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ABSTRACT 

MULTI-CHANNEL K-NN CLASSIFICATIONS OF RESPIRATORY 

SOUNDS 

Our main interest in this study is to compare two different feature sets derived from 

respiratory sounds for optimum classification where multi-channel classification algorithm 

with each channel weighted equally is used. Two class recognition problem made of 

healthy and pathological sound data is addressed. The performance of our classifier is 

based on how well it differentiates between healthy and pathological sounds. 

For this purpose, parallel recording from 12 microphones placed on the posterior 

chest were used to extract two different group of sets of features for classification. 

Respiratory sounds of pathological and healthy subjects were analyzed via frequency 

spectrum and autoregressive (AR) model parameters.  

Since due to the physiology of the lungs, the transmission characteristics and 

therefore the spectral characteristics differ for respiratory sounds heard at different 

locations on the chest, separate reference libraries were built for each microphone location. 

Each subject is represented by 13 channels of respiratory sound data of a single or multiple 

respiration cycles depending on applied feature extraction methodology. Two reference 

libraries, pathological and healthy, were built based on multi-channel respiratory sound 

data for each channel and for each respiration phase, inspiration and expiration, separately. 

A multi-channel classification algorithm using k nearest neighbor (k-NN) classification 

method was designed. Performances of the two classifiers using quantile frequencies and 

AR model parameters as feature sets, are compared separately for inspiration and 

expiration phases.  
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ÖZET 

ÇOKLU KANALLI SOLUNUM SESİ EN YAKIN KOMŞU 

SINIFLANDIRMALARI 

Bu çalışmada temel amacımız her kanalın eşit ağırlıklı olarak değerlendirildiği çoklu 

kanallı sınıflandırma algoritmasının farklı iki özellik seti için karşılaştırmasını yapmaktır. 

Sınıflandırma hastalıklı ve sağlıklı olmak üzere iki  grup ses verisi için 

gerçekleştirilmektedir. Sınıflandırıcının performansı hastalıklı ve sağlıklı sesleri 

birbirinden ne kadar iyi ayırdedebildiğine bağlıdır.     

Bu amaçla, 12 mikrofonun sırta yerleştirilmesi ile paralel kaydedilen solunum 

sesleri, sınıflandırıcıya temel teşkil edecek özellik setlerini oluşturmak için kullanılmıştır.  

Hastalıklı ve sağlıklı solunum sesleri frekans spektrumu ve AR modelleme kullanılarak 

analiz edilmiştir.  

Akciğerin fizyolojisi nedeniyle, sırtın farklı noktalarında duyulan solunum sesi, 

iletim özellikleri, dolayısıyla, spektral özellikleri bakımından farklılaşmaktadır. Bu nedenle 

referans kütüphaneleri oluşturulurken, sırtta yer alan her mikrofon lokasyonu ayrı özellik 

kütüphanesi grupları yaratmak için kullanılmıştır. Her denek 12 farklı kanal için, o 

kanaldan kaydedilmiş olan bir veya birden fazla solunum döngüsü ile temsil edilmiştir.  

Solunum döngüsünün her kanal için bir veya birden fazla olması özellik çıkarma 

metodolojisine bağlıdır.  Sağlıklı ve hastalıklı şeklinde iki referans kütüphanesi, çoklu 

kanallı solunum sesini baz alarak, her kanaldaki nefes alma ve verme fazları için ayrı ayrı 

oluşturulmuştur. En yakın komşuluk sınıflandırıcısı kullanan çoklu kanallı bir sınıflandırıcı 

kurgulanmıştır. Frekans sıklığı ve AR model parametrelerini özellik seti olarak kullanan iki 

sınıflandırıcı nefes alma ve verme fazları için ayrı ayrı karşılaştırılmıştır.  



 

vi

TABLE OF CONTENTS 

ACKNOWLEDGEMENT.................................................................................................  iii 

ABSTRACT.......................................................................................................................  iv 

ÖZET .................................................................................................................................  v 

LIST OF FIGURES ...........................................................................................................  viii 

LIST OF TABLES.............................................................................................................  xiv 

LIST OF SYMBOLS/ABBREVIATIONS........................................................................  xv 

1. INTRODUCTION .........................................................................................................  1 

1.1. Background............................................................................................................  1 

1.2. Respiratory Sounds ................................................................................................  2 

1.3. Motivation and Aim...............................................................................................  4 

2. SIGNAL PROCESSING ...............................................................................................  5 

2.1. Introduction............................................................................................................  5 

2.2. Signal Processing Methods....................................................................................  5 

2.2.1. AR Modeling ..............................................................................................  5 

2.2.2. Power Spectral Density (PSD) Estimation with Welch Periodogramxxx 

Method .......................................................................................................  12 

2.3. Signal Classification and Pattern Recognition.......................................................  13 

2.3.1. k-Nearest Neighbor (k-NN) Classification .................................................  14 

2.3.2. Distance Measures for k-NN Classifiers ....................................................  16 

3. METHODOLOGY ........................................................................................................  19 

3.1. Introduction............................................................................................................  19 

3.2. Methods Used in the Feature Extraction, Processing and Classification ofxxx       

the Respiratory Sounds .........................................................................................  19 

3.2.1. The Cycle Based Quantile Frequency Model .............................................  21 

3.2.2. The Segment Based Quantile Frequency Model ........................................  22 

3.2.3. AR Parameter Model with k-NN using Euclidian Distance Measure ........  25 

3.3. Experimental Results .............................................................................................  27 

3.4. Performance Criteria and Results Comparison......................................................  52 

4. CONCLUSIONS ...........................................................................................................  58

 



 

vii

APPENDIX A: PATIENT PROFILE................................................................................  59 

REFERENCES ..................................................................................................................  60 



 

viii

LIST OF FIGURES 

Figure 1.1. Different samples of respiratory sound.........................................................  3 

Figure 2.1. Transfer function model of the system .........................................................  8 

Figure 2.2. Block diagram of pattern classification ........................................................  14 

Figure 3.1. Microphone locations on the chest wall .......................................................  20 

Figure 3.2. 12-channel parallel recordings......................................................................  20 

Figure 3.3. Block diagram of k-NN classification using quantile parameters to formxxx  

feature vectors and Euclidian distance metrics as distance measure ............  23 

Figure 3.4. Block diagram of k-NN classification using segment based quantilexxx 

parameters as feature vectors and Euclidian distance metrics asxxx      

distance measure ...........................................................................................  24 

Figure 3.5. Block diagram of k-NN classification using AR parameters as featurexxx 

vectors and Euclidian distance metrics as distance measure ........................  26 

