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ABSTRACT

IDENTIFICATION OF PERTURBATION-RESPONSIVE KEY
TRANSCRIPTION FACTORS IN TRANSCRIPTIONAL
REGULATORY NETWORKS

In eukaryotic cells, most genes are found to be regulated by various temporary and
permanent transcription factors whose activity levels change as response to perturbations.
Discovering the underlying mechanism of complex cellular processes and responses to
perturbations is a major challenge in post-genomic research. In this M.S. study, so-called
‘key’ transcription factors (transcription factors around which the most significant
transcriptional changes occur) responding significantly to genetic and environmental
perturbations were identified in yeast Saccharomyces cerevisiae by an algorithm based on
hypothesis-driven data analysis. In contrast to existing approaches, the proposed approach
uses network topology for determining the activity levels of transcription factors. The
identification of the perturbation-responsive key transcription factors provides a dynamic
perspective of transcriptional regulation which has central role in cellular function and
structure. An extensive genome-scale map of transcriptional regulatory network in S.
cerevisiae was constructed and integrated with gene expression data. The analysis of yeast
data suggests that the method is capable of successfully identifying perturbation-responsive
key transcription factors and it provides valuable information about transcription factors
and their conditional/temporal behavior. In this study, it was also showed that once the key
transcription factors are identified, the perturbation-responsive subnetworks might be
revealed by interconnecting the key transcription factors and their target genes
differentially expressed when the same perturbation is introduced. Furthermore, for each
key transcription factor, its best candidate target genes were predicted (their regulatory
interactions are not experimentally justified yet), which are differentially expressed after
the same perturbations and their promoter regions contain bindig site(s) for the key

transcription factor.



OZET

Okaryot hiicrelerde, cogu genin ekspresyonunun, aktivite seviyeleri genetik veya
cevresel degisimlere yanit olarak degisen cesitli gecici ya da kalic1 transkripsiyon faktorleri
tarafindan diizenlendigi bilinmektedir. Giiniimiizde degisimlere verilen yanitlarin altinda
yatan karmasik mekanizmay1 kesfetmek biiyiik bir miicadeledir. Bu yiiksek lisans tezinde,
Saccharomyces cerevisiae’ deki genetik ve cevresel degisimlere en anlamli sekilde yanit
veren transkripsiyon faktorleri (etraflarinda en anlamli transkripsiyon degisimleri meydana
gelen transkripsiyon faktorleri) varsayima dayali bir algoritma ile belirlenmistir. Varolan
yaklasimlardan farkli olarak, bu tezde Onerilen yaklasim transkripsiyon faktorlerinin
aktivitelerini belirlemede ag yapisim kullanmaktadir. Bu calisma cercevesinde, S.
cerevisiae’ de c¢ok kapsamli bir transkripsiyonel diizenleyici ag olusturuldu ve gen
ekspresyonu verisi ile biitiinlestirildi. Maya verisinin analizi, kullanilan metodun
degisimlere en anlamli sekilde yanit veren transkripsiyon faktorlerini belirlemede basarili
oldugunu gostermektedir. Buna ek olarak, bu metodla transkripsiyon faktorlerinin sartlara
bagli/gecici davranislar ile ilgili degerli bilgiler elde edilebilmistir. Bu tez ¢alismasinda,
degisimlere yanit veren transkripsiyon faktorleri bulunduktan sonra degisimlere yanit
veren altaglarin da ortaya c¢ikarilabilecegi gosterilmistir. Altaglar degisimlere en anlamli
yanit veren transkripsiyon faktorleri ve ayni degisimlere en anlamli yanit veren hedef
genlerin birbirlerine baglanmalar1 ile olusturulmustur. Ilaveten, degisimlere en anlamli
yanit veren her bir transkripsiyon faktorii icin, aday hedef genleri ongoriilmiistiir (bu genler
ve transkripsiyon faktorleri arasindaki etkilesimler heniiz deneysel olarak
kanitlanmamistir). Bu genler, transkripsiyon faktorleri ile aym degisimlere yanit vermis
olup aym zamanda bu genlerde transkripsiyon faktorlerinin baglanma yerleri

bulunmaktadir.
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1. INTRODUCTION

During the last century, the researchers have been provided with huge amount of
knowledge about individual cellular components and their functions. However, despite this
success, it is clear that usually a discrete biological function can not be attributed to an
individual molecule. Instead, most biological characteristics arise from complex
interactions between the cell’s numerous constituents, such as proteins, deoxyribonucleic
acid (DNA), ribonucleic acid (RNA) and small molecules. Biology has now moved closer
to the area of Systems Biology which seeks to integrate biological data as an attempt to
understand how biological systems function. By studying the relationships and interactions
between various parts of a biological system it is hoped that an understandable model of
the whole system can be developed. Therefore in the twenty-first century, one of the main
aims for biology is to understand the structure and the dynamics of the complex
intracellular web of interactions that contribute to the structure and function of a living
cell. In other words, network biology arises as a key branch in Systems Biology with the
aim to understand the cell’s functional organization. Rapid advances in network biology
indicate that cellular networks are governed by universal laws and have the potential to

revolutionize the view of biology and disease pathologies in the twenty-first century.

There are three types of intracellular biochemical reaction networks where
reconstruction efforts are currently underway: metabolic, transcriptional regulatory and
signaling networks. Ultimately, all three have to be integrated to generate whole-cell
models of microbes and other organisms. The primary role of transcriptional regulation is
the response to changes in environmental conditions, such as nutritional status and
environmental stresses. Due to the central role that transcriptional regulation plays in
cellular function and the availability of experimental techniques to elucidate regulatory

networks, reconstruction of these networks has emerged as a key task in biology (Wyrick

and Young, 2002).

Network analysis has recently been used in molecular biology, but so far almost all
of the resultant networks have only been analyzed statically (Jeong et al., 2000; Guelzim et

al., 2002; Milo et al., 2002; Shen-Orr et al., 2002; Oltvai et al., 2002; Barabasi et al., 2004;



Milo et al., 2004; Teichmann et al., 2004). The only study on the dynamics of the
transcriptional regulatory networks revealed that over half of the active interactions
between transcription factors (TFs) and their target genes are found to be completely
replaced by new ones between conditions (Luscombe et al., 2004). This result shows that
an analysis of the dynamics of a network is necessary considering significant changes

occur in a network between different conditions.

Here, an integrative computational approach is reported in order to identify
perturbation-responsive key transcription factors in transcriptional regulatory networks.
The algorithm used has recently been developed and implemented succesfully for
identification of so-called reporter metabolites (metabolites around which the most
significant transcriptional changes occur) in yeast by the integration of the genome-scale
metabolic network with transcriptome data (Patil and Nielsen, 2005). In the present study,
the approach was modified so that perturbation-responsive key transcription factors could
be identified using the same algorithm. In the modified approach, genome-wide
transcriptome data is comparatively (two conditions or two strains are compared)
integrated with the transcriptional regulatory network constructed. Previous studies on the
dynamics of transcription factors focused on the activity of transcription factors under
certain conditions and thus on identification of condition-specific transcription factors
(Wang et al., 2002; Segal et al., 2003; Luscombe et al., 2004) but not on the effects of
perturbations (i.e. passing from one condition to another) on the activity of transcription
factors. Our approach enables the identification of transcription factors which respond
significantly to a genetic or an environmental perturbation (i.e. TFs activated/deactivated
when passing from one condition to another). Identifying these transcription factors is
crucial for understanding the regulatory mechanisms in a cell subjected to a perturbation.
Moreover, these transcription factors may relate to perturbation-dependent lethality and
their identification may lead to determination of specific drug targets. In fact, the necessity
and the importance of the identification of oxygen-responsive transcription factors has
recently been reported (Tai et al., 2005). An advantage of our method over the previous
methods for inferring regulatory networks from gene expression data (Dhaseieer et al.,
2000; Pe’er et al., 2001; Hartemink er al., 2002; Tanay and Shamir, 2001; Segal et al.,
2003; Luscombe et al., 2004), is that it does not rely on the assumption that the activity

levels of the transcription factors can be determined directly from their expression profiles.



Clearly, this assumption is violated in case of transcription factors which are regulated
post-translationally. Instead, in our approach, the activities of TFs are determined by the
the changes that occur around them (i.e. changes in the expression levels of their target
genes). Hence, in this approach, contrary to previous ones, network topology is used to

determine the activity levels of TFs.

Saccharomyces cerevisiae is the most thoroughly investigated eukaryotic
microorganism, which aids our understanding of the biology of the eukaryotic cell and
hence, ultimately, human biology. S. cerevisae is a very attractive organism to work with
since it is nonpathogenic, and due to its long history of application in the production of
consumable products such as ethanol and baker’s yeast, it has been classified as a GRAS
organism (generally regarded as safe). Also, the well-established fermentation and process
technology for large-scale production with S. cerevisiae makes this organism attractive for
several biotechnological purposes. Another important reason for the applicability of S.
cerevisiae within the field of biotechnology is its susceptibility to genetic modifications by
recombinant DNA technology, which has been further facilitated by the availability of the

complete genome sequence of S. cerevisiae, published in 1996 (Ostergaard et al., 2000).

Based on the arguments above, the aim of this study is to uncover and elucidate the

transcriptional regulatory mechanism in yeast S. cerevisiae from a dynamic perspective by:

e Creating a genome-scale map of transcriptional regulatory network in S. Cerevisiae
and analysing its topology.

¢ Identifying perturbation-responsive key transcription factors, which are TFs around
which most significant transcriptional changes occur, by integrating the
transcriptional regulatory network constructed with transcription data for diverse
conditions. The transcription data are comparatively integrated so that effects of
perturbations, namely environmental and genetic perturbations such as change in
oxygen availability, change in macronutrient limitation and deletion of a gene
enconding a TF, are reflected in the network.

¢ Identifying perturbation-responsive subnetworks in the genome-scale transcriptional

regulatory network, by interconnecting the perturbation-responsive key TFs



previously determined and their target genes which are differentially expressed when
the same perturbation is introduced.

Identifying best candidate target genes for each key TF. There is a very large number
of genes whose promoter sequences match with the binding site of the TF. These
genes are so-called potential target genes of the TFs. The best candidate target genes
are the genes which are upregulated or downregulated significantly when the same
perturbation is introduced to the system and are selected among the potential target

genes listed in the database YEASTRACT.



2. THEORETICAL BACKGROUND

2.1. An Overview of Gene Control and Transcription Factors

The genome of a cell contains in its DNA sequence the information to make many
thousands of different protein and RNA molecules. A cell typically expresses only a
fraction of its genes, and the different types of cells in multicellular organisms arise
because different sets of genes are expressed. Moreover, cells can change the pattern of
genes they express in response to changes in their environment, such as signals from other
cells. Although all of the steps involved in expressing a gene can in principle be regulated,
for most genes the initiation of RNA transcription is the most important point of control

(Alberts et al., 1994).

Transcription factors (also called gene regulatory proteins) recognize short stretches
of double-helical DNA of defined sequence and thereby determine which of the thousands
of genes in a cell will be transcribed. Thousands of TFs have been identified in a wide
variety of organisms. Current estimates suggest that there are just over 200 DNA-binding
transcription factors in yeast (Eisenstein, 2005). Although each of these proteins has
unique features, most bind to DNA as homodimers or heterodimers and recognize DNA
through one of a small number of structural motifs. The common motifs include the helix-
turn-helix, the homeodomain, the leucine zipper, the helix-loop-helix and zinc fingers of
several types. The precise amino acid sequence that is folded into a motif determines the
particular DNA sequence that is recognized. Heterodimerization increases the range of
DNA sequences that can be recognized by TFs. Powerful techniques are available that
make use of the DNA sequence specifity of TFs to identify and isolate these proteins, the
genes that encode them, the DNA sequences they recognize and the genes that they

regulate (Alberts et al., 1994).

The transcription of individual genes is switched on and off in cells by TFs. In
procaryotes these proteins usually bind to specific DNA sequences close to the RNA
polymerase start site and depending on the nature of the TF and the precise location of its

binding site relative to the start site, either activate or repress transcription of the gene. The



flexibility of the DNA helix, however, also allows proteins bond at distant sites to affect
the RNA polymerase at the promoter by the looping out of the intervening DNA. Such
action at a distance is extremely common in eucaryotic cells, where TFs bound to
sequences thousands of nucleotide pairs from the promoter generally control gene
expression. Eucaryotic activators and repressors act by a wide variety of mechanisms —
generally causing the local modification of chromatin structure, the assembly of the

general TFs at the promoter and the recruitment of RNA polymerase.

Whereas the transcription of a typical procaryotic gene is controlled by only one or
two TFs, the regulation of higher eucaryotic genes is much more complex with the larger
genome size and the large variety of cell types that are formed. Some of the TFs are
transcriptional activators, whereas others are transcriptional repressors. These proteins bind
to regulatory sequences organized in a series of regulatory modules strung together along
the DNA and tohether they cause the correct spatial and temporal pattern of gene
expression. Eucaryotic genes and their control regions are often surrounded by insulators,
DNA sequences recognized by proteins that prevent cross-talk between independently

regulated genes (Alberts et al., 1994).

2.2. Transcriptional Regulatory Networks

Analysis of the changes in the level of gene expression (mMRNA and protein) provide
insights into regulatory influences and not necessarily mechanisms responsible for
mediating those changes. To approach a mechanistic level it is imperative to map the
physical linkages among proteins (protein-protein interactions) and proteins and DNA
(protein-DNA interactions). The transcriptional regulatory network is then defined by
which transcription factor binds to which promoters and what the integrated effect of all
these transcription factors is on the expression of all the genes. The basic functional
element of a regulatory network is the promoter region of a gene or operon, which contains
the regulatory binding sites for the relevant transcription factors that regulate the
expression of a particular gene. The locations and orientations of these binding sites, also
the affinity of the transcription factors to particular variants of the site, determine the
expression levels of a gene in response to changes in the active transcription factor

concentrations inside the cell (Ptashne and Gann, 2002).



