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ABSTRACT

A FUZZY LOGIC APPROACH FOR REGULATION IN
FLUX BALANCE ANALYSIS

Technological advances in experimental observations give the ability to examine
complex biological systems and the chance to forecast the bacterial behaviour in silico. In this
thesis, the experimentally observed behavior by which bacteria are able to establish a time
hierarchy of sugar utilization is examined and simulated. The optimal growth of bacteria on
defined carbon sources are now easily predicted from the solutions of constraint-based
metabolic models. However, these methods are unable to predict the sequence of carbon
utilization and changes in cellular behavior of growth in mixed substrates. In this work a
regulatory structure describing transcriptional regulation of catabolic genes or operons
expressed in Fuzzy Logic Formalism is combined with dynamic Flux Balance Analysis
(FBA). Since the transcription of operons is regulated by specific promoters and inducers that
evolve from substrate usage, this regulatory structure is a natural part of any model of carbon
source utilization. The Fuzzy Logic Formalism is a good alternative to differential equation
models that require kinetic parameter values and superior to Boolean Formalism which

automatically sets regulation as “on” or “off” rules.

The FBA/Fuzzy Logic combination was successfully used to simulate aerobic growth of
Escherichia coli in mixed double (glucose-lactose) or triple (glucose-lactose-galactose,
glucose-sorbitol-glycerol) substrates and anaerobic growth of Lactococcus lactis in a triple
substrate (glucose-lactose-galactose). When well-defined data are available, the computed
results are in good agreement with the data. The method also allows for the prediction of
growth lag periods upon substrate substitution and changes in growth pattern and substrate

utilization upon pulse injection of substrates in existing growth media.
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OZET

AKI DENGE ANALIZi iCERiISINDEKi DUZENLEME iCiN
FUZZY LOJIiK YAKLASIMI

Deneysel olarak yapilan c¢alismalarda teknolojik gelismeler hem karisik biyolojik
sistemlerin incelenmesine hem de bilgisayar ortaminda bakteriyel davraniglarin tahmin
edilmesine olanak saglamaktadir. Bu tez calismasi kapsaminda, deneysel olarak incelenen
bakterilerin, zaman igerisinde degisik seker kullanimina kars1 uyumu modellendi ve benzetimi
yapildi. Bakterilerin farkli karbon kaynaklarinda en uygun c¢ogalmalari, sinirli ortamda
metabolik modeller ile coziimii kolaylikla tahmin edilmektedir. Fakat, bu metodlar karbon
kullanim siralarini ve bdylelikle ¢oklu substrat ortaminda biiyiime siirecini kestirememektedir.
Bu calismayla, karbon kullaniminmi diizenleyen genlerin transkripsiyonel diizenleyici yapisi
veya operon, Fuzzy Lojik Bi¢imselligi icinde tanimlanarak dinamik Aki Denge Analizi (Flux
Balance Analysis-FBA) ile birlestirildi. Operonlarin transkripsiyonu substrat kullanimindan
dogan spesifik destekleyiciler ve endiikleyiciler tarafindan diizenlenmektedir. Bu diizenleyici
yapr karbon kullannminin dogal seklidir. Fuzzy Lojik Bicimselligi kinetik parametrelere
gereksinim duyan diferansiyel denklem modellerine alternatif ve “on”/“off” hiikiimlerine bagl

Boolean Lojik Bi¢imselliginden daha iyi bir yontemdir.

FBA/Fuzzy lojik birlesimi ¢oklu ortamlarda (glikoz-laktoz, glikoz-laktoz-galaktoz ve
glikoz-sorbitol-gliserol) Escherichia coli’nin (Koli basili) oksijenli ortamda biiyiimesi
benzetimini ve Lactococcus lactis’in (siit iiriinlerinde kullanilan bir tiir bakteri) oksijensiz
ortamda biiylimesi benzetimini ¢ok iyi yapilabilmektedir. Hesaplanan sonuglar elimizde
bulunan iyi tantmlanmis deneysel veriler ile uyumlu olarak eslesmektedir. Buna ilave olarak,
bu metod bir substratin digerinin yerine gec¢mesi ile olusan lag fazindaki biiyiimeyi veya
acikca biiylime degisikligini ve uyar1 enjeksiyonu ile olusan substrat kullanimini var olan

ortamlarda tamimlayabilmektedir.
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1. INTRODUCTION

Technological advances in data collection give biologist the ability to study complex
systems. Based on experimental observations, a biological model can be developed to predict
the organism behaviour in silico. To model a biological pathway for a cellular process,
chemical reaction network and regulatory structure must be combined. Transcriptional
regulatory events as time dependent constraints on a metabolic network would be necessary to

simulate bacterial growth on various environmental conditions.

In this work, flux balance analysis (FBA) and fuzzy logic formalism are used to find
optimal solutions to selected metabolic networks and for the regulation of the structure,
respectively. Mathematical modeling of a large system is hard to handle if parameter values
are necesssary. Flux Balance Analysis (FBA) which is a type of Metabolic Flux Analysis
(MFA), is explained in detail in the second chapter. The analysis does not deal with the
parameters. It gives an optimal flux distribution upon substrate uptake rate. The dynamic
behavior in the medium outside the cell provides a time course of by-product secretion, and

biomass growth.

Fuzzy logic is a tool that describes human reasoning. It uses the whole interval between
0 (False) and 1 (True) of the logical statement. Fundamentals and applications of fuzzy logic
are explained in Chapter 4. Fuzzy IF-THEN rules are incorporated for the analysis of complex
biological systems. In principle, a crisp set of input is converted into fuzzy quantities to have a

decision in human knowledge. Then, the conclusion is defuzzified to have a discrete result.

The utilization of carbon sources by organisms are described by central metabolism
pathways. Substrate uptake mechanism through the cell membrane and ways to utilize
multiple carbon source mixtures may be different for different microorganisms. A series of
genes called operons regulate the sequence of utilization. Lac operon, gal operon, gut operon,
glp operon in E. coli and gal operon in L. lactis are described in Chapter 5. The responses of
biological operon structures and sugar uptake transport systems to environmental conditions

are described in terms of fuzzy logic formalism.



The computational algorithm described in Chapter 6 is performed in Matlab. The
algorithm contains two separate modules, which are constantly interacting with each other.
The algorithm consists of a regulatory module and a metabolic network module. Dynamical
flux balance analysis is performed to determine metabolic transients in response to regulatory

signals in each time step of an interval.

Available experimental data found in literature are included in the results for the
validation of simulations. Metabolic network maps containing the flux distribution at some
chosen time intervals are also included in the results and discussion section. The differences
between the main pathways for the utilization of substrates and different growth regimes are

examined in E. coli for aerobic growth and in L. lactis for anaerobic growth.

The conclusion chapter enumerates the advantages of using Fuzzy Logic over Boolean

formalism as a regulatory tool for regulatory metabolic flux analysis.



