 or 256 

bits. At the output of the cipher EBSGvariant (Editing Bit-search Generator) is used for 

decimation of the generator registers sequences. The main idea behind SAFE is provide 

immunity against correlation and algebraic attacks by using NFSRs and irregular 

decimation.  

 

In section 5.1, the stream cipher is described. In section 5.2, the detailed description 

clock-controlling function of the cipher is given. In section 5.3, the initialisation of the 

cipher and in section 5.4 hardware considerations for the cipher is discussed. 

 

5.1. The Stream Cipher SAFE 

 

The stream cipher uses variable length private key 
C

K  of 128 or 256 bits. SAFE 

consists of three nonlinear FSRs. NFSR feedback functions do not include the constant 

term 1 and when initialised with a zero string, the output is a zero string. So, a zero string 

is a forbidden initialisation vector for NFSRs. According to the table 3.1, the NFSRs are 

very likely to be type A. The reason for choosing nonlinear FSRs (Fig. 3.2) is making the 

cipher more resistant against correlation and algebraic attacks [1]. One of the NFSRs ( 1R ) 

is responsible for determining the clocking tap positions of other two NFSRs. In addition, 

bits from other two NFSRs ( 2R  and 3R ) are used for determining the number of clockings 

of generator registers, 2R  and 3R . 
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The cipher uses dynamic clocking mechanism that is the cipher does not use the 

constant inner state values for determining the number of clockings of NFSRs. The inner 

state values used for this purpose changes in every cycle as the registers are clocked. In 

addition, the bits from the registers determining the number of clockings are permuted by 

the S-box in every cycle, so that this mechanism makes it difficult to guess the number of 

clockings of the registers. Then the output bits of the generator registers are then XORed 

and used as input to a decimation algorithm.  

 

The proposed stream cipher is shown in Figure 5.1. The lengths of the nonlinear 

FSRs are as follows: 

 

1R
L = 89 bits (Mersenne prime) 

2R
L = 107 bits (Mersenne prime) 

3R
L = 127 bits (Mersenne prime) 

 

Feedback polynomials of the NFSRs are non-singular and they can produce a period 

of length 2 1L − , where L is the length of the NFSR. That is, the NFSR produces all of its 

non-zero states. The feedback polynomials of the NFSRs are as follows: 

 

             

89 83 80 55 53 42 39 23 1 47 80
1

47 83 49 85 51 81 55 85 83 87 29 49 87 29 81 87

43 83 85 47 80 87 47 83 87 49 81 87 83 85 87

29 43 49 85 29 43 81 85 29 49 85 87 29 81

( )
R

f x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

= + + + + + + + + + +

+ + + + + + +

+ + + + +

+ + + 85 87

43 47 80 85 43 47 83 85 43 49 81 85 47 80 85 87

47 83 85 87 49 81 85 87

x

x x x x x x x x x x x x x x x x

x x x x x x x x

+

+ + + +

+

                    (5.1) 

 

            

107 88 70 51 35 17 1 22 43
2

29 35 29 88 51 70 51 97 51 103 81 103 23 31 35

23 35 43 31 35 43 17 23 31 47 17 23 31 101 17 23 43 47

17 23 43 101 17 31 43 47 17 31 43 101 23

( )
R

f x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x

= + + + + + + + +

+ + + + + + +

+ + + + +

+ + + 29 31 35 23 29 31 88

23 29 35 43 23 29 43 88 23 31 47 101 23 43 47 101 29 31 35 43

29 31 43 88 31 43 47 101

x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x

+ +

+ + + + +

+

         (5.2) 
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127 103 96 87 66 51 35 23 1 17 103
3

23 103 23 107 51 87 51 91 66 87 17 23 103 17 23 107

17 97 103 97 101 103 17 23 87 119 17 23 97 103 17 23 97 107

23 97 101 103 23 97 10

( )
R

f x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x x x x x

= + + + + + + + + + +

+ + + + + + +

+ + + + +

+ 1 107 17 23 87 97 119 23 87 97 101 119
x x x x x x x x x x x+ +

               (5.3) 

 

It is clearly seen that the feedback polynomials of NFSRs are in the same form as 

(3.1) so that the NFSRs are non-singular [4]. Their periods can be (289-1), (2107-1) and 

(2127-1), respectively. 

 

⊕

 

Figure 5.1. The proposed stream cipher 

 

5.2. Clock-Controlling Mechanism and Keystream Generation 

 

As mentioned before, the cipher has a dynamic clocking mechanism, which is the 

number of clockings of the generator registers 2R  and 3R  are determined by the functions 

that are changing in every cycle. The cipher uses the updated version of 16x16 S-box of 

AES in order to permute the incoming bits from the registers. The structure of the S-box of 

AES is given in Figure 5.2 [6]. Bits from 1R  are used for determining which bits of 2R  and 

3R  will be used in S-box. For this purpose, M function is introduced.  There are six input 

bits to the M function, which are: 1R  (86), 1R  (81), 1R  (77), 1R  (65), 1R  (63) and 1R  (52). 

Using these bits, a vector 1 2 3 4 5 6( , , , , , )r r r r r r r=
�

is formed as follows: 
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1 1 2 1 3 1 4 1 5 1 6 1(52), (63), (65), (77), (81), (86)r R r R r R r R r R r R= = = = = = . Then the number N 

is calculated by function M. According to N, the bit positions of 2R  and 3R  which are used 

as inputs to the S-box are determined. The value N is calculated as follows: 

 

                                             
6

1

1

2 i

i

i

N r
−

=

= ∑     1 ≤ i ≤ 6                                                  (5.4) 

 

N takes values between 0 and 63, where 
i

r  denotes the bit values of 1R . After the 

calculation of the value N, bits from 2R  and 3R  are fed into the S-box. The positions of 

those bits for 2R  and 3R  are as follows: 2R  (N+1), 2R  (106-N), 2R  (107), 3R  (N+1), 3R  

(126-N) and 3R  (127). Since N can be zero, 2R  (N) and 3R  (N) are not used. In a similar 

manner, 2R  (106-N) is used instead of 2R  (107-N) not to use the same input ( 2R  (107)) 

twice in case of N=0.  

 

There are 8 input bits for the S-box. Those bits are from the three registers 1R , 2R  

and 3R . From those bits, two vectors are formed for selection of the column and row of the 

S-box. From the bits of the registers, a vector 1 2 3 4( , , , )w w w w w=
�

 that selects the row is 

formed as follows: 1 1 2 2 3 3 4 2(32), ( 1), ( 1), (107)w R w R N w R N w R= = + = + = . Similarly, the 

column vector 1 2 3 4( , , , )v v v v v=
�

 is formed from the following bits: 

1 1 2 2 3 3 4 3(44), (106 ), (126 ), (127)v R v R N v R N v R= = − = − = . 
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Figure 5.2. S-box: substitution values for the byte xy (in hexadecimal format) 

 

According to the values of these bits the row and the column vector is formed and 

the output of the S-box is observed. The 8-bit output of the S-box determines the number 

of clockings of the generator registers 2R  and 3R . Let the output of the S-box be a vector 

1 2 3 4 5 6 7 8( , , , , , , , )y y y y y y y y y=
�

. According to the bit values of 2y  and 3y , the number of 

clockings of 2R  is calculated. Similarly, according to the values of 6y  and 7y , the number 

of clockings of 3R  is calculated. The clocking functions of the registers are given below: 

                                                    

                                                     2 2 3 1
R

f y y= + +                                                            (5.5) 

     

                                                     3 6 7 1
R

f y y= + +                                                            (5.6) 

 

As can be seen generator registers 2R  and 3R  are clocked once at minimum and 

three times at maximum. Since the number N takes a different value in every cycle, the 

clocking functions changing dynamically in every turn. 
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After the clockings of the generator registers 2R  and 3R , one output bit is produced 

by registers, respectively. Then these output bits are XORed and fed into the irregular 

decimation algorithm, EBSGvariant for keystream production. Then 1R  is clocked again. In 

the next turn, again N is calculated from 1R  and number of clockings of 2R  and 3R  is 

determined. The keystream bit is produced and finally 1R  is clocked once. The operation 

goes on in this fashion. 

 

5.3. Initialisation 

 

As it is mentioned before, variable key length can be used in SAFE. Nevertheless, we 

choose 256-bit private key for high level of security. In this case, 256-bit private key is fed 

into the three registers beginning from 1R . The total length of registers is 323 bits. 

Therefore, there is a 67-bit length empty space in the third register.  An initialisation vector 

(IV) of 67 bits is loaded into the third register. The first 80-bit block of the key will be 

divided into twenty 4-bit blocks, A1 through A20.  A1-A2, A5-A6, A9-A10, A13-A14 and A17-A18 

represent the row pairs to be swapped and A3-A4, A7-A8, A11-A12, A15-A16 and A19-A20 

represent the column pairs to be swapped for the S-box. After the registers are filled with 

the key and S-box is updated, the registers are clocked for 127 times and the produced bits 

are discarded.  Thus the initialisation phase is completed after the registers are clocked for 

127 times. 

 

For a fixed key the maximum amount of keystream that can be used for encryption, 

the so-called frame length, is 260 bits (1024 petabytes). After producing 260 bits, the cipher 

must be reloaded with key. 