It has been demonstrated that the known organization of promotor regions in bacteria
allows the implementation of a wide class of regulatory logic functions within a single
promoter (Buchler ef al., 2003), so that even a single ‘node’ in the regulatory network can
be relatively complex. At the basic level the mechanisms of transcriptional regulation are
the same for prokaryotes and eukaryotes, but eukaryotic organisms add an additional level
of complexity to the regulatory network in the form of chromatin-modifying enzymes and
other co-regulators that are typically recruited to promoters by specific transcription factors

(Struhl, 1999).

For regulatory networks the number of TFs cannot be simply used to estimate the
complexity of the network, owing to the fact that TFs can have multiple target genes and
can often act in synergistic combinations (Herrgard et al., 2004). However, the relative
fraction of TF coding genes tends to be higher for organisms that encounter more varied
environmental conditions during their lifetime (Cases et al., 2003), indicating there are
limits to the complexity that can be achieved with a fixed number of TFs. Information on
well-studied organisms can be used to evaluate the level of complexity of transcriptional
regulatory networks in terms of the number of components, transcription factors and target
genes, and regulatory interactions. Escherichia coli has been predicted to have 314
transcription factors (Perez-Rueda and Collado-Vides, 2000) and on the basis of primary
literature 1468 regulatory interactions have been identified (Shenn-Orr et al., 2002). In S.
cerevisiae, there are 334 transcription factors (TRANSFAC, 2005) and large-scale in vivo
protein-DNA binding screens indicate that there are at least 4000 regulatory interactions
(Lee et al., 2002). For both E. coli and yeast these numbers are probably underestimates
since significant efforts are still underway in this area but they give an indication of the

order of magnitude of the regulatory network reconstruction task.

2.2.1. Databases and Experimental Data

For regulatory networks comprehensive databases covering genome-scale regulatory
networks in multiple organisms do not currently exist (Herrgard et al., 2004). For
individual organisms, however, such network databases containing experimentally verified
regulatory interactions have been established, the most prominent one being RegulonDB

for E. coli (Salgado et al., 2001). There are also general databases for individual



organisms, such as the Yeast Proteome Database (YPD) (Csank et al., 2002), that contain
significant amounts of regulatory information, and YEASTRACT (Teixeira et al., 2006),
very recently created repository of more than 12000 regulatory associations between
transcription factors (TF) and target genes in S. cerevisiae. In addition to databases
describing regulatory network structures, there are comprehensive databases that specialize
in describing TF-binding sites, such as SCPD (Zhu and Zhang, 1999) for yeast and the
general TF-binding database TRANSFAC (Matys et al., 2003). Although these databases
contain valuable information for regulatory network reconstruction, they are not very
complete and for the most part lack information about the synergistic effects between TFs
acting on one gene. Nevertheless, these databases and primary information can be utilized

to reconstruct regulatory networks for well-characterized organisms.

The major advantage that regulatory network reconstruction has over other types of
network reconstructions, such as metabolic network reconstruction, is the availability of
high-throughput experimental data that is directly relevant to the network structure. For
metabolic processes the only widely available data source is the genome sequence and its
annotation — techniques for measuring relevant metabolic quantities such as metabolic
fluxes and metabolite levels are still not commonly used and have not been fully scaled to
the whole-genome level (Stitt e al., 2003). By contrast, the two primary data types useful
for the regulatory network reconstruction task — genome-wide mRNA expression and

location analysis data — are widely available (Herrgard et al., 2004).

Gene expression data can be readily generated for well-studied microbial organisms
using several standard technologies (Holloway et al., 2002). Advances in statistical data
analysis allow both significant changes in gene expression under different conditions to be
established (Quackenbush, 2002) and hypotheses about regulatory interactions or co-
regulated gene modules to be derived directly from the data (Segal et al., 2003). Genome-
wide location analysis (GWLA) is a method that allows protein-DNA interactions to be
monitored across the entire yeast genome. The method combines a modified chromatin
immunoprecipitation (ChIP) procedure, which has been previously used to study protein-
DNA interactions at a small number of specific DNA sites, with DNA microarray analysis
(Ren et al., 2000). GWLA, allowing the direct detection of genomic target sites for DNA-

binding proteins such as TFs, promises to lead to an even more significant improvement in



our ability to reconstruct regulatory network structures than gene expression profiling. So
far, GWLA has been most extensively applied in yeast, where it has been used to map the
target genes of 106 TFs under one set of conditions (Lee et al., 2002). In principle the
technique can be readily extended to other organisms (Laub et al., 2002). GWLA has also
been used to study the stimulus-dependent binding of TFs (Zeitlinger et al., 2003), opening
up the possibility of using this technique to map combinatorial interactions between TFs on

a genome-wide scale.

The combination of expression profiling with GWLA as well as promoter sequence
motif analysis has allowed the generation of hypothetical regulatory network structures
using a variety of data integration methods (Lee et al., 2002; Segal et al., 2003; Hartemink
et al., 2002; Liu et al., 2002). Deriving full regulatory network structures solely based on
experimental data appears to be challenging, however, owing to the large quantities of
high-quality data that would be required for such a task. One alternative to this purely data-
driven approach would be to utilize well-curated regulatory network structures derived
from databases and primary literature as a starting point for expanding the network on the
basis of high-throughput data (Figure 2.1). For such an approach to succeed, one first
needs to evaluate how well current known regulatory network structures agree with high-
throughput datasets. This type of analysis has been performed for yeast and E.coli
(Herrgard et al., 2003; Gutierrez-Rios et al., 2003; Yu et al., 2003). These studies have
allowed the definition of network subcomponents and network structural motif types that
are well supported by gene expression data and thus are good targets for data driven model
expansion. In the future, such combinations of knowledge-driven and data-driven
regulatory network reconstruction strategies may allow the acceleration of network

reconstruction in well-studied organisms (Herrgard et al., 2004).
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Figure 2.1. Knowledge and data based regulatory network reconstruction. Regulatory
networks can be reconstructed by collecting individual regulatory interactions from
relevant databases and the primary literature (knowledge). Alternatively, networks can be
derived directly from high-throughput experimental data and promoter sequence analysis

through various data-mining methods (Herrgard et al., 2004)

2.2.2. Module Networks: Identifying Regulatory Modules

The complex functions of a living cell are carried out through the concerted activity
of many genes and TFs. This activity is often coordinated by the organization of the
genome into regulatory modules, or sets of coregulated genes that share a common
function. Such is the case for most of the metabolic pathways as well as for members of
multiprotein complexes. Identifying this organization is crucial for understanding cellular
responses to internal and external signals. Genome-wide expression profiles provide
important information about these cellular processes. Yet, the regulatory machinery of the
cell is far from transparent in these data. Current approaches for analyzing gene expression
data allow the identification of groups of co-expressed genes. But the regulatory programs

of these groups can be suggested only indirectly (Segal et al., 2003).

The first approach in module networks had the aim of reconstructing transcription
modules (defined by a transcription factor and its target genes) and identifying conditions

under which a particular transcription module is activated/deactivated (Wang et al., 2002).



11

The approach integrates information from regulatory sequences, genome-wide mRNA
expression data and functional annotation. In this study, gene expression profiling
experiments were systematically analyzed in which the yeast cell was subjected to various
environmental or genetic perturbations. They were able to construct transcription modules
with high specificity and sensitivity for many transcription factors and predict the
activation of these modules under both anticipated and unexpected conditions. Correlating
the activation of a module to a specific perturbation predicts links in the cell’s regulatory

networks.

Same year, an alternative method was proposed for the global analysis of genome-
wide expression data, arguing that standard clustering methods can classify genes
successfully when applied to small data sets but have limited use in the analysis of large-
scale expression data (Ihmels et al. 2002). The approach assigns genes to context-
dependent and potentially overlapping transcription modules (which are defined as
combined groups of genes and conditions), thus overcoming the main limitations of
traditional clustering methods. The method is based on an algorithm that receives a gene
set that partially overlaps a transcription module and then provides the complete module as
output. The algorithm is referred as the signature algorithm. The method was used to
elucidate regulatory properties of cellular pathways and to characterize cis-regulatory
elements. By applying the algorithm systematically to all of the available expression data
on S. cerevisiae, a comprehensive set of overlapping transcriptional modules was
identified. The results provided functional predictions for numerous genes, identified

relations between modules and presented a global view on the transcriptional network.

One year later, a complementary method to the above mentioned method was
proposed (Bergmann et al., 2003). The main idea of the previous work was to integrate
prior biological information, such as the function or sequence of known genes, into the
analysis of the gene expression data. However, the new method, called iterative signature

algorithm, did not require any prior knowledge beyond the expression data.

In order to describe a genome-wide regulatory network in S. cerevisiae an algorithm
for discovering regulatory networks of gene modules, so-called GRAM (Genetic

Regulatory Modules) algorithm was developed (Bar-Joseph et al., 2003). This algorithm
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combines information from genome-wide location and expression data sets. A gene
module is defined as a set of co-expressed genes to which the same set of transcription
factors binds. Unlike many approaches that rely primarily on functional information from
expression data, the GRAM algorithm explicitly links genes to the factors that regulate
them by incorporating DNA binding data, which provide direct physical evidence of
regulatory interactions. The GRAM algorithm was used to describe a genome-wide
regulatory network in S. cerevisiae using binding information for 106 transcription factors

profiled in rich medium conditions using data from more than 500 expression experiments.

2.2.3. Network Motifs in Transcriptional Regulatory Networks

Network motifs are precise patterns of inter-connections between a small number of
TFs and target genes (Shen-Orr et al., 2002). Three of the most common motifs are single
input motif (SIM), multiple input motif (MIM) and feed-forward loop (FFL) (Figure 2.2).
The network motifs were first investigated in the transcriptional regulation network of E.
coli (Shen-Orr et al., 2002). In this study, network motifs were described as patterns of
interconnections that recured in many different parts of a network at frequencies much
higher than those found in randomized networks and in order to systematically detect
network motifs to one of the best-characterized regulation networks, that of transcriptional
interactions in E. coli, an algorithm was proposed. This study revealed that much of the
network was composed of repeated appearances of three highly significant motifs. Each
network motif had a specific function in determining gene expression, such as generating
temporal expression programs and governing the responses to fluctuating external signals.
On the other hand, the motif structure allowed an easily interpretable view of the entire
known transcriptional network of the organism. It was found that SIMs and MIMs were
implicated in conferring similar regulation over groups of genes, so they were ideal for
directing the large-scale gene activation. FFLs were found to be buffers that responded

only to persistent input signals (Shen-Orr et al., 2002).

The level of co-expression between the genes is very dependent on the type of
regulatory network motif. Genes targeted by individual TFs (SIM) are not strongly
correlated: just 1.3 per cent of target pairs are co-expressed although this is significantly

higher than expected. Correlation is stronger for genes targeted by multiple, common TFs:
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24.4 per cent of MIM target pairs and 5.0 per cent of FFL targets ehibit co-expression.
Expression is much more tightly regulated when multiple TFs are involved. Nddlp
network is an example for SIM type TF-target relationship. Ndd1p, a cell cycle regulator,
acts as the sole regulating TF for Mcm21p, a kinetochore protein required for normal cell
growth and STB5, encoding another transcription factor. Forkhead network is an example
for MIM type TF-target relationship. Ndd1p is recruited to promoters by Fkh1p and Fkh2p,
two forkhead transcription activators. Collectively, these three TFs regulate Dbf2p, a
kinase needed for cell cycle regulation, and HDRI1 (function unknown). Finally,
Mbp1p/Swidp network can be given as an example for FFL type TF-target relationship. In
a feed-forward-loop, Mbplp (a cell cycle regulator controlling DNA replication and repair)
is the leading TF, Swidp (a cell cycle regulator controlling cell wall and membrane
synthesis) is the intermediate TF, and SP727 (a TF involved in histone expression) and

YMLI102C-A (function unknown) are the target genes (Yu et al., 2003).

Recently, it has been reported that the relative occurrence of motifs varied
considerably between different conditions (Luscombe et al., 2004). SIMs were found to be
favoured in subnetworks active during diauxic shift, DNA damage and stress response,
where they comprised >55 per cent of regulatory interactions in motifs. But the frequency
droped to 35 per cent during cell cycle and sporulation. Instead, these states favoured FFLs
(44 per cent). It is notable that MIMs did not significantly change their usage (Luscombe et
al., 2004).
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Figure 2.2. Most common motifs in regulatory networks (Luscombe et al., 2004)

2.2.4. From Network Reconstructions to Mathematical Models

The first class of modeling approaches are primarily intended to describe the
structural features of regulatory networks and do not accurately predict gene expression
levels in response to changes in regulatory activity. Directed graphs with transcription
factors and target genes as nodes and regulatory interactions as edges are commonly used
to visualize regulatory netwoks and to analyze their structural properties (Shen-Orr et al.,
2002; Guelzim et al., 2002). Most methods for reconstructing regulatory networks based
on gene expression and/or GWLA data describe the regulatory network as a directed graph
(Lee et al., 2002). These graphs cannot represent important interactions between
transcription factors and they do not allow simulation of model behavior or effective
integration of regulatory networks with models of other cellular processes. However, the
graph-based models of regulatory networks can also be used as a basis for building more
quantitative models through measuring the regulatory strengths for different regulatory

interactions experimentally (Ronen et al., 2002).

