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ABSTRACT 

 

 

IDENTIFICATION OF PERTURBATION-RESPONSIVE KEY 

TRANSCRIPTION FACTORS IN TRANSCRIPTIONAL 

REGULATORY NETWORKS 

 

 

In eukaryotic cells, most genes are found to be regulated by various temporary and 

permanent transcription factors whose activity levels change as response to perturbations. 

Discovering the underlying mechanism of complex cellular processes and responses to 

perturbations is a major challenge in post-genomic research. In this M.S. study, so-called 

‘key’ transcription factors (transcription factors around which the most significant 

transcriptional changes occur) responding significantly to genetic and environmental 

perturbations were identified in yeast Saccharomyces cerevisiae by an algorithm based on 

hypothesis-driven data analysis. In contrast to existing approaches, the proposed approach 

uses network topology for determining the activity levels of transcription factors. The 

identification of the perturbation-responsive key transcription factors provides a dynamic 

perspective of transcriptional regulation which has central role in cellular function and 

structure. An extensive genome-scale map of transcriptional regulatory network in S. 

cerevisiae was constructed and integrated with gene expression data. The analysis of yeast 

data suggests that the method is capable of successfully identifying perturbation-responsive 

key transcription factors and it provides valuable information about transcription factors 

and their conditional/temporal behavior. In this study, it was also showed that once the key 

transcription factors are identified, the perturbation-responsive subnetworks might be 

revealed by interconnecting the key transcription factors and their target genes 

differentially expressed when the same perturbation is introduced. Furthermore, for each 

key transcription factor, its best candidate target genes were predicted (their regulatory 

interactions are not experimentally justified yet), which are differentially expressed after 

the same perturbations and their promoter regions contain bindig site(s) for the key 

transcription factor.  
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ÖZET 

 

 

Ökaryot hücrelerde, çoğu genin ekspresyonunun, aktivite seviyeleri genetik veya 

çevresel değişimlere yanıt olarak değişen çeşitli geçici ya da kalıcı transkripsiyon faktörleri 

tarafindan düzenlendiği bilinmektedir. Günümüzde değişimlere verilen yanıtların altında 

yatan karmaşık mekanizmayı keşfetmek büyük bir mücadeledir. Bu yüksek lisans tezinde, 

Saccharomyces cerevisiae’ deki genetik ve çevresel değişimlere en anlamlı şekilde yanıt 

veren transkripsiyon faktörleri (etraflarında en anlamlı transkripsiyon değişimleri meydana 

gelen transkripsiyon faktörleri) varsayıma dayalı bir algoritma ile belirlenmiştir. Varolan 

yaklaşımlardan farklı olarak, bu tezde önerilen yaklaşım transkripsiyon faktörlerinin 

aktivitelerini belirlemede ağ yapısını kullanmaktadır. Bu çalışma çerçevesinde, S. 

cerevisiae’ de çok kapsamlı bir transkripsiyonel düzenleyici ağ oluşturuldu ve gen 

ekspresyonu verisi ile bütünleştirildi. Maya verisinin analizi, kullanılan metodun 

değişimlere en anlamlı şekilde yanıt veren transkripsiyon faktörlerini belirlemede başarılı 

olduğunu göstermektedir. Buna ek olarak, bu metodla transkripsiyon faktörlerinin şartlara 

bağlı/geçici davranışları ile ilgili değerli bilgiler elde edilebilmiştir. Bu tez çalışmasında, 

değişimlere yanıt veren transkripsiyon faktörleri bulunduktan sonra değişimlere yanıt 

veren altağların da ortaya çıkarılabileceği gösterilmiştir. Altağlar değişimlere en anlamlı 

yanıt veren transkripsiyon faktörleri ve aynı değişimlere en anlamlı yanıt veren hedef 

genlerin birbirlerine bağlanmaları ile oluşturulmuştur. İlaveten, değişimlere en anlamlı 

yanıt veren her bir transkripsiyon faktörü için, aday hedef genleri öngörülmüştür (bu genler 

ve transkripsiyon faktörleri arasındaki etkileşimler henüz deneysel olarak 

kanıtlanmamıştır). Bu genler, transkripsiyon faktörleri ile aynı değişimlere yanıt vermiş 

olup aynı zamanda bu genlerde transkripsiyon faktörlerinin bağlanma yerleri 

bulunmaktadır. 
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1.   INTRODUCTION 

 

 

During the last century, the researchers have been provided with huge amount of 

knowledge about individual cellular components and their functions. However, despite this 

success, it is clear that usually a discrete biological function can not be attributed to an 

individual molecule. Instead, most biological characteristics arise from complex 

interactions between the cell’s numerous constituents, such as proteins, deoxyribonucleic 

acid (DNA), ribonucleic acid (RNA) and small molecules. Biology has now moved closer 

to the area of Systems Biology which seeks to integrate biological data as an attempt to 

understand how biological systems function. By studying the relationships and interactions 

between various parts of a biological system it is hoped that an understandable model of 

the whole system can be developed. Therefore in the twenty-first century, one of the main 

aims for biology is to understand the structure and the dynamics of the complex 

intracellular web of interactions that contribute to the structure and function of a living 

cell. In other words, network biology arises as a key branch in Systems Biology with the 

aim to understand the cell’s functional organization. Rapid advances in network biology 

indicate that cellular networks are governed by universal laws and have the potential to 

revolutionize the view of biology and disease pathologies in the twenty-first century. 

 

There are three types of intracellular biochemical reaction networks where 

reconstruction efforts are currently underway: metabolic, transcriptional regulatory and 

signaling networks. Ultimately, all three have to be integrated to generate whole-cell 

models of microbes and other organisms. The primary role of transcriptional regulation is 

the response to changes in environmental conditions, such as nutritional status and 

environmental stresses. Due to the central role that transcriptional regulation plays in 

cellular function and the availability of experimental techniques to elucidate regulatory 

networks, reconstruction of these networks has emerged as a key task in biology (Wyrick 

and Young, 2002). 

 

Network analysis has recently been used in molecular biology, but so far almost all 

of the resultant networks have only been analyzed statically (Jeong et al., 2000; Guelzim et 

al., 2002; Milo et al., 2002; Shen-Orr et al., 2002; Oltvai et al., 2002; Barabasi et al., 2004; 
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Milo et al., 2004; Teichmann et al., 2004). The only study on the dynamics of the 

transcriptional regulatory networks revealed that over half of the active interactions 

between transcription factors (TFs) and their target genes are found to be completely 

replaced by new ones between conditions (Luscombe et al., 2004). This result shows that 

an analysis of the dynamics of a network is necessary considering significant changes 

occur in a network between different conditions.  

 

Here, an integrative computational approach is reported in order to identify 

perturbation-responsive key transcription factors in transcriptional regulatory networks. 

The algorithm used has recently been developed and implemented succesfully for 

identification of so-called reporter metabolites (metabolites around which the most 

significant transcriptional changes occur) in yeast by the integration of the genome-scale 

metabolic network with transcriptome data (Patil and Nielsen, 2005). In the present study, 

the approach was modified so that perturbation-responsive key transcription factors could 

be identified using the same algorithm. In the modified approach, genome-wide 

transcriptome data is comparatively (two conditions or two strains are compared) 

integrated with the transcriptional regulatory network constructed. Previous studies on the 

dynamics of transcription factors focused on the activity of transcription factors under 

certain conditions and thus on  identification of condition-specific transcription factors 

(Wang et al., 2002; Segal et al., 2003; Luscombe et al., 2004) but not on the effects of 

perturbations (i.e. passing from one condition to another) on the activity of transcription 

factors. Our approach enables the identification of transcription factors which respond 

significantly to a genetic or an environmental perturbation (i.e. TFs activated/deactivated 

when passing from one condition to another). Identifying these transcription factors is 

crucial for understanding the regulatory mechanisms in a cell subjected to a perturbation. 

Moreover, these transcription factors may relate to perturbation-dependent lethality and 

their identification may lead to determination of specific drug targets. In fact, the necessity 

and the importance of the identification of oxygen-responsive transcription factors has 

recently been reported (Tai et al., 2005). An advantage of our method over the previous 

methods for inferring regulatory networks from gene expression data (Dhaseieer et al., 

2000; Pe’er et al., 2001; Hartemink et al., 2002; Tanay and Shamir, 2001; Segal et al., 

2003; Luscombe et al., 2004), is that it does not rely on the assumption that the activity 

levels of the transcription factors can be determined directly from their expression profiles. 
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Clearly, this assumption is violated in case of transcription factors which are regulated 

post-translationally. Instead, in our approach, the activities of TFs are determined by the 

the changes that occur around them (i.e. changes in the expression levels of their target 

genes). Hence, in this approach, contrary to previous ones, network topology is used to 

determine the activity levels of TFs.             

 

Saccharomyces cerevisiae is the most thoroughly investigated eukaryotic 

microorganism, which aids our understanding of the biology of the eukaryotic cell and 

hence, ultimately, human biology. S. cerevisae is a very attractive organism to work with 

since it is nonpathogenic, and due to its long history of application in the production of 

consumable products such as ethanol and baker’s yeast, it has been classified as a GRAS 

organism (generally regarded as safe). Also, the well-established fermentation and process 

technology for large-scale production with S. cerevisiae makes this organism attractive for 

several biotechnological purposes. Another important reason for the applicability of S. 

cerevisiae within the field of biotechnology is its susceptibility to genetic modifications by 

recombinant DNA technology, which has been further facilitated by the availability of the 

complete genome sequence of S. cerevisiae, published in 1996 (Ostergaard et al., 2000).          

 

Based on the arguments above, the aim of this study is to uncover and elucidate the 

transcriptional regulatory mechanism in yeast S. cerevisiae from a dynamic perspective by: 

 

• Creating a genome-scale map of transcriptional regulatory network in S. Cerevisiae 

and analysing its topology. 

• Identifying perturbation-responsive key transcription factors, which are TFs around 

which most significant transcriptional changes occur, by integrating the 

transcriptional regulatory network constructed with transcription data for diverse 

conditions. The transcription data are comparatively integrated so that effects of 

perturbations, namely environmental and genetic perturbations such as change in 

oxygen availability, change in macronutrient limitation and deletion of a gene 

enconding a TF, are reflected in the network. 

• Identifying perturbation-responsive subnetworks in the genome-scale transcriptional 

regulatory network, by interconnecting the perturbation-responsive key TFs 
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previously determined and their target genes which are differentially expressed when 

the same perturbation is introduced.  

• Identifying best candidate target genes for each key TF. There is a very large number 

of genes whose promoter sequences match with the binding site of the TF. These 

genes are so-called potential target genes of the TFs. The best candidate target genes 

are the genes which are upregulated or downregulated significantly when the same 

perturbation is introduced to the system and are selected among the potential target 

genes listed in the database YEASTRACT.    
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2.   THEORETICAL BACKGROUND 

 

 

2.1.  An Overview of Gene Control and Transcription Factors 

 

The genome of a cell contains in its DNA sequence the information to make many 

thousands of different protein and RNA molecules. A cell typically expresses only a 

fraction of its genes, and the different types of cells in multicellular organisms arise 

because different sets of genes are expressed. Moreover, cells can change the pattern of 

genes they express in response to changes in their environment, such as signals from other 

cells. Although all of the steps involved in expressing a gene can in principle be regulated, 

for most genes the initiation of RNA transcription is the most important point of control 

(Alberts et al., 1994). 

 

Transcription factors (also called gene regulatory proteins) recognize short stretches 

of double-helical DNA of defined sequence and thereby determine which of the thousands 

of genes in a cell will be transcribed. Thousands of TFs have been identified in a wide 

variety of organisms. Current estimates suggest that there are just over 200 DNA-binding 

transcription factors in yeast (Eisenstein, 2005). Although each of these proteins has 

unique features, most bind to DNA as homodimers or heterodimers and recognize DNA 

through one of a small number of structural motifs. The common motifs include the helix-

turn-helix, the homeodomain, the leucine zipper, the helix-loop-helix and zinc fingers of 

several types. The precise amino acid sequence that is folded into a motif determines the 

particular DNA sequence that is recognized. Heterodimerization increases the range of 

DNA sequences that can be recognized by TFs. Powerful techniques are available that 

make use of the DNA sequence specifity of TFs to identify and isolate these proteins, the 

genes that encode them, the DNA sequences they recognize and the genes that they 

regulate (Alberts et al., 1994).  

 

The transcription of individual genes is switched on and off in cells by TFs. In 

procaryotes these proteins usually bind to specific DNA sequences close to the RNA 

polymerase start site and depending on the nature of the TF and the precise location of its 

binding site relative to the start site, either activate or repress transcription of the gene. The 
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flexibility of the DNA helix, however, also allows proteins bond at distant sites to affect 

the RNA polymerase at the promoter by the looping out of the intervening DNA. Such 

action at a distance is extremely common in eucaryotic cells, where TFs bound to 

sequences thousands of nucleotide pairs from the promoter generally control gene 

expression. Eucaryotic activators and repressors act by a wide variety of mechanisms – 

generally causing the local modification of chromatin structure, the assembly of the 

general TFs at the promoter and the recruitment of RNA polymerase. 