Figure 3.6. Block diagram of k-NN classification using AR parameters as featurexxx 

vectors and Itakura distance metrics as distance measure ............................  27 

Figure 3.7. Respiratory sound and flow sample of a healthy subject..............................  28 

Figure 3.8. Respiratory sound and flow sample of a pathological subject......................  29 

Figure 3.9. Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 1 .......................................................................................  29 



 

ix

Figure 3.10. Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 2 .......................................................................................  30 

Figure 3.11. Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 3 .......................................................................................  30 

Figure 3.12. Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 4 .......................................................................................  31 

Figure 3.13. Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 5 .......................................................................................  31 

Figure 3.14.  Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 6 .......................................................................................  32 

Figure 3.15.  Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 7 .......................................................................................  32 

Figure 3.16.  Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 8 .......................................................................................  33 

Figure 3.17.  Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 9 .......................................................................................  33 

Figure 3.18.  Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 10 .....................................................................................  34 

Figure 3.19.  Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 11 .....................................................................................  34 

Figure 3.20.  Average PSD of 20 pathological and 27 healthy subjects for expirationxxx 

phase for channel 12 .....................................................................................  35 



 

x

Figure 3.21.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 1 .......................................................................................  35 

Figure 3.22.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 2 .......................................................................................  36 

Figure 3.23.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 3 .......................................................................................  36 

Figure 3.24.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 4 .......................................................................................  37 

Figure 3.25.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 5 .......................................................................................  37 

Figure 3.26.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 6 .......................................................................................  38 

Figure 3.27.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 7 .......................................................................................  38 

Figure 3.28.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 8 .......................................................................................  39 

Figure 3.29.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 9 .......................................................................................  39 

Figure 3.30.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 10 .....................................................................................  40 

Figure 3.31.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 11 .....................................................................................  40 



 

xi

Figure 3.32.  Average PSD of 20 pathological and 27 healthy subjects for inspirationxxx 

phase for channel 12 .....................................................................................  41 

Figure 3.33. Average PSD of 20 pathological subjects for inspiration phase forxxx 

channels 2,4,8,12 ..........................................................................................  42 

Figure 3.34. Average PSD of 27 healthy subjects for inspiration phase forxxx         

channels 2,4,8,12 ..........................................................................................  42 

Figure 3.35. Average PSD of 20 pathological subjects for inspiration phase forxxx 

channels 1,3,7,11 ..........................................................................................  43 

Figure 3.36. Average PSD of 27 healthy subjects for inspiration phase forxxx         

channels 1,3,7,11 ..........................................................................................  43 

Figure 3.37.  Average PSD of 20 pathological subjects for inspiration phase forxxx 

channels 5,7,8,6 ............................................................................................  44 

Figure 3.38.  Average PSD of 27 healthy subjects for inspiration phase for channelsxxx 

5,7,8,6 ...........................................................................................................  44 

Figure 3.39.  Average PSD of 20 pathological subjects for expiration phase forxxx 

channels 2,4,8,12 ..........................................................................................  45 

Figure 3.40.  Average PSD of 27 healthy subjects for expiration phase for channelsxxx 

2,4,8,12 .........................................................................................................  45 

Figure 3.41.  Average PSD of 20 pathological subjects for expiration phase forxxx 

channels 1,3,7,11 ..........................................................................................  46 

Figure 3.42.  Average PSD of 27 healthy subjects for expiration phase forxxx         

channels 1,3,7,11 ..........................................................................................  46 



 

xii

Figure 3.43.  Average PSD of 20 pathological subjects for expiration phase forxxx 

channels 5,7,8,6 ............................................................................................  47 

Figure 3.44.  Average PSD of 27 healthy subjects for expiration phase for channelsxxx 

5,7,8,6 ...........................................................................................................  47 

Figure 3.45. Averaged quantile frequency (25%) of 47 subjects for each channelxxx       

for inspiration phase......................................................................................  48 

Figure 3.46. Averaged quantile frequency (%50) of 47 subjects for each channelxxx       

for inspiration phase......................................................................................  48 

Figure 3.47.  Averaged quantile frequency (75%) of 47 subjects for each channelxxx       

for inspiration phase......................................................................................  49 

Figure 3.48.  Averaged quantile frequency (90%) of 47 subjects for each channelxxx       

for inspiration phase......................................................................................  49 

Figure 3.49.  Averaged quantile frequency (25%) of 47 subjects for each channelxxx       

for expiration phase ......................................................................................  50 

Figure 3.50.  Averaged quantile frequency (50%) of 47 subjects for each channelxxx       

for expiration phase ......................................................................................  50 

Figure 3.51.  Averaged quantile frequency (75%) of 47 subjects for each channelxxx       

for expiration phase ......................................................................................  51 

Figure 3.52.  Averaged quantile frequency (90%) of 47 subjects for each channelxxx       

for expiration phase ......................................................................................  51 

Figure 3.53.  Performance of classifiers for k=1................................................................  54 

Figure 3.54.  Performance of classifiers for k=3................................................................  55 



 

xiii

Figure 3.55.  Performance of classifiers for k=5................................................................  55 

Figure 3.56.  Performance of classifiers for inspiration.....................................................  56 

Figure 3.57.  Performance of classifiers for expiration......................................................  57 

Figure 3.58.  Performance of classifiers for full cycle .......................................................  57 



 

xiv

LIST OF TABLES 

Table A.1.  Patient profile (F: female; M: male; Obs.: obstructive; Res.: restrictive).....  59 



 

xv

LIST OF SYMBOLS/ABBREVIATIONS 

AR  Autoregressive  

ARMA Autoregressive Moving Average 

ECG  Electrocardiographic 

EEG  Electroencephalographic 

EMG  Electromyographic 

LPC  Linear Predictive Coding 

NN  Nearest Neighbor 

PSD  Power Spectral Density 



 

1

1.  INTRODUCTION 

1.1.  Background 

Since the invention of the stethoscope by French physician Reneé Theophil Laënnec, 

auscultation of pulmonary sounds using a stethoscope is widely used since it is a simple, 

cheap and patient-friendly method [1].  

However, it is regarded as a tool of low diagnostic value due to its subjectivity in 

evaluating pulmonary sounds, resulting in a large inter subject and intra subject variability 

and due to its inability to reproduce these findings for comparative assessment since lung 

sounds show variations, both among different subjects depending on the physiology (age, 

sex, type and degree of illness etc.) and within an individual, depending on the localization 

of the auscultation place.   

Based on the shortcomings of the method, there has been increased research activity 

for developing computerized methods for auscultation and diagnosis based on respiratory 

sounds [2,3,4]. 

