

AN IRREGULAR CLOCK-CONTROLLED BINARY STREAM CIPHER WITH

NONLINEAR FEEDBACK SHIFT REGISTERS

‘THE SAFE STREAM CIPHER’

by

Serhat Eren Arslan

B.S., Electrical and Electronics Engineering, Istanbul University, 2003

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfilment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2006

 ii

AN IRREGULAR CLOCK-CONTROLLED BINARY STREAM CIPHER WITH

NONLINEAR FEEDBACK SHIFT REGISTERS

‘THE SAFE STREAM CIPHER’

APPROVED BY:

 Prof. Emin Anarım ………………………

 (Thesis Supervisor)

 Assoc. Prof. Fatih Alagöz .……………………..

 Assist. Prof. Kıvanç Mıhçak .……………………..

DATE OF APPROVAL: 13.09.2006

 iii

ACKNOWLEDGEMENTS

Firstly, I would like to thank my thesis supervisor Prof. Emin Anarım for his

inspiring ideas, kind interest, technical advices and his patience. I would like to mention

that without his expertly and patiently guidance up to this point, this work would never be

finished.

I would like to thank my family and my fiancée for their unfailing support and

influence in my life. They have also shared the name of SAFE stream cipher with me. The

name SAFE consists of the first letters of the names of my family members.

Finally, I would like to dedicate this work to my family for their endless support and

confidence.

This work has been partially supported by the State Planning

Organization of Turkey under the project "Next Generation

Satellite Networks and Applications, DPT-03K120250".

 iv

ABSTRACT

AN IRREGULAR CLOCK-CONTROLLED BINARY STREAM

CIPHER WITH NONLINEAR FEEDBACK SHIFT REGISTERS

‘THE SAFE STREAM CIPHER’

Stream ciphers are one of the most important classes of encryption algorithms used

to ensure security in digital communication. The design of many stream ciphers is based on

use of Linear Feedback Shift Registers (LFSRs), due to their simplicity, speed of

implementation in hardware and providing sequences with good statistical properties.

However, this efficient component is not sufficient when we consider security. The

designer should use many nonlinear functions and mechanisms to make the system more

resistant against cryptanalysis. A stream cipher should have high period, high linear

complexity, good statistical properties and be resistant against most recent successful

attacks such as algebraic attacks, correlation attacks, time/memory trade-off attacks, and

divide and conquer attacks.

In this thesis, a new stream cipher design is proposed. SAFE is designed to be

resistant against algebraic and correlation attacks. In the design phase, the objective was to

design a stream cipher with good randomness, high period and linear complexity and

resistance against many attacks. The innovation in this thesis is the proposal of nonlinear

feedback shift registers instead of linear feedback shift registers to provide resistance

against correlation and algebraic attacks. In addition, another innovation is the use of a new

irregular decimation algorithm, EBSGvariant, for increasing the security of the cipher.

Keystream properties of the cipher and its resistance with respect to some well known

cryptographic attacks are investigated. From the mathematical expressions and simulation

results, it is shown that the cipher produces keystream sequences with satisfying basic

security requirements and provides high resistance against well known attack types.

Finally, we can say that SAFE can be appropriate for both software and hardware

applications due to its simple design.

 v

ÖZET

DOĞRUSAL OLMAYAN GERİ BESLEMELİ KAYAN SAKLAÇLI

DÜZENSİZ SAAT KONTROLLÜ İKİLİ DİZİ TİP ŞİFRELEYİCİ

‘SAFE DİZİ TİP ŞİFRELEYİCİ’

Dizi tip şifreleme algoritmaları güvenli sayısal haberleşme uygulamalarında

kullanılan en yaygın şifreleme metotlarındandır. Bu tip şifreleme algoritmaların çoğunluğu

basitliğinden, donanımdaki hızından ve iyi istatistiksel özelliklere sahip olduğundan

Doğrusal Geri Beslemeli Kayan Saklaçları (LFSRs) tasarımlarında kullanmaktadır. Fakat

bu randımanlı bileşenler güvenliği dikkate aldığımızda yeterli olmamaktadır. Tasarımcı,

sistemi kriptanalize karsı daha güçlü yapmak için birçok doğrusal olmayan fonksiyonlar ve

mekanizmalar kullanmalıdır. Bir dizi tip şifreleyici yüksek periyoda, yüksek doğrusal

karmaşıklığa, iyi istatistiksel özelliklere ve cebirsel saldırılar, ilinti saldırıları, zaman bellek

ödünleşimi saldırıları, böl ve fethet saldırıları gibi birçok başarılı güncel saldırıya karsı

dayanıklı olmalıdır.

Bu tezde yeni bir dizi tip şifreleyici tasarımı önerilmektedir. SAFE cebirsel ve ilinti

saldırılarına karsı güçlü olması için tasarlandı. Tasarım evresinde hedef, iyi rasgeleliğe,

yüksek periyoda ve doğrusal karmaşıklığa sahip ve saldırılara karsı dayanıklı bir dizi tip

şifreleyici tasarlamaktı. Bu tezde yapılan yeniliklerde birisi, ilinti ve cebirsel saldırılara

karşı dayanıklılığı artırmak için doğrusal geri beslemeli kayan saklaçların yerine doğrusal

olmayan geri beslemeli kayan saklaçların önerilmesidir. Buna ek olarak, başka bir yenilik

ise yeni bir seyreltme algoritmasının, EBSGvariant, şifreleyicinin güvenliğini artırmak

amacıyla kullanılmasıdır. Ayrıca bu algoritmaların ürettikleri çıktı dizilerinin özellikleri ve

algoritmaların bilinen bazı saldırılara karsı dirençleri çalışmada verilmektedir.

Matematiksel açılımlar ve benzetim sonuçları ışığında şifreleyicinin istenen minimum çıktı

özelliklerinin gereksinimleri yerine getirdiği ve bilinen bazı saldırı tiplerine karşı yüksek

dirence sahip olduğu gösterilmektedir. Sonuç olarak, SAFE basit tasarımı sayesinde

donanım ve yazılım uygulamaları için uygundur diyebiliriz.

 vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. iii

ABSTRACT..iv

ÖZET...v

LIST OF FIGURES...viii

LIST OF TABLES ...x

LIST OF SYMBOLS / ABBREVATIONS..xi

1. INTRODUCTION..1

1.1 Cryptology..2

1.2 Symmetric-key Ciphers ..4

1.2.1 Block Ciphers ..5

1.2.2 Stream Ciphers...6

1.3 Cryptanalysis and Methods of Attacks ..7

1.4 Thesis Outline...9

2. STREAM CIPHERS ..10

2.1. Linear Feedback Shift Registers...13

2.2. Some Stream Cipher Designs...17

2.2.1. Nonlinear Combination Generators ...17

2.2.2. Nonlinear Filter Generators...19

2.3. Clock-controlled Stream Ciphers ...20

2.3.1 A5/1...20

2.3.2 ORYX ...21

2.3.3 The Alternating Step Generator..23

3. NONLINEAR FEEDBACK SHIFT REGISTERS (NFSRS)...24

4. IRREGULAR DECIMATION ALGORITHMS ...31

4.1 The Shrinking Generator...31

4.2 The Bit-Search Generator ...33

4.2.1. The Editing Bit-Search Generator ...36

5. DESCRIPTION OF THE PROPOSED SYNCHRONOUS STREAM CIPHER: SAFE 37

5.1. The Stream Cipher SAFE ..37

 vii

5.2. Clock-Controlling Mechanism and Keystream Generation.....................................39

5.3. Initialisation...42

5.4. Hardware Considerations ...42

6. SECURITY OF SAFE..47

6.1. Keystream Properties of SAFE ..47

6.1.1. Period and Linear Complexity...47

6.1.2. Output Rate...50

6.1.3 Statistical Properties of the Keystream Sequence ...50

6.2. Security of SAFE...56

6.2.1 Exhaustive Key Search ..56

6.2.2 Time/Memory Trade-off Attacks..57

6.2.3 Correlation Attacks ..58

 6.2.3.1 The model of Siegenthaler...59

6.2.4. Fast Correlation Attacks..61

6.2.5 Embedding Attacks..66

6.2.6. Probabilistic Attack...68

6.2.7. Algebraic Attacks..68

7. CONCLUSION ..72

APPENDIX A: MATLAB CODES ..73

REFERENCES...88

REFERENCES NOT CITED ...94

 viii

LIST OF FIGURES

Figure 1.1. General structure of a block cipher..5

Figure 1.2. General structure of a stream cipher..6

Figure 2.1. A general model for synchronous stream cipher encryption, with XOR

 operation ..12

Figure 2.2. A general model for synchronous stream cipher decryption, with XOR

 operation ..12

Figure 2.3. A general model for self-synchronising stream cipher encryption with XOR

 operation...12

Figure 2.4. A general model for self-synchronising stream cipher decryption with XOR

 operation...13

Figure 2.5. General structure of a feedback shift register of length n14

Figure 2.6. General structure of a linear feedback shift register of length n15

Figure 2.7. A nonlinear combination generator, where n LFSR outputs are combined

 with a nonlinear Boolean function
C

f ...19

Figure 2.8. A nonlinear filter generator, where a single n bit-LFSR’s bits are combined

 with a nonlinear Boolean function
F

f to produce keystream sequence20

Figure 2.9. The A5/1 stream cipher...21

Figure 2.10. The ORYX stream cipher ...22

Figure 2.11. The alternating step generator ...23

Figure 3.1. Stream cipher built by combination of LFSRs...24

 ix

Figure 3.2. A feedback shift register of length L ...25

Figure 3.3. A four-stage De Bruijn sequence generator ...26

Figure 3.4. Comparison between a primitive LFSR and a primitive NFSR......................30

Figure 4.1. The shrinking generator ..32

Figure 5.1. The proposed stream cipher ..39

Figure 5.2. S-box: substitution values for the byte xy (in hexadecimal format)................41

Figure 5.3. A binary nonlinear feedback shift register...44

Figure 5.4. A more efficient implementation of the FSR in Figure 5.344

Figure 6.1. Autocorrelation test result for 20000 bits ..51

Figure 6.2. Autocorrelation test result for 50000 bits ..52

Figure 6.3. Spectral test result for 5000 bits, with threshold value of 122.4753

Figure 6.4. Spectral test result for 20000 bits, with threshold value of 244.9454

Figure 6.5. Spectral test result for 50000 bits, with threshold value of 387.2954

Figure 6.6. Spectral test result for 100000 bits, with threshold value of 547.7255

Figure 6.7. The linear complexity profile of SAFE for 20000 bits...................................56

Figure 6.8. The model for the correlation attack..60

Figure 6.9. Model for a fast correlation attack...61

 x

LIST OF TABLES

Table 1.1. Some information security objectives...2

Table 2.1. State transition of the 3-bit LFSR...16

Table 3.1. Properties of certain NFSRs ...27

Table 4.1. Comparison between the BSG and some well-known generators......................34

Table 5.1. Hardware costs of logical operations..43

Table 5.2. Hardware properties of the NFSRs...45

Table 5.3. Hardware costs of memory units ..46

Table 6.1. Spectral test results for SAFE...53

 xi

LIST OF SYMBOLS / ABBREVATIONS

Ai Four bit blocks used for mixing of S-box

BL Number of different L-stage FSRs producing De Bruijn sequences

b Searched bit in BSG algorithm

bi FSR inner state sequence

C Ciphertext letter

Ci Ciphertext bit

,j
s z

C Cross-correlation function

Cli Clocking tap value of register Ri

ci Feedback function coefficients

D Decryption process

De Number of available data points in a TMTO attack

dmax Maximum deletion rate

E Encryption process

ej BNS output

F Boolean function

Fn Frame number

Fq Finite field on q elements

1
q

F Splitting field

1

*

q
F Multiplicative group

f FSR feedback function

fC Nonlinear combining function

fF Nonlinear filter function

g Generator function

hj Fixed number of ciphertext symbols that keystream depends on

K Key letter

KC Secret key

KS Session key

kreg degree of the feedback polynomial of the generator register

 xii

L Length of an FSR

Lj Length of the LFSRj

L(s) Linear complexity of a sequence s

LC Linear complexity

M Function that is used to calculate the N value

Me Memory needed to construct the lookup table in a TMTO attack

N Value to determine clocking tap positions of the generator registers

Ne State space of a cipher in a TMTO attack

nb Block length of a plaintext / ciphertext

oj Binary discriminator output

P Plaintext letter

Pe Time needed for pre-computation phase

PGR Period of data generating register

Pi Plaintext bit

Pj Probability that an LFSR output bit and a keystream bit coincides

PKG Period of clock-controlled keystream generator

PRi Period of register Ri

PS Period of SAFE

pd Deletion rate

Ri Name of FSRi

r
�

 Vector that is used to calculate the N value

ri Bit values taken from register R1 to form r
�

 vector

S Total value of the decimating sequence

Si Present state of the generator

si(t) output of the FSRi at time t

0s
���

 Initial state vector

T Time complexity of TMTO attack

v
�

 Column vector of S-box

w
�

 Row vector of S-box

y
�

 Output vector of S-box

Z(b) Number of vectors of length k in a single period

z(t) Keystream bit at time t

zi Output bit of a keystream generator

 xiii

σ FSR output sequence

ϕ Linear complexity of S-box and EBSGvariant

ABSG Alternative bit-search generator

AC Autocorrelation

AES Advanced encryption standard

BNS Binary noise source

BSG Bit-search generator

CMOS Complementary metal oxide semiconductor

DCVSL Differential Cascode Voltage Switch Logic

DES Data encryption standard

DFT Discrete Fourier transform

EBSG Editing bit-search generator

FIPS Federal Information Processing Standard

gcd Greatest common divisor

GF Galois field

GSM Global system for mobile communications

IV Initialisation vector

LFSR Linear feedback shift register

MBSG Modified bit-search generator

NFSR Nonlinear feedback shift register

NIST National Institute of Standards and Technology

OTP One time pad

TMTO Time/Memory trade-off

 1

1. INTRODUCTION

To many people, cryptography is a strange, secret code used by only military and

secret agencies. This view is strengthened by the fact that many people normally do not

know or care about the inherent mechanism of their daily-used technical gadgets. Today,

cryptology is an integral part of our lives whether we know it or not. If you use the internet

to do bank transfers you use cryptography methods to both identify yourself to the bank,

and let the bank identify itself to you, as well as keep your transactions private form other

uses of internet. Another common usage area is in cellular phones. In the Global System

for Mobile communications (GSM), the mobile system used in Europe, there is a cipher

called A5/1 to ensure that your conversation is secure.

These are just a few examples of cryptology used in common public applications. Of

course, military and government agencies still use strong cryptography to communicate

and the military needs for secrecy have been the primary force behind the developments in

this area.

The search for new public-key schemes, improvements to existing cryptographic

mechanisms, and proofs of security continues at a rapid pace. Various standards and

infrastructures involving cryptography are being put in place. Security products are being

developed to address the security needs of an information intensive society.

The rest of the chapter is organised as follows: In section 1.1, general information

about the cryptology is given. Section 1.2 describes symmetric-key ciphers, while section

1.3 is focused on the cryptanalysis and the methods of attacks against the ciphers. In

addition, section 1.4 gives the outline of the thesis.

 2

1.1 Cryptology

Cryptology is uniting name for a broad scientific field in which one studies the

mathematical techniques of designing, analysing and attacking information security

services. Cryptology is the study of cryptography and cryptanalysis. Cryptography is the

study of mathematical techniques related to aspects of information security such as

confidentiality, data integrity, entity authentication and data origin authentication.

Cryptanalysis is the study of mathematical techniques for attempting to defeat

cryptographic techniques and more generally information security services. Cryptography

is not only means of providing information security but rather one set of techniques.

Information security manifests itself in many ways according to the situation and

requirement. Regardless of who is involved, to one degree or another, all parties to a

transaction must have confidence that certain objectives associated with information

security have been met. Some of these objectives are listed in Table 1.1.

Table 1.1. Some information security objectives

Privacy or
confidentiality

Keeping information secret from all but those who are authorized to see it.

Data integrity Ensuring information has not been altered by unauthorized or unknown means.
Entity
authentication
or identification

Corroboration of the identity of an entity (e.g., a person, a computer terminal, a
credit card, etc.).

Message
authentication

Corroborating the source of information; also known as data origin authentication.

Signature A means to bind information to an entity.
Authorization Conveyance, to another entity, of official sanction to do or be something.

Validation
A means to provide timeliness of authorization to use or manipulate information
or resources.

Access control Restricting access to resources to privileged entities.
Certification Endorsement of information by a trusted entity.
Timestamping Recording the time of creation or existence of information.

Witnessing
Verifying the creation or existence of information by an entity other than the
creator.

Receipt Acknowledgement that information has been received.
Confirmation Acknowledgement that services have been provided.

Ownership
A means to provide an entity with the legal right to use or transfer a resource to
others.

Anonymity Concealing the identity of an entity involved in some process.
Non-repudiation Preventing the denial of previous commitments or actions.
Revocation Retraction of certification or authorization.

 3

Of all the information security objectives listed in Table 1.1, the following four form

a framework upon which the others will be derived: (1) privacy or confidentiality; (2) data

integrity; (3) authentication and (4) non-repudiation [4].

1. Confidentiality is a service used to keep the content of information from all but

those authorized to have it. Secrecy is a term synonymous with confidentiality and privacy.

2. Data integrity is a service that addresses the unauthorized alteration of data. To

assure data integrity, one must have the ability to detect data manipulation by unauthorised

parties. Data manipulation includes such things as insertion, deletion, and substitution.

3. Authentication is a service related to identification. This function applies to both

entities and information itself. Two parties entering into a communication should identify

each other. Information delivered over a channel should be authenticated as to origin, date

of origin, data content, time sent, etc. For these reasons, this aspect of cryptography is

usually subdivided into two major classes: entity authentication and data origin

authentication. Data origin authentication implicitly provides data integrity (for if a

message is modified, the source has changed).

4. Non-repudiation is a service that prevents an entity from denying previous

commitments or actions. When disputes arise due to an entity denying that certain actions

were taken, a means to resolve the situation is necessary. For example, one entity may

authorise the purchase of property by another entity and later deny such authorisation was

granted. A procedure involving a trusted third party is needed to resolve the dispute.