The second class of modeling approaches focuses on the prediction of gene
expression levels at the expense of the scale of regulatory network subcomponents that can

be modeled. Linear differential equations or linear models relating transcription factor and
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target expression levels are the simplest of these approaches. This type of linear model was
utilized in a recent study of the SOS response system in E. coli, in which experimental
gene expression data was used to directly reconstruct a model for a small regulatory
network without any prior knowledge of the network structure (Gardner et al., 2003).
Systematic transcriptional perturbations were introduced to construct a first-order model of
regulatory interactions in a nine-gene subnetwork of the SOS pathway. Quantitative real-
time polymerase chain reaction (JQPCR) was used to measure the change in expression of
perturbed cells relative to unperturbed cells. The constructed model was successful in
predictions. This approach provided a framework for elucidating the functional properties

of genetic networks and identifying molecular targets of pharmacological compounds.

As the role of transcriptional regulation is to modulate other cellular processes,
integrating the reconstructed regulatory networks with models of these other processes is
central to understanding regulatory network function in the context of all organism. The
major advantage with such integrated models is that even when the modeling of the
regulatory network is done at the qualitative level, the integrated regulatory/metabolic
model can be used to quantitatively predict phenotypes such as growth rates. Furthermore,
comparisons between model predictions and experimental data can be used to improve the
model systematically. These types of integrated model are a powerful way to bring
together multiple types of high-throughput data (e.g. gene expression and phenotyping)
and to interpret these datasets, as discrepancies between model predictions and
experimental data can point to specific inconsistencies in the current reconstructed

regulatory network model (Herrgard et al., 2004).



16

3. METHODS

The approach used to identify key transcription factors is a modified version of the
approach recently developed for identification of reporter metabolites in yeast (Patil and
Nielsen, 2005). The reporter metabolites were identified by integrating the metabolic
network with gene-expression data. In this sudy, the approach was modified so that the
transcriptional regulatory network constructed was integrated with transcription data and
perturbation-responsive key transcription factors were identified. The modified approach

for identification of key TFs consists of the following steps.

3.1. Construction of the Transcriptional Regulatory Network

A genome-scale transcriptional regulatory network in S. cerevisiae was constructed
by assembling known regulatory interactions from several data sources (Lee et al., 2002;
Wingender et al., 2001; Matys et al., 2003; Zhu and Zhang, 1999; YEASTRACT, 2005).
The regulatory interactions are between TFs and non-TF targets or two TFs. Therefore, the
interactions were represented as two columns, one representing the TFs and the other one
representing the genes. Then, the complete transcriptional regulatory network was
represented as a bipartite undirected graph. In this graph, both TFs and genes are
represented as nodes and interactions between them as edges. In other words, a TF node is
connected to all of the genes that it regulates, and a gene node is connected to all of the

TFs that are known to regulate this gene.

The topological measures of the network, such as in-degree (<ki,>), out-degree
(<kou>), in-degree exponential exponent (f§), out-degree power-law exponent (y), path
length (1) and diameter (d), were calculated. A computer code was written in FORTRAN in
order to perform the calculations of the in-degree (<k;,>), the out-degree (<k,,>), the path
length (1) and the diameter (d) (Appendix A). In-degree (<k;,>) is the number of incoming
edges per node (i.e. the number of TFs regulating a target) and out-degree (<ky,u:>)
represents the number of outgoing edges per node (i.e. the number of target genes for each

TF). The most suitable distributions for the in- and out-degrees were found by plotting Py
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values versus <k;,> and (<k,,>) values, where Py is the probability that a randomly picked
node has k interactions and is calculated by dividing the number of nodes which have k
connections by the total number of nodes in the network. The best fitting distribution was
found by fitting the plots of P to both exponential and power-law distributions. The fitted
distribution which best represents the actual distribution (according to R-squared values of
the plots) was chosen. The connectivity of the network was calculated using the following

formula,
k=— 3.1)
n

where [ is the number of edges and # is the number of nodes in the network.

The path length (I) is the shortest distance (in number of intermediate nodes)

between two nodes and the diameter (d) is the maximum path length in the network.
3.2. Mapping and Scoring of Transcription Data

Differential transcription data in triplicates were used, in which two different strains
or conditions are compared with three measurements for each strain or condition (Tai et
al., 2005). Two types of perturbations, namely genetic and environmental perturbations,
were analysed. In order to identify key TFs responsive to a genetic perturbation, the MIG1
gene deleted strain and both MIG1 and MIG2 genes deleted strain were compaired with the
wild-type strain (original parent strain). For identification of key TFs responsive to
environmental perturbations, anaerobic and aerobic conditions under four macronutrient
limitation regimes (carbon, nitrogen, phosphorous and sulfur) were compared. In addition,
the four macronutrient limitation regimes were pairwise compared for both aerobic and

anaerobic conditions.

Each gene node of the transcriptional regulatory network was scored based on the
probability that the differential expression is due to chance. Student’s 7 test was used to

obtain p values. (1— p,) is the probability that the differential gene expression is not due to
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chance. Then probabilities are converted to Z scores for each gene node (Z,,) by using the

inverse normal cumulative distribution (87").
Z,=0"1-p,) (3.2)
3.3. Method for Identification of Key Transcription Factors

For the identification of the key transcription factors, each TF node was scored based
on the normalized transcriptional response of its neighboring genes (i.e. Z scores of the
genes connected to the TF are added and the sum was multiplied by the inverse square root
of the number of neighbors that each TF has). A computer code was written in FORTRAN

in order to perform the calculations of Z scores (Appendix B).

1
Zy = —ksz. (3.3)

Z .. scores were then corrected for the background distribution. 10,000 sets of k genes

were randomly selected from the graph and new random Zzr scores were calculated for
each TF. Then, the mean (u;) of the resultant Z;r scores were substracted from the
previously calculated score and divided by their standard deviation (ox). A computer code
was written in FORTRAN in order to perform the calculations of the corrected Z scores

(Appendix C).

_ (ZTF _ﬂk)

corrected
O-k

(3.4)

Due to the correction, TFs which have a very large number of connections in the
network and could therefore be identified as key TFs by mistake, regardless of the
conditions, were eliminated. However, due to the large number of the connections that
these TFs make, it is possible that they may be the hubs in the network (i.e. they may
represent the most important points for the structure of the network) and hence their

removal may significantly affect the network topology. The top 10 highest scoring TFs
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before the correction are listed in Appendix D. After correcting the Z scores for
background distribution, top 10 highest scoring TFs are identified as key TFs having great
importance since most significant transcriptional changes occur around these TFs when a
perturbation is introduced. The Gene Ontology (GO) terms associated with each key TF
were found from the database YEASTRACT.
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4. RESULTS AND DISCUSSION

4.1. Transcriptional Regulatory Network

The constructed genome-scale transcriptional regulatory network in S. Cerevisiae
contained 9075 regulatory interactions between 180 TFs and 3514 targets. Interactions are
between TFs and non-TF targets or two TFs. The network was visualized using the
program Cytoscape 2.0 (Figure 4.1). Until now, relatively smaller transcriptional
regulatory networks (i.e. containing less number of TFs and/or interactions) have been

reported in the literature (Lee et al., 2002; Yu et al., 2003; Luscombe et al., 2004).

Figure 4.1. Constructed transcriptional regulatory network in S. Cerevisiae
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The network constructed here is highly connected having a connectivity (k) of 4.91.
The average of the in-degree (k;,) (the number of TFs regulating a target) and the average
of the out-degree (k,,) (the number of target genes for each TF) are both equal to 2.43.
Like many large-scale networks, it displays scale-free characteristics (the connectivity of
the network is distributed according to a power law p,=Ck”, where C is a constant and
y=1.63) (Figure 4.2). The arriving connectivity of the network has an exponential
distribution (pk=Ce'ﬁk where =0.40) (Figure 4.3) whereas the departing connectivity better
fits to a power law distribution (py=Ck” where y=0.64) (Figure 4.4). The exponential
behavior shows the molecular constraints on the number of TFs that can co-regulate at the
same promoter, whereas the power-law behavior indicates a hub-containing network
structure (Luscombe et al, 2004). In an earlier study on the structure of a much smaller
transcriptional regulatory network in yeast, f and y were found to be 0.45 and 1,
respectively, and it was argued that lower £ coefficients were predicted for organisms with
more sophisticated genetic regulatory machinery (Guelzim et al., 2002). In addition, in a
recent study on the dynamics of transcriptional regulatory networks, the exponent y and the
exponent £ of the genome-scale trancriptional regulatory network of S. cerevisiae were
found to be 0.6 and 0.8, respectively (Luscombe et al, 2004). Considering that a larger
network containing more TFs and interactions was analysed in the present study, it is
logical that both the exponent £ and y were found to be smaller than in the above studies,
and hence, the genetic regulatory machinery analysed in this study may be accepted as

more sophisticated.

The path length (1) and the diameter (d) of the network were found to be 4.25 and 13,
respectively. The diameter was found larger than the diameter of the most recently reported
transcriptional regulatory network in literature (Luscombe et al., 2004), showing once

more the largeness and complexity of the network constructed.
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Figure 4.4. Power-law behavior of the network departing connectivity

4.2. Key Transcription Factors

4.2.1. Key TFs Responsive to Oxygen Availability

Firstly, the key TFs responding to change in the oxygen availability under a specified
macronutrient limitation and the corresponding GO terms were identified (Tables 4.1 -
4.4). These TFs were the top 10 highest scoring TFs when shifting from anerobic condition
to aerobic condition. Hap2p, Hap3p and Hap4p and HapSp were counted as one
transcription factor because they form a complex and their scores are very close to each
other. Transcription data in triplicates for anaerobic and aerobic conditions for carbon,

nitrogen, phosphorous and sulfur limitations were used (Tai et al., 2005).

Three TFs, namely Hap2/3/4/5p, Upc2p and Yaplp, were identified as key TFs
between anaerobic and aerobic conditions under all four macronutrient limitations,
showing a consistent response to oxygen availability independent of the nutrient limitation
(Figure 4.5). This result is biologically meaningful since Hap2/3/4/5p complex is known to
be involved in the fermentation-respiration shift (Bourgarel, 1999), Upc2p is known to
regulate the majority of anaerobically induced genes in S. cerevisiae (Kwast, 2002), and
recent experimental studies indicated involvement of Yaplp in response to oxidative stress

(Rodrigues-Pousada, 2004).
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Figure 4.5. Venn diagram of oxygen-responsive TFs. Each of the four circles represents a
cluster of TFs that were identified as key TFs under carbon, nitrogen, phosphorous or

sulphur limitation regimes

Key transcription factors specific to one macronutrient limitation regime between
anaerobic and aerobic conditions (i.e. showing response to oxygen availability under that
specified nutrient limitation) also yielded meaningful information consistent with
literature. When passing from anaerobic condition to aerobic condition under carbon
limitation regime, Mig2p, Cat8p, Msn2p, Msn4p were among the key TFs identified (Table
4.1). These results are logical since Mig2p is involved in glucose metabolism, Cat8p in
gluconeogenesis (which is the biosynthesis of new glucose not from glycogen but from
other metabolites) and both Msn2p and Msn4p are involved in response to oxidative stres
(Table 4.1). The increased activity of Cat8p under the carbon limitation regime may

indicate the start of gluconeogenesis in the cell where carbon source is limited.

When passing from anaerobic condition to aerobic condition under nitrogen,
phosphorous and sulfur limitation regimes, Rox1p was identified as a key TF (Tables 4.2-
4.4). This result is consistent with the recently reported role of Rox1p in regulating the

majority of anaerobically induced genes in S. cerevisiae along with Upc2p (Kwast, 2002).
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When passing from anaerobic condition to aerobic condition under the sulfur
limitation regime, Hap1p was identified as a key TF. The GO term associated with this TF
is aerobic respiration (Table 4.4), and it also has a major role in the repair of oxidative
DNA damage (Barzilay et al., 1996), which explains the reason why Haplp was identified

as a key TF between anaerobic and aerobic conditions.