Previous researchs on respiratory sound showed that the power of the normal breath 

sound signal diminishes as frequency increases [1].  A detailed study on the analysis and 

comparison of spectral characteristics of the respiratory sounds in healthy and pathological 

subjects has been carried out by Chowdury and Majumder [5].  

Today it is well known that the respiratory sounds include frequencies up to 2000 

Hz. The fact that stethoscope attenuates frequency components above 120 Hz and human 

ear is not very sensitive to frequencies below 120 Hz is another indicator of auscultation 

weakness in diagnosis [1]. 

Automation of classification in respiratory sounds becomes an important goal of this 

research area. For this purpose various approaches including parametric representation of 

respiratory sound signals have been used [6]. AR modeling method is used to represent 
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respiratory sound transmission characteristics [7]. Another study [8] performed in this area 

has used autoregressive model parameters as feature set and k-nearest neighbor 

classification using Itakura distance measure as classifier. 

Over the last 30 years, computerized methods for the analysis of respiratory sound 

have overcome many limitations of auscultation [9]. 

1.2.  Respiratory Sounds 

The breath sounds heard on the chest wall of healthy subjects are called normal 

breath sounds [1]. Normal breath sound has acoustically a soft character and it consists of 

different waveforms containing many different frequencies (Figure 1.1) [10]. On the chest 

wall, it can be characterized by a low noisy sound during inspiration, and it is hardly 

audible during expiration [11]. 

The variations occurring in the characteristics of respiratory sounds heard over the 

chest wall provide the experienced physician important information about the pathological 

situation [10].  

Respiratory sounds are classified roughly into two classes, breath sounds and 

adventitious sounds. Breath sounds are described as the normal respiratory noise heard on 

the chest wall and mouth. These are synchronous with the flow of air through the airways. 

In healthy lungs, breath sounds have a frequency range of 200-600 Hz. Adventitious 

sounds are additional respiratory sounds superimposed on normal breath sounds and can be 

discontinuous (crackles) or continuous (wheeze).  

Crackles are explosive, transient in character and can be classified as fine (higher 

pitch) or coarse (lower pitch). As a general rule, their duration is less then 20 ms, with a 

wide frequency range (100 to 2000 Hz).  

Wheeze is a sinusoidal waveform with duration of more than 100 ms, and these are 

common clinical signs in patients with obstructive airways disease as well as in patients 

with asthma [10].  
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Wheezes and crackles are considered to be the parts of the respiratory sound that 

yield significant clinical information [12]. Thus type of the adventitious sounds, the 

number of occurrence per one breath and their location within the flow cycle, pitch (for 

crackles), duration and number of occurrence give valuable information about the type and 

severity of the disease. Different sample of respiratory sound are depicted in Figure 1.1, 

[13]. 

 

Figure 1.1. Different samples of respiratory sound 
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1.3.  Motivation and Aim 

Previously, there have been studies for modeling [7] and for classification [8,14] of 

respiratory sounds with a view to parameterize these sounds and to make auscultation a 

more objective and valuable diagnosis tool. In these studies, however, only sound data 

from one microphone was used in classification and the placement of the microphone on 

the chest was guided under the supervision of a pulmonary physician such that the 

microphone was placed on the location where the sound characteristics of the pathological 

subject varied the most from healthy sound data. In this study, parallel recording from 12 

microphones placed on the posterior chest were used to extract two different sets of 

features for classification. Moreover, since due to the physiology of the lungs, the 

transmission characteristics and therefore the spectral characteristics differ for respiratory 

sounds heard at different locations on the chest, separate reference libraries were built for 

each microphone location both for healthy and pathological data corresponding to 

inspiration and expiration. 

In previous studies [15] k-NN classification algorithm had already applied for one 

channel respiratory sound classification problem. In this study, also k-NN method is 

chosen as classifier. By this, the differentiation of the classification results from the 

previous studies outcomes would be the impact of multi-channel data to classification.  

Our main interest is to compare two different feature sets derived from 

respiratory sounds for optimum classification where multi-channel classification 

algorithm with each channel weighted equally is used. Two class recognition 

problem made of healthy and pathological sound data is addressed. The 

performance of our classifier is based on how well it differentiates between healthy 

and pathological sounds.  
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2.  SIGNAL PROCESSING 

2.1.  Introduction 

Biomedical signals are signals extracted from biological systems. In signal analysis, 

modern signal processing techniques are applicable for any kind of biomedical signals. The 

biomedical signals of common interest are electroencephalographic (EEG), 

electromyographic (EMG) and electrocardiograhic (ECG) signals that give information 

about the condition of the related part of the body. Respiratory sound signals are also 

complex biomedical signals as ECG, EEG or EMG. 

Signals are mainly classified into two groups: random and deterministic signals. The 

difference between them is that deterministic signals can be described in terms of explicit 

mathematical expression but random signals cannot be exactly expressed, instead statistical 

averages and probabilities are convenient to describe these signals. Random signals can 

also be classified into two main groups as nonstationary and stationary signals. Biomedical 

signals are nonstationary and nonlinear, but with some approximation methods the signal 

can be treated as stationary signals and signal processing methods for stationary signals 

can be applied to these signals [15].   

2.2.  Signal Processing Methods 

2.2.1.  AR Modeling  

A nonstationary signal may be considered stationary for limited time duration so can 

be divided in time domain into segments that are stationary. The length of the segments 

depends on the properties of nonstationarities [16]. Parametric modeling is a very common 

technique in modeling stationary signals. The parameters can be used to process or classify 

the signal. 

The basic formula of the model is as follows:    
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In Equation (2.1),  is sampled signal at time n, output of the linear system at time n, 

 is input of the linear system and 

( )ns

( )nu ( )nξ  is the additive noise. 

The transfer function of this system is the parametric model.  In Equation (2.1), 
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The z-transform of the definitions in Equation (2.3), Equation (2.4), Equation (2.5) 

and Equation (2.6) gives us, 
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From the above equations we have the transfer function model of the system 

(Figure 2.1); 
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s(n) can be modeled by system parameter vector T
sβ  and noise parameter vector 

T
wβ determined by the following expressions:   

[ ]qp
T
s bbbaaa ,....,,,....,, 10,10=β  (2.12)

[ ]lk
T
w dddccc ,....,,,....,, 10,10=β  (2.13)

 
T
sβ  describes a linear transformation of the white noise sequence into signal 

sequence if  is assumed to be white noise. )(nu
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Figure 2.1. Transfer function model of the system 

The following ARMAX (autoregressive moving average exogenous variables model) 

model can be derived from Equation (2.1) and Equation (2.2), 
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By assuming that there is no additive noise equation becomes as follows:  
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The autoregressive, AR, model is obtained from Equation (2.11) by assuming =0, 

1<i<q and = K as follows: 
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2.2.1.1. AR Parameter Estimation. The system is linear and  is the output of the 

system where the input is unaccessible. The order of the process, p, and the coefficients , 

i=1,2,...,p and the gain factor, K, have to be estimated to model the sequence  by AR 

modeling. 

