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Münevver Şahin and Mustafa Şahin, without them it would not be possible at all. I

owe special thanks to my thesis advisor and co-advisor, for their critical advice, support

and relaxing attitude during the progress of my work. I would also like to thank H.

Ahmet Yıldırım, for his cooperation and support.

I would like to express my gratitude to Prof. Dr. Ayşe Erzan; first for mentioning
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ABSTRACT

SIMULATION OF TRANSIENT CURRENT THROUGH

POLYMETHYLMATHACRYLATE THIN FILMS BASED

ON A CHARGE DENSITY WAVE MODEL

A piecewise continuous, time dependent diffusive coupling in a classical one

dimensional randomly pinned charge density wave model has been used for the analysis

of experimentally observed transient current data for polymethylmethacrylate thin

films. Satisfactory agreement has confirmed that this can be a dynamical model for

the behavior of the transient current. The analysis also suggests the presence of three

different regimes in the decay of the transient current.
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ÖZET

YÜK YOG̃UNLUG̃U DALGALARI MODELİYLE

POLYMETİLMETAKRİLAT İNCE FİLMLERİNDE GEÇİCİ

AKIMIN MODELLENMESİ

Polymetilmetakrilat ince filmlerinde deneysel olarak gözlemlenen geçici akım,

rastgele çakılmış yük dalgalarında parçalı sürekli, zamana bag̃lı dag̃ınık bag̃laşma (dif-

fusive coupling) kullanılarak modellenmiştir. Bu modelin geçiçi akımın davranışını

acıklamak için uygun bir model oldug̃u yönünde doyurucu sonuçlar bulunmuştur.

Analiz ayrıca akımın sönümü sırasında üç farklı rejim oldug̃unu göstermektedir.
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1. INTRODUCTION

Polymeric dielectrics have complicated structures that may contain many impu-

rities and additives. They are also known to be very sensitive to their thermal, me-

chanical and electrical history [1, 2, 3, 4]. The difficulty of obtaining identical results

under nearly identical conditions has been reported in the literature [2].

Polar polymers such as Polymethylmethacrylate (PMMA), are known to need

very long times to reach a steady state current. From theoretical considerations [1],

this time has been estimated to be approximately a hundred years for PMMA. In

spite of the dependence on the history, experimentally observed reproducible chaotic

behavior as reflected by a positive Liapunov Exponent in the transient current has

been reported [5, 6].

The experiment, which this work is a result of, was originally designed for finding

the steady state value for the current in an attempted study of conductivity mechanisms

in PMMA samples. The relatively peculiar behavior of the observed transient current

and the unusually long times required for reaching a possible steady state implied the

alternative of chaotic behavior.

Initial studies for ascertaining possible chaotic behavior was carried out [5, 6, 7]

using time series analysis. In order to furnish a theoretical interpretation to the ob-

servation of a positive maximal Lyapunov exponent, a classical one-dimensional model

of randomly pinned charge density waves (CDW) is proposed [8]. The aim is to un-

derstand the experimentally observed decaying transient current as a time dependent

dynamical system based on this model. There are three reasons behind this choice:

i) the qualitative resemblance of the observed decaying patterns of the current, and

simulations based on this model; ii) the observation of a positive Lyapunov exponent

in the data which also agrees with the model; iii) the similarity of the observed electric

field dependence of conductivity with this model [6, 9].
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History dependence is also known to be a property of spin glasses, polymers [10] as

well as processes described by a continuous time random walk [11, 12]. The proposed

model inherits glassy dynamics, is akin to the short-range Ising spin glass, and can

describe random walks on directed percolation clusters [9]. All of these systems show

memory effects.

Another reason for the choice of the model is that it makes use of quenched ran-

domness, which accounts for the heterogeneity of the polymer and reflects nonlinearity

in the transient current.

A piecewise continuous, time dependent diffusive coupling in a classical one di-

mensional randomly pinned charge density wave model has been used for the analysis

of experimentally observed transient current data for polymethylmethacrylate. Sat-

isfactory agreement between the data and simulation based on the model mentioned

above has confirmed that this can be a dynamical model for the behavior of the tran-

sient current. The analysis also suggests the presence of three different regimes in the

decay of the transient current. The results have also been confirmed by Detrended

Fluctuation Analysis on both the data and the simulation.

The outline of this work has been influenced by the the comments of an anony-

mous referee of the journal Phys. Rev .B. The plan is as follows: In the second chapter

the experimental set up and the time series analysis is discussed. The third chapter is

about the conductivity of PMMA. In the Fourth chapter detrended fluctuation anal-

ysis is introduced. Fifth chapter gives the details of simulation. The last chapter is

conclusion.
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2. EXPERIMENTAL SETUP AND TIME SERIES

ANALYSIS

In this section, we present the details of the experimental setup for observing and

recording the transient current in PMMA samples. For completeness, we then give

a brief summary of the time series analysis of the relatively peculiar behavior in the

transient current leading to the observation of a positive maximal Lyapunov exponent.

Details of this analysis have been presented elsewhere [6, 7].

2.1. Experimental Setup

The specimens under investigation were prepared as sandwiched metal-polymer-

metal structures with PMMA as the isolating layer. 300 nm thick aluminum electrodes

were thermally evaporated at 10−6 mbar on microscope glass slides cleaned in a de-

tergent solution. 20µm thick PMMA layers were deposited from 6% PMMA solution

in toluene. Subsequently, aluminum top contacts were evaporated. The I-V measure-

ment was performed via a programmable picoammeter/voltage source (Keithley, model

487) and a temperature controller (Lake Shore, model 300) at the Bog̃aziçi University

Physics Department Solid State Laborotary. The picoammeter and the temperature

controller were interfaced to a computer through an interface card that automated data

taking, as shown in Fig.3.4.

The picoammeter model 478 used is capable of reading currents in the range 10

fA to 2 mA. It also serves as a DC voltage supply in the range ±500V . In an I-V

measurement a given voltage range Vmin to Vmax is scanned by constant increments

V at constant time intervals ∆t. ∆V and ∆t are controlled by the computer in the

following manner:

• The computer drives the voltage supply to apply the lower voltage limit Vmin to

the sample and to wait for a prescribed time in order to let the current settle

down.
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Figure 2.1. Experimental Setup

• When 9/10 of ∆t elapses, the current values are averaged over very short time

intervals with respect to time interval ∆t.

• At the end of ∆t seconds, the voltage and the corresponding averaged current

value for the last one tenth of ∆t are recorded in the output file. Then the voltage

is incremented by ∆V .

• The procedure is applied repeatedly until the voltage reaches Vmax.

When a DC voltage is applied, the current in the system achieves a stationary state

only after a definite time [13]. With the same setup, the extent of the settling time ∆t

is determined by applying a small voltage on the sample and then recording the time

evolution of the resulting current.

The data was taken under different voltage values ranging from 10V to 80V and

at a constant temperature of 295oK.

2.2. Time Series Analysis

The observed fluctuations that saturate in a time scale around 9000 s are displayed

in the figure below. It can be seen that the transition region shows a typical pattern

that can be associated with chaotic behavior.
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Figure 2.2. A semi logarithmic graph of a typical transient current at room

temperature at 10V

Applying nonlinear time series analysis on the transient current required a phase

space reconstruction and analysis by using the nonlinear time series analysis methods

as described in the TISEAN software package and literature [14, 15, 16].

Details of the phase space reconstruction from the scalar transient current s(k),

where k means the k’th time step, follow the well known procedure. Details will only

be given to the extent needed to set the notation. Time delay vectors ~y(k) given by

~y(k) = [s(k), s(k + τ), ..., s(k + (d− 1)τ)] ~y(k) ∈ Rd (2.1)

where τ denotes the delay time and d denotes the embedding dimension are constructed.

There are no clear cut rules for their determination since a limited range of data is

available and noise is present. The time delay is found from [15] the first zero of the

linear autocorrelation function given by
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C(τ) =
1
N

∑N
m−1 [s(m + τ)− s̄] [s (m)− s̄]

1
N

∑N
m−1 [s (m)− s̄]2

(2.2)

where

s̄ =
1

N

N∑

m=1

s (m) . (2.3)

Another method for the determination of the delay time is to find the first min-

imum of the average mutual information. This can be used as if it were a nonlinear

correlation function given by [17],

I (τ) = IAB =
∑

aıbj

P (s (n + τ) , s (n))

× log2

[
P (s (n) , s (n + τ))

P (s (n + τ)) P (s (n))

]
. (2.4)

Here P (s (n) , s (n + τ)) is the joint probability that if at time n, s (n) is mea-

sured, then, at time n + τ , s (n + τ) is measured and P (s(n)) is the probability of

measuring s (n) [15, 18]. Although two widely different time intervals have been ob-

served in two different methods the shorter one derived from the mutual information

analysis has been used. The longer time reflects the overall decay and is not expected

to affect the fluctuations.