2. METABOLIC FLUX ANALYSIS

Genome sequencing and bioinformatics are producing detailed lists of the molecular
components contained in many prokaryotic organisms. By the help of this information, in
silico representations of integrated metabolic functions can be constructed and analyzed.
Kinetic information on the dynamics and regulation of metabolic reactions are usually
accompanied with problems concerning availability and in vivo/in vitro discrepancies.
Metabolic Flux Analysis (MFA) is a method based on the fundamental physicochemical
constraints on metabolic networks which can be used successfully instead of the ones using
kinetic parameters of enzymes. Stoichiometry of metabolic pathways and metabolic demands
are required for the analysis. Moreover, additional information can be incorporated in terms of

imposing regulation on the growth performance.

In general, MFA is useful for analyzing specific flux distribution but is not able to
characterize the complete admissible steady state solution space. By applying metabolic flux
analysis (MFA), one tries to shrink the possible solution space of (Eq. 1) by measuring some
of the reaction rates (such as uptake or excretion rates) in a certain steady state experiment.
The stiochiometric matrix represents the central equation for MFA and characterizes a flux
scenario. The ideal case where only one unique and exact solution exists occurs, if S is a
square matrix and invertible, because then all unknown rates in v can be determined. If a
scenario is underdetermined, then only some or even none of the unknown rates can be
determined. In redundant systems, a consistency check can be performed, which is useful for
detecting gross measurement or modeling errors. In larger networks, despite a number of
measurements, all rates in the system often remain completely unobservable. However, for the
general case, depending on the rank of S, a scenario must be classified with respect to

determinacy (determined or underdetermined) and redundancy (redundant or non-redundant).

Flux Balance Analysis (FBA) is the same as Metabolic Flux Analysis (MFA). However,
the characteristic assumption of FBA is the optimal function of the network. In most cases, the

linear objective function is maximizing growth, sometimes; maximizing product yield. The



three constraints, quasi-steady state, reaction capacities and optimal function form the linear

optimization problem.

FBA enables one to predict production capabilities of a micro-organism such as
predicting optimal yield and optimal behavior. Another very useful application of FBA is to
investigate whether a certain function can be performed ar all in a network, especially after
removal of network elements by simulating gene deletions. It means that, if a reaction is
removed in the network, then one may optimize the network again. If the optimal value, e.g.
for the growth rate, now becomes zero, then one definitely knows that this function (growth) is

not possible anymore.

The significance of whole-cell computational modeling is to combine detailed
biochemical information with biological insight to produce testable predictions. The
biochemical information and growth performance on prokaryotes such as Escherichia coli
(E. coli) is known quiet well that FBA can predict metabolic flux distribution at steady state
by using linear programming. It also gives an interpretation of experimental data, provides a
guide to metabolic engineering, enables optimal medium formulation, and provides a method

for bioprocess optimization.

2.1. Steady-State Methods

2.1.1. Flux Balance Analysis (FBA)

The first step in FBA 1is the construction of the metabolic network containing the most
important metabolites and reactions between them. The central metabolism pathway reactions
(glycolysis, pentose phosphate pathway, TCA cycle, electron transport system, etc.) are used
to identify the growth and end products on sugar utilization. A metabolic steady state is
assumed on the metabolism, meaning that, the metabolic pathway flux leading to the
formation of the metabolite and that leading to the degradation of a metabolite must balance.

This generates the flux balance equation.

S-v=b )



where S is a matrix comprising the stoichiometry of the catabolite reactions, Vis a vector
of metabolic fluxes, and b is a vector containing the net metabolic uptake by the cell. The
number of metabolic reaction rates (also called; fluxes) normally exceeds the number of
metabolites. Therefore, there is a plurality of solutions. A particular solution may be found by
using linear optimization by stating an objective and searching its maximal value within
stoichiometrically defined domain. In other words, optimization of the growth rate will
determine the specific metabolic pathway utilization in the organism (Varma & Palsson,

1994a, b).

Upon this approach, certain constraints can be imposed to the biochemical reaction
network to limit cellular possible behaviors. These physicochemical constraints are used to
define a closed solution space within which the steady-state solution to the flux vector must lie
(Palsson, 2000). The constraints can be coming from thermodynamic limitations (e.g. effective
irreversibility of a given reaction due to an extremely high equilibrium constant), capacity

limitations (e.g. maximum uptake rate for a given transport protein), or experimental data.
a <v, <p (2)

o; or B; may be set to zero or to another finite value to constrain the direction or

magnitude of a flux.
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Figure 2.1. Constraints-based analysis of metabolic networks in geometrical term

(Covert et al., 2001)

Figure 2.1 depicts metabolic network in geometrical terms. By imposing the constraints,

the solution space is bounded to a convex subset.



Some representative works on either metabolic flux analysis or flux balance analysis are
given in Table 2.1 and 2.2. The metabolic system, aim of the work, constraints and auxiliary

variables are tabulated for comparison.

Table 2.1. Representative studies in MFA and FBA

MAJEWSKI and
DOMACH, 1990

14 metabolic reactions, 4 load fluxes.

Optimal production of high-energy phosphate bonds on ATP and GTP.
Enzymatic capacity constraints and electron transport chain constraints.
The onset of acetate overflow and the rate of acetate production.

FBA

NEIDHARDT,
1987-1990

Reconstruction of E. coli metabolic network contained both anabolic and
catabolite reactions (53 catabolic reactions and 94 biosynthetic reactions).
Optimal production of cofactors (ATP, NADPH, NADH), optimal
production of metabolic precursors (Pryuvate or Succinate).

Energy, redox or stoichiometric constraints.

Maximal theoretical yields for amino acid and nucleic acid, optimal flux
distributions for biomass constituents.

FBA

NISSEN, 1997

37 pathway reactions involving 43 compounds.

Anaerobic metabolism of Saccharomyces cerevisiae.

Intracellular fluxes based on measurements of the uptake of substrates
from the medium, secretion of products from the cells, and of

the rate of biomass formation are calculated.

Production rates of malate and fumarate are calculated.

MFA

PRAMANIK and
KEASLING,
1997-1998

317 reactions and 305 metabolites.

Optimal growth rate.

Equations relate growth rate to biomass requirments.
The biomass composition varies with the carbon source.
Aerobic growth on acetate plus glucose.

FBA

GULIK, 1999

Growth and penicillin-G production in Penicillium Chrysogenum.
Potential bottlenecks nodes for increased productivity.

Stoichiometric model for yeast (Cytosol, mitochondrion, peroxisome;Van
Gulik and Heijnen, 1995).

MFA

EDWARDS
and PLASSON,
1999

Metabolic capabilities of Haemophilus influenzae.

488 metabolic reactions operating on 343 metabolites.