Table 4.1. Key TFs between anaerobic and aerobic conditions-carbon limitation

Z-score TF GO Terms: Biological Process

855 Cars e  gluconeogenesis
) atsp
e  positive regulation of transcription from Pol II promoter

e fatty acid metabolism
7,55 Oaflp e  peroxisome organization and biogenesis

®  positive regulation of transcription

e fatty acid metabolism
7,39 Pip2p ®  peroxisome organization and biogenesis

®  positive regulation of transcription

67 5 e  regulation of carbohydrate metabolism
7 Hap2p
® transcription

6.69 3 e regulation of carbohydrate metabolism
, Hap3p
® transcription

6.66 s e  regulation of carbohydrate metabolism
, Hap5p
® transcription

6.60 . e  regulation of carbohydrate metabolism
, Hap4p
e transcription

e replicative cell aging
6.50 A e  age-dependent response to oxidative stress during chronological cell aging
R Msndp
e regulation of transcription, DNA-dependent

®  response to stress

e replicative cell aging
s 64 Msn2 e  age-dependent response to oxidative stress during chronological cell aging
) snzp
e  regulation of transcription, DNA-dependent

L4 response to stress

s 49 Une2 e steroid metabolism
) pcsp
e sterol biosynthesis

e transcription
5,47 Yaplp
e response to oxidative stress

502 Mie2 e  glucose metabolism
’ 182p
e  regulation of transcription from Pol II promoter

e tRNA splicing
4,84 Stplp

e  positive regulation of transcription from Pol II promoter




Table 4.2. Key TFs between anaerobic and aerobic conditions-nitrogen limitation
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Z-score TF GO Terms: Biological Process
e steroid metabolism
12,39 Upc2p
e  sterol biosynthesis
e  regulation of carbohydrate metabolism
10,04 Hap2p
® transcription
e  regulation of carbohydrate metabolism
10,00 Hap5p
® transcription
e regulation of carbohydrate metabolism
9,89 Hap4p
e transcription
e regulation of carbohydrate metabolism
9,85 Hap3p
e transcription
6,08 Rox1p negative regulation of transcription from Pol II promoter
e transcription
5,55 Yaplp ®  response to oxidative stress
e response to drug
e tRNA splicing
4,99 Stplp
positive regulation of transcription from Pol II promoter
e fatty acid metabolism
4,91 Oaflp ®  peroxisome organization and biogenesis
e positive regulation of transcription
e fatty acid metabolism
4,75 Pip2p ®  peroxisome organization and biogenesis
e positive regulation of transcription
e  glucose metabolism
4,31 Mig2p
e  regulation of transcription from Pol II promoter
4,13 Sok2p e  pseudohyphal growth
3,90 Stp2p positive regulation of transcription from Pol II promoter




Table 4.3. Key TFs between anaerobic and aerobic conditions-phosphorous limitation
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Z-score TF GO Terms: Biological Process
e  regulation of carbohydrate metabolism
9,43 Hap2p
® transcription
e  regulation of carbohydrate metabolism
9,37 Hap3p
® transcription
e  regulation of carbohydrate metabolism
9,26 Hap4p
® transcription
e regulation of carbohydrate metabolism
9,25 Hap5p
e transcription
e  steroid metabolism
7,73 Upc2p
e  sterol biosynthesis
5,10 Rox1p e negative regulation of transcription from Pol II promoter
e gluconeogenesis
4,56 Cat8p
®  positive regulation of transcription from Pol II promoter
4,42 Met32p ° sulfur amino acid metabolism
4,35 Mot3p ® transcription
e phospholipid biosynthesis
3,98 Ino2p
e  positive regulation of transcription from Pol II promoter
® transcription
3,89 Yaplp e  response to oxidative stress
e response to drug
e  glucose metabolism
3,67 Mig2p
e  regulation of transcription from Pol II promoter
e glucose metabolism
3,56 Rgtlp

e regulation of glucose import
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Table 4.4. Key TFs between anaerobic and aerobic conditions-sulfur limitation

Z-score TF GO Terms: Biological Process
e steroid metabolism
10,04 Upc2p
e  sterol biosynthesis
e  regulation of carbohydrate metabolism
9,16 Hap5p
® transcription
e  regulation of carbohydrate metabolism
9,02 Hap2p
® transcription
e regulation of carbohydrate metabolism
8,81 Hap3p
e transcription
e regulation of carbohydrate metabolism
8,76 Hap4p
e transcription
® transcription
5,64 Yaplp e  response to oxidative stress
e response to drug
5,06 Rox1p e negative regulation of transcription from Pol II promoter
4,32 Mot3p e transcription
. hospholipid biosynthesis
4,05 Ino2p PROSPROTP Y
e  positive regulation of transcription from Pol II promoter
4,01 Rtg3p e transcription initiation from Pol II promoter
e  regulation of transcription from Pol II promoter
3,94 Pdr3p
e response to drug
®  aerobic respiration
3,88 Haplp
®  positive regulation of transcription from Pol II promoter
e  positive regulation of transcription from Pol II promoter
3,48 Cadlp
e  response to cadmium ion

4.2.2. Key TFs Responsive to Nutrient Limitation-Aerobic

Secondly, transcription data obtained in triplicates under aerobic conditions for
carbon, nitrogen, phosphorous and sulphur limitations (Tai et al., 2005) were
comparatively analysed. The transcription factors which were identified as key TFs when
passing from one nutrient limitation to another under aerobic conditions are listed in
Tables 4.5 - 4.10. Hap2p, Hap3p and Hap4p and HapSp were counted as one transcription

factor because they form a complex and their scores are very close to each other.

Only Mig2p was identified as the common key TF when passing from carbon

limitation regime to any of the other three nutrient limitation regimes under aerobic
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conditions (Figure 4.6a). This result is consistent with the known involvement of Mig2p in
glucose metabolism (Table 4.5), and Mig2p is required for repression of many glucose-

repressed genes (Lutfiyya et al., 1998).

Two TFs, namely GIn3p and Dal80p, were identified as the common key TFs when
comparing the nitrogen limitation regime against the three others (Figure 4.6b). This
prediction is supported by the fact that both GIn3p and Dal80p are involved in the
regulation of the nitrogen utilization process (Chan et al., 2001; Svetlov and Cooper,
1998), besides it is remarkable that these two TFs, involved in nitrogen utilization process,

were identified as key TFs only when comparing nitrogen limitation regime with others.

Stplp and Stp2p were suggested as the common key TFs between phosphorous
limitation regime and any of the three other limitation regimes (Figure 4.6c). These two
TFs do not have a known relation to the phosphorous metabolism; however, they are both
known to play a role in the positive regulation of transcription from Pol II promoter and

were identified expectedly as key in most of the comparative sets.

When passing from the sulfur limitation regime to any of the other three limitation
regimes, Gendp, Met32p, Pdr3p and Yaplp were identified as the common four TFs, or in
other words, were suggested as responsive TFs to sulfur limitation regime (Figure 4.6d).
Indeed, Met32p is involved in yeast sulfur amino acid metabolism (Blaiseau et al, 1997)
and Gendp was recently identified as a nutrient deprivation responsive TF (Harbison et al.,
2004). Yaplp is involved in the oxidative stress tolerance, and Pdr3p, being involved in
positive regulation of transcription from Pol II promoter, was identified as key TF in most

of the pairwise comparisons.

MATalpha2, which was recently suggested to take role in respiraton and carbon
regulation (Segal et al., 2003), was identified as the key TF between carbon limitation and
nitrogen limitation regimes under aerobic conditions. MATalpha2 makes only two
connections in the network (i.e. it has two target genes). The fact that it was identified as a
key TF shows the ability of the approach proposed in this work in capturing key TFs which

make very few connections in the regulatory network. On the other hand, TFs with very
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large number of connections in the network, such as Rap1p, which makes 483 connections,

were not identified as key TFs since they were not active within the conditions analysed.

YOYE

(a) (b) (c) (d)

Figure 4.6. Venn diagrams of nutrient-responsive TFs (aerobic). Pairwise comparisons of
each macronutrient (carbon, nitrogen, phosphorous and sulfur) limitation regime against

the three others under aerobic conditions. Numbers indicate the number of key TFs.
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Table 4.5. Key TFs between carbon and nitrogen limitations-aerobic

Z-score TF GO Terms: Biological Process
e nitrogen compound metabolism
7,04 GlIn3p e  regulation of nitrogen utilization
e  positive regulation of transcription from Pol II promoter
® transcription
6,58 Dal80p
e  regulation of nitrogen utilization
e fatty acid metabolism
5,67 Pip2p ®  peroxisome organization and biogenesis
e positive regulation of transcription
e fatty acid metabolism
5,15 Oaflp e  peroxisome organization and biogenesis
e positive regulation of transcription
e  glucose metabolism
4,94 Mig2p
e  regulation of transcription from Pol II promoter
e  gluconeogenesis
4,52 Cat8p
e  positive regulation of transcription from Pol II promoter
e transcription initiation from Pol II promoter
4,34 Gatlp
e  regulation of nitrogen utilization
e DNA replication initiation
4,19 Mcmlp
e  regulation of transcription from Pol II promoter
4,02 Stp2p e  positive regulation of transcription from Pol II promoter
305 MAT ¢  Homeobox-domain containing protein which, in haploid cells, acts with Mcm1p
' alpha2 to repress a-specific genes
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Table 4.6. Key TFs between carbon and phosphorous limitations-aerobic

Z-score

TF

GO Terms: Biological Process

7,51

Oaflp

e fatty acid metabolism
®  peroxisome organization and biogenesis

e positive regulation of transcription

7,00

Pip2p

e fatty acid metabolism
e  peroxisome organization and biogenesis

e positive regulation of transcription

6,89

Msndp

e replicative cell aging
age-dependent response to oxidative stress during chronological cell aging
e  regulation of transcription, DNA-dependent

L4 response to stress

6,13

Stp2p

e  positive regulation of transcription from Pol II promoter

6,02

Pdr3p

e  regulation of transcription from Pol II promoter

e response to drug

5,86

Stplp

e tRNA splicing

e  positive regulation of transcription from Pol II promoter

5,55

Mig2p

e  glucose metabolism

e regulation of transcription from Pol II promoter

5,23

Msn2p

e replicative cell aging
age-dependent response to oxidative stress during chronological cell aging
e  regulation of transcription, DNA-dependent

L4 response to stress

5,00

Ino2p

e phospholipid biosynthesis

®  positive regulation of transcription from Pol II promoter

4,96

Rtglp

e transcription initiation from Pol II promoter

e  protein localization




Table 4.7. Key TFs between carbon and sulfur limitations-aerobic
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Z-score TF GO Terms: Biological Process
e  regulation of transcription from Pol II promoter
5,67 Gendp
®  amino acid biosynthesis
e  gluconeogenesis
5,63 Cat8p
®  positive regulation of transcription from Pol II promoter
e transcription
5,24 Yaplp ®  response to oxidative stress
e response to drug
e  regulation of transcription from Pol II promoter
5,18 Pdr3p
e response to drug
5,03 Met32p ° sulfur amino acid metabolism
e  sulfur amino acid metabolism
5,00 Metdp
e  positive regulation of transcription from Pol II promoter
e  sulfur amino acid biosynthesis
5,00 Met28p e  regulation of transcription from Pol II promoter
e regulation of sulfur metabolism
e replicative cell aging
e  age-dependent response to oxidative stress during chronological cell aging
4,96 Msndp
e  regulation of transcription, DNA-dependent
®  response to stress
e DNA replication and chromosome cycle
4,79 Cbflp
*  methionine biosynthesis
e  glucose metabolism
4,78 Mig2p
e regulation of transcription from Pol II promoter




Table 4.8. Key TFs between nitrogen and phosphorous limitations-aerobic
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Z-score TF GO Terms: Biological Process
e nitrogen compound metabolism
7,70 Gln3p e  regulation of nitrogen utilization
e  positive regulation of transcription from Pol II promoter
® transcription
7,59 Dal80p
e  regulation of nitrogen utilization
e tRNA splicing
6,56 Stplp
®  positive regulation of transcription from Pol II promoter
5,52 Stp2p e  positive regulation of transcription from Pol II promoter
e  conjugation with cellular fusion
® invasive growth (sensu Saccharomyces)
4,98 Stel2p
e  pseudohyphal growth
®  positive regulation of transcription from Pol II promoter by pheromones
®  aerobic respiration
4,78 Haplp
®  positive regulation of transcription from Pol II promoter
e regulation of transcription from Pol II promoter
4,44 Gendp
®  amino acid biosynthesis
e transcription initiation from Pol II promoter
4,22 Gatlp
e  regulation of nitrogen utilization
4,05 Rtg3p e transcription initiation from Pol II promoter
e  phosphate metabolism
4,01 Phodp

e  cellular response to phosphate starvation
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Table 4.9. Key TFs between nitrogen and sulfur limitations-aerobic

Z-score TF GO Terms: Biological Process
e nitrogen compound metabolism
7,56 GlIn3p e  regulation of nitrogen utilization
e  positive regulation of transcription from Pol II promoter
® transcription
7,12 Yaplp e  response to oxidative stress
e response to drug
e  regulation of transcription from Pol II promoter
690 pdrip e response to drug
e phospholipid biosynthesis
082 fno2p e  positive regulation of transcription from Pol II promoter
e  regulation of transcription from Pol II promoter
0.7 Oendp ®  amino acid biosynthesis
e transcription
o4 DatsOp e regulation of nitrogen utilization
e phospholipid biosynthesis
620 tnotp ®  positive regulation of transcription from Pol II promoter
e  regulation of transcription from Pol II promoter
600 Datslp e  nitrogen utilization
5,79 Met32p ° sulfur amino acid metabolism
e tRNA splicing
09 Swip ®  positive regulation of transcription from Pol II promoter
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Table 4.10. Key TFs between phosphorous and sulfur limitations-aerobic

Z-score

TF

GO Terms: Biological Process

7,70

Msndp

e replicative cell aging
e  age-dependent response to oxidative stress during chronological cell aging
e  regulation of transcription, DNA-dependent

L4 response to stress

6,46

Met32p

e sulfur amino acid metabolism

6,33

Pdr3p

e  regulation of transcription from Pol II promoter

e response to drug

6,11

Stplp

e tRNA splicing

®  positive regulation of transcription from Pol II promoter

5,97

Yaplp

e transcription
®  response to oxidative stress

e response to drug

5,75

Gendp

e  regulation of transcription from Pol II promoter

®  amino acid biosynthesis

5,57

Met28p

e  sulfur amino acid biosynthesis
e  regulation of transcription from Pol II promoter

e regulation of sulfur metabolism

5,57

Metdp

e  sulfur amino acid metabolism

®  positive regulation of transcription from Pol II promoter

5,39

Stp2p

e  positive regulation of transcription from Pol II promoter

4,71

Msn2p

e replicative cell aging
e  age-dependent response to oxidative stress during chronological cell aging
e regulation of transcription, DNA-dependent

®  response to stress

4.2.3. Key TFs Responsive to Nutrient Limitation-Anaerobic

The transcription data obtained in triplicates for the four macronutrient limitation

regimes, namely carbon, nitrogen, phosphorous and sulfur limitation regimes (Tai et al.,

2005), were also comparatively analysed under anaerobic conditions. The TFs which were

identified as key TFs when passing from one nutrient limitation to another under anaerobic

conditions are listed in Tables 4.11 - 4.16. Hap2p, Hap3p and Hap4p and Hap5p were

counted as one TF because they form a complex and their scores are very close to each

other.
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The TFs identified as common key TFs when comparing the carbon limitation
regime and any of the other three limitation regimes were Hap2/3/4/5p and Rtg3p (Figure
4.7a). Hap complex is known to be involved in carbohydrate metabolism however,
interestingly, it was not identified as key TF complex when comparing the nutrient
limitation regimes under aerobic conditions. Rtg3p was, on the other hand, recently

identified as a nutrient deprivation responsive TF (Harbison et al., 2004).