The embedding dimension is determined by using the method of false nearest

neighbors[19]. A typical graph is given below showing that an embedding dimension
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of four drastically reduces the number of nearest neighbors. In order to ascertain

this embedding dimension, the Lyapunov exponent calculation has been repeated for

embedding dimensions five, six and seven. There is no significant change in the result.

Figure 2.3. Embedding dimension versus false neighbors

Since we are interested only in detecting the presence of chaotic behavior in the

transient data, the calculation is limited to the calculation of the maximal Lyapunov

exponent. Possible ways of performing these calculations are given in many references

including the following [20, 21, 22]. The stretching factor approach is preferred since

it is expected to minimize Gaussian noise and possible truncation error effects with

relatively moderate computational effort [23].

S (∆n) =
1

N

N∑

n0=1

ln


 1

|un (~s0)|
∑

~s∈u(~s0)

|~sn0+∆n − ~sn+∆n|

 . (2.5)
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Table 2.1. First local minimum of mutual information, zero crossing of

autocorrelation function and maximum Lyapunov exponents

E Field Mutual Inf. Autocorrelation Max. Lyapunov Exp.

0.50 MV/m 30s 1186s 0.0032 ± 0.0001

1.00 MV/m 30s 522s 0.0065 ± 0.0005

1.50 MV/m 60s 509s 0.0150 ± 0.0007

2.50 MV/m 380s 1246s 0.0084 ± 0.0002

2.75 MV/m 90s 549s 0.0115 ± 0.0007

3.00 MV/m 110s 638s 0.0135 ± 0.0001

3.25 MV/m 20s 1186s 0.0159 ± 0.0006

3.50 MV/m 400s 638s 0.0178 ± 0.0003

3.75 MV/m 80s 212s 0.0226 ± 0.0001

4.50 MV/m 140s 709s 0.0161 ± 0.0001

Here ~sn0 is the embedding vector, chosen as a reference point. We select all the

neighbors with distance smaller than ε, (denoted by un (~s0)), and average over the

distances of all neighbors to the reference point at time ∆n. If S (∆n) shows a linear

robust increase for ∆n then the slope is estimated as the maximal Lyapunov exponent.

This choice of the estimator for the maximal Lyapunov exponent is favored because it

does consider the fluctuations due to noise, limited data, etc. Details of the estimator

can be found in [24].

Results of this analysis can be summarized as follows. The delay time analysis of

the currents gave two different time scales as it was mentioned in ref [5]. The first local

minimum of the mutual information function gave values ranging between 20s to 400s.

But the values obtained from the first zero crossing of the autocorrelation function are

in the range of 200s to 2000s. For most of the cases four seems to be a satisfactory

value for the minimum embedding dimension. The calculated values of the maximal

Lyapunov exponents are given in Table 2.1.
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3. CONDUCTIVITY OF PMMA

Physical properties of polymeric dielectrics and particularly, their transient con-

ductivity vary in a sensitive way depending on their thermal, mechanical and electrical

history [1, 2, 3, 4]. This has been a reason why a lot of effort has been necessary in

order to ascertain the chaotic behavior in a reproducible manner. The many impurities

and additives that these substances contain is another factor leading to the difficulty

of obtaining identical results under nearly identical conditions. This has also been

reported in the literature [2].

Chaotic structures usually involve long time behavior. It is known that polar

polymers such as PMMA need very long times to achieve steady state current. In ref

[1], this time is estimated to be approximately a hundred years for PMMA. For this

reason, the transient behavior of the current can have properties that can be considered

as long time behavior.

When an electric field is applied to a dielectric, bound and free charges interact

with the electric field. If the field is strong enough, creation of charge pairs by breakup

of dangling bonds or trapping of free charge carriers becomes possible. This complicated

sequence of interactions causes the transient current observed in measurements and one

can expect several regimes. In general, after the application of voltage, the current falls

off with fluctuations (polarization current), and seems to become steady only when a

very long time has elapsed. Some of the causes of this behavior can be summarized

as[4],

• Fast kinds of polarization, e.g. resonance and some types of dipole orientation.

• Slow types of dipole relaxation polarization.

• Flow of conduction current caused by the motion of charges injected from the

electrodes or generated by thermal ionization of impurities or of the dielectric

itself, or produced by photo-ionization or high-energy radiation ionization.

• Relaxation polarization caused by micro- or macro-heterogeneities of a continuous
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or discrete nature.

• Trapping of charge carriers in the bulk of the dielectric.

The carrier transport in PMMA is reported to have a non-Gaussian (or dispersive)

character [3] in time. The general behavior of non-Gaussian transient transport of

carriers in disordered solids is summarized in the following equations [25, 26]:

i(t) ∝ t−(1−α) for t < Tt,

i (t) ∝ t−(1−β) for t > Tt,
(3.1)

where Tt is interpreted as being the transit time of the carrier front whereas α and β

are parameters describing the degree of dispersion. Such a power law according to ref.

[27, 28] might be caused by relaxation from non-uniform but scaling structures that

can mimic fractal properties.

The conductivity of PMMA is known to depend on the electric field and temper-

ature. The details are summarized below

3.1. Dependence on the Electric Field E

It is known that conductivity values are strongly field dependent[2]. The field

dependence is mostly attributed to trapping of free charge carriers in the volume of

the dielectric during their motion due to the applied field, whereas release from traps

is considered to be thermally activated with a field modified activation energy [26].

These charges are believed to be trapped in some of the localization states arising from

the defects in the structure of the insulator such as impurities, dopants and dangling

bonds. It has been suggested that side groups may act in a way similar to doped

impurities [29].
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3.2. Temperature Dependence

The main relaxation processes in PMMA are α and β processes related to the

cooperative dynamics (collective reorientation of the side groups with adjacent main

chain segments —C—CH2— ) and to the local dynamics (the reorientation of the polar

ester side groups (−−−COOCH3) by local motions around the C—C bond [1]. Both

processes (hence the glass transition temperature) are known to be dependent on the

film thickness, the type of substrate and temperature [30].

3.3. Polarons, Polymers and Charge Density Waves

When an insulator is placed in an electric field [31], it acquires electrostatic

charges which are trapped in some of the localization states. The trapping is a conse-

quence of the defects in the structure of the insulator such as impurities, dopants and

dangling bonds. One of the models for interpreting the charge-trapping process is the

polaron model [32, 33]. According to the model, when an electron enters an insulator,

the medium surrounding the electron will be polarized and distorted. A localization

state called polaron will be formed, which will trap the electron.

In case of conjugated polymers transport occurs by the movement of charge carri-

ers between localized states or between polaron, or bipolaron states [34] (The term con-

jugated means an alternation of multiple and single bonds linking a sequence of bonded-

atoms, such that there is an extended series of overlapping π orbitals. Polyphenylene

and polyphenylene-based molecules are examples of conjugated polymers [35]). The

electronic structure of conjugated polymers is described by ref [36] in terms of a quasi-

one-dimensional model. According to which the π-electrons are coupled to distortions

in the polymer backbone by the electron-phonon interaction. In the model; excitations

across the p - p * band gap create the self-localized, nonlinear excitations of conducting

polymers; solitons (in degenerate ground state systems); polarons; and bipolarons [37].

For instance in another polymer, poly (phenylene vinylene) (PPV) the existence

of both polaron and bipolaron states are known. Both spin and charge density waves
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of polaron states have also been reported [38]. Although we have not seen any reports

on the existence of charge density waves in PMMA, polarons have been observed and

charge trapping in PMMA can be explained in terms of a polaron model [39].
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4. QUENCHED DISORDER AND CHARGE DENSITY

WAVES

The effect of quenched disorder on a periodic medium has been known to display

many phenomena which include the nature of the depinning transition, the effect of

disorder on structural properties. charge-density waves (CDW) [40] is one example of

such systems. An effect of quenched disorder on a system that would normally display

periodicity is pinning the system in a disordered state, thus reducing or destroying that

periodicity. However, a sufficiently large driving force in a non equilibrium system can

act to depin the system, and reduce the effect of quenched disorder to that of annealed

disorder, that behaves in a manner analogous to thermal noise [41].