Six different optimal metabolic phenotypes are obtained on different
constraining features.

Redundant functions under defined functions are also studied.

FBA

RAMKRISHNA
and PALSSON,
1999

Mitochondrial energy metabolism.

Systemic stoichiometric constraints.

Optimal flux distributions for maximal ATP production in the
mitochondrion are characterized.

Metabolic behaviour due to genetic deletions at the metabolic level is
characterized.

Glycolytic pathways, TCA cycle, and the electron transport system (ETS)
are modeled for mitochondria.

FBA




Table 2.2. Representative studies in MFA and FBA (Cont’d)

720 reactions and 436 metabolites (Glycolysis, TCA cycle,

pentose phosphate pathway, respiration, anaplerotic reactions,
fermentative reactions, amino acid biosynthesis and degradation,
nucleotide biosynthesis and interconversions, fatty acid biosynthesis and
degradation phospholipid biosynthesis cofactor biosynthesis and
metabolite transport).

EDWARD and In silico gene deletions and growth characteristics of a series
PALSSON, 2000 | of E. coli mutants on several different carbon sources. FBA

E. coli MG1655 metabolic network is used to obtain quantitative
genotype-phenotype relationship.
Reconstruction of complete metabolic network from annotated genome

sequence.
EDWARDS and Optimal performance of a metabolic network under a range of growth
IBARRA, 2001 conditions. FBA

113 metabolic reactions (45 of which are regulated by 16 regulatory
proteins), 149 genes.

COVERT and Transcriptional regulation incorporated.

PALSSON, 2002 | The genes can be either on or off (Boolean Logic). rFBA

400 reactions for the primary and secondary

metabolism of Streptomyces coelicolor.

Some of the factors affecting growth and production of

calcium dependent antibiotic (CDA) investigated.

Optimal (maximized) specific growth rates for different growth phases of
KIM and the batch.

MAVITUNA, Maximization of the specific CDA production rate. MFA/
2004 Experimental specific growth and glucose uptake rates are constraints. FBA

2.1.2. Minimization of Metabolic Adjustment (MOMA)

Minimization of Metabolic Adjustment (MOMA) is a method for the prediction of
phenotypes of knocked-out (mutant) organisms (Segre et al., 2002). Metabolic Flux Analysis
looks for the flux distribution that maximizes the growth rate. However, MOMA searches for
the distribution that is closest to wild-type strain one. It uses the same stoichiometric

constraints as MFA, but it does not find the optimal growth flux for gene deletions.
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Figure 2.2. Optimal solution of wild-type strain and MOMA result (Segre et al., 2002)

The size of the feasible solution space will be reduced (Figure 2.2) because the reactions
associated with the knocked-out gene are constrained to zero. The flux distribution of the
wild-type organism (denoted w) will reside outside the feasible solution space. MOMA
employs quadratic programming to identify a point in flux space, which is closest to the wild-
type point (denoted v), compatibly with the gene deletion constraint. In MOMA, in contrast to
FBA, the objective function does not explicitly depend on biomass production. The goal is to

find the vector v such that the Euclidean distance is minimized as shown in Eq. (3).

D(W,)C)ZWIZ(Wi—)Ci)Z (3)

If a solution for the wild-type FBA problem w exists, and if the solution space of the
knocked-out type is not empty (i.e., knocked-out genes constraints set to zero is compatible

with the other constraints), then a solution to this problem always exists.

The prediction of essential genes in E. coli central carbon metabolism, comparison with

measured growth performance of insertional mutants and comparison with experimental flux



measurements of an E. coli pyruvate kinase knockout (Segre et al., 2002) have been examined

by Minimization of Metabolic Adjustment method.
2.1.3. Regulatory on/off Minimization (ROOM)

Regulatory On-Off Minimization (ROOM) is a constraint-based algorithm for predicting
the behavior of metabolic networks in response to gene knockouts (Ruppin et al., 2005). It
aims to minimize the number of significant flux changes (hence on/off) with respect to the
wild type. The regulatory system governs a series of transient metabolic changes that converge
to a steady-state condition. ROOM also shows its ability to correctly identify alternative
pathways for reactions associated with the knocked-out genes, thus strengthening its biological
plausibility. ROOM outperforms MOMA in predicting intracellular fluxes and gene knockout

lethality in mutated E. coli and the S. cerevisiae strains, respectively.

ROOM has been tested to predict metabolic fluxes for five different E. coli knockouts:
pyruvate kinase (pyk), phosphoglucose isomeras (pgi), glucose 6-phosphate 1-dehydrogenase
(zwf"), 6-phosphogluconate dehydrogenase (gnd), and phosphoenolpyruvate carboxylase (ppc)
under growth conditions (Ruppin et al., 2005). It was aimed to compare the results with the
experimental findings and with the predictions of FBA and MOMA. ROOM’s flux predictions

are either equal to or more accurate than its contemporaries.

2.2. Dynamic Metabolic Modeling Method

MFA can be used in dynamic modeling even though it is based on a steady-state
assumption. The biomass growth is performed in a batch culture. Because the time constants
which describe metabolic transients and metabolic reactions are fast (on the order of milli-
seconds to seconds) as compared to the time constants associated with cell growth (on the
order of hours to days) and regulation (on the order of tens of minutes), the system may be
treated by only considering the steady state behavior inside the cell and the dynamic behavior

in the medium outside of the cell (quasi-steady state assumption).
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Figure 2.3. Time courses of aerobic growth on glucose and acetate reuptake (Covert, 2002)

The experimental time is divided into several small time steps. MFA is used to
determine the steady state metabolic flux distribution for the given time interval. Then,
substrate uptake, by-product secretion, and biomass growth are determined by solving the
relevant differential equations. The new conditions of the system are the FBA inputs for the
next time step (Varma, 1994a,b). The relevant differential equations to determine

concentrations for each time step are;

i—fzﬂX%X:Xo-e”A’ 4)

B, X oS, =S+ X 1) )
ot u

Where X is the cell density, W is the growth rate, S, is the substrate uptake rate, S, is the

substrate concentration and S, is the previous step substrate concentration.
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Sugar substrates and by-products are all considered as substrates that can be used by
cells. As a result of implementing the above set of equations, the solution yields time profiles

of biomass, substrate and extracellular products such as shown in Figure 2.3.

In another dynamic modeling study (Provost et al, 2004), the metabolic network is
divided into two groups of nodes; boundary nodes, extracellular metabolite, and internal
nodes, intracellular metabolite. Boundary nodes can be further separated into initial and
terminal nodes. Initial nodes correspond to the external substrates that are consumed but not
produced. Terminal nodes correspond either to extracellular products released in the culture

medium or intracellular products which form the cellular material during the growth.