 

5.4. Hardware Considerations 

 

The size of the implementation of an algorithm depends strongly on the minimum 

feature size of the technology, which is the dimension of the smallest feature actually 

constructed in the manufacturing process. It also depends on the specific circuit design 

style, such as CMOS (complementary metal oxide semiconductor) or DCVSL (Differential 
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Cascode Voltage Switch Logic), and the number of available metal layers for wire routing. 

Hence, it is necessary to resort to an approximate, technology and circuit style independent 

measure. A commonly used measure for the size of a design is the number of NAND gate 

equivalents (GE). This is the area of the circuit implementation divided by the area of the 

smallest NAND gate in the used standard CMOS cell library. Table 5.1 below contains a 

subset of logical gates taken from a standard cell library for 130 nm CMOS technology. 

The hardware costs are given units of gate equivalents. One gate equivalent (GE) is the 

area necessary to implement a 2-input NAND-gate on silicon [23]. 

 

Table 5.1. Hardware costs of logical operations 

Logical operation Binary function Hardware cost 

NAND(a,b) ab+1 1.00 GE 

NOR(a,b) 1+a+b+ab 1.00 GE 

AND(a,b) ab 1.25 GE 

OR (a,b) a+b+ab 1.25 GE 

XOR(a,b) a+b 2.25 GE 

NAND(a,b,c) abc+1 1.25 GE 

NOR (a,b,c) 1+a+b+c+ab+ac+bc+abc 1.50 GE 

AND(a,b,c) abc 1.50 GE 

OR (a,b,c) a+b+c+ab+ac+bc+abc 1.75 GE 

XOR(a,b,c) a+b+c 4.00 GE 

MAJ(a,b,c) ab+ac+bc 2.25 GE 

MUX(a,b;c) a+ac+bc 2.50 GE 

 

According to the feedback polynomials of the registers, hardware implementation of 

the register can be given. For instance, consider a register depicted in Figure 5.3 with 

feedback polynomial: 

                                       0 1 4 0 1 3 1 3( , ,..., )f x x x x x x x x= + + +                                    (5.7) 
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Figure 5.3. A binary nonlinear feedback shift register 

 

According to the Table 5.1, we need three 2-input XOR-gates (3 x 2.25 GE) and one 

2-input AND-gate (1.25 GE). The implementation costs of the feedback function are then 8 

GE. A better way to implement the feedback function would be to use one 2- input OR-

gate (1.25 GE) plus one 2-input XOR-gate (2.25 GE). The implementation costs are then 

reduced to 3.5 GE. In fact, ( , )OR a b a b a b ab= ∨ = + +  for 2,a b F∈ , so that (5.7) is equal 

to 

 

                                        0 1 4 0 1 3( , ,..., ) ( )f x x x x x x= + ∨                                          (5.8) 

 

The second implementation is preferable also because it has a lower logical depth. 

The depth of the circuit is the longest path from an input to the output. The logical depth of 

the first implementation is three while the logical depth of the second implementation is 

only two. Second implementation is shown in Figure 5.4. 

 

 

 

Figure 5.4. A more efficient implementation of the FSR in Figure 5.3 
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According to the Table 5.1, description of the feedback functions can be given in 

terms of logical gates whose definition and hardware costs can be found in Table 5.1. The 

representations show that each feedback function can be implemented with logical depth 

three using 2-input gates and 3-input gates only. Hardware properties of the registers are 

given in Table 5.2. 

 

           

89 42 53 80
1

1 23 39 51 81 55 49 85

83 80 47 29 49 81 87 43 85

( ) ( ( , ( , , )),

( ( , , ), ( , ), ( , ; )),

( ( , ; ), ( , , ); ( , ; )))

R
f x XOR XOR x XOR x x x

XOR XOR x x x AND x x MUX x x x

MUX MUX x x x MAJ x x x MUX x x x

=

         (5.9) 

 

           

107 1 17 88
2

22 43 70 97 51 51 81 103

35 88 29 17 47 101 23 31 43

( ) ( ( ; ( , , )),

( ( , ), ( , ; ), ( , ; )),

( ( , ; ), ( , , ); ( , , )))

R
f x XOR XOR x XOR x x x

XOR AND x x MUX x x x MUX x x x

MUX MUX x x x MAJ x x x MAJ x x x

=

        (5.10) 

 

          

127 1 23 35
3

51 91 66 87 96 51 66 87

103 107 23 23 87 119 17 101 97

( ) ( ( , ( , , )),

( ( , ), ( , , ), ( , ; )),

( ( , ; ), ( , , ); ( , ; )))

Rf x XOR XOR x XOR x x x

XOR AND x x XOR x x x MUX x x x

MUX MUX x x x AND x x x MUX x x x

=

    (5.11) 

 

Table 5.2. Hardware properties of the NFSRs 

Feedback 

Polynomial of Shift 

Register 

Number of 

taps 

Design size in 

GE 

fR1 17 31.75 

fR2 17 30 

fR3 15 31 

 

When implementing a FSR on hardware a considerable amount of area will be used 

up for the implementation of the memory cells. We can distinguish three types of flip-

flops. The simplest and least expensive flip-flop (4.75 GE) is a flip-flop without reset 

functionality. The more expensive scan flip-flop (6.75 GE) is a flip-flop with an integrated 

multiplexer. The first two flip-flops in Table 5.3 have one data input and one data output 

while a scan flip-flop has two data inputs and one data output. The flip-flops used in the 
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stream cipher SAFE do not need to have reset functionality. There is no need to reset a 

flip-flop at any time during key loading or resynchronisation. 

 

Table 5.3. Hardware costs of memory units 

Memory Unit Hardware costs 

Flip-flop 4.75 GE 

Reset Flip-flop 5.75 GE 

Scan Flip-flop 6.75 GE 
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6. SECURITY OF SAFE 

 

 

A good stream cipher must be resistant against different kinds of known plaintext 

attacks. A known-plaintext attack is one where the adversary has a quantity of plaintext 

and corresponding ciphertext. Also for cryptographic applications, generated keystream of 

a stream cipher must meet basic security requirements, such as large period, high linear 

complexity and good statistical distribution. 

 

In section 6.1, the keystream properties of SAFE are examined. In section 6.2 

security of the cipher is examined for several scenarios considering the known plaintext 

attack and the adversary knows the internal structure of the cipher. 

 

6.1. Keystream Properties of SAFE 

 

6.1.1. Period and Linear Complexity 

 

The cipher has non-singular NFSRs. If we assume that the NFSRs are type A NFSRs, 

then the periods of the NFSRs are prime, since the lengths of the NFSRs are Mersenne-

prime. The cipher uses mutual clocking so that mathematical modelling of period is not an 

easy task to perform. However, an upper bound for the period and linear complexity can be 

given.  

 

In [9], it is shown that the keystream sequences produced by a generator using clock-

control register(s) to control the clocking of data generating register (GR), can have 

maximum period as 
KG

P : 

 

                                              
gcd( , )

GR
KG

GR

P
P

S P

λ
=                                                       (6.1) 

 

where λ  is the period of the decimating sequence, GRP  is the period of the data generating 

register and S is the total number of clocking (or the value of the decimating sequence) 
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applied to the data generating register during one period of index of clock controlling 

function and “gcd” stands for greatest common divisor. 

 

According to [9], the generator can reach this limit, if one of two conditions are 

satisfied: 

 

• Degree kreg of GRf  is prime and S is not a multiple of 
gcd( , 1)

GR

GR

P

P q −
, where GRf   is 

the feedback function of GR over GF(q). 

• GRf  is a primitive polynomial and 
/ 2

gcd( , ) regk

GR
S P q≤  

 

For our case, the feedback function is defined over GF(2), therefore q=2.  

 

If 1P , 2P  and 3P  represent the periods of each register; then periods can take the values 

89 1072 1,2 1− −  and 1272 1− , respectively. Let 
i

S  denote the sum of clockings of ith generator 

register during the period of 1R , 2R  and 3R , where { }2,3i ∈ . 

 

The number of clockings of 2R  and 3R  are not only dependent on 1R  itself, but on 

themselves as well. There are total of 89 127 107(2 )(2 )(2 )  cases at the input of the S-box. For  

89 127 107(2 )(2 )(2 )
1

4
−  cases the generator registers are clocked for once. For 

89 127 107(2 )(2 )(2 )

2
 

cases the generator registers are clocked for twice and finally for 
89 127 107(2 )(2 )(2 )

4
 cases the 

generator registers are clocked for three times. Then the value of S becomes 

89 127 107 89 127 107 89 127 107
89 127 107(2 )(2 )(2 ) (2 )(2 )(2 ) (2 )(2 )(2 )

1 2 3 2(2 )(2 )(2 ) 1
4 2 4

x x− + + = −  .So S is 

not a multiple of 2R
P  and 3R

P and the degrees of the feedback polynomials of 2R  and 3R  

are prime then we can write the period of the cipher as: 

 

                                  1 2 3

2 3

1

gcd( , ) gcd( , ) 2
R R R

R R

P P P
Ps x

S P S P
=                                             (6.2) 
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Since 2gcd( , )
R

S P  and 3gcd( , )
R

S P are equal to 1, because 2R
P  and 3R

P  are prime [9]; 

the expression for the period of the cipher reduces to: 

 

                                           1 2 3

2
R R R

s

P P P
P =                                                            (6.3)       

The multiple of the periods of registers are divided by 
1

2
 because the EBSGvariant at 

the output of the cipher reduces the period of the sequence by 
1

2
. Consequently, the period 

the cipher can be 89 127 107(2 1)(2 1)(2 1)
s

P = − − −  which is about 2322. 