 

Whereas the transcription of a typical procaryotic gene is controlled by only one or 

two TFs, the regulation of higher eucaryotic genes is much more complex with the larger 

genome size and the large variety of cell types that are formed. Some of the TFs are 

transcriptional activators, whereas others are transcriptional repressors. These proteins bind 

to regulatory sequences organized in a series of regulatory modules strung together along 

the DNA and tohether they cause the correct spatial and temporal pattern of gene 

expression. Eucaryotic genes and their control regions are often surrounded by insulators, 

DNA sequences recognized by proteins that prevent cross-talk between independently 

regulated genes (Alberts et al., 1994). 

 

2.2.  Transcriptional Regulatory Networks 

 

Analysis of the changes in the level of gene expression (mRNA and protein) provide 

insights into regulatory influences and not necessarily mechanisms responsible for 

mediating those changes. To approach a mechanistic level it is imperative to map the 

physical linkages among proteins (protein-protein interactions) and proteins and DNA 

(protein-DNA interactions). The transcriptional regulatory network is then defined by 

which transcription factor binds to which promoters and what the integrated effect of all 

these transcription factors is on the expression of all the genes. The basic functional 

element of a regulatory network is the promoter region of a gene or operon, which contains 

the regulatory binding sites for the relevant transcription factors that regulate the 

expression of a particular gene. The locations and orientations of these binding sites, also 

the affinity of the transcription factors to particular variants of the site, determine the 

expression levels of a gene in response to changes in the active transcription factor 

concentrations  inside the cell (Ptashne and Gann, 2002). 
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It has been demonstrated that the known organization of promotor regions in bacteria 

allows the implementation of a wide class of regulatory logic functions within a single 

promoter (Buchler et al., 2003), so that even a single ‘node’ in the regulatory network can 

be relatively complex. At the basic level the mechanisms of transcriptional regulation are 

the same for prokaryotes and eukaryotes, but eukaryotic organisms add an additional level 

of complexity to the regulatory network in the form of chromatin-modifying enzymes and 

other co-regulators that are typically recruited to promoters by specific transcription factors 

(Struhl, 1999). 

 

For regulatory networks the number of TFs cannot be simply used to estimate the 

complexity of the network, owing to the fact that TFs can have multiple target genes and 

can often act in synergistic combinations (Herrgard et al., 2004). However, the relative 

fraction of TF coding genes tends to be higher for organisms that encounter more varied 

environmental conditions during their lifetime (Cases et al., 2003), indicating there are 

limits to the complexity that can be achieved with a fixed number of TFs. Information on 

well-studied organisms can be used to evaluate the level of complexity of transcriptional 

regulatory networks in terms of the number of components, transcription factors and target 

genes, and regulatory interactions. Escherichia coli has been predicted to have 314 

transcription factors (Perez-Rueda and Collado-Vides, 2000) and on the basis of primary 

literature 1468 regulatory interactions have been identified (Shenn-Orr et al., 2002). In S. 

cerevisiae, there are 334 transcription factors (TRANSFAC, 2005) and large-scale in vivo 

protein-DNA binding screens indicate that there are at least 4000 regulatory interactions 

(Lee et al., 2002). For both E. coli and yeast these numbers are probably underestimates 

since significant efforts are still underway in this area but they give an indication of the 

order of magnitude of the regulatory network reconstruction task. 

 

2.2.1.   Databases and Experimental Data 

 

For regulatory networks comprehensive databases covering genome-scale regulatory 

networks in multiple organisms do not currently exist (Herrgard et al., 2004). For 

individual organisms, however, such network databases containing experimentally verified 

regulatory interactions have been established, the most prominent one being RegulonDB 

for E. coli (Salgado et al., 2001). There are also general databases for individual 
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organisms, such as the Yeast Proteome Database (YPD) (Csank et al., 2002), that contain 

significant amounts of regulatory information, and YEASTRACT (Teixeira et al., 2006), 

very recently created repository of more than 12000 regulatory associations between 

transcription factors (TF) and target genes in S. cerevisiae. In addition to databases 

describing regulatory network structures, there are comprehensive databases that specialize 

in describing TF-binding sites, such as SCPD (Zhu and Zhang, 1999) for yeast and the 

general TF-binding database TRANSFAC (Matys et al., 2003). Although these databases 

contain valuable information for regulatory network reconstruction, they are not very 

complete and for the most part lack information about the synergistic effects between TFs 

acting on one gene. Nevertheless, these databases and primary information can be utilized 

to reconstruct regulatory networks for well-characterized organisms. 

 

The major advantage that regulatory network reconstruction has over other types of 

network reconstructions, such as metabolic network reconstruction, is the availability of 

high-throughput experimental data that is directly relevant to the network structure. For 

metabolic processes the only widely available data source is the genome sequence and its 

annotation – techniques for measuring relevant metabolic quantities such as metabolic 

fluxes and metabolite levels are still not commonly used and have not been fully scaled to 

the whole-genome level (Stitt et al., 2003). By contrast, the two primary data types useful 

for the regulatory network reconstruction task – genome-wide mRNA expression and 

location analysis data – are widely available (Herrgard et al., 2004). 

 

Gene expression data can be readily generated for well-studied microbial organisms 

using several standard technologies (Holloway et al., 2002). Advances in statistical data 

analysis allow both significant changes in gene expression under different conditions to be 

established (Quackenbush, 2002) and hypotheses about regulatory interactions or co-

regulated gene modules to be derived directly from the data (Segal et al., 2003). Genome-

wide location analysis (GWLA) is a method that allows protein-DNA interactions to be 

monitored across the entire yeast genome. The method combines a modified chromatin 

immunoprecipitation (ChIP) procedure, which has been previously used to study protein-

DNA interactions at a small number of specific DNA sites, with DNA microarray analysis 

(Ren et al., 2000). GWLA, allowing the direct detection of genomic target sites for DNA-

binding proteins such as TFs, promises to lead to an even more significant improvement in 
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our ability to reconstruct regulatory network structures than gene expression profiling. So 

far, GWLA has been most extensively applied in yeast, where it has been used to map the 

target genes of 106 TFs under one set of conditions (Lee et al., 2002). In principle the 

technique can be readily extended to other organisms (Laub et al., 2002). GWLA has also 

been used to study the stimulus-dependent binding of TFs (Zeitlinger et al., 2003), opening 

up the possibility of using this technique to map combinatorial interactions between TFs on 

a genome-wide scale. 

 

The combination of expression profiling with GWLA as well as promoter sequence 

motif analysis has allowed the generation of hypothetical regulatory network structures 

using a variety of data integration methods (Lee et al., 2002; Segal et al., 2003; Hartemink 

et al., 2002; Liu et al., 2002). Deriving full regulatory network structures solely based on 

experimental data appears to be challenging, however, owing to the large quantities of 

high-quality data that would be required for such a task. One alternative to this purely data-

driven approach would be to utilize well-curated regulatory network structures derived 

from databases and primary literature as a starting point for expanding the network on the 

basis of high-throughput data (Figure 2.1). For such an approach to succeed, one first 

needs to evaluate how well current known regulatory network structures agree with high-

throughput datasets. This type of analysis has been performed for yeast and E.coli 

(Herrgard et al., 2003; Gutierrez-Rios et al., 2003; Yu et al., 2003). These studies have 

allowed the definition of network subcomponents and network structural motif types that 

are well supported by gene expression data and thus are good targets for data driven model 

expansion. In the future, such combinations of knowledge-driven and data-driven 

regulatory network reconstruction strategies may allow the acceleration of network 

reconstruction in well-studied organisms (Herrgard et al., 2004).   
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Figure 2.1. Knowledge and data based regulatory network reconstruction. Regulatory 

networks can be reconstructed by collecting individual regulatory interactions from 

relevant databases and the primary literature (knowledge). Alternatively, networks can be 

derived directly from high-throughput experimental data and promoter sequence analysis 

through various data-mining methods (Herrgard et al., 2004) 

 

2.2.2.   Module Networks: Identifying Regulatory Modules  

 

The complex functions of a living cell are carried out through the concerted activity 

of many genes and TFs. This activity is often coordinated by the organization of the 

genome into regulatory modules, or sets of coregulated genes that share a common 

function. Such is the case for most of the metabolic pathways as well as for members of 

multiprotein complexes. Identifying this organization is crucial for understanding cellular 

responses to internal and external signals. Genome-wide expression profiles provide 

important information about these cellular processes. Yet, the regulatory machinery of the 

cell is far from transparent in these data. Current approaches for analyzing gene expression 

data allow the identification of groups of co-expressed genes. But the regulatory programs 

of these groups can be suggested only indirectly (Segal et al., 2003). 

 

The first approach in module networks had the aim of reconstructing transcription 

modules (defined by a transcription factor and its target genes) and identifying conditions 

under which a particular transcription module is activated/deactivated (Wang et al., 2002). 
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The approach integrates information from regulatory sequences, genome-wide mRNA 

expression data and functional annotation. In this study, gene expression profiling 

experiments were systematically analyzed in which the yeast cell was subjected to various 

environmental or genetic perturbations. They were able to construct transcription modules 

with high specificity and sensitivity for many transcription factors and predict the 

activation of these modules under both anticipated and unexpected conditions. Correlating 

the activation of a module to a specific perturbation predicts links in the cell’s regulatory 

networks. 

 

Same year, an alternative method was proposed for the global analysis of genome-

wide expression data, arguing that standard clustering methods can classify genes 

successfully when applied to small data sets but have limited use in the analysis of large-

scale expression data (Ihmels et al. 2002). The approach assigns genes to context-

dependent and potentially overlapping transcription modules (which are defined as 

combined groups of genes and conditions), thus overcoming the main limitations of 

traditional clustering methods. The method is based on an algorithm that receives a gene 

set that partially overlaps a transcription module and then provides the complete module as 

output. The algorithm is referred as the signature algorithm. The method was used to 

elucidate regulatory properties of cellular pathways and to characterize cis-regulatory 

elements. By applying the algorithm systematically to all of the available expression data 

on S. cerevisiae, a comprehensive set of overlapping transcriptional modules was 

identified. The results provided functional predictions for numerous genes, identified 

relations between modules and presented a global view on the transcriptional network.  

 

One year later, a complementary method to the above mentioned method was 

proposed (Bergmann et al., 2003). The main idea of the previous work was to integrate 

prior biological information, such as the function or sequence of known genes, into the 

analysis of the gene expression data. However, the new method, called iterative signature 

algorithm, did not require any prior knowledge beyond the expression data.  

 

In order to describe a genome-wide regulatory network in S. cerevisiae an algorithm 

for discovering regulatory networks of gene modules, so-called GRAM (Genetic 

Regulatory Modules) algorithm was developed (Bar-Joseph et al., 2003). This algorithm 
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combines information from genome-wide location and expression data sets. A gene 

module is defined as a set of co-expressed genes to which the same set of transcription 

factors binds. Unlike many approaches that rely primarily on functional information from 

expression data, the GRAM algorithm explicitly links genes to the factors that regulate 

them by incorporating DNA binding data, which provide direct physical evidence of 

regulatory interactions. The GRAM algorithm was used to describe a genome-wide 

regulatory network in S. cerevisiae using binding information for 106 transcription factors 

profiled in rich medium conditions using data from more than 500 expression experiments. 

 

2.2.3.   Network Motifs in Transcriptional Regulatory Networks  

 

Network motifs are precise patterns of inter-connections between a small number of 

TFs and target genes (Shen-Orr et al., 2002). Three of the most common motifs are single 

input motif (SIM), multiple input motif (MIM) and feed-forward loop (FFL) (Figure 2.2). 

The network motifs were first investigated in the transcriptional regulation network of E. 

coli (Shen-Orr et al., 2002). In this study, network motifs were described as patterns of 

interconnections that recured in many different parts of a network at frequencies much 

higher than those found in randomized networks and in order to systematically detect 

network motifs to one of the best-characterized regulation networks, that of transcriptional 

interactions in E. coli, an algorithm was proposed. This study revealed that much of the 

network was composed of repeated appearances of three highly significant motifs. Each 

network motif had a specific function in determining gene expression, such as generating 

temporal expression programs and governing the responses to fluctuating external signals. 

On the other hand, the motif structure allowed an easily interpretable view of the entire 

known transcriptional network of the organism. It was found that SIMs and MIMs were 

implicated in conferring similar regulation over groups of genes, so they were ideal for 

directing the large-scale gene activation. FFLs were found to be buffers that responded 

only to persistent input signals (Shen-Orr et al., 2002).   

 

The level of co-expression between the genes is very dependent on the type of 

regulatory network motif. Genes targeted by individual TFs (SIM) are not strongly 

correlated: just 1.3 per cent of target pairs are co-expressed although this is significantly 

higher than expected. Correlation is stronger for genes targeted by multiple, common TFs: 
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24.4 per cent of MIM target pairs and 5.0 per cent of FFL targets ehibit co-expression. 

Expression is much more tightly regulated when multiple TFs are involved. Ndd1p 

network is an example for SIM type TF-target relationship. Ndd1p, a cell cycle regulator, 

acts as the sole regulating TF for Mcm21p, a kinetochore protein required for normal cell 

growth and STB5, encoding another transcription factor. Forkhead network is an example 

for MIM type TF-target relationship. Ndd1p is recruited to promoters by Fkh1p and Fkh2p, 

two forkhead transcription activators. Collectively, these three TFs regulate Dbf2p, a 

kinase needed for cell cycle regulation, and HDR1 (function unknown). Finally, 

Mbp1p/Swi4p network can be given as an example for FFL type TF-target relationship. In 

a feed-forward-loop, Mbp1p (a cell cycle regulator controlling DNA replication and repair) 

is the leading TF, Swi4p (a cell cycle regulator controlling cell wall and membrane 

synthesis) is the intermediate TF, and SPT21 (a TF involved in histone expression) and 

YML102C-A (function unknown) are the target genes (Yu et al., 2003).    

