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ABSTRACT

NUMERICAL INVESTIGATION OF HIGH KNUDSEN

NUMBER FLOW IN RECTANGULAR ENCLOSURES

Nowadays, enlightening unknown aspects of rarefied gas flow is one of the critical

issues of fluid dynamic research to ensure correct and proper operations of many Micro-

Electro-Mechanical-Systems (MEMS). Thermally driven motion of rarefied gases is

gaining in importance to develop Knudsen compressors having better performance or

to improve single crystal growth processes. Therefore, accurate prediction of the physics

lying behind the thermal creep in the transition regime as well as slip flow regime is one

of the main motivations of this study. The other emphasis is possible flow instability

of the rarefied gases in enclosures. For this purpose, an asymptotic approximation has

been performed in the first part of the study to find analytical solutions. In the sec-

ond one, linear disturbance theory of hydrodynamic stability has been applied to the

problem to determine bounds of instabilities. Analytical solutions of two-dimensional

stability analysis have been introduced. Critical states have been identified for differ-

ent models and for varying Knudsen numbers. More generally, eigen-spectrum of the

perturbation equations has been identified in three-dimensions. At the last part, by

applications of an artificial viscosity scheme, a computer program has been constructed

to solve Burnett and also Navier-Stokes equations. Mechanisms of the thermal creep

flow have also been verified by inspecting stress tensors of Burnett equations. Most

importantly, the insufficiency and the failure of Navier-Stokes equations for the creep-

ing flows have been proved. Moreover, it has been shown that Burnett equations can

correctly model such creeping flows.
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ÖZET

DİKDÖRTGENSEL KAPALI HACİMLERDE YÜKSEK

KNUDSEN SAYI AKIMININ SAYISAL İNCELEMESİ

Son zamanlarda, birçok Mikro Elektro Mekanik Sistemin (MEMS) doǧru ve

güvenilir çalışabilmesi amacıyla düşük yoǧunluklu gazların bilinmeyen yönleri akışkan-

lar mekaniǧinin önemli araştırma konularından biri haline gelmiştir. Termal terleme

tahrikli düşük yoǧunluklu gazların akışıhem daha iyi performanslı Knudsen kompresör-

lerinin geliştirilmesinde hem de tek kristal üretiminin geliştirilmesinde oldukça önem

kazanmaktadır. Belirtilen nedenlerle; bu çalışmanın amacı, hem kayma hem de geçiş

rejimlerinde termal terleme akışlarının altında yatan temel fiziǧin anlaşılmasıdır. Diǧer

bir hedef ise; düşük yoǧunluklu gazların kapalıgeometrilerde muhtemel kararsızlık-

larının incelenmesidir. Bu tez çalışmasının ilk bölümünde; kapalı geometrilerdeki ter-

mal terleme akışlarına ait analitik çözümler asimptotik analiz yardımıyla elde edilmiş

ve sunulmuştur. İkinci bölümde ise; lineer kararlılık teorisi önerilen probleme uygula-

narak karasızlıkların sınırlarıtesbit edilmeye çalışılmıştır. İki boyutlu stabilite analizine

ait analitik çözümler de sunulmuş olup; karasızlıǧın oluştuģu haller, deģişen kayma

modelleri ve Knudsen sayılarına bağlı olarak belirlenmiştir. Daha da genelde, üç

boyutlu pertürbasyon denklemlerinin öz deǧer spektrumu incelenmiştir. Son bölümde

ise; bir yapay viskozite algoritması kullanılarak, Burnett ve Navier-Stokes denklem-

lerinin benzeşimlerini gerçekleştirebilen bir bilgisayar programı oluşturulmuştur. Aynı

zamanda; termal terleme akışının temel mekanizması Burnett denklemi gerilme ten-

sorleri incelenerek açıklanmıştır. Daha önemlisi; Navier-Stokes denklemlerinin bu tip

akışlar için yetersizliǧi ve Burnett denklemlerinin termal terleme akışlarını doǧru mod-

elleyebileceǧi gösterilmiştir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF SYMBOLS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . xvi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS . . . . . . . 5

2.1. Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1. Velocity Slip Due To Momentum Accommodation . . . . . . . . 9

2.2.2. Velocity Slip Due to Thermal Transpiration . . . . . . . . . . . 11

2.2.3. Temperature Jump Boundary Condition . . . . . . . . . . . . . 12

3. RAREFIED GAS FLOW IN RECTANGULAR ENCLOSURES: ASYMPTOTIC

SOLUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1. Definitions and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2. Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3. Asymptotic Solution Procedure . . . . . . . . . . . . . . . . . . . . . . 24

3.4. Outer Expansion Solution . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5. Inner Expansion Solution (Boundary Layer Approximation) . . . . . . 32

3.5.1. Boundary Layer at x = 0 . . . . . . . . . . . . . . . . . . . . . . 33

3.5.2. Boundary Layer at x = 1 . . . . . . . . . . . . . . . . . . . . . . 40

3.6. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4. STABILITY OF RAREFIED GAS FLOW IN ENCLOSURES . . . . . . . . 56

4.1. Theoretical Background of Hydrodynamic Stability . . . . . . . . . . . 58

4.1.1. Stability in the Small . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.2. Stability in the Mean . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.3. Linear Stability Theory . . . . . . . . . . . . . . . . . . . . . . 65

4.1.4. Global Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



vii

4.2. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3. Linearized Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1. Reduction to Two-Dimensional Normal Mode Form . . . . . . . 70

4.4. Eigensystems in Two- and Three-Dimensions . . . . . . . . . . . . . . . 71

4.4.1. The Eigensystem for Axisymmetric Disturbances in

Two-dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1.1. Solution of normal mode v equation . . . . . . . . . . 73

4.4.1.2. Solution of normal mode u equation . . . . . . . . . . 74

4.4.1.3. Solution of normal mode energy equation . . . . . . . 75

4.4.2. Results and Discussions for Two-Dimensional Case, (kx = 0) . . 77

4.4.3. Generalized Eigenvalue Problem in Three-Dimensions, (kx �= 0) 87

4.4.4. Results and Discussions for Three-Dimensional Instability,

(kx �= 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5. CONVECTION OF RAREFIED GASES IN ENCLOSURES: NUMERICAL

SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1. Physical and Mathematical Models . . . . . . . . . . . . . . . . . . . . 99

5.1.1. Physical Model for the Two-Dimensional Convection . . . . . . 99

5.1.2. Mathematical Models . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2. Numerical Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.1. Discretization of Convection Fluxes . . . . . . . . . . . . . . . . 108

5.2.2. Discretization of Viscous Fluxes . . . . . . . . . . . . . . . . . . 109

5.2.3. Time Stepping Scheme . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.4. Dual Time Stepping Scheme . . . . . . . . . . . . . . . . . . . . 113

5.2.5. Results and Discussions . . . . . . . . . . . . . . . . . . . . . . 114

5.2.5.1. Comparison of Burnett Shear Stresses . . . . . . . . . 117

5.2.5.2. Comparison of Navier-Stokes and Burnett solutions . . 120

6. CONCLUSIONS AND FUTURE PERSPECTIVES . . . . . . . . . . . . . . 133

APPENDIX A: A FOURTH-ORDER COMPACT FINITE DIFFERENCE

SCHEME FOR BIHARMONIC EQUATIONS . . . . . . . . . . . . . . . . . . 136

APPENDIX B: DENSITY BOUNDARY CONDITIONS FOR THE SLIP FLOW

REGIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.1. Theoretical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 139



viii

B.2. Derivation of Density Boundary Conditions . . . . . . . . . . . . . . . 141

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



ix

LIST OF FIGURES

Figure 1.1. An illustration of molecular collision and sphere of influence . . . . 2

Figure 1.2. A path created by actual collisions of molecule p . . . . . . . . . . 2

Figure 1.3. Flow regimes as a result of rarefaction effects . . . . . . . . . . . . 3

Figure 2.1. Control volume of the flow domain. . . . . . . . . . . . . . . . . . 5

Figure 2.2. Control surface for tangential momentum flux near an isothermal

wall moving at velocity at uw . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.3. Gradient of temperature in a vicinity of wall . . . . . . . . . . . . 13

Figure 3.1. Flow of the rarefied gas due to thermal transpiration. . . . . . . . 14

Figure 3.2. An illustrative representation of the two-dimensional enclosure. . . 15

Figure 3.3. Organization of matching order of inner and outer expansions. . . 25

Figure 3.4. Directions of vortices generated by the thermal transpiration effect 49

Figure 3.5. Leading order streamlines on the left end wall for Re∗ = 2.5, Kn =

0.1 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.6. Leading order streamlines on the left end wall for Re∗ = 2.5, Kn =

0.3 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.7. Leading order u velocity distribution on the left end wall for Re∗ =

2.5, Kn = 0.1 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . 50



x

Figure 3.8. Leading order u velocity distribution on the left end wall for Re∗ =

2.5, Kn = 0.3 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.9. First-order temperature field on the left end wall for Re∗ = 2.5,

Kn = 0.1 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.10. First-order temperature field on the left end wall for Re∗ = 2.5,

Kn = 0.3 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.11. First-order approximations to streamlines on the left wall for Re∗ =

2.5, Kn = 0.1 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.12. First-order approximations to streamlines on the left wall for Re∗ =

2.5, Kn = 0.3 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.13. Second-order approximations to temperature on the left wall for

Re∗ = 2.5, Kn = 0.1 and Pr = 0.72 . . . . . . . . . . . . . . . . . 52

Figure 3.14. Second-order approximations to temperature on the left wall for

Re∗ = 2.5, Kn = 0.3 and Pr = 0.72 . . . . . . . . . . . . . . . . . 53

Figure 3.15. Composite streamlines by additive composition for Re∗ = 7.5,

Kn = 0.1 and Pr = 0.72 . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 3.16. The effect of Re number on the temperature distribution for Kn =

0.1 and Pr = 0.72; for Re∗ = 2.5 (left figure) and Re∗ = 7.5 . . . . 54

Figure 4.1. Geometry for the axisymmetric disturbances . . . . . . . . . . . . 71

Figure 4.2. Real part of the temperature perturbations for different slip models

with Pr = 0.70 and Kn = 0.40 at t = 1/σr . . . . . . . . . . . . . 78



xi

Figure 4.3. Real part of w′
0 disturbances on y = 1 for various models with

Pr = 0.70 and Kn = 0.40 at t = 1/σr . . . . . . . . . . . . . . . . 79

Figure 4.4. Real part of the w′ perturbations on the y− z plane for Cercignani

model with Pr = 0.70 and Kn = 0.40 at t = 1/σr . . . . . . . . . 80

Figure 4.5. Real part of the temperature perturbations on the y − z plane for

Cercignani model with Pr = 0.70 and Kn = 0.40 at t = 1/σr . . . 80

Figure 4.6. Real streamline disturbances on the x plane for Cercignani model,

Pr = 0.70 and Kn = 0.40 at t = 0. . . . . . . . . . . . . . . . . . 81

Figure 4.7. Real streamline disturbances on the x plane for Cercignani model,

Pr = 0.70 and Kn = 0.40 at t = 1/σr. . . . . . . . . . . . . . . . . 81

Figure 4.8. Real streamline disturbances on y = 1 plane for different models,

Pr = 0.70 and Kn = 0.40 at t = 1/σr. . . . . . . . . . . . . . . . . 82

Figure 4.9. Neutral curves for different models; Pr = 0.70 and Kn = 0.40 . . 83

Figure 4.10. Neutral curves for different Kn numbers with Cercignani model;

Pr = 0.70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.11. Neutral curves for different Kn numbers with Cercignani model;

Pr = 0.70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 4.12. Critical phase speeds for varying Kn numbers; Pr = 0.70 . . . . . 85

Figure 4.13. Eigenspectrum for different artificial M̃a numbers at a neutral state

defined by of RePr = 89.994, Kn = 0.25, Pr = 0.72, kx = 0.15,

kz = 0.10 (A1 = 1.1466) . . . . . . . . . . . . . . . . . . . . . . . . 94



xii

Figure 4.14. Magnified view of the eigenspectrum pointed out by a rectangle in

Figure 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Figure 4.15. Eigenspectrum for enclosure flow of a rarefied gas at the neutral

state of RePr = 89.994, Kn = 0.25, Pr = 0.72, kx = 0.10 and

kz = 0.15 (A1 = 1.1466) . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 4.16. Zoomed eigenspectrum specified by a rectangle in Figure 4.15 . . . 96

Figure 4.17. Real and Imaginary parts of the disturbance eigenfunction v′
0 at a

neutral state defined by (RePr)n = 46.8327, Kn = 0.25, Pr = 0.72

and kz = 0.15 for (n = 280) . . . . . . . . . . . . . . . . . . . . . . 97

Figure 4.18. The effect of slip boundary conditions on the same disturbance

eigenfunctions for (RePr)n = 46.8327, Kn = 0.25, Pr = 0.72 and

kz = 0.15, (n = 280) . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.1. A cell-centered control volume and its neighbors. . . . . . . . . . . 106

Figure 5.2. An auxiliary cell to compute derivatives on the cell face of ni+ 1
2
,j . 110

Figure 5.3. Relative residual history of NS for Kn = 0.1, CFL = 0.2 and

81 × 20 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 5.4. Streamlines for Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.6,

CFL = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Figure 5.5. First-order shear stress component, τ
(1)
xy , for Kn = 0.1, 81×20 cells,

ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . . . . . . . . . . . 118

Figure 5.6. Second-order shear stress component, τ
(2)
xy , for Kn = 0.1, 81 × 20

cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . . . . . . . . 118



xiii

Figure 5.7. Streamlines for Case 2 . . . . . . . . . . . . . . . . . . . . . . . . 119

Figure 5.8. First-order shear stress component, τ
(1)
xy , for Case 2 . . . . . . . . . 119

Figure 5.9. Second-order shear stress component, τ
(2)
xy , for Case 2 . . . . . . . 120

Figure 5.10. Shear components, τ
(i)
xy , for i = 1 . . . 2 along the bottom and top

boundaries, Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 121

Figure 5.11. The first-order shear stress τ
(1)
xy along the depth of the enclosure

on the horizontal centers with aspect ratios ε = 0.5, ε = 0.3 and

ε = 0.1 for Kn = 0.11 and rT = 0.5 . . . . . . . . . . . . . . . . . 121

Figure 5.12. Variation of temperature, θ, for Kn = 0.1, 81 × 20 cells, ε = 0.1,

rT = 0.6, CFL = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . 122

Figure 5.13. First-order x-wise normal stress component,τ
(1)
xx , for Kn = 0.1,

81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . . . 122

Figure 5.14. Second-order x-wise normal stress component, τ
(2)
xx , for Kn = 0.1,

81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . . . 123

Figure 5.15. First-order y-wise normal stress component, τ
(2)
yy , for Kn = 0.1,

81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . . . 123

Figure 5.16. Second-order y-wise normal stress component, τ
(2)
yy , for Kn = 0.1,

81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . . . 124

Figure 5.17. Comparison of streamlines for NS and Burnett equations, Kn =

0.1, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . 125



xiv

Figure 5.18. Comparison of τ
(1)
xy for NS and Burnett equations, Kn = 0.1, 81×20

cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . . . . . . . . 125

Figure 5.19. Comparison of τ
(1)
xy on horizontal boundaries for NS and Burnett

equations, Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 126

Figure 5.20. Pressure distribution at y = 0.5 for NS and Burnett equations,

Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . 126

Figure 5.21. Slip of u along the horizontal walls, NS Model, Kn = 0.1, Kn =

0.2, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02 . . . . . . . . . . 127

Figure 5.22. u velocity along the y direction at x = 0.5 for varying rT , Burnett

model, Kn = 0.1, 81 × 20 cells, ε = 0.1, CFL = 0.02 . . . . . . . . 128

Figure 5.23. u velocity along the y direction at x = 0.5 for NS and Burnett

equations for Kn = 0.1, Kn = 0.2, 81× 20 cells, ε = 0.1, rT = 0.6,

CFL = 0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 5.24. Variation of maximum x-wise velocity component with respect to

different rarefaction levels and overheat ratios for ε = 0.5 . . . . . 130

Figure 5.25. Variation of maximum x-wise velocity component with respect to

different rarefaction levels and overheat ratios for ε = 0.1 . . . . . 131

Figure 5.26. Variation of the maximum velocity with Kn number . . . . . . . . 131

Figure A.1. Stokes flow in the square lid-driven cavity. . . . . . . . . . . . . . 137

Figure B.1. Waves leaving and entering the computational domain. . . . . . . 139



xv

LIST OF TABLES

Table 2.1. Coefficients for the first and second-order slip models. . . . . . . . 11

Table 4.1. Eigenvalues and corresponding critical values of slip models for

Kn = 0.40 and Pr = 0.70 . . . . . . . . . . . . . . . . . . . . . . . 77

Table 4.2. (Red)cr for varying Pr numbers and different slip models . . . . . . 85

Table 4.3. The effect of M̃a
2

on the real and imaginary parts of the insta-

ble mode of the eigensystem for kx = 0.15, kz = 0.10, RePr =

89.993804, A1 = 1.1466 and n = 120 . . . . . . . . . . . . . . . . . 95

Table 4.4. Variation of real part of the leading mode with grid resolution for

kx = 0.15, kz = 0.10, RePr = 89.993804 and Kn = 0.25 . . . . . . 97

Table 5.1. Coefficients of multistage scheme for varying CFL numbers. . . . . 112

Table 5.2. Response of maximum u velocity and net mass flux to the grid

resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Table A.1. Comparison of main vortex values and locations. . . . . . . . . . . 138



xvi

LIST OF SYMBOLS/ABBREVIATIONS

A Amplitudes of characteristic waves

A1, A2 First and second coefficients of the slip models

Ai
m Surface vector normal to mth face of ith cell i = e, w, n, s

b Constant temperature gradient applied on horizontal walls

C̄ Average velocity of an molecule

c̃ Artificial speed of sound

cp0 Constant pressure specific heat evaluated at temperature T0

cp Constant pressure specific heat capacity of a gas

cR Phase speed of disturbance waves

d Diameter of a molecule in Chapter 1, height of an enclosure

in the rest of the thesis

D Differential operator, d
dy

D Artificial diffusion vector

dA Infinitesimally small area element on the surface of a control

volume

E Total energy of a gas

e Internal energy of a gas

Ei Total energy of incoming molecules

Er Total energy of reflected molecules

Ew Total energy of molecules at wall temperature

Ec Eckert number

f Body force vector

Fc Vector of convective fluxes

Fv Vector of diffusive fluxes

Fr Froude number

H Hilbert space

� Imaginary part of a complex number/function

k Coefficient of heat conduction

K Time rate change of mean energy of perturbations



xvii

kx, ky, kz Wave numbers in x, y, z directions

(kz)cr Critical wave number in z direction

Kn Knudsen number, ratio of mean free path λ to characteristic

length scale of a flow geometry

Knd Knudsen number based on half channel height, d/2

l Length of an enclosure

m Molecular weight of a gas

Ma Mach number u/c where c is the speed of sound

M̃a Artificial Mach number

n Number of molecules in a per unit volume of a gas

n, t Surface unit normal and tangent vectors

p Thermodynamic pressure of a fluid

p′ Pressure disturbances

p′0 Pressure disturbances in normal mode form

Pr Prandtl number, cpµ/k

q̇ Heat production rate in a per unit volume of a gas

q Heat conduction vector

q(0),q(1),q(2),q(3) Euler, Navier-Stokes, Burnett and Super-Burnett orders of

heat conduction vector

R Gas constant

R Residual vector of conservative variables

r Position vector

� Real part of a complex number/fuction

Ri Initial residual vector of conservative variables

rT Overheat ratio, ∆T
T0

Re Reynolds number

Red Reynolds number based on half channel height, d/2

(Red)cr Critical Reynolds number

S Vector of source terms

s Properties evaluated on a control surface just over a wall

t Time



xviii

T Temperature

Tbottom Bottom wall temperature

Ttop Top wall temperature

T0 Mean temperature T0 = (Th + Tc)/2

Tc, Th Temperatures of left and right side walls, Th > Tc

Tg Real temperature of molecules

Ti Temperature of incoming molecules

Tk Extrapolated gas temperature

Tr Temperature of reflected molecules

Ts Temperature of gas on a wall

Tw Wall temperature

tr Transpose of a matrix

u Velocity vector

u, v, w Components of a velocity vector in cartesian coordinates,

u = uex + vey + wez

u′ Vector of velocity disturbances

uλ Velocity of a gas one mean free path away from a wall

u0 Reference velocity calculated from the thermal creep velocity

u′
0 Vector of velocity disturbances in normal mode form

uc Creep velocity

ut Velocity component of the velocity vector tangential to a wall

uw Wall velocity

ū Basic flow velocity vector

Vmax Maximum velocity in the flow domain

W Vector of conservative variables

α Horizontal coordinate axis used in asymptotic approach

for the right section

αi Coefficients appeared in second- and third-order stress tensors

of Burnett equations, i = 1 · · · 17

β Vertical coordinate axis used in asymptotic approach for the

right section



xix

βi coefficients appeared in second- and third-order stress tensors

of Burnett equations, i = 1 · · · 8
δ Artificial compressibility factor

∆ Small length parameter used for coordinate transformation

∆t Time step

∆T Temperature difference

ε Aspect ratio

ε(2) Coefficient of second order artificial diffusion in JST scheme

ε(4) Coefficient of fourth order artificial diffusion in JST scheme

Φ Vector of flow disturbance variables in normal mode form

γ Ratio of specific heats, cp/cv

γi Coefficients appeared in second- and third-order stress tensors

of Burnett equations, i = 1 · · · 13

η Vertical coordinate axis used in asymptotic approach

for the left section

λ Mean free path

λi Characteristic wave velocities, i = 1 · · ·5
µ Dynamic viscosity

µr Reference dynamic viscosity for Power-Law viscosity model

ν Complex frequency of the oscillations with respect to

thermal-diffusion time scale, ν = RedKndσ

θ Dimensionless temperature

θ′ Temperature disturbances

θo
0, θ

o
1, θ

o
2 Zeroth, first and third order outer approximations

to temperature
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1. INTRODUCTION

Nowadays, there is a tremendously increasing interest in rarefied flows of gases due

to rapid progress in Micro-Electro-Mechanical Systems (MEMS). Better understanding

of operation and performance of many micro-devices requires a closer look into flow

of liquids and gases inside/over them. Thermo-molecular compressors (Hobson et al.,

2000), hydrodynamic and hydrostatic air thrust bearings in micro-turbines (Elrich et

al., 2003), gas damping in surface-micro-machined inertial sensors and resonating filter

structures (Veijola et al., 2001), squeeze film damping in MEMS torsion mirror (Pan

et al., 1998) and micro propulsion systems including micro-nozzles (Ayon et al., 2001),

and -rockets (Teasdale et al., 2001) are some examples of such devices. Rarefied gas

flows are observed not only in minituarized instruments but also in macroscopic systems

in reduced pressures i.e. evacuated devices and in atmospheric entry problem of space

shuttles. Since, better design, operation and functionality of many micro-machines and

macroscopic devices necessitate to predict behavior of gases under consideration, it is

important to explore and demonstrate the physics of rarefied flow inside them.

A gas becomes rarefied when its density is beyond the continuum limit. In other

words, unless density and the other local variables such as velocity, temperature and

pressure of the gas can be expressed as continuous functions then the gas would be

rarefied. Mean free path is defined as the average distance that a molecule travels

between successive collisions. Let’s assume that a gas composes of hard spheres with

diameters of d. When molecule p comes into contact with another molecule, the dis-

tance between the centers of these two molecules creates a volume so called sphere

of influence (Figure 1.1). If molecule p has an average velocity of C̄, then volume

of πd2C̄n is swept by molecule p in a per unit time, where n designates number of

molecules in per unit volume of the gas (see Figure 1.2). Note that πd2C̄n also cor-

responds to number of collisions in a per unit time. Since the distance traveled by

the molecule p in a per unit time is C̄, then the average distance traveled per col-

lision is calculated as λ = C̄/πd2C̄n = 1/πd2n. This expression can be written in

terms of physical properties of the gas: λ = m/
√

2πd2ρ, where m and ρ corresponds to
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molecular weight and density of the gas, respectively (Vincenti, 1965). Ratio of mean

free path λ to characteristic length scale of the flow geometry is known as Knudsen

number (Kn) which is a measure of rarefaction1 effects. It is possible to initialize

d

2d
p

molecule

another molecule

sphere of influence

Figure 1.1. An illustration of molecular collision and sphere of influence

p

1

2

3

Figure 1.2. A path created by actual collisions of molecule p

rarefied gas flows due to tangential temperature gradient along walls of a channel or

an enclosure, where the fluid starts to move slowly in the direction from cold towards

hot. This phenomenon is known as “thermal creep” or “transpiration” of the rarefied

gas (Karniadakis et al., 2002). Thermally driven movement of rarefied gases leads to

1Physics of a gas flow greatly affected by rarefaction degree depending on the Kn number (Figure
1.3).

• If the gas is a continuous media, then continuum flow takes place for Kn ≤ 0.01. In this case,
the molecules of the continuous fluid stick boundary walls.

• For Kn ≥ 10 flow of a gas becomes completely random and can not be predicted by continuum
models.

In a certain levels of rarefaction, a fluid is considered neither continuous nor free molecular. This
region is divided into two sub-flow regimes.

• Slip flow regime (0.01 ≤ Kn ≤ 0.1) in which the gas molecules slip on the wall surface: in this
regime models of the continuum hydromechanics can still be used with slip boundary conditions
rather than no-slip.