A charge density wave (CDW) is a periodic modulation of the electron density

and an associated modulation of the lattice below a critical transition temperature (Tp

called Peierls’ temperature). Quasi one-dimensional metals are typical systems that

exhibit CDW.

Due to the periodicity of the lattice deformation, the electron density will also

become periodically modulated (see Figure 4.1). As a result of the modulation, a gap

opens up in the single-particle excitation spectrum at the Fermi level, and a spatially

periodic charge density modulation is formed with wave vector 2kF. The deformation is

limited by the corresponding increase in elastic energy. The CDW state has an energy

that is lower than the uniform state.

A large number of materials are known to undergo Peierls transition whereas

only a small fraction of these show collective charge transport[42, 43]. Charge density

waves are pinned to the underlying lattice. If the CDW’s wavelength λc is an integral

multiple of the lattice period then its energy will oscillate with a period λc else if the

CDW’s wavelength is incommensurate with the lattice period then it will be pinned

by impurities and other lattice defects. In case of impurities CDW would elastically

deform so as to minimize its impurity interaction energy. CDW in both commensurate
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Figure 4.1. The upper figures show the single particle energy band a) in the case

when the electron density (ρ(r)) and the lattice are not coupled. In that case the

charge density is uniform. b) When the electron and lattice are allowed to interact,

the competition between the elastic and electronic energies leads to a static lattice

deformation and periodically modulated charge density. The modulations have a

wave length of λc = π
kf

and incommensurate cases would stay pinned for small electric field. However in the

commensurate case if a field larger than a threshold field is applied, the CDW will start

to slide, hence a collective charge transport would occur.

4.1. Charge Density Wave Model

Different models have been proposed to describe CDWs. The most widely studied

model is the FLR model developed by Hidetoshi Fukuyama, Patrick Lee and T.Maurice

Rice [44, 45]. In the FLR model CDW is treated as classical extended elastic medium.

This medium interacts with random impurities and couples to an electric field. Another

approach treats the CDW as classical particle in a periodic potential [46]. There are
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also semi-classical approaches [47]. None of the approaches above are complete in the

sense that they can not fully interpret the experimental results [42, 48, 49].

The one dimensional model used in this work is based on the works of Pietrenero

et. al. [8] and Erzan et. al. [9]. The model is a classical model of an over-damped

CDW. The charge density wave is taken in the form

ρ (x) = eρ0 [1 + C cos (q0x + φ (x))] . (4.1)

Then the overdamped equation of motion for the phase φi of a pinned charge density

wave (CDW) is given by [8]

−K

q2
0

∂2φ

∂x2
− ρm

q2
0τ0

∑

j

φ̇δ(x−xj)+eCV0ρ0×
∑

j

sin[q0xj +φ(x)]δ(x−xj)+
eρ0

q0

E = 0 (4.2)

where C=N0∆
aλρ0

, N0 is the constant density of states per site, a is the lattice constant, ∆

the gap, λ the electron phonon coupling, l=2π/q0 the wavelength, ρ0 the one dimen-

sional electron density, ρm the effective mass density of the charge density wave, V0 the

intensity of the interaction of the charge density wave with the local impurities whose

densities are ni. K=ρ0mv2
f with m the free electron mass and vf the Fermi velociy

and τ is a phenomenological parameter describing the dissipation of energy from the

charge density wave to the lattice. The above equation of motion can be replaced with

a difference equation using finite differences and the latter can be integrated between

any two consecutive impurity sites numerically.

Introducing the dimensionless variables u=nix,ξ = E
CV0niq0

, B= 2πKni

CV0ρ0q2
0
, s= t

τ0

where τ0 =
2πρmn2

i

CV0ρ0q0τ
and ψ = φ(x)

2π
and Q0 = q0

2πni
the difference equation becomes

,

dψj

ds
= B[

ψj+1 − ψj

rj+1,j

− ψj − ψj−1

rj,j−1

]− sin[2π(ujQ0 + ψj] + ξQj (4.3)

where Qj = 1
2
(rj+1,j + rj,j−1), j ≥ 1. If one introduces the quenched random variable
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φj = ujQ0, 1 ≤ φj ≤ 1, and takes the intervals between the impurity sites to be

uniform the equation of motion becomes

dψj

ds
= B[ψj+1 + ψj−1 − 2ψj]− sin[2π(φj + ψj)] + ξ (4.4)

where the dimensionless constants ξ and B correspond to the electric field and to the

diffusive coupling respectively. In terms of ψj the current density is given by

J = ene
2π

q0τ0

<
dψj

ds
> (4.5)

where ne is the bulk density and <> represents an average over all impurity sites.

The results of the model can be summarized as follows [8]:

(I) Nonlinear polarization.

(II) In the strong pinning case, The CDW splits into independent portions of different

length each pinned by an impurity which corresponds mathematically to many

domains.

(III) the existence of both broad and narrow band noise in the polarization current

[9].

(IV) the observation of a positive maximal Lyapunov exponent on simulated time

series of the current density based on the model[9].
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5. SELF SIMILARITY AND DETRENDED

FLUCTUATION ANALYSIS

5.1. Fractal Objects and Self-Similar Processes

A fractal object can be described as a geometrical object satisfying two criteria:

self-similarity and fractional dimensionality. Self-similarity means that an object can

be divided into sub-units and sub-sub-units that (statistically) resemble the structure

of the whole object [50]. The second criterion for a fractal object is that it should have

a fractional Hausdorff dimension. This distinguishes fractals from Euclidean objects

whose dimensions are integer.

In order to extend the idea of a fractal structure to the complex temporal processes

(ie time series) the following challenge has to be faced: A time series involves two

different physical variables whereas for geometrical curves both axes represent the

same physical variable. For example, both axes represent lengths for a fractal coastline

embedded in a two dimensional plane. On the other hand, in our studies one axis

represents time whereas the other represents the transient current as shown in figure

5.1.

Self-similarity of a two dimensional set is determined by taking a subset of the

object and rescaling it to the same size of the original object with the same magnifica-

tion factor for both its width and height. Then the statistical properties of the rescaled

object with the original object are compared. In order to compare a subset of a time

series with the original data set, two magnification factors (along the horizontal and

vertical axes) are needed in light of the argument mentioned above [51].

In mathematical terms self similarity of time series (x(t)) is defined as

x(t) ≡ aαx(
t

a
) (5.1)
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Figure 5.1. A time series of current

where ≡ means that the statistical properties of x(t) and aαx( t
a
) are identical. α

is called the parameter of self-similarity. By statistical identity, equality of all the

moments of the probability distribution is meant. Since it is almost impossible to meet

the above statistical identity criterion in real data, usually Eq. 5.1 is approximated by

the means and variances (first and second moments) of the distribution functions .

In order to find α from a given time series (adopting the weak criterion of self-

similarity), two magnifying factors (named magx and magt ) are needed . Assume

one has two observation windows with horizontal sizes n1 and n2 (see figure 5.2). In

the x direction the magnifying factor is trivial, magt = n2

n1
. In the y direction one

needs to determine the vertical characteristic scales of the two observation windows.

A reasonable estimate can be defined by using the standard deviations of these two

observation windows, denoted as s1 and s2 respectively ([51]). Hence magx = s2

s1
, and
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from Eq. 5.1,

α =
ln(magx)

ln(magt)
=

ln(s2)− ln(s1)

ln(n2)− ln(n1)
. (5.2)

This relation is just the slope of a line joining, (n1,s1) and (n2,s2) on a log-log

plot. The calculations for determining the scaling exponent α from a time series are

carried out using the following procedure:

(I) For a given size of the observation window the time series is divided into subsets

of independent windows of the same size.

(II) All individual values of the standard deviation s obtained from these subsets are

averaged in order to obtain a reliable estimate of the characteristic fluctuation at

this window size.

(III) These calculations are repeated for many different window sizes

(IV) α is estimated by fitting a line on the log-log plot of s versus n across the relevant

range of scales.

5.2. Detrended Fluctuation Analysis (DFA)

For a self-similar process with α > 0, the fluctuations are expected to grow with

the window size. Therefore, the fluctuations on large observation windows are larger

than those of smaller windows. As a result, the time series is unbounded. However,

most time series are bounded–they cannot have arbitrarily large amplitudes no matter

how long the data set is. A solution to this problem is studying the fractal properties

of the accumulated (integrated) time series, rather than those of the original signals

[50, 52, 53, 54].