The main purpose in the dynamical modeling is to combine macroscopic dynamical
model with metabolic flux analysis. The elementary flux modes are computed and translated
into a set of macro-reactions connecting the extracellular substrates and products (boundary
and internal nodes). Then, a dynamical model, which is compatible with the underlying
metabolic network, is build on the basis of these macro-reactions (Provost and Bastin, 2004).
During the growth of the cells, the internal metabolites are supposed to be at quasi-steady
state. Mass balance equations related to a fictional metabolic network, depicted in Figure 2.4

were written as follows;

& ©)

%z—v‘vX 7)

M=N-V-X (8)
dt

%ZVPX 9)

where

¢ denotes mass fractions of the intracellular metabolites inside the cells.
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N denotes corresponding stoichiometric matrix.
p denotes terminal extracellular or intracellular product.
s denotes extracellular substrate.
X denotes cell density.
| denotes specific growth rate.

Vvp denotes vector of the specific accumulation rates for intracellular products or

excretion rates for extracellular products.
Vs denotes vector of the specific uptake rate.

From the experimental data, the specific uptake and excretion rates (Vs and Vp) are
computed by linear regression during the growth phase. The steady state flux balance
equations at the internal nodes of the network are expressed as N.v = . By eliminating the
internal metabolites between the reactions, the set of fundamental macro-reactions that
connect the extracellular substrates and the end-products is obtained. Coupled with the steady
state flux balance equations, the set of mass balance equations are solved. A simple fictional
metabolic network is given in Figure 2.4. C denotes intracellular metabolite, S denotes

extracellular substrate and P denotes terminal extracellular or intracellular product.
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Figure 2.4. A simple fictional metabolic network (Provost and Bastin, 2004)

The proposed approach had been illustrated with the example of Chinese Hamster Ovary
(CHO) cell metabolism. This has been proposed to provide a firm basis for the design of
online monitoring and optimization of cell culture processes (Provost and Bastin, 2004). In
particular, the underlying metabolic basis of the model could be helpful in determining how to

alter the culture environment so as to achieve robust control and maintain optimal conditions.

2.3. Regulatory Metabolic Flux Analysis Using Boolean Logic

Metabolic flux balance analysis does not include transcriptional regulation meaning that
all gene products in the metabolic reaction network are assumed to be available to contribute
to an optimal solution. These regulations, which are biological in origin, are self-imposed
regulatory constraints by the organism and the high level transcriptional regulation can have a
significant effect on the cell behavior. The transcriptional regulatory structure and its resulting
transcribed protein or enzyme has been described using Boolean logic equations (Covert. et
al.,, 2002). This approach involves restricting expression of a transcription unit (meaning;
transcribed enzyme or regulatory protein) to the value 1 if the transcription unit is transcribed
and O if it is not. Similarly, the presence of certain conditions inside or outside of the cell may

be expressed as 1 if a certain condition is present and O if it is not.



14

In geometrical term, regulation imposes temporary, adjustable constraints on the

solution space.

(a)

Figure 2.5. Regulatory constraint-based geometrical analysis of metabolic networks

(Covert et al., 2001)

Regulatory constraints change the shape of the solution space. Figure 2.5 (a) shows
constraint based analysis of MFA with non-adjustable constraint. The flux through a certain
reaction may be constrained by a transcriptional regulatory event. Therefore, the size of the
solution space is reduced. In this case, the optimal solution may either be in the reduced
solution space (Figure 2.5 (b)) or may not be (Figure 2.5 (c)) where new solution will be

determined that is, new behavior will be searched by the cell.

As an example, the formalism of the Boolean logic has been applied to carbon
uptake/catabolic repression in an organism. The organism can prefer one sugar source to
another. The presence of one sugar source in the extracellular medium can inhibit the transport
of the other through the cell membrane (diauxie on two carbon sources). Therefore, the

resulting undesirable transport flux will be zero in FBA.
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Figure 2.6. Metabolic network for central metabolism in Escherichia coli used in the

calculations (Covert, 2002)

A regulatory metabolic network having 149 genes, the products of which include 16
regulatory proteins and 73 enzymes, which catalyze 113 reactions was studied to determine
the ability of the model to make accurate phenotypic predictions (Covert, 2002). The analysis
of the combined metabolic/regulatory network using Flux Balance Analysis may be called
regulatory flux-balance analysis (fFBA). In the model, the synthesis of 43 of the enzymes is
controlled by transcriptional regulation and as a result 45 of the reactions to the system is
controlled by a logic statement. As an application of this model, the dynamic simulation of
growth under three environmental conditions, aerobic growth on glucose with acetate

reutilization, glucose fermentation, and a mixed aerobic glucose-lactose batch culture, are

described.
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Figure 2.7. Aerobic growth on glucose and lactose in Escherichia coli (Covert, 2002)

The results for aerobic growth of E. coli on glucose and lactose are given in Figure 2.7.
Experimental mixed batch culture, detailed kinetic model (Kremling et al., 2001), metabolic
flux balance analysis (FBA) model with/without regulation are all given together for
comparison. Regulatory FBA model predictions are in good agreement with the data,
comparable with the predictions made by the Kremling model, and far better than the
predictions of the stand-alone FBA model. Due to the concurrent uptake of glucose and
lactose, FBA predictions are far apart from the experimental data. Also, there is a much more
rapid depletion of the substrates and a higher growth rate. Interestingly, because of the larger
flux of carbon source uptake, the FBA model predicts that E. coli growth should be oxygen-
limited rather than carbon-limited. The time 4:51 designates the shift in gene expression point.

Lactose is utilized as a carbon source once the glucose in the medium has been depleted.



17

2.4. Genetically Constrained Metabolic Flux Analysis

Existing metabolic databases can be used to estimate metabolic fluxes. By adding or
removing the corresponding pathway(s), one can analyze the behavior of organism due to the
transcriptional regulation on the substrate uptake. A new framework on the regulation is
modeled that utilizes genomic and metabolic databases, including available genetic/regulatory
network structures and gene chip expression data, to constrain metabolic flux analysis. The
genetic network consisting of the sensing/regulatory circuits activate or deactivate a specific
set of genes in response to external stimulus. The activation and/or repression of this set of
genes result in different gene expression levels that change the structure of the metabolic map.
The adaptation to the external stimulus can be driven to the sub network from the pool of
feasible reactions. The Escherichia coli oxygen and redox sensing/regulatory system has been
modeled for metabolic pathways controlling of glycolysis and the TCA cycle (Cox et al.,
2005).

The analysis scheme is an extension of the traditional regulatory FBA. It includes the
regulatory network shown in Figure 2.8. Two new components, ‘‘genetic network’’ and
“‘expression pattern’’ shown inside dashed box, which were designed to capture any changes
in the metabolic pathways in response to environmental variation, were included (San et al.,

2003).