 

For an LFSR of length n bits, the linear complexity of its output sequence is LC = n, 

provided its feedback polynomial is properly chosen. For a nonlinear register, it is not 

always easy to compute the linear complexity of its output sequence, but clearly it cannot 

exceed its period [1]. The upper bound for the linear complexity of an L-stage binary 

primitive FSR is 2 2L − . The upper bound 2 2L −  also seems to be a typical value for the 

linear complexity of L-stage binary primitive NFSRs [10]. So that individual linear 

complexities of NFSRs are upper bounded by 1272 2−  , 1072 2−  and 892 2−  , respectively. 

Also according to [11], since gcd( , ) 1
Ri

S P =  for { }2,3i ∈ , the period of the clock-control 

register become a multiplier in the upper bound on the linear complexity of the irregularly 

decimated sequence. For SAFE, the clock-control registers are 1R , 2R  and 3R . Thus if LC 

denotes the linear complexity of the keystream is very likely to be lower bounded 

by 89 127 107(2 1)(2 1)(2 1)ϕ− − − , where ϕ  denotes the effect S-box and the EBSGvariant.   

 

So in order to apply the Berlekamp-Massey attack, an attacker should intercept at 

least 31 2(2 1)(2 1)(2 1).2RR R− − −  plaintext bits. However the cipher will be reinitialised with 

a different key after a keystream length 260, therefore this attack seems impractical. 
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6.1.2. Output Rate 

 

For the production of a single keystream bit, each of the generator registers are 

clocked once with a probability of 
1

4
, twice with a probability of 

1

2
and three times with a 

probability of 
1

4
. Let ( )

i
a t  represent the number of clockings of ith register at time t, 

( ) {1,2,3}
i

a t ∈ .Then the average number of clockings per keystream bit is  

 

                                               
1 1 1

{ ( )} 2 3 2
4 2 4i

E a t x x= + + =                                            (6.4) 

 

Output rate is then 0.5 for each produced keystream bit. Since EBSGvariant is used for 

the nonuniform decimation of the output of generator registers and it has a rate of 0.5; then 

the rate of the cipher will be 0.25.  

 

6.1.3 Statistical Properties of the Keystream Sequence 

 

Keystream sequence of the SAFE stream cipher is investigated by using the 

statistical tests of FIPS 140-2 [44] and NIST Statistical Test Suite. FIPS140-2 is applied to 

1000 sequences of 20000 bits that is produced by SAFE. The cipher passes FIPS140-2 in 

proportion of 99.9%. It is known that the security criteria of FIPS140-2 are stricter than 

that of    FIPS140-1. Therefore, SAFE passes FIPS140-1 in proportion of 100%. We have 

tested 1000 sequences of length 1 million bits with NIST test. The generated sequences 

successfully pass this test with a significance level of 0.01 and therefore the success rate 

for NIST test is 99%.  

 

In addition, autocorrelation test to sequences of length 20000 bits and 50000 bits are 

applied. The cipher passes autocorrelation test in proportion of 100%. Any significant 

correlation between the tested sequences and the shifted versions is not recognised. 

 

Furthermore, the spectral test is applied to the cipher. The purpose of this test is to 

detect periodic features (i.e., repetitive patterns that are near each other) in the tested 
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sequence that would indicate a deviation from the assumption of randomness. The 

intention is to detect whether the number of peaks exceeding the 95 % threshold is 

significantly different than 5 %.  

 

Also the linear complexity profile of the cipher for sequences of 20000 bits is tested. 

The linear complexity profile is defined to be the measure of change of the linear 

complexity of a sequence as it becomes longer. The linear complexity profile of a random 

sequence should approximately follow the line L = n/2 where n is the length of the 

sequence. 

 

Figure 6.1 shows the autocorrelation result for 20000 bits of output of SAFE. The 

autocorrelation (AC) values are normalized to the value at the origin. That is; the maximum 

AC that can be achieved is 1 which is represented by dashed red line in Figure 6.1. It is 

noticed that there is no significant peak compared to the normalized value (i.e one) at the 

origin. 

 

 

 

Figure 6.1. Autocorrelation test result for 20000 bits 
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Figure 6.2 shows autocorrelation values for a sequence of length 50000 bits. Again it 

is clearly seen that there is no significant peak therefore no significant correlation for the 

shifted values of the sequence compared to the original sequence. 

 

 

 

Figure 6.2. Autocorrelation test result for 50000 bits 

 

Table 6.1 shows the spectral test results for SAFE. The p value gives the percentage 

of the peaks. The tests are applied to sequences of length 5000, 20000, 50000 and 100000 

bits, respectively. In addition, corresponding spectral test result figures are given in Figures 

6.3, 6.4, 6.5 and 6.6. The spectral values are calculated using Discrete Fourier Transform 

(DFT). Since DFT is symmetric, first n/2 values are considered for a sequence of length n. 

For each sequence a threshold value is needed to be considered. The threshold value is 

3n  for a sequence of length n. The sequence passes the spectral test since no more than 

5% of the peaks surpass the threshold value. 
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Table 6.1. Spectral test results for SAFE 

Length of sequence p value Test Result 

5000 0.3588 passed 

20000 0.9269 passed 

50000 0.1819 passed 

100000 0.9673 passed 

 

 

 

 

Figure 6.3. Spectral test result for 5000 bits, with threshold value of 122.47 
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Figure 6.4. Spectral test result for 20000 bits, with threshold value of 244.94 

 

 

 

 

Figure 6.5. Spectral test result for 50000 bits, with threshold value of 387.29 
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Figure 6.6. Spectral test result for 100000 bits, with threshold value of 547.72 

 

The linear complexity is an important parameter for pseudorandom bit generators 

since it determines the linear equivalence of a system with a known successive keystream 

of length twice the linear complexity.  The Berlekamp-Massey algorithm described in [43] 

is an efficient algorithm to determine the linear complexity profile thus the linear 

complexity by having only some of consecutive keystream bits. In [4], it is said that for a 

pseudorandom bit generator the linear complexity profile should be close to the line L = 

N/2 where N is the length of the sequence. In Figure 6.7, the linear complexity profile of 

SAFE for 20000 bits is shown. As can be seen from the Figure 6.7, the linear complexity 

profile is nearly the same as the N/2 line. 
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Figure 6.7. The linear complexity profile of SAFE for 20000 bits 

 

6.2. Security of SAFE 

 

While designing a cipher, one of the important points is the resistance against 

different types of attacks. In this section, the resistance of the cipher against different types 

of attacks will be analysed. These attacks are known-plaintext attacks conducted under the 

assumption that the cryptanalyst knows the complete internal structure of the generator. 

 

6.2.1 Exhaustive Key Search 

 

Exhaustive key search, or brute-force search, is the basic technique of trying every 

possible key in turn until the correct key is identified. To identify the correct key it may be 

necessary to possess a plaintext and its corresponding ciphertext, or if the plaintext has 

some recognisable characteristic, ciphertext alone might suffice. Exhaustive key search can 

be mounted on any cipher [12]. SAFE has a key length of 256 bits, so there are 2256 
≈ 1077,1 

possible keys.  Therefore, this kind of attack seems impractical. 
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6.2.2 Time/Memory Trade-off Attacks 

 

Generally in time/memory trade-off (TMTO) attacks, cryptanalyst generates a 

number of output bits from certain states of the cipher and then keeps these cipher states 

and their corresponding outputs in pairs in a sorted list. Then he scans a received output 

sequence to find one of the stored output sequences in the received output sequence. If this 

occurs, the corresponding cipher state is obtained and from this state the key can be 

successfully recovered. Suppose that :{0,1} {0,1}n nf →  is a one-way function, i.e. a 

function which can be efficiently evaluated in forward direction, but which is hard to 

invert. The goal of the attacker is to invert this function, i.e. given f(x) to find x, while 

keeping complexity of the inversion algorithm as low as possible [16]. The attack consists 

of two stages: pre-processing stage (offline stage) and processing stage (online stage). In 

the offline stage, a table related to the system in consideration is constructed. Pe will denote 

the time needed for this pre-computation, and Me will denote the size of memory needed in 

constructing and storing this table. During the online phase, an explicit target is given and 

the attacker is asked to return an element related to this target from some search space of 

size Ne. The time taken for this reply will be denoted by T. Complexity of the attack is 

usually taken to be the sum or maximum of T and Me. Hence, for a meaningful TMTO, 

both T and Me should be at least small than Ne. It is customary not to take the pre-

computation time Pe as adding to the attack complexity. In other words, the attacker is 

given unlimited amount of time in preparation [17]. 