The three common key TFs between the nitrogen limitation regime and the three
others were Dal80p, Dal81p, GIn3p and Stpl (Figure 4.7b). This result is consistent with
the fact that Dal80p, Dal81p and GIn3p are all involved in the regulation of the nitrogen
utilization process (Svetlov and Cooper, 1998; Bricmont et al., 1991; Ogawa and Oshima,
1990). Besides, it is remarkable that these TFs involved in the regulation of the nitrogen
utilization process were identified as key TFs only when comparing nitrogen limitation
regime with others. As for Stplp, as mentioned above, it is active in most of the pairwise

comparisons being involved in positive regulation of transcription from Pol II promoter.

Stplp and Stp2p were identified as common key TFs between phosporous limitation
regime and the others, just as under aerobic conditions (Figure 4.7c¢). Gendp was also
identified as key TF when passing from sulfur limitation regime to any other limitation

regime (Figure 4.7d), as under aerobic conditions.

It is notable that Metdp, Met31p and Met32p, the three TFs involved in sulfur amino
acid metabolism, were identified as key TFs only when passing from sulfur limitation
regime to nitrogen and phosphorous limitation regimes (Tables 4.15 and 4.16). Moreover,
Pho4p, a major TF in phosphate metabolism, was identified only between phosphorous
limitation and sulfur limitation regimes (Table 4.16). These results show the ability of the
present method to correctly identify the key TFs specific to conditions compared in this

study.
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AN K Y A

Figure 4.7. Venn diagrams of nutrient responsive TFs (anaerobic). Pairwise comparisons of
each macronutrient (carbon, nitrogen, phosphorous and sulfur) limitation regime against

the three others under anaerobic conditions. Numbers indicate the number of key TFs
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Table 4.11. Key TFs between carbon and nitrogen limitations-anaerobic
Z-score TF GO Terms: Biological Process
e transcription
7,76 Dal80p
e  regulation of nitrogen utilization
e nitrogen compound metabolism
6,43 GlIn3p e regulation of nitrogen utilization
e  positive regulation of transcription from Pol II promoter
6,19 Rtg3p e transcription initiation from Pol II promoter
e  regulation of transcription from Pol II promoter
4,72 Pdr3p
e response to drug
e transcription initiation from Pol II promoter
4,70 Gatlp
e  regulation of nitrogen utilization
e transcription initiation from Pol II promoter
4,69 Rtglp
e  protein localization
e tRNA splicing
4,11 Stplp
®  positive regulation of transcription from Pol II promoter
e negative regulation of transcription from Pol II promoter
4,08 Gzf3p ® nitrogen compound metabolism
e  regulation of nitrogen utilization
e  regulation of transcription from Pol II promoter
4,01 Dal81p
e nitrogen utilization
e regulation of carbohydrate metabolism
3,87 Hap5p
e transcription
3,84 Haalp e transcription initiation from Pol II promoter
e regulation of carbohydrate metabolism
3,80 Hap2p
e transcription
e regulation of carbohydrate metabolism
3,79 Hapdp
e transcription
e regulation of carbohydrate metabolism
3,79 Hap3p
e transcription




Table 4.12. Key TFs between carbon and phosphorous limitations-anaerobic
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Z-score TF GO Terms: Biological Process
e  regulation of carbohydrate metabolism
5,37 Hap2p
® transcription
e  regulation of carbohydrate metabolism
5,30 Hap5p
® transcription
e  regulation of carbohydrate metabolism
5,28 Hap4p
® transcription
e regulation of carbohydrate metabolism
5,18 Hap3p
e transcription
4,53 Stp2p ®  positive regulation of transcription from Pol II promoter
e tRNA splicing
4,46 Stplp
®  positive regulation of transcription from Pol II promoter
4,37 Haalp e transcription initiation from Pol II promoter
® transcription
4,23 Yaplp e  response to oxidative stress
e response to drug
e  regulation of transcription from Pol II promoter
4,09 Pdr3p
e response to drug
e replicative cell aging
age-dependent response to oxidative stress during chronological cell aging
3,83 Msn2p
e  regulation of transcription, DNA-dependent
®  response to stress
e pseudohyphal growth
3,77 Teclp
®  positive regulation of transcription from Pol II promoter
e  regulation of transcription from Pol II promoter
3,72 Cin5p ®  response to salt stress
e response to drug
3,64 Rtg3p e transcription initiation from Pol II promoter
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Table 4.13. Key TFs between carbon and sulfur limitations-anaerobic

Z-score TF GO Terms: Biological Process
e  regulation of carbohydrate metabolism
5,34 Hap2p
® transcription
e  regulation of carbohydrate metabolism
5,32 Hap4p
® transcription
e  regulation of carbohydrate metabolism
5,30 Hap5p
® transcription
e regulation of carbohydrate metabolism
5,26 Hap3p
e transcription
e  regulation of transcription from Pol II promoter
4,52 Gendp
e amino acid biosynthesis
4,06 Med8p e  Member of RNA Polymerase II transcriptional regulation mediator
e transcription initiation from Pol II promoter
3,54 Rtglp
e  protein localization
e  glucose metabolism
3,42 Mig2p
e regulation of transcription from Pol II promoter
3,40 Rtg3p e transcription initiation from Pol II promoter
3,18 Nrg2p ® invasive growth (sensu Saccharomyces)
. hospholipid biosynthesis
3,00 Ino2p PROSPROTP Y
e  positive regulation of transcription from Pol II promoter
®  binds to the upstream sequences of a number of nuclear genes coding for
2,90 GFII mitochondrial proteins and to genetic elements important for cell division in
yeast
e regulation of transcription from Pol II promoter
2,86 Leu3p
e  leucine biosynthesis




Table 4.14. Key TFs between nitrogen and phosphorous limitations-anaerobic
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Z-score TF GO Terms: Biological Process
e transcription
526 DatsOp e  regulation of nitrogen utilization
e nitrogen compound metabolism

7,57 Gln3p e regulation of nitrogen utilization

e  positive regulation of transcription from Pol II promoter
6,22 Stp2p ®  positive regulation of transcription from Pol II promoter

e tRNA splicing
018 Swip e  positive regulation of transcription from Pol II promoter
e transcription initiation from Pol II promoter
601 Gatlp e  regulation of nitrogen utilization
e  regulation of transcription from Pol II promoter
92 Oendp e amino acid biosynthesis
e  regulation of transcription from Pol II promoter
10 Datslp e  nitrogen utilization
e replicative cell aging
e age-dependent response to oxidative stress during chronological cell aging
w7 Mendp e  regulation of transcription, DNA-dependent
®  response to stress
e transcription
4,42 Skn7p ° response to osmotic stress
®  response to oxidative stress

4,37 Met32p ° sulfur amino acid metabolism
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Table 4.15. Key TFs between nitrogen and sulfur limitations-anaerobic
Z-score TF GO Terms: Biological Process
e  sulfur amino acid biosynthesis
7,72 Met28p e  regulation of transcription from Pol II promoter
e regulation of sulfur metabolism
® transcription
7,71 Dal80p
e  regulation of nitrogen utilization
7,70 Met32p e sulfur amino acid metabolism
e  sulfur amino acid metabolism
7,69 Metdp
e  positive regulation of transcription from Pol II promoter
e  regulation of transcription from Pol II promoter
7,13 Gendp
e amino acid biosynthesis
e  sulfur amino acid metabolism
6,75 Met31p
e regulation of transcription
®  nitrogen compound metabolism
6,18 GIn3p e regulation of nitrogen utilization
e  positive regulation of transcription from Pol II promoter
e tRNA splicing
5,80 Stplp
e  positive regulation of transcription from Pol II promoter
. hospholipid biosynthesis
5,53 Ino2p PROSPROTP Y
e  positive regulation of transcription from Pol II promoter
e regulation of transcription from Pol II promoter
5,40 Dal81p
e nitrogen utilization
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Table 4.16. Key TFs between phosphorous and sulfur limitations-anaerobic

Z-score TF GO Terms: Biological Process

e  sulfur amino acid biosynthesis
8,10 Met28p e  regulation of transcription from Pol II promoter

e regulation of sulfur metabolism

e  sulfur amino acid metabolism
8,05 Metdp

e  positive regulation of transcription from Pol II promoter

7,94 Met32p e gsulfur amino acid metabolism

e  sulfur amino acid metabolism
6,86 Met31p

e regulation of transcription
e  regulation of transcription from Pol II promoter
6,09 Gcendp
e amino acid biosynthesis
5,76 Stp2p ®  positive regulation of transcription from Pol II promoter
e tRNA splicing
5,42 Stplp
®  positive regulation of transcription from Pol II promoter
e phosphate metabolism
5,30 Phodp
e  cellular response to phosphate starvation
® transcription
4,35 Yaplp e  response to oxidative stress
e response to drug
e replicative cell aging
e  age-dependent response to oxidative stress during chronological cell aging
4,31 Msn2p
e  regulation of transcription, DNA-dependent
e  response to stress

4.2.4. Key TFs Responsive to Deletion of the Genes MIGI and MIG2

The algorithm was further implemented for analysis of transcription data from a
Amigl mutant, Amiglmig2 double mutant and a wild-type strain (Klein et al., 1999).
Miglp and Mig2p are both glucose repressors of many genes, and despite their functional
redundancy, several significant differences between Miglp and Mig2p have been reported
in the literature (Lutfiyya et al., 1998). In the first part of this study, a MIGI gene deleted
strain and a wild-type strain were compared in order to determine the TFs responsive to the
deletion of the MIG1 gene and consequently responsive to the abscence of the TF Miglp.
Secondly, both MIGI and MIG2 genes deleted strain and the wild-type strain were
compared so that TFs responsive to the deletion of both of these genes could be identified.
In addition, by comparing the two sets of results obtained, it was possible to determine the

TFs which were responsive to the deletion of MIG2 but not of MIGI. When the Amigl
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mutant strain and the wild-type strain were compared, Mig2p was identified as the top key
TF (Table 4.17). This is a meaningful result since it has been suggested that Mig2p may act
in a redundant fashion with Miglp (SGD, 2005). Therefore, it makes sense that Mig2p
becomes very active and takes charge in the abscence of Miglp. However Hap2/3/4/5p
complex was not placed among the top 10 highest scoring TFs and was therefore not
identified as key TF in this data set (Table 4.17). This result was expected because it has
been reported that a mig/ mutation did not affect the regulation of HAP4 even though a
Miglp binding site was present in the HAP4 promoter (Gancedo, 1998). When AmiglImig2
double mutant strain and the wild-type strain were analyzed, this time Hap2/3/4/5p
complex emerged as the top key TF (Table 4.18). This result, along with the previous one,
suggests that MIG2 but not MIG1 has an effect on Hap2/3/4/5p activity. Indeed, it has been
suggested that perhaps Mig2p could be involved in the mechanism which regulates HAP4
(Gancedo, 1998). Our results strengthen this hypothesis. Additionally, it has been reported
that Amiglmig2 double mutant exhibited a significantly higher respiratory capacity than
the wild type (Klein et al., 1999). The cause behind this phenomenon may be, as found

here, the increased activity of Hap2/3/4/5p, global regulator of respiratory gene expression.

Topological measures of MIGI and MIGIMIG2 deleted networks indicated that
removal of these genes from the transcriptional regulatory network did not affect the
network topology significantly (Table 4.20). The reason for this result is that both MIGI
and MIG2 make relatively small number of connections in the network; hence, they are not
hubs in the network and do not affect the network topology significantly. In fact, their
removal resulted in small decreases in the in-degree (<k;,>) and the out-degree (<k,u:>)
values (Table 4.20). The exponential and power-law behaviors were maintained in the
deletion networks for the arriving and the departing connectivity distributions, respectively
(Figures 4.8 — 4.11). The exponent y slightly decreased in the MIGIMIG?2 deleted network
while the exponent f remained the same in the deletion networks as in the original network

(Table 4.20).

The path length (I) increased slightly and gradually as MIGI and MIGIMIG2 genes
were removed from the network whereas the diameter (d) of the original network did not

change upon removal of MIG1 and MIGIMIG?2 genes from the network (Table 4.20).