 

Recently, it has been reported that the relative occurrence of motifs varied 

considerably between different conditions (Luscombe et al., 2004). SIMs were found to be 

favoured in subnetworks active during diauxic shift, DNA damage and stress response, 

where they comprised >55 per cent of regulatory interactions in motifs. But the frequency 

droped to 35 per cent during cell cycle and sporulation. Instead, these states favoured FFLs 

(44 per cent). It is notable that MIMs did not significantly change their usage (Luscombe et 

al., 2004).     
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Figure 2.2. Most common motifs in regulatory networks (Luscombe et al., 2004) 

 

2.2.4.   From Network Reconstructions to Mathematical Models 

 

The first class of modeling approaches are primarily intended to describe the 

structural features of regulatory networks and do not accurately predict gene expression 

levels in response to changes in regulatory activity. Directed graphs with transcription 

factors and target genes as nodes and regulatory interactions as edges are commonly used 

to visualize regulatory netwoks and to analyze their structural properties (Shen-Orr et al., 

2002; Guelzim et al., 2002). Most methods for reconstructing regulatory networks based 

on gene expression and/or GWLA data describe the regulatory network as a directed graph 

(Lee et al., 2002). These graphs cannot represent important interactions between 

transcription factors and they do not allow simulation of model behavior or effective 

integration of regulatory networks with models of other cellular processes. However, the 

graph-based models of regulatory networks can also be used as a basis for building more 

quantitative models through measuring the regulatory strengths for different regulatory 

interactions experimentally (Ronen et al., 2002). 

 

The second class of modeling approaches focuses on the prediction of gene 

expression levels at the expense of the scale of regulatory network subcomponents that can 

be modeled. Linear differential equations or linear models relating transcription factor and 
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target expression levels are the simplest of these approaches. This type of linear model was 

utilized in a recent study of the SOS response system in E. coli, in which experimental 

gene expression data was used to directly reconstruct a model for a small regulatory 

network without any prior knowledge of the network structure (Gardner et al., 2003). 

Systematic transcriptional perturbations were introduced to construct a first-order model of 

regulatory interactions in a nine-gene subnetwork of the SOS pathway. Quantitative real-

time polymerase chain reaction (qPCR) was used to measure the change in expression of 

perturbed cells relative to unperturbed cells. The constructed model was successful in 

predictions. This approach provided a framework for elucidating the functional properties 

of genetic networks and identifying molecular targets of pharmacological compounds. 

 

As the role of transcriptional regulation is to modulate other cellular processes, 

integrating the reconstructed regulatory networks with models of these other processes is 

central to understanding regulatory network function in the context of all organism. The 

major advantage with such integrated models is that even when the modeling of the 

regulatory network is done at the qualitative level, the integrated regulatory/metabolic 

model can be used to quantitatively predict phenotypes such as growth rates. Furthermore, 

comparisons between model predictions and experimental data can be used to improve the 

model systematically. These types of integrated model are a powerful way to bring 

together multiple types of high-throughput data (e.g. gene expression and phenotyping) 

and to interpret these datasets, as discrepancies between model predictions and 

experimental data can point to specific inconsistencies in the current reconstructed 

regulatory network model (Herrgard et al., 2004). 
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3.   METHODS  

 

 

The approach used to identify key transcription factors is a modified version of the 

approach recently developed for identification of reporter metabolites in yeast (Patil and 

Nielsen, 2005). The reporter metabolites were identified by integrating the metabolic 

network with gene-expression data. In this sudy, the approach was modified so that the 

transcriptional regulatory network constructed was integrated with transcription data and 

perturbation-responsive key transcription factors were identified. The modified approach 

for identification of key TFs consists of the following steps. 

 

3.1.  Construction of the Transcriptional Regulatory Network  

 

A genome-scale transcriptional regulatory network in S. cerevisiae was constructed 

by assembling known regulatory interactions from several data sources (Lee et al., 2002; 

Wingender et al., 2001; Matys et al., 2003; Zhu and Zhang, 1999; YEASTRACT, 2005). 

The regulatory interactions are between TFs and non-TF targets or two TFs. Therefore, the 

interactions were represented as two columns, one representing the TFs and the other one 

representing the genes. Then, the complete transcriptional regulatory network was 

represented as a bipartite undirected graph. In this graph, both TFs and genes are 

represented as nodes and interactions between them as edges. In other words, a TF node is 

connected to all of the genes that it regulates, and a gene node is connected to all of the 

TFs that are known to regulate this gene.  

 

The topological measures of the network, such as in-degree (<kin>), out-degree 

(<kout>), in-degree exponential exponent (β), out-degree power-law exponent (γ),  path 

length (l) and diameter (d), were calculated. A computer code was written in FORTRAN in 

order to perform the calculations of the in-degree (<kin>), the out-degree (<kout>), the path 

length (l) and the diameter (d) (Appendix A). In-degree (<kin>) is the number of incoming 

edges per node (i.e. the number of TFs regulating a target) and out-degree (<kout>) 

represents the number of outgoing edges per node (i.e. the number of target genes for each 

TF). The most suitable distributions for the in- and out-degrees were found by plotting Pk 
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values versus <kin> and (<kout>) values, where Pk is the probability that a randomly picked 

node has k interactions and is calculated by dividing the number of nodes which have k 

connections by the total number of nodes in the network. The best fitting distribution was 

found by fitting the plots of Pk to both exponential and power-law distributions. The fitted 

distribution which best represents the actual distribution (according to R-squared values of 

the plots) was chosen. The connectivity of the network was calculated using the following 

formula, 

 

n

l
k

2
=                                                           (3.1) 

 

where l is the number of edges and n is the number of nodes in the network. 

 

The path length (l) is the shortest distance (in number of intermediate nodes) 

between two nodes and the diameter (d) is the maximum path length in the network.         

 

3.2.  Mapping and Scoring of Transcription Data 

 

Differential transcription data in triplicates were used, in which two different strains 

or conditions are compared with three measurements for each strain or condition (Tai et 

al., 2005). Two types of perturbations, namely genetic and environmental perturbations, 

were analysed. In order to identify key TFs responsive to a genetic perturbation, the MIG1 

gene deleted strain and both MIG1 and MIG2 genes deleted strain were compaired with the 

wild-type strain (original parent strain). For identification of key TFs responsive to 

environmental perturbations, anaerobic and aerobic conditions under four macronutrient 

limitation regimes (carbon, nitrogen, phosphorous and sulfur) were compared. In addition, 

the four macronutrient limitation regimes were pairwise compared for both aerobic and 

anaerobic conditions. 

 

Each gene node of the transcriptional regulatory network was scored based on the 

probability that the differential expression is due to chance. Student’s t test was used to 

obtain p values. )1( ip−  is the probability that the differential gene expression is not due to 
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chance. Then probabilities are converted to Z scores for each gene node ( niZ ) by using the 

inverse normal cumulative distribution ( 1−θ ). 

 

)1(1
ini pZ −= −θ                                                        (3.2) 

 

3.3.  Method for Identification of Key Transcription Factors  

 

For the identification of the key transcription factors, each TF node was scored based 

on the normalized transcriptional response of its neighboring genes (i.e. Z scores of the 

genes connected to the TF are added and the sum was multiplied by the inverse square root 

of the number of neighbors that each TF has). A computer code was written in FORTRAN 

in order to perform the calculations of Z scores (Appendix B). 

 

∑= niTF Z
k

Z
1

                                                       (3.3) 

 

TFZ  scores were then corrected for the background distribution. 10,000 sets of k genes 

were randomly selected from the graph and new random ZTF scores were calculated for 

each TF. Then, the mean (µk) of the resultant ZTF scores were substracted from the 

previously calculated score and divided by their standard deviation (σk). A computer code 

was written in FORTRAN in order to perform the calculations of the corrected Z scores 

(Appendix C).   

 

k

kTF

TF
corrected

Z
Z

σ

µ )( −
=                                                    (3.4) 

 

Due to the correction, TFs which have a very large number of connections in the 

network and could therefore be identified as key TFs by mistake, regardless of the 

conditions, were eliminated. However, due to the large number of the connections that 

these TFs make, it is possible that they may be the hubs in the network (i.e. they may 

represent the most important points for the structure of the network) and hence their 

removal may significantly affect the network topology. The top 10 highest scoring TFs 
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before the correction are listed in Appendix D. After correcting the Z scores for 

background distribution, top 10 highest scoring TFs are identified as key TFs having great 

importance since most significant transcriptional changes occur around these TFs when a 

perturbation is introduced. The Gene Ontology (GO) terms associated with each key TF 

were found from the database YEASTRACT.  
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4.   RESULTS AND DISCUSSION 

 

 

4.1.  Transcriptional Regulatory Network 

 

The constructed genome-scale transcriptional regulatory network in S. Cerevisiae 

contained 9075 regulatory interactions between 180 TFs and 3514 targets. Interactions are 

between TFs and non-TF targets or two TFs. The network was visualized using the 

program Cytoscape 2.0 (Figure 4.1). Until now, relatively smaller transcriptional 

regulatory networks (i.e. containing less number of TFs and/or interactions) have been 

reported in the literature (Lee et al., 2002; Yu et al., 2003; Luscombe et al., 2004). 

 

 

Figure 4.1. Constructed transcriptional regulatory network in S. Cerevisiae 
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The network constructed here is highly connected having a connectivity (k) of 4.91. 

The average of the in-degree (kin) (the number of TFs regulating a target) and the average 

of the out-degree (kout) (the number of target genes for each TF) are both equal to 2.43. 

Like many large-scale networks, it displays scale-free characteristics (the connectivity of 

the network is distributed according to a power law pk=Ck-γ, where C is a constant and 

γ=1.63) (Figure 4.2). The arriving connectivity of the network has an exponential 

distribution (pk=Ce
-βk where β=0.40) (Figure 4.3) whereas the departing connectivity better 

fits to a power law distribution (pk=Ck
-γ where γ=0.64) (Figure 4.4). The exponential 

behavior shows the molecular constraints on the number of TFs that can co-regulate at the 

same promoter, whereas the power-law behavior indicates a hub-containing network 

structure (Luscombe et al, 2004). In an earlier study on the structure of a much smaller 

transcriptional regulatory network in yeast, β and  γ were found to be 0.45 and 1, 

respectively, and it was argued that lower β coefficients were predicted for organisms with 

more sophisticated genetic regulatory machinery (Guelzim et al., 2002). In addition, in a 

recent study on the dynamics of transcriptional regulatory networks, the exponent γ and the 

exponent β of the genome-scale trancriptional regulatory network of S. cerevisiae were 

found to be 0.6 and 0.8, respectively (Luscombe et al, 2004). Considering that a larger 

network containing more TFs and interactions was analysed in the present study, it is 

logical that both the exponent β and γ were found to be smaller than in the above studies, 

and hence, the genetic regulatory machinery analysed in this study may be accepted as 

more sophisticated.  

 

The path length (l) and the diameter (d) of the network were found to be 4.25 and 13, 

respectively. The diameter was found larger than the diameter of the most recently reported 

transcriptional regulatory network in literature (Luscombe et al., 2004), showing once 

more the largeness and complexity of the network constructed. 
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Figure 4.2. Power-law behavior of the network connectivity  
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Figure 4.3. Exponential behavior of the network arriving connectivity  
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Figure 4.4. Power-law behavior of the network departing connectivity  

 

4.2.  Key Transcription Factors 

 

4.2.1.   Key TFs Responsive to Oxygen Availability  

 

Firstly, the key TFs responding to change in the oxygen availability under a specified 

macronutrient limitation and the corresponding GO terms were identified (Tables 4.1 - 

4.4). These TFs were the top 10 highest scoring TFs when shifting from anerobic condition 

to aerobic condition. Hap2p, Hap3p and Hap4p and Hap5p were counted as one 

transcription factor because they form a complex and their scores are very close to each 

other. Transcription data in triplicates for anaerobic and aerobic conditions for carbon, 

nitrogen, phosphorous and sulfur limitations were used (Tai et al., 2005).  

 

Three TFs, namely Hap2/3/4/5p, Upc2p and Yap1p, were identified as key TFs 

between anaerobic and aerobic conditions under all four macronutrient limitations, 

showing a consistent response to oxygen availability independent of the nutrient limitation 

(Figure 4.5). This result is biologically meaningful since Hap2/3/4/5p complex is known to 

be involved in the fermentation-respiration shift (Bourgarel, 1999), Upc2p is known to 

regulate the majority of anaerobically induced genes in S. cerevisiae (Kwast, 2002), and 

recent experimental studies indicated involvement of Yap1p in response to oxidative stress 

(Rodrigues-Pousada, 2004). 