When a bounded time series is mapped to a self-similar process by integration,

if the time series is non-stationary, integration process magnifies further the non-

stationarity of the original data.
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Detrended fluctuation analysis was originally introduced to overcome this prob-

lem [55, 56, 57]. DFA is reported to have advantages over conventional methods

(e.g., spectral analysis and Hurst analysis). It permits the detection of intrinsic self-

similarity embedded in a seemingly non stationary time series, and also avoids the

spurious detection of apparent self-similarity, which may be an artifact of extrinsic

trends [58, 59, 60, 61, 62]. Hence it serves as a scaling analysis method used to esti-

mate long-range power-law correlation exponents [57, 62, 63]

The procedure for DFA is as follows (assuming that the time series is represented

by x(t)):

(I) First the time series is integrated. This integration step maps the original time

series to a self-similar process.

(II) To measure the vertical characteristic scale of the integrated time series, the

integrated time series is divided into boxes of equal length, n. In each box of

length n, a least squares line is fitted to the data (representing the trend in that

box). The y coordinate of the straight line segments is denoted by yn(k).

(III) Next, the integrated time series, y(k), is detrended, by subtracting the local trend,

yn(k), in each box.

The root-mean-square fluctuation of this integrated and detrended time series is

calculated by

F (n) =

√√√√ 1

N

N∑

K=1

[y(k)− yn(k)]2. (5.3)

This computation is repeated over all time scales (box sizes) to characterize the

relationship between F(n), the average fluctuation, as a function of box size, n. A

linear relationship on a log-log plot indicates the presence of power law scaling. Under

such conditions, the fluctuations can be characterized by a scaling exponent, α, such

that F (n) ∼ nα. α values indicate the behavior as follows: [51]
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(i) α = 0.5, the time series are uncorrelated [64].

(ii) 0.5 < α ≤ 1, indicates persistent long-range power-law correlations, the case

α = 1 corresponds to 1
f

noise.

(iii) alpha > 1 indicates that correlations exist but cease to be a power law, α = 1.5

indicates Brownian noise.

The slope of the line relating log F(n) to log n determines the scaling exponent

(self-similarity parameter), α. A crossover in the scaling exponent, α, indicates a

transition from one type to a different type of underlying correlation, due to a transition

in the dynamical properties [62, 57].

5.3. Effects of Trends

When DFA analysis is applied on a signal, the scaling exponent does not always

happen to be constant; crossovers often exist. Different value for the scaling exponent

α is found in different ranges of scales [65, 66, 67, 68].

A crossover might happen as a result of either trends in the signal, or a change in

the correlation properties of the signal. For instance, the number of particles emitted

by a radiation source in an unit time has a trend of decreasing because the source

becomes weaker[69, 70].

Below is a summary of the effect of different trends (e.g., polynomial, sinusoidal

and power-law trends) on the scaling behavior of time series [57].

5.3.1. Noise with Linear Trend

Linear trend (with the slope AL) is denoted by

u(i) = ALi. (5.4)
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The root mean square (rms) fluctuation function for correlated noise with standard

deviation one, can be aproximated by [57]

Fη(n) = b0n
α (5.5)

where b0 is a parameter independent of n (box size).

The rms fluctuation function for for linear trend is

FL(n) = k0ALnαL (5.6)

where k0 is a constant independent of n.

Then the correlated noise and the the linear trend are superposed and this gives

rise to the rms fluctuation function denoted as FηL(n) . In fig 5.3 below, fig 5.4, fig

5.5, DFA results for correlated noise, linear trend and superposition of linear trend and

correlated noise respectively are shown. The correlated noise is generated using the

algorithm of Makse et. all. [71] (the details of the model and the mathematica code is

given in Appendix A.)

In fig 5.5 a crossover is seen at log(n)≈ 3, which will be referred as nx. For n < nx

the slope is nearer to the slope of the correlated noise. For n > nx the slope is nearer to

the slope of linear trend. The crossover is not due to any intrinsic change in dynamics.

5.3.2. Noise with Sinusodial Trend

It has been shown in [57] that when a sinusoidal trend u(i) = AS sin (2πi/T )

(i = 1, ..., Nmax) is taken, where AS is the amplitude of the signal and T is the period,

the rms fluctuation function FS(n), has the same shape for different amplitudes and

different periods. Below in fig 5.6 a typical behavior is shown with AS = 2 and T = 212.

A crossover is observed at a scale n2× ≈ T .
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Table 5.1. The slopes of crossover regions mentioned above. × indicate that there is

no such region. For instance, for log(Fη(n)) there is only one region hence n < n2×

and n < n3× is represented by a ×

crossover regions slope of log(Fη(n)) slope of log(FS(n)) slope of log(FηS(n))

n < n1× 0.89 2 2

n < n2× × horizontal line horizontal line

n < n3× × × 0.8

For n < n2×, the rms fluctuation FS(n) exhibits a scaling with an exponent

equal to 2. This behavior is due to the fact that at small scales (box size n) the

sinusoidal function is dominated by a linear term. When n > n2×, FS(n) is a constant

independent of the scale n because of the periodic property of the sinusoidal trend.

When the DFA method is applied to the a superposition of correlated noise with a

sinusoidal trend, three crossovers in the rms fluctuation FηS(n) at characteristic scales

denoted by n1×, n2× and n3× are observed (see fig. 5.7).

The first and third crossovers at scales n1× and n3× seem to result from the

competition between the effects on FηS(n) of the sinusoidal signal and the correlated

noise. For n < n1× the linear part of the sinusoidal signal is effective and for n > n3×,

the noise has the dominating effect ( Fη(n) > FS(n)) (see fig 5.8 for the behavior

of Fη(n)), and the behavior of FηS(n) is very close to the behavior of Fη(n). For

n1× < n < n2× and n2× < n < n3× the sinusoidal trend dominates ( FS(n) > Fη(n)),

and the behavior of FηS(n) is close to FS(n). A summary of the values is presented in

table 5.1.
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6. SIMULATION

The competition between the quenched random field and the elastic restoring

forces invokes some very complex dynamics. Charge density waves provide one of the

very few cases where it is possible to study the effects of quenched randomness due to

impurities in such systems.

The recursion relation given by equation 4.4 is used as the CDW model. It is

numerically simulated, and the polarization current has been computed using the values

of phases obtained.

The simulated model has then been fitted to the experimentally observed tran-

sient current through PMMA. The simulation and the fitting codes are written in the

Fortran programming language. The data and the simulation for the transient current

are normalized between 0 and 1. There are four parameters, the number of the impu-

rity sites, the number of time steps, the values of B and ξ that control the behavior of

the CDW polarization current. Initial conditions are chosen randomly, that is, the code

fills the initial values of the impurity sites with quenched random values which have

values between 0 and 1. N (the number of time steps), the number of states (which

is set to 10000 as in [9]) are given manually to the code. Of the two parameters, ξ

represents the forcing electric field and B represents the diffusive coupling. A constant

value for the former fits the experimental data satisfactorily.

For a satisfactory fit, B has to be taken as a time dependent parameter. For

simplicity, the following approach is used. The data is split into time intervals of the

order of the first minimum of the average mutual information.

Mutual information gives an estimate for the information connection between

data values. The CERN MINUIT package [72, 73] is used to find the best fit for an

overall ξ and B for each interval.
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Figures 6.1, 6.2, 6.3 show the simulation results and the data for an applied

voltage of 3.25MV/m, 2.50MV/m and 2.0MV/m respectively.
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Figure 6.1. CDW fit of current at 3.25MV/m. Both the measured current(+) and

simulated CDW polarization current(×) are normalized and drawn versus number of

time steps (n)

The fit required three different constant values for the parameter B for different

regions of time. In order to verify this observation that more than one different regions

of B are indicated, detrended fluctuation analysis (DFA)is used on the observed time

series, assuming that a change in the dynamics of the system would involve a change

in the pinning and hence B.