• Transition flow regime (0.1 < Kn < 10): either molecular models or higher-order descriptions
of continuum hydrodynamics are required for modeling the gas flow (Gad-el-Hak, 1999).
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Rarefaction increases
Kn=0.01 Kn=0.1 Kn=10

Continuum flow Slip flow Transitional  flow Free molecular  flow

Figure 1.3. Flow regimes as a result of rarefaction effects

a number of technological and scientific interests. Among them, Knudsen compressors

with the throughput to atmospheric levels have outstanding features due to absence of

non-moving parts (Hobson et al., 2000). Vargo et al. (1999) have been performed com-

prehensive Knudsen compressor experiments in both micro and macro scales. Several

compressor characteristics such as pressure rise, pumping volume, energy use and mass

flow of both scales have been presented. In addition to Knudsen compressors, suitable

operation of Capacitance Diaphragm Gauge transducers and capacitance manometers

require better understanding of thermal transpiration at low pressures (Setina, 1999).

Another important field of interest is physical vapor crystal growth in reduced pres-

sures. The presence of non-uniform temperature distribution along the walls bounding

vapor crystal can lead to convective motion under micro-gravity conditions as reported

by (Papadopoulos et al., 1995). They have performed Direct Simulation Monte Carlo

(DSMC) simulations for Kn about 0.075 in a unit square geometry. They have stressed

that observed cellular patterns are created only due to thermal transpiration although

buoyancy forces are negligible. The role of rarefied gas transport and profile evolution

in non-planar substrate Chemical Vapor Deposition (CVD) is examined by Coronell

et al. (1994). Use of DSMC method was enabled them the prediction of the profile of

deposited film for 0.1 ≤ Kn ≤ 1. Unfortunately, thermal gradients are presumed to

be negligible in this theoretical investigation. An initiative study about the deposition

profile characteristics in semiconductor manufacturing processes has been conducted

by Ikegawa et al. (1989). They have simulated sputter deposition, plasma CVD and

thermal CVD methods with different rarefaction levels. Nevertheless, the effect of

variable substrate temperature has not been considered in this study.
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Operation of vapor deposition and crystal growth processes in low pressures or

small length scales requires better understanding of physics lying behind the flows of

rarefied gases as mentioned above. Presence of temperature gradient generates thermal

transpiration which may be important for the quality and operation of such systems.

Besides technological interests, unresolved issues of the thermally driven rarefied gas

have also scientific interest. The main motivation of this study is thermally driven

flows of rarefied gases in closed geometries and its possible flow instabilities.

Velocity slip is generated by two significant physical phenomena: due to ac-

commodation of momentum and thermal transpiration in rarefied gases. Moreover, a

temperature jump occurs in the gas by accommodation of thermal energy as discussed

in Section 2.2.3.
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2. GOVERNING EQUATIONS AND BOUNDARY

CONDITIONS

Before proceeding with the derivation of slip boundary and temperature jump

boundary conditions, Burnett and Navier-Stokes (NS) models will be introduced.

2.1. Governing Equations

Flow of moderately rarefied gases requires high-order description of kinetic the-

ory of gases. One of the high-order approximation of the hydrodynamic flow theory is

known as Burnett Equations resulting from power series (Chapman-Enskog expansion)

solution of the Boltzmann transport equation. Derivation of Burnett equations and the

other details about theory can be found in Chapman et al. (1970) and pages 385-394 of

Vincenti (1965). In this study, augmented Burnett equations are employed and more

information about the mathematical model can be found in Aqarwal et al. (2001).

Let’s consider a control volume shown in Figure 2.1. Integral form of governing equa-

tions can be written

for conservation of mass,

dA

n

u

Ω

Ω

Figure 2.1. Control volume of the flow domain.

∂

∂t

∫
Ω

ρ dΩ +

∮
∂Ω

ρ (u · n) dA, (2.1)
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for conservation of momentum,

∂

∂t

∫
Ω

ρu dΩ +

∮
∂Ω

ρu (u · n) dA =

∫
Ω

ρf dΩ

(2.2)

−
∮

∂Ω

pn dA +

∮
∂Ω

(τ · n) dA

and for conservation of energy

∂

∂t

∫
Ω

ρE dΩ +

∮
∂Ω

ρE (u · n) dA =

∮
∂Ω

q · n dA

(2.3)

+

∫
Ω

(ρf · u + q̇) dΩ −
∮

∂Ω

p (u · n) dA +

∮
∂Ω

(τ · u) · n dA

τ = τ (0) + τ (1) + τ (2) + τ (3),

q = q(0) + q(1) + q(2) + q(3),

E = e +
u · u

2
,

where superscripts 0, 1, 2 and 3 represent orders of Chapman-Enskog expansion of

Boltzmann equation. More information about constitutive relations and heat flux

vectors of each order are given in (Aqarwal et al., 2001). The Relationship between

the pressure and density can be expressed via equation of state;

p = ρRT (2.4)

Integral conservation laws can be written in a more compact form by introducing a

vector of conservative variables, convective fluxes and diffusive fluxes. In cartesian

coordinate system, integral form of conservation laws can be expressed in a compact
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form as

∂

∂t

∫
Ω

W dΩ +

∮
∂Ω

(Fc − Fv) dA =

∫
Ω

S dΩ. (2.5)

The vector of conserved quantities is written as

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρw

ρE

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

Convective and diffusive flux vectors balancing the time rate the change of the conser-

vative variables can be written for convective fluxes

Fc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρun

ρuun

ρvun

ρwun

ρEun

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.7)

with

un = u · n = unx + vny + wnz (2.8)

and diffusive fluxes

Fv =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

nx(τxx − p) + nyτxy + nzτxz

nxτyx + ny(τyy − p) + nzτyz

nxτzx + nyτzy + nz(τzz − p)

(nxΦx − qxnx) + (nyΦy − qyny) + (nzΦz − qznz)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.9)



8

where

Φx = −up + uτxx + vτxy + wτxz, (2.10)

Φy = −vp + uτyx + vτyy + wτyz, (2.11)

and

Φz = −wp + uτzx + vτzy + wτzz (2.12)

compose of work done on the control volume by pressure and viscous stresses. The

source term S includes effects of all forces acting on the fluid and heat production rate

in a per unit volume

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

ρfx

ρfy

ρfz

ρ (fxu + fyv + fzw) + q̇

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.13)

Viscosity and thermal conductivity approximations of kinetic theory have been

well developed and two excellent literatures introduce the derivations and comprehen-

sive details of them (Chapman et al., 1970; Present, 1958). However, application of

viscosity and coefficient of thermal conductivity formulas given in these texts is not

simple and computationally inefficient. For routine calculations, simpler approxima-

tions of viscosity and thermal conductivity are preferred. One of them is Power Law

approximation of viscosity which can be read as

µ

µr

≈
(

T

Tr

)n

(2.14)

where n is approximately equal to 0.70 for air and parameters Tr and µr are reference
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values which are found in White (2005).

Power law which has been derived for viscosity, can also be used for coefficient of

thermal conductivity. However, in most cases, Pr number is taken as constant in the

whole flow domain. Therefore, thermal conductivity of fluid is computed generally by

the following approximation

k =
cpµ

Pr
, (2.15)

where cp is specific heat constant. In this study, power law viscosity and constant Pr

number model for the coefficient of heat conduction, Equations 2.14 and 2.15 are used

in direct simulation of Burnett equations.

2.2. Boundary Conditions

2.2.1. Velocity Slip Due To Momentum Accommodation

The basic and simplest form of the velocity slip was derived by Maxwell (1878).

ut|s − uw =
2 − σv

σv

1

ρs

√
2RTs/π

τs

where τ , ρ, T and R are wall shear stress, density, temperature and gas constant respec-

tively. Here, subscript s denotes quantities evaluated on the wall surface. Additionally,

t represent the tangential directions to the wall. σv is a coefficient expressing tangential

momentum accommodation of the gas and it is a measure of momentum exchange of

gas molecules with surfaces. Mostly, it is set to unity. More comprehensive details of

accommodation coefficients can be found in Karniadakis et al. (2002). To ensure more

accurate examination of rarefied gas flow in the slip regime, higher order boundary

conditions are required. For this reason, a number of higher order boundary conditions

have been proposed. One of the second-order accurate (in terms of Kn number) veloc-

ity slip boundary condition which is also known as Beskok’s second order slip condition,

has been derived by Karniadakis et al. (2002). As an example, one of the formulations
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of this boundary condition will be summarized in the following paragraph.

According to Beskok, accommodation total tangential momentum flux on control

surface (cs) leads to slip velocity that can be expressed as a combination of wall velocity

and a velocity evaluated one free path away from the solid wall, as illustrated in Figure

2.2.

λn

t

uλ

s

uw

Figure 2.2. Control surface for tangential momentum flux near an isothermal wall

moving at velocity of uw (Karniadakis et al.,, 2002)

ut|s =
1

2
[uλ + (1 − σv)uλ + σvuw]

Taylor series expansion of uλ for small mean free path (λ) can be written as

ut|s =
1

2

[
ut|s + λ

∂ut

∂n

∣∣∣∣
s

+
λ2

2

∂2ut

∂n2

∣∣∣∣
s

+ · · ·
]

+
1

2

{
(1 − σv)

[
ut|s + λ

∂ut

∂n

∣∣∣∣
s

+
λ2

2

∂2ut

∂n2

∣∣∣∣
s

+ · · ·
]

+ σvuw

}
(2.16)

Arrangement of this expansion gives the higher order velocity slip boundary condition

(truncated at O(λ3)) as the following

ut|s − uw =
2 − σv

σv

[
λ

∂ut

∂n

∣∣∣∣
s

+
λ2

2

∂2ut

∂n2

∣∣∣∣
s

]
.
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Generalized form of the higher-order representation by introducing two important

coefficients is widely used in the rarefied gas studies and can be represented as

ut|s − uw =
2 − σv

σv

[
A1λ

∂ut

∂n

∣∣∣∣
s

+ A2λ
2∂2ut

∂n2

∣∣∣∣
s

]
.

These coefficients which are also known as slip coefficients determined by different

authors are tabulated in Table 2.1.

Table 2.1. Coefficients for the first and second-order slip models.

(Colin,, 2005)

Investigator A1 A2

Cercignani 1.1466 -0.9756

Deissler 1.0 -9/8

Schamberg 1.0 -5π/12

Hsia and Domoto 1.0 -0.5

Maxwell (Kennard,, 1938) 1.0 0.0

Beskok (Beskok, 2002) 1.0 0.5

Chapman and Cowling (1952) 1.0 0.5

Mitsuya 1.0 -2/9

2.2.2. Velocity Slip Due to Thermal Transpiration

As mentioned in the preceding chapter, movements of rarefied gas molecules is

possible unless wall temperature is isothermal. A motion of a rarefied gas due to

thermal effects is described as

ut|s =
3

4

Pr(γ − 1)

γ

1

ρsRTs

∂T

∂t

∣∣∣∣
s

, (2.17)

where Pr, µ, γ refers to Prandtl number, dynamic viscosity and ratio of specific heats,

cp/cv. For the sake of brevity, interested readers are referred to the derivation of

thermal transpiration velocity slip formula in pages 327-330 of Kennard (1938).
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2.2.3. Temperature Jump Boundary Condition

Analogous to velocity slip due to momentum accommodation, there is a dis-

continuous region of temperature which should be analyzed for the use of continuum

mechanics. Temperature jump2 due to rarefaction level of the gas is given by

Ts − Tw = g
∂T

∂n

∣∣∣∣
s

with g =
2 − σT

σT

[
2(γ − 1)

γ

]
k

ρsR(2RTs/π)

where σT , γ and k are thermal accommodation coefficient, the ratio of specific heats

and thermal conductivity of the gas. Introduction of Pr number and the mean free

path leads to the following relation

Ts − Tw =
2 − σT

σT

(
2γ

γ + 1

)
1

Pr

[
λ

∂T

∂n

∣∣∣∣
s

]
.

Karniadakis et al., (2002) noticed a close link between the formulas of velocity slip

due to momentum accommodation and temperature jump. Due to similarity of them,

second-order accurate temperature BC can be written as;

Ts − Tw =
(2 − σT )

σT

(
2γ

γ + 1

)
1

Pr

[
A1λ

∂T

∂n

∣∣∣∣
s

+ A2λ
2∂2T

∂n2

∣∣∣∣
s

]
.

After the introduction of the mechanism lying behind the velocity slip, a final version

of velocity slip boundary condition is constructed by combining relevant slip effects i.e.

slip due to momentum accommodation and slip due to thermal transpiration.

us − uw =
2 − σv

σv

[
A1λ

∂u

∂n

∣∣∣∣
s

+ A2λ
2 ∂2u

∂n2

∣∣∣∣
s

]
+

3

4
Pr

(γ − 1)

γ

1

ρsRTs

∂T

∂t

∣∣∣∣
s

(2.18)

2Let’s assume that a gas is heated by a solid surface (Figure 2.3). In this situation, there will be
a discontinuity of temperature just near the wall surface. Such a discontinuity becomes intolerable
as rarefaction degree of the gas increases. Therefore, temperature of the gas on the wall surface is
found by an extrapolation Tk − Tw = g ∂T

∂n where Tk and Tw designate extrapolated gas and wall
temperatures, respectively. Here, g is a parameter to be determined. For this purpose, consider that
there are incident and reflected streams over the wall surface. If the incident stream of molecules
carries an energy of Ei and so does reflected molecules Er, efficiency of energy exchange between the
molecular stream and the wall is calculated as Ei−Er

Ei−Ew
= σT which can also be expressed in terms of

the temperatures Ti−Tr

Ti−Tw
= σT . The coefficient of accommodation σT is measured experimentally in

general. Determination of the coefficient g can be found in pages 311-315 of Kennard (1938).
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n

t s

λ

TwTr Tg Tk Ti

Figure 2.3. Gradient of temperature in a vicinity of wall

Similarly, the higher-order description of temperature jump boundary condition can

be written as;

Ts − Tw =
2 − σT

σT

(
2γ

γ + 1

)
1

Pr

[
A1λ

∂T

∂n

∣∣∣∣
s

+ A2λ
2∂2T

∂n2

∣∣∣∣
s

]
. (2.19)

It should be noted that, presence of non-isothermal walls bounding rarefied gas media

can initiate a gas movement even absence of any external effect i.e. pressure, body

forces. Such an phenomenon which is responsible for the motion of the gas may play

an important role beyond the continuum limit (Kn ≥ 0.01).
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3. RAREFIED GAS FLOW IN RECTANGULAR

ENCLOSURES: ASYMPTOTIC SOLUTIONS

In this chapter, we will elucidate flow characteristics of rarefied gases in an enclo-

sure. Linear stability analysis of certain kind of flows requires known base flow field in

which an instable flow structure initiates; this is the reason why base flow is the point

of interest. Asymptotic theory has been used as an analytical tool to analyze many

non-linear fluid mechanics problems for a long time. Surface motion due to thermal

transpiration is transmitted to core regions by viscous diffusion. An illustrative rep-

resentation of the possible base flow and the geometrical details of the enclosure are

shown in Figure 3.1.

rarefied
gas

cold hoty

x

l

d

Figure 3.1. Flow of the rarefied gas due to thermal transpiration.

3.1. Definitions and Assumptions

In order to investigate thermally driven flow characteristics of the gas, let’s con-

sider an enclosure having depth, d and length l, which is shown in Figure 3.2. The

right and left ends are kept at constant temperatures of Th and Tc where Th > Tc. The

upper wall is made of a well conductive material and its temperature varies linearly

between Th and Tc. On the other hand, lower boundary is well insulated so that there

is no heat flux across the boundary. The following assumptions have been made for

the analysis:

i. steady flow,

ii. incompressible flow,
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iii. rarefaction of gas (Kn number is sufficiently high, 0.01 ≤ Kn < 1),

iv. no temperature dependency of thermo-physical properties,

v. Newtonian fluid,

vi. no gravitational or external forces.

Here, incompressibility assumption of the gas should be discussed. For this reason,

let’s consider Nitrogen gas in the enclosure with d = 50 µm and l = 1 mm. The gas is

subjected to constant horizontal temperature gradient with Tc = 300 ◦K and Th = 400

◦K. For Kn = 0.1, mean density is calculated as 0.0168 kg/m3 . In this case, mean

slip velocity uc along the upper surface of the enclosure, as seen in Figure 3.2, can be

calculated as;

1

2

3

4

qy=0

dT/dx=b=constant

n1

n3
n2n4

Tw=ThTw=Tc

x

y z

Figure 3.2. An illustrative representation of the three-dimensional enclosure. Width

of the enclosure is too large compared with the other dimensions. Therefore, changes

of the flow variables in z directions are assumed to be not sharp. While temperatures

of the right and left ends at Th and Tc, respectively, the top wall is subjected to

constant temperature gradient and bottom wall is well insulated.

uc =
3

4

(
γ − 1

γ

)
Pr

1

ρ0RT0

dT

dx
=

3

4

(
1.4 − 1

1.4

)
0.768

1

1744.536

400 − 300

1 × 10−3
= 9.43 m/s,
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where subscript “0” denotes properties evaluated at mean temperature. Corresponding

Mach number will be;

Ma =
9.43√

1.4 × 296.7 × 350
= 0.0247

It should be stressed that Ma number computed at the average temperature is very

small. Since, Ma number is smaller than 0.3 the flow can be assumed incompressible.

In addition to this simple proof, a study reported by Karniadakis et al. (2002) supports

incompressibility assumption. In a Couette flow of rarefied gas analysis of them, while

the bottom plate is kept at a temperature of Tbottom = 350 ◦K and the upper plate is

kept at a temperature Ttop = 300 ◦K, the validity of incompressibility assumption has

been checked. Their results show that significant deviations from incompressible flow

are observed for only Ma∞ ≥ 0.3 which is calculated at the top plate. Therefore, the

proposed flow can be assumed incompressible safely.

3.2. Mathematical Model

Consider an enclosure filled by a rarefied gas of density, ρ0, dynamic viscosity,

µ0, and thermal conductivity, k0 which are evaluated at mean temperature, T0 =

(Th + Tc) /2. Equations governing unsteady motion of a rarefied gas, Equations 2.1-

2.3, are converted to steady, incompressible Navier-Stokes equations:

continuity,

∂u

∂x
+

∂v

∂y
= 0, (3.1)

x-momentum

u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ0

∂p

∂x
+

µ0

ρ0

[
∂2u

∂x2
+

∂2u

∂y2

]
, (3.2)
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y-momentum,

u
∂v

∂x
+ v

∂v

∂y
= − 1

ρ0

∂p

∂y
+

µ0

ρ0

[
∂2v

∂x2
+

∂2v

∂y2

]
, (3.3)

and energy equations

u
∂T

∂x
+ v

∂T

∂y
=

k0

ρ0cp0

[
∂2T

∂x2
+

∂2T

∂y2

]
, (3.4)

where p is the thermodynamic pressure of the system. The governing equations form

a complete set of the partial differential equations mathematically by introducing ap-

propriate boundary conditions. Boundary conditions of the system Equations 3.1-3.4

given for

the bottom wall;

u (x, 0) =
[
A1λuy (x, 0) + A2λ

2uyy (x, 0)
]
+

3

4

(
γ − 1

γ

)
cp0µ0

ρ0RT0

Tx (x, 0) , (3.5)

v (x, 0) = 0, (3.6)

Ty (x, 0) = 0, (3.7)

for the upper wall;

u (x, d) =
[−A1λuy (x, d) + A2λ

2uyy (x, d)
]
+

3

4

(
γ − 1

γ

)
cp0µ0

ρ0RT0

Tx (x, d) , (3.8)

v (x, d) = 0, (3.9)

T (x, d) = Tw3 +

(
2γ

γ + 1

)
k0

cp0µ0

[−A1λTy (x, d) + A2λ
2Tyy (x, d)

]
, (3.10)
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for the left wall;

u (0, y) = 0 (3.11)

v (0, y) =
[
A1λvx (0, y) + A2λ

2vxx (0, y)
]
+

3

4

(
γ − 1

γ

)
cp0µ0

ρ0RT0
Ty (0, y) (3.12)

T (0, y) = Tw4 +

(
2γ

γ + 1

)
k0

cp0µ0

[
A1λTx (0, y) + A2λ

2Txx (0, y)
]

(3.13)

and finally for the right wall;

u (l, y) = 0 (3.14)

v (l, y) =
[−A1λvx (l, y) + A2λ

2vxx (l, y)
]
+

3

4

(
γ − 1

γ

)
cp0µ0

ρ0RT0
Ty (l, y) (3.15)

T (l, y) = Tw2 +

(
2γ

γ + 1

)
k0

cp0µ0

[−A1λTx (l, y) + A2λ
2Txx (l, y)

]
. (3.16)

Since the temperature jump BCs necessitate wall temperatures, their values are desig-

nated as w2, w3 and w4 which are right, top and left walls, respectively. Application

of general velocity slip and temperature jump BCs require to account surface normals

of each surface as illustrated in Figure 3.2. Thermal transpiration effects are neglected

on the left and right side walls due to isothermal wall temperatures.

Some problems of fluid mechanics include a small/large physical parameter which

is called perturbation parameter in the terminology of asymptotic theory. For exam-

ple, Re number is very small, Re � 1, in cases of Stokes and Oseen flows. On the

other hand, Re number is high enough, Re 	 1, in some cases of boundary layer

flows. In addition to these physical perturbation parameters, coordinate perturbation
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parameters become effective in flow geometries in which one of the dimensions is much

greater than the others. An approximation to these type of problems gets better as the

perturbation parameter goes to zero or infinity. It is possible to construct an accurate

solution by taking basic solution as the first step and adding successive approximations

to the basic solution. In fact, series of basic and successive approximations are known

as asymptotic expansion. Generally, perturbation expansion converges successfully to

reasonable solutions. This types of expansions are called as regular perturbation. How-

ever, in some cases, asymptotic expansion series are not valid in whole domain and

do not convect the correct physics. Therefore, singular perturbation techniques should

be introduced to find a global solution valid in the entire domain. In most cases, a

perturbation solution is uniformly valid in the space and time coordinates unless the

perturbation parameter ε is the ratio of two dimensions (Van Dyke,, 1964). This study

considers ratio of height d to l as the perturbation parameter. The complete picture

will become clear in the next paragraphs.

Governing equations of motion are non-dimensionalized by use of the following

appropriate scales

x∗ =
x

l
, y∗ =

y

d
, ε =

d

l
,

u∗ =
u

u0

, v∗ =
v

εu0

, θ =
T − Tc

Th − Tc

, p∗ =
p

µ0u0l/d2

where ε is the perturbation parameter representing the aspect ratio of the enclosure.

Note that properties denoted by subscript “0” are defined at mean temperature T0.

Reference velocity, u0, represents mean thermal creep velocity acquired on the top wall

and derived from Equation 2.17,

uc =
3

4

(
γ − 1

γ

)
cp0µ0

1

ρ0RT0

∂T

∂x

∣∣∣∣
s

= Kn2 3

2π

(
γ − 1

γ

)
cp0ρ0

µ0
d2∂T

∂x

∣∣∣∣
s

,
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where Kn number is given as

Kn =
µ0

ρ0d
√

2RT0/π
. (3.17)

Since the enclosure is subjected to constant temperature gradient along the x-direction,

reference velocity can be estimated from

u0 =
3

2π

(
γ − 1

γ

)
cp0ρ0µ0

d

2∂T

∂x

∣∣∣∣
s

=
3

2π

(
γ − 1

γ

)
cp0ρ0

µ0
d2∆T

l
, (3.18)

where ∆T = Th − Tc expresses temperature difference between the hot and cold walls.

Employing the scales mentioned, dimensionless NS equations take such forms;

for mass conservation,

∂u

∂x
+

∂v

∂y
= 0, (3.19)

conservation of momentum,

εRe

[
u
∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+ ε2 ∂2u

∂x2
+

∂2u

∂y2
, (3.20)

ε3Re

[
u

∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
+ ε4 ∂2v

∂x2
+ ε2 ∂2u

∂y2
, (3.21)

and conservation of energy equation

ε RePr

[
u

∂θ

∂x
+ v

∂θ

∂y

]
= ε2 ∂2θ

∂x2
+

∂2θ

∂y2
. (3.22)

Here, Re and Pr non-dimensional numbers which are given by

Re =
ρ0u0d

µ0
= ε

3

2π

(
γ − 1

γ

)
ρ2

0d
2cp0∆T

µ2
0

, P r =
cp0µ0

k0
, (3.23)

respectively. Non-dimensional slip velocity and temperature jump relations are rear-

ranged in the following forms
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on the bottom wall;

u (x, 0) =
[
A1Knuy (x, 0) + A2Kn2uyy (x, 0)

]
+ Kn2θx (x, 0) , (3.24)

v (x, 0) = 0, (3.25)

θy (x, 0) = 0, (3.26)

on the top wall;

u (x, 1) =
[−A1Knuy (x, 1) + A2Kn2uyy (x, 1)

]
+ Kn2θx (x, 1) , (3.27)

v (x, 1) = 0, (3.28)

θ (x, 1) = θw3 +

(
2γ

γ + 1

)
1

Pr

[−A1Knθy (x, 1) + A2Kn2θyy (x, 1)
]
, (3.29)

on the left wall;

u (0, y) = 0, (3.30)

v (0, y) =
[
A1Knvx (0, y) + A2Kn2vxx (0, y)

]
, (3.31)

θ (0, y) = θw4 +

(
2γ

γ + 1

)
1

Pr

[
A1Knθx (0, y) + A2Kn2θxx (0, y)

]
(3.32)
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and on the right one;

u (1, y) = 0, (3.33)

v (1, y) =
[−A1Knvx (1, y) + A2Kn2vxx (1, y)

]
(3.34)

θ (1, y) = θw2 +

(
2γ

γ + 1

)
1

Pr

[−A1Knθx (1, y) + A2Kn2θxx (1, y)
]
. (3.35)

To take advantage of studying with only one dependent variable in governing equations

3.19-3.22 and its BCs, introduction of stream function Ψ formulation may be useful.