Table 4.17. Key TFs responsive to the deletion of MIG1 gene
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Z-score TF GO Terms: Biological Process
) e  glucose metabolism
i Migzp e  regulation of transcription from Pol II promoter
®  arginine metabolism
7 ArgSlp e negative regulation of calcium ion-dependent exocytosis
e  carbohydrate metabolism
b2 Malisp e  regulation of transcription, DNA-dependent
e tRNA splicing
180 Selp e  positive regulation of transcription from Pol II promoter
e  regulation of transcription from Pol II promoter
b Ve e  nitrogen utilization
1,66 BUF e activator or repressor involved in replication
e  galactose metabolism
12 Galtp e  regulation of transcription, DNA-dependent
e negative regulation of transcription from Pol II promoter
1,48 Gzf3p e nitrogen compound metabolism
e  regulation of nitrogen utilization
1.48 GalS0p e  Transcriptional regulator involved in the repression of GAL genes in the
absence of galactose
1,44 Smplp e  Positive regulation of transcription from Pol II promoter




Table 4.18. Key TFs responsive to the deletion of both MIG1 and MIG2 genes
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Z-score TF GO Terms: Biological Process
e  regulation of carbohydrate metabolism
7,91 Hap4p
e transcription
e regulation of carbohydrate metabolism
7,80 Hap5p
® transcription
e regulation of carbohydrate metabolism
7,72 Hap2p
e transcription
e regulation of carbohydrate metabolism
7,66 Hap3p
e transcription
5,35 Med8p e  Member of RNA Polymerase II transcriptional regulation mediator
e  gluconeogenesis
5,02 Cat8p
e  positive regulation of transcription from Pol II promoter
. hospholipid biosynthesis
4,46 Ino2p PROSPROTP Y
e  positive regulation of transcription from Pol II promoter
. hospholipid biosynthesis
4,01 Inodp PROSPROTP Y
e  positive regulation of transcription from Pol II promoter
3,90 Phdlp e pseudohyphal growth
e  regulation of transcription, DNA-dependent
3,89 Pprlp
e uracil biosynthesis
3,78 Nrg2p e invasive growth (sensu Saccharomyces)
e replicative cell aging
e age-dependent response to oxidative stress during chronological cell aging
3,21 Msndp
e  regulation of transcription, DNA-dependent
®  response to stress
e fatty acid metabolism
3,20 Oaflp e  peroxisome organization and biogenesis

®  positive regulation of transcription
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Figure 4.11. Power-law behavior of AMIGIMIG?2 network departing connectivity
4.3. Identification of Perturbation-Responsive Subnetworks

Perturbation-responsive subnetwoks were identified by interconnecting the key TFs
and their differentially expressed target genes responsive to the same perturbations. The
genes whose fold changes (FC) (i.e. the ratio of their expression levels) were greater than
| 2 | were accepted as differentially expressed. The algorithm here reported is used for the
identification of key TFs, and the differentially expressed genes regulated by key TFs were

selected from gene expression data provided by Tai et al., 2005.
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The oxygen responsive subnetwork under carbon limitation regime was constructed
as an illustration (Figure 4.12). The subnetwork consists of 10 TFs (key TFs) and 87 target
genes (Table 4.19) activated when passing from anaerobic to aerobic conditions under
carbon limitation. As expected, the largest portion of the genes (16 per cent) in the
subnetwork belongs to the MIPS (Munich Information Center for Protein Sequences)
functional category ‘respiration’ (Figure 4.13). The second largest categories are
‘transported compounds’ (14 per cent) and ‘unknown proteins’ (14 per cent) (Figure 4.3).
It is known that in oxygen-deprived environments, yeast uses compounds such as sulfate,
carbonate or nitrate in place of oxygen (Yesmag, 2004). Therefore, it is quite logical that
when passing from anaerobic to aerobic conditions the expression levels of the genes
related to transported compounds change. Of great interest are genes that have unknown
functions: a large portion of the genes in the subnetwork were classified as ‘unknown
proteins’ by MIPS (Figure 4.13) and they are displayed in bold in Table 4.19. The
classification of these genes in specified subnetworks together with TFs with known
functions can help the prediction of their functions. The fourth largest portion of the genes
belongs to the category ‘electron transport and membrane-associated energy’, which is
clearly related to the respiration (Figure 4.13). Stress response (9 per cent), lipid
metabolism (9 per cent) and carbohydrate metabolism (8 per cent) are among the top 10
important categories that the genes in the oxygen responsive subnetwork belong to (Figure
4.3). This result is totally consistent with a recent study which revealed that a large fraction
of the anaerobically induced genes were involved in cell stress (approximately 1/3),
carbohydrate metabolism (approximately 1/10), and lipid metabolism (approximately 1/12)
(Kwast et al., 2002).

The topological measures of the subnetwork revealed that the in-degree exponential
exponent (f§) doubled and the out-degree power-law exponent (y) halved between the
original network and the subnetwork. The doubled exponent is indicative of a simpler TF
combination usage in the subnetwork and the halved exponent means that the subnetwork
contains fewer TF hubs (Luscombe et al, 2004) than the original network. The exponential
and the power-law behaviors were maintained in the subnetwork for the distributions of the
arriving and the departing connectivities, respectively (Figures 4.14 and 4.15). Notably, the

in-degree and out-degree values halved between the original network and the subnetwork,
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since the number of TFs and genes in the subnetwork is smaller compared to the original

network (Table 4.20).

Table 4.19. Genes included in the oxygen-responsive subnetwok

Data set Genes in the subnetwork. Bold names represent unknown genes.

AAC3, ADH5, AGXI, ANTI, AREI, ATF2, ATP20, ATP7, BNA2, CBP4, CORI, COX12,
COX4, COX5A, COX6, COX7, CRCI, CYB2, CYCI, CYTI, DANI, DAN2, DAN3, DAN4,
EMI2, FET4, FMP13, GRE2, GSY1, GUT2, HEM13, HES1, IZH2, JID1, KGD2, LSP1,
MBAI, MCH4, MCRI1, MDG1, NDI1, OSH7, PAU1, PAU4, PAU5, PAU6, PDRI11, PHM?7,
ANA-C-AER-C PUT4, QCR2, RIM4, RIP1, ROX1, SDH1, SOD2, SOL4, SRO77, SUTI, TIR1, TIR2, TIR3,
TIR4, UPC2, YAL068C, YBR230C, YCR061W, YDL241W, YDR542W, YGL196W,
YGL261C, YGRI3IW, YGR294W, YHL046C, YIL176C, YJL218W, YLL064C, YLR10SC,
YLR168C, YLR413W, YMLO83C, YMLOS7C, YMR325W, YNL274C, YOL155C, YPCI,
YPL272C, YTPI

Table 4.20. Topological measures of the constructed networks

networks and cellular conditions

topological measure Subnetwork
original Amigl Amiglmig2
(ANA-C-AER-C)
in-degree (<k;,>) 2.43 2.42 2.42 1.43
in-degree exponential
0.40 0.40 0.40 0.94
exponent (f3)
out-degree (<k,.,;>) 2.43 2.42 2.42 1.41
out-degree power-law
0.64 0.64 0.62 0.27

exponent (y)
path length (1) 4.25 4.27 4.28 1.00
diameter (d) 13 13 13 1
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Figure 4.12. Oxygen-responsive subnetwork under carbon limitation regime
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Figure 4.13. Distribution of the genes from the subnetwork into different MIPS functional
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Figure 4.15. Power-law behavior of the subnetwork departing connectivity

4.4. Best Candidate Target Genes for the Key TFs

There is a very large number of genes whose promotor regions contain binding sites
for TFs. However, the regulatory interactions between these genes and these TFs are not
experimentally justified. These genes are the so-called “potential target genes” for these
TFs, because they have potential to be truly regulated by these TFs. The reason for this

potentiality is that they posses binding sites of these TFs in their promoter regions.
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In the first step of this study, the potential target genes of key TFs were found in the
database YEASTRACT. Next, those that responded very significantly (i.e. that are
upregulated or downregulated very significantly) to the same perturbation used for key TF
identification were selected from gene expression data according to their fold change
(FC> | 10 | ) (Tai et al., 2005). Here, a high threshold value for the fold change was chosen
in order to restrict the number of differentially expressed genes. For example, there are
3513 genes whose promoter regions contain binding sites for the transcription factor
Msn2p (Table 4.21). These 3513 genes are potential target genes for Msn2p. Since Msn2p
was identified as a key TF between anaerobic and aerobic conditions under the carbon
limited regime, it is expected to regulate genes which are equally differentially expressed
between the same conditions. Therefore, from gene expression data, genes which are
upregulated or downregulated significantly (FC> | 10 | ) were selected. The 3513 potential
target genes listed in the database YEASTRACT was then searched for these genes.
Finally, the ones which are both among the potential target genes and the differentially

expressed genes were identified as best candidates truly being regulated by Msn2p.

The best candidate target genes for each key TF are listed in Tables 4.21 - 4.36.
These results should provide useful start points for further experimental investigations of

regulatory interactions of key TFs or the selected best candidate target genes.

Table 4.21. The best candidate target genes for the set ANA-C-AER-C

# of Potential Best Candidate Target Genes of the Key TFs
Key TF
Target Genes

AAC3, ADII1, AGX1, AQY2, AUSI, CRCI, CYB2, DANI, ECM13, FAAI, FET4,
Msn2p 3513 FMP23, GUT2, HEM13, HMX1, LSB6, NDEI, PNS1, PUT4, RIM4, SOL4, SUEI,
TIR3, TIR4, YBR230c, YLLO53c, YLR312c, YLR413w

AAC3, ADII, AGX1, AQY2, AUSI1, CRCI, CYB2, DANI, ECM13, FAAI, FET4,

Msndp 3513 FMP23, GUT2, HEM13, HMX1, LSB6, NDEI, PNS1, PUT4, RIM4, SOLA, SUEI,
TIR3, TIR4, YBR230c, YLLO53c, YLR312c, YLR413w

Stplp 898 ADII, AGX1, AQY2, FAAI, HEMI3, LSB6, RIM4, SUEI, TIR4, YLLO53c, YSR3

Yaplp 1291 AGXI, AQY2, AUSI, ECM13, FAAI, FMP23, LSB6, MUCI, TIR3, YHLO42w

Upc2p 793 ADII, DANI, HMXI, TIR1, TIR3, TIR4, YLR312¢c, YLR413w, YSR3
Hap2/3/4/5p 1140 CYB2, ECM13, GRE2, GUT2, HEM13, NDEI, PNSI

Pip2p 259 ECMI3, PUT4, RIM4, TIR1

Oaflp 259 ECMI3, PUT4, RIM4, TIR1

Cat8p 320 LSB6, SUE1
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Table 4.22. The best candidate target genes for the set ANA-N-AER-N

# of Potential

Best Candidate Target Genes of the Key TFs

Key TF
Target Genes
Upc2p 793 ATF2, DANI1, HESI, HMXI, TIRI, TIR3, TIR4, YLR413w, YOL161c, YSR3
Stplp 898 HEM13, SUEI, TIR4, YOL161c, YSR3
Stp2p 898 HEM13, SUEI, TIR4, YOL161c, YSR3
Hap2/3/4/5p 1140 CYB2, ECM13, HEM13, IZH4, NDE]
Yaplp 1291 AUSI, ECM13, MUCI, TIR3
Rox1p 28 ANBI, CYCI1, HEM13
Oaflp 259 ECMI3, PUT4, TIR1
Pip2p 259 ECM13, PUT4, TIR1

Table 4.23. The best candidate target genes for the set ANA-P-AER-P

# of Potential

Best Candidate Target Genes of the Key TFs

Key TF
Target Genes
AAC3, AGX1, ANBI, AQY2, AUSI, COX5a, CYB2, CYCI, CYT1, DANI, DAN2,
DAN3, DAN4, ECM13, FAAI, HEM13, HES1, HMX1, IZH4, LSB6, MUCI,
Mot3p 30914 NDEI, PAUI, PAU3, PAU4, PAU6, PLB2, PUT4, SMLI, SOD2, SUEI, TIRI,
TIR3, TIR4, YDR542w, YGL261c, YGRI31w, YGR294w, YHL046¢, YIL176c,
YLLO53c, YLLO64c, YLR413w, YMR325w, YOL155¢c, YOLI161c, YSR3
AAC3, AGX1, ANBI, AQY2, COX5a, CYB2, CYCI, DAN1, DAN2, DAN3, DAN4,
ECM13, HEM13, HMX1, IZH4, MUCI, NDEI, PAU3, PAU4, PAU6, PLB2,
Retlp 4285 PUT4, SMLI, SOD2, SUEI, TIRI, TIR3, TIR4, YGL261c, YGR294w, YHLO46c,
YLLO53c, YLR413w, YMR325w, YOL155¢c, YSR3
DANI, DAN2, DAN3, DAN4, HES1, HMX1, PAUI, PAU3, PAU4, PAU6, PLB2,
Upc2p 73 TIRI, TIR3, TIR4, YDR542w, YGL261c, YGR294w, YIL176¢, YLLO64c, YLR413w,
YMR325w, YOLI155¢c, YOLI61c, YSR3
AGXI, AQY2, AUSI, DAN3, ECM13, FAAI, LSB6, MUCI, SOD2, TIR3,
Yeplp 1291 YGR294w, YLLO64c, YOL155¢
Hap2p 1140 CYB2, ECM13, HEM13, IZH4, NDE1, PLB2, SOD2, YMR325w
Rox1p 28 ANBI, CYCI1, HEM13
Met32p 439 NDEI, TIR3
Cat8p 320 LSB6, SUEI
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Table 4.24. The best candidate target genes for the set ANA-S-AER-S

# of Potential Best Candidate Target Genes of the Key TFs
Key TF Target Genes
AAC3, ANBI, AQY2, ATF2, AUS1, COX5a, CYB2, CYCI, CYTI, DANI, DANS3,
ECM13, FAAI, FET4, HEM13, HESI, HMXI1, IZH4, MUCI1, NDEI, PAUI,
Mot3p 30914 PAU3, PAU4, PAU6, SMLI, SUEI, TIRI, TIR3, TIR4, YDR542w, YGRI131w,
YGR294w, YHLO42w, YHLO46¢, YIL176¢, YLLO53c, YLLO64c, YLR413w,
YMR325w, YOLI61c
AQY2, ATF2, AUS1, COX5a, CYB2, CYTI1, DANI, DAN3, ECM13, FAAI, HESI,
Rig3p 9344 HMXI, IZH4, MUC1, NDEI, PAUI, PAU3, PAU4, SUEI, TIRI, TIR3, TIR4,
YDR542w, YGR131w, YGR294w, YHLO42w, YHLO046¢, YIL176¢, YLLOS53c,
YLLO64c, YMR325w
Upe2p 293 ATF2, DANI, DAN3, HES1, HMXI, PAUI, PAU3, PAU4, PAU6, TIRI, TIR3,
TIR4, YDR542w, YGR294w, YIL176¢, YLLO64c, YLR413w, YMR325w, YOL161c
Yaplp 1291 AQY2, AUSI, DAN3, ECM13, FAAI, MUCI, TIR3, YGR294w, YHLO42w,
YLLOG4c
Haplp 398 ANBI, CYCI, CYTI, FAAI, HEM13, HMXI, IZH4, TIR4
Cadlp 1291 AQY2, AUSI, DAN3, FAAL, MUCI, TIR3, YGR294w, YLL064c
Pdr3p 439 HEM13, PAU3, PAU4, SUEI, TIR4, YGRI131w, YLR413w
Hap2p 1140 CYB2, ECM13, HEM13, IZH4, NDEI, YMR325w
Rox1p 28 ANBI, CYCI, HEM13
Table 4.25. The best candidate target genes for the set AER-C-N
Key TF # of Potential Best Candidate Target Genes of the Key TFs
Target Genes
Gln3p 4465 JENI, PDHI, WSC4, YER188w, YILO57¢c, YMR206w
Stp2p 898 FMP43, HXT3, JEN1, YILO57c, YMR206w
Mcmlp 6250 FMP43, PDHI, WSC4, YERI88w
Gatlp 2592 WSC4, YERI88w, YILO57c, YMR206w
Pip2p 259 HXT3, YILO57¢c, YMR206w
Oaflp 259 HXT3, YILO57¢c, YMR206w
Cat8p 320 JENI
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Table 4.26. The best candidate target genes for the set AER-C-P