Figures 6.6, 6.7, 6.8 show log(F(n))vs log(n) for 3.25MV/m, 2.50MV/m and 2.0

MV/m respectively both for the current and the simulation. Although a precise iden-

tification of power law behavior would require more decades of data, a discontinuity

in slopes clearly indicates three regions for the 3.25 MV/m data. Although a linear
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log-log plot is less clearly indicated for a large box size for the next lowest voltage of

2.50MV/m, three regions can still be identified. In this set one can observe a middle

region with slope nearly equal to 2 followed by a crossover, which, according to [57]

might be caused by a sinusoidal trend rather then a change in the dynamical properties

of the system. The similarity between the crossover regions in the data and the simula-

tion leads us to conclude that the crossover is more likely to result from a transition in

the dynamical properties of the system. The process under study is basically diffusive

and damped with chaotic fluctuations; the pinning parameter B is indirectly related

to the damping because of the scaled time-like parameter in the CDW model used in

this work. Moreover, in [6], this data set is reported to have the minimum maximal

Lyapunov exponent with respect to other data sets, which might explain why this data

set (Figure 6.2) seems to be more periodic-like than other sets. The power spectrum

for the 2.0 MV/m data is shown in Figure 6.4 does not show any marked indication of

periodic behavior. One can also see a crossover behavior from a region with slope near

2 similar to that in the data when DFA analysis is applied to a numerical solution of
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Lorenz equations (for the Lorenz Equations see Appendix). This is shown in Figure

6.5. For the lowest voltage of 2.0 MV/m the demarcation of regions is less clear but

plausible.

Table 1. summarizes the results of the fit and the DFA scaling exponents. The

three different regions with the corresponding values of B and the values for the scaling

exponents are shown. The variation of the scaling exponent at the weakest applied

electric field among regions is less pronounced. For stronger applied electric fields,

the values of B for the first two regions seem to show a significantly slower variation,

but attempting a single overall value deteriorates the fit. It is also observed that as

the voltage increases the long range correlations (indicated by α) decrease, and the

regime changes become more distinct. This behavior seems to be consistent with the

strong dependence of conductivity on the electric field[2]. The field dependence is

mostly attributed to trapping of free charge carriers in the volume of the dielectric

during their motion due to the applied field, whereas release from traps was considered
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to be thermally activated with a field-modified activation energy [74]. These charges

are believed to be trapped in some of the pinning states arising from the defects in

the structure of the insulator such as impurities, dopants and dangling bonds. It has

been suggested that side groups may act in a way similar to doped impurities [29].

The variation of B seems to be related with the competition between the mechanisms

of conductivity in PMMA via dipole relaxation process, caused by heterogeneities and

trapping of charge carriers [2]. It is known that dipole relaxation completes before other

mechanisms [75]. This is probably related to the first crossover in the scaling exponent.

The other two crossovers in α might be due to relaxation caused by heterogeneities

and trapping of charge carriers.

Another observation that supports the existence of three regimes reflects itself in

the autocorrelation function parallel to the results obtained in DFA analysis. In figure

6.9 a crossover behavior having what seems to be three different slopes can be seen.
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Table 6.1. The scaling exponents, the B values, and the ξ values for the three applied

electric fields

α1 α2 α3 B1 B2 B3 ξ

3.25MV/m 1.47 0.73 1.43 1.3±0.2 1.4±0.2 1.3±0.2 0.7

2.50 MV/m 1.45 1.98 0.5 1.3±0.1 1.4±0.1 1.7±0.1 0.53

2.0MV/m 1.69 1.47 1.3 0.8±0.05 0.7±0.05 0.8±0.05 0.62

A similar situation can also be seen in figures 6.10 and 6.11 for 3.25MV/m and 2.50

MV/m respectively.
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7. CONCLUSIONS

In this work, an attempt has been made to simulate the experimentally observed

polarization decay current in terms of a dynamical system with a diffusive coupling

that is piecewise continuous in time. The discontinuities indicate the presence of three

different time dependent nonlinear conductivity mechanisms. This presence is sup-

ported by a detrended fluctuation analysis. An overall positive Lyapunov exponent

had been observed and reported elsewhere [5, 6]. An attempt has been made to model

the indicated chaotic behavior in terms of a model describing pinned charge density

waves. Charge density waves (of polarons) have been reported in certain polymers[38],

but not yet in PMMA (even though the existence of polarons is known [39]) . A satis-

factory fit to the model has been obtained; however it is not absolutely clear whether

this is a pure charge density wave effect, or there are further interactions which can

still be modelled by the CDW model by admitting a piecewise time dependent diffusive

coupling. Piecewise time dependence agrees with the DFA results. One reason for the

time dependence of the diffusive coupling may be aging under the influence of applied

electric field (for aging effects in PMMA see [1, 3]). The continued application of an

electric field is affecting the configuration of the polymer. Thus the heavily pinned

charge density wave model stands as a good candidate for modelling the transient cur-

rent, in spite of the fact that charge density waves have been observedin other polymers

but not PMMA.



38

APPENDIX A: Generating Correlated noise

The algorithm for generating correlated noise series (ηi)can be summarized as

follows [76, 77]:

(I) Generate a one-dimensional sequence ri of uncorrelated random numbers with

a Gaussian distribution, and calculate the Fourier transform coefficients of the

series rq.

(II) Calculate the Fourier transform of the correlated random series (ηq) using

S(q) =< ηqη−q > (A.1)

ηq =
√

S(q)rq (A.2)

where S(q) is the Fourier transform of C(l) which is the long-range power-law

correlation function of the generated series of the form

C(l) =< ηiηi + l >∼ l−γ (A.3)

and γ is the correlation exponent.

(III) Calculate the inverse Fourier transform of ηq to obtain the correlated series of ηi

.

The modifications made by Makse et. al [71] is as follows:

(I) The correlation function C(l) is modified such as C(l) ≡ (1 + l2)
γ
2

(II) C(l) is defined on the interval [−L
2

, ...., L
2
]

(III) It is shown that the Fourier transform of the redefined correlation function

can be calculated as follows:

S(q) =
2π

1
2

Γ(γ
2

+ 1
2
)
(
q

2
)

γ−1
2 κ γ−1

2
(q) (A.4)
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Below is the Mathematica source code used for the generation of the correlated

noise series used in this work.

Needs["Statistics‘ContinuousDistributions‘"]

RandomNormal[m_,s_]:=Random[NormalDistribution[m,s]]

Do[y[i]=RandomNormal[0,1],{i,1000}]

Array[y, 1000]>>yout.txt

data= Array[y, 1000]

fdata=Abs[Fourier[data]]

fdata>>foury.txt

g=0.4

0.4

sq=Array[x,1000]

sq*fdata

Abs[InverseFourier[Sqrt[sq]*fdata]]>>correlatednoise3.dat
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APPENDIX B: LORENZ EQUATIONS

The Lorenz system is one of the most widely used examples for chaotic behavior.

It is represented by the following equations:

ẋ = σ(y − x) (B.1)

ẏ = rx− y − xz (B.2)

ż = xy − bz (B.3)

with the parameters r, σ and b. With σ = 10 and b = 8
3
, the evolution of the

Lorenz sysytem with respect to variation in r can be summarized as follows:

(I) For r < 1, the system has only one attracting fixed point. It is the origin

c0 = (0, 0, 0) of the state space.

(II) At r = 1 the fixed point c0 loses its stability. c0 becomes a repellor and

the system gets two new fixed points, c+ = (
√

(b(r − 1)),
√

(b(r − 1)), r − 1)

and c+ = (−
√

(b(r − 1)),−
√

(b(r − 1)), r − 1) .

(III) Above r = 24.06 the system becomes a strange attractor (see fig. B.1) .