As is well known, relationship between x-y velocity components and stream function

can be written in the following form:

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
.

Thus, stream function formulation and the energy equation are read as

εRe [ΨyΨxyy − ΨxΨyyy]−ε3Re [ΨxΨxxy − ΨxΨxxx] = 2ε2Ψyyxx+Ψyyyy +ε4Ψxxxx (3.36)

εRePr [Ψyθx − Ψxθy] = ε2θxx + θyy. (3.37)

It should be noted that subscripts in the formulation designate partial derivatives with

respect to spatial coordinates. Substitution of velocity components in terms of stream

function into BCs given by Equations 3.24-3.35 results in

slip condition,

Ψy (x, 0) =
[
A1KnΨyy (x, 0) + A2Kn2Ψyyy (x, 0)

]
+ Kn2θx (x, 0) , (3.38)
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no-slip condition,

Ψx (x, 0) = 0, (3.39)

adiabatic BC for temperature on the bottom wall,

θy (x, 0) = 0, (3.40)

slip on the top wall,

Ψy (x, 1) =
[−A1KnΨyy (x, 1) + A2Kn2Ψyyy (x, 1)

]
+ Kn2θx (x, 1) , (3.41)

no-slip condition,

Ψx (x, 1) = 0, (3.42)

temperature jump,

θ (x, 1) = θw3 +

(
2γ

γ + 1

)
1

Pr

[−A1Knθy (x, 1) + A2Kn2θyy (x, 1)
]
, (3.43)

similarly on the left:

no-slip condition for x-wise velocity,

Ψy (0, y) = 0, (3.44)

for vertical velocity component,

Ψx (0, y) =
[
A1KnΨxx (0, y) + A2Kn2Ψxxx (0, y)

]
, (3.45)
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temperature jump due to rarefaction effects,

θ (0, y) = θw4 +

(
2γ

γ + 1

)
1

Pr

[
A1Knθx (0, y) + A2Kn2θxx (0, y)

]
, (3.46)

stick condition of x-wise velocity component on the other side wall,

Ψy (1, y) = 0, (3.47)

for vertical velocity component,

Ψx (1, y) =
[−A1KnΨxx (1, y) + A2Kn2Ψxxx (1, y)

]
, (3.48)

temperature jump due to rarefaction effects,

θ (1, y) = θw2 +

(
2γ

γ + 1

)
1

Pr

[−A1Knθx (1, y) + A2Kn2θxx (1, y)
]
. (3.49)

It should be noted that, stream function formulation decreases the number of unknowns

from four to two. There is no doubt that; this arrangement simplifies the application of

asymptotic approximation. In the next section, perturbation theory will be exploited

to analyze base flow field in the enclosure.

3.3. Asymptotic Solution Procedure

The present analysis aims to elucidate the flow field in an enclosure with small

aspect ratio, ε � 1. In this situation, two distinct flow structures are identified in the

enclosure: outer and inner (boundary layer) flow formations. Flow in the outer flow

region is relatively simple and generally gives parallel streamlines to the surface. On the

other hand, mathematically speaking, the outer solution does not satisfy the side walls

region boundary constraints —a singularity arises due to dissatisfaction of any BC of

the problem. Therefore, the other asymptotic solution procedure should be applied at

the end regions in which the flow turns around to conserve mass. The end solutions are

also called as “inner” or “boundary layer” solution. The inner and outer expansions
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complement each other. Each of them has its own validity region. Fortunately, inner

and outer expansions can be joined by “asymptotic matching procedure” (Van Dyke,

1964; Nayfeh, 1993).

The asymptotic matching principle can be summarized as

The m-term inner expansion of (the n-term outer expansion) =

The n-term outer expansion of (the m-term inner expansion) (3.50)

In this procedure, m and n are any two integers and generally m is set to n or n + 1

(Van Dyke, 1964). A schematic representation of the asymptotic matching technique

can be seen Figure 3.3 Before proceeding with outer and inner expansions, order of

2

11

2

3 3

Outer 
expansion

Inner 
expansion

Number 
of term

Figure 3.3. Organization of matching order of inner and outer expansions (Solid

arrows express step by step progress of matching) (Van Dyke, 1964).

magnitude analysis of dimensionless numbers should be performed. It is clear that Re,

Kn and Pr numbers can be represented in terms of asymptotic limits such that

Re = Re∗ε, Kn = O (1) and Pr = O (1/ε)

with Re∗ = O (1). The asymptotic limit of Re = Re∗ε, depends on the creep flow

assumption. Therefore, convective terms in momentum equations are ignored in the

leading order approximation (zeroth-order approximation). Asymptotic limit of Kn =

O (1/ε) corresponds to high transition or molecular flow regimes. This limit indicates

that continuum flow assumption breaks down and equations of continuum mechanics



26

can not be used. On the other hand, the limit of Kn = O (ε) leads to totally hydrody-

namic flow regime in which rarefaction effects are not observed. The other asymptotic

limit, Kn = O (1), generates slip flow regime with Re = O (ε). So; use of this asymp-

totic limit produces the desired slip flow regime. It should be noted that different

alternatives of asymptotic limits of Re and Kn number lead to different flow regimes

and flow types of flow such as transonic, hypersonic transition flows, etc. More details

about the order of magnitude analysis of Kn number for different Ma and Re numbers

can be found in Arkilic et al. (1997) The magnitude of Pr number is generally in the

range of 0.66-0.72 for the most of gases. Therefore, unity assumption of asymptotic

limit of Pr number does not produce any error.

In the next section outer and inner approximation procedure will be exhibited after

the completion of order of magnitude analysis.

3.4. Outer Expansion Solution

In this section, outer solutions will be found at different orders by recalling that

perturbation parameter, ε is sufficiently small. Thus, an uniform outer asymptotic

expansion can be written

for stream function,

Ψo (x, y) = Ψo
0 (x, y) + εΨo

1 (x, y) + O
(
ε2

)
, (3.51)

pressure,

po (x, y) = po
0 (x, y) + εpo

1 (x, y) + O
(
ε2

)
(3.52)

and temperature

θo (x, y) = θo
0 (x, y) + εθo

1 (x, y) + ε2θo
2 (x, y) + O

(
ε3

)
, (3.53)

respectively. Superscript “ o ” denotes outer expansion. Note that, third-order expan-

sion of temperature is necessary due to loss of boundary conditions of stream function
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formulation as will be verified in the next. Substituting Equations 3.51-3.53 into Equa-

tions 3.36-3.49 and equating powers of ε, one can get distinct approximations for each

order.

The leading-order approach gives the following linear system of equations

for stream function,

(Ψo
0)yyyy = 0, (3.54)

energy,

(θo
0)yy = 0, (3.55)

and boundary conditions, on the bottom wall for x- and y-wise velocity components

and temperature,

(Ψo
0)y (x, 0) =

[
A1Kn (Ψo

0)yy (x, 0) + A2Kn2 (Ψo
0)yyy (x, 0)

]
+ Kn2 (θo

0)x (x, 0) , (3.56)

(Ψo
0)x (x, 0) = 0, (3.57)

(θo
0)y (x, 0) = 0, (3.58)

on the top as the sequence with the bottom one,

(Ψo
0)y (x, 1) =

[
−A1Kn (Ψo

0)yy (x, 1) + A2 (Ψo
0)yyy (x, 1)

]
+ Kn2 (θo

0)x (x, 1) , (3.59)

(Ψo
0)x (x, 1) = 0, (3.60)

θo
0 (x, 1) = θw3 +

(
2γ

γ + 1

)
1

Pr

[
−A1Kn (θo

0)y (x, 1) + A2Kn2 (θo
0)yy (x, 1)

]
, (3.61)
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on the left surface,

(Ψo
0)y (0, y) = 0, (3.62)

(Ψo
0)x (0, y) =

[
A1Kn (Ψo

0)xx (0, y) + A2Kn2 (Ψo
0)xxx (0, y)

]
, (3.63)

θo
0 (0, y) = θw4 +

(
2γ

γ + 1

)
1

Pr

[
A1Kn (θo

0)x (0, y) + A2Kn2 (θo
0)xx (0, y)

]
, (3.64)

and on the right one,

(Ψo
0)y (1, y) = 0, (3.65)

(Ψo
0)x (1, y) =

[−A1Kn (Ψo
0)xx (1, y) + A2Kn2 (Ψo

0)xxx (1, y)
]
, (3.66)

θo
0 (1, y) = θw2 +

(
2γ

γ + 1

)
1

Pr

[−A1Kn (θo
0)x (1, y) + A2Kn2 (θo

0)xx (1, y)
]

(3.67)

Because the flow circulates in a closed domain, at any cross-section of the x-direction,

the net mass flux should be zero. This was the additional constraint which can be

expressed as

∫ 1

0

(Ψo
0)y dy = Ψo

0 (x, 1) − Ψo
0 (x, 0) = 0. (3.68)

The solution of θo
0 satisfying Equation 3.55 and related BCs is simply to be

θo
0 (x) = x. (3.69)

Since mass flow rate at y = 0, Ψo
0 (x, 0), is zero, Ψo

0 (x, 1) should also be equal to zero

due to net mass flow rate restriction, Equation 3.68. Under this conditions, solution

of leading-order approximation for stream function and x-wise velocity component,
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satisfying Equation 3.54 and related BCs, will be

Ψo
0 (y) =

Kn2

1 + 6A1Kn − 12A2Kn2

[
2y3 − 3y2 + y

]
, (3.70)

uo
0 (y) =

Kn2

1 + 6A1Kn − 12A2Kn2

[
6y2 − 6y + 1

]
. (3.71)

Substituting u velocity to Equation 3.20 gives zeroth-order pressure gradient such that

(po
0)x =

12Kn2

1 + 6A1Kn − 12A2Kn2
. (3.72)

It is clear that the streamline and the horizontal velocity component solutions 3.70

and 3.71 do not satisfy the boundary conditions 3.62 and 3.65. In order to annihilate

this disharmony, the leading order solution should be linked to the boundary layer

solution of side walls by utilizing method of asymptotic matches. On the other hand,

the temperature field θo
0 satisfies all boundary conditions including end walls, and does

not show any boundary layer behavior in the leading-order.

The next-order solution should satisfy both stream function and energy equations

and related boundary conditions as well:

stream function,

(Ψo
1)yyyy = 0, (3.73)

energy,

(θo
1)yy = 0, (3.74)

and boundary conditions,
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on the bottom:

(Ψo
1)y (x, 0) =

[
A1Kn (Ψo

1)yy (x, 0) + A2Kn2 (Ψo
1)yyy (x, 0)

]
+ Kn2 (θo

1)x (x, 0) , (3.75)

(Ψo
1)x (x, 0) = 0, (3.76)

(θo
1)y (x, 0) = 0, (3.77)

on the top:

(Ψo
1)y (x, 1) =

[
−A1Kn (Ψo

1)yy (x, 1) + A2Kn2 (Ψo
1)yyy (x, 1)

]
+ Kn2 (θo

1)x (x, 1) ,

(3.78)

(Ψo
1)x (x, 1) = 0, (3.79)

θo
1 (x, 1) =

(
2γ

γ + 1

)
1

Pr

[
−A1Kn (θo

1)y (x, 1) + A2Kn2 (θo
1)yy (x, 1)

]
, (3.80)

on the left:

(Ψo
1)y (0, y) = 0, (3.81)

(Ψo
1)x (0, y) = 0, (3.82)

θo
1 (0, y) =

(
2γ

γ + 1

)
1

Pr
A1Kn, (3.83)

and the right:

(Ψo
1)y (1, y) = 0, (3.84)
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(Ψo
1)x (1, y) = 0, (3.85)

θo
1 (1, y) = −

(
2γ

γ + 1

)
1

Pr
A1Kn. (3.86)

Careful examination of Equations 3.74, 3.77 and 3.80 reveals that suitable solution for

θo
1 can only be

θo
1 = 0. (3.87)

Clearly, the first-order solution of temperature does not satisfy the requirements on the

boundary-layer region. Therefore, corresponding inner approximation must be joined

with this outer approximation. In addition to temperature, inspection of Equation 3.73

and all boundary conditions for stream function gives the solution

Ψo
1 = 0. (3.88)

Definitely, stream function solution satisfies the BCs in the core region and on the end

walls.

Accompanying order of approximation results in vanishing pressure gradient as well

po
1 = 0. (3.89)

Clearly, the order of outer expansion for stream function is limited up to O (ε2) because

there is no necessity to bring out calculations beyond this order. Nevertheless; to

expose inner solution of stream function at each order, there will be a need of next

order solution of temperature as explained in the next section. Therefore; second-order

outer solution of temperature will be investigated in order to compete with the inner

approximation. Second-order approximation results in a subsequent energy equation
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and associated BCs:

(θo
2)yy = Re∗Pr

[
(Ψo

0)y (θo
0)x

]
, (3.90)

(
θ0
2

)
y
(x, 0) = 0, (3.91)

θo
2 (x, 1) =

(
2γ

γ + 1

)
1

Pr

[
−A1Kn (θo

2)y (x, 1) + A2Kn2 (θo
2)yy (x, 1)

]
, (3.92)

θo
2 (0, y) =

(
2γ

γ + 1

)
1

Pr

[
A1Kn (θo

1)x (0, y) + A2Kn2 (θo
0)xx (0, y)

]
, (3.93)

θo
2 (1, y) =

(
2γ

γ + 1

)
1

Pr

[−A1Kn (θo
1)x (1, y) + A2Kn2 (θo

0)xx (1, y)
]
. (3.94)

Substituting Equation 3.70 for zeroth-order solution of stream function and Equations

3.69 and 3.87 for zeroth and first-order solutions of temperature, respectively, solution

of energy equation is obtained as

θo
2 (y) = Re∗Pr

{
Kn2

1 + 6A1Kn − 12A2Kn2

[
1

2
(y4+y2)−y3+

(
2γ

γ + 1

)
A2Kn2

Pr

]}
(3.95)

Apparently, θo
2 does not satisfy the BCs of the end regions.

Singular behavior —dissatisfaction BCs of end walls— of the current asymptotic

analysis brings us performing inner expansion procedure and method of asymptotic

matches as explained in the next section.

3.5. Inner Expansion Solution (Boundary Layer Approximation)

In most physical problems, sharp gradients of flow variables take places in a tiny

region such as Jukowski airfoil, flow over round edges etc. (Van Dyke, 1964). Smallness

of this region which is generally in a size of O(ε), does not easily permit interpretation
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of the flow field. Therefore, stretching or magnification of boundary layer is a standard

way eliminating this disadvantage. For the sake of brevity, more details will not be given

here and interested readers are referred to any standard textbook about perturbation

theory. The next two sections present inner approximations to the proposed model.

3.5.1. Boundary Layer at x = 0

Employing perturbation parameter, ε, the left surface region is stretched as

ξ =
x

ε
and η = y,

and consequently a new set of governing equations are written as

∇4Ψ̃i = Re∗ε
[
Ψ̃i

η

(
Ψ̃i

ξηη + Ψ̃i
ξξξ

)
− Ψ̃i

ξ

(
Ψ̃i

ξξη + Ψ̃i
ηηη

)]
, (3.96)

∇2θ̃i = Re∗Prε
[
Ψ̃i

ηθ̃
i
ξ − Ψ̃i

ξ θ̃
i
η

]
, (3.97)

where

∇4 =
∂4

∂ξ4
+ 2

∂4

∂ξ2∂η2
+

∂4

∂η4
and ∇2 =

∂2

∂ξ2
+

∂2

∂η2

are Biharmonic and Laplacian operators, respectively. Additionally, over tilde, “ ˜ ”,

designates inner expansion at about left wall side. Thus, the coordinate transformation

leads to a new class of boundary conditions as the followings

on the bottom surface:

(Ψ̃i)η(ξ, 0) =
[
A1Kn(Ψ̃i)ηη(ξ, 0) + A2Kn2(Ψ̃i)ηηη(ξ, 0)

]
+

1

ε
Kn2(θ̃i)ξ(ξ, 0), (3.98)

(Ψ̃i)ξ(ξ, 0) = 0, (3.99)
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(θ̃i)η(ξ, 0) = 0, (3.100)

on the top surface:

(Ψ̃i)η(ξ, 1) =
[
−A1Kn(Ψ̃i)ηη(ξ, 1) + A2Kn2(Ψ̃i)ηηη(ξ, 1)

]
+

1

ε
Kn2(θ̃i)ξ(ξ, 1), (3.101)

(Ψ̃i)ξ(ξ, 1) = 0, (3.102)

θ̃i(ξ, 1) = εξ +

(
2γ

γ + 1

)
1

Pr

[
−A1Kn(θ̃i)η(ξ, 1) + A2Kn2(θ̃i)ηη(ξ, 1)

]
, (3.103)

and on the left side:

(Ψ̃i)η(0, η) = 0, (3.104)

(Ψ̃i)ξ(0, η) =
[
A1Kn(Ψ̃i)ξξ(0, η) + A2Kn2(Ψ̃i)ξξξ(0, η)

]
, (3.105)

θ̃i(0, η) =

(
2γ

γ + 1

)
1

Pr

[
A1Kn(θ̃i)ξ(0, η) + A2Kn2(θ̃i)ξξ(0, η)

]
. (3.106)

As it can be seen, a complete set of system has not been governed mathematically

yet due to lack of some required boundary conditions. Asymptotic matching creates

these boundary conditions by recalling a basic idea: the inner and outer approximations

should have the same solution in an overlapping region where solutions of them coincide.

This linkage between two approaches guarantees continuous and smooth transition of

solutions from one region to the other region. Fortunately, the application of this

principle gives the other conditions such that as ε → 0

lim
ξ→∞

Ψ̃i = lim
x→0+

Ψ̃o, (3.107)
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lim
ξ→∞

θ̃i = lim
x→0+

θ̃o. (3.108)

Now, the regular asymptotic series of inner approach for the left boundary are

expressed as

Ψ̃i = Ψ̃i
0 + εΨ̃i

1 + O
(
ε2

)
, (3.109)

p̃i = p̃i
0 + εp̃i

1 + O
(
ε2

)
, (3.110)

θ̃i = θ̃i
0 + εθ̃i

1 + ε2θ̃i
2 + O

(
ε3

)
, (3.111)

Insertion of these expansions to Equations 3.96-3.108 construct zeroth, first and second-

order approximations on the side wall. Thus, the leading order approach is written for

stream function, energy equations and for BCs,

∇4Ψ̃i
0 = 0, (3.112)

∇2θ̃i
0 = 0, (3.113)

on the bottom surface,

(θ̃i
0)ξ(ξ, 0) = 0, (3.114)

(Ψ̃i
0)ξ(ξ, 0) = 0, (3.115)

(θ̃i
0)η(ξ, 0) = 0, (3.116)
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on the top surface,

(θ̃i
0)ξ(ξ, 1) = 0, (3.117)

(Ψ̃i
0)ξ(ξ, 1) = 0, (3.118)

θ̃i
0(ξ, 1) =

(
2γ

γ + 1

)
1

Pr

[
−A1Kn

(
θ̃i
0

)
η
(ξ, 1) + A2Kn2(θ̃i

0)ηη(ξ, 1)

]
, (3.119)

and on the left side,

(Ψ̃i
0)η(0, η) = 0, (3.120)

(Ψ̃i
0)ξ(0, η) =

[
A1Kn(Ψ̃i

0)ξξ(0, η) + A2Kn2(Ψ̃i
0)ξξξ(0, η)

]
, (3.121)

θ̃i
0(0, η) =

(
2γ

γ + 1

)
1

Pr

[
A1Kn(θ̃i

0)ξ(0, η) + A2Kn2(θ̃i
0)ξξ(0, η)

]
. (3.122)

Additionally, employment of method of asymptotic matches leads to

lim
ξ→∞

Ψ̃i
0 =

Kn2

1 + 6A1Kn − 12A2Kn2

(
2η3 − 3η2 + η

)
, (3.123)

lim
ξ→∞

θ̃i
0 = 0, (3.124)

lim
ξ→∞

(Ψ̃i
0)ξ = 0. (3.125)

Notice that, reduction of order appeared in transpiration terms of Equations 3.98

and 3.101 causes loss of boundary conditions of stream function. Use of Van Dyke’s

matching procedure given in 3.50 in page 25 and Figure 3.3, enables us expressing outer

variables in terms of inner variables at each order. This is the reason why asymptotic
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condition addressed Equation 3.123, is written in terms of the inner variables. The

condition, Equation 3.123 originates from linking Ψ̃i
0 with the outer solution Equation

3.70. Examination of energy equation, Equation 3.113, and its boundary conditions

advices a solution of

θ̃i
0 = 0. (3.126)

As previously mentioned in page 31, to find zeroth-order stream function solution, we

need next order solution of energy equation. Therefore; second-order approach yields

expressions

∇4Ψ̃i
1 = Re∗

{
(Ψ̃i

0)η

[
(Ψ̃i

0)ξηη + (Ψ̃i
0)ξξξ

]
− (Ψ̃i

0)ξ

[
(Ψ̃i

0)ξξη + (Ψ̃i
0)ηηη

]}
, (3.127)

∇2θ̃i
1 = 0 (3.128)

for stream function and energy and BCs

on the bottom:

(Ψ̃i
0)η(ξ, 0) =

[
A1Kn(Ψ̃i

0)ηη(ξ, 0) + A2Kn2(Ψ̃i
0)ηηη(ξ, 0)

]
+ Kn2(θ̃i

1)ξ(ξ, 0), (3.129)

(Ψ̃i
1)ξ(ξ, 0) = 0, (3.130)

(θ̃i
1)η(ξ, 0) = 0, (3.131)

on the top surface:

(Ψ̃i
0)η(ξ, 1) =

[
−A1Kn(Ψ̃i

0)ηη(ξ, 1) + A2Kn2(Ψ̃i
0)ηηη(ξ, 1)

]
+ Kn2(θ̃i

1)ξ(ξ, 1), (3.132)

(Ψ̃i
1)ξ(ξ, 1) = 0, (3.133)
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(θ̃i
1)(ξ, 1) = ξ +

(
2γ

γ + 1

)
1

Pr

[
−A1Kn(θ̃i

1)η(ξ, 1) + A2Kn2(θ̃i
1)ηη(ξ, 1)

]
, (3.134)

on the left side:

(Ψ̃i
1)η(0, η) = 0, (3.135)

(Ψ̃i
1)ξ(0, η) =

[
A1Kn(Ψ̃i

1)ξξ(0, η) + A2Kn2(Ψ̃i
1)ξξξ(0, η)

]
, (3.136)

(θ̃i
1)(0, η) =

(
2γ

γ + 1

)
1

Pr

[
A1Kn(θ̃i

1)ξ(0, η) + A2Kn2(θ̃i
1)ξξ(0, η)

]
. (3.137)

and matching conditions

lim
ξ→∞

Ψ̃i
1 = 0, (3.138)

lim
ξ→∞

θ̃i
1 = ξ, (3.139)

lim
ξ→∞

(Ψ̃i
1)ξ = 0. (3.140)

Equations 3.129 and 3.132 assign new boundary conditions that are required to close

zeroth-order stream function problem, Ψ̃i
0. Thus, lost BCs are eliminated and combi-

nation of Equations 3.115, 3.118, 3.120, 3.121, 3.123, 3.125 and 3.129 governs a new

set of boundary conditions for zeroth-order stream function formulation. Determina-

tion of Ψ̃i
1 is analogous to zeroth-order approximation, Ψ̃i

0. Loss of BCs occurs at this

order as well and this drawback can only be eliminated by proceeding to the next order

approximation in energy equations, θ̃i
2, such that

∇2θ̃i
2 = Re∗Pr

[
(Ψ̃i

0)η(θ̃
i
1)ξ − (Ψ̃i

0)ξ(θ̃
i
1)η

]
, (3.141)
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(θ̃i
2)η(ξ, 0) = 0, (3.142)

θ̃i
2(ξ, 1) =

(
2γ

γ + 1

)
1

Pr

[
−A1Kn(θ̃i

2)η(ξ, 1) + A2Kn2(θ̃i
2)ηη(ξ, 1)

]
, (3.143)

(θ̃i
2)(0, η) =

(
γ

γ + 1

)
1

Pr

[
A1Kn(θ̃i

2)ξ(0, η) + A2Kn2(θ̃i
2)ξξ(0, η)

]
, (3.144)

lim
ξ→∞

θ̃i
2 = Re∗Pr

{
Kn2

1 + 6A1Kn − 12A2Kn2

[
1

2
(η4 + η2) − η3 +

(
2γ

γ + 1

)
A2Kn2

Pr

] }
.

(3.145)

Determination of θ̃i
1 and θ̃i

2 are straightforward by employing the second-order finite

difference scheme. Second-order forward and backward discretizations have been ap-

plied on the boundaries wherever needed. System of algebraic equations were solved

via Successive Over Relaxation (SOR) with relaxation parameter of ω = 1.6. Results

and discussions about the temperature field affected by mainly rarefaction jumps will

be given in Section 3.6. After finding the solution of θ̃i
2, lost boundary conditions of

Ψ̃i
1 can be reformulated as the previous case. Therefore; Equations 3.129 and 3.132 are

replaced by the following new BCs of bottom and top boundaries

(Ψ̃i
1)η(ξ, 0) =

[
A1Kn(Ψ̃i

1)ηη(ξ, 0) + A2Kn2(Ψ̃i
1)ηηη(ξ, 0)

]
+ Kn2(θ̃i

2)ξ(ξ, 0), (3.146)

(Ψ̃i
1)η(ξ, 1) =

[
−A1Kn(Ψ̃i

1)ηη(ξ, 1) + A2Kn2(Ψ̃i
1)ηηη(ξ, 1)

]
+ Kn2(θ̃i

2)ξ(ξ, 1). (3.147)

Combining Equations 3.146 and 3.147 with Equations 3.130, 3.133, 3.135, 3.136, 3.138

and 3.140 closes the problem mathematically for Ψ̃i
1. One of the common methodologies

for solving the Biharmonic equation is splitting Biharmonic operator into two Poisson

equations (Gupta et al., 1979a). On the other hand; a less expensive way of solving

the Biharmonic equation is a method such that fourth-order equation is discretized

by any discretization scheme and solved directly (Gupta et al., 1979b). Nowadays,

usage of compact finite difference have gathered tremendous interest in fluid mechanics
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due to higher order accuracy like spectral methods. The fundamentals and details

of compact finite differencing can be found in a monograph of Collatz (1966) and

Lele (1992), respectively. The current study also employs fourth order compact finite

difference scheme pointed out by Stephenson (1983) and Altas et al. (1998). Details of

discretization are given in Appendix A. SOR iterations converge a solution with the

value of relaxation parameters at about ω = 0.7. After exhibition of left side inner

approximation, the right side will be examined, finally.