Kev TF # of Potential Best Candidate Target Genes of the Key TFs
ey
Target Genes
HXTI, HXT3, ISF1, JENI, MAL32, MIG2, PDHI, RBF9, SUC2, TPO2, WSC4,
Msn2p 3513
YER188w, YMR206w
HXTI, HXT3, ISF1, JENI, MAL32, MIG2, PDHI, RBF9, SUC2, TPO2, WS(H4,
Msn4p 3513
YER188w, YMR206w
HXTI, HXT3, ISF1, JENI, MAL32, MIG2, RBF9, SUC2, TPO2, WS(4,
Rtglp 8344
YERI188w, YILO57c
Stp2p 898 HXT3, ISF1, JENI, YILO57¢c, YMR206w
Stplp 898 HXT3, ISF1, JENI, YILO57¢c, YMR206w
Pip2p 259 HXT3, MIG2, YILO57c, YMR206w
Oaflp 259 HXT3, MIG2, YILO57c, YMR206w
Pdr3p 439 HXT3, MIG2, YILO57¢
Mig2p 23 MAL32, SUC2
Table 4.27. The best candidate target genes for the set AER-C-S
# of Potential Best Candidate Target Genes of the Key TFs
Key TF
Target Genes
Msndp 3513 HXKI, HXTI, HXT3, ISF1, JENI, MAL32, SOLI, YMR206w
Gendp 5970 HXTI, JENI, MAL32, YILO57¢c, YMR206w
Pdr3p 439 HXT3, YILO57¢
Cat8p 320 ISF1, JENI
Yaplp 1291 HXTI
Met32p 439 YMR206w
Mig2p 23 MAL32
Table 4.28. The best candidate target genes for the set AER-N-P
# of Potential Best Candidate Target Genes of the Key TFs
Key TF
Target Genes
Rtg3p 8344 CPS1, DAL2, DALA, DALS, DALSO, MLS1, OPT2, PUTI, VBAI
GIn3p 4465 CPS1, DAL2, DAL4, DALS, DAL80, OPT2, PUTI, VBAI
Gatlp 2592 CPS1, DAL2, DALA4, DALS5, DALSO, OPT2, PUTI, VBAI
Gendp 5970 CPS1, DAL2, DALS, DALSO
Phodp 2345 DALS0, OPT2, PUTI
Stplp 898 DALS0, MLS1
Stp2p 898 DALS0, MLS1
Stel2p 1478 OPT2
Haplp 398 PUTI
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Table 4.29. The best candidate target genes for the set AER-N-S

Kev TF # of Potential Best Candidate Target Genes of the Key TFs
ey
Target Genes
GIn3p 4465 CPS1, DALI, DAL2, DAL4, DALS5, DAL8O, DUR3, GAP1, OPT2, PUTI, VBAI
Gendp 5970 CPS1, DAL2, DALS, DAL8O, DUR3, GAPI, YLR053c
Yaplp 1291 CPS1, DAL2, DUR3, GNPI1, YLRO53¢
Dal81p 100 DALI, DAL4, MLS1
Stplp 898 DALS0, MLS1
Pdr3p 439 DAL?2
Met32p 439 MLSI
Ino4p 272 DAL2
Ino2p 240 DAL2
Table 4.30. The best candidate target genes for the set AER-P-S
# of Potential Best Candidate Target Genes of the Key TFs
Key TF
Target Genes
Gcendp 5970 ICY1, PHM6, PHO3, SPL2, SULI
Msndp 3513 GIT1, ICY1, PHMS, PHO84, SPL2
Msn2p 3513 GIT1, ICY1, PHMS, PHO84, SPL2
Metdp 470 ICY1, PHOS4, SPL2
Yaplp 1291 PHO3, SULI
Stp2p 898 PHOI1, SPL2
Pdr3p 439 ICYI1, SPL2
Stplp 898 PHOI11, SPL2
Met32p 439 GFD2
Table 4.31. The best candidate target genes for the set ANA-C-N
# of Potential Best Candidate Target Genes of the Key TFs
Key TF
Target Genes
Rtglp 8344 HXTI, HXT3, HXT4, MAL32, MRK1, SUC2, YILO57c
Rtg3p 8344 HXTI, HXT3, HXT4, MAL32, MRK1, SUC2, YILO57c
Pdr3p 439 HXT3, YILO57c
Stplp 898 HXT3, YILO57¢
GIn3p 4465 HXT4, YILO57¢
Gzf3p 2592 HXT4, YILO57¢
Gatlp 2592 HXT4, YILO57c
Hap2p 1140 HXTI1
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# of Potential Best Candidate Target Genes of the Key TFs
Key TF Target Genes
Rtg3p 8344 HXT3, HXT4, MALI11, MAL32, MRK1, SUC2, TPO2, YILO57¢
Teclp 5584 HXT3, HXT4, MALI11, MAL32, MRK1, SUC2, TPO2, YILO57¢
Msn2p 3513 HXT3, HXT4, MAL32, MRK1, SUC2, TPO?2
Stp2p 898 HXT3, YILO57¢
Pdr3p 439 HXT3, YILOS57¢
Stplp 898 HXT3, YILO57¢
Yaplp 1291 MRKI
Table 4.33. The best candidate target genes for the set ANA-C-S
Key TF # of Potential Best Candidate Target Genes of the Key TFs
Target Genes
Rtg3p 8344 HXTI, HXT3, HXT4, ISF1, MAL11, MAL32, MRK1, SUC2, TPO?2, YIL0O57c
Rtglp 8344 HXTI, HXT3, HXT4, ISF1, MAL11, MAL32, MRK1, SUC2, TPO?2, YIL0O57c
Gendp 5970 HXTI1, HXT4, MAL11, MAL32, MRK1, TPO2, YILO57c, YMR206w
Hap2p 1140 HXT1I, ISF1, YMR206w
Mig2p 23 MAL32, SUC2
Table 4.34. The best candidate target genes for the set ANA-N-P
Key TF # of Potential Best Candidate Target Genes of the Key TFs
Target Genes
Gatlp 2592 DAL2, DALS, DURI,2, GAP1, MEP2, PUTI, VBAI
Gln3p 4465 DAL2, DALS, DURI,2, GAPI, MEP2, PUTI, VBAI
Gendp 5970 DAL2, DALS, DURI,2, GAPI, MEP2
Msndp 3513 DURI,2, GAP1, MLS1
Dal81p 100 DURI,2, MLS1
Stp2p 898 MLSI
Stplp 898 MLS1
Skn7p 2366 PUTI
Met32p 439 MLSI
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Kev TF # of Potential Best Candidate Target Genes of the Key TFs
ey
Target Genes
GlIn3p 4465 DALS, DALSO, GAP1, MEP2, OPT2, PUTI, VBAI
Gendp 5970 DALS, DALSO, GAP1, MEP2
Metdp 470 GNPI1, OPT2, PUTI
Stplp 898 DALS80, MLS1
Met32p 439 MLSI
Met31p 439 MLS1
Dal81p 100 MLS1
Table 4.36. The best candidate target genes for the set ANA-P-S
# of Potential Best Candidate Target Genes of the Key TFs
Key TF
Target Genes
Pho4p 2345 GIT1, PHM6, PHO11, PHO84, PHO89, SPL2, VIC3
Gendp 5970 PHM6, PHO3, PHO89, SPL2, SULI, VIC3
Msn2p 3513 GITI1, PHOS4, SPL2
Yaplp 1291 PHO3, SULI
Stp2p 898 PHOI1, SPL2
Met4p 470 PHOS84, SPL2
Stplp 898 PHOI1, SPL2
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S. CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

It is concluded that perturbation-responsive key transcription factors (transcription
factors around which most significant transcriptional changes occur when a perturbation is
introduced) can be identified by the hypothesis-driven approach used in this study. The
approach was implemented in this study for identification of transcription factors

responsive to genetic and environmental perturbations.

Mig2p was identified as the top key transcription factor responding to the deletion of
the gene MIGI. Hap2/3/4/5p complex was found to be the transcription factor which
responded the most significantly to the deletion of both MIGI and MIG2 genes. These
results suggest that MIG2, but not MIG1, is involved in the mechanism which regulates
HAP genes. As for environmental perturbations, oxygen-responsive transcription factors
under four macronutrient limitation regimes and macronutrient-responsive transcription
factors under aerobic and anaerobic conditions were identified. Hap2/3/4/5p complex,
Upc2p and Yaplp were identified as trancription factors responding significantly to
oxygen availability irrespective of nutrient limitation regime. Meaningful results were also
obtained for nutrient limitation-responsive transcription factors. For example, GIn3p and
GIn80p, two TFs involved in nitrogen utilization process, were identified as key TFs only

when passing from nitrogen limitation regime to any other nutrient limitation regime.

It was furthermore showed that once the key transcription factors are identified by
this method, perturbation-responsive subnetworks can be constructed by interconnecting
the key transcription factors and their target genes responding significantly to the same
perturbation. For illustration, oxygen-responsive subnetwork was constructed. Very large
portion of the genes included in the subnetwork were classified as ‘unknown proteins’ by
MIPS. We anticipate that the method will be useful in predicting functions for unknown or
poorly characterized genes included in a specific subnetwork after a known perturbation is

introduced to the system. Likewise, the effects of unknown perturbations, such as deletion
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of a gene with unknown function or drug exposure, can be predicted from key transcription

factors and subnetworks activated upon perturbation.

The best candidate target genes for each key transcription factor were also identified
by selecting among the genes, whose promoter sequences match with the binding site of
the key TF, the ones which are significantly upregulated or downregulated after specific
perturbations. We believe the genes identified as best candidate target genes for key
transcription factors should provide useful start points for further experimental

investigations of regulatory interactions of these genes or key transcription factors.

5.2. Recommendations

The transcritional regulatory network constructed may also be represented as a
unipartite undirected graph, in which only genes are represented as the nodes and the genes
regulated by a common transcription factor are connected to each other. Consequently, the
unipartite graph can be integrated with multidimensional data (gene expression is
measured over a time course or multiple strains are analysed). The use of multidimensional
data would enable the identification of condition-specific key transcription factors during
specific periods of time, such as aging in yeast, diauxic shift time course, temporal analysis

of sporulation, heat shock time course etc.

When determining the differentially expressed genes in the subnetwork and the best
candidate target genes analyses, p values may be used instead of fold change since

triplicate data were used and p values can be readily calculated from these data.

A different statistical method, other than the ¢ test, may be tried so that the method
proposed in this study for the identification of the perturbation-responsive key transcription

factors can be used when replicate data are not available.

The occurrence of network motifs, which are compact, specific patterns of inter-
connection between transcription factors and targets, may be calculated in the genome-
scale transcriptional regulatory network or in the subnetworks. Motif usage between

different conditions or during a time course may be investigated.
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APPENDIX A: COMPUTER CODE FOR TOPOLOGICAL
CALCULATIONS

PROGRAM TOPOLOGY

INTEGER S1(4,4),52(4,4),S3(4.,4),

& S4(4,4),55(4,4),56(4,4),

& S7(4,4), S8(4,4),59(4,4),

& S10(4,4),S11(4,4),512(4,4),

& S13(4,4),514(4,4),

& S15(4,4),516(4,4)

& ,SPL(4,4),MAX

REAL TOP,TOP2,NUM

DATA S1/16*0/,52/16%0/,83/16*0/,

& S4/16*0/,55/16%0/,56/16*0/,

& S7/16%0/,58/16%0/,59/16*0/

& ,S10/16%0/,S11/16%0/,512/16*0/,

& S13/16%0/,514/16*0/,515/16*0/

& ,S16/16%0/

DATA SPL/16%0/

20 FORMAT (I5)

30 FORMAT (I8)

OPEN (3, FILE='S1.txt,STATUS='OLD")
OPEN (5, FILE='S2.txt',STATUS='OLD))
OPEN (7, FILE='S3.txt',STATUS='OLD))
OPEN (11, FILE='S4.txt,STATUS='OLD")
OPEN (13, FILE='S5.txt,STATUS='OLD")
OPEN (15, FILE='S6.txt,STATUS='OLD")
OPEN (17, FILE='S7.txt,STATUS='OLD")
OPEN (19, FILE='S8.txt,STATUS='OLD")
OPEN (21, FILE='S9.txt,STATUS='OLD")
OPEN (23, FILE='S10.txt,STATUS='OLD')
OPEN (25, FILE='S11.txt,STATUS='OLD')
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OPEN (27, FILE='S12.txt ,STATUS='OLD")
OPEN (29, FILE='S13.txt,STATUS='OLD")
OPEN (31, FILE='S 14.txt,STATUS='OLD")
OPEN (33, FILE='S15.txt ,STATUS='OLD")
OPEN (35, FILE='S16.txt ,STATUS='OLD")
OPEN (9, FILE='SPL.txt ,STATUS='NEW')
DO I=1,4

DO J=1,4

READ (3,10) S1(J.)