The time series of the x component for the above mentioned values of σ, b and

r = 25 is illustrated in figB.2.
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Figure B.1. The Lorenz attractor
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Figure B.2. The time evaluation of x component of Lorenz system



42

APPENDIX C: SOURCE CODE FOR CHARGE

DENSITY WAVE FIT

The code first fills the array representing the impurity sites randomly. Then

calculates the current as explained in the section charge density wave function.

function rn(i)

use Ziggurat

implicit real*8(a-h,o-z)

c T his assures that each MINUIT variation gets the same random

numbers

common /rndms/norder,irnd,yarr(20100)

if(irnd. eq.0) then

do i=1,20100

yarr(i)=uni()

enddo

irnd=1

endif

if(norder.eq.0) norder=1

rn=yarr(norder)

norder=norder+1

return

end

Subroutine Fitdata(x,curr,nstart,NTIME,xmaxbin,xminbin,DT,iflag)

\\C This Sub Routine calculates simulated time development

use Ziggurat

implicit real*8(a-h,o-z)
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implicit integer*4(i-n)

COMMON/STATPS/ nstat, npos, ntime1

common /rndms/norder,irnd,yarr(20100)

parameter(NPOSM=10008,NTIMEM=3008,NSTATM=1)

dimension Y(NPOSM,NTIMEM),current(NTIMEM),H(NPOSM),

YPRIME(NPOSM,NT1IMEM)

dimension X(*),CURR(*)

TWOPI=8.0D0*ATAN(1.0d0)

B=X(1)

E=X(2)

DT=2.0d-1

write(*,*)xmaxbin,xminbin

c write(*,*)’%%%’,x(1),x(2)

c open(unit=10, file=’simcur.dat’, status=’unknown’)

c set the initial conditions

norder=0

do i=1,npos

y(i,1)=rn(1)

enddo

do i=1,npos

H(I)=rn(1)

enddo

c calculate YPRIME(NPOS,1) c write(*,*)’+’,ntime,npos

DO J=2,NTIME+7

DO I=1,NPOS
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c each impurity site is assumed to be randomly away

Y(I,J+1)=(1.0D0-2.0d0*B*DT)*Y(I,J)+DT*B*(Y(I-1,J)+Y(I+1,J))

+E*DT-.DT*DSIN(TWOPI*(H(I)+Y(I,J)))

ENDDO

ENDDO

DO J=1,NTIME+7

DO I=1,NPOS

c each impurity site is assumed to be randomly away

YPRIME(I,J)=B*(Y(I+1,J)+Y(I-1,J)-2*Y(I,J))-DSIN(MOD(TWOPI*(H(I)

+Y(I,J)),TWOPI))+E

ENDDO

ENDDO

c write(,*)"current (j)=a/npos"

xmax=-1000.0

xmin=1000.0

DO J=1,NTIME+7

A=0

DO I=1,NPOS

A=A+YPRIME(I,J)

enddo

current(J)=A/NPOS

c if(current(J).le.xmin)xmin=current(J) c

if(current(J).ge.xmax)xmax=current(J)

c write(*,*) current(J)

enddo

c write(*,*)’ebebe’

xmax=-1000.0
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xmin=1000.0

c write(*,*)’ebebe2’,xmin,xmax

DO im=nstart,NTIME

c CURR(I)=X(3)*current(i)

c CURR(I)=(current(i+6)-xmin)/(xmax-xmin)

curr(im)=current(im+6)

c write(*,*)’!!’,im+6,xmax,xmin,current(im+6)-xmin

ENDDO

do ime=nstart,ntime

if(curr(ime).le.xmin)xmin=curr(ime)

if(curr(ime).ge.xmax)xmax=curr(ime)

end do

do imec=nstart,ntime

s=0

s=curr(imec)

curr(imec)=((xmaxbin-xminbin)/(xmax-xmin))*(s-xmin)+xminbin

end do

write (*,*) ’getting out of fit’

RETURN

end
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APPENDIX D: GENERATOR FOR RANDOM

NUMBERS

This random number generator is used in order to obtain uniformly distributed

random numbers between 0 and 1. The reasons as to why this code is used are,

first it is free software and second most of the random number generators created

after give reference to this software.

! Marsaglia \& Tsang generator for random normals \& random

exponentials. ! Translated from C by Alan Miller

(amiller@bigpond.net.au)

! Marsaglia, G. \& Tsang, W.W. (2000) ‘The ziggurat method for

generating ! random variables’, J. Statist. Software, v5(8).

! This is an electronic journal which can be downloaded from: !

http://www.jstatsoft.org/v05/i08

! N.B. It is assumed that all integers are 32-bit. ! N.B. The

value of M2 has been halved to compensate for the lack of !

unsigned integers in Fortran.

! Latest version - 1 January 2001

MODULE Ziggurat

IMPLICIT NONE

PRIVATE

INTEGER, PARAMETER :: DP=SELECTED_REAL_KIND( 12, 60 ) REAL(DP),

PARAMETER :: m1=2147483648.0_DP, m2=2147483648.0_DP, \&

half=0.5_DP
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REAL(DP) :: dn=3.442619855899_DP,

tn=3.442619855899_DP, \&

vn=0.00991256303526217_DP,\&

q, de=7.697117470131487_DP, \& te=7.697117470131487_DP, \&

\\

ve=0.003949659822581572_DP INTEGER, SAVE :: iz, jz,

jsr=123456789, kn(0:127), \&

ke(0:255), hz REAL(DP), SAVE ::

wn(0:127), fn(0:127), we(0:255), fe(0:255) LOGICAL, SAVE ::

initialized=.FALSE.

PUBLIC :: zigset, shr3, uni, rnor, rexp

CONTAINS

SUBROUTINE zigset( jsrseed )

INTEGER, INTENT(IN) :: jsrseed

INTEGER :: i

! Set the seed

jsr = jsrseed

! Tables for RNOR

q = vn*EXP(half*dn*dn)

kn(0) = (dn/q)*m1

kn(1) = 0

wn(0) = q/m1

wn(127) = dn/m1
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fn(0) = 1.0_DP

fn(127) = EXP( -half*dn*dn )

DO i = 126, 1, -1

dn = SQRT( -2.0_DP * LOG( vn/dn + EXP( -half*dn*dn ) ) )

kn(i+1) = (dn/tn)*m1

tn = dn

fn(i) = EXP(-half*dn*dn)

wn(i) = dn/m1

END DO

! Tables for REXP

q = ve*EXP( de )

ke(0) = (de/q)*m2

ke(1) = 0

we(0) = q/m2

we(255) = de/m2

fe(0) = 1.0_DP

fe(255) = EXP( -de )

DO i = 254, 1, -1

de = -LOG( ve/de + EXP( -de ) )

ke(i+1) = m2 * (de/te)

te = de

fe(i) = EXP( -de )

we(i) = de/m2

END DO

initialized = .TRUE.

RETURN

END SUBROUTINE zigset

! Generate random 32-bit integers FUNCTION shr3( ) RESULT( ival )
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INTEGER :: ival

jz = jsr

jsr = IEOR( jsr, ISHFT( jsr, 13 ) )

jsr = IEOR( jsr, ISHFT( jsr, -17 ) )

jsr = IEOR( jsr, ISHFT( jsr, 5 ) )

ival = jz + jsr

RETURN

END FUNCTION shr3

! Generate uniformly distributed random numbers FUNCTION uni( )

RESULT( fn_val )

REAL(DP) :: fn_val

fn_val = half + 0.2328306e-9_DP * shr3( )

RETURN

END FUNCTION uni

! Generate random normals FUNCTION rnor( ) RESULT( fn_val )

REAL(DP) :: fn_val

REAL(DP), PARAMETER :: r = 3.442620_DP

REAL(DP) :: x, y

IF( .NOT. initialized ) CALL zigset( jsr )

hz = shr3( )

iz = IAND( hz, 127 )

IF( ABS( hz ) < kn(iz) ) THEN
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fn_val = hz * wn(iz)

ELSE

DO

IF( iz == 0 ) THEN

DO

x = -0.2904764_DP* LOG( uni( ) )

y = -LOG( uni( ) )

IF( y+y >= x*x ) EXIT

END DO

fn_val = r+x

IF( hz <= 0 ) fn_val = -fn_val

RETURN

END IF

x = hz * wn(iz)

IF( fn(iz) + uni( )*(fn(iz-1)-fn(iz)) < EXP(-half*x*x) ) THEN

fn_val = x

RETURN

END IF

hz = shr3( )

iz = IAND( hz, 127 )

IF( ABS( hz ) < kn(iz) ) THEN

fn_val = hz * wn(iz)

RETURN

END IF

END DO

END IF

RETURN

END FUNCTION rnor

! Generate random exponentials FUNCTION rexp( ) RESULT( fn_val )
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REAL(DP) :: fn_val

REAL(DP) :: x

IF( .NOT. initialized ) CALL Zigset( jsr )

jz = shr3( )

iz = IAND( jz, 255 )

IF( ABS( jz ) < ke(iz) ) THEN

fn_val = ABS(jz) * we(iz)

RETURN

END IF

DO

IF( iz == 0 ) THEN

fn_val = 7.69711 - LOG( uni( ) )

RETURN

END IF

x = ABS( jz ) * we(iz)

IF( fe(iz) + uni( )*(fe(iz-1) - fe(iz)) < EXP( -x ) ) THEN

fn_val = x

RETURN

END IF

jz = shr3( )

iz = IAND( jz, 255 )

IF( ABS( jz ) < ke(iz) ) THEN

fn_val = ABS( jz ) * we(iz)

RETURN

END IF

END DO

RETURN

END FUNCTION rexp

END MODULE ziggurat
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APPENDIX E: DFA SOURCE CODE

file: dfa.c J. Mietus, C-K Peng, and G. Moody 8 February 2001 Last revised: 25

January 2005 v4.9

dfa: Detrended Fluctuation Analysis (translated from C-K Peng’s Fortran code)

Copyright (C) 2001-2005 Joe Mietus, C-K Peng, and George B. Moody

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABIL-

ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General

Public License for more details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place

- Suite 330, Boston, MA 02111-1307, USA.