( )ns

ia

( )ns

Estimation of the output signal ( )ns  at time “ ” can be described by the following 

equation, 

n

( ) ( )∑
=

−−=
p

i
i insans

1

 (2.17)

 

Knowing that ( )ns  is the estimated value, error  in estimation of )(nErr ( )ns  can be 

formulised as it is shown below, 
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The model coefficients are found as values that minimizes the  satisfying 

Equation (2.20); 

ectedErrexp
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We can write Equation (2.20) as follows: 
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By the stationarity condition of , we can get, )(ns
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where  is the autocorrelation function. Equation (2.22) and Equation (2.24) gives us 

Equation (2.26) known as Yule-Walker or normal equations where   
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Here we can see that R, the autocorrelation matrix is symmetric. Then we can 

express  also as in Equation (2.27) ectedErrexp
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The autocorrelation coefficients of the sequence , N being the length of  

and n=0,1,...,(N-1), can be estimated as: 
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Matrix form of Equation (2.26) can be written as 
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raR −=  (2.30)

 

Hence AR coefficients can be obtained by the solving Equation (2.30) 

rRa 1−−=  (2.31)

 

A recursive solution of the Equation (2.31) developed by Durbin, gives the AR 

parameters of order p. Durbin algorithm is given by the following equations, 

)0(0 RErr =  (2.32)
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2.2.2.  Power Spectral Density (PSD) Estimation with Welch Periodogram Method 

In the  Welch method [17] data windows permitting the data segments to overlap in 

PSD estimation are used. In this method prior to the computation of the segment 

periodogram a data window is applied to the data. A window provides to reduce the effect 

of sidelobes and by doing this the effect of estimation bias. Of course this brings a slight 

decrease in resolution. By overlapping segments the number of segments that are averaged 

is increased and therefore the PSD estimate variance is decreased.  

If we assume s(0), ... , s(N-1) is data record of N samples divided into D segments of  

L samples each, with a shift of X samples (X<L) , the maximum number of segments D is 

the integer part of (N-L)/X + 1. The dth segment will be as follows, 

( ) [ ] [ ] [ ]dXnsnwns d +=  (2.37)

  

for 0  and 1−≤≤ Ln 10 −≤≤ Dd . The spectrum of the dth segment is as,  

[ ] 2)(*)()()( )(1)()(1)( fS
ULT

fSfS
ULT

fp dddd
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where  is the discrete-time Fourier transform of the dth segment, U is the discrete )()( fS d
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time window energy and the frequence range is TfT 2121 ≤≤− . 
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Welch periodogram estimate is the average of the windowed segment periodograms 

and can be expressed as, 
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2.3.  Signal Classification and Pattern Recognition 

Classification of a signal is associating the signal with the correct class. For this 

purpose two things are needed: Prior knowledge about classes constituted of pattern 

vectors representing signals and these pattern vectors to be not redundant. Since samples of 

signal may contain some redundancies, it is better not to take them directly as pattern 

vectors. Instead a model that does not contain redundancies is used to represent the signal.   

Feature extraction method is one of the efficient method used to model the signal by 

removing its redundancies. In feature extraction, linear or nonlinear transformations of the 

original signal is one of the efficient method to represent signal by means of signal features 

vector. The elements of features vector can be the spectral parameters or the AR 

parameters of the original measurement. A general pattern classification block diagram is 

shown in Figure 2.2. Here, classification system produces a single-valued scalar by 

performing on feature vector. The single-value scalar is the decision, ( )ϑkd  . 
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If there are M classes, ,,...,2,1, Mkck =  to classify features vector ϑ  into one of 

these classes, M decision functions ( ) ,,...,2,1, Mkdk =ϑ  should be calculated. The 

classification is done by comparing M decision functions. 

 

Figure 2.2. Block diagram of pattern classification 

In classification a feature vector can be classified in one of the M classes. When 

classes are well separated from each other, a chosen distance measure can be sufficient to 

decide that feature vector, ϑ , belongs to the class  to which  kc ϑ  is nearest.  

2.3.1.  k-Nearest Neighbor (k-NN) Classification  

Nearest neighbor (NN) classification method [18] is known especially for well 

responding in classification problems where boundaries of classes are not separated 

definitively. The decision about the unknown signal class is done by choosing the class 

having the nearest neighbor to the signal.   

K nearest neighbor classification is another application of the NN classification. In k-

NN method, the unknown signal is classified by voting among k nearest neighbor classes 
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to the signal.  The class having maximum number of nearest neighbor is chosen to be the 

unknown signal class. 

The probability of the feature vector ϑ  to fall in the sample space R can be described 

as, 

( ) ( ) VpdpP
R

ϑϑϑ ≈= ∫  
(2.42)

  

with being the volume of the region V R . The approximation in Equation (2.42) is true 

with the condition that R  is small enough. Thus we can write for ( )ϑp , 

( )
V
Pp =ϑ  (2.43)

  

If  from  feature vectors constituting the sample space fall in k n R  region then we 

can deduce that the relationship between P  and ( )ϑp  probabilities is as follows, 

n
kP =ˆ  (2.44)

( )
V
n

k
p =ϑˆ  (2.45)

 

The Equation (2.45) necessitates that an appropriate size of V  has to be determined. 

The problem here is that if  V  is chosen large, the estimation becomes smoother. If V is 

chosen too small, in this case, the variance of the estimation may increase.  

For the two class case, the k-NN classification rule can be sited as, 
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121 ckk ∈⇒ϑf  (2.46)

221 ckk ∈⇒ϑp  (2.47)

 

The k-NN classification rule for two classes does not require the knowledge about 

the features statistics.  

Leave-one-out method: This method is said to provide good estimates of probability 

of error in case of small sample populations. In this method, the classifier is trained using 

all samples except the one to be classified, and then the removed subject is classified. 

2.3.2.  Distance Measures for k-NN Classifiers 

Euclidian distance measure, ,  is one of the distance metrics used for k-NN 

classification. It is the distance from the class , or from the  element of the class ,  

EuclidianD

kc thi kc

kCϑ , to the feature vector to be classified, ϑ . 

kEuclidianD  , Euclidian distance of feature vector ϑ  to the class , can be expressed 

as follows : 

kc

)()(
2

2
kkk C

T
CCkEuclidianD ϑϑϑϑϑϑ −−=−=  (2.48)

 

From Equation (2.48), the decision is that ϑ  belongs to the class , if  

gives the smallest distance to 

kc 2
kEuclidianD

ϑ  in comparison of all  from other classes.   2
EuclidianD

Another distance measure used in classification is Itakura distance [19] measure. 