A fundamental goal of cryptography is to adequately address these four areas in both

theory and practice. Cryptography is about the prevention and detection of cheating and

other malicious activities [4].

For the ancient times, the application of cryptography is something transforming the

letters or the symbols into different symbols or representations according to a simple rule

to provide secrecy of the messages. Substitution ciphers and Caesar cipher can be good

examples to these approaches. A classic example to these systems is Vigenère cipher.

 4

According to this cipher model, each letter in the alphabet can be thought as a number

ranging from 0 to 25. Then the plaintext letter P is added to key letter K in mod 26 to

obtain corresponding ciphertext letter C. The reason why mod 26 operation is used is

obvious; to keep the produced ciphertext letter in the alphabet set. A message encrypted by

such an algorithm can be easily cryptanalyzed, due to its simple rule and risk in reuse of

the key. However, the importance of the algorithm comes from the fact that, this algorithm

can be seen as the first algorithm that has some common points with today’s stream cipher

structure. At the beginning of the 20th century, Gilbert Vernam proposed a new type of

cipher known as Vernam cipher that uses a secret key as long as the plaintext [46]. The

cipher relies on the algorithm that the plaintext is XORed with a random or pseudorandom

stream of data the same length to generate the ciphertext. If the data stream is truly random

and used only once, this is called the one-time pad. Vigenère cipher and the Vernam cipher

have two important common points; first- both of the algorithms use the symmetric key

encryption, and second- both ciphers operate on plaintext with symbol by symbol that is an

important feature of the stream ciphers.

1.2 Symmetric-key Ciphers

A cryptosystem is a general term referring to a set of cryptographic primitives used to

provide information security services. Most often, the term is used in conjunction with

primitives providing confidentiality, i.e., encryption. Cryptosystems are mainly classified

into two groups according to the key type being used, symmetric-key or public-key. In case

of public-key cryptography, the sender uses publicly known information (public-key) in

encryption process to send a message to the receiver and the receiver uses a secret

information (private-key) to recover the message. On the other hand, in the symmetric-key

encryption systems, the sender and receiver have previously agreed on the use of a secret

key for both encryption and decryption. This key must be kept secret to prevent revealing

of the secret information by the potential eavesdroppers. In symmetric-key algorithms, the

encryption key can be calculated from the decryption key and vice versa [45].

Public-key systems and symmetric-key systems have advantages over each other.

The important points in practice are:

 5

1. public-key cryptography facilitates efficient signatures (particularly non-

repudiation) and key management;

2. symmetric-key cryptography is efficient for encryption and some data integrity

applications.

In symmetric-key systems, if E denotes the encryption and D denotes decryption

operations, then encryption and decryption can be formulated respectively by:

 ()
K

E P C= (1.1)

 ()
K

D C P= (1.2)

Symmetric key ciphers are divided into two main categories, block ciphers and

stream ciphers. Throughout the thesis, we will mainly focus on the symmetric-key

cryptosystems (ciphers).

1.2.1 Block Ciphers

Block ciphers operate on large blocks of plaintext data. They encrypt blocks of data

using a fixed transformation. General structure of a block cipher is depicted in Figure 1.1.

Figure 1.1. General structure of a block cipher

 6

Most well known symmetric-key encryption techniques are block ciphers. Two

important classes of block ciphers are substitution ciphers and transposition ciphers.

Substitution ciphers are block ciphers, which replace symbols (or groups of symbols) by

other symbols or groups of symbols; while transposition ciphers permute the symbols in a

block [4]. Famous block ciphers include the DES (Data Encryption Standard) and the AES

(Advanced Encryption Standard). One problem of block ciphers is that patterns in the

plaintext are visible for a fixed key. That is; if two plaintext blocks are identical, the block

cipher will encrypt them to identical ciphertexts. This is considered as a weakness for an

encryption system. There are modes of operations that for example chain the output of one

block encryption to the next. The ciphertext block of the first encryption is bitwise added

to the plaintext block of the second before encryption. Then the second ciphertext block is

added to the third plaintext before encryption, and so on. This solves the problem of

patterns but introduces the severe problem of error propagation. If the ciphertext is

distorted by noise during transmission, all subsequent plaintexts will be distorted during

decryption due to this chaining [47].

1.2.2 Stream Ciphers

Stream ciphers form an important class of symmetric-key encryption schemes. They

are, in one sense, very simple block ciphers having block length equal to one. A stream

cipher operates on individual characters in the underlying alphabet, with a time-varying

function. What makes them useful is the fact that the encryption transformation can change

for each symbol of plaintext being encrypted. Since the encryption is done using a time-

varying function, the problem of patterns in the plaintext being encrypted to identical

patterns in the ciphertext is avoided. General structure of a stream cipher is depicted in

Figure 1.2.

⊕

i
P

iz iC

Figure 1.2. General structure of a stream cipher

 7

Since encryption is applied to each bit separately, stream ciphers have limited or no

error propagation. In situations where transmission errors are highly probable, stream

ciphers are advantageous because of this property. They can also be used when the data

must be processed one symbol at a time [4].

1.3 Cryptanalysis and Methods of Attacks

As stated before, cryptanalysis is the study of mathematical techniques for

attempting to defeat cryptographic techniques and more generally information security

services. When evaluating the strength of a cipher, we generally compare it to the generic

attack of exhaustively searching over all possible keys to find the right one. This attack is

called exhaustive key search. No practical cipher will be more secure than the time it takes

to test all keys, so in a sense, this is the highest achievable strength of a cipher. There is

however, one famous exception to this, the ultimately secure cipher; the one-time pad

(OTP). The OTP is the Vigenère cipher with a key length equal to the length of the

message. Shannon shown in 1949 that this system is unconditionally secure. This property

means that no matter how big or fast a computer the attacker has, he can never find out

which plaintext was sent. The obvious drawback of OTP is that the key must be as long as

the message to be encrypted. This is in fact a necessary condition for any cipher claiming

unconditional security. Since the key should be secret, one could argue that if we want to

send an encrypted message, we first have to send a key that is as long as the message

through a secure channel. The OTP is of course unpractical.

For practical ciphers, the situation is not as clear as for the OTP. Often we talk about

computationally secure ciphers instead. This means that given the possibilities of today’s

computers and predicted increase in performance of tomorrow’s computers, the adversary

cannot defeat the system. We also define the computationally security of a cipher to be the

computational effort required, by the best currently known attacks, to break the cipher.

Another way of describing the security of a cipher is to try to prove that breaking the

cipher is equivalent to solving a difficult mathematical problem, like factoring integers or

solving discrete log problem. This way of arguing is called provable security, which is

somewhat misleading since there is never a proof of the complexity of the underlying

 8

problem. The notion is that these problems are studied by mathematicians for centuries and

are probably very difficult to solve.

The first and most important rule for the designer of a cryptographic primitive is

called Kerckhoff’s Principal: “The security of the encryption scheme must depend only on

the secrecy of the key, and not on the secrecy of the algorithms.” From Kerckhoff’s

Principal it is assumed that an attacker knows everything concerning the cryptographical

system and the protocols, except the secret key. Then we can classify the methods of attack

according to the amount of information to the adversary and goal of the attack.

• Ciphertext-only attack: All the adversary sees is the ciphertext communicated

between sender and receiver. This is the most difficult attack since the attacker has the

least amount of information.

• Known plaintext attack: In this scenario, the adversary knows both the plaintext

and the corresponding ciphertext. It might seem slightly that improbable that both the

plaintext and the ciphertext are revealed, but there are many situations where this could

happen.

• Chosen plaintext attack: Here the adversary has access to an oracle, which can

encrypt any given plaintext under the correct key. This is an even more powerful attack

than the known plaintext attack, since the attacker can now choose plaintexts that are

especially favourable for breaking the cipher.

• Chosen ciphertext attack: This is similar to the chosen plaintext attack, but now the

adversary has access to two oracles instead, one that encrypts any given plaintext and one

that decrypts any given ciphertext except the ones the attack is trying to break. This attack

is naturally more powerful than all the previous attacks, since the adversary has more

freedom.

 9

1.4 Thesis Outline

The thesis consists of six chapters. Chapter 1 gives the main aspects about the

cryptology. Chapter 2 discusses the characteristics of stream ciphers and present

information about the types of stream ciphers. Chapter 3 gives information about the

nonlinear feedback shift registers. Chapter 4 discusses the irregular decimation algorithms

used in stream cipher applications. Chapter 5 consists of the design and hardware

considerations of the proposed cipher SAFE. In chapter 6, the security analysis of the

proposed cipher is given in detail. Finally, in chapter 7 the conclusion of the study is given.

 10

2. STREAM CIPHERS

As it is given in the previous chapter, a stream cipher inspires the spirit of the

onetime pad by using a short key to produce the keystream which appears to be random.

Such a keystream sequence is often described as pseudorandom generation of which can be

thought as in the field of stream ciphers. Therefore keystream generator can also be known

as pseudorandom sequence generator or running key generator. Actually, producing

random look like sequences is necessary condition for a secure stream cipher design,

because the closer the keystream generator’s output is to random, the longer time a

cryptanalyst will have breaking it [45].

The stream cipher encryption and decryption can be formulated as follows: Let

1 2, ,...,
i

z z z denote the sequence that keystream generator outputs and 1 2, ,...,
i

P P P denote

the plaintext bits. Then, if 1 2, ,...,
i

C C C represents the corresponding ciphertext bits,

encryption and decryption are realized according to the equations below respectively.

i i i

C P z= ⊕ (2.1)

i i i i i i

C z P z z P⊕ = ⊕ ⊕ = (2.2)

Stream ciphers can be classified as synchronous or self-synchronising stream ciphers

according to the relation between keystream generation and plaintext.

• Synchronous stream ciphers: A synchronous stream cipher is a finite state machine

for which the keystream is generated from the key, independently of the plaintext message

and of the ciphertext [4]. In the encryption side, a keystream generator outputs the

keystream bits, one after the other. On the decryption side, another keystream generator

produces the identical keystream bits, one after the other. To avoid false decryption so

error in communication, the two keystream generators must be synchronised. In case of

losing synchronisation during transmission, every ciphertext character after the error will

be decrypted incorrectly. To solve this problem, the sender and receiver must

 11

resynchronise their keystream generators before continuing their communication.

Techniques for resynchronisation can be reinitialisation or placing special markers at

regular intervals in the ciphertext. An advantage of the synchronous stream cipher can be

seen as; synchronous ciphers do not propagate transmission errors. If a single bit or group

bits are changed during transmission so error occurs, then only erroneous bits will be

decrypted incorrectly, all preceding and subsequent bits will be unaffected. The encryption

and decryption of a synchronous stream cipher are depicted in Figure 2.1 and Figure 2.2;

where f denotes the next state function, g is the function that produces keystream bits,
i

S is

the present state of the generator,
C

K is the secret key,
i

P ,
i

z and
i

C represent plaintext,

keystream and ciphertext bits respectively. Most of the stream ciphers are binary additive

stream ciphers that are synchronous stream ciphers in which the keystream, plaintext, and

ciphertext digits are binary digits and the output function is the XOR of plaintext and

keystream sequence.

• Self-synchronising stream ciphers: A self-synchronising stream cipher is a finite

state machine for which the keystream is generated as a function of the key and a fixed

number of the previous ciphertext symbols [47]. In other words, for this type of stream

ciphers each keystream bit is produced within a function of a fixed number of previous

ciphertext bits. Since the keystream depends on a fixed number of the previous ciphertext

symbols say hj, the cipher will resynchronise after hj symbols if there is a transmission

error. In case of this, the next hj symbols will be erroneous and the error propagation is

thus worse than the case of a synchronous stream cipher. However, if some ciphertext

symbols are deleted or inserted during transmission, the self-synchronising cipher will

recover after hj correct ciphertext symbols, whereas the synchronous ciphers will never

regain synchronisation [47]. The encryption and decryption of a self-synchronizing stream

cipher is shown in Figure 2.3 and Figure 2.4 respectively. As can be seen the ciphertext

bits are given as input to determine next state of the keystream generator.

 12

Figure 2.1. A general model for synchronous stream cipher encryption with XOR

g: Generator

 function

Si

Si+1

+
zi

Pi

Ci

Kc

Figure 2.2. A general model for synchronous stream cipher decryption with XOR

Figure 2.3. A general model for self-synchronising stream cipher encryption with XOR

operation

 13

Figure 2.4. A general model for self-synchronising stream cipher decryption with XOR

operation

For most of the stream ciphers, keystream sequence is generated independently from

plaintext; so in some applications keystream sequence can be produced prior to encryption

or decryption to speed up the process. Due their simple designs, low hardware complexity,

high speed encryption characteristic and having low error propagation rate, stream ciphers

are dominantly preferred in wireless communications such as in the applications of GSM,

US Cellular Systems, WLAN, Bluetooth. Also, majority of the stream ciphers relies on the

use of LFSRs in their design. Therefore before going on different stream cipher types, in

Section 2.1 LFSRs (Linear Feedback Shift Registers) and the reasons why they are used

will be discussed. Next, some important variants of LFSR based stream ciphers will be

presented in Section 2.2. The last section, Section 2.3, will give information about clock-

controlled stream ciphers that are the main skeleton models for the proposed stream cipher

SAFE.

2.1. Linear Feedback Shift Registers

Recalling the keystream generator and its similarity to the OTP, we state that the

fundamental property of a keystream generator is to produce as random looking symbols as

possible. The distribution of symbols should be uniform and unpredictable. A good start is

to use a Linear Feedback Shift Register (LFSR) for achieving a good distribution. The

direct output of an LFSR is not a good keystream generator since each symbol produced is

 14

simply a linear combination of the previous symbols, and thus very easy to predict.

Nevertheless, LFSRs are widely used components inside stream ciphers.

An FSR (Feedback Shift Register) is a device made up by registers that produce

binary sequences or symbols from a field
q

F where 2kq = and k is the symbol size (most

of the stream ciphers q is chosen as 2). These registers are the main components of many

keystream generators and they are used both in coding and cryptography. A feedback shift

register is made up of two parts; a shift register s and a feedback function f. If the shift

register s has a length of n bits or consists of n stages as 1 2, ,...,
n

s s s which contains one bit

of 0 or 1, it is called an n-bit shift register. The feedback function maps the state of the

shift register according to its content. When the register is clocked at a time interval, all of

the bits in the shift register are shifted one bit to the right. The new value of the left-most

bit is computed by applying the feedback function to the contents of the register before

clocking. At each clock, the right most bit of the register can be concerned as its output.

The period of a shift register is the length of the output sequence before it starts repeating

[4]. A general structure of a feedback shift register is depicted in Figure 2.5.

Figure 2.5. General structure of a feedback shift register of length n

The simplest kind of feedback shift register is a linear feedback shift register. In that

case, the feedback function can be written as 1 1 2 2 ...
n n

c s c s c s⊕ ⊕ ⊕ , where s values are the

contents of the register at time t and c values are the feedback coefficients. As can be seen

the feedback function is linear and simply the XOR of the appropriate bits in the register

according to whether or not
i

c is equal to 1 or not; the list of the bits that have feedback

coefficient value as 1 is called a tap sequence. An example of an LFSR is shown in

 15

Figure 2.6. Since the feedback function is linear and simple, many mathematical theories

have been applied to analyzing LFSRs. The mathematical expression for the period of the

shift register depends on its characteristic feedback function. If the feedback function is a

primitive polynomial, then the period of the register becomes 2 1n − , where n is the length

of the register. An irreducible polynomial () []
q

f x F x∈ of degree l is said do be primitive

if the root of f(x) in the splitting field 1
q

F is a generator of multiplicative group 1

*

q
F ; where

a polynomial () []
q

g x F x∈ is defined as irreducible polynomial over
q

F , if it can not be

factored into polynomials of smaller positive degrees in the ring of polynomials []
q

F x [47].

⊕⊕⊕⊕

Figure 2.6. General structure of a linear feedback shift register of length n

For the binary case, the definition of irreducible polynomial and primitive

polynomial can be restricted as: A polynomial f(x) over GF(2) is said to be an irreducible

polynomial over GF(2) if the only polynomials over GF(2) which divide f(x) are 1 and

itself. An irreducible polynomial f(x) of degree n, which is also the length of the shift

register, over GF(2) is said to be a primitive polynomial, if 2 1n − is the least positive

integer p such that f(x) divides (1)px+ over GF(2).

If we start with a non-zero state as the initial state of the LFSR and the register has a

primitive feedback polynomial, then all possible states except the all-zero state will appear

during a period and the length of the period will be 2 1n − as stated before. An LFSR with a

primitive feedback polynomial is also called a maximum-length LFSR, and the sequence

generated is called a maximum-length sequence. Notice that to say the sequence is

maximum length, the initial state of the register must be non-zero and here after it is

assumed that the starting state is as such. For example if the register has a length of 3 bits

 16

and a primitive feedback polynomial then the period of the register will be 32 1 7− = . To

realize this example, let the register have a primitive feedback polynomial as 2 1x x+ + in

GF(2), tapped at the second and third bit; the state of the LFSR begins with ‘101’and

changes as shown in Table 2.1. As can be seen, after 7 clockings the register repeats itself.

Table 2.1. State transition of the 3-bit LFSR

Most of the practical stream ciphers use LFSRs in their designs. There can be several

reasons for this: Firstly, LFSRs are well suited for hardware implementation, because an

LFSR is nothing more than an array of bit memories and its feedback function is just use of

a series of XOR gates. Therefore, within a few logic gates an LFSR based stream cipher

can be realized. Second reason is LFSRs can generate sequences with large period. An L-

bit maximal length LFSR can produce a sequence of 2 1L − , so as L increases the length of

the period becomes incredibly large. The last reason why cryptographers use LFSRs in

their stream generator models can be the fact that LFSRs produce sequences with good

statistical properties. That is, they can produce random-looking keystream sequences.