3.5.2. Boundary Layer at x = 1

Investigation of the thermal and flow field on the right side requires such

α =
1 − x

ε
and β = y,

coordinate transformations. Governing equations and BCs in the new domain of in-

terest are declared by the following system of stream function, energy and relevant

BCs:

∇4Ψ̂i = Re∗ε
[
Ψ̂i

α

(
Ψ̂i

βββ + Ψ̂i
ααβ

)
− Ψ̂i

β

(
Ψ̂i

αββ + Ψ̂i
ααα

)]
, (3.148)

∇2θ̂i = Re∗Prε
[
Ψ̂i

αθ̂i
β − Ψ̂i

β θ̂i
α

]
(3.149)

BCs on the bottom surface:

(Ψ̂i)β(α, 0) =
[
A1Kn(Ψ̂i)ββ(α, 0) + A2Kn2(Ψ̂i)βββ(α, 0)

]
− 1

ε
Kn2(θ̂i)α(α, 0), (3.150)

(Ψ̂i)α(α, 0) = 0, (3.151)

(θ̂i)β(α, 0) = 0, (3.152)
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on the top surface:

(Ψ̂i)β(α, 1) =
[
−A1Kn(Ψ̂i)ββ(α, 1) + A2Kn2(Ψ̂i)βββ(α, 1)

]
− 1

ε
Kn2(θ̂i)α(α, 1),

(3.153)

(Ψ̂i)α(α, 1) = 0, (3.154)

θ̂i(α, 1) = (1 − εα) +

(
2γ

γ + 1

)
1

Pr

[
−A1Kn(θ̂i)β(α, 1) + A2Kn2(θ̂i)ββ(α, 1)

]
,

(3.155)

and on the right side:

(Ψ̂i)β(0, β) = 0, (3.156)

(Ψ̂i)α(0, β) =
[
A1Kn(Ψ̂i)αα(0, β) + A2Kn2(Ψ̂i)ααα(0, β)

]
, (3.157)

θ̂i(0, β) = 1 +

(
2γ

γ + 1

)
1

Pr

[
A1Kn(θ̂i)α(0, β) + A2Kn2(θ̂i)αα(0, β)

]
(3.158)

and matching conditions:

lim
α→∞

Ψ̂i = lim
x→1−

Ψ̂o, (3.159)

lim
α→∞

θ̂i = lim
x→1−

θ̂o. (3.160)

Here, “ ˆ ” stands for the inner approximation on the right side. Analogous to the

previous case, asymptotic expansion takes the form of

Ψ̂i = Ψ̂i
0 + εΨ̂i

1 + O
(
ε2

)
, (3.161)
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p̂i = p̂i
0 + εp̂i

1 + O
(
ε2

)
, (3.162)

θ̂i = θ̂i
0 + εθ̂i

1 + ε2θ̂i
2 + O

(
ε3

)
. (3.163)

The leading-order expansion produces a dominant solution of the expansion and takes

the following form for governing equations:

∇4Ψ̂i
0 = 0, (3.164)

∇2θ̂i
0 = 0, (3.165)

and for BCs: on the bottom,

(θ̂i
0)α(α, 0) = 0, (3.166)

(Ψ̂i
0)α(α, 0) = 0, (3.167)

(θ̂i
0)β(α, 0) = 0, (3.168)

on the top surface,

(θ̂i
0)α(α, 1) = 0, (3.169)

(Ψ̂i
0)α(α, 1) = 0, (3.170)

θ̂i
0(α, 1) = 1 + (

2γ

γ + 1
)

1

Pr

[
−A1Kn(θ̂i

0)β(α, 1) + A2(θ̂
i
0)ββ(α, 1)

]
, (3.171)
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and right side,

(Ψ̂i
0)β(0, β) = 0, (3.172)

(Ψ̂i
0)α(0, β) =

[
A1Kn(Ψ̂i

0)αα(0, β) + A2Kn2(Ψ̂i
0)ααα(0, β)

]
, (3.173)

θ̂i
0(0, β) = 1 +

(
2γ

γ + 1

)
1

Pr

[
A1Kn(θ̂i

0)α(0, β) + A2Kn2(θ̂i
0)αα(0, β)

]
, (3.174)

and for matching conditions:

lim
α→∞

Ψ̂i
0 =

Kn2

1 + 6A1Kn − 12A2Kn2

(
2β3 − 3β2 + β

)
, (3.175)

lim
α→∞

θ̂i
0 = 1, (3.176)

lim
α→∞

(Ψ̂i
0)α = 0. (3.177)

Solution of the zeroth-order energy equation will be simply

θ̂i
0 = 0. (3.178)

Similar to the procedure applied on the x = 0, next order approximation of the energy

equation should be discussed firstly to proceed in the solution of Ψ̂i
0 . The first-order

problem follows for stream function and energy equations:

∇4Ψ̂i
1 = Re∗

{
(Ψ̂i

0)α

[
(Ψ̂i

0)βββ + (Ψ̂i
0)ααβ

]
− (Ψ̂i

0)β

[
(Ψ̂i

0)αββ + (Ψ̂i
0)ααα

]}
, (3.179)

∇2θ̂i
1 = 0 (3.180)
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and BCs on the bottom:

(Ψ̂i
0)β(α, 0) =

[
A1Kn(Ψ̂i

0)ββ(α, 0) + A2Kn2(Ψ̂i
0)βββ(α, 0)

]
− Kn2(θ̂i

1)α(α, 0), (3.181)

(Ψ̂i
1)α(α, 0) = 0, (3.182)

(θ̂i
1)β(α, 0) = 0, (3.183)

on the top surface:

(Ψ̂i
0)β(α, 1) =

[
−A1Kn(Ψ̂i

0)ββ(α, 1) + A2Kn2(Ψ̂i
0)βββ(α, 1)

]
− Kn2(θ̂i

1)α(α, 1),

(3.184)

(Ψ̂i
1)α(α, 1) = 0, (3.185)

θ̂i
1(α, 1) = −α +

(
2γ

γ + 1

)
1

Pr

[
−A1Kn(θ̂i

1)β(α, 1) + A2Kn2(θ̂i
1)ββ(α, 1)

]
, (3.186)

on the right side:

(Ψ̂i
1)β(0, β) = 0, (3.187)

(Ψ̂i
1)α(0, β) =

[
A1Kn(Ψ̂i

1)αα(0, β) + A2Kn2(Ψ̂i
1)ααα(0, β)

]
, (3.188)

θ̂i
1(0, β) =

(
2γ

γ + 1

)
1

Pr

[
A1Kn(θ̂i

1)α(0, β) + A2Kn2(θ̂i
1)αα(0, β)

]
. (3.189)

and for matching conditions

lim
α→∞

Ψ̂i
1 = 0, (3.190)



45

lim
α→∞

θ̂i
1 = −α, (3.191)

lim
α→∞

(Ψ̂i
1)α = 0. (3.192)

Now, Equations 3.167, 3.170, 3.172-3.173, 3.175 and 3.176 associate with 3.181 and

3.184 built a new class of boundary conditions for Ψ̂i
0.

Similarly, the first-order problem of stream function needs second-order approximation

of temperature such that

(Ψ̂i
1)β(α, 0) =

[
A1Kn(Ψ̂i

1)ββ(α, 0) + A2Kn2(Ψ̂i
1)βββ(α, 0)

]
− Kn2(θ̂i

2)α(α, 0), (3.193)

(Ψ̂i
1)β(α, 1) =

[
−A1Kn(Ψ̂i

1)ββ(α, 1) + A2Kn2(Ψ̂i
1)βββ(α, 1)

]
− Kn2(θ̂i

2)α(α, 1).

(3.194)

Clearly, introduction of new boundary conditions, Equations 3.193 and 3.194 for Ψ̂i
1,

close the problem associated with 3.182, 3.185, 3.187-3.188, 3.190 and 3.191.

Second-order estimation for the temperature is formulated as

∇2θ̂i
2 = Re∗Pr

[
(Ψ̂i

0)α(θ̂i
1)β − (Ψ̂i

0)β(θ̂i
1)α

]
, (3.195)

(θ̂i
2)β(α, 0) = 0, (3.196)

θ̂i
2(α, 1) =

(
2γ

γ + 1

)
1

Pr

[
−A1Kn(θ̂i

2)β(α, 1) + A2Kn2(θ̂i
2)ββ(α, 1)

]
, (3.197)

(θ̂i
2)(0, β) =

(
2γ

γ + 1

)
1

Pr

[
A1Kn(θ̂i

2)α(0, β) + A2Kn2(θ̂i
2)αα(0, β)

]
, (3.198)

lim
α→∞

θ̂i
2 = Re∗Pr

{
Kn2

1 + 6A1Kn − 12A2Kn2

[
1

2
(β4 + β2) − β3 +

(
2γ

γ + 1

)
A2Kn2

Pr

]}
.

(3.199)
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Numerical treatments of the θ̂i
1, θ̂i

2, Ψ̂i
0 and Ψ̂i

1 are the same as those of the left side.

However, recall that the solution domain of interest divided to three distinguished

region, namely, left and right sides of inner problem and the core region of outer

problem. Since, the outer solution is valid in the entire domain except in a small

interval of O (ε) in the proximity of the ends, and also the inner solution is only valid in

this small distance; a global approach which is valid in the entire domain is demanded.

Two common methods are used widely to construct a general solution which is called

composite solution. In the first technique, additive composition, the inner and outer

expansions are summed and then the part they have in common is subtracted from the

sum so that it is not counted twice.

Ψc
(m,n) = Ψi

(m) + Ψo
(n) −

[
Ψo

(n)

]i

(m)
,

Ψc
(m,n) = Ψo

(n) + Ψi
(m) −

[
Ψi

(m)

]o

(n)
.

Here, for example Ψi
(m) means the m-term inner expansion, and the other terms use the

same convention as well. The second method is called as multiplicative composition. In

this methodology, the outer expansion multiplied by a correction factor which is a ratio

of the inner expansion to its outer one. This rule is also valid for the inner expansion.

Ψc
(m,n) = Ψo

(n)

Ψi
(m)[

Ψi
(m)

]o

(n)

= Ψi
(m)

Ψo
(n)[

Ψo
(n)

]i

(m)

.

In the current work, additive composition technique has been applied to get global

solutions for both flow and temperature distributions. The presentation of the solutions

are left to the next section.
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3.6. Results and Discussions

In this section, the results of asymptotic analysis will be given. In all com-

putations, the aspect ratio ε = 0.02 and Pr = 0.72 number are kept constant. Two

concurrent vortices are identified in the enclosure (Figure 3.4). While the upper branch

rotates in the clockwise direction, the lower one rotates in the counter-clockwise di-

rection as well. In Figure 3.5 and 3.6 leading order streamlines on the left side have

been shown for Kn = 0.1 and Kn = 0.3, respectively. Clearly, inspection of both fig-

ures reveals that resulting streamlines are pretty parallel to horizontal axis for ξ � 3.

Moreover, streamlines of the leading-order inner solution perfectly matches with corre-

sponding solution of outer expansion. A comparison between the u velocity profiles of

inner approximation for Kn = 0.1 and Kn = 0.3 is demonstrated in Figures 3.7 and

3.8. A flow structure like thermal boundary-layer is identified on both walls. At the

corners of the bottom and top walls, u velocity is almost negligible, and accelerates

rapidly as the flow proceeds with the horizontal direction. To analyze such a motion in

more details, consider that a gas which is bounded by infinitely long parallel plates at

y = 0 and y = 1, is initially at rest. If both plates are allowed to start a sudden motion

at a constant velocity of U = Kn2

1+6A1Kn−12A2Kn2 (from Equation 3.71), the motion can

be described by

the following equation

∂u

∂t
=

1

Re

∂2u

∂y2
, (3.200)

and the BCs

at y = 0 and y = 1/2 (symmetry BC)

u(0, t) = 1
∂u

∂y

∣∣∣∣
y= 1

2

= 0 for t > 0, (3.201)

and initial condition

u(y, 0) = 0 for 0 < y <
1

2
(3.202)
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where Re number is defined as Re = ρUd/2µ. Once the plates starts to motion, the

fluid brought into motion through the action of wall shear stress. The fluid particles

continues to accelerate until the steady-state condition takes place; in which the motion

has a constant velocity of U . Time evolution of this motion splits into two stages:

Stage 1. a flow until a moment of the time, t1 > 0 in which the particles settled

along the centerline of the enclosure start to move due to viscous diffusion, and

Stage 2. development of the flow until a moment of the time, t2 > t1 in which all

fluid particles have the same velocity with the velocity (uniform) of walls.

Solution of Equations 3.200-3.202 gives gradual influence of viscous diffusion on the

motion (Batchelor, 1967). The proposed model enables us verifying transient behavior

of the motion (between 0 < t < t1), which is neglected in the asymptotic analysis.

Notice that, the boundary layer on the bottom wall develops later than the top wall

(these regions were bordered by rectangles in Figures 3.7 and 3.8). On the other hand,

examination of Figures 3.9 and 3.10 shows different temperature gradient on the top

and bottom walls due to different temperature jumps realized along the stream-wise

direction mainly. Adiabatic wall condition on the bottom wall leads to slightly sharp

gradient than the top wall, and it causes more velocity slip on the bottom wall as well.

This is the reason why development of boundary layer occurs in a longer length on the

bottom rather than the top. Another point to be discussed is the effect of rarefaction

on the boundary layer. As Kn number increases, the entrance length (like thermal

entrance length as mentioned previous paragraphs) will also grow as inspected from

Figures 3.7 and 3.8. The flow generates two asymmetric branches on the side walls, and

turns around them to conserve the mass flow rate. The resulting asymmetry originates

from exactly unequal temperature jumps on the bottom and top half. Since there is

no-heat transfer in the vertical direction, the effect of temperature jump is negligible.

First-order temperature distributions for Kn = 0.1 and Kn = 0.3 have been

shown in Figures 3.9 and 3.10, respectively. Since the heat is conducted along the

negative ξ direction, temperatures of the side walls are different than zero and take

the values (at y = 1/2) of Tl = 0.080 and Tl = 0.157 for Kn = 0.1 and Kn = 0.3,
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Figure 3.4. Directions of vortices generated by the thermal transpiration effect

ξ

η

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

5.24E-04
4.48E-04
3.73E-04
2.98E-04
2.22E-04
1.47E-04
7.15E-05

-3.91E-06
-7.93E-05
-1.55E-04
-2.30E-04
-3.05E-04
-3.81E-04
-4.56E-04
-5.32E-04

Figure 3.5. Leading order streamlines on the left end wall for Re∗ = 2.5, Kn = 0.1

and Pr = 0.72

respectively.

The response of temperature jump to variations in Re number is illustrated in Figure

3.16. Clearly, the effect of Re number on the temperature distribution is constrained by

the thermal conditions of the boundaries. Insulation of the bottom boundary decreases

the temperature jump. On the other hand, more temperature jump is observed on the

top wall on which the temperature varies linearly. Therefore, the temperature field

mainly depends on the types of boundary conditions. Figure 3.12 shows

first-order approximation to the stream function on the left wall. Nevertheless, the

contribution of this order may be negligible for small aspect ratios if Re∗ number

is sufficiently small. On the other hand, second-order contributions to temperature

distribution are shown in Figures 3.13 and 3.14. The effect of this order becomes

dominant on the lower branch of the enclosure as inspected from figures. Notice a hot

spot on the lower half and the effect of Kn number on this region. As Kn number

increases the spots widens as well. The other point should be considered that the
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Figure 3.6. Leading order streamlines on the left end wall for Re∗ = 2.5, Kn = 0.3

and Pr = 0.72
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Figure 3.7. Leading order u velocity distribution on the left end wall for Re∗ = 2.5,

Kn = 0.1 and Pr = 0.72
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Figure 3.8. Leading order u velocity distribution on the left end wall for Re∗ = 2.5,

Kn = 0.3 and Pr = 0.72
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Figure 3.9. First-order temperature field on the left end wall for Re∗ = 2.5, Kn = 0.1

and Pr = 0.72
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Figure 3.10. First-order temperature field on the left end wall for Re∗ = 2.5,

Kn = 0.3 and Pr = 0.72
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Figure 3.11. First-order approximations to streamlines on the left wall for Re∗ = 2.5,

Kn = 0.1 and Pr = 0.72
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Figure 3.12. First-order approximations to streamlines on the left wall for Re∗ = 2.5,

Kn = 0.3 and Pr = 0.72
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Figure 3.13. Second-order approximations to temperature on the left wall for

Re∗ = 2.5, Kn = 0.1 and Pr = 0.72
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Figure 3.14. Second-order approximations to temperature on the left wall for

Re∗ = 2.5, Kn = 0.3 and Pr = 0.72
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Figure 3.15. Composite streamlines by additive composition for Re∗ = 7.5, Kn = 0.1

and Pr = 0.72
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Figure 3.16. The effect of Re number on the temperature distribution for Kn = 0.1

and Pr = 0.72; for Re∗ = 2.5 (left figure) and Re∗ = 7.5

(right figure)

second-order temperature profile shows different gradients on both horizontal walls.

A composite streamline is shown in Figures 3.15. Adiabatic boundary condition on

the bottom wall causes a thicker streamline pattern as detected from the figure. As

previously mentioned, this flow behavior is a natural result of much slip on the lower

boundary than the upper one due to slightly different temperature gradient.

To sum up, thermally driven creep flow of the rarefied gases in enclosures has

been examined in this chapter. A linear temperature gradient has been enforced along

the layer of fluid by keeping side walls at different temperatures. The temperature of

the upper wall varies linearly while the lower one is kept adiabatic. The flow directs

mainly along the horizontal axis and turns around the side edges in order to satisfy mass

conservation law. Regular perturbation has been applied in the asymptotic analysis

to evaluate both hydro- and thermo-dynamic characteristics of the flow. For this

purpose, a coordinate scaling standing for the regular perturbation parameter is used.

Nevertheless, regular perturbation series fail to predict the solutions on the end regions.

So, the domain of interest has been divided into three regions: the core and the left and

right ends. Solutions have been obtained at different order of approximations on these

regions via outer and inner expansions. Once the solutions are found, the remaining

task is to join two types of solutions via method of asymptotic matches. Additive

composition technique allows us getting global flow and temperature fields. From the
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resulting mass and temperature fields, one can make the following deductions:

• A thermal boundary-layer like motion has been identified on the horizontal

walls near the ends. Velocity slip on the lateral walls are responsible from such

boundary layers. As Kn number increases, hydrodynamic entrance length also

increases.

• Boundary conditions and also temperature jumps greatly affect viscous diffu-

sions. Both Kn number (rarefaction) and boundary conditions enlarge or lessen

the length of the boundary layer. Although, much temperature jump is observed

on the top surface, more slip velocity is taken place on the bottom one due to

larger temperature gradient. This leads to more viscous diffusion to the core

region of the flow and thicker vortex pattern as well.

• Time evolution of such a motion is accomplished via the analogy to a flow be-

tween the suddenly moved parallel plates. Thus, diffusion time at which particles

of the fluid along the center-line of enclosure sense viscous diffusion, can be easily

obtained.

• Temperature jump is also affected by Re number which designates temperature

difference between the end walls for current study as well.

• Although the contribution of the first-order stream function is less than the

leading-order, flow pattern at this order convects composite flow character. On

the other hand, second order approximation may be more important as Re num-

ber increases. An interesting feature of the second-order approximation is the

creation of the hot spot on the bottom site.

• The present work neglects compressibility effects in the gas due to smallness of

Ma numbers. This assumption is valid along the y direction as we will see from

compressible flow simulations.

In fact, the current chapter serves as a preliminary step to accomplish linear

stability analysis. Thus, base motions of the convection have been characterized via

asymptotic analysis, and next step will be examination of the stability of the thermally

driven convection.
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4. STABILITY OF RAREFIED GAS FLOW IN

ENCLOSURES

Heat transfer to rarefied gases produces mainly three types of motions. In the first

one, the motion is primarily induced by buoyancy forces resulting from temperature

differences between the bottom and top boundaries. This phenomenon has been widely

studied by many researchers under the heading of Rayleigh-Bénard instability. In the

second category, the flow is generated by thermally driven surface motion which is the

main subject of the current study and especially in the closed domains, it still requires

much effort. The third branch of flow is realized dominantly in case of negligible gravity

conditions. In this mechanism which is so called thermal stress flow, a flow starts to

evolve in time due to thermal stresses even in the absence of any external force, such

as pressure, magnetic field, etc.

Recently, Rayleigh-Bénard convection has been gathered much attention due to

not only lack of sufficient knowledge about the behavior of rarefied gas instabilities

but also there is a necessity of proving whether DSMC methods work well in the

continuum flow regime or not. Golshtein et al. (1996) have pointed out that Boussinesq

approximation becomes invalid when the temperature difference between the bottom

(Th) and top (Tc) plate is high enough, and only Rayleigh number can not determine

the limit of the instabilities. Stefanov et al. (2002a) have investigated the long-time

behavior of the Rayleigh-Bénard convection of a rarefied gas for varying Kn and Froude

(Fr) numbers. Both DSMC and direct simulation of NS equations have been performed

to identify the zone of instabilities within the Kn − Fr parameter space. Although,

solutions of both methods constitute well within the wide range of Kn and Fr numbers,

they have stressed a discrepancy on the basic state solutions of one dimensional density

profile found by these two totally different methods. According to Stefanov et al.

(2002a), this difference can be attributed to the lack of higher-order terms of Chapman-

Enskog expansion in the NS equations. In the second report of Stefanov et al. (2002b),

new regimes and final states of Bénard convection have been referred. Hirano et al.
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(2002) have compared solutions of DSMC and NS simulations in the Rayleigh-Bénard

convection for Kn = 0.029, Kn = 0.01 and Kn = 0.005 for Rayleigh number, Ra =

2990. They have noticed a close similarity between both simulations as Kn number

decreases and goes to continuum flow limits. However, they have not included the effect

of velocity slip and temperature jump on modeling. Recently, Manela et al. (2005) have

studied on the linear-stability of compressible Rayleigh-Bénard convection in the slip

flow regime. According to their findings, realization of instability is limited to small

Kn ≤ 0.03 numbers. Both temperature dependency of thermo-physical parameters

and compressibility effects have been taken into account in the modeling. They have

reported close constitution between the linear stability analysis and DSMC on the

threshold of the instability. Sone et al. (1997) have studied Bénard instability on the

basis of finite difference representation of Boltzmann-Krook-Welander equation (BGK

model). They have discussed effects on initial condition and aspect ratio of the domain

on the type of steady convection rolls.

In the third category, thermal stresses are capable of initiating a flow from rest and

principally originate from thermal gradient terms embedded in the Burnett momentum

equations. However, thermal stress flow can not be observed by making use of NS

equations due to absence of higher-order terms Burnett equations’ have. According to

Golshtein et al. (1996), magnitudes of velocities resulting from thermal stresses may

be sufficiently high if the temperature difference between the walls is large. They have

also observed cellular flow structures between the plane and wavy patterned surfaces

for Tc � Th, see pages 255-256 of Golshtein et al. (1996). Although, the mentioned flow

is slightly different from our proposed flow instability, occurrence of such an motion

straightens our hypothesis. Another study regards the effect of thermal stresses on the

pressure gradient and normal stress in a stationary, hard-sphere gas under no body

and external forces conditions (Mackowski et al. 1999). Additionally, Sone (2000)

has been reported that the thermal stress produces steady flow even in the limit of

continuum flow and given some examples exhibiting such a mechanism. Moreover, Sone

et al. (2003) have considered Bénard convection under the weak gravity conditions.

Definitely, NS equations don’t pose any thermal convection due to lack of gravity.

However, solution of Boltzmann system presents strong fluctuations of temperature



58

even in the infinitesimal velocity and gravity conditions (Sone et al., 2003). They have

stressed insufficiency of the NS system in the continuum limit as well.

Notice that, occurrence of thermal stress flow even for Kn ≤ 0.01 exposes inad-

equacy of NS equations and so use of Burnett equations becomes indispensable. This

is the reason why the Burnett equations have been chosen as a mathematical model in

the present study.

In this study, linear stability theory will be exploited to clear possible unstable

behavior of rarefied gas media. In the next section, basic theory of the linear stability

theory will be given.