The critical genetic network component was constructed from existing gene regulation
knowledge in the literature and was supplemented with gene expression patterns from gene
chip expression analysis experiments. The metabolic map was generated by the existing

pathway data bases (KEGG Metabolic Pathways).
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Figure 2.8. Schematic of genetic network assisted flux balance analysis (Cox et al., 2005)

The central metabolism network pathways were included that are active in either aerobic
and anaerobic conditions. The environment (via O,) was perturbed in the gene network by
FNR and ArcA/B. The regulatory impact of the transcription factors, FNR and ArcA/B was
illustrated on extreme cases of either purely aerobic or anaerobic. In these two conditions,
related genes are either “on” or “off” so, gene activity was modeled by Boolean variables. In
particular, ArcA and FNR are “on” in the absence of oxygen. A small network was formed

with two enzymes directing the flow of 7 metabolites.
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Figure 2.9. A small sub-network demonstrating cause and effect of the aerobic/anaerobic

switch (Cox et al., 2005)

The master stoichiometric matrix encodes 25 possible reactions between 16 potential
intermediates. When this underdetermined system was solved by FBA, the original 25 variable
problem was reduced to a 10 variable problem. The environment, acting through the gene net,
placed further constraints on metabolism. Namely, in the absence of oxygen some reactions
were inactivated. The dimension of the stoichiometric matrix has been changed by the

activation and deactivation of the gene expression.
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3. DIFFERENTIAL EQUATION MODELS

3.1. Signal-Oriented Approach in Using Differential Equation Models

A global signal transduction system has been used to describe carbon catabolite
repression in E. coli is given in the below figure (Kremling et al., 2001). As shown in this
figure, the system includes the phosphoenolpyruvate (PEP)-dependent glucose
phosphotransferase system (Glc-PTS), the synthesis of name cAMP, and the interaction of the
name cAMP.CrpA complex with the specific DNA binding sites.

global :IgnalFansﬂmtlnn sysiem

+ wptl _-mnyn |
| |
- PTS | p_gna| Cva |camp| CP
—I—- S .
Gie | - — —
o o] Vi | e
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Figure 3.1. The elements of the crpA-modulon (Kremling et al., 2001)

The model is aggregated from two functional units describing glucose and lactose
transport and degradation. Both units are members of the crp modulon and are under the
control of a global signal transduction system which calculates the signals that turn on or off

gene expression for the specific enzymes.

In this contribution a mathematical model describing glucose and lactose uptake and

metabolism was introduced by the current biological knowledge about the systems under
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consideration. A subset of parameters related to glucose and lactose transport was estimated
based on the measurements of biomass, extracellular glucose and lactose, and LacZ activity. A
dynamic model was used to predict the growth behavior as well as the induction of genes and
enzymatic activities very well. The model presented was used to simulate time courses of
some variables that are difficult to measure but nevertheless essential toward an understanding
of the system function. Influence of preculture on glucose-lactose diauxie was also

investigated.

Although the preculture greatly influences the induction status of the genes of interest,
there was no effect on the production of biomass and on the usage of carbohydrates (Kremling
et al., 2001). No matter which carbohydrate is present in the preculture (glucose or lactose)
and regardless of preinduction of the lac operon, glucose is preferred in mixed cultures with
glucose and lactose. As shown in Figures 3.2 and 3.3, the sugar consumption and biomass

production are nearly identical.

Calculated EIIA, P~EIIA, cAMP, intracellular lactose, allolactose, and GIlc6P, in
addition to the measured data which was taken for the glucose preculture medium are given in
Figure 3.2. As expected for the glucose phase, protein EIIA is mainly unphosphorylated. The
lactose phase exhibits an interesting dynamics. Since intracellular glucose is also
phosphorylated by the PTS, EIIA becomes again more and more unphosphorylated after a
very quick drop in EIIA. The quick drop in EITA phosphorylation state can be explained by
the run out of glucose. The relatively slow rise of the phosphorylation state afterward reflects
induction of the /ac operon which leads to increased uptake of lactose and thereby to increased
production of intracellular glucose 6 phosphates. The concentration of cAMP rises very fast,
reflecting the drop in P~EIIA, and due to the high value of the degradation parameter, it drops
down afterward. With increasing concentration of P~EIIA in the end of the growth phase,
cAMP rises again. a low level of allolactose is synthesized from the beginning which leads to

a small increase of LacZ in the glucose phase.
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Figure 3.2. Diauxic growth of glucose and lactose with glucose preculture in Escherichia coli

Figure 3.3. Diauxic growth of glucose and lactose with lactose preculture in Escherichia coli
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3.2. Simple Ordinary Differential Equation (ODE) Model

In studying biological behavior of an organism, regulatory structure plays an important
role for its identification. In order to understand the metabolic regulation requires quantitative
information about the concentrations of enzymes, metabolites, nucleotides and cofactors. The
quantitative knowledge in combination with the known network of metabolic pathways allows
the construction of mathematical models that describe the dynamic changes in metabolite
concentrations over time. The constructed models will be high-dimensional systems of
ordinary, non-linear differential equations. The main problems of the approach are the
formation of the equations that describe the metabolic pathways in the form of kinetic rate
equations and the parameter identification of the system parameters. It is hard to find a
solution due to these model equations. A variety of pathway modeling software has been

developed for the model construction and analysis.

A model was defined for the regulation of induction and repression of lac operon in
E. coli (Wong et al., 1997). The model contained twelve ordinary differential equations
describing glucose transport through the cell, catabolite repression, induction and repression of
the lac operon, lactose transport through the cell, degradation of lactose and cell growth. The
parameters are collected from literature. The transient responses showed similar behavior to
experimental data. Slow growth between glucose and lactose utilization is observed. Two
possible models for the phosphorylation of internal glucose and catabolite repression were also

investigated.

A mathematical model for the regulation of induction in the Lac operon in E. coli was
also formulated (Yildirim and Mackey, 2003) to explain the dynamics of the permease
facilitating the internalization of external lactose, internal lactose, B-galactosidase, glucose and
galactose, the allolactose interactions with the lac repressor, and mRNA. The final model
consists of five nonlinear differential delay equations with delays due to the transcription and
translation process (dynamics of mRNA production, -galactosidase, allolactose, permease
productions and lactose). The parameters were determined from an extensive search of the

existing literature. The model had been tested against the experimental data of B-galactosidase
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activity versus time which gives changes after a step change from glucose to lactose growth
for E. coli (Pestka et al., 1984) and during periodic phosphate feeding which gives
-galactosidase concentration oscillations (Goodwin, 1969). Analytical and numerical studies
had indicated that for physiologically realistic values of the external lactose and the bacterial

growth rate, a regime existed where there might be bistable steady-state behavior.