Simply, Itakura distance measures the distance between AR models, thus it is used 

especially when the signal is modeled by using AR models.  
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The Itakura distance between two AR models, A and B, can be described as in 

Equation (2.49), 

( ) ∫
−

=
π

π π2)(
)(

log, 2

2
dw

wB
wA

BAd Itakura  (2.49)

 

The power spectrums of the AR models, 2)(wA  and 2)(wB  of models A and B 

respectively, can be expressed as in Equation (2.50) and Equation (2.51) where  and  

are order AR model linear prediction coefficients. Also the gains of the AR models are 

expressed with  and . 
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Equation (2.49) can be rewritten by using Equation (2.50) and Equation (2.51) as 
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−
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We can simplify as 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 2log,

A

A
T

Itakura
bRbBAd

σ
 (2.53)
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In Equation (2.53), [ ]p
T bbb ,...,,1 1=  is the AR parameters vector of B,  is the 

autocorrelation vector of model A,  is the gain of model A. 

AR

2
Aσ

By replacing the autocorrelation matrix  with an expression using observation 

vector 

AR

kx , Equation (2.53) can be transformed into  
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where kx  is the  observation vector, )1( ×p Tb is the reference Linear Predictive Coding 

(LPC) vector, Ta is the LPC vector of the signal to be classified, N is the window length. 

  Itakura measures the distance by the logarithmic ratio of the squared errors,  

and , where  is the error in estimation of the signal to be classified by using the 

signal’s own LPC analysis, and  is the error in estimation of the same signal by using 

the reference AR filter parameters. Thus, Equation (2.54) can also be written as, 
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3.  METHODOLOGY 

3.1.  Introduction 

27 healthy and 20 pathological subjects were used to record 12 channels of sound 

data. Informed consent was obtained from the subjects before the recording experiment. 

The healthy subjects were all nonsmoking adults. Within 37 to 74 age group pathological 

respiration cycles were selected from subjects consisting of both restrictive and obstructive 

pulmonary diseases and the pathological lung sounds were heard all over the chest area. 

Data related to the diseases of the pathological subjects is tabulated in Appendix A. 

To record the respiratory sound signals, a multi-channel recording system with 12 

channels of sound acquisition and one channel of air-flow measurement has been 

developed [20]. The sound signals were captured via 12 air-coupled electret microphones 

(Sony-ECM 44) placed on the posterior chest, with the simultaneous measurement of the 

air flow using a Fleisch-type flowmeter (Validyne CD 379) for synchronization on the 

inspiration-expiration cycle. Twelve channels of sound signal were amplified, band-pass 

filtered between 80-2000 Hz to minimize frictional noise and heart sound interference and 

to prevent aliasing and digitized by a 12-bit ADC Card (NI-DAQ500) at a 9600 Hz 

sampling rate to be processed on PC, while flow signal was only low-pass filtered before 

digitization [21]. Microphone locations are depicted in Figure 3.1 and recordings from 12 

microphones are depicted in Figure 3.2. 

3.2.  Methods Used in the Feature Extraction, Processing and Classification of the 

Respiratory Sounds 

The recorded sound signals were automatically labeled as inspiration and expiration 

phases based on the flow information. In the analysis and classification of respiratory 

sounds different feature sets were applied to the k-NN classifier with different distance 

metrics and their results were compared. In the analysis AR modeling and spectral 

parameters were used. In classification k-NN classifiers with two different distance 

metrics, Itakura and Euclidian measures, were applied. Because the sample set was 
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relatively small, leave-one-out method due to its convenience in case of small sets was 

applied. 

 

Figure 3.1. Microphone locations on the chest wall 

 

Figure 3.2. 12-channel parallel recordings 

All four approaches in feature extraction and classification can be listed as, 
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• the quantile frequency model with k-NN using Euclidian distance measure, where 

feature vectors consists of cycle based quantile frequencies. 

• the quantile frequency model with k-NN using Euclidian distance measure, where 

feature vectors consists of segment based quantile frequencies. 

• the AR parameter model with k-NN using Euclidian distance measure. 

• the AR parameter model with k-NN using Itakura distance measure. 

Classification experiments were carried out using k=1, k=3 and k=5 values.  

3.2.1.  The Cycle Based Quantile Frequency Model 

The size of the segments for short-time analysis was chosen to be 512 samples as the 

respiratory sounds were assumed to be stationary in this interval. Consecutive frames had 

25% of overlap. All of the sliding frames were weighted by a Hamming window to reduce 

the spectral leakage. Thus our sample space consisted of 512 - sample segments of various 

respiration cycles. 

Feature set consisted of quantile frequencies. The power spectral density of all 

segments were calculated for each channel, for inspiration and expiration cycles separately, 

and the average of these segment based density functions were taken. From the averaged 

PSD, the quantile frequencies, namely f25, f50, f75 and f90 were calculated. These 

percentile frequencies are the frequency points which correspond to the 25%, 50%, 75%, 

and 90% of the total area under the power spectrum density curve. Thus each channel for 

each person was represented by one feature vector formed by f25, f50, f75 and f90. 

K-NN classifier was chosen for the classification experiment. In the k-NN 

classification method, the unknown feature vector is classified as belonging to the ith class, 

if a measure of the distance to its k nearest neighbor in that class is smaller than that of the 

other class. Euclidean distance metric was used with the classifier and the quantile feature 

vectors were normalized to equalize the effect of all frequencies before they were inputted 

to the classifier. Normalization of a vector is done by dividing each element of the vector 

by the standard deviation of the element after extracting the mean value. Here vector 

means the data set formed by feature vector elements belonging to the same quantile 
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frequency group, f25, f50, f75 or f90. Classifiers were trained separately for each channel 

using the feature space belonging to that channel. Leave-one-out method was employed in 

performance measurements. This method is said to provide good estimates of probability 

of error in case of small sample populations. In this method, the classifier is trained using 

all samples except the one to be classified, and then the removed subject is classified. In 

the k-NN classifier, k was chosen to be 1, 3 and 5. 

The block diagram of respiratory sounds analysis and classification method is given 

in Figure 3.3. 

3.2.2.  The Segment Based Quantile Frequency Model 

In this model, different from the cycle based quantile frequency model, the feature 

vector is formed by using quantile frequencies calculated from segment based PSD values. 

Also in this approach, the PSD of all segments were calculated for each channel and each 

respiration phases separately. However, instead of taking the average of the PSD of all 

segments, the quantile frequencies were calculated from PSD of each segment directly. 