 



 24 

ANA-C-AER-C                  ANA-N-AER-N 

 

 

 

ANA-P-AER-P                  ANA-S-AER-S 

 

Figure 4.5. Venn diagram of oxygen-responsive TFs. Each of the four circles represents a 

cluster of TFs that were identified as key TFs under carbon, nitrogen, phosphorous or 

sulphur limitation regimes 

 

Key transcription factors specific to one macronutrient limitation regime between 

anaerobic and aerobic conditions (i.e. showing response to oxygen availability under that 

specified nutrient limitation) also yielded meaningful information consistent with 

literature. When passing from anaerobic condition to aerobic condition under carbon 

limitation regime, Mig2p, Cat8p, Msn2p, Msn4p were among the key TFs identified (Table 

4.1). These results are logical since Mig2p is involved in glucose metabolism, Cat8p in 

gluconeogenesis (which is the biosynthesis of new glucose not from glycogen but from 

other metabolites) and both Msn2p and Msn4p are involved in response to oxidative stres 

(Table 4.1). The increased activity of Cat8p under the carbon limitation regime may 

indicate the start of gluconeogenesis in the cell where carbon source is limited. 

 

When passing from anaerobic condition to aerobic condition under nitrogen, 

phosphorous and sulfur limitation regimes, Rox1p was identified as a key TF (Tables 4.2-

4.4). This result is consistent with the recently reported role of Rox1p in regulating the 

majority of anaerobically induced genes in S. cerevisiae along with Upc2p (Kwast, 2002). 
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When passing from anaerobic condition to aerobic condition under the sulfur 

limitation regime, Hap1p was identified as a key TF. The GO term associated with this TF 

is aerobic respiration (Table 4.4), and it also has a major role in the repair of oxidative 

DNA damage (Barzilay et al., 1996), which explains the reason why Hap1p was identified 

as a key TF between anaerobic and aerobic conditions.   

 
Table 4.1. Key TFs between anaerobic and aerobic conditions-carbon limitation 

Z-score TF GO Terms: Biological Process 

8,55 Cat8p 
• gluconeogenesis 

• positive regulation of transcription from Pol II promoter 

7,55 Oaf1p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

7,39 Pip2p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

6,72 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

6,69 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 

6,66 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

6,60 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

6,50 Msn4p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

5,64 Msn2p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

5,49 Upc2p 
• steroid metabolism 

• sterol biosynthesis 

5,47 Yap1p 
• transcription 

• response to oxidative stress 

5,02 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 

4,84 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 
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Table 4.2. Key TFs between anaerobic and aerobic conditions-nitrogen limitation 

Z-score TF GO Terms: Biological Process 

12,39 Upc2p 
• steroid metabolism 

• sterol biosynthesis 

10,04 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

10,00 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

9,89 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

9,85 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 

6,08 Rox1p • negative regulation of transcription from Pol II promoter 

5,55 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

4,99 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

4,91 Oaf1p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

4,75 Pip2p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

4,31 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 

4,13 Sok2p • pseudohyphal growth 

3,90 Stp2p • positive regulation of transcription from Pol II promoter 
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Table 4.3. Key TFs between anaerobic and aerobic conditions-phosphorous limitation 

Z-score TF GO Terms: Biological Process 

9,43 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

9,37 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 

9,26 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

9,25 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

7,73 Upc2p 
• steroid metabolism 

• sterol biosynthesis 

5,10 Rox1p • negative regulation of transcription from Pol II promoter 

4,56 Cat8p 
• gluconeogenesis 

• positive regulation of transcription from Pol II promoter 

4,42 Met32p • sulfur amino acid metabolism 

4,35 Mot3p • transcription 

3,98 Ino2p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

3,89 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

3,67 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 

3,56 Rgt1p 
• glucose metabolism 

• regulation of glucose import 
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Table 4.4. Key TFs between anaerobic and aerobic conditions-sulfur limitation 

Z-score TF GO Terms: Biological Process 

10,04 Upc2p 
• steroid metabolism 

• sterol biosynthesis 

9,16 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

9,02 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

8,81 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 

8,76 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

5,64 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

5,06 Rox1p • negative regulation of transcription from Pol II promoter 

4,32 Mot3p • transcription 

4,05 Ino2p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

4,01 Rtg3p • transcription initiation from Pol II promoter 

3,94 Pdr3p 
• regulation of transcription from Pol II promoter 

• response to drug 

3,88 Hap1p 
• aerobic respiration 

• positive regulation of transcription from Pol II promoter 

3,48 Cad1p 
• positive regulation of transcription from Pol II promoter 

• response to cadmium ion 

 

4.2.2.   Key TFs Responsive to Nutrient Limitation-Aerobic  

 

Secondly, transcription data obtained in triplicates under aerobic conditions for 

carbon, nitrogen, phosphorous and sulphur limitations (Tai et al., 2005) were 

comparatively analysed. The transcription factors which were identified as key TFs when 

passing from one nutrient limitation to another under aerobic conditions are listed in 

Tables 4.5 - 4.10. Hap2p, Hap3p and Hap4p and Hap5p were counted as one transcription 

factor because they form a complex and their scores are very close to each other.  

 

Only Mig2p was identified as the common key TF when passing from carbon 

limitation regime to any of the other three nutrient limitation regimes under aerobic 
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conditions (Figure 4.6a). This result is consistent with the known involvement of Mig2p in 

glucose metabolism (Table 4.5), and Mig2p is required for repression of many glucose-

repressed genes (Lutfiyya et al., 1998). 

 

Two TFs, namely Gln3p and Dal80p, were identified as the common key TFs when 

comparing the nitrogen limitation regime against the three others (Figure 4.6b). This 

prediction is supported by the fact that both Gln3p and Dal80p are involved in the 

regulation of the nitrogen utilization process (Chan et al., 2001; Svetlov and Cooper, 

1998), besides it is remarkable that these two TFs, involved in nitrogen utilization process, 

were identified as key TFs only when comparing nitrogen limitation regime with others.  

 

Stp1p and Stp2p were suggested as the common key TFs between phosphorous 

limitation regime and any of the three other limitation regimes (Figure 4.6c). These two 

TFs do not have a known relation to the phosphorous metabolism; however, they are both 

known to play a role in the positive regulation of transcription from Pol II promoter and 

were identified expectedly as key in most of the comparative sets.  

 

When passing from the sulfur limitation regime to any of the other three limitation 

regimes, Gcn4p, Met32p, Pdr3p and Yap1p were identified as the common four TFs, or in 

other words, were suggested as responsive TFs to sulfur limitation regime (Figure 4.6d). 

Indeed, Met32p is involved in yeast sulfur amino acid metabolism (Blaiseau et al, 1997) 

and Gcn4p was recently identified as a nutrient deprivation responsive TF (Harbison et al., 

2004). Yap1p is involved in the oxidative stress tolerance, and Pdr3p, being involved in 

positive regulation of transcription from Pol II promoter, was identified as key TF in most 

of the pairwise comparisons. 

 

 MATalpha2, which was recently suggested to take role in respiraton and carbon 

regulation (Segal et al., 2003), was identified as the key TF between carbon limitation and 

nitrogen limitation regimes under aerobic conditions. MATalpha2 makes only two 

connections in the network (i.e. it has two target genes). The fact that it was identified as a 

key TF shows the ability of the approach proposed in this work in capturing key TFs which 

make very few connections in the regulatory network. On the other hand, TFs with very 
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large number of connections in the network, such as Rap1p, which makes 483 connections, 

were not identified as key TFs since they were not active within the conditions analysed. 

 

                   C-N                 C-P   N-C             N-P            P-C         P-N           S-C       S-N 

 
                         C-S                  N-S                                       P-S                                      S-P 

                         (a)                               (b)                             (c)                            (d) 

Figure 4.6. Venn diagrams of nutrient-responsive TFs (aerobic). Pairwise comparisons of 

each macronutrient (carbon, nitrogen, phosphorous and sulfur) limitation regime against 

the three others under aerobic conditions. Numbers indicate the number of key TFs.  
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Table 4.5. Key TFs between carbon and nitrogen limitations-aerobic 

Z-score TF GO Terms: Biological Process 

7,04 Gln3p 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

• positive regulation of transcription from Pol II promoter 

6,58 Dal80p 
• transcription 

• regulation of nitrogen utilization 

5,67 Pip2p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

5,15 Oaf1p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

4,94 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 

4,52 Cat8p 
• gluconeogenesis 

• positive regulation of transcription from Pol II promoter 

4,34 Gat1p 
• transcription initiation from Pol II promoter 

• regulation of nitrogen utilization 

4,19 Mcm1p 
• DNA replication initiation 

• regulation of transcription from Pol II promoter 

4,02 Stp2p • positive regulation of transcription from Pol II promoter 

3,95 
MAT 

alpha2 

• Homeobox-domain containing protein which, in haploid cells, acts with Mcm1p 

to repress a-specific genes 
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Table 4.6. Key TFs between carbon and phosphorous limitations-aerobic 

Z-score TF GO Terms: Biological Process 

7,51 Oaf1p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

7,00 Pip2p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 

6,89 Msn4p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

6,13 Stp2p • positive regulation of transcription from Pol II promoter 

6,02 Pdr3p 
• regulation of transcription from Pol II promoter 

• response to drug 

5,86 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

5,55 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 

5,23 Msn2p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

5,00 Ino2p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

4,96 Rtg1p 
• transcription initiation from Pol II promoter 

• protein localization 
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Table 4.7. Key TFs between carbon and sulfur limitations-aerobic 

Z-score TF GO Terms: Biological Process 

5,67 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

5,63 Cat8p 
• gluconeogenesis 

• positive regulation of transcription from Pol II promoter 

5,24 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

5,18 Pdr3p 
• regulation of transcription from Pol II promoter 

• response to drug 

5,03 Met32p • sulfur amino acid metabolism 

5,00 Met4p 
• sulfur amino acid metabolism 

• positive regulation of transcription from Pol II promoter 

5,00 Met28p 

• sulfur amino acid biosynthesis 

• regulation of transcription from Pol II promoter 

• regulation of sulfur metabolism 

4,96 Msn4p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

4,79 Cbf1p 
• DNA replication and chromosome cycle 

• methionine biosynthesis 

4,78 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 
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Table 4.8. Key TFs between nitrogen and phosphorous limitations-aerobic 

Z-score TF GO Terms: Biological Process 

7,70 Gln3p 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

• positive regulation of transcription from Pol II promoter 

7,59 Dal80p 
• transcription 

• regulation of nitrogen utilization 

6,56 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

5,52 Stp2p • positive regulation of transcription from Pol II promoter 

4,98 Ste12p 

• conjugation with cellular fusion 

• invasive growth (sensu Saccharomyces) 

• pseudohyphal growth 

• positive regulation of transcription from Pol II promoter by pheromones 

4,78 Hap1p 
• aerobic respiration 

• positive regulation of transcription from Pol II promoter 

4,44 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

4,22 Gat1p 
• transcription initiation from Pol II promoter 

• regulation of nitrogen utilization 

4,05 Rtg3p • transcription initiation from Pol II promoter 

4,01 Pho4p 
• phosphate metabolism 

• cellular response to phosphate starvation 
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Table 4.9. Key TFs between nitrogen and sulfur limitations-aerobic 

Z-score TF GO Terms: Biological Process 

7,56 Gln3p 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

• positive regulation of transcription from Pol II promoter 

7,12 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

6,90 Pdr3p 
• regulation of transcription from Pol II promoter 

• response to drug 

6,82 Ino2p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

6,75 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

6,43 Dal80p 
• transcription 

• regulation of nitrogen utilization 

6,20 Ino4p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

6,00 Dal81p 
• regulation of transcription from Pol II promoter 

• nitrogen utilization 

5,79 Met32p • sulfur amino acid metabolism 

5,65 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 
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Table 4.10. Key TFs between phosphorous and sulfur limitations-aerobic 

Z-score TF GO Terms: Biological Process 

7,70 Msn4p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

6,46 Met32p • sulfur amino acid metabolism 

6,33 Pdr3p 
• regulation of transcription from Pol II promoter 

• response to drug 

6,11 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

5,97 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

5,75 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

5,57 Met28p 

• sulfur amino acid biosynthesis 

• regulation of transcription from Pol II promoter 

• regulation of sulfur metabolism 

5,57 Met4p 
• sulfur amino acid metabolism 

• positive regulation of transcription from Pol II promoter 

5,39 Stp2p • positive regulation of transcription from Pol II promoter 

4,71 Msn2p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

 

4.2.3.   Key TFs Responsive to Nutrient Limitation-Anaerobic 

 

The transcription data obtained in triplicates for the four macronutrient limitation 

regimes, namely carbon, nitrogen, phosphorous and sulfur limitation regimes (Tai et al., 

2005), were also comparatively analysed under anaerobic conditions. The TFs which were 

identified as key TFs when passing from one nutrient limitation to another under anaerobic 

conditions are listed in Tables 4.11 - 4.16. Hap2p, Hap3p and Hap4p and Hap5p were 

counted as one TF because they form a complex and their scores are very close to each 

other.  
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The TFs identified as common key TFs when comparing the carbon limitation 

regime and any of the other three limitation regimes were Hap2/3/4/5p and Rtg3p (Figure 

4.7a). Hap complex is known to be involved in carbohydrate metabolism however, 

interestingly, it was not identified as key TF complex when comparing the nutrient 

limitation regimes under aerobic conditions. Rtg3p was, on the other hand, recently 

identified as a nutrient deprivation responsive TF (Harbison et al., 2004).  

 

The three common key TFs between the nitrogen limitation regime and the three 

others were Dal80p, Dal81p, Gln3p and Stp1 (Figure 4.7b). This result is consistent with 

the fact that Dal80p, Dal81p and Gln3p are all involved in the regulation of the nitrogen 

utilization process (Svetlov and Cooper, 1998; Bricmont et al., 1991; Ogawa and Oshima, 

1990). Besides, it is remarkable that these TFs involved in the regulation of the nitrogen 

utilization process were identified as key TFs only when comparing nitrogen limitation 

regime with others. As for Stp1p, as mentioned above, it is active in most of the pairwise 

comparisons being involved in positive regulation of transcription from Pol II promoter.  