However they can be easily analyzed using algebraic techniques, due to their linear

structure. The Berlekamp-Massey algorithm can generate sequence of an n-bit LFSR after

using only 2n bits of the keystream [43]. Thus, if an attacker gets 2n bits of keystream he

can break the stream cipher which is based on a pure single n bit LFSR. Considering

Berlekamp-Massey algorithm, the strength of an LFSR stream cipher against such an

attack can be evaluated by using the metric linear complexity or linear span. The linear

complexity of a sequence say s, denoted by L(s), is the length of the shortest LFSR that

generates the same sequence. Linear complexity is very important, since the Berlekamp-

Massey algorithm, can generate the sequence of a stream cipher with a linear complexity n,

 17

after examining only 2n bits of the keystream. Note that a high linear complexity value

does not indicate that the stream cipher is secure, while the lower one means that the cipher

is weak and insecure. So, pure LFSR cannot be used as a secure stream cipher, although it

has nice properties. To prevent linear complexity problems of the LFSRs and keeping their

good characteristics, different approaches that will be discussed in the following section

have been proposed.

2.2. Some Stream Cipher Designs

An LFSR should never be used by itself as a keystream generator, since the output

sequences of LFSRs are also easily predictable. Therefore for LFSR based stream ciphers

different techniques that can be divided into three general categories; nonlinear

combination generators, nonlinear filter generators and clock-controlled generators have

been presented to solve weaknesses of LFSRs. In first two of these techniques, keystream

generator design is simple; one or more LFSRs, generally of different lengths and with

different feedback functions are used and their outputs or appropriate bits of the whole

generator are taken by a nonlinear Boolean function to produce keystream sequence. Then

the registers are regularly clocked and system works in this fashion. In case of the last

category, clock-controlled generators, some LFSRs are clocked at different rates according

to a rule or depending on the output of other LFSR; so they can be clocked irregularly.

This property increases the linearity complexity of the system. The nonlinear combination

generators and nonlinear filter generators will be explained in the following subsections.

2.2.1. Nonlinear Combination Generators

Nonlinear combination generators use several LFSRs in parallel to solve the linearity

problem of LFSRs. They do this job by combining LFSR outputs with a nonlinear Boolean

function
C

f , which is also called combining function, as depicted in Figure 2.7. Before

proceeding to an example of nonlinear combiner generator, it will be convenient to give

some information about the Boolean functions. A product of m distinct variables is called

an th
m order product of the variables. Every Boolean function 1 2(, ,...,)

C n
f x x x can be

given as a modulo 2 sum of distinct th
m order products of its variables, 0 ≤ m ≤ n ; which

 18

is called the algebraic normal form of
C

f . The nonlinear order of
C

f is the maximum of

the order of the terms appearing in its algebraic normal form [4]. For instance,

1 2 3 4 1 1 3 2 3 4(, , ,)
C

f x x x x x x x x x x= ⊕ ⊕ has a nonlinear order 3. Therefore a nonlinear

combination generator has a high linear complexity, if its nonlinear Boolean function has a

high order nonlinear order. By using nonlinear combination generator, an increase in linear

complexity is achieved and it seems there is no problem. However, using output of

different LFSRs into a nonlinear Boolean function also increases the possibility that one or

more of the internal output sequences or just outputs of individual LFSRs can be correlated

with the produced keystream and by means of this correlation the generator can be attacked

which is often called a correlation attack. The metric indicating the strength of the

generator to the correlation attack can be defined as the correlation immunity whose details

have been shown in [48]. Thus, we can say that there is a trade-off between high

correlation immunity and high linear complexity. To understand the importance of the

correlation immunity, let us give the description of a popular example of nonlinear

combination generator, the Geffe generator [2]. The Geffe generator is consisted of three

maximal length LFSRs of 1L , 2L and 3L respectively as shown in Figure 2.8. The outputs

of LFSRs are combined within the function 1 2 3 1 2 2 3 3(, ,)
C

f x x x x x x x x= ⊕ ⊕ . The keystream

generator uses three LFSRs, combined in a nonlinear manner. If 1L , 2L and 3L are

pairwise relatively prime, then the period of the generator is 31 2(2 1)(2 1)(2 1)LL L− − − and

the linear complexity of the keystream sequence becomes 1L 2L + 2L 3L + 3L . For the

appropriate values of 1L , 2L and 3L , large period and high linear complexity is achieved.

However when we look at the combining function
C

f , if z(t) represents keystream bit at

time t, one can realize the probabilistic relation between output of first LFSR and

keystream bit as: 1 2 2 3 1

1 1 1 3
(() ()) (() 1) (() 0) (() ())

2 2 2 4
P z t s t P s t P s t P s t s t= = = + = = = + = .

The output of first LFSR is equal to keystream bit at any time with a probability of 3/4.

Thus, one can see that Geffe generator has weaknesses considering the correlation attack.

 19

Figure 2.7. A nonlinear combination generator, where n LFSR outputs are combined with a

nonlinear Boolean function
C

f

Therefore, to have a secure nonlinear combination generator, the combining function

C
f must have high algebraic degree, high nonlinearity and a high order of correlation

immunity. Also
C

f must be a balanced function, which has equal number of ones and

zeros in the output column of its truth table, to provide keystream sequences with good

statistical properties.

2.2.2. Nonlinear Filter Generators

This type of generator is not so different from nonlinear combining generators. In

this case, instead of giving outputs of several LFSRs to nonlinear function
F

f , appropriate

bits of a single LFSR are given. A simple example of nonlinear filter generator is depicted

in Figure 2.8, now the function
F

f is called as the filter function. Actually, not all elements

of the LFSR need to be taken as inputs to the filtering function.

The period of the keystream sequence is 2 1n − , if the LFSR is maximal length

register and has a length of n bits. The maximum value for the linear complexity of the

output sequence is computed as
1

()
m

i

n
LC

i=

=∑ , where LC and m denote the linear

complexity and nonlinear order of the function, respectively. The same danger as low

correlation immunity can be also valid for the nonlinear filter generators. Also, the same

 20

criteria must be concerned for the filter function as in the case of nonlinear combining

function.

LFSR

OutputfF

Figure 2.8. A nonlinear filter generator, where a single n bit-LFSR’s bits are combined

with a nonlinear Boolean function
F

f to produce keystream sequence

2.3. Clock-controlled Stream Ciphers

The main idea behind an LFSR based clock-controlled stream cipher is to control the

number and time of clockings of the LFSRs using some irregular mechanism. This

mechanism can depend on the output of another LFSR or some other internal variables of

the cipher. By means of clocking the LFSRs at different rates, the linearity of the system is

destroyed and attacks based on a regular clocking of the LFSR become harder. Many

stream ciphers using nonlinear combining functions are susceptible to the correlation

attacks such as fast correlation attacks firstly described in [26]. On the other hand, using

irregular clocking reduces the power of correlation attacks and provides practical

resistance to the fast correlation attacks. To understand the properties of clock-controlled

ciphers, let us give descriptions of some its popular applications.

2.3.1 A5/1

GSM uses A5 stream generator to encrypt digital user data transmitted from mobile

station to the base station and base station to the mobile station. A5 stream cipher has two

major variants: A5/1 is the stronger version used in western European countries and A5/2

is the weaker version used in the other countries. A5/1 stream cipher is a binary linear

feedback shift register based keystream generator. It combines three LFSRs of lengths 19,

 21

22 and 23 bits which are denoted by 1R , 2R and 3R respectively [15]. All of these registers

have primitive feedback polynomials and each register is updated according to its own

feedback polynomial. The taps of 1R are at bit positions 13, 16, 17, 18; the taps of 2R are

at bit positions 20, 21; and the taps of 3R are at bit positions 7, 20, 21, 22. The three

registers are maximal length LFSRs with periods 192 1− , 222 1− and 232 1− , respectively.

The output of A5/1 is produced by XORing the most significant bit of each register as

shown in Figure 2.9.

Figure 2.9. The A5/1 stream cipher

The initial state of A5/1 is carried out as follows: All of the registers are first zeroed

and then 64 bit secret session key
S

K and 22 bit frame number
n

F XORed (ignoring

majority rule) in parallel into the least significant bits (lsb) of the three registers. In the

next step, all LFSRs are clocked for 100 clock cycles according to majority rule, however

no output is produced. Finally, three LFSRs are clocked according to majority rule to

generate 228 bits of keystream sequence.

2.3.2 ORYX

The ORYX cipher is a stream cipher that is used to encrypt wireless digital data as a

keystream generator. The output of the generator is a pseudorandom stream of bytes. The

generated keystream is XORed with the plaintext to get the ciphertext. As in case of the

most stream ciphers, to recover the plaintext from the ciphertext, same keystream sequence

is XORed with the ciphertext at the receiver side. The ORYX cipher is consisted of three

32-bit LFSRs denoted as
A

R ,
B

R , and
K

R , and uses an S-box [49]. The S-box is used for a

permutation operation of the numbers between 0 – 255. The block diagram of ORYX is

 22

shown Figure 2.10, where
K

f ,
B

f , 1A
f and 2A

f represent the feedback functions of
K

R ,

B
R , and

A
R , respectively.

The algorithm works in the following manner: Firstly,
K

R is clocked once due to its

feedback function.
A

R is stepped once using either one of its two feedback polynomials.

The decision of which polynomial depends on one of the high eight bits of
K

R . Also,
B

R is

clocked either once or twice depending on another one of the high eight bits of
K

R . Then,

the last eight bits of
K

R is added to the last eight bits of
A

R after being permuted with S-

box and the last eight bits of
B

R after being permuted with S-box, with mod 256 to create

8 bits of keystream.

Figure 2.10. The ORYX stream cipher

ORYX was firstly cryptanalyzed by D. Wagner et. al. in [49]. It is shown that by

using a divide and conquer attack with an amount of 25-27 byte known plaintext; the

stream cipher can be easily cryptanalyzed in 162 time complexity. Thus, one can say that

ORYX is not a secure stream cipher.

 23

2.3.3 The Alternating Step Generator

The alternating step generator uses an LFSR 1R to control the stepping of two

LFSRs, 2R and 3R . The keystream produced is the XOR of the output sequences of 2R

and 3R . The alternating step generator is shown in Figure 2.11.

Figure 2.11. The alternating step generator

The clocking mechanism works as follows: Firstly, 1R is clocked, if its output is 1,

then 2R is clocked and 3R is not clocked. On the other hand, if the output of 1R is 0, then

3R is clocked and 2R is not clocked. Whether or not a generator register (2R , 3R) is

clocked, it gives its output to keystream generation process; if it is not clocked, it repeats

its output. Suppose that 1R produces a de Bruijn sequence of period 12L . Furthermore,

suppose that 2R and 3R are maximum length LFSRs of lengths 2L and 3L , respectively,

such that gcd(2L ; 3L) = 1. The period of the keystream is then 31 22 (2 1)(2 1)LL L − − .

Considering the same conditions, the linear complexity becomes

1 11
2 3 2 3()2 ()2L L

L L LC L L
−+ < < + . The LFSRs 1R , 2R , 3R should be chosen to be

maximum-length LFSRs whose lengths 1L , 2L , 3L are pairwise relatively prime: gcd(1L ;

2L) = 1, gcd(2L ; 3L) = 1, gcd(1L ; 3L) = 1. Moreover, the lengths should be about the

same. If 1L ≈ L, 2L ≈ L, and 3L ≈ L, the best-known attack on the alternating step

generator is a divide-and-conquer attack on the control register 1R , which takes

approximately 2L steps. Thus, if L ≈ 128, the generator is secure against all presently

known attacks.

 24

3. NONLINEAR FEEDBACK SHIFT REGISTERS (NFSRS)

Combination of several small Linear Feedback Shift Registers (LFSRs) is a well-

known method for building stream ciphers. The outputs of the registers are generally

combined with a function F, in order to produce one keystream bit (Figure 3.1). A popular

example is the algorithm E0, which is used in the Bluetooth technology. Unfortunately,

such constructions have some problems that originate from the linearity of the LFSRs. For

instance, correlation attacks exploit linear approximations of the function F to attack the

whole stream cipher. Another method is algebraic attacks that take advantage of low

degree polynomial equations satisfied by F.

Criteria that should be satisfied by the Boolean function F, in order to counter such

attacks have been widely studied. However, there appears to be limitations that cannot be

overcome like the trade-off between the correlation immunity and high algebraic degree.

To improve the designs, it is often suggested to replace linear registers by nonlinear

registers [1].

Figure 3.1. Stream cipher built by combination of LFSRs

A (general) feedback shift register (FSR) of length L consists of L stages (or delay

elements) numbered 0,1,..., 1L − , each capable of storing one bit and having one input and

one output, and a clock which controls the movement of data. During each unit of time the

following operations are performed:

• the content of stage 0 is output and forms part of the output sequence

 25

• the content of stage i is moved to stage i − 1 for each i, 1 1i L≤ ≤ −

• the new content of stage L − 1 is the feedback bit 1 2(, ,...,)
j j j j L

s f s s s− − −= ,

where the feedback function f is a Boolean function and
j i

s − is the previous content of stage

L i− , 1 i L≤ ≤ . If the initial content of stage i is {0,1}
i

s ∈ for each 0 1i L≤ ≤ − , then

1 1 0[,..., ,]
L

s s s− is called the initial state of the FSR. Figure 3.2 depicts an FSR. Note that if

the feedback function f is a linear function, then the FSR is an LFSR. Otherwise, the FSR

is called a nonlinear FSR [4].

An FSR is said to be non-singular if and only if every output sequence of the FSR

(i.e., for all possible initial states) is periodic. An FSR with feedback function

1 2(, ,...,)
j j j L

f s s s− − − is non-singular if and only if f is of the form

 1 2 1(, ,...,)
j L j j j L

f s F s s s− − − − += ⊕ (3.1)

for some Boolean function F. The period of the output sequence of a non-singular FSR of

length L is at most 2L .

Figure 3.2. A feedback shift register of length L

The state diagram of a non-singular FSR may have many small cycles, and the output

sequence becomes insecure when the generator falls into one of them. A countermeasure is

to design L-stage shift registers that generate sequences of the largest possible period 2L

[5]. If the period of the output sequence (for any initial state) of a non-singular FSR of

length L is 2L , then the FSR is called a de Bruijn FSR, and the output sequence is called a

 26

de Bruijn sequence [4]. The following is a De Bruijn sequence of period 24, generated by

the four-stage NFSR of Figure 3.3.

1 0 1 1 0 0 1 0 1 0 0 0 0 1 1 1 ...

Figure 3.3. A four-stage De Bruijn sequence generator

However, De Bruijn sequences constructible by known algorithms either are

technically difficult to implement for fast generation or suffer from severe weaknesses

related to their autocorrelational characteristics. For example, with an extensive class of

sequences amenable to fast generation, the coincidence probability between ()
i

s t and

()
i

s t L− for an L-stage FSR is much greater than 1/2. The opponent cryptanalyst can make

good use of this feature [5]. In addition, the combination of several such sequences

(combined by some Boolean combining function) does not lead to a sequence of larger

period. This is obvious, considering that all sequences have periods that are powers of 2.

To avoid such weaknesses of de Bruijn sequences, four types of NFSRs are defined by

Gammel and Göttfert in [22] for usage in cipher designs, namely type A, type B, type C and

type D. Some important properties of those registers are given in Table 3.1.

 27

Table 3.1. Properties of certain NFSRs

NFSRs of type A B C D

Length of the
shift register

L L L L

Period of output
sequence 2 1L − 2 1L − 2 2L − 2 2L −

Forbidden
initialisations

(0,0,…,0) (1,1,…,1)
(0,0,…,0)
(1,1,…,1)

(0,1,0,…)
(1,0,1,…)

Linear
Complexity 2 2L − 2 1L − 2 2L − 2 2L −

Feedback
function contains
constant term 1

no yes no yes

Distribution of
0’s and 1’s in the
full period

almost
equidistributed

almost
equidistributed

equidistributed equidistributed

Among these NFSRs, the ones with period at least 2 1L − are important for a variety

of reasons: (i) they exist, (ii) their output sequences have good statistical properties; (iii)

the output sequences have minimal polynomials with a simple algebraic structure [23]. A

non-singular binary L-stage feedback shift register is called primitive if for any nonzero

binary initial state vector 0 0 1 1(, ,...,)
L

s s s s −=
���

 the corresponding output sequence

0()
n n

sσ ∞

== has least period 2 1L − . If ()f x is the feedback function of a primitive L-stage

FSR, then we clearly must have (0) 0f = . That is, a primitive FSR fixes the all-zero state.

In other words, the zero sequence is an output sequence of any primitive FSR.

Two periodic sequences that are shifted versions of each other (such sequences are

called cyclically equivalent) have the same minimal polynomial and, therefore, also the

same least period and linear complexity. We mention three basic facts concerning binary

primitive FSRs.

• The number of different L-stage feedback shift registers producing de Bruijn

sequences is given by

 28

122

L
L

L
B

− −= (3.2)

This was shown by Flye Sainte-Marie in 1894 but the result went unnoticed for a long time

until it was rediscovered by De Bruijn.

Although the number
L

B is very large, the portion of primitive FSRs among all

binary non-singular L-stage FSR s is only 1/ 2L . One must also take into account that most

primitive FSRs are not suitable for a low-cost hardware implementation as their feedback

functions are too complex.

• Let 0()
n n

sσ ∞

== be a nonzero output sequence of a binary primitive L-stage FSR. Let

1 k L≤ ≤ and 1 2(,...,) k

i k
b b b F= ∈ . Let ()

i
Z b be the number of n in {0,1,..., 2 2}L − such

that 1 1(, ,...,)
n n n k i

s s s b+ + − = . Then

2 1 0
() (3.3)

2 0
{

L k

i

i L k

i

for b
Z b

for b

−

−

− =
=

≠

Proof. Since the binary sequence σ has least period 2 1L − and is generated by an L-stage

FSR which fixes the all-zero state, every nonzero binary L-tuple occurs precisely once in a

full portion of the period of σ . From this, the assertion follows at once.

• The minimal polynomial of a binary primitive L-stage FSR is the product of distinct

irreducible binary polynomials whose degrees divide L and are greater than 1.

In other words, the minimal polynomial is the characteristic feedback polynomial of

the shortest FSR that can produce the given sequence [24]. In particular, the minimal

polynomial of σ contains no repeated factors.