 

In 1980, Hellman introduced the technique of time/memory trade-off (TMTO) attack 

on block ciphers. That is, if there are Ne possible solutions to search over, the time/memory 

trade-off allows the solution to be found in T operations (time) with Me words of memory, 

provided the time/memory product TMe equals Ne [13]. Using precomputation time of Ne, 

Hellman showed that the online time T and memory Me satisfy the relation TMe 
2
 = Ne

 2, 

where Ne = 2
n, for a key of length n. Consequently, the attack is called the time/memory 

trade-off (TMTO) algorithm and the last equation is called the TMTO curve. In the context 

of block ciphers with reasonably long keys, the original Hellman attack is typically not 

considered to be of a threat since its precomputation time is the same as the exhaustive 

search of the key. Furthermore, the attack works for a single chosen plaintext encryption 

and cannot benefit if more plaintext- ciphertext pairs are available to the attacker since the 
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precomputed tables are related to a fixed plaintext [16]. Stream ciphers received the time 

memory trade-off attack for the first by Babbage [14] and Golic [15] through independent 

works. In the context of stream ciphers, the function from state to a substring of the 

keystream can be considered to be a one-way function. The difference from the block 

cipher scenario is that in this case, the obtained keystream provides multiple data points, 

inverting any of which yields a state of the stream cipher and constitutes an attack. 

Babbage and Golic investigated this situation and obtained an attack with the relations TMe 

= Ne and T = De, where De is the number of available data points. Biryukov and Shamir 

[19] incorporated multiple data into the Hellman attack and obtained the TMTO curve TMe 

2
 De

 2
 = Ne

 2 and 1 ≤ De
 2
≤ T. This kind of attacks seems impractical for SAFE because, 

SAFE has a solution space of 2323.  In case of the attack in [19], if we choose the memory 

value to be 250(1024 terabytes), according to the TMTO curve TMe 
2
 De

 2
 = Ne

 2, T De
 2

 = 

2546 
≈ 10164,36. This result indicates that although the attacker may have large amount of 

data, a TMTO attack seems impractical for SAFE. 

 

6.2.3 Correlation Attacks 

 

One of the most important attacks against stream ciphers are correlation attacks. Let 

us consider a combination generator where the output sequences of several linear feedback 

shift registers are combined by some function f. The function f should produce a sequence 

of adequate period and is desired to be nonlinear. For suitable chosen LFSRs many f 

produce keystreams that have a long period and a large linear complexity. However, 

having a keystream of long period and large linear complexity is not enough. It is also 

required that the combining function f provides confusion that is the property whereby the 

relation between the simple statistics of the keystream bits and the simple description of 

the key. Blaser and Heinzmann [20] were the first to point out a possible problem with the 

relationship between the keystream and the sequences used to produce it. Siegenthaler [3] 

was the first to propose a model that could exploit this relationship to the detriment of the 

combination generator. 
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6.2.3.1 The model of Siegenthaler 

 

The practical setup consists of k LFSRs with LFSRi having length Li, i=1,....,s. The 

characteristic polynomial of each LFSR is primitive, and is assumed to be known. The 

combining function F is a known, nonlinear, arbitrary Boolean function. The secret key of 

the keystream generator specifies the initial states of each LFSRi. The total number of key 

bits required to specify the initial states of the keystream generator is 
1

k

i

i

L
=

∑ .  

 

Siegenthaler modelled the input sequences ( ), 1,...,j

t
s j k= , of the function F as 

outcomes of independent and uniformly distributed binary random variables i

t
S  with 

probability distribution such that ( 0) ( 1)i i

t t
P S P S= = =  for all i and t. The output of F is an 

independent and uniformly distributed random variable 1( ,..., )k

t t t
Z F S S= with probability 

distribution PZ where ( 0) ( 1)
t t

P Z P Z= = = . The probability that the keystream bit zt 

coincides with the input bit j

t
s is given by ( )j

j t tP P Z S= = . The keystream is said to leak 

information about LFSRj if 0.5
j

P ≠ . 

 

Siegenthaler showed that if correlation exists, it is possible to determine the initial 

state of each LFSR independently, thereby reducing the cryptanalytic attack to a divide-

and-conquer attack, with approximate complexity 
1

2 i

k
L

i=

∑ . Siegenthaler’s attack amounts to 

an exhaustive search through the state space of each individual LFSR. For each state by 

computing the cross-correlation function 

 

                                              
1

,
0

1
( 1) ( 1)

j
i i

j

n
z s

s z
i

C
n

−

=

= − −∑                                                       (6.5) 

 

between the known keystream bits 0 1 1, ,.....,
n

z z z −  of the sequence (
t

z ) and the suspected 

output ( j

t
s ) of LFSRj, the correct initial key can be found. A different model for the 

correlation attack is depicted in Figure 6.8.  
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⊕

⊕

 

 

Figure 6.8. The model for the correlation attack 

 

According to the model above, the corruption of the internal LFSR sequence under 

discussion due to other LFSRs in the stream cipher may be modelled as “errors” in the 

sequence. So the model can be thought as an LFSR and a binary noise source (BNS) which 

introduces the errors to the LFSR sequence. In this attack, a test LFSR is stepped through 

all of its 2 1L −  non-zero initial states and the output is XORed with the output of the 

stream cipher model, as model shown in Figure 6.1. The amount of correlation between the 

LFSR sequence and the ciphertext can be adjusted, by changing the probability p=P(ej=1) 

of the BNS emitting a 1. A high level of correlation implies that only very few 1’s are 

injected into the LFSR output sequence by the BNS. In general, the output sequence (oj) of 

the model will appear to be “random”, since it is the XOR of two sequences, the number of 

0s and 1s in the sequence being roughly equal. However, when the test LFSR is initialised 

with the correct initial state (identical to the initial state of the LFSR under attack), the 

output sequence (oj) will be unbalanced, consisting mainly of long runs of 0’s, interspersed 

with a few 1’s [25]. However, such a search is not very realistic when the degree of the 

feedback polynomial of the LFSR exceeds 60 [21]. 

 

Since the exhaustive search in Siegenthaler’s model is not practical, it was shown by 

Meier and Staffelbach [26] that in certain cases one can avoid this exhaustive search. 

 

 

 



 61 

6.2.4. Fast Correlation Attacks 

 

In [26] Meier and Staffelbach proposed that under certain circumstances like few 

feedback taps and long LFSR lengths, faster correlation attacks can be successful without 

making an exhaustive search. They proposed two attacks (Algorithm A and Algorithm B) 

which are much faster than the above attack and work for LFSR length L >> 60 if the 

LFSR in question have only a few feedback taps (which is sometimes preferred in practice 

for ease of hardware.) Under suitable conditions, correlation attacks against LFSRs of 

length L = 1000 or even greater are feasible.  

 

There are several papers based on the ideas of Meier and Staffelbach, such as: [21], 

[28], [29] and [30]. Most of the algorithms work under the condition that the LFSR has a 

low weight feedback polynomial. However in [31], Johansson and Jonsson developed the 

approach to feedback polynomials based on the theory of convolutional codes. Their 

method can be applied to arbitrary LFSR feedback polynomials, in opposite to the previous 

methods, which mainly focused on feedback polynomials of low weight.  

 

All of the algorithms use the approach of viewing the problem as a decoding 

problem. That is, the keystream is regarded as the output of a binary memoryless 

symmetric channel (BSC) where the LFSR sequence is regarded as the input to the 

channel. The correlation probability 1 − p, defined by 1 ( )
i i

p P s z− = = , gives p as the 

crossover probability (error probability) in the BSC. W.l.o.g we can assume p < 0.5. The 

model is shown in Figure 6.9. 

 

 

 

Figure 6.9. Model for a fast correlation attack 

 

All algorithms for fast correlation attacks operate in two phases: In the first phase the 

algorithms find a set of suitable parity check equations based on the feedback taps from the 
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LFSR. The second phase uses these parity check equations in a fast decoding algorithm to 

recover the transmitted codeword and thus the initial state of the LFSR. 

 

In order to give the results of the attack in [26] more clearly, assume that n digits of 

the output sequence z are given, and correlated with probability p > 0.5 to an LFSR 

sequence 
a

s , produced by an LFSR with t taps. In addition, it is assumed that the feedback 

connection is known. This is not an essential restriction as there are only a very limited 

number of maximum-length feedback connections with few taps. Hence exhaustive search 

over all primitive feedback connections is possible. The attack applies to an arbitrary 

number t of taps but the analysis is restricted to even values of t since irreducible feedback 

connections (of length greater than 1) necessarily have an even number of taps [26]. 

 

In this attack the keystream sequence z can be viewed as a perturbation of the LFSR 

sequence 
a

s  by a binary memoryless noise source (with Prob(0)=p). For the purpose of 

reconstructing the LFSR sequence 
a

s  from sequence z the following principle is essential 

to the algorithms (Algorithm A and B): every digit 
ai

s  of 
a

s  satisfies linear relations 

derived from the basic feedback relation, all of them involving t other digits of 
a

s . By 

substituting the corresponding digits of z in these relations, equations are obtained for each 

digit 
i

z , which either may or may not hold.  To test whether 
i ai

z s= , the number of all 

equations hold for 
i

z  is counted. Then the greater the number of equations hold, the higher 

is the probability that 
i

z  will agree with 
ai

s .   