A mathematical modeling work to show classical paradigms (Mackey et al., 2004) for
repressible and inducible operons of the tryptophan and lactose operons was presented. The
model described for lactose operon is more or less the same with their previous work
(Yildirim and Mackey, 2003). Some dilution rates and degradation terms of metabolites are
added to the set of equations and better results than the previous one are obtained. The
tryptophan operon is defined on a set of four nonlinear differential equations with delay for
mRNA polymerase, trp mRNA molecules with free TrpE related ribosome binding sites, the
enzyme anthranilate synthase, tryptophan concentrations. The model was solved numerically,
and the results compared with the respective experiments performed (Yanofsky and Horn,
1994) on wild-type bacterial cultures as well as trpL29 and trpL75 mutant strains of E. coli.

The model gave a reasonable qualitative agreement with the experimental results
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4. FUZZY LOGIC

The fuzzy theory began in the 1960s and a paper explaining fuzzy sets was published in
1965 (Zadeh, 1965). The theory is the foundation for computing with words. The point of
importance is the emphasis on precision in classical control theory. Therefore, the complex
(biological) systems cannot be handled. Mathematics of fuzzy or cloudy quantities, which are
not describable in terms of probability distributions, can define vague concepts. Using fuzzy
theory, a new approach (Fuzzy IF-THEN rules) to the analysis of complex systems and
decision processes was outlined for fuzzy control to formulate human knowledge (Zadeh,

1973).

In traditional set theory, membership of an object belonging to a set can only be one of
two values: 0 or 1. An object either belongs to a set completely or it does not belong at all. No
partial membership is allowed. However, there are countless vague concepts that humans can
easily describe, understand, communicate with each other but that traditional mathematics,
including the set theory, fails to handle in a rational way. The concept “young” is an example.
For any specific person, his or her age is precise. However, relating a particular age to
“young” involves fuzziness and is sometimes confusing and difficult. What age is young and
what age is not? The nature of such questions is deterministic and has nothing to do with

stochastic concepts such as probability and possibility (Yen and Langari, 1999).

4.1. Fundamentals of Fuzzy Logic

The introduction to fuzzy logic given in the following sections are summarized from the

books, Yen & Langari and Ying.

4.1.1. Fuzzy Set

A fuzzy set generalizes 0 and 1 membership values of a traditional set to a membership
function of a fuzzy set. Using the theory, one relates an age to “young” with a membership

value ranging from O to 1; 0 means no association at all, and 1 indicates complete association.
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One might think that age 10 is “young” with the membership value 1, age 30 with a
membership value 0.75, age 50 with membership value 0.1, and so on. That is, every
age/person is “young” to a certain degree. The fuzzy set (Figure 4.1) is called membership
function of the fuzzy set “young”. Usually, the membership or characteristic function is

denoted by the Greek lower-case letter L.

Membership

Y o
0 T T T T T T g g * 1

0 10 20 30 40 50 60 70 80 90 100
Age (year)

Figure 4.1. A possible description of the vague concept “young” by a fuzzy set

People have different views on the same (vague) concept. Fuzzy sets can be used to
easily accommodate this reality. Some people might think age 50 is “young” with membership
value as high as 0.9, whereas others might consider that 20 is “young” with membership value
merely 0.2. Different membership functions can be used to represent these different versions
of “young”. Not only do people have different membership functions for the same concept, but
even for the same person, the membership function for “young” can be different when the
context in which age is addressed varies. A 40 year old president of the country would likely
be regarded as young, whereas a 40 year athlete would not. Two different fuzzy sets “young”

are needed to effectively deal with the two situations.

A fuzzy set can be defined in two ways: (1) by enumerating membership values of those
elements in the set (completely or partially), or (2) by defining the membership function

mathematically.
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4.1.2. Designing Membership Functions

The crucial question is; “How would the exact shape of the membership function for a
fuzzy set be determined?” The important thing about membership function is that it provides a

gradual transition from regions completely outside a set to regions completely in the set.

A membership function can be designed in three ways: (1) Interview those who are
familiar with the underlying concept and later adjust it based on a tuning strategy. (2)
Construct it automatically from data; (3) learn it based on feedback from the system

performance.

The parameterizable membership functions most commonly used in practice are the
triangular membership function and trapezoid membership function. The former has three

parameters and the latter has four parameters.

Simplicity is the main advantage of triangular and trapezoidal membership functions. A
membership function is intended to approximate a smooth transition between two regions (the

region outside the set and that inside the set).

To summarize, the following guidelines for the membership function design is used.

1. Always use parameterizable membership functions. Do not define a
membership function point by point.

2. Use a triangular or trapezoidal membership function, unless there is a good
reason to do otherwise.

3. If you want to learn the membership function using neural network learning
techniques, choose a differentiable (or even continuous differentiable)

membership function (e.g., Gaussian)

The membership functions of an input variable’s fuzzy sets should usually be designed
in a way such that the following two conditions are satisfied: (1) each membership function
overlaps only with the closest neighboring membership functions; (2) for any possible input
data, its membership values in all relevant fuzzy sets should sum to 1 (or nearly so). These

conditions are usually represented as:
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The three fundamental operations in classical sets are union, intersection, and
complement. The union of two sets A and B (denoted as AUB) is the collection of those
objects that belong to either A or B. the intersection of A and B (denoted as ANB) is the
collection of those objects that belong to both A and B. The complement of a set A (denoted
as A and A) is the collection of objects that belonging to A.

4.1.3. Tools for Implementing Fuzzy Logic Applications

There are several companies that market hardware and software packages for developing
fuzzy logic applications in the late 1980s and early 1990s. Even though these companies had
some initial success, several did not survive through the mid- 1990s. This is partially due to
the fact that vendors of conventional control design software such as MathWorks started
introducing add-on toolboxes for designing fuzzy systems. The Fuzzy Logic Toolbox for

MATLAB was introduced as an add-on component to MATLAB in 1994.

4.2. Basics of Fuzzy Rules

A fuzzy if-then rule is a knowledge representation scheme for capturing knowledge
(typically human knowledge) that is imprecise and inexact by nature. This is achieved by
using linguistic variables to describe elastic conditions (i.e., conditions that can be satisfied to

a degree) in the “if part” of fuzzy rules.

The main feature of fuzzy rule-based inference is its capability to perform inference
under partial matching. That is, it computes the degree the input data matches the condition of

arule.
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4.2.1. Fuzzy Rule-Based Inference

The algorithm of fuzzy rule-based inference consists of three basic steps and an

additional optional step.

1. Fuzzy Matching: Calculate the degree to which the input data match the
condition of the fuzzy rules.

2. Inference: Calculate the rule’s conclusion based on its matching degree.

3. Combination: Combine the conclusion inferred by all fuzzy rules into a
conclusion.

4. (Optional) Defuzzification: for applications that need a traditional output (e.g.,
in control systems), an additional step is used to convert a fuzzy conclusion into

a discrete one.
Fuzzy Matching can be explained in terms of an example discussed below.