NFSR sequences use the monomial spectrum in a more efficient way. Let the initial

state of the shift register be given by 0 0 1 1(, ,...,)
L

s s s s −=
���

. If the shift register is linear, then

each output bit
n

s , n ≥ 0, of the shift register is the sum of a certain number of initial state

 29

bits taken from the set 0 1 1{ , ,..., }
L

s s s − If the shift register is nonlinear then the output bit
n

s ,

n ≥ 0, is the sum of monomials taken from the set

0 1 1 0 1 0 2 2 1 1 2 1{ , ,..., , , ,..., ,..., ... }
L L L L

s s s s s s s s s s s s− − − − ,

where, for most shift registers, each monomial of the set will occur in the representation of

some
n

s . The set has cardinality 2 2L − and contains all monomials that can be formed out

of the initial state bits 0 0 1 1(, ,...,)
L

s s s s −=
���

except the two monomials 1 and 0 1 1...
L

s s s − . The

monomial 1 does not occur because the feedback function 0 1(,...,)
L

f x x − of the NFSR has

the property (0,...,0) 0f = . The monomial 0 1 1...
L

s s s − of degree L does not occur because the

feedback function f is balanced [23].

The fact that all the other 2 2L − monomials will occur in the representation of some

n
s is not guaranteed for every nonlinear binary FSR. However, it is a typical property that

most NFSRs have. For instance, consider the 4-stage primitive LFSR given by

0 1 2 3 0 1(, , ,)f x x x x x x= + . Let the initial state of the shift register be (, , ,)a b c d . The output

bits of the shift register appearing in the first period are

, , , , , , , , , , , ,

, , .

a b c d a b b c c d a b d a c b d a b c b c d

a b c d a c d a d

+ + + + + + + + + + +

+ + + + + +
 (3.4)

Now consider the 4-stage primitive NFSR given

by 0 1 2 3 0 1 2 1 3(, , ,)f x x x x x x x x x= + + + . With the same initial state, the output bits of the shift

register appearing in the first period are

, , , , , , , ,

, ,

, ,

, , .

a b c d a b c bd b d ac bc bcd a b acd b c abd bcd

c d cd abc acd bcd a b c d ad bd abd acd

a b c d ab ac abc abd bcd a d bc cd abc acd

a c ad bd abd c d ab ac bd abc a b d ac

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + + +

+ + + + + + + + + + + +

 (3.5)

 30

The sequence of the first 2 1L − output bits of a binary L-stage primitive feedback

shift register, where each output bit is expressed as a multivariate polynomial in the initial

state bits, is called the monomial spectrum of the shift register. Figure 3.4 displays the

monomial spectra of the two primitive feedback shift registers, of which the feedback

polynomials are given as examples.

Figure 3.4. Comparison between a primitive LFSR and a primitive NFSR

It is given as an experimental result in [23] that for 2 2 jL

j jL k L≤ ≤ − , the kth entry

in the monomial spectrum of
j

R contains close to
1

2 jL −
 different monomials and has in

general degree 1
j

L − .

 31

4. IRREGULAR DECIMATION ALGORITHMS

The usual way to design a stream cipher consists in combining the output of one or

several LFSRs in order to obtain a pseudorandom sequence of bits having good properties.

Among these properties, the most regarded ones are the period and the linear complexity.

These properties are obviously not sufficient, as they do not guarantee that the resulting

sequences will resist algebraic or correlation attacks. Usual design techniques to obtain

cryptographically suitable pseudorandom sequences include applying (sufficiently)

complicated Boolean functions on the outputs or the internal states of several LFSRs.

Another interesting technique is to decimate the output of an LFSR in an irregular way.

This is the point of two well-known pseudorandom generators: the Shrinking Generator

and the Self-Shrinking Generator. Recently a new irregular decimation, the bit-search

generator (BSG) is presented by Gouget and Sibert. In addition, to improve the security

with the same rate or the rate with the same level of security of the BSG, different variants

like Alternative BSG (ABSG), Modified BSG (MBSG) and Editing BSG (EBSG) are

proposed.

This section is organised as follows: In section 4.1 the shrinking generator and in

section 4.2 the bit-search generator and its variants are described.

4.1 The Shrinking Generator

The shrinking generator (SG) [33] is a well-known keystream generator for stream

cipher applications. It consists of two regularly clocked binary linear feedback shift

registers. Denote these
A

R and
S

R , as shown in Figure 4.1, and denote the lengths of these

LFSRs as LA and LS, respectively. The shrinking generator output is a "shrunken" version

or subsequence of the output from
A

R , with the subsequence elements selected according

to the position of 1's in the output sequence of
S

R : the keystream sequence z consists of

those bits of the sequence
A

s for which the corresponding bit of sequence
S

s is 1. The

other bits of
A

s , for which the corresponding bit of s is 0, are deleted. Under certain

 32

conditions, the output sequences possess a long period, a high linear complexity, and good

statistical properties.

Figure 4.1. The shrinking generator

More precisely, let 1{ }
iA A isσ ∞

== denote the
A

R sequence produced from a nonzero

initial state 1{ } A

i

L

A is = , and 1{ }
is S isσ ∞

== denote the
S

R sequence produced from a nonzero

initial state 1{ } S

i

L

S is = . Let 1{ }
k k

z z
∞

== denote the output sequence of the shrinking generator.

Then
kk Ai

z s= where
k

i is the position of the kth 1 in the sequence
s

σ . The keystream

sequence z is an irregularly decimated version of the
A

R sequence
A

σ , with the decimation

controlled by the
S

R sequence
s

σ .

If the LFSR feedback polynomials are primitive, then a and s are maximum length

sequences with periods 2 1AL − and 2 1SL − , respectively. If in addition
A

L and
S

L are

relatively prime, the period of the keystream is 1(2 1)2 SA LL −− and the linear complexity

(LC) of the keystream satisfies 2 12 2S SL L

A A
L LC L

− −< ≤ [27].

If the LFSR feedback polynomials are fixed, then the secret key of the generator is

only the initial states of the two LFSRs. Assuming that all zero initial states are avoided for

either LFSR, the total number of secret keys for the generator is (2 1)(2 1)SA LL − − . In the

worst-case brute force attack, this is the number of trials required to recover the key.

As pointed out in [33], a basic divide-and-conquer attack on the shrinking generator

is the linear consistency attack [34] on
S

R that requires the exhaustive search through all

possible initial states and feedback polynomials of
S

R . On the other hand, a probabilistic

 33

correlation attack targeting
A

R that requires the exhaustive search through all possible

initial states and feedback polynomials of
A

R is proposed in [32] and analyzed by

computer simulations in [27]. A reduced complexity method based on searching for

specific subsequences of the output sequence is suggested in [35], but both the complexity

and the required keystream segment length are exponential in the length of
A

R .

It is shown in [36] that the output sequence may have a detectable linear statistical

weakness if the feedback polynomial of
A

R has low-weight polynomial multiples of

moderately large degrees. It is suggested in [37] that this weakness may even be used for

recovering the
A

R feedback polynomial. A theoretical framework for a fast correlation

attack targeting the initial state of
A

R is also proposed in [37], but the attack is not

implemented as it requires a search for specific polynomial multiples of the
A

R feedback

polynomial.

In [8] Meier and Staffelbach presented a different approach to the shrinking

generator. They presented a generator doing the same operation with a single LFSR rather

than using two LFSRs. The generator is called the self-shrinking generator (SSG). In self-

shrinking generator instead of single output bits, pairs of output bits are considered. If a

pair happens to take the value 10 or 11, this pair is taken to produce the pseudo random bit

0 or 1, depending on the second bit of the pair. On the other hand, if a pair happens to be

01 or 00 it will be discarded. The shrinking generator and the self-shrinking generator can

be implemented as a special case of the other.

4.2 The Bit-Search Generator

One can consider that both the SG and SSG are methods for bit-search-based

decimation. Indeed, both generators use a search for ones along an input bit sequence in

order to determine the output bit. Instead of using a search of 1’s along a bit sequence in

order to determine the output bit as in the case of shrinking and self-shrinking generator,

the bit search generator uses the search of some bit b, where b varies during the process,

and the variations depend on the bit sequence. This explains the name of the generator,

 34

which is Bit-Search Generator (BSG). BSG is similar to the Self-Shrinking Generator [8]

by using a single LFSR for the decimation process. The BSG operates as follows: The

principle of the BSG consists in searching for some bit along the input sequence, and to

output 0 if the search ended immediately (that is, if the first bit read during the search was

the good one), and 1 otherwise. Consider a window that is located before the first bit on the

input sequence. The window moves on to read the first bit of the sequence, and then moves

along the sequence until it encounters this bit again. If the window has read only two bits

(i.e., the first bit read by the window was followed by the same bit), then the BSG outputs

0, otherwise it outputs 1. The window then reads the next bit following its position, then

moves along the input sequence to find it, and so on [7]. For example, for an input

sequence 0101001110100100011101 the output is found as follows:

��������

0 01 1 1 1 0 1

0101001110100100011101 11011001
BSG

⇒

The advantage of BSG over its predecessors SG and SSG that it operates at a rate of

1

3
 instead of

1

4
 (i.e. producing n bits of the output sequence requires, on average, 3n bits

of the input sequence). The comparison between the BSG and other well-known generators

is shown in Table 4.1. However, the disadvantage of the generator is its output can be

expressed by using the differential sequence of the input. By using this weakness, basic

probabilistic attacks can be efficient against the BSG. To improve the security of the BSG

with keeping the same rate, modified versions of BSG are introduced, which are known as

MBSG and ABSG.

Table 4.1. Comparison between the BSG and some well-known generators

Generator Number of LFSRs needed Rate

Alternating Step 3 1

Shrinking 2 1/2

Self-Shrinking 1 1/4

BSG 1 1/3

 35

The action of the MBSG on the input sequence σ consists in splitting up σ into

subsequences of the form (,0 ,1)ib , with i ≥ 0 and b ∈ {0, 1}. For every pattern of the form

(,0 ,1)ib , the output bit is b. The action of the ABSG on σ consists in splitting up σ into

subsequences of the form (, ,)ib b b , with i ≥ 0 and b ∈ {0, 1}. For every subsequence

(, ,)ib b b , the output bit is b for i = 0, and b otherwise. Both the MBSG and the ABSG

clearly have a rate of
1

3
, like the BSG [42]. For example, for an input sequence

0101001110100100011101, the action of the MBSG and the ABSG is as follows:

���������

1 10 0 0 0 0 0 0

0101001110100100011101 000100010
MBSG

⇒

��������

1 11 0 1 1 0 0

0101001110100100011101 10111010
ABSG

⇒

As can be seen from the examples above, the action of the ABSG on an input

sequence σ is identical to that of the BSG, but their outputs are produced differently. As a

result, the main weakness of BSG stemming from the fact that the BSG output can also be

expressed by differential of its input sequence is avoided and the ABSG provides higher

security in this regard.

In [7], the period of the BSG as an experimental result is given for a maximum

length LFSR of length L. The period of the BSG is very close to
2 1

3

L −
 or

2 1
2

3

L

x
−

depending on whether the period is read on one or two periods of the input sequence. In

addition, for linear complexity no theoretical bounds are given but experimentally, it is

given that the linear complexity is usually equal to the period.

In [42] it is given that by making a small change in the BSG algorithm, its rate can be

increased from
1

3
 to

1

2
. However, the security of such an algorithm is slightly lower than

the BSG algorithm. To improve the rate of the ABSG with keeping its security level, a new

algorithm namely the editing bit-search generator is proposed.

 36

4.2.1. The Editing Bit-Search Generator

As mentioned before, the EBSG is a modified version of the bit-search generator

proposed by A. Gouget and H. Sibert [7]. It is developed to increase the average rate of the

BSG from
1

3
to

1

2
 with the same level of security. The main difference of the EBSG from

the other BSG variants is the use of insertion operation in addition to the decimation used

in the BSG and its variants. The algorithm of EBSG is identical to the ABSG except that

after the generation of each output bit, a bit is inserted to the input string. The value of

inserted bit is the complementary of searched bit b for each step. An example for the

algorithm is given below:

�������

0 1 0 1 0 1

10 0 0 1 0 1

^ ^ ^ ^ ^ ^1001 0 001 10 01 10 1 0001011
EBSG

⇒

For the EBSG any output bit zk is produced after i+1 input bits with probability 2-i for

i ≥ 1. So that the average number of input bits needed to produce one output bit is 3. Since

at each output generation one bit is inserted, the net average number of used input bits is 3-

1=2. Therefore, the rate of the EBSG is
1

2
.

The EBSG does not provide the same level of security compared to the ABSG. The

required keystream length in the case of a basic attack against the EBSG is shorter than the

case against the ABSG. So that, a new variant of the EBSG is introduced, the EBSGvariant.

The difference of the variant from the EBSG is the way the inserted bits are computed. For

this variant, each output is produced from the pattern k
bb b for k ≥ 0 and inserted bit is t. If

k is odd then the value of t is changed to its complementary as t t= , otherwise nothing

changes. An example of the EBSGvariant is given below. Let σ = 101100011111001101001

be the input sequence and t which is the value of the inserted bit be set to 0 initially.

�� ����

1 1 0 0 0 0 1 var

10 0 1 1 00 1

^ ^ ^ ^ ^ ^ ^101 1 0001 11110 0 110 10 01 01010110
EBSG iant

⇒��������

 37

5. DESCRIPTION OF THE PROPOSED SYNCHRONOUS STREAM

CIPHER: SAFE

In this section, the design of a new stream cipher referred to as SAFE is described.

The stream cipher SAFE is a keystream generator with a dynamic clock-controlling

scheme and an irregular decimation algorithm at the output. It consists of three nonlinear

feedback shift registers (NFSRs). In addition, an updated version of 16x16 S-box of

Advanced Encryption Standard (AES) is used for permutation of bits of 1R , 2R and 3R

which are used for dynamic clock-controlling scheme. SAFE uses key length of 128 or 256

bits. At the output of the cipher EBSGvariant (Editing Bit-search Generator) is used for

decimation of the generator registers sequences. The main idea behind SAFE is provide

immunity against correlation and algebraic attacks by using NFSRs and irregular

decimation.

In section 5.1, the stream cipher is described. In section 5.2, the detailed description

clock-controlling function of the cipher is given. In section 5.3, the initialisation of the

cipher and in section 5.4 hardware considerations for the cipher is discussed.

5.1. The Stream Cipher SAFE

The stream cipher uses variable length private key
C

K of 128 or 256 bits. SAFE

consists of three nonlinear FSRs. NFSR feedback functions do not include the constant

term 1 and when initialised with a zero string, the output is a zero string. So, a zero string

is a forbidden initialisation vector for NFSRs. According to the table 3.1, the NFSRs are

very likely to be type A. The reason for choosing nonlinear FSRs (Fig. 3.2) is making the

cipher more resistant against correlation and algebraic attacks [1]. One of the NFSRs (1R)

is responsible for determining the clocking tap positions of other two NFSRs. In addition,

bits from other two NFSRs (2R and 3R) are used for determining the number of clockings

of generator registers, 2R and 3R .

 38

The cipher uses dynamic clocking mechanism that is the cipher does not use the

constant inner state values for determining the number of clockings of NFSRs. The inner

state values used for this purpose changes in every cycle as the registers are clocked. In

addition, the bits from the registers determining the number of clockings are permuted by

the S-box in every cycle, so that this mechanism makes it difficult to guess the number of

clockings of the registers. Then the output bits of the generator registers are then XORed

and used as input to a decimation algorithm.

The proposed stream cipher is shown in Figure 5.1. The lengths of the nonlinear

FSRs are as follows:

1R
L = 89 bits (Mersenne prime)

2R
L = 107 bits (Mersenne prime)

3R
L = 127 bits (Mersenne prime)

Feedback polynomials of the NFSRs are non-singular and they can produce a period

of length 2 1L − , where L is the length of the NFSR. That is, the NFSR produces all of its

non-zero states. The feedback polynomials of the NFSRs are as follows:

89 83 80 55 53 42 39 23 1 47 80
1

47 83 49 85 51 81 55 85 83 87 29 49 87 29 81 87

43 83 85 47 80 87 47 83 87 49 81 87 83 85 87

29 43 49 85 29 43 81 85 29 49 85 87 29 81

()
R

f x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

= + + + + + + + + + +

+ + + + + + +

+ + + + +

+ + + 85 87

43 47 80 85 43 47 83 85 43 49 81 85 47 80 85 87

47 83 85 87 49 81 85 87

x

x x x x x x x x x x x x x x x x

x x x x x x x x

+

+ + + +

+

 (5.1)

107 88 70 51 35 17 1 22 43
2

29 35 29 88 51 70 51 97 51 103 81 103 23 31 35

23 35 43 31 35 43 17 23 31 47 17 23 31 101 17 23 43 47

17 23 43 101 17 31 43 47 17 31 43 101 23

()
R

f x x x x x x x x x x

x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x

= + + + + + + + +

+ + + + + + +

+ + + + +

+ + + 29 31 35 23 29 31 88

23 29 35 43 23 29 43 88 23 31 47 101 23 43 47 101 29 31 35 43

29 31 43 88 31 43 47 101

x x x x x x x

x x x x x x x x x x x x x x x x x x x x

x x x x x x x x

+ +

+ + + + +

+

 (5.2)

 39

127 103 96 87 66 51 35 23 1 17 103
3

23 103 23 107 51 87 51 91 66 87 17 23 103 17 23 107

17 97 103 97 101 103 17 23 87 119 17 23 97 103 17 23 97 107

23 97 101 103 23 97 10

()
R

f x x x x x x x x x x x x

x x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x x x

x x x x x x x

= + + + + + + + + + +

+ + + + + + +

+ + + + +

+ 1 107 17 23 87 97 119 23 87 97 101 119
x x x x x x x x x x x+ +

 (5.3)

It is clearly seen that the feedback polynomials of NFSRs are in the same form as

(3.1) so that the NFSRs are non-singular [4]. Their periods can be (289-1), (2107-1) and

(2127-1), respectively.

⊕

Figure 5.1. The proposed stream cipher

5.2. Clock-Controlling Mechanism and Keystream Generation

As mentioned before, the cipher has a dynamic clocking mechanism, which is the

number of clockings of the generator registers 2R and 3R are determined by the functions

that are changing in every cycle. The cipher uses the updated version of 16x16 S-box of

AES in order to permute the incoming bits from the registers. The structure of the S-box of

AES is given in Figure 5.2 [6]. Bits from 1R are used for determining which bits of 2R and

3R will be used in S-box. For this purpose, M function is introduced. There are six input

bits to the M function, which are: 1R (86), 1R (81), 1R (77), 1R (65), 1R (63) and 1R (52).