 

In algorithm A, a test is used for correct digits. This is done by selecting those digits 

that satisfy the most equations. In this way an estimate of the sequence 
a

s  at the 

corresponding positions can be obtained. Under favourable conditions these digits have a 

high probability of being correct, which means that only a slight modification of the 

estimate is necessary. This results in a considerably reduced exhaustive search to sort out 

sufficiently many correct digits, in order to determine the LFSR sequence 
a

s  by solving 

linear equations. The computational complexity of the attack is of order (2 )cLO , where c < 

1 is a function of number of feedback taps t, the probability of correlation p and n/L (n is 

the length of the available keystream and L is the length of the register). To give an 
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example for the value of c, it is smaller than 0.25 for t=2, n/L=106 and p ≥ 0.6. Moreover, 

for p > 0.67, the value of c is below 0.001. This is a considerable improvement when 

compared to the exhaustive search where c=1. However for large t (t ≥ 10) the value of t 

becomes very close to binary entropy function that is Algorithm A gives no advantage over 

exhaustive search [26]. 

 

In Algorithm B, the most reliable digits are not searched. Instead, all digits of z are 

taken into account together with their probabilities of being correct. A priori, with 

probability p a digit of z agrees with the corresponding digit of 
a

s . Then for each digit 
i

z  

of z a new probability *p  is assigned, which is the probability for 
i ai

z s= , conditioned by 

the number of equations satisfied. This procedure can be iterated with the varied new 

probabilities *p  as input to every round. After a few rounds, all those digits of z whose 

probability *p  is lower than a certain threshold are complemented. Under suitable 

conditions it is expected that the number of incorrect digits decreases. In this case, the 

whole process is restarted several times until the original LFSR sequence 
a

s  is obtained. 

 

To obtain conditions under which Algorithm B succeed, a function ( , , / )F p t n L  is 

introduced to measure the correction effect. If ( , , / )F p t n L  ≤ 0 there is no correction effect 

and algorithm B will not be able to reproduce the LFSR sequence 
a

s  [26]. Therefore a 

definite limit to the attack is obtained (which is attained for t ≥ 10 if p ≤ 0.75). In other 

direction, for t = 2 or t = 4 taps Algorithm B still remains effective for small correlations, 

and, in fact, for t = 2, even for correlation probabilities quite close to 0.5. This means in 

particular that correlation to LFSRs with only two feedback taps can be very dangerous. 

The striking efficiency of Algorithm B is that the computational complexity is of order 

( )O L (i.e. linear in length L of the LFSR) [26]. 

 

Algorithms A and B enable attacks against LFSRs of considerable length (e.g.,         

L = 1000 or greater) with software implementation. However a comparison shows that 

Algorithm A is preferable if c << 1 and p is near 0.75 whereas Algorithm B becomes more 

efficient for probabilities p near 0.5. 
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To prevent attacks based on these methods, suitable precautions are necessary. This 

leads to new design criteria for stream ciphers: 

 

1. Any correlation to an LFSR with less than 10 taps should be avoided. 

2. There should be no correlation to a general LFSR of length shorter than 100 

(especially for the case of known feedback polynomial.) 

In the attack, for number of t taps, the weight of the feedback polynomial will be t+1. 

So for a fixed bit 
ai

s  there are t+1 number of relations. Also using the squaring operation, 

( ) ( )j jf x f x=  for 2ij = , more relations involving the fixed bit is obtained. The squaring 

operation continues until the degree of the polynomial is greater than the length of the 

observed keystream. The obtained equations are called parity check equations. The m 

equations are written below: 

 

                                                          

1

2

0,

0,

.

.

.

0,

ai

ai

ai m

s b

s b

s b

+ =

+ =

+ =

                                                             (6.6) 

 

where each 
i

b the sum of t different positions of 
a

s . Then these equations are applied to the 

keystream bits  

 

                                                          

1 1

2 2

.

.

.

i

i

i m m

z y L

z y L

z y L

+ =

+ =

+ =

                                                            (6.7) 

 

where 
i

y  is the sum of the positions in the keystream corresponding to the positions in 
i

b . 

Assume that h of m equations hold, i.e. 
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                                                  |{ : 0,1 }|
i

h i L i m= = ≤ ≤                                                  (6.8) 

 

when we apply them to the keystream. Then it is possible to calculate the probability 

* ( | )
n n

p P a z h equations hold= =  as 

 

                                          * (1 )

(1 ) (1 )(1 )

h m h

h m h h m h

ps s
p

ps s p s s

−

− −

−
=

− + − −
                                   (6.9) 

 

where ( )
n n

p P z a= =  and ( )
i i

s P b y= = . Then one of two algorithms given above 

(Algorithm A and B) are used for reconstructing the initial state. 

 

Since the correlation between the generators registers and the output is %50, 

correlation attacks cannot be applied to SAFE. However if one analyses the output and 

detects a correlation different than %50, correlation attacks can be applied. Let us consider 

the model of Siegenthaler for the correlation attack against SAFE.  The generator has an 

irregular clocking mechanism, so it is resistant against correlation attacks. The attacker 

should make an exhaustive search for guessing the clocking mechanism and structure of S-

box. However, since there is no one-to-one corresponce between the generator register 

outputs and the keystream, Siegenthaler’s model cannot be applied. 

 

When we apply fast correlation attack to SAFE, we consider two scenarios. In 

scenario 1, we omit the effect of EBSGvariant. In Meier and Staffelbach’s model, the number 

of taps of the NFSRs must be less than 10 for the attack to be successful, where in SAFE 

the number of taps of the registers is more than 10. Therefore, the model of Meier and 

Staffelbach seems infeasible for SAFE for scenario 1. However, the model of Johansson 

and Jonsson’s model can be applied to arbitrary feedback polynomials. So in scenario 1, 

without the effect of EBSGvariant, SAFE is theoretically secure against Meier and 

Staffelbach’s model and insecure against  Johansson and Jonsson’s model. Let us consider 

the effect of EBSGvariant for scenario 2. All of the fast correlation attacks use binary 

memoryless symmetric channel for the attack model. However, EBSGvariant has a memory; 

that is two consecutive bits cannot be observed at the output at the same time. For every 

pattern of the form k
bb b , k ≥ 0 there is a searched bit b. In order to produce an output, the 
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selection logic has to remember the bits before the searched bit. Therefore, the selection of 

two consecutive bits is not possible because of the structure of the algorithm. In scenario 2, 

considering the memory effect of EBSGvariant, the model of Johansson and Jonsson cannot 

be applied. Consequently, fast correlation attacks cannot be applied to SAFE because of 

the existence of the EBSGvariant.  

 

6.2.5 Embedding Attacks 

 

Embedding attacks are based on the possibility of embedding one binary string into 

another. Let 1{ }
t t

X x
∞

==  denote the output sequence of a regularly clocked binary shift 

register with not necessarily linear feedback. Let a decimation sequence be defined in 

terms of its increments, that is, as a non-negative integer sequence 1{ }
t t

D d
∞

== . In practice, 

D is produced by a clock-control generator, and is therefore ultimately periodic. The output 

sequence 1{ }
t t

Y y
∞

==  of the clock-controlled shift register is defined as a decimated 

sequence 

  

                                                       

1

( )
t

i

i

t
d

y x

=

=
∑

                                                      (6.10) 

 

Note that the decimation operation actually means that in order to obtain the next 

output symbol 
t

y , after producing 1t
y − , one has to delete 1

t
d −  consecutive symbols from 

X if 1
t

d ≥ or has to repeat 1t
y −  if 0

t
d = . There are two types of embedding attack, 

unconstrained and constrained. In the unconstrained case, there is arbitrary number of 

deletions at a time and in constrained case at most d deletions at a time. The objective of 

the attack is to reconstruct the initial state of the clock-controlled shift register based on a 

given segment of the output sequence, without knowing the decimation sequence. 

 

In [32] Golic and O’Connor described the condition for the unconstrained embedding 

attack. That is, for a successful attack the deletion rate of the cipher must be smaller than 

0.5. If the deletion rate of the cipher greater than or equal to 0.5, then the cipher is secure 
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against the unconstrained embedding attack. The deletion rate of SAFE is obtained using 

(6.4), 

 

                                                
1

1 0.75
2 { ( )}d

i

p
xE a t

= − =                                               (6.11) 

 

The average number of clockings, { ( )}
i

E a t , is multiplied by 2, because the average 

rate of the EBSGvariant is 
1

2
.  The deletion rate of SAFE does not satisfy the condition for 

unconstrained embedding attack, and it is theoretically secure against unconstrained 

embedding attack.  

 

In constrained case, let the maximum number of deletions as max 2.max( ( ))
i

d a t= = 6. 