 

Stp1p and Stp2p were identified as common key TFs between phosporous limitation 

regime and the others, just as under aerobic conditions (Figure 4.7c). Gcn4p was also 

identified as key TF when passing from sulfur limitation regime to any other limitation 

regime (Figure 4.7d), as under aerobic conditions.  

 

It is notable that Met4p, Met31p and Met32p, the three TFs involved in sulfur amino 

acid metabolism, were identified as key TFs only when passing from sulfur limitation 

regime to nitrogen and phosphorous limitation regimes (Tables 4.15 and 4.16). Moreover, 

Pho4p, a major TF in phosphate metabolism, was identified only between phosphorous 

limitation and sulfur limitation regimes (Table 4.16). These results show the ability of the 

present method to correctly identify the key TFs specific to conditions compared in this 

study. 
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                   C-N                 C-P   N-C             N-P            P-C         P-N           S-C       S-N 

 
                         C-S                  N-S                                       P-S                                      S-P 

                         (a)                               (b)                             (c)                            (d) 

Figure 4.7. Venn diagrams of nutrient responsive TFs (anaerobic). Pairwise comparisons of 

each macronutrient (carbon, nitrogen, phosphorous and sulfur) limitation regime against 

the three others under anaerobic conditions. Numbers indicate the number of key TFs 
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Table 4.11. Key TFs between carbon and nitrogen limitations-anaerobic 

Z-score TF GO Terms: Biological Process 

7,76 Dal80p 
• transcription 

• regulation of nitrogen utilization 

6,43 Gln3p 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

• positive regulation of transcription from Pol II promoter 

6,19 Rtg3p • transcription initiation from Pol II promoter 

4,72 Pdr3p 
• regulation of transcription from Pol II promoter 

• response to drug 

4,70 Gat1p 
• transcription initiation from Pol II promoter 

• regulation of nitrogen utilization 

4,69 Rtg1p 
• transcription initiation from Pol II promoter 

• protein localization 

4,11 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

4,08 Gzf3p 

• negative regulation of transcription from Pol II promoter 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

4,01 Dal81p 
• regulation of transcription from Pol II promoter 

• nitrogen utilization 

3,87 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

3,84 Haa1p • transcription initiation from Pol II promoter 

3,80 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

3,79 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

3,79 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 
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Table 4.12. Key TFs between carbon and phosphorous limitations-anaerobic 

Z-score TF GO Terms: Biological Process 

5,37 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

5,30 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

5,28 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

5,18 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 

4,53 Stp2p • positive regulation of transcription from Pol II promoter 

4,46 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

4,37 Haa1p • transcription initiation from Pol II promoter 

4,23 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

4,09 Pdr3p 
• regulation of transcription from Pol II promoter 

• response to drug 

3,83 Msn2p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

3,77 Tec1p 
• pseudohyphal growth 

• positive regulation of transcription from Pol II promoter 

3,72 Cin5p 

• regulation of transcription from Pol II promoter 

• response to salt stress 

• response to drug 

3,64 Rtg3p • transcription initiation from Pol II promoter 
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Table 4.13. Key TFs between carbon and sulfur limitations-anaerobic 

Z-score TF GO Terms: Biological Process 

5,34 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

5,32 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

5,30 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

5,26 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 

4,52 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

4,06 Med8p • Member of RNA Polymerase II transcriptional regulation mediator 

3,54 Rtg1p 
• transcription initiation from Pol II promoter 

• protein localization 

3,42 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 

3,40 Rtg3p • transcription initiation from Pol II promoter 

3,18 Nrg2p • invasive growth (sensu Saccharomyces) 

3,00 Ino2p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

2,90 GFII 

• binds to the upstream sequences of a number of nuclear genes coding for 

mitochondrial proteins and to genetic elements important for cell division in 

yeast 

2,86 Leu3p 
• regulation of transcription from Pol II promoter 

• leucine biosynthesis 
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Table 4.14. Key TFs between nitrogen and phosphorous limitations-anaerobic 

Z-score TF GO Terms: Biological Process 

8,56 Dal80p 
• transcription 

• regulation of nitrogen utilization 

7,57 Gln3p 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

• positive regulation of transcription from Pol II promoter 

6,22 Stp2p • positive regulation of transcription from Pol II promoter 

6,18 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

6,01 Gat1p 
• transcription initiation from Pol II promoter 

• regulation of nitrogen utilization 

5,92 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

5,16 Dal81p 
• regulation of transcription from Pol II promoter 

• nitrogen utilization 

4,71 Msn4p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

4,42 Skn7p 

• transcription 

• response to osmotic stress 

• response to oxidative stress 

4,37 Met32p • sulfur amino acid metabolism 
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Table 4.15. Key TFs between nitrogen and sulfur limitations-anaerobic 

Z-score TF GO Terms: Biological Process 

7,72 Met28p 

• sulfur amino acid biosynthesis 

• regulation of transcription from Pol II promoter 

• regulation of sulfur metabolism 

7,71 Dal80p 
• transcription 

• regulation of nitrogen utilization 

7,70 Met32p • sulfur amino acid metabolism 

7,69 Met4p 
• sulfur amino acid metabolism 

• positive regulation of transcription from Pol II promoter 

7,13 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

6,75 Met31p 
• sulfur amino acid metabolism 

• regulation of transcription 

6,18 Gln3p 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

• positive regulation of transcription from Pol II promoter 

5,80 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

5,53 Ino2p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

5,40 Dal81p 
• regulation of transcription from Pol II promoter 

• nitrogen utilization 
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Table 4.16. Key TFs between phosphorous and sulfur limitations-anaerobic 

Z-score TF GO Terms: Biological Process 

8,10 Met28p 

• sulfur amino acid biosynthesis 

• regulation of transcription from Pol II promoter 

• regulation of sulfur metabolism 

8,05 Met4p 
• sulfur amino acid metabolism 

• positive regulation of transcription from Pol II promoter 

7,94 Met32p • sulfur amino acid metabolism 

6,86 Met31p 
• sulfur amino acid metabolism 

• regulation of transcription 

6,09 Gcn4p 
• regulation of transcription from Pol II promoter 

• amino acid biosynthesis 

5,76 Stp2p • positive regulation of transcription from Pol II promoter 

5,42 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

5,30 Pho4p 
• phosphate metabolism 

• cellular response to phosphate starvation 

4,35 Yap1p 

• transcription 

• response to oxidative stress 

• response to drug 

4,31 Msn2p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

 

4.2.4.   Key TFs Responsive to Deletion of the Genes MIG1 and MIG2 

  

The algorithm was further implemented for analysis of transcription data from a 

∆mig1 mutant, ∆mig1mig2 double mutant and a wild-type strain (Klein et al., 1999). 

Mig1p and Mig2p are both glucose repressors of many genes, and despite their functional 

redundancy, several significant differences between Mig1p and Mig2p have been reported 

in the literature (Lutfiyya et al., 1998). In the first part of this study, a MIG1 gene deleted 

strain and a wild-type strain were compared in order to determine the TFs responsive to the 

deletion of the MIG1 gene and consequently responsive to the abscence of the TF Mig1p. 

Secondly, both MIG1 and MIG2 genes deleted strain and the wild-type strain were 

compared so that TFs responsive to the deletion of both of these genes could be identified. 

In addition, by comparing the two sets of results obtained, it was possible to determine the 

TFs which were responsive to the deletion of MIG2 but not of MIG1. When the ∆mig1 
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mutant strain and the wild-type strain were compared, Mig2p was identified as the top key 

TF (Table 4.17). This is a meaningful result since it has been suggested that Mig2p may act 

in a redundant fashion with Mig1p (SGD, 2005). Therefore, it makes sense that Mig2p 

becomes very active and takes charge in the abscence of Mig1p. However Hap2/3/4/5p 

complex was not placed among the top 10 highest scoring TFs and was therefore not 

identified as key TF in this data set (Table 4.17). This result was expected because it has 

been reported that a mig1 mutation did not affect the regulation of HAP4 even though a 

Mig1p binding site was present in the HAP4 promoter (Gancedo, 1998). When ∆mig1mig2 

double mutant strain and the wild-type strain were analyzed, this time Hap2/3/4/5p 

complex emerged as the top key TF (Table 4.18). This result, along with the previous one, 

suggests that MIG2 but not MIG1 has an effect on Hap2/3/4/5p activity. Indeed, it has been 

suggested that perhaps Mig2p could be involved in the mechanism which regulates HAP4 

(Gancedo, 1998). Our results strengthen this hypothesis. Additionally, it has been reported 

that ∆mig1mig2 double mutant exhibited a significantly higher respiratory capacity than 

the wild type (Klein et al., 1999). The cause behind this phenomenon may be, as found 

here, the increased activity of Hap2/3/4/5p, global regulator of respiratory gene expression.  

 

Topological measures of MIG1 and MIG1MIG2 deleted networks indicated that 

removal of these genes from the transcriptional regulatory network did not affect the 

network topology significantly (Table 4.20). The reason for this result is that both MIG1 

and MIG2 make relatively small number of connections in the network; hence, they are not 

hubs in the network and do not affect the network topology significantly. In fact, their 

removal resulted in small decreases in the in-degree (<kin>) and the out-degree (<kout>) 

values (Table 4.20). The exponential and power-law behaviors were maintained in the 

deletion networks for the arriving and the departing connectivity distributions, respectively 

(Figures 4.8 – 4.11). The exponent γ slightly decreased in the  MIG1MIG2 deleted network 

while the exponent β remained the same in the deletion networks as in the original network 

(Table 4.20). 

 

The path length (l) increased slightly and gradually as MIG1 and MIG1MIG2 genes 

were removed from the network whereas the diameter (d) of the original network did not 

change upon removal of MIG1 and MIG1MIG2 genes from the network (Table 4.20). 
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Table 4.17. Key TFs responsive to the deletion of MIG1 gene 

Z-score TF GO Terms: Biological Process 

3,11 Mig2p 
• glucose metabolism 

• regulation of transcription from Pol II promoter 

1,97 Arg81p 
• arginine metabolism 

• negative regulation of calcium ion-dependent exocytosis 

1,92 Mal13p 
• carbohydrate metabolism 

• regulation of transcription, DNA-dependent 

1,80 Stp1p 
• tRNA splicing 

• positive regulation of transcription from Pol II promoter 

1,71 Uga3p 
• regulation of transcription from Pol II promoter 

• nitrogen utilization 

1,66 BUF • activator or repressor involved in replication 

1,52 Gal4p 
• galactose metabolism 

• regulation of transcription, DNA-dependent 

1,48 Gzf3p 

• negative regulation of transcription from Pol II promoter 

• nitrogen compound metabolism 

• regulation of nitrogen utilization 

1,48 Gal80p 
• Transcriptional regulator involved in the repression of GAL genes in the 

absence of galactose 

1,44 Smp1p • Positive regulation of transcription from Pol II promoter 
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Table 4.18. Key TFs responsive to the deletion of both MIG1 and MIG2 genes 

Z-score TF GO Terms: Biological Process 

7,91 Hap4p 
• regulation of carbohydrate metabolism 

• transcription 

7,80 Hap5p 
• regulation of carbohydrate metabolism 

• transcription 

7,72 Hap2p 
• regulation of carbohydrate metabolism 

• transcription 

7,66 Hap3p 
• regulation of carbohydrate metabolism 

• transcription 

5,35 Med8p • Member of RNA Polymerase II transcriptional regulation mediator 

5,02 Cat8p 
• gluconeogenesis 

• positive regulation of transcription from Pol II promoter 

4,46 Ino2p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

4,01 Ino4p 
• phospholipid biosynthesis 

• positive regulation of transcription from Pol II promoter 

3,90 Phd1p • pseudohyphal growth 

3,89 Ppr1p 
• regulation of transcription, DNA-dependent 

• uracil biosynthesis 

3,78 Nrg2p • invasive growth (sensu Saccharomyces) 

3,21 Msn4p 

• replicative cell aging 

• age-dependent response to oxidative stress during chronological cell aging 

• regulation of transcription, DNA-dependent 

• response to stress 

3,20 Oaf1p 

• fatty acid metabolism 

• peroxisome organization and biogenesis 

• positive regulation of transcription 
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Figure 4.8. Exponential behavior of ∆MIG1 network arriving connectivity 
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Figure 4.9. Power-law behavior of ∆MIG1 network departing connectivity 
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Figure 4.10. Exponential behavior of ∆MIG1MIG2 network arriving connectivity 
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Figure 4.11. Power-law behavior of ∆MIG1MIG2 network departing connectivity 

 

4.3.   Identification of Perturbation-Responsive Subnetworks 

 

Perturbation-responsive subnetwoks were identified by interconnecting the key TFs 

and their differentially expressed target genes responsive to the same perturbations. The 

genes whose fold changes (FC) (i.e. the ratio of their expression levels) were greater than 

│2│ were accepted as differentially expressed. The algorithm here reported is used for the 

identification of key TFs, and the differentially expressed genes regulated by key TFs were 

selected from gene expression data provided by Tai et al., 2005.  
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The oxygen responsive subnetwork under carbon limitation regime was constructed 

as an illustration (Figure 4.12). The subnetwork consists of 10 TFs (key TFs) and 87 target 

genes (Table 4.19) activated when passing from anaerobic to aerobic conditions under 

carbon limitation. As expected, the largest portion of the genes (16 per cent) in the 

subnetwork belongs to the MIPS (Munich Information Center for Protein Sequences) 

functional category ‘respiration’ (Figure 4.13). The second largest categories are 

‘transported compounds’ (14 per cent) and ‘unknown proteins’ (14 per cent) (Figure 4.3). 