4.1. Theoretical Background of Hydrodynamic Stability

4.1.1. Stability in the Small

Suppose that an incompressible and Newtonian fluid, subjected to a body force

of f (r, t), flows in a domain of Ω ⊂ R3. Such a viscous flow is simply governed by

non-dimensional NS system

div u = 0, (4.1)

∂u

∂t
+ (u · grad)u = f + grad p +

1

Re
∇2u, (4.2)

with initial condition,

u (r, 0) = u0 (r, 0) , (4.3)

and the boundary condition

u
∣∣
∂Ω

= U, (4.4)
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where r = (x, y, z)tr and u (r, t) = (u, v, w)tr are the position and velocity vectors

in the domain Ω, respectively. Notice that, variations in initial conditions, boundary

conditions, the body force and physical parameters produce infinite number of distinct

problems. However, by keeping all conditions and parameters constant except initial

conditions, the flow problem can be converted to the study of the perturbations acting

on the initial condition at the initial time only. Thus, the problem will become purely

initial condition dependent. Therefore, consider a motion which is also called basic

motion and modeled by

div ū = 0 (4.5)

∂ū

∂t
+ (ū · grad) ū = f − grad p̄ +

1

Re
∇2ū, (4.6)

the initial condition,

ū (r, 0) = ū0 (r, 0) , (4.7)

and the boundary condition,

ū
∣∣
∂Ω

= U, (4.8)

Assume that the basic field is subjected to the perturbations of (u′
0, p

′
0) at the initial

moment. Thus, the initial conditions of the flow, Equation 4.3, will be a composition

of the initial condition of the basic motion and its perturbation

u0 = ū0 + u′
0.

Analogously, the sum of basic states and their perturbations forms the perturbed flow

such that

u = ū + u′, p = p̄ + p′.
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If the basic motion is disturbed slightly, the disturbance may either be killed, survives

as a disturbance of similar magnitude or grows so much that the basic flow converts to

a different state, such as another laminar flow or turbulent flow. In other words, such

disturbances may be asymptotically stable, neutrally stable or unstable, respectively

(Drazin et al., 1993). Formal definition is given in the following statement (Georgescu,

1985).

Definition 4.1. The solution ū is said to be stable in the small if for every ε > 0

there exists η (ε) such that sup
x,t

|u (x, t) − ū (x, t) | < ε for sup
x

|u0 (x) − ū0 (x) | < η (ε);

ū is said to be asymptotically stable in the small if it is stable in the small and

lim
t→∞

|u (x, t) − ū (x, t) | = 0

Here the “ sup ” operator designates positive definite norm of any quantity. Hydro-

dynamic stability does not focus on time evolution of the initial disturbance, and it

gives the effect of physical parameters at which the instability initiates. Notice that an

important parameter, Re number, determines the faith of the flow such that for small

values of it, the problem of Equations 4.1-4.4 admits unique and stable basic solution

ū. Let’s consider a ReG number at which the basic flow passes from stable state to

one of the states: “pure instability” or “instability by steps —neutral instability”. In

case of “pure instability”, the perturbations grow and the flow becomes turbulent when

Re ≥ ReG as t → ∞. On the other hand, the flow structure changes to a new laminar

basic motion, ū1, as t → ∞ for the case of “instability by steps”. This intermediate

step lasts until reaching the new critical level of Re′G at which ū1 becomes unstable

and this process continues consecutively. Re′G is a bifurcation point where the stability

is lost. Consequently the solution will not be unique at this point.

Substraction of Equations 4.5-4.8 from the perturbed state, Equations 4.1-4.4 result in

an initial-value problem for the perturbation to velocity vector

∂u′

∂t
+ (ū · grad)u′ (u′ · grad) ū + (u′ · grad)u′ = − grad p′ +

1

Re
∇2u′, (4.9)

u′ (x, 0) = u′
0 (4.10)
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which is differentiable and continuous class of solenoidal functions, (div u′ = 0), van-

ishing on the boundary ∂Ω. So, the null vector of solution represents the basic flow

state. Generally, the global existence for solutions of perturbations and basic state

flows can be found only by use of some Hilbert spaces H , such as the perturbation

vector u′, or spatial change of it, grad u′. For example; a flow is stable if any one of

the conditions

∫
Ω

|u′|2 dx → 0 if t → ∞,

∫
Ω

| grad u′|2 dx → 0 if t → ∞

become valid. The first condition represents energy of fluctuations and corresponds

to a kind of stability in the large which is called as stability in the mean. The second

condition enforces negligible gradient of the large perturbations and more stiff than

the instability in the small which is only related to the velocities. The generalized

solutions corresponding to bounded velocities and their gradients not only give basic

state solutions but also permit to study transition stages of the flow.

4.1.2. Stability in the Mean

Equations 4.9 and 4.10 (difference motions: in fact the perturbation velocity

equals to the difference between the perturbed velocity and basic velocity fields) rep-

resenting basically the balance between the diffusion and convection of perturbations,

construct complete set by introducing solenoidality condition —in reality continuity of

perturbed velocities— and zero perturbation on the boundary, ∂Ω

div u′ = 0, (4.11)

u′∣∣
∂Ω

= 0. (4.12)



62

Assuming the volume Ω is bounded (otherwise periodicity condition is assumed with

respect to x) one can get perturbation energy multiplying Equation 4.9 by u′ and then

integrating over the flow domain of Ω

d

dt

∫
Ω

|u′|2
2

dx +

∫
Ω

(ū · grad)u′ · u′ dx +

∫
Ω

(u′ · grad) ū · u′ dx

+

∫
Ω

(u′ · grad)u′ · u′ dx = −
∫

Ω

u′ grad p
′
dx+ (4.13)

1

Re

∫
Ω

∇2u′ · u′

For selenoidal vectors u′
1 the vectorial identity of div (u′

1 Φ) = u′
1 grad Φ+Φ div u′

1

converts to div (u′
1 Φ) = u′

1 grad Φ which can be written in another form by remem-

bering Gauss’s theorem

∫
Ω

u′
1 gradΦ dx = div (u′

1 Φ) dx

=

∫
∂Ω

u′
1Φn dA

where Φ denotes any scalar function. No perturbation condition of u′
1|∂Ω = 0 sets the

above equation as

∫
Ω

u′
1 grad Φ dx = 0 (4.14)

Considering the equalities of (ū · grad)u′ · u′ = ū · grad |u′|2
2

, (u′ · grad)u′ · u′ =

u′ · grad |u′|2
2

and Equation 4.14 encourages the following relations
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∫
Ω

(ū · grad)u′ · u′ dx =

∫
Ω

(u′ · grad)u′ · u′ dx

(4.15)

=

∫
Ω

u′ · grad p′ dx.

Viscous term of the Equation 4.13 turns out to be

∫
Ω

∇2u′ · u′ dx = −
∫

Ω

| grad u′|2 dx

where

| grad u′|2 =
∑

1≤i,j≤3

∂u′
i

∂xj

∂u′
i

∂xj

.

Thus, Equation 4.13 modifies to the famous Reynolds-Orr energy equation by account-

ing also Equation 4.15

d

dt

∫
Ω

|u′|2
2

dx = −
∫

Ω

(u′ · grad)ū · u′ dx − 1

Re

∫
Ω

| grad u′|2 dx (4.16)

The first term on the right hand side of Equation 4.16 is decomposed into a vectorial

identity of (u′ · grad)ū · u′ = div[(ū · u′) · u′] − (u′ · grad)u′ · ū. Integration of this

relation by considering Gauss’s theorem and Equation 4.12 yields

∫
Ω

(u′ · grad)ū · u′ dx = −
∫

Ω

(u′ · grad)u′ · ū dx.

Thus, Reynolds-Orr equation is reorganized as

d

dt

∫
Ω

|u′|2
2

dx =

∫
Ω

(u′ · grad)u′ · ū dx − 1

Re

∫
Ω

| grad u′|2 dx (4.17)

Notice that first term of the Equation 4.17 designates time rate change of the mean

energy of the perturbations. So, let’s label such an important quantity as
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K(t) =

∫
Ω

|u′ |2
2

dx

Definitely, the first term of the right hand side of Equation 4.17 represents the quantity

of energy transporting from basic state to perturbed state and the second term desig-

nates energy smeared by viscous diffusion. In fact, rearranged Reynolds-Orr equation

is nothing more than the energy balance between the time rate change of mean energy

of perturbations and the competition between the energy transfer to the perturbations

from basic state and dissipation due to viscous dissipation.

Definition 4.2. The basic motion ū is said to be stable in the mean to the pertur-

bations of the initial conditions, if the mean energy of the perturbations u′, solution of

Equations 4.9-4.10 remains bounded for every t ≥ 0; ū is said to be asymptotically

stable in the mean if K(t) → 0 as t → ∞.

Definition 4.2 exhibits sufficient condition for the stability in the mean such that

dK(t)

dt
< 0, for t > 0. (4.18)

The methodology modeled by Equations 4.9-4.12 (equations of difference motions) is

called as energy method and it refers only bounds of the stability but does not point out

exact limits of the stability. See discussions about this topic in page 24 of Georgescu

(1985) and page 424 of Drazin et al. (1993). Due to non-linear nature of the equations

of difference motions, an assumption of infinitesimally small perturbations eliminates

insolvability restriction of Equations 4.9-4.12 and details of the procedure will be given

in Section 4.2. A closer look into Equation 4.17 reveals sufficient condition for the

stability of the basic motion

− ∫
Ω
(u′ · grad)ū · u′ dx

1
Re

∫
Ω
| gradu′|2 dx

< 1

which is derived from the requirements of dK
dt

< 0
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4.1.3. Linear Stability Theory

Equations of difference motion either preserves its non-linearity for finite per-

turbations or simplifies to a linear form in case of infinitesimally small disturbances.

Neglecting powers of infinitesimally small fluctuations allows us to study in the frame-

work of linear theory of hydrodynamic stability. Thus, equations of difference motion

is reduced to equations of linearized hydrodynamic stability.

∂u′

∂t
+ (ū · grad)u′ + (u′ · grad)ū = − grad p′ +

1

Re
∇2u′, (4.19)

u′(x, 0) = u′
0 (4.20)

Definitely, this initial-value problem can be separable into some functions and the

perturbations can be expressed as a superposition of the product of these functions

such that u′(x, t) = u′
0(x)e−σt which is called as normal modes, where complex number

of σ is an eigenvalue representing propagation of perturbation waves in time and u′
0

is an eigenvector of the initial-value problem. Thus, substitution of the normal mode

formulation to the mathematical model of the linear stability yields

−σu′
0 + (ū · grad)u′

0 + (u′
0 · grad)ū = − grad p′0 +

1

Re
∇2u′

0, (4.21)

u′
0|∂Ω = 0. (4.22)

Note also that u′
0 is solenoidal function.

Definition 4.3. The basic motion of ū is linearly asymptotically stable, if the

system of Equations 4.21 and 4.22 has no eigenvalue with negative real part. The basic

flow becomes asymptotically unstable if at least one eigenvalue with negative real

part is an eigenvalue of the problem. The flow is neutrally or marginally stable if there

exists at least an eigenvalue with only imaginary part, the rest of the eigenvalues may

have positive or vanishing real parts.
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Clearly, Re number which is the most important parameter of the problem directly

determines the direction of being stable or not. The Re number in which at least one

eigenvalue with negative reel part exists, corresponds to critical Re number and this

level is also known as bound of linear stability. If any value of σ corresponds to a certain

value of Re number, this matching is expressed by ξ0(Re) = inf �(σ). Analogously,

the critical Re number is simply ξ0(Recr) = 0 corresponding to neutral perturbations

with �(σ) = 0.

If the flow domain is unbounded in one or two dimensions; the general procedure is

keeping perturbations periodic and bounded in these directions such that

u′ = u′
0(y, z)eikxx−σt

or

u′ = u′
0(z)ei(kxx+kyy)−σt

where kx and ky are wave numbers in the x and y directions, respectively. In this case,

the eigenvalue σ depends on not only Re number but also kx and ky. In fact, the main

purpose of the linear theory is to correlate a relation between these numbers, such as

(kx, Re) in two-dimensions or (kx, ky, Re) in three-dimensions. At the planes of this

parameters, domain of stability and instability are decomposed by neutral curves (or

surfaces in three-dimensions) at which the instability grows up. So, it is important to

find Recr values for each values of the other parameters.

4.1.4. Global Stability

In this section, the rate of mean perturbation energy K(t) to K(0) for varying

Re number will be scrutinized. For the sake of brevity, we will introduce only the main

conclusions of the global stability concept. Interested readers are referred to Georgescu

(1985) for more details. Equation 4.17 can be rewritten in a different way by use of

Serrin’s theorem

lim
t→∞

K(t)

K(0)
= 0. (4.23)
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The basic state ū is attractive in the mean if it satisfies Equation 4.23. A flow is

asymptotically stable if it is stable and attractive. The basic state of ū is globally

stable or unconditionally stable if Equation 4.23 is fulfilled for all values of K(0). ū

will become conditionally stable if Equation 4.23 holds only for K(0) < δ > 0.

In the current study, we assume that the perturbations u′ to the basic state are

infinitesimally small and so linear stability theory will be applied through the Section

4.2.

4.2. Modeling

Let’s consider circulation of rarefied gas in an enclosure with an aspect ratio as

illustrated in Figure 3.2. While left side of the enclosure is maintained at temperature

of Tc, the other side is kept at temperature of Th, where Th > Tc. Temperature gradient

on the top wall is constant such that b = dT
dx

= constant, b > 0. Thermal BC of the

bottom surface directly affects characteristics of the stability as described by Priede et

al. (1995). So, the following BCs are performed for temperature

1. Robin type in two-dimensional stability analysis

2. Neumann type in three-dimensional stability analysis.

For the first case, the temperature of the boundary varies linearly as the top one, b = dT
dx

.

The second case stands for adiabatic wall. It is clear that, there is a flow axisymmetry

with respect to the centerline of the enclosure for the first case. For this reason, we will

restrict the analysis for axisymmetric disturbances. According to the our experiences

in two-dimensional stability analysis, there are some symmetry-breaking disturbances

as well.

Once, suitable scales for non-dimensionalization are introduced, the governing

equations in dimensionless form are formulated as

t∗ =
tu0

d
, x∗ =

x

d
, y∗ =

y

d
,
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u∗ =
u

u0
, v∗ =

v

u0
, θ =

T − Tc

bd
, p∗ =

p

µ0u0/d

continuity, momentum and energy equations:

div u = 0 (4.24)

Re

[
∂u

∂t
+ (u · grad)u

]
= − grad p + ∇2u (4.25)

RePr

[
∂θ

∂t
+ (u · grad) θ

]
= ∇2θ. (4.26)

where Re and Kn numbers are defined as

Re =
3

2π

(
γ − 1

γ

)
cp0ρ

2
0d

3b

µ2
0

, Kn =
µ0

dρ0

√
2RT0/π

One important point to be discussed is that the order of magnitude of Re does not

depend on ε. We set Re number to be O(1). Such an approximation does not violate

basic state solutions found by outer expansions in the preceding chapter.

4.3. Linearized Stability Analysis

Using the fact that instantaneous flow variables can be represented as a sum of

basic motion solutions and small disturbances

u = ū + u′, p = p̄ + p′, θ = θ̄ + θ′.

Application of linearization process as described in Section 4.1.1 gives the following

equations of disturbance motion

div u′ = 0, (4.27)
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Re

[
∂u′

∂t
+ (ū · grad)u′ + (u′ · grad)ū

]
= − grad p′ + ∇2u′, (4.28)

RePr

[
∂θ′

∂t
+ (ū · grad)θ′ + (u′ · grad)θ̄

]
= ∇2θ′ (4.29)

As previously mentioned in Section 4.1.3, perturbations to the basic states of flow

variables can be represented in normal mode forms given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′

v′

w′

p′

θ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u′
0

v′
0

w′
0

p′0

θ′0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ei(kxx+kzz−σt) (4.30)

where kx and kz are positive valued real numbers representing perturbation wave-

numbers in the x and z directions, respectively. Here, σ is the complex eigenvalue of the

system. Real part of the eigenvalue, �(σ), denotes frequency of perturbation modes,

ie. u′
0, v

′
0, and the imaginary part of it, �(σ), designates the temporal amplification

rate of the perturbations. When �(σ) is greater, equal to, or smaller than zero, a

perturbation mode is unstable with temporal amplification, neutrally stable, or stable

with finite damping, respectively (Hu et al., 1998). The perturbation waves travel

in a direction of φ = arctan (kz/kx) with respect to the positive x − axis and overall

wave number is defined by, k =
√

k2
x + k2

z . Complex wave (phase) velocity, cR , of the

perturbation waves is defined as cR = σ/kx. Note that, although, perturbation waves

propagate in the space, a reduction to two-dimension may possible by ignoring kx or

kz. Substitution of Equation 4.30 into Equations 4.27 - 4.29 results in normal mode

equations

ikxu
′
0 + D v′

0 + ikzw
′
0 = 0, (4.31)
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{D2 −(k2
x + k2

z) − ikxReū + iνrPr−1}u′
0 = ikxp

′
0 + Rev′

0 D ū, (4.32)

{D2 −(k2
x + k2

z) − ikxReū + iνrPr−1}v′
0 = D p′0, (4.33)

{D2 −(k2
x + k2

z) − ikxReū + iνrPr−1}w′
0 = ikzp

′
0, (4.34)

{D2 −(k2
x + k2

z) − ikxRePrū + iνr}θ′0 = RePru′
0θ̄x + RePrv′

0θ̄y, (4.35)

where D = d/dy and D2 = d2/dy2 are differential operators. Neutral conditions of the

disturbances require setting the growth rate (complex part) of the eigenvalue of the

system to zero. Thus, the remaining part the eigenvalue will only be the frequency of

the perturbation modes,

νr = RePrσr.

4.3.1. Reduction to Two-Dimensional Normal Mode Form

Normal mode equations of the problem, Equations 4.31 - 4.35, set coupled system

of partial differential equations and requires a numerical approximation for the solution.

On the other hand, a special case of kx = 0, simplifies the system and allows finding

an analytical solution. In this case, the continuity equation can be used to eliminate

variables w′
0 and p′0, Thus, the reduced system of equations can be rearranged as

{L +iνrPr−1}u′
0 = Rev′

0 D ū x-wise, (4.36)

{L +iνrPr−1}L v′
0 = 0 y-wise, (4.37)

{L +iνr}θ′0 = RePr{u′
0θ̄x + v′

0θ̄y} energy, (4.38)
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where the differential operator L is defined as L = D2 −k2
z . Next-section gives solution

procedures for the linear stability equations.

4.4. Eigensystems in Two- and Three-Dimensions

This section brings forward solutions of both two- and three-dimensional nor-

mal mode equations. In the proceeding section, analytical solutions of normal mode

equations in two-dimensions will be derived.

4.4.1. The Eigensystem for Axisymmetric Disturbances in

Two-dimensions

Analytical solution of linear stability equations in two-dimensions gives valu-

able information about creation of instability mechanism. Effect of three second-order

models (Cercignani, Deissler, Schamberg) and a first-order slip model (Maxwell) on the

limits of the proposed instability have also been examined (see Table 2.1). The main

purpose of the current section is to establish bounds of the instability and to examine

effects of some important dimensionless numbers about instability. For this purpose,

after solving v′
0, u′

0 and θ′0, neutral curves of instability will be found with the aid of

characteristic equation as shown in Section 4.4.1.3. Illustration of the axisymmetric

problem has been shown in Figure 4.1. Note that, dimensions of the enclosure has been

-

+

+

x

y

ThTc

dT/dx=b

dT/dx=b

u velocity 
component

core flowcore flowend flow

d

l

Figure 4.1. Geometry for the axisymmetric disturbances

scaled with half channel height of d/2. In this situation, disturbance equations can be
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rearranged as,

{L+iνrPr−1}u′
0 = Redv

′
0 D ū x-wise, (4.39)

{L+iνrPr−1}L v′
0 = 0 y-wise, (4.40)

{L+iνr}θ′0 = RedPr{u′
0θ̄x + v′

0θ̄y}, energy (4.41)

where Red = Re/8. Here νr modifies to νr = σrRedPr. Basic state for the axisymmetric

case can be represented as the followings;

ū = [u, v, w]tr =

[
Kn2

2 + 6A1Kn − 6A2Kn2

(
3y2 − 1

)
, 0, 0

]tr

p̄x =
6Kn2

2 + 6A1Kn − 6A2Kn2

θ̄ = x + RedPr

{
Kn2

2 + 6A1Kn − 6A2Kn2

[
y4

4
− y2

2
+

2γ

γ + 1

8A2Kn2 + 1

4Pr

] }
. (4.42)

After the introduction of basic states, disturbance equations of two-dimensional case,

4.39-4.41, will be solved analytically with the following boundary conditions:

on the centerline of the enclosure, y = 0;

D u′
0 = v′

0 = D2 v′
0 = D θ′0 (4.43)

on the top wall, y = 1;

u′
0 + A1Knd D u′

0 − A2Kn2
d D2 u′

0 = 0, (4.44)

v′
0 = 0, (4.45)
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D v′
0 + A1Knd D2 v′

0 − A2Kn2
d D3 v′

0 − Kn2
dk

2
zθ

′
0 = 0, (4.46)

θ′0 −
(

2γ

γ + 1

)
1

Pr

[−A1Knd D θ′0 + A2Kn2
d D2 θ′0

]
= 0, (4.47)

where Knd is based on the half enclosure height and defined as Knd = 2Kn.

4.4.1.1. Solution of normal mode v equation. In order to advance in analytical solu-

tions, v′
0 equation should be solved at first. For this purpose, let’s consider the equation

of

(L +iνrPr−1) L v′
0 = 0 (4.48)

and related BCs

v′
0(0) = 0, D2 v′

0(0) = 0 (4.49)

v′
0(1) = D v′

0(1) + A1Knd D2 v′
0(1) − Kn2

dk
2
zθ

′
0(1) = 0. (4.50)

In order to get a solution to the system of Equations 4.48-4.50, boundary values of

θ′0 should be specified. If normal mode form of temperature on the top boundary is

prescribed as

θ′0(1) = 1, (4.51)

then v′
0, u′

0 and θ′0 can be solved subsequently. Under this circumstances, general

solution for v′
0 can simply be represented as a sum of exponential functions

v′
0(y) = Aezy + Be−zy + Ce−kzy + Dekzy, (4.52)
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where A, B, C and D are constants to be determined from BCs and complex number,

z, is given by

z =

√
Prk2

z − iνr

Pr
.

Applications of BCs, Equations 4.49 and 4.50 yield;

A =
An

Ad1 + 2 (Ad2 + Ad3) sinh kz

,

An = Kn2
dk

2
z sinh kz,

Ad1 = 2kz

(
A2k

2
zKn2

d − 1
)
cosh kz sinh z,

Ad2 =
(
z − A2z

3Kn2
d

)
cosh z,

Ad3 = A1Kn
(
z2 − k2

z

)
sinh z,

−C = D = B = −A.

4.4.1.2. Solution of normal mode u equation. After finding the solution of v′
0, let’s

consider the u′
0 equation;

(
L+iνrPr−1

)
u′

0 = Redv
′
0 D ū (4.53)

with the boundary conditions,

D u′
0(0) = u′

0(1) + A1Knd D u′
0(1) − A2Kn2

d D2 u′
0(1) = 0 (4.54)

where

D ū =
6Kn2

2 + 6A1Kn − 6A2Kn2
y.



75

General solution of Equation 4.53 is represented as the sum of particular and homoge-

neous solutions,

u′
0(y) = Eezy + Fe−zy + u′

0p
(y) (4.55)

where E and F are coefficients to be determined from the BCs of u′
0 and u′

0p
corresponds

to particular solution. These coefficients are calculated as

E =
En1 + En2

Ed
,

En1 = u′
0p

(1) + Knd(A1 D u′
0p

(1) − A2Knd D2 u′
0p

(1))z,

En2 = −D u′
0p

(0)(Kndz(A1 + A2Kndz) − 1)e−z,

Ed = 2z((A2z
2Kn2

d − 1) cosh z − A1zKnd sinh z),

F =
Fn1 + Fn2

Fd
,

Fn1 = u′
0p

(1) + Knd(A1 D u′
0p

(1) − A2Knd D2 u′
0p

(1))z,

Fn2 = D u′
0p

(0)(Kndz(A2Kndz − A1) − 1)ez,

Fd = 2z((A2z
2Kn2

d − 1) cosh z − A1zKnd sinh z). (4.56)

4.4.1.3. Solution of normal mode energy equation. The governing equation and the

BCs of θ′0 are rewritten as

(L +iνr) θ′0 = RedPr
[
u′

0θ̄x + v′
0θ̄y

]
, (4.57)

D θ′0(0) = θ′0(1) − 2γ

γ + 1

1

Pr

[−Knd D θ′0(1) + A2Kn2
d D2 θ′0(1)

]
= 0 (4.58)

Lastly, the normal mode representation of temperature is expressed as a sum of

θ′0 = Gez1y + He−z1y + θ′0p
(y) (4.59)



76

where z1 is calculated as

z1 =
√

k2
z − iνr,

and θ′0p
designates particular solution of the Equation 4.59. Implementation of BCs,

Equation 4.58 gives constants G and H ;

G =
Gn1 + Gn2

Gd
,

Gn1 = u′
0p

(1) + cθKnd(A1 D u′
0p

(1) − A2Knd D2 u′
0p

(1))z,

Gn2 = −D u′
0p

(0)(cθKndz(A1 + A2Kndz) − 1)e−z,

Gd = 2z((cθA2z
2Kn2

d − 1) cosh z − cθA1zKnd sinh z),

H =
Hn1 + Hn2

Hd

,

Hn1 = u′
0p

(1) + cθKnd(A1 D u′
0p

(1) − A2Knd D2 u′
0p

(1))z,

Hn2 = D u′
0p

(0)(cθKndz(A2Kndz − A1) − 1)ez,

Hd = 2z((cθA2z
2Kn2

d − 1) cosh z − cθA1zKnd sinh z), (4.60)

where cθ = 2γ
γ+1

1
Pr

.