Using these bits, a vector 1 2 3 4 5 6(, , , , ,)r r r r r r r=
�

is formed as follows:

 40

1 1 2 1 3 1 4 1 5 1 6 1(52), (63), (65), (77), (81), (86)r R r R r R r R r R r R= = = = = = . Then the number N

is calculated by function M. According to N, the bit positions of 2R and 3R which are used

as inputs to the S-box are determined. The value N is calculated as follows:

6

1

1

2 i

i

i

N r
−

=

= ∑ 1 ≤ i ≤ 6 (5.4)

N takes values between 0 and 63, where
i

r denotes the bit values of 1R . After the

calculation of the value N, bits from 2R and 3R are fed into the S-box. The positions of

those bits for 2R and 3R are as follows: 2R (N+1), 2R (106-N), 2R (107), 3R (N+1), 3R

(126-N) and 3R (127). Since N can be zero, 2R (N) and 3R (N) are not used. In a similar

manner, 2R (106-N) is used instead of 2R (107-N) not to use the same input (2R (107))

twice in case of N=0.

There are 8 input bits for the S-box. Those bits are from the three registers 1R , 2R

and 3R . From those bits, two vectors are formed for selection of the column and row of the

S-box. From the bits of the registers, a vector 1 2 3 4(, , ,)w w w w w=
�

 that selects the row is

formed as follows: 1 1 2 2 3 3 4 2(32), (1), (1), (107)w R w R N w R N w R= = + = + = . Similarly, the

column vector 1 2 3 4(, , ,)v v v v v=
�

 is formed from the following bits:

1 1 2 2 3 3 4 3(44), (106), (126), (127)v R v R N v R N v R= = − = − = .

 41

Figure 5.2. S-box: substitution values for the byte xy (in hexadecimal format)

According to the values of these bits the row and the column vector is formed and

the output of the S-box is observed. The 8-bit output of the S-box determines the number

of clockings of the generator registers 2R and 3R . Let the output of the S-box be a vector

1 2 3 4 5 6 7 8(, , , , , , ,)y y y y y y y y y=
�

. According to the bit values of 2y and 3y , the number of

clockings of 2R is calculated. Similarly, according to the values of 6y and 7y , the number

of clockings of 3R is calculated. The clocking functions of the registers are given below:

 2 2 3 1
R

f y y= + + (5.5)

 3 6 7 1
R

f y y= + + (5.6)

As can be seen generator registers 2R and 3R are clocked once at minimum and

three times at maximum. Since the number N takes a different value in every cycle, the

clocking functions changing dynamically in every turn.

 42

After the clockings of the generator registers 2R and 3R , one output bit is produced

by registers, respectively. Then these output bits are XORed and fed into the irregular

decimation algorithm, EBSGvariant for keystream production. Then 1R is clocked again. In

the next turn, again N is calculated from 1R and number of clockings of 2R and 3R is

determined. The keystream bit is produced and finally 1R is clocked once. The operation

goes on in this fashion.

5.3. Initialisation

As it is mentioned before, variable key length can be used in SAFE. Nevertheless, we

choose 256-bit private key for high level of security. In this case, 256-bit private key is fed

into the three registers beginning from 1R . The total length of registers is 323 bits.

Therefore, there is a 67-bit length empty space in the third register. An initialisation vector

(IV) of 67 bits is loaded into the third register. The first 80-bit block of the key will be

divided into twenty 4-bit blocks, A1 through A20. A1-A2, A5-A6, A9-A10, A13-A14 and A17-A18

represent the row pairs to be swapped and A3-A4, A7-A8, A11-A12, A15-A16 and A19-A20

represent the column pairs to be swapped for the S-box. After the registers are filled with

the key and S-box is updated, the registers are clocked for 127 times and the produced bits

are discarded. Thus the initialisation phase is completed after the registers are clocked for

127 times.

For a fixed key the maximum amount of keystream that can be used for encryption,

the so-called frame length, is 260 bits (1024 petabytes). After producing 260 bits, the cipher

must be reloaded with key.

5.4. Hardware Considerations

The size of the implementation of an algorithm depends strongly on the minimum

feature size of the technology, which is the dimension of the smallest feature actually

constructed in the manufacturing process. It also depends on the specific circuit design

style, such as CMOS (complementary metal oxide semiconductor) or DCVSL (Differential

 43

Cascode Voltage Switch Logic), and the number of available metal layers for wire routing.

Hence, it is necessary to resort to an approximate, technology and circuit style independent

measure. A commonly used measure for the size of a design is the number of NAND gate

equivalents (GE). This is the area of the circuit implementation divided by the area of the

smallest NAND gate in the used standard CMOS cell library. Table 5.1 below contains a

subset of logical gates taken from a standard cell library for 130 nm CMOS technology.

The hardware costs are given units of gate equivalents. One gate equivalent (GE) is the

area necessary to implement a 2-input NAND-gate on silicon [23].

Table 5.1. Hardware costs of logical operations

Logical operation Binary function Hardware cost

NAND(a,b) ab+1 1.00 GE

NOR(a,b) 1+a+b+ab 1.00 GE

AND(a,b) ab 1.25 GE

OR (a,b) a+b+ab 1.25 GE

XOR(a,b) a+b 2.25 GE

NAND(a,b,c) abc+1 1.25 GE

NOR (a,b,c) 1+a+b+c+ab+ac+bc+abc 1.50 GE

AND(a,b,c) abc 1.50 GE

OR (a,b,c) a+b+c+ab+ac+bc+abc 1.75 GE

XOR(a,b,c) a+b+c 4.00 GE

MAJ(a,b,c) ab+ac+bc 2.25 GE

MUX(a,b;c) a+ac+bc 2.50 GE

According to the feedback polynomials of the registers, hardware implementation of

the register can be given. For instance, consider a register depicted in Figure 5.3 with

feedback polynomial:

 0 1 4 0 1 3 1 3(, ,...,)f x x x x x x x x= + + + (5.7)

 44

Figure 5.3. A binary nonlinear feedback shift register

According to the Table 5.1, we need three 2-input XOR-gates (3 x 2.25 GE) and one

2-input AND-gate (1.25 GE). The implementation costs of the feedback function are then 8

GE. A better way to implement the feedback function would be to use one 2- input OR-

gate (1.25 GE) plus one 2-input XOR-gate (2.25 GE). The implementation costs are then

reduced to 3.5 GE. In fact, (,)OR a b a b a b ab= ∨ = + + for 2,a b F∈ , so that (5.7) is equal

to

 0 1 4 0 1 3(, ,...,) ()f x x x x x x= + ∨ (5.8)

The second implementation is preferable also because it has a lower logical depth.

The depth of the circuit is the longest path from an input to the output. The logical depth of

the first implementation is three while the logical depth of the second implementation is

only two. Second implementation is shown in Figure 5.4.

Figure 5.4. A more efficient implementation of the FSR in Figure 5.3

 45

According to the Table 5.1, description of the feedback functions can be given in

terms of logical gates whose definition and hardware costs can be found in Table 5.1. The

representations show that each feedback function can be implemented with logical depth

three using 2-input gates and 3-input gates only. Hardware properties of the registers are

given in Table 5.2.

89 42 53 80
1

1 23 39 51 81 55 49 85

83 80 47 29 49 81 87 43 85

() ((, (, ,)),

((, ,), (,), (, ;)),

((, ;), (, ,); (, ;)))

R
f x XOR XOR x XOR x x x

XOR XOR x x x AND x x MUX x x x

MUX MUX x x x MAJ x x x MUX x x x

=

 (5.9)

107 1 17 88
2

22 43 70 97 51 51 81 103

35 88 29 17 47 101 23 31 43

() ((; (, ,)),

((,), (, ;), (, ;)),

((, ;), (, ,); (, ,)))

R
f x XOR XOR x XOR x x x

XOR AND x x MUX x x x MUX x x x

MUX MUX x x x MAJ x x x MAJ x x x

=

 (5.10)

127 1 23 35
3

51 91 66 87 96 51 66 87

103 107 23 23 87 119 17 101 97

() ((, (, ,)),

((,), (, ,), (, ;)),

((, ;), (, ,); (, ;)))

Rf x XOR XOR x XOR x x x

XOR AND x x XOR x x x MUX x x x

MUX MUX x x x AND x x x MUX x x x

=

 (5.11)

Table 5.2. Hardware properties of the NFSRs

Feedback

Polynomial of Shift

Register

Number of

taps

Design size in

GE

fR1 17 31.75

fR2 17 30

fR3 15 31

When implementing a FSR on hardware a considerable amount of area will be used

up for the implementation of the memory cells. We can distinguish three types of flip-

flops. The simplest and least expensive flip-flop (4.75 GE) is a flip-flop without reset

functionality. The more expensive scan flip-flop (6.75 GE) is a flip-flop with an integrated

multiplexer. The first two flip-flops in Table 5.3 have one data input and one data output

while a scan flip-flop has two data inputs and one data output. The flip-flops used in the

 46

stream cipher SAFE do not need to have reset functionality. There is no need to reset a

flip-flop at any time during key loading or resynchronisation.

Table 5.3. Hardware costs of memory units

Memory Unit Hardware costs

Flip-flop 4.75 GE

Reset Flip-flop 5.75 GE

Scan Flip-flop 6.75 GE

 47

6. SECURITY OF SAFE

A good stream cipher must be resistant against different kinds of known plaintext

attacks. A known-plaintext attack is one where the adversary has a quantity of plaintext

and corresponding ciphertext. Also for cryptographic applications, generated keystream of

a stream cipher must meet basic security requirements, such as large period, high linear

complexity and good statistical distribution.

In section 6.1, the keystream properties of SAFE are examined. In section 6.2

security of the cipher is examined for several scenarios considering the known plaintext

attack and the adversary knows the internal structure of the cipher.

6.1. Keystream Properties of SAFE

6.1.1. Period and Linear Complexity

The cipher has non-singular NFSRs. If we assume that the NFSRs are type A NFSRs,

then the periods of the NFSRs are prime, since the lengths of the NFSRs are Mersenne-

prime. The cipher uses mutual clocking so that mathematical modelling of period is not an

easy task to perform. However, an upper bound for the period and linear complexity can be

given.

In [9], it is shown that the keystream sequences produced by a generator using clock-

control register(s) to control the clocking of data generating register (GR), can have

maximum period as
KG

P :

gcd(,)

GR
KG

GR

P
P

S P

λ
= (6.1)

where λ is the period of the decimating sequence, GRP is the period of the data generating

register and S is the total number of clocking (or the value of the decimating sequence)

 48

applied to the data generating register during one period of index of clock controlling

function and “gcd” stands for greatest common divisor.

According to [9], the generator can reach this limit, if one of two conditions are

satisfied:

• Degree kreg of GRf is prime and S is not a multiple of
gcd(, 1)

GR

GR

P

P q −
, where GRf is

the feedback function of GR over GF(q).

• GRf is a primitive polynomial and
/ 2

gcd(,) regk

GR
S P q≤

For our case, the feedback function is defined over GF(2), therefore q=2.

If 1P , 2P and 3P represent the periods of each register; then periods can take the values

89 1072 1,2 1− − and 1272 1− , respectively. Let
i

S denote the sum of clockings of ith generator

register during the period of 1R , 2R and 3R , where { }2,3i ∈ .

The number of clockings of 2R and 3R are not only dependent on 1R itself, but on

themselves as well. There are total of 89 127 107(2)(2)(2) cases at the input of the S-box. For

89 127 107(2)(2)(2)
1

4
− cases the generator registers are clocked for once. For

89 127 107(2)(2)(2)

2

cases the generator registers are clocked for twice and finally for
89 127 107(2)(2)(2)

4
 cases the

generator registers are clocked for three times. Then the value of S becomes

89 127 107 89 127 107 89 127 107
89 127 107(2)(2)(2) (2)(2)(2) (2)(2)(2)

1 2 3 2(2)(2)(2) 1
4 2 4

x x− + + = − .So S is

not a multiple of 2R
P and 3R

P and the degrees of the feedback polynomials of 2R and 3R

are prime then we can write the period of the cipher as:

 1 2 3

2 3

1

gcd(,) gcd(,) 2
R R R

R R

P P P
Ps x

S P S P
= (6.2)

 49

Since 2gcd(,)
R

S P and 3gcd(,)
R

S P are equal to 1, because 2R
P and 3R

P are prime [9];

the expression for the period of the cipher reduces to:

 1 2 3

2
R R R

s

P P P
P = (6.3)

The multiple of the periods of registers are divided by
1

2
 because the EBSGvariant at

the output of the cipher reduces the period of the sequence by
1

2
. Consequently, the period

the cipher can be 89 127 107(2 1)(2 1)(2 1)
s

P = − − − which is about 2322.

For an LFSR of length n bits, the linear complexity of its output sequence is LC = n,

provided its feedback polynomial is properly chosen. For a nonlinear register, it is not

always easy to compute the linear complexity of its output sequence, but clearly it cannot

exceed its period [1]. The upper bound for the linear complexity of an L-stage binary

primitive FSR is 2 2L − . The upper bound 2 2L − also seems to be a typical value for the

linear complexity of L-stage binary primitive NFSRs [10]. So that individual linear

complexities of NFSRs are upper bounded by 1272 2− , 1072 2− and 892 2− , respectively.

Also according to [11], since gcd(,) 1
Ri

S P = for { }2,3i ∈ , the period of the clock-control

register become a multiplier in the upper bound on the linear complexity of the irregularly

decimated sequence. For SAFE, the clock-control registers are 1R , 2R and 3R . Thus if LC

denotes the linear complexity of the keystream is very likely to be lower bounded

by 89 127 107(2 1)(2 1)(2 1)ϕ− − − , where ϕ denotes the effect S-box and the EBSGvariant.

So in order to apply the Berlekamp-Massey attack, an attacker should intercept at

least 31 2(2 1)(2 1)(2 1).2RR R− − − plaintext bits. However the cipher will be reinitialised with

a different key after a keystream length 260, therefore this attack seems impractical.

 50

6.1.2. Output Rate

For the production of a single keystream bit, each of the generator registers are

clocked once with a probability of
1

4
, twice with a probability of

1

2
and three times with a

probability of
1

4
. Let ()

i
a t represent the number of clockings of ith register at time t,

() {1,2,3}
i

a t ∈ .Then the average number of clockings per keystream bit is

1 1 1

{ ()} 2 3 2
4 2 4i

E a t x x= + + = (6.4)

Output rate is then 0.5 for each produced keystream bit. Since EBSGvariant is used for

the nonuniform decimation of the output of generator registers and it has a rate of 0.5; then

the rate of the cipher will be 0.25.

6.1.3 Statistical Properties of the Keystream Sequence

Keystream sequence of the SAFE stream cipher is investigated by using the

statistical tests of FIPS 140-2 [44] and NIST Statistical Test Suite. FIPS140-2 is applied to

1000 sequences of 20000 bits that is produced by SAFE. The cipher passes FIPS140-2 in

proportion of 99.9%. It is known that the security criteria of FIPS140-2 are stricter than

that of FIPS140-1. Therefore, SAFE passes FIPS140-1 in proportion of 100%. We have

tested 1000 sequences of length 1 million bits with NIST test. The generated sequences

successfully pass this test with a significance level of 0.01 and therefore the success rate

for NIST test is 99%.

In addition, autocorrelation test to sequences of length 20000 bits and 50000 bits are

applied. The cipher passes autocorrelation test in proportion of 100%. Any significant

correlation between the tested sequences and the shifted versions is not recognised.

Furthermore, the spectral test is applied to the cipher. The purpose of this test is to

detect periodic features (i.e., repetitive patterns that are near each other) in the tested

 51

sequence that would indicate a deviation from the assumption of randomness. The

intention is to detect whether the number of peaks exceeding the 95 % threshold is

significantly different than 5 %.

Also the linear complexity profile of the cipher for sequences of 20000 bits is tested.

The linear complexity profile is defined to be the measure of change of the linear

complexity of a sequence as it becomes longer. The linear complexity profile of a random

sequence should approximately follow the line L = n/2 where n is the length of the

sequence.

Figure 6.1 shows the autocorrelation result for 20000 bits of output of SAFE. The

autocorrelation (AC) values are normalized to the value at the origin. That is; the maximum

AC that can be achieved is 1 which is represented by dashed red line in Figure 6.1. It is

noticed that there is no significant peak compared to the normalized value (i.e one) at the

origin.

Figure 6.1. Autocorrelation test result for 20000 bits

 52

Figure 6.2 shows autocorrelation values for a sequence of length 50000 bits. Again it

is clearly seen that there is no significant peak therefore no significant correlation for the

shifted values of the sequence compared to the original sequence.

Figure 6.2. Autocorrelation test result for 50000 bits

Table 6.1 shows the spectral test results for SAFE. The p value gives the percentage

of the peaks. The tests are applied to sequences of length 5000, 20000, 50000 and 100000

bits, respectively. In addition, corresponding spectral test result figures are given in Figures

6.3, 6.4, 6.5 and 6.6. The spectral values are calculated using Discrete Fourier Transform

(DFT). Since DFT is symmetric, first n/2 values are considered for a sequence of length n.

For each sequence a threshold value is needed to be considered. The threshold value is

3n for a sequence of length n. The sequence passes the spectral test since no more than

5% of the peaks surpass the threshold value.

 53

Table 6.1. Spectral test results for SAFE

Length of sequence p value Test Result

5000 0.3588 passed

20000 0.9269 passed

50000 0.1819 passed

100000 0.9673 passed

Figure 6.3. Spectral test result for 5000 bits, with threshold value of 122.47

 54

Figure 6.4. Spectral test result for 20000 bits, with threshold value of 244.94

Figure 6.5. Spectral test result for 50000 bits, with threshold value of 387.29

 55

Figure 6.6. Spectral test result for 100000 bits, with threshold value of 547.72

The linear complexity is an important parameter for pseudorandom bit generators

since it determines the linear equivalence of a system with a known successive keystream

of length twice the linear complexity. The Berlekamp-Massey algorithm described in [43]

is an efficient algorithm to determine the linear complexity profile thus the linear

complexity by having only some of consecutive keystream bits. In [4], it is said that for a

pseudorandom bit generator the linear complexity profile should be close to the line L =

N/2 where N is the length of the sequence. In Figure 6.7, the linear complexity profile of

SAFE for 20000 bits is shown. As can be seen from the Figure 6.7, the linear complexity

profile is nearly the same as the N/2 line.