It is known that in oxygen-deprived environments, yeast uses compounds such as sulfate, 

carbonate or nitrate in place of oxygen (Yesmag, 2004). Therefore, it is quite logical that 

when passing from anaerobic to aerobic conditions the expression levels of the genes 

related to transported compounds change. Of great interest are genes that have unknown 

functions: a large portion of the genes in the subnetwork were classified as ‘unknown 

proteins’ by MIPS (Figure 4.13) and they are displayed in bold in Table 4.19. The 

classification of these genes in specified subnetworks together with TFs with known 

functions can help the prediction of their functions. The fourth largest portion of the genes 

belongs to the category ‘electron transport and membrane-associated energy’, which is 

clearly related to the respiration (Figure 4.13). Stress response (9 per cent), lipid 

metabolism (9 per cent) and carbohydrate metabolism (8 per cent) are among the top 10 

important categories that the genes in the oxygen responsive subnetwork belong to (Figure 

4.3). This result is totally consistent with a recent study which revealed that a large fraction 

of the anaerobically induced genes were involved in cell stress (approximately 1/3), 

carbohydrate metabolism (approximately 1/10), and lipid metabolism (approximately 1/12) 

(Kwast et al., 2002).    

 

The topological measures of the subnetwork revealed that the in-degree exponential 

exponent (β) doubled and the out-degree power-law exponent (γ) halved between the 

original network and the subnetwork. The doubled exponent is indicative of a simpler TF 

combination usage in the subnetwork and the halved exponent means that the subnetwork 

contains fewer TF hubs (Luscombe et al, 2004) than the original network. The exponential 

and the power-law behaviors were maintained in the subnetwork for the distributions of the 

arriving and the departing connectivities, respectively (Figures 4.14 and 4.15). Notably, the 

in-degree and out-degree values halved between the original network and the subnetwork, 
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since the number of TFs and genes in the subnetwork is smaller compared to the original 

network (Table 4.20). 

 

Table 4.19. Genes included in the oxygen-responsive subnetwok  

Data set Genes in the subnetwork. Bold names represent unknown genes. 

ANA-C-AER-C 

AAC3, ADH5, AGX1, ANT1, ARE1, ATF2, ATP20, ATP7, BNA2, CBP4, COR1, COX12, 

COX4, COX5A, COX6, COX7, CRC1, CYB2, CYC1, CYT1, DAN1, DAN2, DAN3, DAN4, 

EMI2, FET4, FMP13, GRE2, GSY1, GUT2, HEM13, HES1, IZH2, JID1, KGD2, LSP1, 

MBA1, MCH4, MCR1, MDG1, NDI1, OSH7, PAU1, PAU4, PAU5, PAU6, PDR11, PHM7, 

PUT4, QCR2, RIM4, RIP1, ROX1, SDH1, SOD2, SOL4, SRO77, SUT1, TIR1, TIR2, TIR3, 

TIR4, UPC2, YAL068C, YBR230C, YCR061W, YDL241W, YDR542W, YGL196W, 

YGL261C, YGR131W, YGR294W, YHL046C, YIL176C, YJL218W, YLL064C, YLR108C, 

YLR168C, YLR413W, YML083C, YML087C, YMR325W, YNL274C, YOL155C, YPC1, 

YPL272C, YTP1 

 

Table 4.20. Topological measures of the constructed networks  

networks and cellular conditions 

topological measure 
original  ∆mig1 ∆mig1mig2 

Subnetwork 

 (ANA-C-AER-C) 

in-degree (<kin>) 2.43 2.42 2.42 1.43 

in-degree exponential 

exponent (β) 
0.40 0.40 0.40 0.94 

out-degree (<kout>) 2.43 2.42 2.42 1.41 

out-degree power-law 

exponent (γ) 
0.64 0.64 0.62 0.27 

path length (l) 4.25 4.27 4.28 1.00 

diameter (d) 13 13 13 1 
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Figure 4.12. Oxygen-responsive subnetwork under carbon limitation regime 
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Figure 4.13. Distribution of the genes from the subnetwork into different MIPS functional 

categories. Top 10 categories are shown for simplicity 
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Figure 4.14. Exponential behavior of the subnetwork arriving connectivity  
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Figure 4.15. Power-law behavior of the subnetwork departing connectivity  

 

4.4.  Best Candidate Target Genes for the Key TFs 

 

There is a very large number of genes whose promotor regions contain binding sites 

for TFs. However, the regulatory interactions between these genes and these TFs are not 

experimentally justified. These genes are the so-called “potential target genes” for these 

TFs, because they have potential to be truly regulated by these TFs. The reason for this 

potentiality is that they posses binding sites of these TFs in their promoter regions.  
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In the first step of this study, the potential target genes of key TFs were found in the 

database YEASTRACT. Next, those that responded very significantly (i.e. that are 

upregulated or downregulated very significantly) to the same perturbation used for key TF 

identification were selected from gene expression data according to their fold change 

(FC>│10│) (Tai et al., 2005). Here, a high threshold value for the fold change was chosen 

in order to restrict the number of differentially expressed genes. For example, there are 

3513 genes whose promoter regions contain binding sites for the transcription factor 

Msn2p (Table 4.21). These 3513 genes are potential target genes for Msn2p. Since Msn2p 

was identified as a key TF between anaerobic and aerobic conditions under the carbon 

limited regime, it is expected to regulate genes which are equally differentially expressed 

between the same conditions. Therefore, from gene expression data, genes which are 

upregulated or downregulated significantly (FC>│10│) were selected. The 3513 potential 

target genes listed in the database YEASTRACT was then searched for these genes. 

Finally, the ones which are both among the potential target genes and the differentially 

expressed genes were identified as best candidates truly being regulated by Msn2p. 

    

The best candidate target genes for each key TF are listed in Tables 4.21 - 4.36. 

These results should provide useful start points for further experimental investigations of 

regulatory interactions of key TFs or the selected best candidate target genes.  

 

Table 4.21. The best candidate target genes for the set ANA-C-AER-C 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Msn2p 3513 

AAC3, ADI1, AGX1, AQY2, AUS1, CRC1, CYB2, DAN1, ECM13, FAA1, FET4, 

FMP23, GUT2, HEM13, HMX1, LSB6, NDE1, PNS1, PUT4, RIM4, SOL4, SUE1, 

TIR3, TIR4, YBR230c, YLL053c, YLR312c, YLR413w 

Msn4p 3513 

AAC3, ADI1, AGX1, AQY2, AUS1, CRC1, CYB2, DAN1, ECM13, FAA1, FET4, 

FMP23, GUT2, HEM13, HMX1, LSB6, NDE1, PNS1, PUT4, RIM4, SOL4, SUE1, 

TIR3, TIR4, YBR230c, YLL053c, YLR312c, YLR413w 

Stp1p 898 ADI1, AGX1, AQY2, FAA1, HEM13, LSB6, RIM4, SUE1, TIR4, YLL053c, YSR3 

Yap1p 1291 AGX1, AQY2, AUS1, ECM13, FAA1, FMP23, LSB6, MUC1, TIR3, YHL042w 

Upc2p 793 ADI1, DAN1, HMX1, TIR1, TIR3, TIR4, YLR312c, YLR413w, YSR3 

Hap2/3/4/5p 1140 CYB2, ECM13, GRE2, GUT2, HEM13, NDE1, PNS1 

Pip2p 259 ECM13, PUT4, RIM4, TIR1 

Oaf1p 259 ECM13, PUT4, RIM4, TIR1 

Cat8p 320 LSB6, SUE1 
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Table 4.22. The best candidate target genes for the set ANA-N-AER-N 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Upc2p 793 ATF2, DAN1, HES1, HMX1, TIR1, TIR3, TIR4, YLR413w, YOL161c, YSR3 

Stp1p 898 HEM13, SUE1, TIR4, YOL161c, YSR3 

Stp2p 898 HEM13, SUE1, TIR4, YOL161c, YSR3 

Hap2/3/4/5p 1140 CYB2, ECM13, HEM13, IZH4, NDE1 

Yap1p 1291 AUS1, ECM13, MUC1, TIR3 

Rox1p 28 ANB1, CYC1, HEM13 

Oaf1p 259 ECM13, PUT4, TIR1 

Pip2p 259 ECM13, PUT4, TIR1 

 

Table 4.23. The best candidate target genes for the set ANA-P-AER-P 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Mot3p 30914 

AAC3, AGX1, ANB1, AQY2, AUS1, COX5a, CYB2, CYC1, CYT1, DAN1, DAN2, 

DAN3, DAN4, ECM13, FAA1, HEM13, HES1, HMX1, IZH4, LSB6, MUC1, 

NDE1, PAU1, PAU3, PAU4, PAU6, PLB2, PUT4, SML1, SOD2, SUE1, TIR1, 

TIR3, TIR4, YDR542w, YGL261c, YGR131w, YGR294w, YHL046c, YIL176c, 

YLL053c, YLL064c, YLR413w, YMR325w, YOL155c, YOL161c, YSR3 

Rgt1p 4285 

AAC3, AGX1, ANB1, AQY2, COX5a, CYB2, CYC1, DAN1, DAN2, DAN3, DAN4, 

ECM13, HEM13, HMX1, IZH4, MUC1, NDE1, PAU3, PAU4, PAU6, PLB2, 

PUT4, SML1, SOD2, SUE1, TIR1, TIR3, TIR4, YGL261c, YGR294w, YHL046c, 

YLL053c, YLR413w, YMR325w, YOL155c, YSR3 

Upc2p 
793 

 

DAN1, DAN2, DAN3, DAN4, HES1, HMX1, PAU1, PAU3, PAU4, PAU6, PLB2, 

TIR1, TIR3, TIR4, YDR542w, YGL261c, YGR294w, YIL176c, YLL064c, YLR413w, 

YMR325w, YOL155c, YOL161c, YSR3 

Yap1p 1291 
AGX1, AQY2, AUS1, DAN3, ECM13, FAA1, LSB6, MUC1, SOD2, TIR3, 

YGR294w, YLL064c, YOL155c 

Hap2p 1140 CYB2, ECM13, HEM13, IZH4, NDE1, PLB2, SOD2, YMR325w 

Rox1p 28 ANB1, CYC1, HEM13 

Met32p 439 NDE1, TIR3 

Cat8p 320 LSB6, SUE1 
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Table 4.24. The best candidate target genes for the set ANA-S-AER-S 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Mot3p 30914 

AAC3, ANB1, AQY2, ATF2, AUS1, COX5a, CYB2, CYC1, CYT1, DAN1, DAN3, 

ECM13, FAA1, FET4, HEM13, HES1, HMX1, IZH4, MUC1, NDE1, PAU1, 

PAU3, PAU4, PAU6, SML1, SUE1, TIR1, TIR3, TIR4, YDR542w, YGR131w, 

YGR294w, YHL042w, YHL046c, YIL176c, YLL053c, YLL064c, YLR413w, 

YMR325w, YOL161c 

Rtg3p 8344 

AQY2, ATF2, AUS1, COX5a, CYB2, CYT1, DAN1, DAN3, ECM13, FAA1, HES1, 

HMX1, IZH4, MUC1, NDE1, PAU1, PAU3, PAU4, SUE1, TIR1, TIR3, TIR4, 

YDR542w, YGR131w, YGR294w, YHL042w, YHL046c, YIL176c, YLL053c, 

YLL064c, YMR325w 

Upc2p 793 
ATF2, DAN1, DAN3, HES1, HMX1, PAU1, PAU3, PAU4, PAU6, TIR1, TIR3, 

TIR4, YDR542w, YGR294w, YIL176c, YLL064c, YLR413w, YMR325w, YOL161c 

Yap1p 1291 
AQY2, AUS1, DAN3, ECM13, FAA1, MUC1, TIR3, YGR294w, YHL042w, 

YLL064c 

Hap1p 398 ANB1, CYC1, CYT1, FAA1, HEM13, HMX1, IZH4, TIR4 

Cad1p 1291 AQY2, AUS1, DAN3, FAA1, MUC1, TIR3, YGR294w, YLL064c 

Pdr3p 439 HEM13, PAU3, PAU4, SUE1, TIR4, YGR131w, YLR413w 

Hap2p 1140 CYB2, ECM13, HEM13, IZH4, NDE1, YMR325w 

Rox1p 28 ANB1, CYC1, HEM13 

 

Table 4.25. The best candidate target genes for the set AER-C-N 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Gln3p 4465 JEN1, PDH1, WSC4, YER188w, YIL057c, YMR206w 

Stp2p 898 FMP43, HXT3, JEN1, YIL057c, YMR206w 

Mcm1p 6250 FMP43, PDH1, WSC4, YER188w 

Gat1p 2592 WSC4, YER188w, YIL057c, YMR206w 

Pip2p 259 HXT3, YIL057c, YMR206w 

Oaf1p 259 HXT3, YIL057c, YMR206w 

Cat8p 320 JEN1 
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Table 4.26. The best candidate target genes for the set AER-C-P 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Msn2p 3513 
HXT1, HXT3, ISF1, JEN1, MAL32, MIG2, PDH1, RBF9, SUC2, TPO2, WSC4, 