The attacker considers information of maxd  as opposed the idea behind the unconstrained 

embedding attack. In [32], it is shown that, the constrained embedding attack is successful 

if the length of the observed output sequence is greater than a value linear in the generator 

length and superexponential in maxd . The attack cannot be successful, if the minimum 

required keystream length is smaller than a value linear in the in the length of the generator 

register and exponential in maxd . Therefore by making maxd  sufficiently large, practical 

security can be improved significantly. The amount of required keystream for a successful 

reconstruction is given by  

 

                                                     
2( 2)(1 2 )2 ln 2

dd
n L

++ +≥                                                   (6.12) 

 

which is linear in the register length L but superexponential in d. For SAFE stream cipher 

maxd is 6 which requires prohibitively large amount of known keystream. Therefore, we can 

say that constrained embedding attack on SAFE stream cipher does not seem practical, 

although it is theoretically possible. 
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6.2.6. Probabilistic Attack 

 

Embedding attacks make no use of the probability distribution of the decimation 

sequence. Therefore, they are not optimal in general. The probabilistic attack based on the 

joint probability of the original and decimated sequences is optimal [32]. In this attack, an 

exhaustive search is made for the initial states of the shift registers and a joint probability 

value of the keystream and each shift register output is calculated according to the equation 

below 

 

                            ( , ) ( 1, ) ( , 1)(1 ) ( , )
i k k

P i k P i k p P i k p x yδ += − + − −                               (6.13) 

 

where ( , )P i k denote the partial joint probability for the prefix 1{ }i k i k

t t
X x

+ +

== of X of length 

i+k and the prefix 1{ }k k

t t
Y y ==  of Y of length k, for any 1 ≤ k ≤ n and 0 ≤ i ≤ m-n. Let 

( , )x yδ denote the substitution probability defined to be equal to 0.5 if x and y are equal 

and zero otherwise. Also p is the deletion rate of the keystream generator.  Initial values for 

(6.12) are ( ,0) iP i p= , 0 ≤ i ≤ m-n and ( 1, ) 0P k− = , 1 ≤ k ≤ n [32]. The initial states of the 

shift register with a high joint probability value are candidate initial states.  The attack thus 

requires exhaustive search over all the initial states (phases) of FSR, so its computational 

complexity is 2(2 )LO L , where L is the length of the shift register [27]. 

 

When we apply probabilistic attack to SAFE, it requires an exhaustive search 

through the initial states of generator registers. The amount of search is 2234 ≈ 1070,44 state 

spaces. After this computation, a joint probability value is calculated for each initial state. 

The initial states with a high joint probability value are named as candidate initial states. 

The complexity of the attack is O(22342342). The probabilistic attack is theoretically 

possible but impractical for SAFE. 

 

6.2.7. Algebraic Attacks 

 

Algebraic attacks are a new family of cryptographic technique based on defining a 

cipher system by an initial state-output relation of some degree d. If one can find a relation 

for a system then he can theoretically find the initial state of the cipher by solving 
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multivariate equations with some or may be a huge amount of known consecutive 

keystream. In algebraic attacks, the aim is to recover the initial internal state. It is assumed 

that an adversary has knowledge of the algorithm and some keystream bits.  

 

For some ciphers algebraic attacks outmatched all previously known attacks since it 

decreases the linear complexity of the cipher. In [38], Nicolas T. Courtois presented the 

first algebraic technique against the Toyocrypt cipher. In [39], Courtois and Meier 

presented new algebraic attacks against Toyocrypt and LILI-128. Frederik Armknecht 

proposed an algebraic attack against the Bluetooth Key Stream Generator (E0) in [40]. He 

had successfully described the E0 system in terms of internal state-output relation with a 

degree of d = 4. In [41] Nicolas T. Courtois proposed a Fast Algebraic Attack against 

stream ciphers using the lower degree terms of relation equation however with more 

keystream bits which also should be consecutive. 

 

Most of the algebraic attacks were made against regularly clocked stream ciphers, 

non-linear filters and non-linear combiners with or without memory. If we sum up 

algebraic attacks have the following general steps: 

 

1. Set up a system of equations in the unknowns (initial internal state of the 

cipher). 

2. Insert the observed keystream bits into the identifiers zt. 

3. Recover the unknowns by solving the resulting system of equations using 

linearization, re-linearization or XL algorithm  

 

In first step, an adversary tries to find an exact internal state-output relation for a 

system.  For systems that use LFSR and Boolean functions as combiners or nonlinear 

filters it is not a difficult task to achieve if the system is clocked in regular or known way. 

In fact, it is the most important part if one desires to make an algebraic attack. For simple 

systems such as combiners with or without memory, nonlinear filters with regular clocking 

and clock-controlled systems with simple or known clocking, existence of such equations 

is obvious. 
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The second step of algebraic attacks is the substitution of observed keystream bits 

into the equations derived in the first section. Normal algebraic attacks have substitution 

complexity which is less than the actual attack. However, fast algebraic attacks have 

substitution complexity higher than the actual attack if the substitution is done in a naive 

manner.  

 

The third step of algebraic attacks is solving the multivariate equations obtained in 

step 1. Many techniques have been proposed to solve these systems.  The best-known and 

simple technique is the linearisation. The basis of this technique is to linearise a system of 

nonlinear algebraic equations by assigning a new unknown variable to each monomial term 

that appears in the system. The same monomial term appearing in distinct equations is 

assigned the same new unknown variable. The system of equations then changes from a 

system of nonlinear equations (with few unknown variables) into a system of linear 

equations (with a large number of unknown variables). If the number of linear equations 

exceeds the number of new unknown variables, then the attacker can solve the system to 

obtain the new unknown variables of the linear system (which will in turn reveal the 

unknown variables of the non-linear system).  

 

To provide immunity against algebraic attacks, nonlinear FSRs are used in SAFE. As 

mentioned on section 3, NFSRs provide resistance against algebraic attacks which can be 

clearly seen in Figure 3.4, since algebraic attacks use the monomials for making up the 

equations. We give a brief example about the effect of NFSRs. Let us consider an LFSR of 

length 127 bits. In order to apply an algebraic attack to this LFSR, an attacker needs n = 

127 keystream bits to create 127 equations. To solve this system, the attacker needs a 

memory of 127
2 bits. The complexity of the attack is 127

3, using the Gaussian elimination 

method. Now let us consider the third NFSR of SAFE of length 127. The feedback 

function of NFSR contains 9 terms of first degree, 5 terms of second degree, 4 terms of 

third degree, 5 terms of fourth degree and 2 terms of fifth degree. Then the attacker needs 

8.75127 127 127 127 127
9 5 4 5 2 10

1 2 3 4 5
( ) ( ) ( ) ( ) ( )n x x x x x= + + + + =  bits to create a 

system of n equations. The size of the memory needed is 2 17.510n = bits and the complexity 

of the attack is 3 26.2510n = .  
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SAFE has a dynamic clock-control mechanism so that some of the bits at outputs of 

the generator registers are discarded. In addition, an irregular decimation algorithm is used 

at the output. In order to apply an algebraic attack to SAFE, the clocking and structure of 

S-box should be determined (guessed). In order to write equations for initial states and 

outputs of the registers, one has to determine the clocking mechanism of the system for 

determining the discarded bits. The clocking mechanism depends on all of the registers, so 

that an exhaustive search for all the registers, that is, a search for 2323 
≈ 1097.23 spaces 

should be done. In addition, to guess the structure of the S-box, the attacker has to make an 

exhaustive search of 280 bits. The total amount of search is thus 2403 
≈ 10121.31. After a 

search of 10121.31 spaces, the attacker can write equations for initial states-outputs of the 

generator registers. Nevertheless, this amount of search is impractical, so algebraic attack 

is theoretically possible but infeasible for SAFE.  
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7. CONCLUSION 

 

 

In this thesis, the theoretical background stream ciphers and an implementation of 

dynamically clock-controlled stream cipher with nonlinear feedback shift registers were 

described. The main idea behind SAFE is the usage of nonlinear feedback shift registers 

and irregular clocking for providing immunity against well known correlation and 

algebraic attacks. To investigate the randomness of the keystream sequences generated by 

the proposed ciphers, we have used two test suites which are FIPS 140-2 and NIST 

Statistical Test Suite. SAFE passed all of the statistical tests. 

 

In addition, the security of the cipher is analysed with respect to currently some well 

known attacks such as exhaustive key search, time/memory trade-off attacks, correlation 

attacks and algebraic attacks. It is shown that SAFE is secure enough to resist these 

attacks.  

 

Consequently, we have observed that SAFE meets the design objectives and the 

security requirements. SAFE may be treated as secure stream cipher to be used for high 

speed communications. Cipher can be implemented in hardware and also an effective 

assembly implementation of SAFE would be appropriate for software applications.  

 

 

 

 

 

 

 

 

 

 

 

 



 73 

APPENDIX A: MATLAB CODES 

 

 

This section gives the simulation codes of SAFE. The implementation is evaluated in 

MATLAB environment. One can also use MATLAB compiler to convert the MATLAB 

implementations to run in C language. The MATLAB functions used to simulate the stream 

cipher and tests such as autocorrelation, DFT, Linear complexity for statistical observations 

are listed below. 

 

1. safe.m : Simulates SAFE stream cipher. 

2. clockctrl.m : Simulates the clock-control unit of SAFE. 

3. Key.m : Generates 256 bit random private key. 

4. IV.m :  Generates 67 bit random publicly known initialization vector. 

5. dec.m : Simulates the decimation of a binary vector. 

6. Sbox_initialise.m : Initialization of AES S-box. 

7. Initialisation.m : Simulates the initialisation procedure. 

8. EBSG_var.m : Simulates the EBSG variant. 

9. autocorrelation.m : Simulation of the autocorrelation test. 

10. spectral.m : Simulation of  spectral (DFT) test of a binary sequence. 