You may contact the authors by e-mail (peng@physionet.org) or postal mail (Beth

Israel Deaconess Medical Center, Room KS-B26, 330 Brookline Ave., Boston, MA

02215 USA). For updates to this software, please visit PhysioNet (

http://www.physionet.org/

).

This method was first proposed in: Peng C-K, Buldyrev SV, Havlin S, Simons

M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys

Rev E 1994;49:1685-1689. [

Available on-line at

http://prola.aps.org/abstract/PRE/v49/i2/p1685_1

]

A detailed description of the algorithm and its application to physiologic signals

can be found in: Peng C-K, Havlin S, Stanley HE, Goldberger AL. Quantification

of scaling exponents and crossover phenomena in nonstationary heartbeat time

series. Chaos 1995;5:82-87. [Abstract online at

http://www.ncbi.nlm.nih.gov/entrez/-
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query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11538314&dopt=Abstract

]

If you use this program in support of published research, please include a citation

of at least one of the two references above, as well as the standard citation for

PhysioNet: Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh,

Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, Phys-

ioToolkit, and Physionet: Components of a New Research Resource for Complex

Physiologic Signals. Circulation 101(23):e215-e220 [

Circulation Electronic Pages;

http://circ.ahajournals.org/cgi/content/full/101/23/e215

]; 2000 (June 13).

#include <stdio.h> #include <stdlib.h> #include <math.h>

#define SWAP(a,b) {temp = (a); (a) = (b); (b) = temp;}

/* Function prototypes. */ long input(void); int rscale(long

minbox, long maxbox, double boxratio); void dfa(double *seq, long

npts, int nfit, long *rs, int nr, int sw); void setup(void); void

cleanup(void); void help(void); double polyfit(double **x, double

*y, long ndat, int nfit); void error(char error_text[]); double

*vector(long nl, long nh); int *ivector(long nl, long nh); long

*lvector(long nl, long nh); double **matrix(long nrl, long nrh,

long ncl, long nch); void free_vector(double *v, long nl, long

nh); void free_ivector(int *v, long nl, long nh); void

free_lvector(long *v, long nl, long nh); void free_matrix(double

**m, long nrl, long nrh, long ncl, long nch);

/* Global variables. */ char *pname; /* this program’s name

(for use in error messages) */ double *seq; /* input data

buffer; allocated and filled by input() */ long *rs; /* box size

array; allocated and filled by rscale() */ double *mse; /*
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fluctuation array; allocated by setup(), filled by dfa() */ int

iflag = 1; /* integrate the input data if non-zero */ int nfit =

2; /* order of the regression fit, plus 1 */ int nr; /*

number of box sizes */

main(int argc, char **argv) {

int i, sw = 0;

long minbox = 0L, maxbox = 0L, npts, temp;

/* Read and interpret the command line. */

pname = argv[0];

for (i = 1; i < argc && *argv[i] == ’-’; i++) {

switch(argv[i][1]) {

case ’d’: /* set nfit (the order of the regression fit) */

if ((nfit = atoi(argv[++i])+1) < 2)

error("order must be greater than 0");

break;

case ’i’: /* input data are already integrated */

iflag = 0; break;

case ’l’: /* set minbox (the minimum box size) */

minbox = atol(argv[++i]); break;

case ’u’: /* set maxbox (the maximum box size) */

maxbox = atol(argv[++i]); break;

case ’s’: /* enable sliding window mode */

sw = 1; break;

case ’h’: /* print usage information and quit */

default:

help();

exit(1);

}

}
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/* Allocate and fill the input data array seq[]. */

npts = input();

/* Set minimum and maximum box sizes. */

if (minbox < 2*nfit) minbox = 2*nfit;

if (maxbox == 0 || maxbox > npts/4) maxbox = npts/4;

if (minbox > maxbox) {

SWAP(minbox, maxbox);

if (minbox < 2*nfit) minbox = 2*nfit;

}

/* Allocate and fill the box size array rs[]. rscale’s third

argument specifies that the ratio between successive box

sizes is

2^(1/8). */

nr = rscale(minbox, maxbox, pow(2.0, 1.0/8.0));

/* Allocate memory for dfa() and the functions it calls. */

setup();

/* Measure the fluctuations of the detrended input data at

each box size using the DFA algorithm; fill mse[] with these

results. */

dfa(seq, npts, nfit, rs, nr, sw);

/* Output the results. */

for (i = 1; i <= nr; i++)

printf("%g %g\n", log10((double)rs[i]), log10(mse[i])/2.0);

/* Release allocated memory. */

cleanup();

exit(0);

}
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/* Read input data, allocating and filling seq[], integrating if

iflag != 0. Following the convention used for other arrays in this

program, seq[0] is unused, and the first point is stored in

seq[1]. The return value is the number of points read.

This function allows the input buffer to grow as large as

necessary, up to the available memory (assuming that a long int is

large enough to address any memory location). Note that the

integration is done using double precision arithmetic to avoid

complete loss of precision when the integrated data reach large

amplitudes. */

long input() {

long maxdat = 0L, npts = 0L;

double y, yp = 0.0;

while (scanf("%lf", &y) == 1) {

if (++npts >= maxdat) {

double *s;

maxdat += 50000;

/* allow the input buffer to grow (the increment is arbitrary) */

if ((s = realloc(seq, maxdat * sizeof(double))) == NULL) {

fprintf(stderr,

"\%s: insufficient memory, truncating input at row \%d\n",

pname, npts);

break;

}

seq = s;

}

seq[npts] = iflag ? (yp += y) : y;

}
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if (npts < 1) error("no data read");

return (npts);

}

int rslen; /* length of rs[] */

/* rscale() allocates and fills rs[], the array of box sizes used

by dfa() below. The box sizes range from (exactly) minbox to

(approximately) maxbox, and are arranged in a geometric series

such that the ratio between consecutive box sizes is

(approximately) boxratio. The return value is the number of box

sizes in rs[]. */

int rscale(long minbox, long maxbox, double

boxratio) {

int ir, n;

long rw;

/* Determine how many scales are needed. */

rslen = log10(maxbox / (double)minbox) / log10(boxratio) + 1.5;

/* Thanks to Peter Domitrovich for pointing out that a previous

version of the above calculation undercounted the number of

scales in some situations. */

rs = lvector(1, rslen);

for (ir = 1, n = 2, rs[1] = minbox; n <= rslen && rs[n-1] <

maxbox; ir++)

if ((rw = minbox * pow(boxratio, ir) + 0.5) > rs[n-1])

rs[n++] = rw;

if (rs[--n] > maxbox) --n;

return (n);

}
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double **x; /* matrix of abscissas and their powers, for

polyfit(). */

/* Detrended fluctuation analysis// seq: input data array// npts:

number of input points//nfit: order of detrending (2: linear, 3:

quadratic, etc.)// rs: array of box sizes (uniformly distributed

on log scale)//nr: number of entries in rs[] and mse[]// sw: mode

(0: non-overlapping windows, 1: sliding window)//

This function returns the mean squared fluctuations in mse[]. */

void dfa(double *seq, long npts, int nfit, long *rs, int nr, int

sw) {

long i, boxsize, inc, j;

double stat;

for (i = 1; i <= nr; i++) {

boxsize = rs[i];

if (sw) { inc = 1; stat = (int)(npts - boxsize + 1) * boxsize; }

else { inc = boxsize; stat = (int)(npts / boxsize) * boxsize; }

for (mse[i] = 0.0, j = 0; j <= npts - boxsize; j += inc)

mse[i] += polyfit(x, seq + j, boxsize, nfit);

mse[i] /= stat;