The degree to which the input target variables (V) satisfies the condition of rule R3
“target temperature is Low” is the same as the degree to which the input target variable

belongs to the fuzzy set Low.

MatchingDegree(V, R3)=1

9__9

where”’=" represents assignment (not equality test)

MatchingDegree(V, R3)=Uigh

The variable V is 0.2 Low (#4,,) and 0.8 High (#i,s) at the value of 60 as shown in
Figure 4.2. The sum of two membership functions at the value 60 is equal to unity (Eq. 10)
and the two membership functions do not overlap on the other (Eq. 11). When an input is
entered to fuzzy inference system, it is matched to a degree of any fuzzy set, initially. There

are two fuzzy sets in this example (i.e., Low and High).
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Figure 4.2. Fuzzy matching for simple conditions of variable V

When a rule has multiple conditions combined using AND (conjunction), a fuzzy
conjunction operator to combine the matching degree of each condition is used. The most
commonly used fuzzy conjunction operators is the min operator or the product (i.e.,

multiplication) operator.

After the functional mapping relationship between inputs and outputs has been
performed, a fuzzy inference step is invoked for each of the relevant rules to produce a
conclusion based on their matching degree. How should the conclusion be produced? There
are two methods: (1) the clipping method and (2) the scaling method. Both methods generate
an inferred conclusion by suppressing the membership function of the consequent. The extent
to which they suppress the membership function depends on the degree to which the rule is
matched. The lower the matching degree, the more severe the suppression of membership

function will be.

The clipping and scaling methods produce their inferred conclusion by suppressing the
membership function of the consequent differently. The clipping method cuts off the top of the
membership function whose value is higher than the matching degree. The scaling method

scales down the membership function in proportion to the matching degree.
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Figure 4.3. The clipping method for fuzzy inference
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The fuzzy inference is exemplified in Figure 4.3 and 4.4. The matching degree of the
input 60 is 0.8 High. After the mapping between inputs and outputs has been performed, the
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conclusion (output) is a membership function belonging to a fuzzy set. The difference of fuzzy
inference to a conclusion between scaling and clipping methods can be seen easily. The

clipping method of inference is used for the calculation in this work.

The two steps in fuzzy inference described so far enable each fuzzy rule to infer a fuzzy
statement about the value of the consequent variable. Because a fuzzy rule-based system
consists of a set of fuzzy rules with partially overlapping conditions, a particular input to the
system often “triggers” multiple fuzzy rules (i.e., more than one rule will match the input to a
nonzero degree). Therefore, a third step is needed to combine the inference results of these

rules. This is accomplished typically by superimposing all fuzzy conclusion about a variable.
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Figure 4.5. Combining fuzzy conclusions inferred by the clipping method



33

12

208
[
S5

s 04

0z

a 1

o7

0 2 30 4 0 80 70 _ 80
=
06 0.2
= 05 0+ + ¥ T T T T T »
% 04 0 0 20 30 4 0 60 70 80
o
0 2 30 4 S 6 70 80
N

5
'Ena
= g2

01

0+
a 1

Figure 4.6. Combining fuzzy conclusions inferred by the scaling method

Combining fuzzy conclusions through superimposition is based on applying the max

fuzzy disjunction operator to multiple possibility distributions of the output variable.

In Figures 4.5 and 4.6, combining fuzzy inference conclusions by scaling and clipping
methods are explained. Every fuzzy set for an input is mapped to a conclusion of an output. In

order to evaluate the result, all fuzzy conclusions must be combined through superimposition.

For a fuzzy system whose final output needs to be a crisp (nonfuzzy) form, a fourth step
is needed to convert the final combined fuzzy conclusion into a crisp one. This step is called

the defuzzification.

There are two major defuzzification techniques: (1) the Mean of Maximum (MOM)
method and (2) the Center of Area (COA) or the centroid method. The mean of maximum
defuzzification calculates the average of all variable values with maximum membership
degrees. However, center of area defuzzification calculates the center of the whole shape

formed after the superimposition of all conclusions.

The crisp output is formed either MOM or COA as shown in Figures 4.7 and 4.8. The

center of area is used in this work to have a conclusion in nonfuzzy form.
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Figure 4.8. An example of COA defuzzification

4.2.2. Types of Fuzzy Rules

There are two types of fuzzy rules: 1) fuzzy mapping rules, and 2) fuzzy implication
rules. A fuzzy mapping rule describes a functional mapping relationship between inputs and
an output using linguistic terms, while a fuzzy implication rule describes a generalized logic
implication relationship between two logic formulas involving linguistic variables and
imprecise linguistic terms. The types of fuzzy rules are related to different disciplines. Fuzzy
mapping rules are related to functional approximation techniques in system identification and

artificial neural networks, whereas fuzzy implication rules are related to classical two-valued

logic and multi-valued logic.
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Fuzzy Mapping Rules

In many real-world problems, one is interested in finding the functional relationship
between a set of observable parameters and one or multiple parameters whose values are not
known. Indeed, fuzzy logic tools use rules of this type to approximate a mapping (typically
nonlinear) from the observed state to a desired control or regulatory action. The needs to
approximate a function of interest are often due to one or more of the following reasons. First,
the mathematical structure of the function is not precisely known, but the structure is known.
One could use various parameter identification techniques to find the parameters. Second, the
function is so complex that finding its precise mathematical form is either impossible or
practically unfeasible due to its high cost. Third, even if finding the function is not impractical,
implementing the function in its precise mathematical form in a product or service may be too

costly.

The entire function is approximated by a set of fuzzy mapping rules. The inference (i.e.,
mapping) for this type of rule is always in forward direction. The main difference between
fuzzy rules and non-fuzzy rules for function approximation lies in their “interpolative
reasoning” capability, which allows the output of multiple fuzzy rules to be fused for a given
input. Function approximation technique is classified in three categories: global techniques,
superimposition techniques, and partition based techniques. The global techniques
approximate a function globally using one mathematical structure (e.g., linear, second order
polynomial). The issue of the technique lies in finding the suitable model structure for a given
problem. The superimposition techniques approximate a function by superimposing a function
of a given form (e.g., Taylor expansion). The partition-based approximate techniques
approximate the function by partitioning the input space of the function and approximate the

function in each partitioned region separately (e.g., piecewise linear approximation).
Fuzzy Implication Rules

Fuzzy implication rules are a generalization of “implication” in two-value logic. Their
aim is to mimic human reasoning in its ability to reason with ideas or statements that are

imprecise by nature. Even though it is obvious that human beings perform certain kinds of
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approximate reasoning, it is unclear how one can characterize such a reasoning process due to
our present limited understanding of the human reasoning process to date. Consequently, there
has not been imagined a unique set of desired properties for fuzzy implication rules. Rather,
several sets of desired properties have been developed. Even though, the set of desired
properties are not unique, they are useful for comparing different reasoning schemes using
fuzzy implication rules. It is important to point out this “non uniqueness” aspect of fuzzy
implication, because it is in sharp contrast with many other techniques in science and

engineering that were built on a set of well defined axioms, properties, or principles.