YER188w, YMR206w 

Msn4p 3513 
HXT1, HXT3, ISF1, JEN1, MAL32, MIG2, PDH1, RBF9, SUC2, TPO2, WSC4, 

YER188w, YMR206w 

Rtg1p 8344 
HXT1, HXT3, ISF1, JEN1, MAL32, MIG2, RBF9, SUC2, TPO2, WSC4, 

YER188w, YIL057c 

Stp2p 898 HXT3, ISF1, JEN1, YIL057c, YMR206w 

Stp1p 898 HXT3, ISF1, JEN1, YIL057c, YMR206w 

Pip2p 259 HXT3, MIG2, YIL057c, YMR206w 

Oaf1p 259 HXT3, MIG2, YIL057c, YMR206w 

Pdr3p 439 HXT3, MIG2, YIL057c 

Mig2p 23 MAL32, SUC2 

 

Table 4.27. The best candidate target genes for the set AER-C-S 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Msn4p 3513 HXK1, HXT1, HXT3, ISF1, JEN1, MAL32, SOL1, YMR206w 

Gcn4p 5970 HXT1, JEN1, MAL32, YIL057c, YMR206w 

Pdr3p 439 HXT3, YIL057c 

Cat8p 320 ISF1, JEN1 

Yap1p 1291 HXT1 

Met32p 439 YMR206w 

Mig2p 23 MAL32 

 

Table 4.28. The best candidate target genes for the set AER-N-P 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Rtg3p 8344 CPS1, DAL2, DAL4, DAL5, DAL80, MLS1, OPT2, PUT1, VBA1 

Gln3p 4465 CPS1, DAL2, DAL4, DAL5, DAL80, OPT2, PUT1, VBA1 

Gat1p 2592 CPS1, DAL2, DAL4, DAL5, DAL80, OPT2, PUT1, VBA1 

Gcn4p 5970 CPS1, DAL2, DAL5, DAL80 

Pho4p 2345 DAL80, OPT2, PUT1 

Stp1p 898 DAL80, MLS1 

Stp2p 898 DAL80, MLS1 

Ste12p 1478 OPT2 

Hap1p 398 PUT1 
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Table 4.29. The best candidate target genes for the set AER-N-S 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Gln3p 4465 CPS1, DAL1, DAL2, DAL4, DAL5, DAL80, DUR3, GAP1, OPT2, PUT1, VBA1 

Gcn4p 5970 CPS1, DAL2, DAL5, DAL80, DUR3, GAP1, YLR053c 

Yap1p 1291 CPS1, DAL2, DUR3, GNP1, YLR053c 

Dal81p 100 DAL1, DAL4, MLS1 

Stp1p 898 DAL80, MLS1 

Pdr3p 439 DAL2 

Met32p 439 MLS1 

Ino4p 272 DAL2 

Ino2p 240 DAL2 

 

Table 4.30. The best candidate target genes for the set AER-P-S 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Gcn4p 5970 ICY1, PHM6, PHO3, SPL2, SUL1 

Msn4p 3513 GIT1, ICY1, PHM8, PHO84, SPL2 

Msn2p 3513 GIT1, ICY1, PHM8, PHO84, SPL2 

Met4p 470 ICY1, PHO84, SPL2 

Yap1p 1291 PHO3, SUL1 

Stp2p 898 PHO11, SPL2 

Pdr3p 439 ICY1, SPL2 

Stp1p 898 PHO11, SPL2 

Met32p 439 GFD2 

 

Table 4.31. The best candidate target genes for the set ANA-C-N 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Rtg1p 8344 HXT1, HXT3, HXT4, MAL32, MRK1, SUC2, YIL057c 

Rtg3p 8344 HXT1, HXT3, HXT4, MAL32, MRK1, SUC2, YIL057c 

Pdr3p 439 HXT3, YIL057c 

Stp1p 898 HXT3, YIL057c 

Gln3p 4465 HXT4, YIL057c 

Gzf3p 2592 HXT4, YIL057c 

Gat1p 2592 HXT4, YIL057c 

Hap2p 1140 HXT1 
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Table 4.32. The best candidate target genes for the set ANA-C-P 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Rtg3p 8344 HXT3, HXT4, MAL11, MAL32, MRK1, SUC2, TPO2, YIL057c 

Tec1p 5584 HXT3, HXT4, MAL11, MAL32, MRK1, SUC2, TPO2, YIL057c 

Msn2p 3513 HXT3, HXT4, MAL32, MRK1, SUC2, TPO2 

Stp2p 898 HXT3, YIL057c 

Pdr3p 439 HXT3, YIL057c 

Stp1p 898 HXT3, YIL057c 

Yap1p 1291 MRK1 

 

Table 4.33. The best candidate target genes for the set ANA-C-S 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Rtg3p 8344 HXT1, HXT3, HXT4, ISF1, MAL11, MAL32, MRK1, SUC2, TPO2, YIL057c 

Rtg1p 8344 HXT1, HXT3, HXT4, ISF1, MAL11, MAL32, MRK1, SUC2, TPO2, YIL057c 

Gcn4p 5970 HXT1, HXT4, MAL11, MAL32, MRK1, TPO2, YIL057c, YMR206w 

Hap2p 1140 HXT1, ISF1, YMR206w 

Mig2p 23 MAL32, SUC2 

 

Table 4.34. The best candidate target genes for the set ANA-N-P 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Gat1p 2592 DAL2, DAL5, DUR1,2, GAP1, MEP2, PUT1, VBA1 

Gln3p 4465 DAL2, DAL5, DUR1,2, GAP1, MEP2, PUT1, VBA1 

Gcn4p 5970 DAL2, DAL5, DUR1,2, GAP1, MEP2 

Msn4p 3513 DUR1,2, GAP1, MLS1 

Dal81p 100 DUR1,2, MLS1 

Stp2p 898 MLS1 

Stp1p 898 MLS1 

Skn7p 2366 PUT1 

Met32p 439 MLS1 
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Table 4.35. The best candidate target genes for the set ANA-N-S 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Gln3p 4465 DAL5, DAL80, GAP1, MEP2, OPT2, PUT1, VBA1 

Gcn4p 5970 DAL5, DAL80, GAP1, MEP2 

Met4p 470 GNP1, OPT2, PUT1 

Stp1p 898 DAL80, MLS1 

Met32p 439 MLS1 

Met31p 439 MLS1 

Dal81p 100 MLS1 

 

Table 4.36. The best candidate target genes for the set ANA-P-S 

Key TF 
#  of Potential 

Target Genes 

Best Candidate Target Genes  of the Key TFs 

 

Pho4p 2345 GIT1, PHM6, PHO11, PHO84, PHO89, SPL2, VTC3 

Gcn4p 5970 PHM6, PHO3, PHO89, SPL2, SUL1, VTC3 

Msn2p 3513 GIT1, PHO84, SPL2 

Yap1p 1291 PHO3, SUL1 

Stp2p 898 PHO11, SPL2 

Met4p 470 PHO84, SPL2 

Stp1p 898 PHO11, SPL2 
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5.   CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1.  Conclusions 

 

It is concluded that perturbation-responsive key transcription factors (transcription 

factors around which most significant transcriptional changes occur when a perturbation is 

introduced) can be identified by the hypothesis-driven approach used in this study. The 

approach was implemented in this study for identification of transcription factors 

responsive to genetic and environmental perturbations.  

 

Mig2p was identified as the top key transcription factor responding to the deletion of 

the gene MIG1. Hap2/3/4/5p complex was found to be the transcription factor which 

responded the most significantly to the deletion of both MIG1 and MIG2 genes. These 

results suggest that MIG2, but not MIG1, is involved in the mechanism which regulates 

HAP genes. As for environmental perturbations, oxygen-responsive transcription factors 

under four macronutrient limitation regimes and macronutrient-responsive transcription 

factors under aerobic and anaerobic conditions were identified. Hap2/3/4/5p complex, 

Upc2p and Yap1p were identified as trancription factors responding significantly to 

oxygen availability irrespective of nutrient limitation regime. Meaningful results were also 

obtained for nutrient limitation-responsive transcription factors. For example, Gln3p and 

Gln80p, two TFs involved in nitrogen utilization process, were identified as key TFs only 

when passing from nitrogen limitation regime to any other nutrient limitation regime.  

 

It was furthermore showed that once the key transcription factors are identified by 

this method, perturbation-responsive subnetworks can be constructed by interconnecting 

the key transcription factors and their target genes responding significantly to the same 

perturbation. For illustration, oxygen-responsive subnetwork was constructed. Very large 

portion of the genes included in the subnetwork were classified as ‘unknown proteins’ by 

MIPS. We anticipate that the method will be useful in predicting functions for unknown or 

poorly characterized genes included in a specific subnetwork after a known perturbation is 

introduced to the system. Likewise, the effects of unknown perturbations, such as deletion 
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of a gene with unknown function or drug exposure, can be predicted from key transcription 

factors and subnetworks activated upon perturbation.  

 

The best candidate target genes for each key transcription factor were also identified 

by selecting among the genes, whose promoter sequences match with the binding site of 

the key TF, the ones which are significantly upregulated or downregulated after specific 

perturbations. We believe the genes identified as best candidate target genes for key 

transcription factors should provide useful start points for further experimental 

investigations of regulatory interactions of these genes or key transcription factors. 

 

5.2.  Recommendations  

 

The transcritional regulatory network constructed may also be represented as a 

unipartite undirected graph, in which only genes are represented as the nodes and the genes 

regulated by a common transcription factor are connected to each other. Consequently, the 

unipartite graph can be integrated with multidimensional data (gene expression is 

measured over a time course or multiple strains are analysed). The use of multidimensional 

data would enable the identification of condition-specific key transcription factors during 

specific periods of time, such as aging in yeast, diauxic shift time course, temporal analysis 

of sporulation, heat shock time course etc. 

 

When determining the differentially expressed genes in the subnetwork and the best 

candidate target genes analyses, p values may be used instead of fold change since 

triplicate data were used and p values can be readily calculated from these data. 

 

A different statistical method, other than the t test, may be tried so that the method 

proposed in this study for the identification of the perturbation-responsive key transcription 

factors can be used when replicate data are not available.  

 

The occurrence of network motifs, which are compact, specific patterns of inter-

connection between transcription factors and targets, may be calculated in the genome-

scale transcriptional regulatory network or in the subnetworks. Motif usage between 

different conditions or during a time course may be investigated.   
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APPENDIX A:  COMPUTER CODE FOR TOPOLOGICAL 

CALCULATIONS 

         

 

PROGRAM TOPOLOGY 

INTEGER S1(4,4),S2(4,4),S3(4,4),       

&  S4(4,4),S5(4,4),S6(4,4),              

& S7(4,4), S8(4,4),S9(4,4),               

& S10(4,4),S11(4,4),S12(4,4),             

& S13(4,4),S14(4,4),                       

& S15(4,4),S16(4,4)                        

& ,SPL(4,4),MAX                         

REAL TOP,TOP2,NUM 

DATA  S1/16*0/,S2/16*0/,S3/16*0/,          

& S4/16*0/,S5/16*0/,S6/16*0/,                 

& S7/16*0/,S8/16*0/,S9/16*0/                   

& ,S10/16*0/,S11/16*0/,S12/16*0/,             

& S13/16*0/,S14/16*0/,S15/16*0/               

& ,S16/16*0/                          

DATA SPL/16*0/                                    

20       FORMAT (I5) 

30       FORMAT (I8) 

OPEN (3, FILE='S1.txt',STATUS='OLD') 

OPEN (5, FILE='S2.txt',STATUS='OLD') 

OPEN (7, FILE='S3.txt',STATUS='OLD') 

OPEN (11, FILE='S4.txt',STATUS='OLD') 

OPEN (13, FILE='S5.txt',STATUS='OLD') 

OPEN (15, FILE='S6.txt',STATUS='OLD') 

OPEN (17, FILE='S7.txt',STATUS='OLD') 

OPEN (19, FILE='S8.txt',STATUS='OLD') 

OPEN (21, FILE='S9.txt',STATUS='OLD') 

OPEN (23, FILE='S10.txt',STATUS='OLD') 

OPEN (25, FILE='S11.txt',STATUS='OLD') 
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OPEN (27, FILE='S12.txt',STATUS='OLD') 

OPEN (29, FILE='S13.txt',STATUS='OLD') 

OPEN (31, FILE='S14.txt',STATUS='OLD') 

OPEN (33, FILE='S15.txt',STATUS='OLD') 

OPEN (35, FILE='S16.txt',STATUS='OLD') 

OPEN (9, FILE='SPL.txt',STATUS='NEW') 

DO I=1,4    

DO J=1,4  

READ (3,10) S1(J,I) 

READ (5,10) S2(J,I) 

READ (7,10) S3(J,I) 

READ (11,10) S4(J,I) 

READ (13,10) S5(J,I) 

READ (15,10) S6(J,I) 

READ (17,10) S7(J,I) 

READ (19,10) S8(J,I) 

READ (21,10) S9(J,I) 

READ (23,10) S10(J,I) 

READ (25,10) S11(J,I) 

READ (27,10) S12(J,I) 

READ (29,10) S13(J,I) 

READ (31,10) S14(J,I) 

READ (33,10) S15(J,I) 

READ (35,10) S16(J,I) 

END DO 

END DO 

MAX=0 

TOP=0. 