}

}

/* workspace for polyfit() */

double *beta, **covar, **covar0; int

*indxc, *indxr, *ipiv;

/* This function allocates workspace for dfa() and polyfit(), and

sets x[i][j] = i**(j-1), in preparation for polyfit(). */
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void

setup() {

long i;

int j, k;

beta = vector(1, nfit);

covar = matrix(1, nfit, 1, nfit);

covar0 = matrix(1, nfit, 1, nfit);

indxc = ivector(1, nfit);

indxr = ivector(1, nfit);

ipiv = ivector(1, nfit);

mse = vector(1, nr);

x = matrix(1, rs[nr], 1, nfit);

for (i = 1; i <= rs[nr]; i++) {

x[i][1] = 1.0;

x[i][2] = i;

for (j = 3; j <= nfit; j++)

x[i][j] = x[i][j-1] * i;

}

}

/* This function frees all memory previously allocated by this

program. */

void cleanup() {

free_matrix(x, 1, rs[nr], 1, nfit);

free_vector(mse, 1, nr);

free_ivector(ipiv, 1, nfit);

free_ivector(indxr, 1, nfit);

free_ivector(indxc, 1, nfit);

free_matrix(covar0, 1, nfit, 1, nfit);

free_matrix(covar, 1, nfit, 1, nfit);

free_vector(beta, 1, nfit);
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free_lvector(rs, 1, rslen);

/* allocated by rscale() */

free(seq);

/* allocated by input() */ }

static char *help_strings[] = { "usage: \%s [OPTIONS ...]\n",\\

"where OPTIONS may include:",\\ " -d K detrend using a polynomial

of degree K",\\ " default: K=1 -- linear detrending)", " -h print

this usage summary",\\ " -i input series is already integrated",\\

" -l MINBOX smallest box width (default: 2K+2)",\\ " -s sliding

window DFA",\\ " -u MAXBOX largest box width (default: NPTS/4)",\\

"The standard input should contain one column of data in text

format.",\\ "The standard output is two columns: log(n) and log(F)

[base 10 logarithms],",\\ "where n is the box size and F is the

root mean square fluctuation.", NULL };

void help(void) {

int i;

(void)fprintf(stderr, help_strings[0], pname);

for (i = 1; help_strings[i] != NULL; i++)

(void)fprintf(stderr, "%s\n", help_strings[i]);

}

/* polyfit() is based on lfit() and gaussj() from Numerical

Recipes in C(Press, Teukolsky, Vetterling, and Flannery; Cambridge

U. Press, 1992). It fits a polynomial of degree (nfit-1) to a set

of boxsize points given by x[1...boxsize][2] and y[1...boxsize].

The return value is the sum of the squared errors (chisq) between

the (x,y) pairs and the fitted polynomial.

*/ double

polyfit(double **x, double *y, long boxsize, int nfit) {
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int icol, irow, j, k;

double big, chisq, pivinv, temp;

long i;

static long pboxsize = 0L;

/* This block sets up the covariance matrix. Provided that

boxsize never decreases (which is true in this case), covar0 can

be calculated incrementally from the previous value. */

if (pboxsize != boxsize) {

/* this will be false most of the time */

if (pboxsize > boxsize)

/* this should never happen */

pboxsize = 0L;

if (pboxsize == 0L)

/* this should be true the first time only */

for (j = 1; j <= nfit; j++)

for (k = 1; k <= nfit; k++)

covar0[j][k] = 0.0;

for (i = pboxsize+1; i <= boxsize; i++)

for (j = 1; j <= nfit; j++)

for (k = 1, temp = x[i][j]; k <= j; k++)

covar0[j][k] += temp * x[i][k];

for (j = 2; j <= nfit; j++)

for (k = 1; k < j; k++)

covar0[k][j] = covar0[j][k];

pboxsize = boxsize;

}

for (j = 1; j <= nfit; j++) {

beta[j] = ipiv[j] = 0;

for (k = 1; k <= nfit; k++)

covar[j][k] = covar0[j][k];

}
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for (i = 1; i <= boxsize; i++) {

beta[1] += (temp = y[i]);

beta[2] += temp * i;

}

if (nfit > 2)

for (i = 1; i <= boxsize; i++)

for (j = 3, temp = y[i]; j <= nfit; j++)

beta[j] += temp * x[i][j];

for (i = 1; i <= nfit; i++) {

big = 0.0;

for (j = 1; j <= nfit; j++)

if (ipiv[j] != 1)

for (k = 1; k <= nfit; k++) {

if (ipiv[k] == 0) {

if ((temp = covar[j][k]) >= big ||

(temp = -temp) >= big) {

big = temp;

irow = j;

icol = k;

}

}

else if (ipiv[k] > 1)

error("singular matrix");

}

++(ipiv[icol]);

if (irow != icol) { for (j = 1; j <= nfit; j++)

SWAP(covar[irow][j], covar[icol][j]); SWAP(beta[irow],

beta[icol]);

}

indxr[i] = irow;

indxc[i] = icol;

if (covar[icol][icol] == 0.0) error("singular matrix");
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pivinv = 1.0 / covar[icol][icol];

covar[icol][icol] = 1.0;

for (j = 1; j <= nfit; j++) covar[icol][j] *= pivinv;

beta[icol] *= pivinv;

for (j = 1; j <= nfit; j++)

if (j != icol) {

temp = covar[j][icol];

covar[j][icol] = 0.0;

for (k = 1; k <= nfit; k++)

covar[j][k] -= covar[icol][k]*temp;

beta[j] -= beta[icol] * temp;

}

}

chisq = 0.0;

if (nfit <= 2)

for (i = 1; i <= boxsize; i++) {

temp = beta[1] + beta[2] * i - y[i];

chisq += temp * temp;

}

else

for (i = 1; i <= boxsize; i++) {

temp = beta[1] + beta[2] * i - y[i];

for (j = 3; j <= nfit; j++) temp += beta[j] * x[i][j];

chisq += temp * temp;

}

return (chisq);

}

/* The functions below are based on those of the same names in

Numerical Recipes (see above). */

void error(char error_text[]) {

fprintf(stderr, "%s: %s\n", pname, error_text);
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exit(1);

}

double *vector(long nl, long nh) /* allocate a double vector with

subscript range v[nl..nh] */

{

double *v = (double *)malloc((size_t)((nh-nl+2) *

sizeof(double)));

if (v == NULL) error("allocation failure in

vector()");

return (v-nl+1);

}

int *ivector(long nl, long nh) /* allocate an int vector with

subscript range v[nl..nh] */ { int *v =

(int*)malloc((size_t)((nh-nl+2) * sizeof(int)));

if (v == NULL) error("allocation failure in ivector()");

return (v-nl+1);

}

long *lvector(long nl, long nh) /* allocate a long int vector with

subscript range v[nl..nh] */

{

long *v = (long *)malloc((size_t)((nh-nl+2) * sizeof(long)));

if (v == NULL) error("allocation failure in lvector()");

return (v-nl+1);

}

double **matrix(long nrl, long nrh, long ncl, long nch) /*

allocate a double matrix with subscript range

m[nrl..nrh][ncl..nch]

*/ {
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long i, nrow = nrh-nrl+1, ncol = nch-ncl+1;

double **m;

/* allocate pointers to rows */

m = (double **)

malloc((size_t)((nrow+1) * sizeof(double*))); if (!m)

error("allocation failure 1 in matrix()");

m += 1;

m -= nrl;

/* allocate rows and set pointers to them */

m[nrl] = (double *) malloc((size_t)((nrow*ncol+1) *

sizeof(double))); if (!m[nrl]) error("allocation failure 2 in

matrix()");

m[nrl] += 1;

m[nrl] -= ncl;

for (i = nrl+1; i <= nrh; i++) m[i] = m[i-1]+ncol;

/* return pointer to array of pointers to rows */

return (m);

}

void free_vector(double *v, long nl, long nh)\\

/* free a double vector allocated with vector() */

\\ {

free(v+nl-1);

}

void free_ivector(int *v, long nl, long nh) \\

/* free an int vector allocated with ivector() */ {

free(v+nl-1);
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}

void free_lvector(long *v, long nl, long nh) \\

/* free a long int vector allocated with lvector() */ \\

{

free(v+nl-1);

}

void free_matrix(double **m, long nrl, long nrh, long ncl, long

nch) \\

/* free a double matrix allocated by matrix() */

\\ {

free(m[nrl]+ncl-1);

free(m+nrl-1);

}
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