The solution of θ′0 can be expressed in terms of a complex function such that

θ′0 = (Re)2f [y; νr, kz, P r, Kn, γ] , (4.61)

where f = fr + ifi. Real valued prescription of θ′0 on the top boundary, Equation 4.51

requires setting

�f [1; νr, kz, P r, Kn, γ] = 0. (4.62)

This equation is the characteristic equation for the eigenvalue νr. The root νr has been

determined numerically by use of bisection method, for other varying parameters.
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Subsequently, the critical values of Re forming neutral curves are detected from

Re = �f [1; νr, kz, P r, Kn, γ]−
1
2 . (4.63)

Thus, corresponding eigenvalue σr is simply determined from

σr =
νr

RePr
.

Note that all mathematical simplifications during the solution process of normal mode

equations are accomplished by MATHEMATICA�.

4.4.2. Results and Discussions for Two-Dimensional Case, (kx = 0)

In this section we will introduce neutral and critical states of some second-order

slip models i.e. Cercignani, Deissler and Schamber, and a first-order slip model i.e.

Maxwell. Critical states for the mentioned slip modes are summarized in Table 4.1. The

critical states are approximately the same for all second-order slip models. On the other

hand, there is a increase in the (Red)cr for increasing second order slip coefficient A2

as inspected from Deissler and Schamber models. Although, A2 of Cercignani models

is greater than Deissler and Schamberg, its first-order coefficient A1 leads to highest

critical Red number among the second-order models. Maxwell model gives the stronger

stability threshold due to vanishing A2. Since the flow is totally generated by thermal

Table 4.1. Eigenvalues and corresponding critical values of slip models for Kn = 0.40

and Pr = 0.70

Slip model νr (kz)cr (Red)cr

Cercignani 3.07 0.76 181.584

Deissler 2.78 0.74 178.670

Maxwell 36.15 1.53 429.238

Schamberg 2.56 0.72 186.345

transpiration and a significant velocity slip takes place on the boundaries depending

on Kn, Re and Pr numbers, behavior of slip perturbations will be very important for



78

the current flow type. Because of the fact that the proposed flow originates from the

temperature variations along the surfaces bounding the rarefied gases, looking at the

temperature fluctuations on the boundaries will be a nice starting point. In Figure

4.2 real parts of the temperature perturbations are shown for different models. Notice
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Figure 4.2. Real part of the temperature perturbations for different slip models with

Pr = 0.70 and Kn = 0.40 at t = 1/σr

that a wave shift takes place for each model. Maxwell models shows the greatest

shift compared with the others due to relatively large wave number of (kz)cr. Since

critical wave numbers of all second-order models are approximately the same, wave

shifts of all those also approach to each other. Perturbations of the temperature are

illustrated in Figure 4.5 with increasing dominance as approaching axisymmetry plane

of the enclosure. The strongest perturbations are observed starting from y ∼= 0.52

and take extreme values on the centerline. To illustrate surface flow we show �w′
0 on

y = 1 (Figure 4.3). Maxwell model creates the highest wave amplitude. Again the other

models have nearly the same wave amplitudes. Maximums and minimums of all models

take place at different locations as well. The important point to be discussed at this

stage that although Maxwell model leads to the highest wave speeds on the top surface,

its stability threshold shows significant increases and takes higher values as compared
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Figure 4.3. Real part of w′
0 disturbances on y = 1 for various models with Pr = 0.70

and Kn = 0.40 at t = 1/σr

those of the other slip models. This observation is oppose to our expectations. If we

totally ignore slip effect due to momentum accommodation, the slip on the surface

will be proportional to Kn2
dθ

′(1) and then inserting A1 = 1.0 corresponds to Maxwell

models of which stability limits were the highest. If the second-order contribution of

the momentum accommodation, A2Kn2
d D2 u′

t, comes into effect, we observe reduction

in critical Re number. More importantly, higher values of A2 strengthen stability of

the flow. This is the reason why the Maxwell models gives the highest amplitude. The

disturbance waves of w′ on the x plane are illustrated in Figure 4.4.

Disturbance flow created by thermal waves exhibits cellular patterns (Figure 4.7

and Figure 4.6). While the negative valued streamlines rotate clockwise direction,

negative valued ones spin counter direction as well. Figure 4.8 shows variation of

streamlines on the top plane of the enclosure. Notice that, Schamberg model gives the

lowest value as compared the other second-order models. On the other hand, smallness

of the values is a proof of zero net mass flow rate along the cross-section of the enclosure.
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Cercignani model with Pr = 0.70 and Kn = 0.40 at t = 1/σr
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Pr = 0.70 and Kn = 0.40 at t = 0.
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Pr = 0.70 and Kn = 0.40 at t = 1/σr.
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Pr = 0.70 and Kn = 0.40 at t = 1/σr.

After the introduction of thermal waves occurring on the top wall and streamline

patterns, we can explain the mechanism lying behind the initiation of the proposed

instability. For this purpose, we should consider both temperature and w′ disturbances

indicated by Figures 4.2 and 4.7. Increase in local temperature on somewhere of the

top surface leads to migration (in fact transpiration) of the fluid from cooler region

to this new hotter region. Thus, surface motion from one side takes place to this hot

location. At the same time, fluid particles located in the inner region of the enclosure

are directed to the previous region of the fluid particles which have just migrated to

the hotter region. Thus, the conservation of mass law is satisfied and a vertical stream

is established. As a result of this vertical stream, fluid particles on the other side of

the hot region goes to the inner region of the enclosure as well. Thus, cellular flow

pattern are observed in the x plane as shown Figures 4.6 and 4.7. While the negative-

valued iso-curves rotate in clockwise direction, the negative valued ones spin in counter

direction as well.

Neutral curves for the slip models have been shown in Figure 4.9. Inspection
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Figure 4.9. Neutral curves for different models; Pr = 0.70 and Kn = 0.40

of the Figure 4.9 reveals that Maxwell model is more stable as compared the other

slip boundary conditions. All second-order slip boundary conditions have the same

character in the critical region. As kz increases, the discrepancy among the neutral

states by second-order models slightly increases as well. It is important to see response

of neutral states to varying Kn numbers. Figure 4.10 shows neutral curves for different

Kn numbers with the Cercignani model. It can be eventually recognized that increase

in Kn number leads to decreases in critical Red. Most importantly, variation of critical

thresholds with Kn number is shown Figure 4.11. Maxwell model is always more stable

than the other slip models. Moreover, as Kn number increases critical Red decreases

monotonically as expected.

We should also discuss the effect of Pr number on the stability limits. Table

4.2 gives (Red)cr for varying Pr numbers for the different slip boundary conditions.

From Table 4.2 it can be concluded that the effect of Pr number on critical states is

negligible.

A question coming into minds is phase speed of the waves. Figure 4.12 gives
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Table 4.2. (Red)cr for varying Pr numbers and different slip models

Cercignani model Deissler model Maxwell model Schamberg model

Pr = 0.65 183.62 181.05 445.87 189.07

Pr = 0.70 181.58 178.67 429.23 186.35

Pr = 0.75 176.82 176.58 414.30 183.97

critical phase speeds for three second-order models. As it can be seen from the figure
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c R
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Figure 4.12. Critical phase speeds for varying Kn numbers; Pr = 0.70

the phase speed is very small. However, there is an increase with Knd number. Phase

speeds by three second-order slip model are approximately equal up to Knd = 0.55.

After this limit, Schamberg model gives smaller values than the other two models

(recall thatA2 = −5π/12 for Schamberg model is the smallest among the models)

Apart from the studied models, stability limits of Beskok model has also been

investigated. Beskok model are always stable to axisymmetric disturbances. A2 = 0.5

coefficient of Beskok model which is greater than zero leads to this stable behavior.

This behavior has also been observed for the other models. In other words, as A2

increases, stability of the thermal transpiration flow becomes stronger.
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The following deductions can be made for the stability of thermal transpiration

flow to the axisymmetric disturbances:

1. As Pr number increases, threshold of the instability decreases. However the effect

of Pr number is still weak for this flow.

2. Slip models play an important role in the formation of neutral states. Maxwell

model which is the first-order model is more stable than second-order models.

Such an observation can be supported by considering the mathematical formula-

tion of the velocity slip boundary conditions. Clearly, increase in A1 or A2 results

in higher stability limits. Since A1 = 1.1466 of Cercignani model is greater than

Deissler and Schamberg models, Cercignani model gives higher critical Red’s. In

addition to the first-order coefficient, increase in A2 leads to more stable states.

3. As wave number increases, sharp decreases are observed in (Red)n up to the (kz)cr.

After this limit, Red increases monotonically.

4. Kn number plays a critical role on the formation of instable states. (Red)cr varies

non-linearly with respect to Kn number as seen from Figure 4.11. Undoubtedly,

the same analysis may be done for a larger range of Kn numbers. Nonetheless,

creation of surface slip velocity leading to instable states may not be possible for

small Kn number. Moreover, choosing large valued Kn ≥ 0.5 numbers causes

invalidity of continuum hypothesis. These limitations are the bottleneck of the

analysis.

5. We have also investigated the effect of Beskok model on the stability of proposed

flow. Our efforts have shown that Beskok model is always stable to axisymmetric

disturbances. This is due to positive valued second-order coefficient of Beskok

model. Such behavior also exhibits the effect of slip coefficients.

6. The mechanism in the initiation of the instability has been tried to verified.

Immigration of fluid particles to hot spots creates a surface flow. Satisfaction of

mass conservation requires a vertical current originating from the core regions of

the enclosure. Thus, rolls of disturbances are established.

In the next section three-dimensional stability analysis will be performed. For

this purpose, an artificial compressibility method will be employed to the generalized
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eigenvalue problem.

4.4.3. Generalized Eigenvalue Problem in Three-Dimensions, (kx �= 0)

Numerical methods to solve the normal mode equations of linear the stability

theory can be categorized in two main headings: Initial Value Problem (IVP) and

Boundary Value Problem (BVP).

In the first methodology, the normal mode equations are reduced to a system

of first-order differential equations and the solution is integrated from one boundary

to the other one until both boundary conditions are satisfied. A pioneering work

performed by Scott et al. (1977) deals with solving two-point differential equations.

They have used superposition coupled with an orthonormalization procedure and a

variable step Runge-Kutta-Fehlberg integration scheme. This methodology along with

resulting computer code has been widely used in the study of hydrodynamic stability.

The main advantage of the IVPs is having optimum memory requirements and being

sufficiently accurate. On the other hand, this method necessitates very good initial

guess of the eigenvalues for convergence.

Differential equations of linear stability are discretized using either finite differ-

ences or spectral methods in case of BVPs. The global eigenvalues can be obtained by

solving characteristic determinants of the generalized eigenvalue problem. If anything

is known about stability problem, BVP methods can get eigen-spectra. Mostly, eigen-

spectra found from BVP is used as the initial condition of IVP. The BVP techniques

are more time and memory consuming compared with IVPs.

Malik (1990) has been compared both global (BVPs) and local (IVPs) to search

eigenvalues for temporal linear stability analysis of the hyperbolic boundary layer. He

has been taken account a second-order finite difference, a fourth-order accurate two-

point compact finite difference scheme and a Chebyshev spectral collocation method.

On the other hand, Hu et al. (1998) has been examined stability of supersonic Couette

flow of a compressible and viscous fluid. Equations of normal mode form for com-
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pressible flow reduced to algebraic set of equations so called Generalized Eigenvalue

Problem (GEP), using Chebyshev spectral collocation methods and fourth-order finite

difference. Solution of GEP has been achieved by employing QZ algorithm (Moler et

al., 1973). In the present study, both second-order and fourth-order (co-located) finite

difference schemes have been used like Malik (1990) and Hu et al. (1998). Details of

the discretization can be found in referred articles.

Let’s introduce a vector of perturbation modes Φ = [u′
0, v

′
0, p

′
0, w

′
0, θ

′
0]

tr. After the

reduction to discrete form whatever the difference scheme is, the GEP can be formed

with respect to the eigenvalue, σ, as

AΦ = σBΦ, (4.64)

where Φ is the discrete version of the eigenfunctions. Equation 4.64 can easily be

converted to the singularity condition of A − σB

det (A − σB) = 0. (4.65)

If B is not singular, Equation 4.65 is solved via LR or QR methods (Wilkinson, 1965;

Stoer et al., 1992).

det (B−1A − σI) = 0. (4.66)

In the current study, if the boundary conditions are settled down in the discrete

form of the eigensystem —in this case dimensions of B−1A will be (5n − 2) × (5n −
2), excluding pressure on the boundaries— one encounters with an obstacle which

makes the matrix B singular. Two remedies are suggested by Malik (1990). The

first alternative is elimination of boundary nodes by substituting boundary values into

interior grids wherever the discrete equations need. This is one of the natural ways to

overcome the singularity as expected and the present study considers this approach as

well. Thus the dimensions of matrix B−1A will be (5n−10)× (5n−10). In the second
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alternative, the boundary values are replaced by reasonable values which will not affect

the physical eigenvalue spectrum. For more details, the readers referred to pages 388-

389 of Malik (1990). On the other hand, not only direct substitution of BCs both

also absence of time derivative introduces a singularity in the incompressible model.

Some of the strategies removing the singularity have been explained by Khorrami et al.

(1989). Row and column operations, reducing the rank of the matrix B are commonly

used methods. The other choice is placing a time derivative of pressure, γσpj, into the

continuity equation. This procedure may be termed as artificial compressibility and

eliminates singularity of the matrix. The parameter, γ, is chosen as a small parameter

such that it does not influence the physical eigenvalue spectrum. Such a procedure

will be implemented rather different way in our work. For this purpose, we should go

back to the origin of artificial compressibility idea. Chorin (1967) was the first who

reorganized continuity equations so that the equation resembles compressible version

of it. According to his proposition incompressible continuity equation takes the form

∂ρ

∂t
+ div u = 0

where ρ is taken as artificial density. The density is linked to pressure by an artificial

eos p = ρ/δ and δ is called as artificial compressibility. As the solution proceeds to the

converged state, the added time derivative will lose its importance and behaves like a

relaxation parameter. After Chorin’s initiative study which does not consist of physi-

cal time derivative, the methodology has been extended to time accurate formulations

which are applied to unsteady problems (Peyret, 1976; Rogers et al., 1990; Rogers et

al., 1991; Kallinderis et al., 2005). One of the studies employing artificial compress-

ibility method has been performed by Ding et al. (1999). In their analysis, material

derivative of pressure p is located in the incompressible continuity equation. The idea

behind their approaches will be verified in the next sentences.

Let’s consider three-dimensional compressible continuity equation

∂ρ

∂t
+ (u · grad)ρ + ρ div u = 0

Assuming ρ = ρ(p), the continuity equation is rewritten using chain rule of differenti-
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ation

∂ρ

∂p

[
∂p

∂t
+ (u · grad)p

]
+ ρ div u = 0,

where the term ∂ρ
∂p

is easily determined from the artificial eos

∂ρ

∂p
= δ.

On the other hand, the relationship between artificial speed of sound and the com-

pressibility factor, δ is given as

c̃ =
1√
δ

which leads to artificial Mach number;

M̃a =
Vmax

c̃
.

Here, Vmax denotes maximum value of velocity vector in the flow domain and its esti-

mated by the following relation

Vmax = max
[(

u2 + v2 + w2
) 1

2 , u0

]
.

Since most of the compressible flows are assumed as incompressible for Ma number

smaller than 0.3, the maximum allowable artificial M̃a number should be less than 0.3,

M̃a =
Vmax

c̃
=

√
δVmax ≤ 0.3.

Thus, assuming the maximum velocity in the flow domain occurs on the top boundary

(this maximum velocity has also been taken as reference velocity on the flow field), the
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new continuity equation including the artificial M̃a number is written

[
∂p

∂t
+ (u · grad)p

]
+

Re

M̃a
2 div u = 0. (4.67)

For more details, interested readers are referred to Rahman et al. (2001) and pages

661-665 of Tannehill et al. (1997).

Once, artificial compressibility is applied to the problem, the new continuity

equation should be rewritten in terms of normal mode form. Note that, material

derivative of the basic flow pressure vanishes,

D p̄

D t
=

∂p̄

∂t
+ (ū · grad) p̄ = 0,

and so continuity equation turns out to be Equation 4.5. Utilizing Equation 4.67, linear

disturbance equation and its normal mode representation can be expressed as

[
∂p′

∂t
+ (ū · grad)p′ + (u′ · grad)p̄

]
+

Re

M̃a
2 div u′ = 0 (4.68)

and

[−ikxū + iσ] p′0 = u′
0

dp̄

dx
+

Re

M̃a
2 [ikxu

′
0 + D v′

0 + ikzw
′
0] , (4.69)

respectively. In the current analysis, freshly derived normal mode representation of

continuity equation, Equation 4.69, will be used instead of Equation 4.31 for three-

dimensional linear stability analysis. It should be noted that adiabatic boundary con-

dition for the bottom boundary has been employed in three-dimensional analysis. The

boundary conditions are read as, on the bottom wall, y = 0

u′
0 =

[
A1Kn D u′

0 + A2Kn2 D2 u′
0

]
+ Kn2(ikxθ

′
0) (4.70)

v′
0 = 0 (4.71)
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w′
0 =

[
A1Kn D w′

0 + A2Kn2 D2 w′
0

]
+ Kn2(ikzθ

′
0) (4.72)

D θ′0 = 0 (4.73)

and y = 1

u′
0 =

[−A1Kn D u′
0 + A2Kn2 D2 u′

0

]
+ Kn2(ikxθ

′
0) (4.74)

v′
0 = 0 (4.75)

w′
0 =

[−A1Kn D w′
0 + A2Kn2 D2 w′

0

]
+ Kn2(ikzθ

′
0) (4.76)

θ′0 =

(
2γ

γ + 1

1

Pr

[−A1Kn D θ′0 + A2Kn2 D2 θ′0
])

(4.77)

The basic motion solutions are borrowed from Chapter 3 and given as

ū = [u, v, w]tr =

[
Kn2

1 + 6A1Kn − 12A2Kn2

(
6y2 − 6y + 1

)
, 0, 0

]tr

p̄x =
12Kn2

1 + 6A1Kn − 12A2Kn2

θ̄ = x + RePr

{
Kn2

1 + 6A1Kn − 12A2Kn2

[
1

2

(
y4 + y2

) − y3 +

(
2γ

γ + 1

)
A2Kn2

Pr

]}
.

(4.78)

Note that, Re number is based on the channel height d in the three dimensional analysis.

The next section introduces some results and critics of the three-dimensional

analysis.

4.4.4. Results and Discussions for Three-Dimensional Instability, (kx �= 0)

In this section, eigenvalue spectrums for certain cases will be exhibited and then

the dependency of eigen-solutions to M̃a number and the number of grids will be

elucidated. Dependency of eigen-spectra will be examined for certain cases.
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We list discretization ways used in this study as the following:

• Method 1. Fourth-order accurate, co-located finite difference representation only

on the inner grids of the domain,

• Method 2. Fourth-order accurate, co-located finite difference representation in-

cluding boundary grids,

• Method 3. Second-order accurate, co-located finite difference discretization only

on the inner grids of the domain.

It should be pointed out that two types of eigenvalues are observed in all computa-

tions. The first item of the group expresses the correct solution and called as “physical

modes”. This eigenvalues show small changes with the number of grids. As the number

of grids increases, no change in eigen-modes is expected. In contrast to physical eigen-

values, there are outstanding, highly damped, negative and large valued �σ’s in all

computations. Magnitude of these modes greatly affected by the grid resolution. Such

modes are called as “spurious modes” in the specialized literature. For the time being,

we are not dealing with details of spurious modes or the ways elimination of them.

Using captured correct physical modes, we will just try to analyze eigen-spectra and

eigen-solutions. Throughout the analysis Method 2 is chosen to be the best candidate.

Effect of artificial compressibility on eigenvalue spectrum is pictured in Figures

4.13 and 4.14. As 1/M̃a
2

diminishes, the spectrum widens along the �σ. Moreover,

majority of the modes exhibits dominant damping effects (eigen values do not accom-

modate in the vicinity of the axis �σ = 0). Clearly, choosing a large valued M̃a
2

destroys the basic idea lying behind the artificial compressibility. To examine behav-

ior of instable modes obtained by different levels of artificial compressibility, we refer

Table 4.3. As it can be seen, each of artificial M̃a
2

number leads to approximately

the same mode. While, Method 2 captures instable modes, the other methods are still

stable. Instable eigenvalues captured by M̃a
2

= 1/10, M̃a
2

= 1/50 and M̃a
2

= 1/150

just give the same eigenvalue, (−0.6672E − 03 + 0.1900E − 02 i). Therefore, M̃a
2

= 1/50

has been chosen for the safety of computations in the current analysis. Figures 4.15

and 4.16 give a comparison of eigen-spectra calculated by Method 1, Method 2 and
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Table 4.3. The effect of M̃a
2

on the real and imaginary parts of the instable mode of

the eigensystem for kx = 0.15, kz = 0.10, RePr = 89.993804, A1 = 1.1466 and

n = 120

M̃a
2

Method 1 Method 2 Method 3

1/10 -0.684342E-03 -0.353387E-03 -0.667294E-03 0.190056E-02 -0.741302E-03 -0.790412E-02

1/25 -0.690327E-03 -0.369649E-03 -0.673937E-03 0.193024E-02 -0.741313E-03 -0.790411E-02

1/50 -0.689301E-03 -0.373666E-03 -0.667259E-03 0.190036E-02 -0.741309E-03 -0.790412E-02

1/75 -0.689324E-03 -0.373885E-03 -0.753457E-03 0.198887E-02 -0.741313E-03 -0.790400E-02

1/100 -0.690097E-03 -0.373633E-03 -0.664753E-03 0.182552E-02 -0.741312E-03 -0.790402E-02

1/150 -0.691274E-03 -0.365891E-03 -0.667123E-03 0.189970E-02 -0.741312E-03 -0.790412E-02

Method 3. Although, two fourth-order accurate methods approximately give the same

spectra, the second-order methodology does not present precise results contrary to our

expectations. Table 4.4 examines grid resolution of Method 2 for A1 = 1.1466 and
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Figure 4.15. Eigenspectrum for enclosure flow of a rarefied gas at the neutral state of

RePr = 89.994, Kn = 0.25, Pr = 0.72, kx = 0.10 and kz = 0.15 (A1 = 1.1466)

A2 = 1, respectively. Clearly, increase in the number of grids lead to slight variations

in �σ for both BC models. However, real part of the eigenvalue for Maxwell model

always gives smaller values than the Cercignani model. In Figures 4.17 and 4.18 some

of the eigen-vectors are shown for A1 = 1.1466 and A1 = 1. As it can be seen from the

figures, all disturbances are symmetric with respect to the y = 0.5 axis, the centerline
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Figure 4.16. Zoomed eigenspectrum specified by a rectangle in Figure 4.15

of the enclosure.

From the results we can come up with the following consequences:

1. Although, employed finite difference approximation is accurate enough fourth-

order accurate, it is not suitable for GEP. Due to unavoidable spurious eigen-

modes, we could not get any neutral curve which defines instability limits of the

proposed flow.

2. Artificial compressibility methods works well even for moderate M̃a’s. However,

due to limitations of finite difference formulation, very dense grid resolution is

required to guarantee correct results. Apparently, increase in the number of grids

makes such an eigen-system analysis impossible in terms of computational cost.

3. Since GEP is very sensitive to indispensable discretization errors resulting spu-

rious eigenvalue spectrum, we propose spectral methods to get error-free eigen-

spectra.
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Table 4.4. Variation of real part of the leading mode with grid resolution for

kx = 0.15, kz = 0.10, RePr = 89.993804 and Kn = 0.25

n A1 = 1.1466 A1 = 1.0

10 -0.859321E-03 -0.932548E-03

15 -0.777720E-03 -0.847985E-03

50 -0.684632E-03 -0.745403E-03

100 -0.679848E-03 -0.730296E-03

120 -0.667259E-03 -0.726088E-03

150 -0.661683E-03 -0.719843E-03

200 -0.645793E-03 -0.697878E-03
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Figure 4.17. Real and Imaginary parts of the disturbance eigenfunction v′
0 at a

neutral state defined by (RePr)n = 46.8327, Kn = 0.25, Pr = 0.72 and kz = 0.15 for

(n = 280)
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Figure 4.18. The effect of slip boundary conditions on the same disturbance

eigenfunctions for (RePr)n = 46.8327, Kn = 0.25, Pr = 0.72 and kz = 0.15,

(n = 280)
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5. CONVECTION OF RAREFIED GASES IN

ENCLOSURES: NUMERICAL SIMULATIONS

This chapter introduces stability characteristics and flow structures of two dimen-

sional, thermal transpiration driven convection of rarefied gases by numerical simula-

tion. In the analysis, two-dimensional, unsteady Burnett and NS equations will be used

as modeling tools. As reported Chapter 4, employment of Burnett equations allows

to observe motions created by both thermal transpiration and thermal stress effects.

On the other hand, use of NS equations excludes the effects of thermal stresses. Both

mathematical model will be discretized by finite volume method and will be solved via

a multi-stage scheme which will be presented in the following sections.

5.1. Physical and Mathematical Models

This section brings the details of both physical and mathematical issues of pro-

posed flow instability. In Section 5.1.1, anatomical aspects of the flow will be pictured.

All details about the mathematical model will be given in Section 5.1.2

5.1.1. Physical Model for the Two-Dimensional Convection

Thermal transpiration of a compressible, Newtonian rarefied gas is contemplated.

The flow takes places in a rectangular enclosure with length l and height ε × l, where

ε is the aspect ratio. As described in Section 4.2, the vertical side walls are kept

at temperatures Tc on the left and Th on the right. The bottom wall is assumed as

adiabatic and temperature of the top boundary varies linearly. The schematized view

of the enclosure has been shown in Figure 3.2.