 56

Figure 6.7. The linear complexity profile of SAFE for 20000 bits

6.2. Security of SAFE

While designing a cipher, one of the important points is the resistance against

different types of attacks. In this section, the resistance of the cipher against different types

of attacks will be analysed. These attacks are known-plaintext attacks conducted under the

assumption that the cryptanalyst knows the complete internal structure of the generator.

6.2.1 Exhaustive Key Search

Exhaustive key search, or brute-force search, is the basic technique of trying every

possible key in turn until the correct key is identified. To identify the correct key it may be

necessary to possess a plaintext and its corresponding ciphertext, or if the plaintext has

some recognisable characteristic, ciphertext alone might suffice. Exhaustive key search can

be mounted on any cipher [12]. SAFE has a key length of 256 bits, so there are 2256
≈ 1077,1

possible keys. Therefore, this kind of attack seems impractical.

 57

6.2.2 Time/Memory Trade-off Attacks

Generally in time/memory trade-off (TMTO) attacks, cryptanalyst generates a

number of output bits from certain states of the cipher and then keeps these cipher states

and their corresponding outputs in pairs in a sorted list. Then he scans a received output

sequence to find one of the stored output sequences in the received output sequence. If this

occurs, the corresponding cipher state is obtained and from this state the key can be

successfully recovered. Suppose that :{0,1} {0,1}n nf → is a one-way function, i.e. a

function which can be efficiently evaluated in forward direction, but which is hard to

invert. The goal of the attacker is to invert this function, i.e. given f(x) to find x, while

keeping complexity of the inversion algorithm as low as possible [16]. The attack consists

of two stages: pre-processing stage (offline stage) and processing stage (online stage). In

the offline stage, a table related to the system in consideration is constructed. Pe will denote

the time needed for this pre-computation, and Me will denote the size of memory needed in

constructing and storing this table. During the online phase, an explicit target is given and

the attacker is asked to return an element related to this target from some search space of

size Ne. The time taken for this reply will be denoted by T. Complexity of the attack is

usually taken to be the sum or maximum of T and Me. Hence, for a meaningful TMTO,

both T and Me should be at least small than Ne. It is customary not to take the pre-

computation time Pe as adding to the attack complexity. In other words, the attacker is

given unlimited amount of time in preparation [17].

In 1980, Hellman introduced the technique of time/memory trade-off (TMTO) attack

on block ciphers. That is, if there are Ne possible solutions to search over, the time/memory

trade-off allows the solution to be found in T operations (time) with Me words of memory,

provided the time/memory product TMe equals Ne [13]. Using precomputation time of Ne,

Hellman showed that the online time T and memory Me satisfy the relation TMe
2
 = Ne

 2,

where Ne = 2
n, for a key of length n. Consequently, the attack is called the time/memory

trade-off (TMTO) algorithm and the last equation is called the TMTO curve. In the context

of block ciphers with reasonably long keys, the original Hellman attack is typically not

considered to be of a threat since its precomputation time is the same as the exhaustive

search of the key. Furthermore, the attack works for a single chosen plaintext encryption

and cannot benefit if more plaintext- ciphertext pairs are available to the attacker since the

 58

precomputed tables are related to a fixed plaintext [16]. Stream ciphers received the time

memory trade-off attack for the first by Babbage [14] and Golic [15] through independent

works. In the context of stream ciphers, the function from state to a substring of the

keystream can be considered to be a one-way function. The difference from the block

cipher scenario is that in this case, the obtained keystream provides multiple data points,

inverting any of which yields a state of the stream cipher and constitutes an attack.

Babbage and Golic investigated this situation and obtained an attack with the relations TMe

= Ne and T = De, where De is the number of available data points. Biryukov and Shamir

[19] incorporated multiple data into the Hellman attack and obtained the TMTO curve TMe

2
 De

 2
 = Ne

 2 and 1 ≤ De
 2
≤ T. This kind of attacks seems impractical for SAFE because,

SAFE has a solution space of 2323. In case of the attack in [19], if we choose the memory

value to be 250(1024 terabytes), according to the TMTO curve TMe
2
 De

 2
 = Ne

 2, T De
 2

 =

2546
≈ 10164,36. This result indicates that although the attacker may have large amount of

data, a TMTO attack seems impractical for SAFE.

6.2.3 Correlation Attacks

One of the most important attacks against stream ciphers are correlation attacks. Let

us consider a combination generator where the output sequences of several linear feedback

shift registers are combined by some function f. The function f should produce a sequence

of adequate period and is desired to be nonlinear. For suitable chosen LFSRs many f

produce keystreams that have a long period and a large linear complexity. However,

having a keystream of long period and large linear complexity is not enough. It is also

required that the combining function f provides confusion that is the property whereby the

relation between the simple statistics of the keystream bits and the simple description of

the key. Blaser and Heinzmann [20] were the first to point out a possible problem with the

relationship between the keystream and the sequences used to produce it. Siegenthaler [3]

was the first to propose a model that could exploit this relationship to the detriment of the

combination generator.

 59

6.2.3.1 The model of Siegenthaler

The practical setup consists of k LFSRs with LFSRi having length Li, i=1,....,s. The

characteristic polynomial of each LFSR is primitive, and is assumed to be known. The

combining function F is a known, nonlinear, arbitrary Boolean function. The secret key of

the keystream generator specifies the initial states of each LFSRi. The total number of key

bits required to specify the initial states of the keystream generator is
1

k

i

i

L
=

∑ .

Siegenthaler modelled the input sequences (), 1,...,j

t
s j k= , of the function F as

outcomes of independent and uniformly distributed binary random variables i

t
S with

probability distribution such that (0) (1)i i

t t
P S P S= = = for all i and t. The output of F is an

independent and uniformly distributed random variable 1(,...,)k

t t t
Z F S S= with probability

distribution PZ where (0) (1)
t t

P Z P Z= = = . The probability that the keystream bit zt

coincides with the input bit j

t
s is given by ()j

j t tP P Z S= = . The keystream is said to leak

information about LFSRj if 0.5
j

P ≠ .

Siegenthaler showed that if correlation exists, it is possible to determine the initial

state of each LFSR independently, thereby reducing the cryptanalytic attack to a divide-

and-conquer attack, with approximate complexity
1

2 i

k
L

i=

∑ . Siegenthaler’s attack amounts to

an exhaustive search through the state space of each individual LFSR. For each state by

computing the cross-correlation function

1

,
0

1
(1) (1)

j
i i

j

n
z s

s z
i

C
n

−

=

= − −∑ (6.5)

between the known keystream bits 0 1 1, ,.....,
n

z z z − of the sequence (
t

z) and the suspected

output (j

t
s) of LFSRj, the correct initial key can be found. A different model for the

correlation attack is depicted in Figure 6.8.

 60

⊕

⊕

Figure 6.8. The model for the correlation attack

According to the model above, the corruption of the internal LFSR sequence under

discussion due to other LFSRs in the stream cipher may be modelled as “errors” in the

sequence. So the model can be thought as an LFSR and a binary noise source (BNS) which

introduces the errors to the LFSR sequence. In this attack, a test LFSR is stepped through

all of its 2 1L − non-zero initial states and the output is XORed with the output of the

stream cipher model, as model shown in Figure 6.1. The amount of correlation between the

LFSR sequence and the ciphertext can be adjusted, by changing the probability p=P(ej=1)

of the BNS emitting a 1. A high level of correlation implies that only very few 1’s are

injected into the LFSR output sequence by the BNS. In general, the output sequence (oj) of

the model will appear to be “random”, since it is the XOR of two sequences, the number of

0s and 1s in the sequence being roughly equal. However, when the test LFSR is initialised

with the correct initial state (identical to the initial state of the LFSR under attack), the

output sequence (oj) will be unbalanced, consisting mainly of long runs of 0’s, interspersed

with a few 1’s [25]. However, such a search is not very realistic when the degree of the

feedback polynomial of the LFSR exceeds 60 [21].

Since the exhaustive search in Siegenthaler’s model is not practical, it was shown by

Meier and Staffelbach [26] that in certain cases one can avoid this exhaustive search.

 61

6.2.4. Fast Correlation Attacks

In [26] Meier and Staffelbach proposed that under certain circumstances like few

feedback taps and long LFSR lengths, faster correlation attacks can be successful without

making an exhaustive search. They proposed two attacks (Algorithm A and Algorithm B)

which are much faster than the above attack and work for LFSR length L >> 60 if the

LFSR in question have only a few feedback taps (which is sometimes preferred in practice

for ease of hardware.) Under suitable conditions, correlation attacks against LFSRs of

length L = 1000 or even greater are feasible.

There are several papers based on the ideas of Meier and Staffelbach, such as: [21],

[28], [29] and [30]. Most of the algorithms work under the condition that the LFSR has a

low weight feedback polynomial. However in [31], Johansson and Jonsson developed the

approach to feedback polynomials based on the theory of convolutional codes. Their

method can be applied to arbitrary LFSR feedback polynomials, in opposite to the previous

methods, which mainly focused on feedback polynomials of low weight.

All of the algorithms use the approach of viewing the problem as a decoding

problem. That is, the keystream is regarded as the output of a binary memoryless

symmetric channel (BSC) where the LFSR sequence is regarded as the input to the

channel. The correlation probability 1 − p, defined by 1 ()
i i

p P s z− = = , gives p as the

crossover probability (error probability) in the BSC. W.l.o.g we can assume p < 0.5. The

model is shown in Figure 6.9.

Figure 6.9. Model for a fast correlation attack

All algorithms for fast correlation attacks operate in two phases: In the first phase the

algorithms find a set of suitable parity check equations based on the feedback taps from the

 62

LFSR. The second phase uses these parity check equations in a fast decoding algorithm to

recover the transmitted codeword and thus the initial state of the LFSR.

In order to give the results of the attack in [26] more clearly, assume that n digits of

the output sequence z are given, and correlated with probability p > 0.5 to an LFSR

sequence
a

s , produced by an LFSR with t taps. In addition, it is assumed that the feedback

connection is known. This is not an essential restriction as there are only a very limited

number of maximum-length feedback connections with few taps. Hence exhaustive search

over all primitive feedback connections is possible. The attack applies to an arbitrary

number t of taps but the analysis is restricted to even values of t since irreducible feedback

connections (of length greater than 1) necessarily have an even number of taps [26].

In this attack the keystream sequence z can be viewed as a perturbation of the LFSR

sequence
a

s by a binary memoryless noise source (with Prob(0)=p). For the purpose of

reconstructing the LFSR sequence
a

s from sequence z the following principle is essential

to the algorithms (Algorithm A and B): every digit
ai

s of
a

s satisfies linear relations

derived from the basic feedback relation, all of them involving t other digits of
a

s . By

substituting the corresponding digits of z in these relations, equations are obtained for each

digit
i

z , which either may or may not hold. To test whether
i ai

z s= , the number of all

equations hold for
i

z is counted. Then the greater the number of equations hold, the higher

is the probability that
i

z will agree with
ai

s .

In algorithm A, a test is used for correct digits. This is done by selecting those digits

that satisfy the most equations. In this way an estimate of the sequence
a

s at the

corresponding positions can be obtained. Under favourable conditions these digits have a

high probability of being correct, which means that only a slight modification of the

estimate is necessary. This results in a considerably reduced exhaustive search to sort out

sufficiently many correct digits, in order to determine the LFSR sequence
a

s by solving

linear equations. The computational complexity of the attack is of order (2)cLO , where c <

1 is a function of number of feedback taps t, the probability of correlation p and n/L (n is

the length of the available keystream and L is the length of the register). To give an

 63

example for the value of c, it is smaller than 0.25 for t=2, n/L=106 and p ≥ 0.6. Moreover,

for p > 0.67, the value of c is below 0.001. This is a considerable improvement when

compared to the exhaustive search where c=1. However for large t (t ≥ 10) the value of t

becomes very close to binary entropy function that is Algorithm A gives no advantage over

exhaustive search [26].

In Algorithm B, the most reliable digits are not searched. Instead, all digits of z are

taken into account together with their probabilities of being correct. A priori, with

probability p a digit of z agrees with the corresponding digit of
a

s . Then for each digit
i

z

of z a new probability *p is assigned, which is the probability for
i ai

z s= , conditioned by

the number of equations satisfied. This procedure can be iterated with the varied new

probabilities *p as input to every round. After a few rounds, all those digits of z whose

probability *p is lower than a certain threshold are complemented. Under suitable

conditions it is expected that the number of incorrect digits decreases. In this case, the

whole process is restarted several times until the original LFSR sequence
a

s is obtained.

To obtain conditions under which Algorithm B succeed, a function (, , /)F p t n L is

introduced to measure the correction effect. If (, , /)F p t n L ≤ 0 there is no correction effect

and algorithm B will not be able to reproduce the LFSR sequence
a

s [26]. Therefore a

definite limit to the attack is obtained (which is attained for t ≥ 10 if p ≤ 0.75). In other

direction, for t = 2 or t = 4 taps Algorithm B still remains effective for small correlations,

and, in fact, for t = 2, even for correlation probabilities quite close to 0.5. This means in

particular that correlation to LFSRs with only two feedback taps can be very dangerous.

The striking efficiency of Algorithm B is that the computational complexity is of order

()O L (i.e. linear in length L of the LFSR) [26].

Algorithms A and B enable attacks against LFSRs of considerable length (e.g.,

L = 1000 or greater) with software implementation. However a comparison shows that

Algorithm A is preferable if c << 1 and p is near 0.75 whereas Algorithm B becomes more

efficient for probabilities p near 0.5.

 64

To prevent attacks based on these methods, suitable precautions are necessary. This

leads to new design criteria for stream ciphers:

1. Any correlation to an LFSR with less than 10 taps should be avoided.

2. There should be no correlation to a general LFSR of length shorter than 100

(especially for the case of known feedback polynomial.)

In the attack, for number of t taps, the weight of the feedback polynomial will be t+1.

So for a fixed bit
ai

s there are t+1 number of relations. Also using the squaring operation,

() ()j jf x f x= for 2ij = , more relations involving the fixed bit is obtained. The squaring

operation continues until the degree of the polynomial is greater than the length of the

observed keystream. The obtained equations are called parity check equations. The m

equations are written below:

1

2

0,

0,

.

.

.

0,

ai

ai

ai m

s b

s b

s b

+ =

+ =

+ =

 (6.6)

where each
i

b the sum of t different positions of
a

s . Then these equations are applied to the

keystream bits

1 1

2 2

.

.

.

i

i

i m m

z y L

z y L

z y L

+ =

+ =

+ =

 (6.7)

where
i

y is the sum of the positions in the keystream corresponding to the positions in
i

b .

Assume that h of m equations hold, i.e.

 65

 |{ : 0,1 }|
i

h i L i m= = ≤ ≤ (6.8)

when we apply them to the keystream. Then it is possible to calculate the probability

* (|)
n n

p P a z h equations hold= = as

 * (1)

(1) (1)(1)

h m h

h m h h m h

ps s
p

ps s p s s

−

− −

−
=

− + − −
 (6.9)

where ()
n n

p P z a= = and ()
i i

s P b y= = . Then one of two algorithms given above

(Algorithm A and B) are used for reconstructing the initial state.

Since the correlation between the generators registers and the output is %50,

correlation attacks cannot be applied to SAFE. However if one analyses the output and

detects a correlation different than %50, correlation attacks can be applied. Let us consider

the model of Siegenthaler for the correlation attack against SAFE. The generator has an

irregular clocking mechanism, so it is resistant against correlation attacks. The attacker

should make an exhaustive search for guessing the clocking mechanism and structure of S-

box. However, since there is no one-to-one corresponce between the generator register

outputs and the keystream, Siegenthaler’s model cannot be applied.

When we apply fast correlation attack to SAFE, we consider two scenarios. In

scenario 1, we omit the effect of EBSGvariant. In Meier and Staffelbach’s model, the number

of taps of the NFSRs must be less than 10 for the attack to be successful, where in SAFE

the number of taps of the registers is more than 10. Therefore, the model of Meier and

Staffelbach seems infeasible for SAFE for scenario 1. However, the model of Johansson

and Jonsson’s model can be applied to arbitrary feedback polynomials. So in scenario 1,

without the effect of EBSGvariant, SAFE is theoretically secure against Meier and

Staffelbach’s model and insecure against Johansson and Jonsson’s model. Let us consider

the effect of EBSGvariant for scenario 2. All of the fast correlation attacks use binary

memoryless symmetric channel for the attack model. However, EBSGvariant has a memory;

that is two consecutive bits cannot be observed at the output at the same time. For every

pattern of the form k
bb b , k ≥ 0 there is a searched bit b. In order to produce an output, the

 66

selection logic has to remember the bits before the searched bit. Therefore, the selection of

two consecutive bits is not possible because of the structure of the algorithm. In scenario 2,

considering the memory effect of EBSGvariant, the model of Johansson and Jonsson cannot

be applied. Consequently, fast correlation attacks cannot be applied to SAFE because of

the existence of the EBSGvariant.

6.2.5 Embedding Attacks

Embedding attacks are based on the possibility of embedding one binary string into

another. Let 1{ }
t t

X x
∞

== denote the output sequence of a regularly clocked binary shift

register with not necessarily linear feedback. Let a decimation sequence be defined in

terms of its increments, that is, as a non-negative integer sequence 1{ }
t t

D d
∞

== . In practice,

D is produced by a clock-control generator, and is therefore ultimately periodic. The output

sequence 1{ }
t t

Y y
∞

== of the clock-controlled shift register is defined as a decimated

sequence

1

()
t

i

i

t
d

y x

=

=
∑

 (6.10)

Note that the decimation operation actually means that in order to obtain the next

output symbol
t

y , after producing 1t
y − , one has to delete 1

t
d − consecutive symbols from

X if 1
t

d ≥ or has to repeat 1t
y − if 0

t
d = . There are two types of embedding attack,

unconstrained and constrained. In the unconstrained case, there is arbitrary number of

deletions at a time and in constrained case at most d deletions at a time. The objective of

the attack is to reconstruct the initial state of the clock-controlled shift register based on a

given segment of the output sequence, without knowing the decimation sequence.