Thus each channel for each person was represented by 30 feature vectors formed by f25, 

f50, f75 and f90. 

Also, to have equal number of feature vectors for each channel and each person, 

segment number to be used in segmentation was determined apriori. In this case segment 

number was chosen to be 30, which approximately guarantees segments to be around 512-

sample segment. 

As in the previous modeling and classification methodology k-NN classifier was 

chosen for the classification experiment. In the k-NN classification method, Euclidean 

distance metric was used with the classifier and the percentile feature vectors were 

normalized to equalize the effect of all frequencies before they were inputed to the 

classifier. As in the previous method Normalization of a vector is done by dividing each 

element of the vector by the standard deviation of the element after extracting the mean 

value. Here vector means the data set formed by feature vector elements belonging to the 

same quantile frequency group, f25, f50, f75 or f90. 



 

23

Preprocessing, 

amplification, 

filtering, A/D 

conversion 

cycle labeling 

(insp/exp) & 

segmentation 

extraction of quantile 

parameters for each 

channel  

Per channel 

classification with 

k-NN using 

Euclidian distance 

Majority voting  

reference 

library 

respiratory 

 decision 

Figure 3.3. Block diagram of k-NN classification using quantile parameters to form feature 

vectors and Euclidian distance metrics as distance measure 

Also in this classification experiment, classifiers were trained separately for each 

segment of one channel using the feature space belonging to that segment of that channel. 

Leave-one-out method was employed in performance measurements. In the k-NN 

classifier, k was chosen to be 1, 3 and 5 in this study. 
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The block diagram of respiratory sounds analysis and classification method is given 

in Figure 3.4. 
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Figure 3.4. Block diagram of k-NN classification using segment based quantile parameters 

as feature vectors and Euclidian distance metrics as distance measure 
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3.2.3.  AR Parameter Model with k-NN using Euclidian Distance Measure 

Feature sets derived from 12 channels of sound data separately for inspiration and 

expiration cycles were used in the classification experiments. The feature set consisted of 

AR model coefficients. An autoregressive signal model was assumed for the respiratory 

sounds. It has been shown in various studies that such a model is suitable for representing 

lung sound signal [22]. AR parameters were derived for each segment of the respiratory 

sounds, from the following equation, 

( ) ( ) ( ) Nnneknsfkans
p

k

m
f

m
f

mm
f ,...,2,1,)(,

1

)()()()( =+−= ∑
=

 
(3.1)

 

where m denotes the segment index, N is the segment size, f labels the inspiration- 

expiration phases, and a(m) (k,f) is the kth AR coefficient. The segment number is chosen 

to be 30, which guarantees segments to be approximately 512 - sample segment. 

The model order p was chosen to be 6 to establish best order for classification 

depending on previous researchers reference [20]. Thus each segment of each person is 

represented by 30 feature vectors formed by 6 AR model coefficients. A multi-channel k-

NN classifier with Euclidian distance metric measure was designed. The block diagram of 

respiratory sounds analysis and classification method is given in Figure 3.5. 

3.2.4 AR Parameter Model with k-NN using Itakura Distance Measure 

Segmentation is based on a fixed number of segments chosen as 30. Thus each 

channel of each person is represented by 30 feature vectors formed by 6 AR model 

coefficients.  

All stages of segmentation and feature extraction and feature space formation were 

same as in the previous method. In classification, a multi-channel k-NN classifier is 

applied with leave-one-out method but this time Itakura distance measure is chosen as the 

distance metric.  
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The block diagram of respiratory sounds analysis and classification method is given 

in Figure 3.6. 
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Figure 3.5. Block diagram of k-NN classification using AR parameters as feature vectors 

and Euclidian distance metrics as distance measure 
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Figure 3.6. Block diagram of k-NN classification using AR parameters as feature vectors 

and Itakura distance metrics as distance measure 

3.3.  Experimental Results 

As mentioned before 12-channel sound data recorded from 27 healthy and 20 

pathological subjects were used. The healthy subjects were all nonsmoking adults. 
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Pathological respiration cycles were selected from subjects consisting of both restrictive 

and obstructive pulmonary diseases and the pathological lung sounds were heard all over 

the chest area. The recorded sound signals were processed differently depending on all four 

classification methodologies explained in previous section. 

Figure 3.7 and Figure 3.8 display respiratory sounds in pathological and healthy 

cases and their flow signals, respectively. Figure 3.9 to Figure 3.20 consist of PSD 

functions calculated as the average of 27 subjects for healthy and 20 subjects for 

pathological group for each channel in expiration respiratory phase. Figure 3.21 to Figure 

3.32 are average PSD of each channel for inspiration. It can be observed that in both 

phases, average PSD curves of pathological subjects reach higher frequencies than healthy 

subjects.  
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Figure 3.7. Respiratory sound and flow sample of a healthy subject 
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Figure 3.8. Respiratory sound and flow sample of a pathological subject 

 

Figure 3.9. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 1 
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Figure 3.10. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 2 

 

Figure 3.11. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 3 
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Figure 3.12. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 4 

 

Figure 3.13. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 5 
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Figure 3.14. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 6 

 

Figure 3.15. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 7 
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Figure 3.16. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 8 

 

Figure 3.17. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 9 
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Figure 3.18. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 10 

 

Figure 3.19. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 11 
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Figure 3.20. Average PSD of 20 pathological and 27 healthy subjects for expiration phase 

for channel 12 

 

Figure 3.21. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 1 
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Figure 3.22. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 2 

 

Figure 3.23. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 3 
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Figure 3.24. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 4 

 

Figure 3.25. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 5 
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Figure 3.26. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 6 

 

Figure 3.27. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 7 
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Figure 3.28. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 8 

 

Figure 3.29. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 9 
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Figure 3.30. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 10 

 

Figure 3.31. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 11 
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Figure 3.32. Average PSD of 20 pathological and 27 healthy subjects for inspiration phase 

for channel 12 

Averaged PSD were calculated for each channel (average PSD values of 27 healthy 

and 20 pathological subjects).  Figure 3.33 to Figure 3.44 depict these curves for different 

channel groups. Channel groups are chosen as (i) channels 2, 4, 8, 12, (ii) channels 1, 3, 7, 

11 and (iii) channels 5, 7, 8, 6, corresponding to two vertical and one horizontal scan, 

respectively.  