READ (5,10) S2(J.)

READ (7,10) S3(J.I)

READ (11,10) S4(J,1)

READ (13,10) S5(.)

READ (15,10) S6(J.1)

READ (17,10) S7(.,D)

READ (19,10) S8(J.)

READ (21,10) S94.)

READ (23,10) S10(J,1)

READ (25,10) S11(J,I)

READ (27,10) S12(J,1)

READ (29,10) S13(J,1)

READ (31,10) S14(J,D)

READ (33,10) S15(J,1)

READ (35,10) S16(J,1)

END DO

END DO

MAX=0

TOP=0.

NUM=0.

TOP2=0.

DO I=1,4

DO J=1,4

IF ((S15(J,1).EQ.0).AND.(S16(J,).EQ.1)) THEN
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SPL(J,D=16

END IF

IF ((S14(J,1).EQ.0).AND.(S15(J.1).EQ.1)) THEN
SPL(J,D=15

END IF

IF ((S13(J,1).EQ.0).AND.(S14(J,1).EQ.1)) THEN
SPL(J,D=14

END IF

IF ((S12(J,1).EQ.0).AND.(S13(J.]).EQ.1)) THEN
SPL(J,D=13

END IF

IF ((S11(J,1).EQ.0).AND.(S12(J.1).EQ.1)) THEN
SPL(J,D=12

END IF

IF ((S10(J,1).EQ.0).AND.(S11(J.1).EQ.1)) THEN
SPL(J,D=11

END IF

IF ((S9(J,1).EQ.0).AND.(S10(J,I).EQ.1)) THEN
SPL(J,D=10

END IF

IF ((S8(J,1).EQ.0).AND.(S9(J,).EQ.1)) THEN
SPL(J,))=9

END IF

IF ((S6(J,1).EQ.0).AND.(S7(J,).EQ.1)) THEN
SPL(J,D)=7

END IF

IF ((S5(J,1).EQ.0).AND.(S6(J,1).EQ.1)) THEN
SPL(J,D=6

END IF

WRITE (9,20) SPL(J.])

TOP=TOP+SPL(J,])

IF (SPL(J,I).NE.0O) THEN
TOP2=TOP2+SPL(J.])
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NUM=NUM-+1.

END IF

IF (SPL(J,I).GT.MAX) THEN
MAX=SPL(J,])

END IF

END DO

PRINT*, 'AVERAGE WITHOUT ZEROS =

', TOP2/NUM

PRINT*, 'AVERAGE WITH ZEROS = ', TOP/16.0

PRINT*, ' DIAMETER= 'MAX
END
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APPENDIX B: COMPUTER CODE FOR Z SCORE

CALCULATIONS
PROGRAM SZS
CHARACTER * 7 GEN(7000),0KU(1000),DOS,DOSYA(200),NAME
REAL DEGER(7000)

INTEGER DS, FILEN,GENSAY,OKUSAY,FILEN2
C5 format (I7)

10  FORMAT (A7)

20  FORMAT (F13.5)

30 FORMAT (17)

40  FORMAT (A7,F13.5)

42 FORMAT (A9,F13.5)

43  FORMAT(A7,A12)
FILEN=10

PRINT *, "

PRINT *, "

PRINT *, "

PRINT *, "'

PRINT *, "'

PRINT *, "'

PRINT *, "'

C PART 1: NAME READING
PRINT *, >>>>>> THE NAME
PRINT *,"*** IMPORTANT NOTICE
PRINT *, "'

READ *, DOS

PRINT *, "'

PRINT *,'’>>>>>> THE QUESTION
PRINT *,' PRESS

PRINT *, "'

READ *, DS



DO I5=1,DS

PRINT *,16, ' NAME OF THE FILE

READ *, DOSYA(I2)

PRINT *, '

END DO

C PART 2: DATA READING

OPEN (2, FILE='sonuclar.txt,STATUS="NEW")
OPEN (3, FILE=DOS//"txt',STATUS='OLD")
READ (3,30) GENSAY

DO 16=1,GENSAY

READ (3,10) GEN (14)

END DO

DO I5=1,GENSAY

READ (3,20) DEGER(14)

END DO

PRINT *, "

PRINT >I<’ ' ****"DOS,'. skeskek!

PRINT *, '

C  PART 3: START OF OPERATIONS
DO I5=1,DS

PRINT *, '

PRINT * k! DS, !, skx!
FILEN=FILEN+1

WRITE (NAME, 10) DOSYA(14)

OPEN (FILEN, FILEENAME//"txt,STATUS='OLD")
READ (FILEN,30) OKUSAY

DO I5=1,0KUSAY

READ (FILEN,11) OKU (I6)

END DO

FILEN2=100-FILEN

OPEN (FILEN2,FILE=NAME//'sonuc.txt,STATUS="NEW")
SUM=0.0

DO I5=1,0KUSAY



DO 16=1,GENSAY

IF (GEN(19).EQ.OKU(I3)) THEN
SUM=SUM+DEGER(12)

WRITE (FILEN2,40) OKU(I8),DEGER((16)
print *, OKU(I4),DEGER(I5)

GOTO 50

END IF

END DO

WRITE (FILEN2,43) OKU(I6), ' CAN NOT BE FOUND'
PRINT*, OKU(16), " CAN NOT BE FOUND'
50  continue

END DO

WRITE (2,10) SUM

WRITE (FILEN2,13) ' '

WRITE (FILEN4,28) 'TOTAL ="', SUM
PRINT *, "'

PRINT *,DS,". TOTAL=', SUM

END DO

PRINT *, "'

PRINT *,' PROGRAM COMPLETED
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APPENDIX C: COMPUTER CODE FOR NEW Z SCORE
CALCULATIONS

PROGRAM RANDOM

CHARACTER * 5 DOS

REAL DEGER (6500),RAND,ra,SUM(10000),TOPSUM,AVER,STD,yeniz, GEN
REAL zscore

INTEGER IRA

12 FORMAT (F15.2)

C15 FORMAT (I3)

PRINT *, FILE NAME

PRINT *,' #** IMPORTANT NOTICE

READ *, DOS

OPEN (5, FILE=DOS//".txt ,STATUS='OLD")

C OPEN (4, FILE='SONUC.txt,STATUS='NEW")
C OPEN (5, FILE="random.txt' ,STATUS=NEW")
OPEN (7, FILE="yeni_z_score.txt,STATUS='NEW")
DO 1=1,6400

READ (2,10) DEGER (I)

END DO

dummy=100

100 CONTINUE

PRINT *, NUMBER OF GENES

READ *, GEN

TOPSUM=0.0

DO K=1,10000

SUM(K)=0.0

DO J=1,GEN

ra = 6400.0*rand(0)

IRA=NINT (RA)

C WRITE (5,11) IRA

78



SUM(K)=SUM(K) + 1.0/SQRT(GEN)*DEGER(IRA)
END DO

C WRITE (5,23) SUM (K)
TOPSUM=SUM(K)+TOPSUM
END DO
AVER=TOPSUM/10000.0
VARIAN=0.0

DO I5=1,10000

VARIAN= (SUM (I3) - AVER)*%*2.0 + VARIAN
END DO

STD= SQRT(VARIAN /9999)
PRINT *, Z SCORE?

READ *, zscore
yeniz=(zscore-Aver)/STD
WRITE (7,12) yeniz

PRINT *, "Yeni Z-Score =', yeniz
PRINT *, " "

PRINT *, "

PRINT *, " "

If (dummy.EQ.100) then

GOTO 60

end if

stop

end
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APPENDIX D: HIGHEST SCORING TFS BEFORE CORRECTION

Table D.1. Oxygen-responsive top 10 TFs before correction. Under carbon, nitrogen,

phosphorous and sulfur limitation regimes. Hap2p, Hap3p and Hap4p and HapSp were

counted as one TF because they form a complex and their scores are very close to each

ANA-C-AER-C ANA-N-AER-N ANA-P-AER-P ANA-S-AER-S
16,12 Sok2p 17,21 Upc2p 17,44 Hap2p 19,16 Hap5p
15,39 Msn4p 16,28 Hap5p 17,43 Hap3p 18,94 Hap2p
15,00 Yaplp 16,20 Hap2p 17,41 Hap5p 18,92 Hap4p
14,18 Gendp 16,19 Hap4p 17,37 Hap4p 18,86 Hap3p
14,10 Raplp 16,13 Hap3p 15,56 Raplp 18,48 Upc2p
13,96 Cat8p 15,37 Sok2p 15,00 Yaplp 18,40 Yaplp
13,89 Hap2p 14,32 Yaplp 14,95 Sok2p 17,02 Cadlp
13,88 Hap3p 13,17 Rox1p 14,63 Upc2p 16,67 Sok2p
13,86 Hap4p 13,14 Cadlp 14,10 Rox1p 15,58 Rox1p
13,82 Hap5p 12,03 Yap5p 13,92 Msn4p 15,55 Msn4p
12,13 Yap5p 12,02 Hemlp 13,89 Yap5p 15,46 Hemlp
12,00 Hemlp 11,64 Msn4p 12,90 Tos8p 15,07 Yap5p
11,90 Stplp 11,51 Stplp 12,84 Gcendp 14,94 Swidp
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Table D.2. Top 10 TFs before correction between nutrient limitations (aerobic). Between

carbon, nitrogen, phosphorous and sulfur limitation regimes

AER-C-N AER-C-P AER-C-S AER-N-P AER-N-S AER-P-S
18,56 | Sok2p | 16,49 | Sok2p | 19,25 | Gendp | 14,04 | Sok2p | 17,86 | Yaplp | 15,29 | Msndp
16,92 | Raplp | 15,61 | Msndp | 19,04 | Sok2p | 12,99 | Gendp | 17,63 | Gendp | 14,39 | Yaplp
15,66 | Yaplp | 14,89 | Raplp | 18,65 | Yaplp | 12,96 | Raplp | 17,59 | Sok2p | 14,29 | Gendp
15,48 | Msndp | 13,61 | Yaplp | 17,68 | Msndp | 12,34 | Stplp | 15,98 | Raplp | 12,70 | Sok2p
15,30 | Gendp | 13,02 | Gendp | 17,53 | Cadlp | 11,42 | Stp2p | 15,23 | Cadlp | 12,21 | Pdr3p
14,69 | Cadlp | 12,76 | Stp2p | 15,75 | Raplp | 11,37 | Yaplp | 14,53 | Msndp | 12,15 | Stplp
13,92 | Hemlp | 12,65 | Stplp | 15,48 | Hcmlp | 11,27 | Cadlp | 14,50 | Pdr3p | 11,78 | Cadlp
13,72 | Pdrlp | 12,45 | Pdr3p | 14,99 | CinS5p | 11,20 | Stel2p | 13,79 | CinSp | 11,42 | Stp2p
13,45 | Mcmlp | 12,17 | Hemlp | 14,83 | Pdr3p | 11,10 | GIn3p | 13,75 | Stplp | 10,81 | Pdrlp
13,18 | Tos8p | 11,87 | Cadlp | 14,17 | Cat8p | 10,33 | Msndp | 13,46 | Swidp | 10,71 | Raplp

Table D.3. Top 10 TFs before correction between nutrient limitations (anaerobic). Between

carbon, nitrogen, phosphorous and sulfur limitation regimes. Hap2p, Hap3p and Hap4p

and HapSp were counted as one TF because they form a complex and their scores are very

close to each other

ANA-C-N ANA-C-P ANA-C-S ANA-N-P ANA-N-S ANA-P-S
15,98 | Raplp | 15,13 | Raplp | 19,77 | Raplp | 14,97 | Gendp | 14,14 | Gendp | 13,79 | Gendp
15,93 | Sok2p | 14,08 | Sok2p | 18,42 | Sok2p | 14,96 | Sok2p | 12,99 | Sok2p | 12,38 | Sok2p
13,80 | Yaplp | 13,37 | Yaplp | 18,08 | Gendp | 13,23 | Msndp | 12,21 | Msndp | 12,24 | Yaplp
13,30 | Gendp | 12,37 | Gendp | 15,96 | Cadlp | 12,57 | Stplp | 12,13 | Yaplp | 11,35 | Cadlp
12,75 | Msndp | 12,18 | Hap5p | 15,75 | Yap5Sp | 12,50 | Stp2p | 11,85 | Cadlp | 11,17 | Raplp
12,61 | Cadlp | 12,17 | Hapdp | 15,55 | Hapdp | 12,33 | Yaplp | 10,89 | Stplp | 11,13 | Stp2p
12,57 | YapSp | 12,17 | Hap2p | 15,48 | Hap5p | 12,05 | Raplp | 10,26 | Stp2p | 11,07 | Msndp
12,23 | Hap4p | 12,10 | Hap3p | 15,43 | Swidp | 11,53 | Cadlp | 9,98 Pdr3p | 10,93 | Stplp
12,21 | HapSp | 11,85 | Msndp | 15,43 | Hap2p | 11,40 | GIn3p | 9,71 Metdp | 10,30 | Pdrlp
12,15 | Pdr3p | 11,15 | Pdrlp | 15,41 | Hap3p | 11,38 | Skn7p | 9,71 | Met28p | 10,30 | Metdp
12,12 | Hap2p | 11,07 | Stp2p | 15,17 | Yaplp | 14,97 - - - - -
12,12 | Hap3p | 11,07 | Stplp | 14,81 | Msndp | 14,96 - - - - -