NUM=0. 

TOP2=0. 

DO I=1,4      

DO J=1,4  

IF ((S15(J,I).EQ.0).AND.(S16(J,I).EQ.1)) THEN 
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SPL(J,I)=16 

END IF 

IF ((S14(J,I).EQ.0).AND.(S15(J,I).EQ.1)) THEN 

SPL(J,I)=15 

END IF 

IF ((S13(J,I).EQ.0).AND.(S14(J,I).EQ.1)) THEN 

SPL(J,I)=14 

END IF 

IF ((S12(J,I).EQ.0).AND.(S13(J,I).EQ.1)) THEN 

SPL(J,I)=13 

END IF 

IF ((S11(J,I).EQ.0).AND.(S12(J,I).EQ.1)) THEN 

SPL(J,I)=12 

END IF 

IF ((S10(J,I).EQ.0).AND.(S11(J,I).EQ.1)) THEN 

SPL(J,I)=11 

END IF 

IF ((S9(J,I).EQ.0).AND.(S10(J,I).EQ.1)) THEN 

SPL(J,I)=10 

END IF 

IF ((S8(J,I).EQ.0).AND.(S9(J,I).EQ.1)) THEN 

SPL(J,I)=9 

END IF 

IF ((S6(J,I).EQ.0).AND.(S7(J,I).EQ.1)) THEN 

SPL(J,I)=7 

END IF 

IF ((S5(J,I).EQ.0).AND.(S6(J,I).EQ.1)) THEN 

SPL(J,I)=6 

END IF 

WRITE (9,20)   SPL(J,I) 

TOP=TOP+SPL(J,I) 

IF (SPL(J,I).NE.0) THEN 

TOP2=TOP2+SPL(J,I) 
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NUM=NUM+1. 

END IF 

IF (SPL(J,I).GT.MAX) THEN 

MAX=SPL(J,I) 

END IF 

END DO 

PRINT*, 'AVERAGE WITHOUT ZEROS =   ', TOP2/NUM 

PRINT*, 'AVERAGE WITH ZEROS =    ', TOP/16.0      

PRINT*, 'DIAMETER=   ',MAX 

END 
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             APPENDIX B:  COMPUTER CODE FOR Z SCORE 

CALCULATIONS  

 

 

PROGRAM SZS 

CHARACTER * 7 GEN(7000),OKU(1000),DOS,DOSYA(200),NAME 

REAL DEGER(7000) 

INTEGER DS,FILEN,GENSAY,OKUSAY,FILEN2 

C 5       format (I7) 

10       FORMAT (A7) 

20       FORMAT (F13.5) 

30       FORMAT (I7) 

40       FORMAT (A7,F13.5) 

42       FORMAT (A9,F13.5) 

43       FORMAT(A7,A12) 

FILEN=10 

PRINT *, "                                

PRINT *, "                       

PRINT *, "                                

PRINT *, ' ' 

PRINT *, ' ' 

PRINT *, ' ' 

PRINT *, ' ' 

C      PART 1: NAME READING 

PRINT *, '>>>>>> THE NAME  

PRINT *,'*** IMPORTANT NOTICE 

PRINT *, ' ' 

READ *, DOS 

PRINT *, ' ' 

PRINT *,'>>>>>> THE QUESTION 

PRINT *,'   PRESS  

PRINT *, ' ' 

READ *, DS 
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DO I5=1,DS 

PRINT *,I6, ' NAME OF THE FILE 

READ *, DOSYA(I2) 

PRINT *, ' ' 

END DO 

C      PART 2: DATA READING 

OPEN (2, FILE='sonuclar.txt',STATUS='NEW') 

OPEN (3, FILE=DOS//'.txt',STATUS='OLD') 

READ (3,30) GENSAY 

DO I6=1,GENSAY 

READ (3,10) GEN (I4) 

END DO 

DO I5=1,GENSAY 

READ (3,20) DEGER(I4) 

END DO 

PRINT *, ' ' 

PRINT *, ' ****',DOS,'. ***' 

PRINT *, ' ' 

C        PART 3: START OF OPERATIONS 

DO I5=1,DS     

PRINT *, ' ' 

PRINT *,'***',  DS, '.  ***' 

FILEN=FILEN+1 

WRITE (NAME,10) DOSYA(I4) 

OPEN (FILEN, FILE=NAME//'.txt',STATUS='OLD') 

READ (FILEN,30) OKUSAY 

DO I5=1,OKUSAY 

READ (FILEN,11) OKU (I6) 

END DO 

FILEN2=100-FILEN 

OPEN (FILEN2,FILE=NAME//'sonuc.txt',STATUS='NEW') 

SUM=0.0 

DO I5=1,OKUSAY 
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DO I6=1,GENSAY 

IF (GEN(I9).EQ.OKU(I3)) THEN 

SUM=SUM+DEGER(I2) 

WRITE (FILEN2,40) OKU(I8),DEGER(I6) 

print *,  OKU(I4),DEGER(I5) 

GOTO 50 

END IF 

END DO 

WRITE (FILEN2,43) OKU(I6), '  CAN NOT BE FOUND' 

PRINT*, OKU(I6), '  CAN NOT BE FOUND' 

50      continue 

END DO 

WRITE (2,10) SUM 

WRITE (FILEN2,13) '       ' 

WRITE (FILEN4,28) 'TOTAL = ', SUM 

PRINT *, ' ' 

PRINT *,DS,'. TOTAL=', SUM 

END DO      

PRINT *, ' ' 

PRINT *, ' PROGRAM COMPLETED ' 
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APPENDIX C:  COMPUTER CODE FOR NEW Z SCORE 

CALCULATIONS  

 

 

PROGRAM RANDOM 

CHARACTER * 5 DOS 

REAL  DEGER (6500),RAND,ra,SUM(10000),TOPSUM,AVER,STD,yeniz,GEN 

REAL zscore 

INTEGER IRA 

12       FORMAT (F15.2) 

C 15     FORMAT (I3) 

PRINT *, FILE NAME 

PRINT *,' *** IMPORTANT NOTICE 

READ *, DOS 

OPEN (5, FILE=DOS//'.txt',STATUS='OLD') 

C         OPEN (4, FILE='SONUC.txt',STATUS='NEW') 

C         OPEN (5, FILE='random.txt',STATUS='NEW') 

OPEN (7, FILE='yeni_z_score.txt',STATUS='NEW') 

DO I=1,6400 

READ (2,10) DEGER (I) 

END DO 

dummy=100 

100     CONTINUE 

PRINT *, NUMBER OF GENES 

READ *, GEN 

TOPSUM=0.0 

DO K=1,10000 

SUM(K)=0.0 

DO J=1,GEN 

ra = 6400.0*rand(0) 

IRA=NINT (RA) 

C        WRITE (5,11) IRA 
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SUM(K)=SUM(K) + 1.0/SQRT(GEN)*DEGER(IRA) 

END DO 

C        WRITE (5,23) SUM (K) 

TOPSUM=SUM(K)+TOPSUM 

END DO 

AVER=TOPSUM/10000.0 

VARIAN=0.0 

DO I5=1,10000 

VARIAN= (SUM (I3) - AVER)**2.0 + VARIAN 

END DO 

STD= SQRT(VARIAN /9999) 

PRINT *, Z SCORE? 

READ *, zscore 

yeniz=(zscore-Aver)/STD 

WRITE (7,12) yeniz 

PRINT *, 'Yeni Z-Score =' , yeniz 

PRINT *, " " 

PRINT *, "      

PRINT *, " " 

If (dummy.EQ.100) then 

GOTO 60 

end if 

stop 

end 
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APPENDIX D:  HIGHEST SCORING TFS BEFORE CORRECTION 

 

 

Table D.1. Oxygen-responsive top 10  TFs before correction. Under carbon, nitrogen, 

phosphorous and sulfur limitation regimes. Hap2p, Hap3p and Hap4p and Hap5p were 

counted as one TF because they form a complex and their scores are very close to each 

other  

ANA-C-AER-C ANA-N-AER-N ANA-P-AER-P ANA-S-AER-S 

16,12 Sok2p 17,21 Upc2p 17,44 Hap2p 19,16 Hap5p 

15,39 Msn4p 16,28 Hap5p 17,43 Hap3p 18,94 Hap2p 

15,00 Yap1p 16,20 Hap2p 17,41 Hap5p 18,92 Hap4p 

14,18 Gcn4p 16,19 Hap4p 17,37 Hap4p 18,86 Hap3p 

14,10 Rap1p 16,13 Hap3p 15,56 Rap1p 18,48 Upc2p 

13,96 Cat8p 15,37 Sok2p 15,00 Yap1p 18,40 Yap1p 

13,89 Hap2p 14,32 Yap1p 14,95 Sok2p 17,02 Cad1p 

13,88 Hap3p 13,17 Rox1p 14,63 Upc2p 16,67 Sok2p 

13,86 Hap4p 13,14 Cad1p 14,10 Rox1p 15,58 Rox1p 

13,82 Hap5p 12,03 Yap5p 13,92 Msn4p 15,55 Msn4p 

12,13 Yap5p 12,02 Hcm1p 13,89 Yap5p 15,46 Hcm1p 

12,00 Hcm1p 11,64 Msn4p 12,90 Tos8p 15,07 Yap5p 

11,90 Stp1p 11,51 Stp1p 12,84 Gcn4p 14,94 Swi4p 
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Table D.2. Top 10 TFs before correction between nutrient limitations (aerobic). Between 

carbon, nitrogen, phosphorous and sulfur limitation regimes 

AER-C-N AER-C-P AER-C-S AER-N-P AER-N-S AER-P-S 

18,56 Sok2p 16,49 Sok2p 19,25 Gcn4p 14,04 Sok2p 17,86 Yap1p 15,29 Msn4p 

16,92 Rap1p 15,61 Msn4p 19,04 Sok2p 12,99 Gcn4p 17,63 Gcn4p 14,39 Yap1p 

15,66 Yap1p 14,89 Rap1p 18,65 Yap1p 12,96 Rap1p 17,59 Sok2p 14,29 Gcn4p 

15,48 Msn4p 13,61 Yap1p 17,68 Msn4p 12,34 Stp1p 15,98 Rap1p 12,70 Sok2p 

15,30 Gcn4p 13,02 Gcn4p 17,53 Cad1p 11,42 Stp2p 15,23 Cad1p 12,21 Pdr3p 

14,69 Cad1p 12,76 Stp2p 15,75 Rap1p 11,37 Yap1p 14,53 Msn4p 12,15 Stp1p 

13,92 Hcm1p 12,65 Stp1p 15,48 Hcm1p 11,27 Cad1p 14,50 Pdr3p 11,78 Cad1p 

13,72 Pdr1p 12,45 Pdr3p 14,99 Cin5p 11,20 Ste12p 13,79 Cin5p 11,42 Stp2p 

13,45 Mcm1p 12,17 Hcm1p 14,83 Pdr3p 11,10 Gln3p 13,75 Stp1p 10,81 Pdr1p 

13,18 Tos8p 11,87 Cad1p 14,17 Cat8p 10,33 Msn4p 13,46 Swi4p 10,71 Rap1p 

 

Table D.3. Top 10 TFs before correction between nutrient limitations (anaerobic). Between 

carbon, nitrogen, phosphorous and sulfur limitation regimes. Hap2p, Hap3p and Hap4p 

and Hap5p were counted as one TF because they form a complex and their scores are very 

close to each other  

ANA-C-N ANA-C-P ANA-C-S ANA-N-P ANA-N-S ANA-P-S 

15,98 Rap1p 15,13 Rap1p 19,77 Rap1p 14,97 Gcn4p 14,14 Gcn4p 13,79 Gcn4p 

15,93 Sok2p 14,08 Sok2p 18,42 Sok2p 14,96 Sok2p 12,99 Sok2p 12,38 Sok2p 

13,80 Yap1p 13,37 Yap1p 18,08 Gcn4p 13,23 Msn4p 12,21 Msn4p 12,24 Yap1p 

13,30 Gcn4p 12,37 Gcn4p 15,96 Cad1p 12,57 Stp1p 12,13 Yap1p 11,35 Cad1p 

12,75 Msn4p 12,18 Hap5p 15,75 Yap5p 12,50 Stp2p 11,85 Cad1p 11,17 Rap1p 

12,61 Cad1p 12,17 Hap4p 15,55 Hap4p 12,33 Yap1p 10,89 Stp1p 11,13 Stp2p 

12,57 Yap5p 12,17 Hap2p 15,48 Hap5p 12,05 Rap1p 10,26 Stp2p 11,07 Msn4p 

12,23 Hap4p 12,10 Hap3p 15,43 Swi4p 11,53 Cad1p 9,98 Pdr3p 10,93 Stp1p 

12,21 Hap5p 11,85 Msn4p 15,43 Hap2p 11,40 Gln3p 9,71 Met4p 10,30 Pdr1p 

12,15 Pdr3p 11,15 Pdr1p 15,41 Hap3p 11,38 Skn7p 9,71 Met28p 10,30 Met4p 

12,12 Hap2p 11,07 Stp2p 15,17 Yap1p 14,97 - - - - - 

12,12 Hap3p 11,07 Stp1p 14,81 Msn4p 14,96 - - - - - 

 

 

 