The kinematic viscosity, µ, and the coefficient of heat conduction k are temper-

ature dependent and variations of these thermo-physical parameters with temperature

have been modeled with Power-Law relation, as given by Equations 2.14 and 2.15.
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5.1.2. Mathematical Models

Two-dimensional mathematical model of the present study is defined in Equations

2.5-2.13 with the boundary conditions given in Equations 3.5-3.16. Remember that,

exclusion of second and third-order approximations of Burnett equations gives the

classical NS equations. To take the advantage of studying non-dimensional numbers,

the following scaling parameters are introduced

t∗ =
tu0

d
, x∗ =

x

d
, y∗ =

y

d
, u∗ =

u

u0
, v∗ =

v

u0
, θ =

T

∆T
, ε =

d

l

p∗ =
p

µ0u0/d
, µ∗ =

µ

µ0
, k∗ =

k

k0
, ρ∗ =

ρ

ρ0
, E∗ =

E

cp0∆T
, rT =

∆T

T0
.

Remember that, quantities marked with 0 are evaluated at mean temperature of

T0 = (Th + Tc) /2. Such reference values are more convenient for the non-dimensional

representation of Burnett equations. Here, u0 is defined in terms of thermal speed as

the following

u0 =

√
rT

π
Vth with Vth =

√
2RT0.

In this case, Re number will be

Re =
ρ0u0d

µ0

=

√
rT

Kn
with Kn =

µ0

ρ0d
√

2RT0/π
.

Integral conservation equation read as

∂

∂t

∫
Ω

W dΩ +

∮
∂Ω

(Fc − Fv) dA =

∫
Ω

S dΩ.

Dropping ∗’s in the scaled variables, dimensionless form of the flux vectors, given by

Equations 2.5-2.7, results in the following expressions (in two-dimensions)
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for conservative variables

W =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρE

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.1)

for convective fluxes

Fc =

⎡
⎢⎢⎢⎢⎢⎢⎣

ρV

ρuV

ρvV

ρEV

⎤
⎥⎥⎥⎥⎥⎥⎦

(5.2)

and for diffusive fluxes

Fv =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

nx(τxx − 1
Re

p) + nyτxy

nxτyx + ny(τyy − 1
Re

p)

nxΦx + nyΦy

⎤
⎥⎥⎥⎥⎥⎥⎦

, (5.3)

S =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

ρfy

Fr

0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.4)

where

Φx = −Ec

Re
up + Ec (uτxx + vτxy) − qx,
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Φy = −Ec

Re
vp + Ec (uτyx + vτyy) − qy,

and

fy = −1

Chapman-Enskog expansion of diffusive terms in Burnett equations are expressed

for

the first-order approximations expansion:

τ (1)
xx =

1

Re
µ

(
4

3
ux − 2

3
vy

)
, τ (1)

xy = τ (1)
yx =

1

Re
µ (uy + vx) , τ (1)

yy =
1

Re
µ

(
4

3
vy − 2

3
ux

)
,

q(1)
x =

1

RePr
(−kθx) , q(1)

y =
1

RePr
(−kθy) ,

the second order approximations:

τ (2)
xx = − 1

Re

µ2

p

[
α1u

2
x + α2uxvy + α3v

2
y + α4uxvy + α5u

2
y + α6v

2
x

]

−π

2

1

Re

µ2

p

[
α7θxx + α8θyy + α9

θ

ρ
ρxx + α10

θ

ρ
ρyy + α11

θ

ρ2
ρ2

x +

α12
1

ρ
θxρx + α13

1

θ
θ2

x + α14
θ

ρ2
ρ2

y + α15
1

ρ
θyρy + α16

1

θ
θ2

y

]

τ (2)
yx = τ (2)

xy = − 1

Re

µ2

p

[
β1uxuy + β2(uyvy + uxvx) + β1vxvy+

]

−π

2

1

Re

µ2

p

[
β3θxy + β4

θ

ρ
ρxy + β5

1

θ
θxθy + β6

θ

ρ2
ρxρy + β7

1

ρ
ρxθy + β7

1

ρ
ρyθx

]
,
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τ (2)
yy = − 1

Re

µ2

p

[
α1v

2
y + α2uxvy + α3u

2
x + α4uyvx + α5v

2
x + α6u

2
y

]

−π

2

1

Re

µ2

p

[
α7θyy + α8θxx + α9

θ

ρ
ρyy + α10

θ

ρ
ρxx + α11

θ

ρ2
ρ2

y +

α12
1

ρ
θyρy + α13

1

θ
θ2

y + α14
θ

ρ2
ρ2

x + α15
1

ρ
θxρx + α16

1

θ
θ2

x

]
,

q(2)
x = − Ec

Re2

µ2

ρ

[
γ1

1

θ
θxux + γ2

1

θ
θxvy + γ3uxx + γ4uyy + γ5vxy + γ6

1

θ
θyvx

γ7
1

θ
θyuy + γ8

1

ρ
ρxux + γ9

1

ρ
ρxvy + γ10

1

ρ
ρyuy + γ11

1

ρ
ρyvx

]
,

q(2)
y = − Ec

Re2

µ2

ρ

[
γ1

1

θ
θyuy + γ2

1

θ
θyvx + γ3vyy + γ4vxx + γ5uxy + γ6

1

θ
θxuy

γ7
1

θ
θxvx + γ8

1

ρ
ρyvy + γ9

1

ρ
ρyux + γ10

1

ρ
ρxvx + γ11

1

ρ
ρxuy

]

and finally third-order approximations (augmented terms)

τ (3)
xx = −π

2

1

Re

µ3

p2
θ [α17(uxxx + uxyy) + α18(vxxy + vyyy)] ,

τ (3)
yx = τ (a)

xy = −π

2

1

Re

µ3

p2
θ [β8(uxxy + uyyy + vxyy + vxxx)] ,

τ (3)
yy = −π

2

1

Re

µ3

p2
θ [α17(vyyy + vxxy) + α18(uxyy + uxxx)] ,

q(3)
x =

γ − 1

γ

1

Re2

µ3

pρ

[
γ12(θxxx + θxyy) + γ13

θ

ρ
(ρxxx + ρxyy)

]
,
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q(3)
y =

γ − 1

γ

1

Re2

µ3

pρ

[
γ12(θyyy + θxxy) + γ13

θ

ρ
(ρyyy + ρxxy)

]
.

The coefficients, α1 . . . α18, β1 . . . β8 and γ1 . . . γ13 are determined from Chapman-

Enskog expansion. For the sake of brevity we will not give these coefficients. More

details can be found from Aqarwal et al. (2001). Here, Eckert (Ec) and Fr numbers

are determined as

Ec =
2

π

γ − 1

γ
and Fr =

u2
0d

g0
,

respectively. In addition to the governing equations, dimensionless forms of eos and

total energy become

p =
π

2
Reρθ and E =

θ

γ
+

Ec

2

(
u2 + v2

)
,

respectively. Boundary conditions have been re-organized for mentioned reference val-

ues and formulated as

for the bottom wall:

u(x, 0, t) − A1Knuy(x, 0, t) − A2Kn2uyy(x, 0, t) − 3

4
rT

1

Re
θx(x, 0, t) = 0 (5.5)

v(x, 0, t) = 0 (5.6)

θy(x, 0, t) = 0 (5.7)

for the top wall:

u(x, 1, t) + A1Knuy(x, 1, t) − A2Kn2uyy(x, 1, t) − 3

4
rT

1

Re
θx(x, 1, t) = 0 (5.8)

v(x, 1, t) = 0 (5.9)

θ(x, 1, t) − θw3 − 2γ

γ + 1

1

Pr
[−A1Knθy(x, 1, t) + A2θyy(x, 1, t)] = 0 (5.10)

with θw3 =
1

rT
− A2 + εx
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on the left wall:

v(0, y, t)− A1Knux(0, y, t)− A2Kn2uxx(0, y, t)− 3

4
rT

1

Re
θy(0, y, t) = 0 (5.11)

u(0, y, t) = 0 (5.12)

θ(0, y, t) − θw4 − 2γ

γ + 1

1

Pr

[
A1Knθx(0, y, t) + A2Kn2θxx(0, y, t)

]
= 0 (5.13)

with θw4 =
1

rT
− 1

2

and finally the right wall:

v(ε, y, t) + A1Knux(ε, y, t) − A2Kn2uxx(ε, y, t) − 3

4
rT

1

Re
θy(ε, y, t) = 0 (5.14)

u(ε, y, t) = 0 (5.15)

θ(ε, y, t) − θw2 − 2γ

γ + 1

1

Pr

[−A1Knθx(ε, y, t) + A2Kn2θxx(ε, y, t)
]

= 0 (5.16)

with θw2 =
1

rT

+
1

2

Since Burnett equations are fourth-order differential equations, there should be addi-

tional two BCs to complete mathematical system. Lack of such additional BCs are the

most important drawback of the Burnett equations. To overcome this difficulty, linear

extrapolation is conducted in most cases (Lee, 1994).

Initial conditions of Burnett equations are referenced to basic state solutions

which are rearranged according to the new scales and read as

u(x, y, 0) =
3rT

4Re(1 + 6A1Kn − 6A2Kn2)

(
6y2 − 6y + 1

)
, (5.17)

p(x, y, 0) =
36rT

4Re(1 + 6A1Kn − 6A2Kn2)
x + p0, (5.18)
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θ(x, y, 0) =

(
1

rT
− 1

2

)
+ εx+

3rT

4Re(1 + 6A1Kn − 6A2Kn2)

[
1

2

(
y4 + y2

) − y3 +
γ

γ + 1

Kn2

Pr

]
, (5.19)

where p0 stands for a reasonable initial guess for the pressure. Initial condition for

density is computed using eos.

5.2. Numerical Approach

The cell centered finite volume method is applied for the reduction of conservation

equations and BCs to non-linear sets of algebraic equations. All flow variables are fixed

at the centroid of the volume cells as illustrated Figure 5.1 Assuming that the shape

i,j-1

i,j+1

i+1,ji-1,j ni+1/2,j

ni,j+1/2

ni,j-1/2

ni-1/2,j

Ωi,j

i,j

Figure 5.1. A cell-centered control volume and its neighbors.

of the control volume (cv) does not change with time. Thus, time rate of change of

conserved quantities modifies to

∂

∂t

∫
Ω

W dΩ = Ω
∂W

∂t

and Equation 2.5 turns out to be

∂W

∂t
= − 1

Ω

{ ∮
∂Ω

(Fc − Fv) dA −
∫

Ω

S dΩ

}
, (5.20)
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where W = [ρ, ρu, ρE]tr is the vector of conservative variables. The integrals on the

right hand side of the Equation 5.20 can be represented in discrete form by accounting

geometric details of the control volume as illustrated in Figure 5.1 (by generalization

to three-dimension)

dWi,j,k

dt
= − 1

Ωi,j,k

{ N∑
m=1

(Fc − Fv)m ∆Am − (S Ω)i,j,k

}
(5.21)

where N designates the number of cell faces and ∆Am stands for the area of the mth

cell face. Equation 5.21 can be written in a different way such that

dWi,j,k

dt
= − 1

Ωi,j,k
Ri,j,k (5.22)

and Ri,j,k stands for residual vector. Thus, Equation 5.22 governs a system of first-order

IVPs and should be solved with appropriate BCs. Since, finite volume discretization

necessitates evaluation of convective and diffusive fluxes at the cell faces, they should

be calculated in terms of main nodes located on the geometric centers of the cells. An

averaging technique for the calculation of the flux vectors on the cell faces can be cast

in the following form, for example on cell face of ni+ 1
2
,j,

(F∆A)i+ 1
2
,j
∼= F

(
Wi+ 1

2
,j

)
∆Ai+ 1

2
,j (5.23)

where all conservative and dependent, such as p, u, v etc., variables are computed on

the cell face of ni+1/2,j,k by arithmetic mean

Wi,j,k =
1

2
(Wi,j,k + Wi+1,j,k) ,

where F designates either convective or viscous diffusion fluxes.
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5.2.1. Discretization of Convection Fluxes

As is well known, in some problems of the compressible fluid mechanics, central

difference schemes may not exhibits the correct physics or it totally fails to get a solu-

tion. For example, capturing shock waves may not be possible or contact discontinuities

may not be resolved without undesirable oscillations (Jameson, 2001). Therefore, non-

oscillatory schemes by introducing controlled diffusive or anti-diffusive terms become

indispensable for successful computations.

The central scheme expressed by Equation 5.23, can be reformed by adding anti-

diffusive terms in a controlled manner to preserve positivity of the central differencing

scheme.

(F∆A)i+ 1
2
,j
∼= F

(
Wi+ 1

2
,j

)
∆Ai+ 1

2
,j − Di+ 1

2
,j,k (5.24)

Let’s define an difference operator such that, δWi+ 1
2
,j,k = Wi+1,j,k − Wi,j,k. The first

version of JST scheme has been constructed by subtraction of neighbored differences

to develop a third-order diffusive flux

Di+ 1
2
,j,k = αi+ 1

2
,j,k

{
δWi+ 1

2
,j,k −

1

2

(
δWi+ 3

2
,j,k + δWi− 1

2
,j,k

) }

According to Jameson (1995), this scheme does not satisfy positivity condition. The

scheme generates oscillations in the vicinity of shock waves and this oscillatory behavior

can be eliminated by switching to the first order scheme locally and resulting blended

diffusion follows as

Di+ 1
2
,j,k = + ε

(2)

i+ 1
2
,j,k

δWi+ 1
2
,j,k

(5.25)

− ε
(4)

i+ 1
2
,j,k

(
δWi+ 3

2
,j,k − 2δWi+ 1

2
,j,k + δWi− 1

2
,j,k

)

The idea lying behind the use of adaptive coefficients, ε
(2)

i+ 1
2
,j,k

and ε
(4)

i+ 1
2
,j,k

is to produce
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low level diffusion on regions where sharp gradients are not observed, and prevent

oscillations near the discontinuities. Note that blend of ε
(2)

i+ 1
2
,j,k

and ε
(4)

i+ 1
2
,j,k

which are

order of two and four, respectively, generates a third-order accurate dissipation of

Di+ 1
2
,j,k. The details of switching between the second- and fourth-order diffusions,

and also construction of them will not be given in this text and can be found in

Blazek (2001), Wesseling (2001) and Jameson et al. (1981), etc. On the other hand,

the simulation of Burnett equations requires density values on the boundaries due to

discretization of inviscid terms. Therefore, derivation of suitable density BCs for the

slip flow regime should be made by smearing characteristic theory of compressible fluid

dynamics. The procedure will be presented in Appendix B.

5.2.2. Discretization of Viscous Fluxes

The viscous fluxes Fv which appears in Equation 5.21 can be discretized similar

to those of convective fluxes. The main difference between the two fluxes is that the

viscous flux requires to know dependent and thermo-physical variables at main nodes.

Some of these variables are u, T, µ etc. whose values on the cell faces are specified as

Υi+ 1
2
,j,k =

1

2
(Υi,j,k + Υi+1,j,k)

where Υ stands for any one of the flow or the thermo-physical variables. Derivatives

on the cell faces can be reduced to discrete form by means of

• finite difference and

• Green’s theorem.

In the present study, the latter item will be employed for the discretizations method-

ology. There will be a need of constructing auxiliary cell, shown in Figure 5.2, to

compute gradients on the cell faces. The first-order derivative is easily estimated (at
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i,j i+1,j

i+1,j+1i,j+1

i+1,j-1i,j-1

Ωi,j Ωei,j

Auxiliary 
cell

Main 
cell

Figure 5.2. An auxiliary cell to compute derivatives on the cell face of ni+ 1
2
,j

the point shown by square in Figure 5.2 by applying Green’s theorem

∂Υ

∂x

∣∣∣∣
i+ 1

2
,j

=
1

Ωe

∫
∂Ωe

Υ dAe
x =

1

Ωe
i,j

N∑
m=1

Υm Ae
x,m, (5.26)

where N designates number of faces in the auxiliary cell e, (east cell with respect to the

main cell). Ωe
i,j is being the volume of the auxiliary control volume and Ae

x,m is x com-

ponent of surface vector which is determined from Ae
m = Ae

mne
m = [Ae

x,m, Ae
y,m, Ae

z,m]tr

on the mth face of the “e” cell.

The higher-order derivatives are treated by a similar manner. Let’s consider

second-order derivative on the cell face of “i + 1
2
, j ”. Adoption of basic principle

simply yields

∂2Υ

∂x2

∣∣∣∣
i+ 1

2
,j

=
1

Ωe

∫
∂Ωe

∂Υ

∂x
dAe

x =
1

Ωe
i,j

N∑
m=1

∂Υ

∂x

∣∣∣∣
m

Ae
x,m. (5.27)

Notice that, calculation of the second-order gradient requires the first-order derivatives

(in Equation 5.27) on the faces of the auxiliary cell (Jameson, 2001). High-order stress

tensor terms of the Burnett equations have been discretized subsequent uses of Green’s

theorem.
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5.2.3. Time Stepping Scheme

When the spatial discretization task is accomplished, a set of coupled differential

equations emerges and it can be expressed as

dWi,j,k

dt
= −Ri,j,k (W) (5.28)

where R(W) is the vector residual which composes of convective, viscous and artificially

added dissipative fluxes. In steady state computations, the transient solution acts as

an relaxation parameter and accelerates the rate of convergence. This set of differential

equation can be solved either via implicit or explicit schemes. Information about the

solution procedures can be found any standard textbook related to the “ Numerical

Analysis or Computational Fluid Mechanics”. Since, Burnett equations have stiff non-

linear terms in stress tensors of order-two and three, the present study takes into

account explicit schemes.

Now, consider the principle idea of explicit time discretization such that

∆Wn
i,j,k = −∆ti,j,k

Ωi,j,k
Ri,j,k (W) (5.29)

where ∆Wi,j,k = Wn+1
i,j,k − Wn

i,j,k denotes the difference between the solutions of con-

servative variable at time gap ∆ti,j,k which varies locally in the domain. An explicit

scheme takes the information from past time (t), which is already known, and proceeds

to the solution of next time step (t + ∆t) with the relation of Equation 5.29.

Explicit multi-stage schemes are widely used in practice. Especially, Direct Nu-

merical Simulation of turbulent flows requires efficient solution methodologies involv-

ing low memory storage, high stability region and good convergence characteristics

(Williamson, 1980; Christopher et al., 2000). In this study, an explicit multi stage

scheme of Jameson et al. (1981) has been applied to get solutions of Burnett equations.
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Table 5.1. Coefficients of multistage scheme for varying CFL numbers.

first-order scheme second-order scheme

CFL 1.5 2.0 2.5 0.69 0.92 1.15

α1 0.1481 0.0833 0.0533 0.1918 0.1084 0.0695

α2 0.4000 0.2069 0.1263 0.4929 0.2602 0.1602

α3 1.0000 0.4265 0.2375 1.0000 0.5052 0.2898

α4 - 1.0000 0.4414 - 1.0000 0.5060

α5 - - 1.0000 - - 1.0000

The m-stage scheme is written as

W
(0)
i,j,k = Wn

i,j,k

W
(1)
i,j,k = W

(0)
i,j,k − α1

∆ti,j,k
Ωi,j,k

Ri,j,k

(
W

(0)
i,j,k

)

(5.30)

W
(2)
i,j,k = W

(0)
i,j,k − α2

∆ti,j,k
Ωi,j,k

Ri,j,k

(
W

(1)
i,j,k

)

...

Wn+1
i,j,k = W

(m)
i,j,k = W

(0)
i,j,k − αm

∆ti,j,k
Ωi,j,k

Ri,j,k

(
W

(m−1)
i,j,k

)

where αk designates stage coefficients. Additionally, Rk
i,j,k designates residual vector

formed by the solution W
(k)
i,j,k evaluated on the kth stage.

The time step ∆ti,j,k is restricted by the flow type and grid structure which are

mainly expressed by Courant-Friedrichs-Lewy condition. Determination of maximum

allowable time step is not given in this context and can be found on pages 186-190

and 337-343 of Blazek (2001) and pages 91-92 of Kallinderis et al. (2005). While,

many problems in mechanics require small time advancements, such as Direct Numer-

ical Simulation and Large Eddy Simulation of turbulence in which time increments

should be smaller than Kolmogorov time scale, in some transient problems, time scale
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should be large enough compared with scales divided by the eigenvalues, such as flut-

ter, rotor-stator interaction, etc (Blazek, 2001). As is well known, implicit methods

give a flexibility of choosing any desired time step for unsteady state simulation. In

addition to implicit methods, dual time stepping approach considerably reduces time

restriction of explicit schemes, which will be elucidated in Section 5.2.4.

5.2.4. Dual Time Stepping Scheme

Recall that, the innovative idea of Chorin (1967) was a process adding a time

derivative of artificial compressibility to continuity equation. This conception may be

extended to the compressible flow equations by adding an artificial time derivative of

each conservative variables to their own equations. Thus, conservation equations have

two different time derivative terms

dWi,j,k

dt∗
+

dWi,j,k

dt
= −Ri,j,k (W) , (5.31)

where
dWi,j,k

dt∗ and
dWi,j,k

dt
denote artificially added (pseudo) and physical time deriva-

tives, respectively. The system of equations is written as in a different way

dWi,j,k

dt∗
= −R∗

i,j,k (W) , (5.32)

with unsteady residual

R∗
i,j,k (W) =

3

2∆t
Wn+1

i,j,k − 2

∆t
Wn

i,j,k +
1

2∆t
Wn−1

i,j,k +
1

Ωi,j,k
Ri,j,k (W) . (5.33)

The unsteady residual R∗
i,j,k (W) is formed by contributions of the physical time deriva-

tive discretized by use of the second-order backward finite difference method, and the

steady residual including convective, diffusive and artificially dissipative flux terms as

defined by Equations 5.21 and 5.22.

The advancement in physical time from (t) to (t + ∆t) is realized by evaluating first

the unsteady residual R∗
i,j,k (W) and then solving steady-state problem, Equation 5.32,

in pseudo-time. Once the steady-state in pseudo time is achieved, the next time so-
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lution is found (Kallinderis et al., 2005). The current study exploits m = 4 stage,

second-order accurate scheme for the solution of steady-state problem in pseudo-time

W
(0)
i,j,k = Wk

i,j,k

W
(1)
i,j,k = W

(0)
i,j,k − α1

∆t∗i,j,k
Ωi,j,k

R∗
i,j,k

(
W

(0)
i,j,k

)

(5.34)

W
(2)
i,j,k = W

(0)
i,j,k − α2

∆t∗i,j,k
Ωi,j,k

R∗
i,j,k

(
W

(1)
i,j,k

)

...

Wk+1
i,j,k = W

(m)
i,j,k = W

(0)
i,j,k − αm

∆t∗i,j,k
Ωi,j,k

R∗
i,j,k

(
W

(m−1)
i,j,k

)

where ∆t∗i,j,k is local pseudo-time step and α’s are optimized coefficients of the multi-

stage scheme given in Table 5.1. The time marching starts from Wk
i,j,k = Wn

i,j,k

and continues until R∗
i,j,k is reduced to acceptable order of magnitudes so that Wk+1

i,j,k

approximates a new physical time solution Wn+1
i,j,k .

The next section gives results and critics of some simulations by NS and Burnett

equations.

5.2.5. Results and Discussions

In this section we will introduce some sample results of NS and Burnett simula-

tions as described below.

The simulations in this section have been performed for Nitrogen gas with the

following thermo-physical properties

cp = 1.075 × 103 J

kgK
, P r = 0.701, n = 0.67,
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Table 5.2. Response of maximum u velocity and net mass flux to the grid resolution

number of cells, nx × ny umax mnet

128 × 128 3.9597 × 10−3 −2.4135 × 10−6

81 × 81 3.9753 × 10−3 −3.1023 × 10−5

71 × 71 3.9749 × 10−3 −2.5900 × 10−5

91 × 91 3.9640 × 10−3 −9.3963 × 10−5

81 × 20 3.9422 × 10−3 −2.7637 × 10−5

Tr = 273 ◦K, µr = 1.663 × 10−5 Ns

m2
for Power-Law viscosity model.

Mean temperature is chosen as T0 = 600 ◦K in all computations. All simulations are

performed for relative residual of

‖ R ‖2

‖ Ri ‖2
< 10−7,

where Ri denotes initial residual of the discretized system. Sensitivity of the developed

code to grid resolution is summarized on Table 5.2: According to the sensitivity check,

even 71×71 number of cells gives acceptable order of accuracy. The difference between

the lowest resolution and the highest one (81×20 vs 128×128) is computed as 4/1000

which guarantees precise calculations. It should be noted that, most of the simulations

for Burnett equations are performed for 81× 20 cells due to reported numerical insta-

bilities of Burnett equations. Figure 5.3 shows convergence history of NS equations for

specified conditions. All simulations of this section are performed for Cercignani model

including first- and second-order slip terms mentioned in Table 2.1. Making use of the

second-order slip model allows to getting accurate solutions at transition region of the

Knudsen regime. The same boundary conditions has also been employed by Stefanov

et al. (2002a) Since the only difference between the NS and Burnett equations are the

higher-order stress terms, the best starting point will be the comparison of the first-

order and higher-order stress tensors of the Burnett equations. Note that the gravity

effect is neglected in all simulations.
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Figure 5.3. Relative residual history of NS for Kn = 0.1, CFL = 0.2 and 81× 20 cells

Some cases studied are summarized as the following:

• Case 1 Burnett Model Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02

and εrT = 0.06.

• Case 2 Burnett Model Kn = 0.2, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02

and εrT = 0.06.

• Case 3 Burnett Model: Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.5, CFL = 0.02

and εrT = 0.05.

• Case 4 Burnett Model: Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.7, CFL = 0.02

and εrT = 0.07.

• Case 5 Navier-Stokes Model: Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.6,

CFL = 0.02 and εrT = 0.06.
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• Case 6 Navier-Stokes Model: Kn = 0.2, 81 × 20 cells, ε = 0.1, rT = 0.6,

CFL = 0.02 and εrT = 0.06.