In [32] Golic and O’Connor described the condition for the unconstrained embedding

attack. That is, for a successful attack the deletion rate of the cipher must be smaller than

0.5. If the deletion rate of the cipher greater than or equal to 0.5, then the cipher is secure

 67

against the unconstrained embedding attack. The deletion rate of SAFE is obtained using

(6.4),

1

1 0.75
2 { ()}d

i

p
xE a t

= − = (6.11)

The average number of clockings, { ()}
i

E a t , is multiplied by 2, because the average

rate of the EBSGvariant is
1

2
. The deletion rate of SAFE does not satisfy the condition for

unconstrained embedding attack, and it is theoretically secure against unconstrained

embedding attack.

In constrained case, let the maximum number of deletions as max 2.max(())
i

d a t= = 6.

The attacker considers information of maxd as opposed the idea behind the unconstrained

embedding attack. In [32], it is shown that, the constrained embedding attack is successful

if the length of the observed output sequence is greater than a value linear in the generator

length and superexponential in maxd . The attack cannot be successful, if the minimum

required keystream length is smaller than a value linear in the in the length of the generator

register and exponential in maxd . Therefore by making maxd sufficiently large, practical

security can be improved significantly. The amount of required keystream for a successful

reconstruction is given by

2(2)(1 2)2 ln 2

dd
n L

++ +≥ (6.12)

which is linear in the register length L but superexponential in d. For SAFE stream cipher

maxd is 6 which requires prohibitively large amount of known keystream. Therefore, we can

say that constrained embedding attack on SAFE stream cipher does not seem practical,

although it is theoretically possible.

 68

6.2.6. Probabilistic Attack

Embedding attacks make no use of the probability distribution of the decimation

sequence. Therefore, they are not optimal in general. The probabilistic attack based on the

joint probability of the original and decimated sequences is optimal [32]. In this attack, an

exhaustive search is made for the initial states of the shift registers and a joint probability

value of the keystream and each shift register output is calculated according to the equation

below

 (,) (1,) (, 1)(1) (,)
i k k

P i k P i k p P i k p x yδ += − + − − (6.13)

where (,)P i k denote the partial joint probability for the prefix 1{ }i k i k

t t
X x

+ +

== of X of length

i+k and the prefix 1{ }k k

t t
Y y == of Y of length k, for any 1 ≤ k ≤ n and 0 ≤ i ≤ m-n. Let

(,)x yδ denote the substitution probability defined to be equal to 0.5 if x and y are equal

and zero otherwise. Also p is the deletion rate of the keystream generator. Initial values for

(6.12) are (,0) iP i p= , 0 ≤ i ≤ m-n and (1,) 0P k− = , 1 ≤ k ≤ n [32]. The initial states of the

shift register with a high joint probability value are candidate initial states. The attack thus

requires exhaustive search over all the initial states (phases) of FSR, so its computational

complexity is 2(2)LO L , where L is the length of the shift register [27].

When we apply probabilistic attack to SAFE, it requires an exhaustive search

through the initial states of generator registers. The amount of search is 2234 ≈ 1070,44 state

spaces. After this computation, a joint probability value is calculated for each initial state.

The initial states with a high joint probability value are named as candidate initial states.

The complexity of the attack is O(22342342). The probabilistic attack is theoretically

possible but impractical for SAFE.

6.2.7. Algebraic Attacks

Algebraic attacks are a new family of cryptographic technique based on defining a

cipher system by an initial state-output relation of some degree d. If one can find a relation

for a system then he can theoretically find the initial state of the cipher by solving

 69

multivariate equations with some or may be a huge amount of known consecutive

keystream. In algebraic attacks, the aim is to recover the initial internal state. It is assumed

that an adversary has knowledge of the algorithm and some keystream bits.

For some ciphers algebraic attacks outmatched all previously known attacks since it

decreases the linear complexity of the cipher. In [38], Nicolas T. Courtois presented the

first algebraic technique against the Toyocrypt cipher. In [39], Courtois and Meier

presented new algebraic attacks against Toyocrypt and LILI-128. Frederik Armknecht

proposed an algebraic attack against the Bluetooth Key Stream Generator (E0) in [40]. He

had successfully described the E0 system in terms of internal state-output relation with a

degree of d = 4. In [41] Nicolas T. Courtois proposed a Fast Algebraic Attack against

stream ciphers using the lower degree terms of relation equation however with more

keystream bits which also should be consecutive.

Most of the algebraic attacks were made against regularly clocked stream ciphers,

non-linear filters and non-linear combiners with or without memory. If we sum up

algebraic attacks have the following general steps:

1. Set up a system of equations in the unknowns (initial internal state of the

cipher).

2. Insert the observed keystream bits into the identifiers zt.

3. Recover the unknowns by solving the resulting system of equations using

linearization, re-linearization or XL algorithm

In first step, an adversary tries to find an exact internal state-output relation for a

system. For systems that use LFSR and Boolean functions as combiners or nonlinear

filters it is not a difficult task to achieve if the system is clocked in regular or known way.

In fact, it is the most important part if one desires to make an algebraic attack. For simple

systems such as combiners with or without memory, nonlinear filters with regular clocking

and clock-controlled systems with simple or known clocking, existence of such equations

is obvious.

 70

The second step of algebraic attacks is the substitution of observed keystream bits

into the equations derived in the first section. Normal algebraic attacks have substitution

complexity which is less than the actual attack. However, fast algebraic attacks have

substitution complexity higher than the actual attack if the substitution is done in a naive

manner.

The third step of algebraic attacks is solving the multivariate equations obtained in

step 1. Many techniques have been proposed to solve these systems. The best-known and

simple technique is the linearisation. The basis of this technique is to linearise a system of

nonlinear algebraic equations by assigning a new unknown variable to each monomial term

that appears in the system. The same monomial term appearing in distinct equations is

assigned the same new unknown variable. The system of equations then changes from a

system of nonlinear equations (with few unknown variables) into a system of linear

equations (with a large number of unknown variables). If the number of linear equations

exceeds the number of new unknown variables, then the attacker can solve the system to

obtain the new unknown variables of the linear system (which will in turn reveal the

unknown variables of the non-linear system).

To provide immunity against algebraic attacks, nonlinear FSRs are used in SAFE. As

mentioned on section 3, NFSRs provide resistance against algebraic attacks which can be

clearly seen in Figure 3.4, since algebraic attacks use the monomials for making up the

equations. We give a brief example about the effect of NFSRs. Let us consider an LFSR of

length 127 bits. In order to apply an algebraic attack to this LFSR, an attacker needs n =

127 keystream bits to create 127 equations. To solve this system, the attacker needs a

memory of 127
2 bits. The complexity of the attack is 127

3, using the Gaussian elimination

method. Now let us consider the third NFSR of SAFE of length 127. The feedback

function of NFSR contains 9 terms of first degree, 5 terms of second degree, 4 terms of

third degree, 5 terms of fourth degree and 2 terms of fifth degree. Then the attacker needs

8.75127 127 127 127 127
9 5 4 5 2 10

1 2 3 4 5
() () () () ()n x x x x x= + + + + = bits to create a

system of n equations. The size of the memory needed is 2 17.510n = bits and the complexity

of the attack is 3 26.2510n = .

 71

SAFE has a dynamic clock-control mechanism so that some of the bits at outputs of

the generator registers are discarded. In addition, an irregular decimation algorithm is used

at the output. In order to apply an algebraic attack to SAFE, the clocking and structure of

S-box should be determined (guessed). In order to write equations for initial states and

outputs of the registers, one has to determine the clocking mechanism of the system for

determining the discarded bits. The clocking mechanism depends on all of the registers, so

that an exhaustive search for all the registers, that is, a search for 2323
≈ 1097.23 spaces

should be done. In addition, to guess the structure of the S-box, the attacker has to make an

exhaustive search of 280 bits. The total amount of search is thus 2403
≈ 10121.31. After a

search of 10121.31 spaces, the attacker can write equations for initial states-outputs of the

generator registers. Nevertheless, this amount of search is impractical, so algebraic attack

is theoretically possible but infeasible for SAFE.

 72

7. CONCLUSION

In this thesis, the theoretical background stream ciphers and an implementation of

dynamically clock-controlled stream cipher with nonlinear feedback shift registers were

described. The main idea behind SAFE is the usage of nonlinear feedback shift registers

and irregular clocking for providing immunity against well known correlation and

algebraic attacks. To investigate the randomness of the keystream sequences generated by

the proposed ciphers, we have used two test suites which are FIPS 140-2 and NIST

Statistical Test Suite. SAFE passed all of the statistical tests.

In addition, the security of the cipher is analysed with respect to currently some well

known attacks such as exhaustive key search, time/memory trade-off attacks, correlation

attacks and algebraic attacks. It is shown that SAFE is secure enough to resist these

attacks.

Consequently, we have observed that SAFE meets the design objectives and the

security requirements. SAFE may be treated as secure stream cipher to be used for high

speed communications. Cipher can be implemented in hardware and also an effective

assembly implementation of SAFE would be appropriate for software applications.

 73

APPENDIX A: MATLAB CODES

This section gives the simulation codes of SAFE. The implementation is evaluated in

MATLAB environment. One can also use MATLAB compiler to convert the MATLAB

implementations to run in C language. The MATLAB functions used to simulate the stream

cipher and tests such as autocorrelation, DFT, Linear complexity for statistical observations

are listed below.

1. safe.m : Simulates SAFE stream cipher.

2. clockctrl.m : Simulates the clock-control unit of SAFE.

3. Key.m : Generates 256 bit random private key.

4. IV.m : Generates 67 bit random publicly known initialization vector.

5. dec.m : Simulates the decimation of a binary vector.

6. Sbox_initialise.m : Initialization of AES S-box.

7. Initialisation.m : Simulates the initialisation procedure.

8. EBSG_var.m : Simulates the EBSG variant.

9. autocorrelation.m : Simulation of the autocorrelation test.

10. spectral.m : Simulation of spectral (DFT) test of a binary sequence.

11. LCP.m : Simulates the linear complexity profile of a binary sequence.

 74

1. safe.m

function [Output] = safe(K,iv,T)

% K , 256 bit private key

% iv, 67 bit initialization vector

% T, Number of cycles

disp ('**')

disp ('* *')

disp ('* S A F E *')

disp ('* *')

disp ('**')

[R1, R2, R3]=Initialisation(K,iv);

L1=length(R1); L2=length(R2); L3=length(R3);

Sbox=Sbox_initialise(K(1:80));

for t=1:127

 % R1 is shifted once

temp=mod(R1(89)+R1(83)+R1(80)+R1(55)+R1(53)+R1(42)+R1(39)+R1(23)+R1(

1)....

+R1(47)*R1(80)+R1(47)*R1(83)+R1(49)*R1(85)+R1(51)*R1(81)+R1(55)*R1(85

)....

+R1(87)*R1(83)+R1(29)*R1(49)*R1(87)+R1(29)*R1(81)*R1(87)+R1(43)*R1(83)

*R1(85)....

+R1(47)*R1(80)*R1(87)+R1(47)*R1(83)*R1(87)+R1(49)*R1(81)*R1(87)+R1(87)

*R1(83)*R1(85)....

 75

+R1(43)*R1(29)*R1(85)*R1(49)+R1(43)*R1(29)*R1(85)*R1(81)+R1(49)*R1(29)

*R1(85)*R1(87)....

+R1(81)*R1(29)*R1(85)*R1(87)+R1(43)*R1(47)*R1(85)*R1(80)+R1(43)*R1(47)

*R1(85)*R1(83)....

+R1(43)*R1(49)*R1(85)*R1(81)+R1(47)*R1(80)*R1(85)*R1(87)+R1(47)*R1(83)

*R1(85)*R1(87)....

 +R1(49)*R1(81)*R1(85)*R1(87),2); %feedback relation of R1

 for j=1:(L1-1)

 R1(L1+1-j)=R1(L1-j); % shifting to right

 end

 R1(1)=temp; %update the first register using the primitive polynomial

 r=[R1(86) R2(81) R1(77) R1(65) R1(63) R1(52)];

 N=1+dec(r);

 w=[R1(32) R2(N) R3(N) R2(107)];

 v=[R1(44) R2(107-N) R3(127-N) R3(127)];

 y=dec2bin(Sbox(1+dec(w),1+dec(v)),8); %Feed the s-box

 y=mod(double(y),48); %S-box output

 %Gathering the clocking information for irregularly clocked LFSRs R2&R3

 [clock_2 clock_3]=clockctrl(y);

 %R2

 for i=1:clock_2

temp2=mod(R2(107)+R2(88)+R2(70)+R2(51)+R2(35)+R2(17)+R2(1)+R2(22)*R2

(43)....

+R2(29)*R2(35)+R2(29)*R2(88)+R2(51)*R2(70)+R2(51)*R2(97)+R2(51)*R2(10

3)+R2(81)*R2(103)....

 76

+R2(23)*R2(31)*R2(35)+R2(23)*R2(35)*R2(43)+R2(43)*R2(31)*R2(35)+R2(17)

*R2(31)*R2(23)*R2(47)....

+R2(17)*R2(31)*R2(23)*R2(101)+R2(17)*R2(43)*R2(23)*R2(47)+R2(17)*R2(4

3)*R2(23)*R2(101)....

+R2(17)*R2(31)*R2(43)*R2(47)+R2(17)*R2(31)*R2(43)*R2(101)+R2(29)*R2(3

1)*R2(23)*R2(35)....

+R2(29)*R2(31)*R2(23)*R2(88)+R2(29)*R2(35)*R2(23)*R2(43)+R2(29)*R2(43)

*R2(23)*R2(88)....

+R2(23)*R2(31)*R2(47)*R2(101)+R2(47)*R2(43)*R2(23)*R2(101)+R2(29)*R2(

31)*R2(35)*R2(43)....

 +R2(29)*R2(31)*R2(43)*R2(88)+R2(47)*R2(31)*R2(43)*R2(101),2);

%feedback relation of R2

 for j=1:(L2-1)

 R2(L2+1-j)=R2(L2-j); % shifting to right

 end

 R2(1)=temp2; %replace the R2 content with temp2

 end

 %R3

 for i=1:clock_3

temp3=mod(R3(127)+R3(103)+R3(96)+R3(87)+R3(66)+R3(51)+R3(35)+R3(23)+

R3(1)....

+R3(17)*R3(103)+R3(23)*R3(103)+R3(107)*R3(23)+R3(51)*R3(87)+R3(51)*R3

(91)....

 77

+R3(87)*R3(66)+R3(17)*R3(23)*R3(103)+R3(17)*R3(23)*R3(107)+R3(17)*R3(

97)*R3(103)....

+R3(97)*R3(101)*R3(103)+R3(17)*R3(23)*R3(87)*R3(119)+R3(17)*R3(23)*R3

(97)*R3(103)....

+R3(17)*R3(23)*R3(97)*R3(107)+R3(97)*R3(23)*R3(101)*R3(103)+R3(97)*R3

(23)*R3(101)*R3(107)....

+R3(17)*R3(23)*R3(87)*R3(97)*R3(119)+R3(101)*R3(23)*R3(87)*R3(97)*R3(

119),2); %feedback relation of R3

 for j=1:(L3-1)

 R3(L3+1-j)=R3(L3-j); % shifting the contents of register to right

 end

 R3(1)=temp3; %replace the R3 content with temp3

 end

end

disp ('**')

disp ('* *')

disp ('* INITIALISATION HAS FINISHED *')

disp ('* *')

disp ('**')

disp ('**')

disp ('* *')

disp ('* ENCRYPTION STARTED *')

disp ('* *')

disp ('**')

 78

 for t=1:T

 % R1 is shifted once

temp=mod(R1(89)+R1(83)+R1(80)+R1(55)+R1(53)+R1(42)+R1(39)+R1(23)+R1(

1)....

+R1(47)*R1(80)+R1(47)*R1(83)+R1(49)*R1(85)+R1(51)*R1(81)+R1(55)*R1(85

)....

+R1(87)*R1(83)+R1(29)*R1(49)*R1(87)+R1(29)*R1(81)*R1(87)+R1(43)*R1(83)

*R1(85)....

+R1(47)*R1(80)*R1(87)+R1(47)*R1(83)*R1(87)+R1(49)*R1(81)*R1(87)+R1(87)

*R1(83)*R1(85)....

+R1(43)*R1(29)*R1(85)*R1(49)+R1(43)*R1(29)*R1(85)*R1(81)+R1(49)*R1(29)

*R1(85)*R1(87)....

+R1(81)*R1(29)*R1(85)*R1(87)+R1(43)*R1(47)*R1(85)*R1(80)+R1(43)*R1(47)

*R1(85)*R1(83)....

+R1(43)*R1(49)*R1(85)*R1(81)+R1(47)*R1(80)*R1(85)*R1(87)+R1(47)*R1(83)

*R1(85)*R1(87)....

 +R1(49)*R1(81)*R1(85)*R1(87),2); %feedback relation of R1

 for j=1:(L1-1)

 R1(L1+1-j)=R1(L1-j); % shifting to right

 end

 R1(1)=temp; %update the first register using the primitive polynomial

 r=[R1(86) R2(81) R1(77) R1(65) R1(63) R1(52)];

 N=1+dec(r);

 w=[R1(32) R2(N) R3(N) R2(107)];

 79

 v=[R1(44) R2(107-N) R3(127-N) R3(127)];

 y=dec2bin(Sbox(1+dec(w),1+dec(v)),8); %Feed the s-box

 y=mod(double(y),48); %S-box output

 %Gathering the clocking information for irregularly clocked LFSRs R2&R3

 [clock_2 clock_3]=clockctrl(y);

 %R2

 for i=1:clock_2

temp2=mod(R2(107)+R2(88)+R2(70)+R2(51)+R2(35)+R2(17)+R2(1)+R2(22)*R2

(43)....

+R2(29)*R2(35)+R2(29)*R2(88)+R2(51)*R2(70)+R2(51)*R2(97)+R2(51)*R2(10

3)+R2(81)*R2(103)....

+R2(23)*R2(31)*R2(35)+R2(23)*R2(35)*R2(43)+R2(43)*R2(31)*R2(35)+R2(17)

*R2(31)*R2(23)*R2(47)....