11. LCP.m : Simulates the linear complexity profile of a binary sequence. 
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1. safe.m 

 

function [ Output ] = safe(K,iv,T) 

 

% K , 256 bit private key 

% iv, 67 bit initialization vector 

% T, Number of cycles 

 

disp ('********************************************') 

disp ('*                                                                                    *') 

disp ('*                                    S A F E                                   *') 

disp ('*                                                                                    *') 

disp ('********************************************') 

 

[ R1, R2, R3 ]=Initialisation(K,iv); 

L1=length(R1); L2=length(R2); L3=length(R3);  

Sbox=Sbox_initialise(K(1:80)); 

for t=1:127 

     

    % R1 is shifted once 

    

temp=mod(R1(89)+R1(83)+R1(80)+R1(55)+R1(53)+R1(42)+R1(39)+R1(23)+R1(

1).... 

         

+R1(47)*R1(80)+R1(47)*R1(83)+R1(49)*R1(85)+R1(51)*R1(81)+R1(55)*R1(85

).... 

         

+R1(87)*R1(83)+R1(29)*R1(49)*R1(87)+R1(29)*R1(81)*R1(87)+R1(43)*R1(83)

*R1(85).... 

         

+R1(47)*R1(80)*R1(87)+R1(47)*R1(83)*R1(87)+R1(49)*R1(81)*R1(87)+R1(87)

*R1(83)*R1(85).... 
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+R1(43)*R1(29)*R1(85)*R1(49)+R1(43)*R1(29)*R1(85)*R1(81)+R1(49)*R1(29)

*R1(85)*R1(87).... 

         

+R1(81)*R1(29)*R1(85)*R1(87)+R1(43)*R1(47)*R1(85)*R1(80)+R1(43)*R1(47)

*R1(85)*R1(83).... 

         

+R1(43)*R1(49)*R1(85)*R1(81)+R1(47)*R1(80)*R1(85)*R1(87)+R1(47)*R1(83)

*R1(85)*R1(87).... 

         +R1(49)*R1(81)*R1(85)*R1(87),2); %feedback relation of R1     

    for j=1:(L1-1) 

        R1(L1+1-j)=R1(L1-j); % shifting to right 

    end 

    R1(1)=temp; %update the first register using the primitive polynomial 

    r=[R1(86) R2(81) R1(77) R1(65) R1(63) R1(52)]; 

    N=1+dec(r); 

    w=[R1(32) R2(N) R3(N) R2(107)]; 

    v=[R1(44) R2(107-N) R3(127-N) R3(127)]; 

    y=dec2bin(Sbox(1+dec(w),1+dec(v)),8); %Feed the s-box 

    y=mod(double(y),48); %S-box output 

 

    %Gathering the clocking information for irregularly clocked LFSRs R2&R3  

    [clock_2 clock_3]=clockctrl(y); 

     

    %R2 

    for i=1:clock_2 

    

temp2=mod(R2(107)+R2(88)+R2(70)+R2(51)+R2(35)+R2(17)+R2(1)+R2(22)*R2

(43).... 

          

+R2(29)*R2(35)+R2(29)*R2(88)+R2(51)*R2(70)+R2(51)*R2(97)+R2(51)*R2(10

3)+R2(81)*R2(103).... 
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+R2(23)*R2(31)*R2(35)+R2(23)*R2(35)*R2(43)+R2(43)*R2(31)*R2(35)+R2(17)

*R2(31)*R2(23)*R2(47).... 

          

+R2(17)*R2(31)*R2(23)*R2(101)+R2(17)*R2(43)*R2(23)*R2(47)+R2(17)*R2(4

3)*R2(23)*R2(101).... 

          

+R2(17)*R2(31)*R2(43)*R2(47)+R2(17)*R2(31)*R2(43)*R2(101)+R2(29)*R2(3

1)*R2(23)*R2(35).... 

          

+R2(29)*R2(31)*R2(23)*R2(88)+R2(29)*R2(35)*R2(23)*R2(43)+R2(29)*R2(43)

*R2(23)*R2(88).... 

          

+R2(23)*R2(31)*R2(47)*R2(101)+R2(47)*R2(43)*R2(23)*R2(101)+R2(29)*R2(

31)*R2(35)*R2(43).... 

          +R2(29)*R2(31)*R2(43)*R2(88)+R2(47)*R2(31)*R2(43)*R2(101),2); 

%feedback relation of R2     

        

        for j=1:(L2-1) 

        R2(L2+1-j)=R2(L2-j); % shifting to right 

        end 

    R2(1)=temp2; %replace the R2 content with temp2 

    end 

 

    %R3 

    for i=1:clock_3 

    

temp3=mod(R3(127)+R3(103)+R3(96)+R3(87)+R3(66)+R3(51)+R3(35)+R3(23)+

R3(1).... 

          

+R3(17)*R3(103)+R3(23)*R3(103)+R3(107)*R3(23)+R3(51)*R3(87)+R3(51)*R3

(91).... 
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+R3(87)*R3(66)+R3(17)*R3(23)*R3(103)+R3(17)*R3(23)*R3(107)+R3(17)*R3(

97)*R3(103).... 

          

+R3(97)*R3(101)*R3(103)+R3(17)*R3(23)*R3(87)*R3(119)+R3(17)*R3(23)*R3

(97)*R3(103).... 

          

+R3(17)*R3(23)*R3(97)*R3(107)+R3(97)*R3(23)*R3(101)*R3(103)+R3(97)*R3

(23)*R3(101)*R3(107).... 

          

+R3(17)*R3(23)*R3(87)*R3(97)*R3(119)+R3(101)*R3(23)*R3(87)*R3(97)*R3(

119),2); %feedback relation of R3     

     

        for j=1:(L3-1) 

        R3(L3+1-j)=R3(L3-j); % shifting the contents of register to right 

        end 

     

        R3(1)=temp3; %replace the R3 content with temp3 

    end       

end 

 

 

disp ('********************************************') 

disp ('*                                                                                    *') 

disp ('*           INITIALISATION HAS FINISHED              *') 

disp ('*                                                                                    *') 

disp ('********************************************') 

 

disp ('********************************************') 

disp ('*                                                                                    *') 

disp ('*                  ENCRYPTION STARTED                      *') 

disp ('*                                                                                    *') 

disp ('********************************************') 
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 for t=1:T 

     

    % R1 is shifted once 

    

temp=mod(R1(89)+R1(83)+R1(80)+R1(55)+R1(53)+R1(42)+R1(39)+R1(23)+R1(

1).... 

         

+R1(47)*R1(80)+R1(47)*R1(83)+R1(49)*R1(85)+R1(51)*R1(81)+R1(55)*R1(85

).... 

         

+R1(87)*R1(83)+R1(29)*R1(49)*R1(87)+R1(29)*R1(81)*R1(87)+R1(43)*R1(83)

*R1(85).... 

         

+R1(47)*R1(80)*R1(87)+R1(47)*R1(83)*R1(87)+R1(49)*R1(81)*R1(87)+R1(87)

*R1(83)*R1(85).... 

         

+R1(43)*R1(29)*R1(85)*R1(49)+R1(43)*R1(29)*R1(85)*R1(81)+R1(49)*R1(29)

*R1(85)*R1(87).... 

         

+R1(81)*R1(29)*R1(85)*R1(87)+R1(43)*R1(47)*R1(85)*R1(80)+R1(43)*R1(47)

*R1(85)*R1(83).... 

         

+R1(43)*R1(49)*R1(85)*R1(81)+R1(47)*R1(80)*R1(85)*R1(87)+R1(47)*R1(83)

*R1(85)*R1(87).... 

         +R1(49)*R1(81)*R1(85)*R1(87),2); %feedback relation of R1     

    for j=1:(L1-1) 

        R1(L1+1-j)=R1(L1-j); % shifting to right 

    end 

    R1(1)=temp; %update the first register using the primitive polynomial 

    r=[R1(86) R2(81) R1(77) R1(65) R1(63) R1(52)]; 

    N=1+dec(r); 

    w=[R1(32) R2(N) R3(N) R2(107)]; 
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    v=[R1(44) R2(107-N) R3(127-N) R3(127)]; 

    y=dec2bin(Sbox(1+dec(w),1+dec(v)),8); %Feed the s-box 

    y=mod(double(y),48); %S-box output 

 

    %Gathering the clocking information for irregularly clocked LFSRs R2&R3  

    [clock_2 clock_3]=clockctrl(y); 

     

    %R2 

    for i=1:clock_2 

    

temp2=mod(R2(107)+R2(88)+R2(70)+R2(51)+R2(35)+R2(17)+R2(1)+R2(22)*R2

(43).... 

          

+R2(29)*R2(35)+R2(29)*R2(88)+R2(51)*R2(70)+R2(51)*R2(97)+R2(51)*R2(10

3)+R2(81)*R2(103).... 

          

+R2(23)*R2(31)*R2(35)+R2(23)*R2(35)*R2(43)+R2(43)*R2(31)*R2(35)+R2(17)

*R2(31)*R2(23)*R2(47).... 

          

+R2(17)*R2(31)*R2(23)*R2(101)+R2(17)*R2(43)*R2(23)*R2(47)+R2(17)*R2(4

3)*R2(23)*R2(101).... 