For each group four figures consisting of inspiration, expiration phases of healthy 

and pathological cases exist. In figures instead of comparing healthy and pathological 

cases, the frequency differentiation via channels in subjects is aimed to be displayed. As a 

result, it can be seen that in especially healthy subjects the frequency characteristics of the 

respiratory sound differ depending on microphone location. This is seen especially in 

figures for two vertical scan group, 2,4,8,12 and 1,3,7,11, in healthy case for both, 

inspiration and expiration phases clearly. Thus, in classification, the consideration of 

microphone locations is expected to give more accurate results about the subject class.   
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Figure 3.33. Average PSD of 20 pathological subjects for inspiration phase for channels 

2,4,8,12 

 

Figure 3.34. Average PSD of 27 healthy subjects for inspiration phase for channels 

2,4,8,12 
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Figure 3.35. Average PSD of 20 pathological subjects for inspiration phase for channels 

1,3,7,11 

 

Figure 3.36. Average PSD of 27 healthy subjects for inspiration phase for channels 

1,3,7,11 
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Figure 3.37. Average PSD of 20 pathological subjects for inspiration phase for channels 

5,7,8,6 

 

Figure 3.38. Average PSD of 27 healthy subjects for inspiration phase for channels 5,7,8,6 
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Figure 3.39. Average PSD of 20 pathological subjects for expiration phase for channels 

2,4,8,12 

 

Figure 3.40. Average PSD of 27 healthy subjects for expiration phase for channels 2,4,8,12 
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Figure 3.41. Average PSD of 20 pathological subjects for expiration phase for channels 

1,3,7,11 

 

Figure 3.42. Average PSD of 27 healthy subjects for expiration phase for channels 1,3,7,11 
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Figure 3.43. Average PSD of 20 pathological subjects for expiration phase for channels 

5,7,8,6 

 

Figure 3.44. Average PSD of 27 healthy subjects for expiration phase for channels 5,7,8,6 

Also for each channel, quantile frequency values, f25, f50, f75 and f90, were 

calculated for each respiration phase, inspiration and expiration, separately. The average 

(average value of 20 pathological and 27 healthy subjects), maximum and minimum 
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frequency related to each quantile frequency are displayed. Healthy and pathological cases 

are depicted together. In figures quantile frequency values over 500Hz are not displayed.  

These are shown in Figure 3.45 to Figure 3.52. Generally in pathological subjects for any 

quantile frequency value, average frequency values were observed to be higher than that of 

healthy subjects.  

 

Figure 3.45. Averaged quantile frequency (25%) of 47 subjects for each channel for 

inspiration phase 

 

Figure 3.46. Averaged quantile frequency (%50) of 47 subjects for each channel for 

inspiration phase 
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Figure 3.47. Averaged quantile frequency (75%) of 47 subjects for each channel for 

inspiration phase 

 

Figure 3.48. Averaged quantile frequency (90%) of 47 subjects for each channel for 

inspiration phase 
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Figure 3.49. Averaged quantile frequency (25%) of 47 subjects for each channel for 

expiration phase 

 

Figure 3.50. Averaged quantile frequency (50%) of 47 subjects for each channel for 

expiration phase 
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Figure 3.51. Averaged quantile frequency (75%) of 47 subjects for each channel for 

expiration phase 

 

Figure 3.52. Averaged quantile frequency (90%) of 47 subjects for each channel for 

expiration phase 
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3.4.  Performance Criteria and Results Comparison 

Four different methods of analysis and classification were performed on 27 healthy 

and 20 pathological respiration cycles. The cycles were recorded via 12 microphones 

placed on the posterior chest. 

Different methodologies of classification were performed. In section 3 

methodologies are explained in detail. Performance of the classifiers was measured and 

compared. Measurement metrics were chosen as sensitivity, , specificity, , and 

accuracy, . These values are given by the following equations:  

%S %SP

%CC

%S  = 100
loglog

log ×
+ icalpathoicalpatho

icalpatho

FT
T

 (3.4)

%SP  = 100×
+ healthyhealthy

healthy

FT
T

 (3.5)

%CC  = 100
log

log ×
+
+

healthyicalpatho

healthyicalpatho

NN
TT

 (3.6)

 

where  is the number of true classifications of pathological case into pathological 

class,  , is the number of true classifications of healthy case into healthy class, 

, is the number of false classifications of pathological case into the healthy class, 

 , is the number of false calssifications of a healthy case into the pathoşogical class, 

 is the number of pathological subjects and  is the number of healthy 

subjects.  Thus we can write as,  

icalpathoT log

healthyT

icalpathoF log

healthyF

icalpathoN log healthyN

• Sensitivity ( ) :  number of pathological subjects classified correctly / total 

number of pathological subjects. 

%S

• Specificity ( ) :  number of healthy subjects classified correctly /total number of 

healthy subjects. 

%SP
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• Accuracy (  ) : number of subjects correctly classified / total number of 

subjects. 

%CC

Performance of four classification methodologies performed using different analysis 

and classification approaches are displayed in Figure 3.53,  Figure 3.54 and Figure 3.55 for 

different k values, k=1,3 and 5. In addition to that, Figure 3.56, Figure 3.57 and Figure 

3.58, related to inspiration, expiration and full cycle, respectively, are depicted to compare 

classifiers success in term of sensitivity and specificty. Results for each k value represented 

by a single point, and named with k value as 1, 3 or 5. In the figures,  

• QF1 means the quantile frequency model with k-NN using Euclidian distance 

measure, where feature vectors consists of cycle based quantile frequencies. 

• QF2 means quantile frequency model with k-NN using Euclidian distance measure, 

where feature vectors consists of segment based quantile frequencies. 

• AR1 means AR parameter model with k-NN using Euclidian distance measure.  

• AR2 means AR parameter model with k-NN using Itakura distance measure. 

In QF1 classification results were obtained separately for inspiration, expiration 

phases and for full respiration cycle. In classification feature vector set are formed by 

vectors of 4 quantile frequency values, f25, f50, f75 and f90, each vector representing a 

channel of one subject. Thus k-NN classification used channel data to decide the class of 

this channel. To obtain the class, healthy or pathological, of any subject voting method is 

applied based on channel classification results. For example, if subject X, for inspiration, 

as the result of kNN classification had five channels classified as pathological and eighth 

channels as healthy, voting method resulted that the subject is healthy in inspiration phase. 

In full cycle classification, voting took place over inspiration and expiration together, thus 

the decision was made by voting over 24 channels, 12 belonging to inspiration, 12 to 

expiration.   

In QF2 classification results were obtained as in QF1 separately for inspiration, 

expiration phases and for full respiration cycle. This time, feature vector set is formed by 

vectors of 4 quantile frequency values, f25, f50, f75 and f90, each vector representing a 

segment of one channel of one subject, belonging to a specific respiratory phase. Thus k-
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NN classification used channel data to decide the class of each segment. In this method 

two voting step were applied. First voting had classified the channel by voting between the 

results of its 30 segments. To obtain the class, healthy or pathological, of any subject 

second voting method is applied based on channel classification results. In inspiration and 

expiration phases only segments belonging to each phase are considered. In classification 

based on full respiratory cycle, first voting based on segment classification results was 

performed over 60 segments, representing one whole respiratory cycle, inspiration and 

expiration, and it produced channel classification results. Second voting step was for 

subject classification and was done by voting over classified 12 channels.    