5.2.5.1. Comparison of Burnett Shear Stresses. Since, the flow is likely to be shear-

driven flow we will focus on only shear stresses of Burnett model in this section. Figure

5.4 shows streamlines for Case 1. Subsequently we show first- and second-order stress

tensors of Burnett equations in Figures 5.5 and 5.6. Streamline patterns appeared in

Figure 5.4 show a small deviation from conservation of mass due to coarse cells. It can

be seen that, the flow is only managed by the first-order shear stress of τ
(1)
xy compared

with its second-order pair. Effect of second-order stress term is only sensible on the

corners of the flow domain due to sharp change of the flow characteristic. Figure 5.5

also points out that there is a shear-layer in the core regions of the flow. As we can see

in the proceeding paragraphs, thermal creep flow of rarefied gases shows close similarity

to Couette flow. While τ
(1)
xy has negative values on the bottom boundary, it changes

to positive values with increasing trend. Let’s look shear stresses of Case 2. shown

in Figures 5.8 and 5.9. Increase in Kn number leads to variations on the slope of

τ
(1)
xy = constant curves. Such a behavior can also be seen in Figure 5.7. Figure
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Figure 5.4. Streamlines for Kn = 0.1, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02

5.10 shows wall shear stresses order of one and two. First-order shear stress shows

sudden raise as flow develops and goes down in the vicinity of the right vertical wall.
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Figure 5.7. Streamlines for Case 2

-0.012

-0.008

-0.004

0

0.002

0.004

0.006
0.008

0.014

x

y

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

Figure 5.8. First-order shear stress component, τ
(1)
xy , for Case 2
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Figure 5.9. Second-order shear stress component, τ
(2)
xy , for Case 2

On the other hand, second-order wall shear can be ignored in the domain with only

one exception, on the corners of the wall. Notice that, the effect of adiabatic BC on

the bottom wall leads to different shear values compared with top boundary. Figure

5.11 declares that the current flow can be accounted as purely shear-driven. While,

the first order shear stress, τ 1
xy varies linearly along the y direction of the enclosure,

second-order term, τ 2
xy can be ignored. Temperature field of the Case 1 is shown in

Figure 5.12 Let’s consider normal stress terms of Burnett equations. shown in Figures

5.13-5.16. Notice, order of magnitudes of Burnett normal stresses which are negligible

compared with the shear stresses. Clearly, there is no necessity to go into the details

of normal stresses. In the next section, we will make a comparison between the NS

and Burnett equations.

5.2.5.2. Comparison of Navier-Stokes and Burnett solutions. In this section we will

try to inspect discrepancies between the NS and Burnett equations solutions. For this

purpose we consider again Case 1 and Case 5.

In Figure 5.17, streamlines of NS and Burnett equations have been compared.

As it can be seen, there is a significant difference introduced by two mathematical

model. In order to see the details of the differences we will look at shear stresses
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xx , for Kn = 0.1, 81 × 20
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Figure 5.14. Second-order x-wise normal stress component, τ
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Figure 5.15. First-order y-wise normal stress component, τ
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yy , for Kn = 0.1, 81 × 20

cells, ε = 0.1, rT = 0.6, CFL = 0.02
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Figure 5.16. Second-order y-wise normal stress component, τ
(2)
yy , for Kn = 0.1,

81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02

in two cases. Figure 5.18 compares the first-order shear stresses of NS and Burnett

equations. τ
(1)
xy = constant curves of both model appears in the different locations of

the domain. τ
(1)
xy = 0 curves of each models are coincides at the same location. In order

to see the differences between both model we refer to Figure 5.19. As we can see NS

wall shear gives higher magnitudes than Burnett equations and its variation becomes

negligible in the core region of the enclosure. However, Burnett model gives rise to

tremendous decline in the positive x direction. Apparently, the distinction between

the NS and Burnett models are the second and third-order terms of the stress tensors.

Due to strong coupling of these terms with the convective terms, there is no any way

for getting the correct answer to understand how they affects the flow patterns. As

mentioned above, due to thermal jump effects on the top boundary, both wall shears

change their values at the same location, as well. Pressure distribution along the

center-line of the enclosure is shown in 5.20. Since, the flow is likely to be a creeping

flow, compressibility effects do not play any role in the pressure distribution which is

almost linear. Due to end effects on the vertical sides where the flow turns around

itself very small non-linearity is observed.

Now we introduce u slip on horizontal walls. Velocity slip region can be divided

into three distinct region, shown in Figure 5.21:
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• hydrodynamic entry region on the left hand side (denoted by I in the figure),

• hydrodynamically fully developed core flow region, and

• a region where the flow is suspended.

As seen from Figure 5.21, slip velocity is governed approximately in region I. Then

it shows slightly diminishes until reaches to proximity of right wall and then sup-

pressed tremendously due to mass continuity requirement. Notice that, on the bottom

boundary bigger slip velocity takes place than the top wall. This is due to different

temperature gradients as mentioned in Section 3.6. On the other hand, note that, the

differences between the maximums of slip velocities are 3.10 % and 3.91 % for Kn = 0.1

and Kn = 0.2, respectively. The effect of horizontal temperature gradient is sketched

u
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Figure 5.21. Slip of u along the horizontal walls, NS Model, Kn = 0.1, Kn = 0.2,

81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02

in Figure 5.22. As it can be seen from the figure, u velocity increases with temperature

gradient proportionally.
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model, Kn = 0.1, 81 × 20 cells, ε = 0.1, CFL = 0.02

Let’s illustrate, the u velocity distribution along the vertical direction for Kn =

0.1 and Kn = 0.2 (Case 1, 2, 5 and 6) in Figure 5.23. The velocity profile is almost

parabolic and Burnett model gives smaller values than Navier-Stokes. In case of Kn =

0.1 the difference between two models is approximately 26.6 % at y = 0.5. On the

other hand, for Kn = 0.2 the difference between them increases to 72.2 %. As Kn is

amplified, such a decline in maximum velocity which takes place on the wall surface;

as reported by Papadopoulos et al. (1995). They point out confinement effect as the

reason of such a velocity decrease. With their words;

“Physically, for Knudsen numbers in the range shown, the kinetic layers are comparable

with the dimensions of the cavity and hence there is non-negligible interaction between

them and between the kinetic layers and the existing vortex.”

Namely, they refers to interaction between the Kn layer (grows with Kn number) and

flow vortex. Since, the flow is likely to be shear driven, the chief reason in the drop of

velocity is viscous diffusion. Linear variation of first-order shear-stress along the depth
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supports this hypothesis. Let’s consider the relation between Re and Kn number

Re =

√
rt

Kn
.

Absolutely, rise in Kn number make diffusive terms more important than the convec-

tion terms in the conservative equations. Both the author of this thesis and Papadopou-
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Figure 5.23. u velocity along the y direction at x = 0.5 for NS and Burnett equations

for Kn = 0.1, Kn = 0.2, 81 × 20 cells, ε = 0.1, rT = 0.6, CFL = 0.02

los et al. (1995) question the validity of Navier-Stokes system in thermally-driven flow

type. Only, higher-order description of constitutive equations, Burnett equations, can

correctly model these creeping flows for larger Kn numbers. Deviations of Navier-

Stokes solutions are so large as much as intolerable. From Figures 5.24 and 5.25, we

see that, as Kn number increases the maximum u velocity predicted by Navier-Stokes

equations also increases nonlinearly up to certain levels and then remains approxi-

mately constant. However, the velocity predicted by the Burnett equations decreases

continuously in contrast to Navier-Stokes equations. Since, the temperature gradient

along the x direction, ∂θ
∂x

, is also affected by the aspect ratio of the enclosure, for the
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same overheat ratios and Kn numbers, higher values of aspect ratio ε lead to greater

slip velocities. Moreover, non-linear increasing trend of the predicted velocity origi-

nates from the interaction between the core flow and turning flow at the ends, which

is less important for the smaller aspect ratios. It should be noted that for Kn ≥ 0.17,

the velocity umax takes the same value for different overheat ratios (Figure 5.24).
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Figure 5.24. Variation of maximum x-wise velocity component with respect to

different rarefaction levels and overheat ratios for ε = 0.5

Analogous to our findings, the strange behavior of the maximum velocity has also been

reported in (Papadopoulos et al. 1995). For comparison, we have performed additional

simulations with Xenon having the following thermo-physical properties: cp = 158.0

J/kgK, k = 252.0 × 10−3 W/mK, µ = 44.0 × 10−6 Ns/m2 (specified at 100 kPa) and

Pr = 0.0322. Note that, the thermal transpiration velocity uc = ω
√

(2R/T )dT/dx is

used as a scaling parameter for the u velocity, where ω is a thermal slip coefficient.

From the results, it is observed that not only Navier-Stokes but also Burnett equations

have underestimated the maximum velocity with respect to that of DSMC method

(Figure 5.26). The “confinement” effect is the principal reason of the unexpected be-

havior of the velocity change according to Papadopoulos et al. (1995). Contrary to

their reasoning, we believe that viscous diffusion predicted by Burnett model produces

such a reduction in the maximum creep velocity. Momentarily, let’s ignore the slip due

to momentum accommodation (set A1 and A2 to zero); then the flow mechanism is
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Xenon was chosen as the working fluid and the gradient of dT/dx was kept constant

along the horizontal walls for comparison with some selected DSMC data of

Papadoupoulos et. al. The computations have been carried out for Kn ≤ 0.1.
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converted to a simple two-sided lid-driven cavity problem with the lid velocity of uc.

In this case, the flow field mainly depends on the magnitude of the Kn number which

can be viewed as a parameter adjusting lid velocity. In this case, larger Kn numbers

create the stronger velocity field as expected. On the other hand, allowing a velocity

slip (equivalent to the slip due to the momentum accommodation) on the lids ends up

in the same problem that we have tried to analyze. At this stage, the wall shear stress

comes into picture together with the rarefaction effects (represented by Kn number

in the slip boundary condition). Therefore, thermal creep flow can be assumed as a

shear driven flow in which viscous diffusion becomes more important. This was the

reason why Burnett and NS equations could’t constitute with each other. Contribu-

tions of thermal stress terms available in the second and augmented orders lead to

tremendous changes in the behavior of thermal creep flow (Golshtein et al. 1996). Be-

cause in the vanishing limit of the Kn number both models of hydrodynamics predict

the same creep velocity, where the effect of thermal stresses seems to be suspended.

On the other hand, there is a significant disagreement between the results of Burnett

simulations and DSMC of (Papadopoulos et al. 1995) (Figure 5.26). A reason for the

deviation can be addressed to the relatively low Pr number of Xenon.
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6. CONCLUSIONS AND FUTURE PERSPECTIVES

This thesis contemplates thermal creep driven convection of rarefied gases in

enclosures. Studied categories are summarized as

• asymptotic analysis of the convective flow,

• analysis of possible hydrodynamic instabilities by make use of linear stability

theory and

• numerical simulations of Navier-Stokes and Burnett models for proposed flow.

In the first part of the thesis, we performed an asymptotic analysis to get analytical

solutions in the geometry. For this purpose, the gas has been assumed as an incom-

pressible fluid and a small perturbation parameter, in fact aspect ratio of the enclosure,

was introduced and then the solution was expressed in terms of regular asymptotic ex-

pansion of this small parameter. The problem was divided into two sub-problems,

namely inner and outer expansions due to singularity of the problem. The singular-

ity has been eliminated by making the use of method of asymptotic matches. After

joining inner and outer solutions we have obtained a global solution valid in the whole

enclosure. We have also found analytical solutions for the flow variable valid on the

core region where the flow does not show sharp changes. Asymptotic analysis allows

us the following results:

• An hydrodynamic boundary layer has been recognized on both horizontal walls

of the enclosure. Kn number is the main parameter affecting the entry length of

the boundary layer.

• Temperature jump on the vertical walls due to horizontally applied thermal gra-

dient, bears two different vortexes on the bottom and top halves of the enclosure.

• As Re number increases, temperature jump also increases.

Since the current study also proposes that there may be a convective instability,

we have performed linear stability analysis in two and three-dimensions. Assuming
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small perturbations to the basic flow, we have employed linear approximation of hy-

drodynamic stability theory. This was the first accomplishment in searching the limits

of proposed instability. Stability of the flow axisymmetric disturbances was studied in

two-dimensions. The results in two-dimensions read as:

• Decrease in Pr number leads to slight increases in the limits of the instability.

• Slip models highly affect critical states.

• Instability threshold varies non-linearly with Kn number. Increase of Kn num-

ber results in considerable amount of decline in critical Reynolds numbers. The

analysis in terms of Kn number is restricted up to the 0.4 due to invalidity of

continuum mechanics beyond this limit.

We also studied three dimensional analysis of the possible instabilities. For this pur-

pose, perturbation mode equations are disctretized by making use of the fourth-order

finite difference method and artificial compressibility concept, resulting GEP is solved

via QZ algorithm. Due to the dominance of the spurious eigenvalues we could not

search neutral states. On the other hand, we conclude that, artificial compressibility

works well even for moderate artificial M̃a numbers. Spectral methods are suggested

in order to ensure accurate GEP calculations of the problem.

In the last, we have simulated this non-isothermal driven flow mechanism by use

of Navier-Stokes and Burnett models. Both governing equations discretized via finite

volume methodology and the resulting linear set of algebraic equations are solved under

the specified boundary conditions. We end up with the following consequence:

• Linearly varying temperature of the top wall leads to smaller slip velocity due to

rarefaction effects compared to the adiabatic bottom wall.

• The velocity slip increases with decreasing aspect ratios. Moreover, increase in

overheat ratio also leads to increase in the creep velocity.

• Navier-Stokes and Burnett models have predicted different flow fields. The con-

tradiction between two models becomes more obvious when inspecting the max-

imum creep velocity that takes place on the horizontal surfaces. The difference
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between the predictions of both models enlarges as Kn number increases.

• In contrast to our expectations, for higher rarefaction degrees the maximum slip

velocity resulting from Burnett equations decreases gradually with increasing Kn

numbers (with the exception of a certain amount of non-linear increase near the

continuum limit).

• Such a reduction trend of the maximum slip velocity has also been pointed out

by Papadopoulos et al. (1995). In contrast to their justifications for the decrease

of the maximum slip velocity with increasing Kn number, to the authors’ knowl-

edge, totally diffusive nature of the flow is the fundamental reason. There is no

doubt that thermal stress terms (especially first order gradient of the temperature

∂θ/∂x) become effective in the predictions of Burnett model. However, effects of

these thermal stresses become negligible in the continuum limit. On the other

hand, verification of an intolerable gap between the results of Burnett model and

DSMC necessitates more researches on this topic.

• This study demonstrates that Navier-Stokes equations fail to predict the thermal

creep flow in the closed geometries for moderately high rarefaction levels.

We aim to extend and identify important aspects of thermal creep flow. At first,

we would like to answer the question of whether there exists an instability or not for this

flow type. Direct Numerical Simulation should be employed for the search of neutral

states. Extending stability analysis by studying different aspects (proof of exchange

of stabilities etc.) of the hydrodynamic stability is another alternative for the future

works.
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APPENDIX A: A FOURTH-ORDER COMPACT FINITE

DIFFERENCE SCHEME FOR BIHARMONIC EQUATIONS

Consider a Dirichlet problem for the Biharmonic equation such that

∇4Ψ = s (x, y) (x, y) ∈ Ω, (A.1)

Ψ = f (x, y) ,
∂Ψ

∂n
= f (x, y) (x, y) ∈ ∂Ω (A.2)

where Ω is a closed convex domain in two dimensions and ∂Ω is its boundary. Bi-

harmonic equation is discretized using a 25-point stencil with truncation error O (h4),

(Altas et al., 1998). The discrete form is given in terms of the unknown functions Ψ,

Ψx and Ψy

Ψi,j = +
3

11
(Ψi+1,j + Ψi,j+1 + Ψi−1,j + Ψi,j−1)

− 1

44
(Ψi+1,j+1 + Ψi−1,j+1 + Ψi−1,j−1 + Ψi+1,j−1)

− 7

66
h(Ψxi+1,j

− Ψxi−1,j
+ Ψyi,j+1

− Ψyi,j−1
) (A.3)

− 1

264
h(Ψxi+1,j+1

− Ψxi−1,j+1
− Ψxi−1,j−1

+ Ψxi+1,j−1

−Ψyi+1,j+1
+ Ψyi−1,j+1

− Ψyi−1,j−1
− Ψyi+1,j−1

)

+
h4

792
[11si,j + (si+1,j + si,j+1 + si−1,j + si,j−1)] ,

hΨxi,j
=

3

5
(Ψi+1,j − Ψi−1,j) +

3

40
(Ψi+1,j+1 − Ψi−1,j+1

− Ψi−1,j−1 + Ψi+1,j−1) − h

5
(Ψxi+1,j

+ Ψxi−1,j
)

− h

40
(Ψxi+1,j+1

+ Ψxi−1,j+1
+ Ψxi−1,j−1

+ Ψxi+1,j−1
(A.4)

+ Ψyi+1,j+1
− Ψyi−1,j+1

+ Ψyi−1,j−1
− Ψyi+1,j−1

)

+
h4

240
(si+1,j − si−1,j),
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hΨyi,j
=

3

5
(Ψi,j+1 − Ψi,j−1) +

3

40
(Ψi+1,j+1 + Ψi−1,j+1

− Ψi−1,j−1 − Ψi+1,j−1) − h

5
(Ψxi,j+1

+ Ψxi,j−1
)

− h

40
(Ψyi+1,j+1

+ Ψyi−1,j+1
+ Ψyi−1,j−1

+ Ψyi+1,j−1
(A.5)

+ Ψxi+1,j+1
− Ψxi−1,j+1

+ Ψxi−1,j−1
− Ψxi+1,j−1

)

+
h4

240
(si,j+1 − si,j−1),

respectively. Definitely, the advantage of the scheme is that all unknowns, Ψ, Ψx and
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Figure A.1. Stokes flow in the square lid-driven cavity.

Ψy are coupled with each other and solving each equation gives directly the stream

function; y and x-wise velocities, respectively.

The scheme has been tested for Stokes flow problem in a lid-driven cavity. Boundary

conditions of Equation A.2 and Equations A.3 - A.5 are given as

Ψ (0, y) = Ψ (1, y) = Ψ (x, 0) = Ψ (x, 1) = 0

Ψx (0, y) = Ψx (1, y) = Ψx (x, 0), Ψx (x, 1) = −1
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According to Altas et al. (1998), Kelmanson’s study of modified integral equation

solution assigns the center of primary vortex with a value of Ψ = 0.0998 on (0.5, 0.76).

The code, developed for the current study, has been compared with referred values and

close constitution was observed as seen Table A.1.

Additionally, graphical representation of the solution is illustrated in Figure A.1.

Table A.1. Comparison of main vortex values and locations.

Stream function value Location of vortex

Code results 0.10 (0.5, 0.762)

Kelmanson’s results 0.0998 (0.5, 0.760)
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APPENDIX B: DENSITY BOUNDARY CONDITIONS

FOR THE SLIP FLOW

REGIME

B.1. Theoretical Preliminaries

In most applications of fluid dynamics, the value of the density on a wall is treated

by setting normal gradient of pressure equal to zero (see pages 204-206 of Ferziger et

al., (2002)) for no-slip conditions. However, in the slip flow regime, a suitable density

condition should be derived. For this purpose, the following analysis of Poinsot et al.

(1992) will be temporarily cheated. Let’s consider a boundary located at x = L as

shown in Figure B.1. Borrowing the characteristic analysis of Thompson (1987) to

£5(u+c)

£1(u-c)

£2(u)

£3(u)
£4(u)

£5(u+c)

£1(u-c)

£2(u)

£3(u)
£4(u)

x

y

z

0

Computational
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L

Figure B.1. Waves leaving and entering through an inlet plane (x = 0) and an outlet

plane (x = L) for a subsonic flow (Poinsot et al., 1992).

reorganize the convective (hyperbolic) terms corresponding to waves propagating in

the x direction, the conservation equations are written in indicial notations

for continuity

∂ρ

∂t
+ d1 +

∂m2

∂y
+

∂m3

∂z
= 0, (B.1)
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energy

∂ρE

∂t
+

1

2
(ukuk) d1 +

d2

γ − 1
+ m1d3 + m2d4 + m3d5

(B.2)

+
∂ [(ρE + p) v]

∂y
+

∂ [(ρE + p) w]

∂z
=

∂ (ujτij)

∂xi
− ∂qi

∂xi
,

x-momentum

∂m1

∂t
+ u1d1 + ρd3 +

(m1u2)

∂y
+

(m1u3)

∂z
=

∂τ1j

∂xj

(B.3)

y-momentum

∂m2

∂t
+ u2d1 + ρd4 +

(m2u2)

∂y
+

(m2u3)

∂z
=

∂τ2j

∂xj
(B.4)

and z-momentum equations

∂m3

∂t
+ u3d1 + ρd5 +

(m3u2)

∂y
+

(m3u3)

∂z
=

∂τ3j

∂xj

(B.5)

where mi = ρui for i = 1, 2, 3 are being mass fluxes. The vector d is yielded from

characteristic analysis of Thompson (1987) and given by

d =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

d3

d4

d5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
c2

[
A2 + 1

2
(A5 + A1)

]
1
2
(A5 + A1)

1
2ρc

(A5 − A1)

A3

A4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂m1

∂x1

∂(c2m1)
∂x

+ (1 − γ)µ ∂p
∂x

u∂u
∂x

+ 1
ρ

∂p
∂x

u ∂v
∂x

u∂w
∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B.6)
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where the Ai for i = 1 · · · 5 designate the amplitudes of characteristic waves with each

corresponding characteristic velocity λ. These velocities follow as (Thompson, 1987)

λ1 = u − c (B.7)

λ2 = λ3 = λ4 = u (B.8)

λ5 = u + c (B.9)

where c denotes speed of sound and defined as c =
√

γRT . Additionally, amplitudes

of characteristic waves are estimated by Poinsot et al. (1992) and expressed as

A1 = λ1

(
∂p

∂x
− ρc

∂u

∂x

)
, (B.10)

A2 = λ2

(
c2 ∂ρ

∂x
− ∂p

∂x

)
, (B.11)

A3 = λ3
∂v

∂x
, (B.12)

A4 = λ4
∂w

∂x
, (B.13)

A5 = λ5

(
∂p

∂x
+ ρc

∂u

∂x

)
. (B.14)

In the next section, the density BC will be presented for the slip-flow regime.

B.2. Derivation of Density Boundary Conditions in the Slip Flow Regime

Boundary conditions of the density strictly, depend on the thermal status of the

walls. As is mentioned earlier, two types of BCs have been enforced in the current

study: Dirichlet and Neumann type BCs.

Let us consider the wall at x = L that its temperature specified (Dirichlet BC,
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T (L, y, z, t) = f(y, z, t)). The normal velocity at this wall will be zero (u(L, y, z, t) = 0).

Once, we have assigned these conditions, the process follows as

Stage 1. Zero wall-normal velocity condition rearranges characteristic velocities such

that

λ1 = −c, (B.15)

λ2 = λ3 = λ4 = 0, (B.16)

λ5 = c. (B.17)

Stage 2. Thus, the amplitudes of characteristic waves convert to

A1 = λ1

(
∂p

∂x
− ρc

∂u

∂x

)
= −c

(
∂p

∂x
− ρc

∂u

∂x

)
, (B.18)

A2 = λ2

(
c2 ∂ρ

∂x
− ∂p

∂x

)
= 0, (B.19)

A3 = λ3
∂v

∂x
= 0, (B.20)

A4 = λ4
∂w

∂x
= 0, (B.21)

A5 = λ5

(
∂p

∂x
+ ρc

∂u

∂x

)
= c

(
∂p

∂x
+ ρc

∂u

∂x

)
. (B.22)

Stage 3. Now, let’s consider the continuity equation given by Equation B.1. The

evaluation of continuity equation requires specification of d1. From the definition

of it, one can conclude from Equation B.19

d1 =
1

c2

[
A2 +

1

2
(A5 + A1)

]
=

1

2c2
(A5 + A1) . (B.23)

Stage 4.The Local One-Dimensional Inviscid (LODI) relation of Thompson (1987)
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(see referred article and page 110 of Poinsot et al. (1992) for more information)

induces

∂u

∂t

∣∣∣∣
x=L

+
1

2ρc
(A5 − A1) = 0 ⇒ A1 = A5. (B.24)

Stage 5. Let’s recast continuity equation by considering B.22, B.23 and B.24, which

results in a suitable boundary condition for the density at x = L, such that

∂ρ

∂t
+

1

c

[
∂p

∂x
+ ρc

∂u

∂x

]
+

∂(ρv)

∂y
= 0.

Newly derived density BC can be reorganized in a general form for two-dimension:

∂ρ

∂τ
+

1

c

[
∂p

∂n
+ ρc

∂un

∂n

]
+

∂(ρut)

∂t
= 0. (B.25)

where τ stands for time only for this formula. Here un and ut refer to the wall

normal and the tangential velocity components as well.

Finding a density BC for insulated wall is quite simple by utilizing Equation B.25.

Use of equation of state enables us to rewrite the mentioned equation such that the

normal gradient of pressure splits into two parts

∂ρ

∂τ
+

1

c

{
cv(γ − 1)

[
ρ
∂T

∂n
+ T

∂ρ

∂n

]
+ ρc

∂un

∂n

}
+

∂(ρut)

∂t
= 0. (B.26)

Well insulation condition across the wall requires setting the normal gradient of the

temperature to zero, ∂T
∂n

= 0, and thus the density boundary condition for the adiabatic

wall is reformed

∂ρ

∂τ
+

1

c

[
cv(γ − 1)T

∂ρ

∂n
+ ρc

∂un

∂n

]
+

∂(ρut)

∂t
= 0. (B.27)
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