          

+R2(17)*R2(31)*R2(43)*R2(47)+R2(17)*R2(31)*R2(43)*R2(101)+R2(29)*R2(3

1)*R2(23)*R2(35).... 

          

+R2(29)*R2(31)*R2(23)*R2(88)+R2(29)*R2(35)*R2(23)*R2(43)+R2(29)*R2(43)

*R2(23)*R2(88).... 

          

+R2(23)*R2(31)*R2(47)*R2(101)+R2(47)*R2(43)*R2(23)*R2(101)+R2(29)*R2(

31)*R2(35)*R2(43).... 

          +R2(29)*R2(31)*R2(43)*R2(88)+R2(47)*R2(31)*R2(43)*R2(101),2); 

%feedback relation of R2     
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        if i==clock_2 

            out_2=R2(107);    % For the last clock of R2, generate the output 

        end 

         

        for j=1:(L2-1) 

        R2(L2+1-j)=R2(L2-j); % shifting to right 

        end 

    R2(1)=temp2; %replace the R2 content with temp2 

    end 

 

 

    %R3 

    for i=1:clock_3 

    

temp3=mod(R3(127)+R3(103)+R3(96)+R3(87)+R3(66)+R3(51)+R3(35)+R3(23)+

R3(1).... 

          

+R3(17)*R3(103)+R3(23)*R3(103)+R3(107)*R3(23)+R3(51)*R3(87)+R3(51)*R3

(91).... 

          

+R3(87)*R3(66)+R3(17)*R3(23)*R3(103)+R3(17)*R3(23)*R3(107)+R3(17)*R3(

97)*R3(103).... 

          

+R3(97)*R3(101)*R3(103)+R3(17)*R3(23)*R3(87)*R3(119)+R3(17)*R3(23)*R3

(97)*R3(103).... 

          

+R3(17)*R3(23)*R3(97)*R3(107)+R3(97)*R3(23)*R3(101)*R3(103)+R3(97)*R3

(23)*R3(101)*R3(107).... 

          

+R3(17)*R3(23)*R3(87)*R3(97)*R3(119)+R3(101)*R3(23)*R3(87)*R3(97)*R3(

119),2); %feedback relation of R3     

     

        if i==clock_3 
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            out_3=R3(127);    % For the last clock of R3, generate the output 

        end 

     

        for j=1:(L3-1) 

        R3(L3+1-j)=R3(L3-j); % shifting the contents of register to right 

        end 

     

        R3(1)=temp3; %replace the R3 content with temp3 

    end 

 

    Output(t)=mod(out_2+out_3,2); 

         

 end 

 

2. clockctrl.m 

 

function [ C1, C2 ] = clockctrl(x) 

 

C1=x(2)+x(3)+1; 

C2=x(6)+x(7)+1; 

 

3. Key.m 

 

function [ K ] = Key() 

 

K=rand(1,256); 

 

for i=1:length(K) 

    if K(i)<=0.5 

        K(i)=0; 

    else 

        K(i)=1; 

    end 
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end 

 

4. IV.m 

 

function [ K ] = IV() 

 

K=rand(1,67); 

 

for i=1:length(K) 

    if K(i)<=0.5 

        K(i)=0; 

    else 

        K(i)=1; 

    end 

end 

 

5. dec.m 

 

function [ out ] = dec( x ) 

% Converts a binary vector into decimal form 

L=length(x); 

out=0; 

for i=1:L 

    out=out+x(i)*(2^(L-i)); 

end 

 

6. Sbox_initialise.m 

 

function [ Sbox ] = Sbox_initialise( x ) 

 

 

B= [99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118 

    202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192 
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    183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21 

    4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117      

    9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132  

    83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207 

    208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168 

    81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210  

    205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115 

    96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219 

    224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121 

    231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8 

    186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138 

    112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158 

    225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223 

    140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22]; 

 

for i=1:20 

   A(i,:)=x((4*(i-1)+1):4*i); 

end 

 

 

     

% Swap 10 rows 

B([1+dec(A(1,:)) 1+dec(A(2,:))],:) = B([1+dec(A(2,:)) 1+dec(A(1,:))],:); 

B([1+dec(A(5,:)) 1+dec(A(6,:))],:) = B([1+dec(A(6,:)) 1+dec(A(5,:))],:); 

B([1+dec(A(9,:)) 1+dec(A(10,:))],:) = B([1+dec(A(10,:)) 1+dec(A(9,:))],:); 

B([1+dec(A(13,:)) 1+dec(A(14,:))],:) = B([1+dec(A(14,:)) 1+dec(A(13,:))],:); 

B([1+dec(A(17,:)) 1+dec(A(18,:))],:) = B([1+dec(A(18,:)) 1+dec(A(17,:))],:); 

 

 

 

%Swap 10 coloumns 

B(:,[1+dec(A(3,:)) 1+dec(A(4,:))]) = B(:,[1+dec(A(4,:)) 1+dec(A(3,:))]); 

B(:,[1+dec(A(7,:)) 1+dec(A(8,:))]) = B(:,[1+dec(A(8,:)) 1+dec(A(7,:))]); 
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B(:,[1+dec(A(11,:)) 1+dec(A(12,:))]) = B(:,[1+dec(A(12,:)) 1+dec(A(11,:))]); 

B(:,[1+dec(A(15,:)) 1+dec(A(16,:))]) = B(:,[1+dec(A(16,:)) 1+dec(A(15,:))]); 

B(:,[1+dec(A(19,:)) 1+dec(A(20,:))]) = B(:,[1+dec(A(20,:)) 1+dec(A(19,:))]); 

 

 

 

 

Sbox=B; 

 

7. Initialisation.m 

 

function [ R1, R2, R3 ] = Initialisation(K,iv) 

 

R1=K(1:89); R2=K(90:196); R3=[K(197:256) iv]; 

 

8. EBSG_var.m 

 

function[output]=EBSG_var(s) 

N=length(s); 

i=1; j=1;t=0; 

while i<N 

   e=s(i); y=s(i+1); 

   i=i+1; 

   k=0; 

   while s(i)==mod(e+1,2) 

        i=i+1; 

        k=k+1; 

   end   

   i=i+1; 

   if mod(k,2)==1; 

      t=mod(t+1,2); 

   end 

   N=N+1; 
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   s(i+1:N)=s(i:N-1);     

   output(j)=y; 

   s(i)=t; 

   j=j+1; 

end 

 

9. autocorrelation.m 

 

function [ C ] = autocorrelation( x ) 

%AUTOCORRELATION test 

 

T=length(x)/2; 

for i=0:(T-1) 

    C(i+1)=sum((2*x(1:T)-1).*(2*x(1+i:T+i)-1)); 

end 

C=C/T; 

plot(0:T-1,C,0:T-1,1,'--r') 

xlabel('Shift'); 

ylabel('Autocorrelation values'); 

legend('AC','Max AC') 

 

10. spectral.m 

 

function [ P_value ] = spectral( x ) 

%SPECTRAL_TEST  

 

n=length(x); 

for i=1:n 

    if x(i)==0 

        x(i)=-1; 

    end 

end 
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S=fft(x); %DFT of sequence x calculated using FFT 

M=abs(S(1:n/2)); 

T=sqrt(3*n); % Threshold value 

N0=0.95*n/2; 

N1=length(find(M<T)); 

d=(N1-N0)/sqrt(n*0.95*0.05/2); 

P_value=erfc(abs(d)/sqrt(2)) 

 

if P_value>=0.01 

    display('SPECTRAL TEST PASSED'); 

else 

    display('SPECTRAL TEST FAILED'); 

end 

 

plot(1:n/2,M,'-',1:n/2,T,'--r') 

legend('Magnitude', 'Threshold'); 

xlabel('Index'); ylabel('DFT Magnitude'); 

 

11. LCP.m 

 

function [ L ] = LCP( s ) 

% Linear Complexity Profile for a seqeunce 

% The function implements the well-known Berlekamp-Massey algorithm 

 

 

n=length(s); 

%Initial values 

C=[1]; l=0; m=-1; B=[1]; N=1; l=0; 

while N<=n 

    if l==0 

        d=s(N); 

    else 

        c=C(2:length(C)); 
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        d=mod(s(N)+sum(c.*s(N-1:-1:N-length(c))),2); %Next Discrepancy 

    end 

     

    if d==1 

    T=C; 

    P=gfconv(B,[zeros(1,N-1-m) 1]);         

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%                                            

    if length(C)<length(P)                  %                             %    

        C=[C zeros(1,length(P)-length(C))]; % Rows from 18-25 is equal to % 

    elseif length(C)>length(P)              % say C(D)<--C(D)+B(D).D^(N-m)% 

        P=[P zeros(1,length(C)-length(P))]; %                             % 

    end                                     

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

        C=mod(C+P,2);                        

    

    if l<=(N-1)/2 

        l=N-l; 

        m=N-1; 

        B=T; 

    end 

    end 

    L(N)=l; 

    N=N+1 

end 

y=0:0.5:n/2; 

plot(0:n,[0 L],0:n,y,'--r') 

legend('LC Profile', 'N/2 line'); 

xlabel('Sequence'); ylabel('Linear Complexity'); 
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