AR1 and AR2 were similar by means of voting methods and what feature vector 

represented with QF2 method. Only the distance metric of k-NN classifiers were different, 

Euclid and Itakura.      

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

QF1 58,33% 75,00% 72,73% 80,00% 83,33% 81,82% 75,00% 100,00% 95,45%
QF2 72,00% 40,00% 62,22% 72,00% 44,00% 64,44% 80,00% 40,00% 66,67%
AR1 75,00% 76,00% 75,56% 70,00% 72,00% 71,11% 80,00% 84,00% 82,22%
AR2 95,00% 8,00% 46,67% 55,00% 84,00% 71,11% 85,00% 64,00% 73,33%

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
Inspiration Expiration Full Cycle

 

Figure 3.53. Performance of classifiers for k=1 
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0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

QF1 65,00% 79,17% 72,73% 60,00% 79,17% 70,45% 75,00% 100,00% 95,45%
QF2 95,00% 48,00% 68,89% 90,00% 28,00% 55,56% 95,00% 48,00% 68,89%
AR1 80,00% 72,00% 75,56% 70,00% 76,00% 73,33% 80,00% 80,00% 80,00%
AR2 90,00% 16,00% 48,89% 35,00% 88,00% 64,44% 60,00% 76,00% 68,89%

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
Inspiration Expiration Full Cycle

 

Figure 3.54. Performance of classifiers for k=3 

0,00%

20,00%

40,00%

60,00%

80,00%

100,00%

QF1 45,00% 91,67% 70,45% 60,00% 91,67% 77,27% 60,00% 95,83% 79,55%
QF2 95,00% 52,00% 71,11% 95,00% 48,00% 68,89% 95,00% 52,00% 71,11%
AR1 70,00% 80,00% 75,56% 70,00% 76,00% 73,33% 75,00% 84,00% 80,00%
AR2 95,00% 16,00% 51,11% 30,00% 84,00% 60,00% 50,00% 80,00% 66,67%

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy
Inspiration Expiration Full Cycle

 

Figure 3.55. Performance of classifiers for k=5 

 The performance of the classifier with different feature spaces is summarized. 

Findings can be sited as follows, 

• For k=1 maximum accuracy of 81.56% of correct classification is achieved using 

cycle based quantile frequency parameters (QF1) in expiration whereas this figure 

falls to 72.73% for inspiration.  

• For k=3 and k=5 maximum accuracy of approximately 75.53% of correct 

classification is achieved using AR parameters by Euclidian distance (AR1) in 

inspiration whereas this figure falls to 73.33% for expiration.  
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• In quantile frequency feature space (QF2), sensitivity and accuracy figures are better 

for inspiration whereas for AR2 vector space, sensitivity figures are better than 

specificity in both phases, but accuracy is lower than in QF2. For k=1 AR2 produce 

best results for accuracy.  

• For each feature space when channels voting for subject classification performed by 

taking inspiration and expiration together, results for full cycle classification were 

obtained. For any value of k, accuracy achieved was not lower than 68.67%.   

• AR2 performed better for k=1. 

• In Figure 3.56 to Figure 3.58, more the point related with classifier sensitivity and 

specificity is near to vertical axis and farther from the horizontal axis, classifier is 

accepted to be better. Thus AR1 can be accepted to be the best classifier.    

 

Figure 3.56. Performance of classifiers for inspiration 
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Figure 3.57. Performance of classifiers for expiration 

 

Figure 3.58. Performance of classifiers for full cycle 
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4.  CONCLUSIONS 

There is a great amount of information in lung sounds that are not evaluated or 

assessed by physicians. Computerized analysis can be used as an aid in the diagnosis. 

Moreover lung sounds provide regional information, which can be accessed more easily 

through a multi-channel acquisition system. This parallel lung sound recording approach 

also decreases the time for auscultation of 12 different locations, making it a more efficient 

tool. 

In this study, a multi-channel k-NN classification method using two different 

modeling approaches, AR and power spectral analysis, were compared in the classification 

of respiratory sounds as healthy and pathological. The sound signal was analyzed in two 

phases as inspiration and expiration separately due to the nonstationarity of the signal, and 

classification was performed separately for each phase. 

All four approaches were assessed by means of success in classifying healthy and 

pathological subjects. Comparison of same classifier for different k values as well as 

comparison of classifiers for the same k values were obtained. In all methods 12 channels 

were accepted to be equally weighted. In a further study, attaching different weights to 

different channels is expected to improve classification performance.    

Further more, reference libraries corresponding to subphases, e.g., early, mid, late 

inspiration / expiration may be used in classification. Pathological sound signals may be 

further classified into specific diseases.  
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APPENDIX A: PATIENT PROFILE 

Table A.1. Patient profile (F: female; M: male; Obs.: obstructive; Res.: restrictive) 

Patient 

No. 
Patient Name (Sex) Age (year)

Disease 

Type 
Clinical Diagnosis 

1 Emine Kaya (F) 65 Obs. Asthma 

2 Mehmet Emin Akınay (M) 54 Obs. Coah 

3 Ali Özen (M) 66 Obs. Coah 

4 Hasref Sayir (M) 69 Obs. Bronchiectasis 

5 Mehmet Sülün (M) 45 Obs. Coah 

6 Arslan Karaca (M) 63 Obs. Coah 

7 Seyfettin Adıgüzel (M) 57 Obs. Coah 

8 Salih Gerem (M) 56 Obs. Coah 

9 Şerif Yenal (M) 37 Res. Interstitial Lung Disease

10 Hayrettin Kaya (M) 73 Obs. Coah 

11 Esma Turan (F) 45 Obs. Asthma+Bronchiectasis 

12 Esma Gürek (F) 62 Res. Pneumonia 

13 Hulusi Ramazan (M) 67 Obs. Coah 

14 Mahmut Ayma (M) 70 Res. Pneumonia 

15 Sebahattin Kurtuldu 52 Res. Pneumonia 

16 Zülfiye Yaramaz (F) 71 Obs. Bronchiectasis 

17 Hasan Gürgan (M) 74 Res. Interstitial Lung Disease

18 Eraydın Akkaya (M) 70 Res. Epidermoid Lung CA 

19 Giyasettin Kılıç 64 Obs. Coah 

20 Sait Avşar 50 Res. Pneumonia 
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