+R2(17)*R2(31)*R2(23)*R2(101)+R2(17)*R2(43)*R2(23)*R2(47)+R2(17)*R2(4

3)*R2(23)*R2(101)....

+R2(17)*R2(31)*R2(43)*R2(47)+R2(17)*R2(31)*R2(43)*R2(101)+R2(29)*R2(3

1)*R2(23)*R2(35)....

+R2(29)*R2(31)*R2(23)*R2(88)+R2(29)*R2(35)*R2(23)*R2(43)+R2(29)*R2(43)

*R2(23)*R2(88)....

+R2(23)*R2(31)*R2(47)*R2(101)+R2(47)*R2(43)*R2(23)*R2(101)+R2(29)*R2(

31)*R2(35)*R2(43)....

 +R2(29)*R2(31)*R2(43)*R2(88)+R2(47)*R2(31)*R2(43)*R2(101),2);

%feedback relation of R2

 80

 if i==clock_2

 out_2=R2(107); % For the last clock of R2, generate the output

 end

 for j=1:(L2-1)

 R2(L2+1-j)=R2(L2-j); % shifting to right

 end

 R2(1)=temp2; %replace the R2 content with temp2

 end

 %R3

 for i=1:clock_3

temp3=mod(R3(127)+R3(103)+R3(96)+R3(87)+R3(66)+R3(51)+R3(35)+R3(23)+

R3(1)....

+R3(17)*R3(103)+R3(23)*R3(103)+R3(107)*R3(23)+R3(51)*R3(87)+R3(51)*R3

(91)....

+R3(87)*R3(66)+R3(17)*R3(23)*R3(103)+R3(17)*R3(23)*R3(107)+R3(17)*R3(

97)*R3(103)....

+R3(97)*R3(101)*R3(103)+R3(17)*R3(23)*R3(87)*R3(119)+R3(17)*R3(23)*R3

(97)*R3(103)....

+R3(17)*R3(23)*R3(97)*R3(107)+R3(97)*R3(23)*R3(101)*R3(103)+R3(97)*R3

(23)*R3(101)*R3(107)....

+R3(17)*R3(23)*R3(87)*R3(97)*R3(119)+R3(101)*R3(23)*R3(87)*R3(97)*R3(

119),2); %feedback relation of R3

 if i==clock_3

 81

 out_3=R3(127); % For the last clock of R3, generate the output

 end

 for j=1:(L3-1)

 R3(L3+1-j)=R3(L3-j); % shifting the contents of register to right

 end

 R3(1)=temp3; %replace the R3 content with temp3

 end

 Output(t)=mod(out_2+out_3,2);

 end

2. clockctrl.m

function [C1, C2] = clockctrl(x)

C1=x(2)+x(3)+1;

C2=x(6)+x(7)+1;

3. Key.m

function [K] = Key()

K=rand(1,256);

for i=1:length(K)

 if K(i)<=0.5

 K(i)=0;

 else

 K(i)=1;

 end

 82

end

4. IV.m

function [K] = IV()

K=rand(1,67);

for i=1:length(K)

 if K(i)<=0.5

 K(i)=0;

 else

 K(i)=1;

 end

end

5. dec.m

function [out] = dec(x)

% Converts a binary vector into decimal form

L=length(x);

out=0;

for i=1:L

 out=out+x(i)*(2^(L-i));

end

6. Sbox_initialise.m

function [Sbox] = Sbox_initialise(x)

B= [99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118

 202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192

 83

 183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21

 4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117

 9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132

 83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207

 208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168

 81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210

 205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115

 96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219

 224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121

 231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8

 186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138

 112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158

 225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223

 140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22];

for i=1:20

 A(i,:)=x((4*(i-1)+1):4*i);

end

% Swap 10 rows

B([1+dec(A(1,:)) 1+dec(A(2,:))],:) = B([1+dec(A(2,:)) 1+dec(A(1,:))],:);

B([1+dec(A(5,:)) 1+dec(A(6,:))],:) = B([1+dec(A(6,:)) 1+dec(A(5,:))],:);

B([1+dec(A(9,:)) 1+dec(A(10,:))],:) = B([1+dec(A(10,:)) 1+dec(A(9,:))],:);

B([1+dec(A(13,:)) 1+dec(A(14,:))],:) = B([1+dec(A(14,:)) 1+dec(A(13,:))],:);

B([1+dec(A(17,:)) 1+dec(A(18,:))],:) = B([1+dec(A(18,:)) 1+dec(A(17,:))],:);

%Swap 10 coloumns

B(:,[1+dec(A(3,:)) 1+dec(A(4,:))]) = B(:,[1+dec(A(4,:)) 1+dec(A(3,:))]);

B(:,[1+dec(A(7,:)) 1+dec(A(8,:))]) = B(:,[1+dec(A(8,:)) 1+dec(A(7,:))]);

 84

B(:,[1+dec(A(11,:)) 1+dec(A(12,:))]) = B(:,[1+dec(A(12,:)) 1+dec(A(11,:))]);

B(:,[1+dec(A(15,:)) 1+dec(A(16,:))]) = B(:,[1+dec(A(16,:)) 1+dec(A(15,:))]);

B(:,[1+dec(A(19,:)) 1+dec(A(20,:))]) = B(:,[1+dec(A(20,:)) 1+dec(A(19,:))]);

Sbox=B;

7. Initialisation.m

function [R1, R2, R3] = Initialisation(K,iv)

R1=K(1:89); R2=K(90:196); R3=[K(197:256) iv];

8. EBSG_var.m

function[output]=EBSG_var(s)

N=length(s);

i=1; j=1;t=0;

while i<N

 e=s(i); y=s(i+1);

 i=i+1;

 k=0;

 while s(i)==mod(e+1,2)

 i=i+1;

 k=k+1;

 end

 i=i+1;

 if mod(k,2)==1;

 t=mod(t+1,2);

 end

 N=N+1;

 85

 s(i+1:N)=s(i:N-1);

 output(j)=y;

 s(i)=t;

 j=j+1;

end

9. autocorrelation.m

function [C] = autocorrelation(x)

%AUTOCORRELATION test

T=length(x)/2;

for i=0:(T-1)

 C(i+1)=sum((2*x(1:T)-1).*(2*x(1+i:T+i)-1));

end

C=C/T;

plot(0:T-1,C,0:T-1,1,'--r')

xlabel('Shift');

ylabel('Autocorrelation values');

legend('AC','Max AC')

10. spectral.m

function [P_value] = spectral(x)

%SPECTRAL_TEST

n=length(x);

for i=1:n

 if x(i)==0

 x(i)=-1;

 end

end

 86

S=fft(x); %DFT of sequence x calculated using FFT

M=abs(S(1:n/2));

T=sqrt(3*n); % Threshold value

N0=0.95*n/2;

N1=length(find(M<T));

d=(N1-N0)/sqrt(n*0.95*0.05/2);

P_value=erfc(abs(d)/sqrt(2))

if P_value>=0.01

 display('SPECTRAL TEST PASSED');

else

 display('SPECTRAL TEST FAILED');

end

plot(1:n/2,M,'-',1:n/2,T,'--r')

legend('Magnitude', 'Threshold');

xlabel('Index'); ylabel('DFT Magnitude');

11. LCP.m

function [L] = LCP(s)

% Linear Complexity Profile for a seqeunce

% The function implements the well-known Berlekamp-Massey algorithm

n=length(s);

%Initial values

C=[1]; l=0; m=-1; B=[1]; N=1; l=0;

while N<=n

 if l==0

 d=s(N);

 else

 c=C(2:length(C));

 87

 d=mod(s(N)+sum(c.*s(N-1:-1:N-length(c))),2); %Next Discrepancy

 end

 if d==1

 T=C;

 P=gfconv(B,[zeros(1,N-1-m) 1]);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 if length(C)<length(P) % %

 C=[C zeros(1,length(P)-length(C))]; % Rows from 18-25 is equal to %

 elseif length(C)>length(P) % say C(D)<--C(D)+B(D).D^(N-m)%

 P=[P zeros(1,length(C)-length(P))]; % %

 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 C=mod(C+P,2);

 if l<=(N-1)/2

 l=N-l;

 m=N-1;

 B=T;

 end

 end

 L(N)=l;

 N=N+1

end

y=0:0.5:n/2;

plot(0:n,[0 L],0:n,y,'--r')

legend('LC Profile', 'N/2 line');

xlabel('Sequence'); ylabel('Linear Complexity');

 88

REFERENCES

1. Johansson, T., W. Meier, and F. Muller, Cryptanalysis of Achterbahn,

http://www.ecrypt.eu.org/stream/papersdir/064.pdf, 2006.

2. Geffe, P.R., “How to Protect Data with Ciphers that are Really Hard to Break,”

Electronics, Vol. 46, No. 1, pp. 99–101, Jan 1973.

3. Siegenthaler, T., “Decrypting a Class of Stream Ciphers Using Ciphertext Only”,

IEEE Transactions on Computer, Vol. C-34, pp. 81-85, 1985.

4. Menezes, A., P. van Oorschot, and S. Vanstone, “Handbook of Applied

Cryptography”, CRC press, 1996.

5. Zeng, K., C. Yang, D. Wei, and T.R.N Rao, “Pseudorandom bit generators in

stream-cipher cryptography”, IEEE Computer, Vol. 24, pp.8-17, 1991.

6. Advanced Encryption Standard, http://csrc.nist.gov/publications/fips/fips197/fips-

197.pdf, 2001.

7. Gouget, A. and H. Sibert, “The Bit-Search Generator”, The State of the Art of

Stream Ciphers: Workshop Record, pp. 60-68, 2004.

8. Meier, W. and O. Staffelbach, “The Self-Shrinking Generator”, in A. DeSantis (ed.)

Advances in Cryptology – EURO-CRYPT’94 Proceedings, LNCS 950, pp. 205–

214, 1994.

9. Kholosha, A., “Clock-controlled Shift Registers and Generalized Geffe Key-stream

Generator”, Proceedings of INDOCRYPT 2001, Lecture Notes in Computer

Science, Vol. 2247, pp. 287-296, 2001.

 89

10. Gammel, B., R. Göttfert, and O. Kniffler, “The Achterbahn Stream Cipher”,

eSTREAM, ECRYPT Stream Cipher Project, Report 2005/002, 2005.

11. Golic, J. and M. V. Zivkovic, “On the Linear Complexity of Nonuniformly

Decimated PN-Sequences”, IEEE Transactions on Information Theory, Vol. 34, pp.

1077-1079, 1988.

12. RSA Labs, Frequently Asked Questions on Today’s Cryptography,

http://www.rsasecurity.com/rsalabs/node.asp?id=2152, 2000.

13. Hellman, M., “A cryptanalytic time-memory trade-off,” IEEE Transactions on

Information Theory, Vol. 26, pp. 401–406, 1980.

14. Babbage, S., “Improved exhaustive search attacks on stream ciphers”, European

Convention on Security and Detection, IEE Conference publication No. 408, pp.

161-166, 1995.

15. Golic, J., “Cryptanalysis of alleged A5 stream cipher”, Eurocrypt'97, LNCS Vol.

1233, pp. 239-255, 1997.

16. Biryukov, A., S. Mukhopadhyay, P. Sarkar, “Improved Time-Memory Trade-offs

with Multiple Data”, Lecture Notes in Computer Science, proceedings of

SAC'2005.

17. Hong, J. and P. Sarkar, “Rediscovery of Time Memory Tradeoffs”, Cryptology

ePrint Archive, Report 2005/090, 2005.

18. Mukhopadhyay, S. and P. Sarkar, “A New Cryptanalytic Time/Memory/Data

Trade-off Algorithm”, Cryptology ePrint Archive, Report 2006/127, 2006.

19. Biryukov, A. and A. Shamir, “Cryptanalytic Time/Memory/Data Tradeoffs for

Stream Ciphers”, Proceedings of Asiacrypt 2000, LNCS Vol. 1976, pp 1-13, 2000.

 90

20. Blaser, A. and P. Heinzmann, “New cryptographic device with high security using

public key distribution”, Proceedings of IEEE Student Paper Contest 1979-1980,

pp. 145-153, 1982.

21. Chepyzhov, V. and B. Smeets, “On A Fast Correlation Attack on Certain Stream

Ciphers”, Advances in Cryptology -- EUROCRYPT '91, pp. 176-185, 1991.

22. Gammel, B. and R. Göttfert, “Combining certain nonlinear feedback shift

registers”, Workshop Record of SASC – The State of the Art of Stream Ciphers, pp.

234–248, Brugge, Belgium, 2004.

23. Gammel, B., R. Göttfert, and O. Kniffler, “ACHTERBAHN-128/80”, eSTREAM,

ECRYPT Stream Cipher Project, 2006.

24. Kanso, A. A., “The alternating step(r; s) generator” ,Technical report, King Fahd

University of Petroleum and Minerals, Hail, Saudi Arabia, September 2002.

25. Bruwer, C. S., “Correlation attacks on stream ciphers using convolutional codes”,

M.S. Thesis, University of Pretoria, October 2004.

26. Meier, W. and O. Staffelbach, “Fast correlation attack on certain stream ciphers”,

Journal of Cryptology, pp. 159-176, 1989.

27. Simpson, L., J. Golic, and E. Dawson, "A probabilistic correlation attack on the

shrinking generator," Information Security and Privacy - Brisbane '98, Lecture

Notes in Computer Science, Vol. 1438, pp. 147-158, 1998.

28. Chepyzhov, V., T. Johansson, and B. Smeets, “A simple algorithm for fast

correlation attacks on stream ciphers”, In Fast Software Encryption, FSE 2000,

LNCS Vol. 1978, pp. 181–195, 2001.

 91

29. Mihaljevic, M., M. Fossorier, and H. Imai,” A low-complexity and high-

performance algorithm for the fast correlation attack”, In Fast Software Encryption,

FSE 2000, LNCS Vol. 1978, pp. 196-212, 2000.

30. Canteaut, A. and M. Trabbia, “Improved fast correlation attacks using parity-check

equations of weight 4 and 5”, in Advances in Cryptology - EUROCRYPT 2000,

LNCS Vol. 1807, pp. 573–588, 2000.

31. Johansson, T. and Jonsson F., “Improved fast correlation attack on stream ciphers

via convolutional codes”, Advances in Cryptology - EUROCRYPT'99, Lecture

Notes in Computer Science, Vol. 1592, pp. 347-362, 1999.

32. Golic, J. and L. O'Connor, “Embedding and probabilistic correlation attacks on

clock controlled shift registers”, Advances in Cryptology - EUROCRYPT '94,

Lecture Notes in Computer Science, Vol. 950, pp. 230-243, 1995.

33. Coppersmith, D., H. Krawczyk, Y. Mansour, “The Shrinking Generator”, in D. R.

Stinson (ed.), Advances in Cryptology – CRYPTO’93 Proceedings, LNCS Vol. 773,

pp. 22–39, 1993.

34. Zeng, K., C. H. Yang, and T. R. N. Rao, "On the linear consistency test (LCT) in

cryptanalysis with applications," Advances in Cryptology - CRYPTO '89, Lecture

Notes in Computer Science, Vol. 435, pp. 164-174, 1990.

35. Johansson, T., “Reduced complexity correlation attacks on two clock-controlled

generators” Advances in Cryptology - ASIACRYPT '98, Lecture Notes in Computer

Science, Vol. 1514, pp. 342-357, 1998.

36. Golic, J., “Intrinsic statistical weakness of keystream generators”, Advances in

Cryptology - ASIACRYPT '94, Lecture Notes in Computer Science, Vol. 917, pp.

91-103, 1995.

 92

37. Golic, J., “Towards Fast Correlation Attacks on Irregularly Clocked Shift

Registers”, Advances in Cryptology - EUROCRYPT '95, Lecture Notes in Computer

Science, Vol. 921, pp. 248-262, 1995.

38. Courtois, N., “Higher Order Correlation Attacks, XL Algorithm and Cryptanalysis

of Toyocrypt”, ICISC 2002, LNCS Vol. 2587, Seoul, Korea, 2002.

39. Courtois, N. and W. Meier, “Algebraic Attacks on Stream Ciphers with Linear

Feedback”, Eurocrypt 2003, LNCS Vol. 2656, pp. 345-359, Warsaw, Poland, 2003.

40. Armknecht, F., A Linearization Attack on the Bluetooth Key Stream Generator,

http://eprint.iacr.org/2002/191/, 2002.

41. Courtois, N., “Fast Algebraic Attacks on Stream Ciphers with Linear Feedback”,

Crypto 2003, LNCS Vol. 2729, pp.177-194, 2003.

42. Gouget, A., Sibert H., Berbain C., Courtois N., Debraize B., Mitchell, C., “Analysis

of the Bit-Search Generator and Sequence Compression Techniques”, in H. Gilbert

and H. Handschuh (eds.), FSE 2005, Lecture Notes in Computer Science, Vol.

3557,196-214, 2005.

43. Massey, J.L., “Shift Register synthesis and BCH decoding”, IEEE Transactions on

Information Theory, IT-15, pp. 122-127, 1969.

44. FIPS PUB 140-2, Security Requirements for Cryptographic Modules,

http://csrc.nist.gov/cryptval/140-2.htm, 2002.

45. Schneier, B., Applied Cryptography Second Edition: Protocols, Algorithms, and

Source Code in C, John Wiley & Sons, New York, 1996.

46. Vernam, G. S., "Cipher Printing Telegraph Systems for Secret Wire and Radio

Telegraphic Communications", Journal of the IEEE, Vol. 55, pp. 109-115, 1926.

 93

47. Ekdahl, P., On LFSR Based Stream Ciphers, Ph.D. Thesis, Lund University, 2003.

48. Siegenthaler, T., “Correlation-Immunity of Nonlinear Combining Functions for

Cryptographic Applications”, IEEE Transactions on Information Theory, Vol. 30,

No. 5, pp. 776-780, Sep. 1984.

49. Wagner, D., L. Simpson, E. Dawson, J. Kelsey, W. Millan, and B. Schneier,

“Cryptanalysis of ORYX”, Proceedings SAC’98, Lecture Notes in Computer

Science, Vol. 1556, pp. 296-305, 1999.

 94

REFERENCES NOT CITED

Erguler, I., The Editing bit-search generator, Boğaziçi University, 2006.