The inference of fuzzy implications generalizes two kinds of logic inference using the

implications in classical logic: modus ponens and modus tollens. As an example;

IF a person’s IQ is high THEN the person is smart.

Modus ponens, “Jack’s 1Q is high”, is a given implication or fact and enables us to infer
modus tollens “Jack is smart”. Also, the implication and fact “Jack is not smart” can be given

to infer “Jack’s IQ is not high”.

These if-then rule statements are used to formulate the conditional statements that

comprise fuzzy logic. Another example can be given as;

IF service is good THEN tip is average.

Good is represented as a number between 0 and 1, and so the modus ponens is an
interpretation that returns a single number between 0 and 1. In general, the input to an if-then
rule is the current value for the input variable (in this case, service) and the output is an entire
fuzzy set (in this case, average). This set will later be defuzzified, assigning one value to the
output. Interpreting an if-then rule involves distinct parts: first evaluating the modus ponens
(which involves fuzzifying the input and applying any necessary fuzzy operators) and second

applying that result to the consequent (known as implication).

The modus ponens of a rule can have multiple parts.

IF sky is gray and wind is strong and barometer is falling, THEN...
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All parts of the antecedent are calculated simultaneously and resolved to a single number

using the logical operators (AND, OR etc.).

The consequent (modus tollen) of a rule can also have multiple parts. All consequents

are affected equally by the result of the modus ponen.

IF temperature is cold THEN hot water valve is open AND cold water valve is shut.

The degree of support is used for the entire rule to shape the output fuzzy set. The
consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set is
represented by a membership function that is chosen to indicate the qualities of the
consequent. If the antecedent is only partially true, (i.e., is assigned a value less than 1), then

the output fuzzy set is truncated according to the implication method.

4.3. Fuzzy Logic Applications in Biological Systems

Recent technological advances in huge data collection give biologist the ability to study
complex systems. To develop and test biological models based on experimental observations
and predict the effect of perturbations of the network, a biological pathway can be modeled in
two general categories; a logical network and chemical reaction network. Boolean logic
models cannot represent necessary biological details. Chemical kinetics simulations require

large numbers of parameters that are very difficult to accurately measure.

Fuzzy Logic has been successfully used in some mathematical modeling of biological
systems. One of these is the enzyme kinetic modeling (Lee et al., 1999) which is the one that
accounts for metabolite effects that contribute significantly to the regulation of enzyme
activity. In order to incorporate the effect of metabolite effector to the three enzyme kinetic
equations of E. coli central metabolisms (phosphoenolpyruvate carboxylase,
phosphoenolpyruvate carboxykinase, and pyruvate kinase I), a strategy using fuzzy logic-
based factor was used. The use of fuzzy logic in phosphoenolpyruvate carboxylase

metabolism was described as follows;
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E. coli phosphoenolpyruvate carboxylase (PPC) catalyzes the carboxylation of
phosphoenolpyruvate (PEP) to form oxaloacetate (OAA). The reaction rate of PPC is

formulated as:

[PEP]

V.=V, ———— 12
ppc ppc’ m Km +[PEP] ( )

The rate constant V,, is modulated by the two activators; acetyl-CoA (ACoA) and
fructose 1,6-diphosphate (FDP). K, is the parameter and [ ] is the concentration. Oy, captures

the various activation effects of ACoA and FDP by the following fuzzy rules.
If [ACoA] is LOW and [FDP] is LOW, then o4,pc = ¢;
If [ACoA] is LOW and [FDP] is HIGH, then 0, = ¢2
If [ACoA] is HIGH and [FDP] is LOW, then 0,pc = ¢3
If [ACoA] is HIGH and [FDP] is LOW, then Oy, = ¢4

c1, ¢2, 3, and cs are parameters to be optimized with respect to experimental data.
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Figure 4.9. Membership functions of the fuzzy sets for PPC modeling (Lee et al., 1999)

The membership functions of the fuzzy sets (i.e., LOW and HIGH), shown in
Figure 4.9, were chosen based on experimental data. The fuzzy logic IF-THEN rules stated
above are conceptually clear and can be readily generalized. By setting the rules, the

parameters c;.4 can be obtained from the rules and their respective membership function.

Another modeling and simulation of gene regulation was studied on /ac operon of E. coli

(Sokhansanj and Fitch, 2001).
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Figure 4.10. Model of lac operon regulation (Sokhansanj, 2001)

Union Rule Configuration (URC) in the fuzzy rule base was utilized to describe the
system. In the linear (URC) fuzzy logic scheme, there are distinct fuzzy rules for each
individual input to a given output. Then, the fuzzy rules are combined with the logical
statement of “OR”. The system consists of four genes and a number of protein binding sites
clustered near each other in E. coli chromosome. The genes and their protein products are lacl
(lac repressor), lacZ (B-galactoside permease) and lacA (not involved in lactose regulation).
When RNA polymerase (RNAP) binds to the promoter of the gene (P(lacl) and P(lacZY)), it
catalyzes its transcription. Promoters have different binding strengths. The rule IF (promoter
strength) THEN (protein production) refers to the absolute promoter strength independent of

any other regulatory activity.

The model for lac operon in E. coli is the prototype for most genetic regulatory systems
in bacteria. It involves a group of genes regulated together by one or two stimuli. Lactose is
used secondly as a carbon source after glucose is depleted. The proteins and sugars are all
fuzzified on different domains and URC fuzzy rule base for the lac operon was constructed
given in Table 4.1. However, a clear result indicating the effectiveness of the model was not

described in this paper.



Table 4.1. Table of URC fuzzy rule base for lac operon (Sokhansanj, 2001)

IF VL | LO | ME | HI | VH
lacl production
P(lacl) strength VL LO ME HI VH
lacl activit
lacl production VL LO ME HI VH
lactose (in cell) VH ME LO LO VL
protease VH HI HI LO VL
cAMP activity
glucose VH | HI | ME | LO | VL
lacY, lacZ production
P(lacZY) strength VL LO ME HI VH
lacl activity VH HI LO LO VL
cAMP activity VL LO HI HI VH
lacY activity
lacy production VL LO ME HI VH
glucose VH HI ME LO LO
protease VH HI HI LO VL
lacZ activity
lacZ production VL LO ME HI VH
peotease VH HI HI LO VL
lactose (in cell)
lactose (outside
cell) VL LO ME HI VH
lacy activity VL LO ME HI VH
lacZ activity VH HI ME LO VL
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The genes and their protein products are modeled by IF-THEN rule based fuzzy logic.

The list can be read as;

(IF lactose (outside cell) is very low THEN lactose in the cell is very low) OR (lacY
activity is very low THEN lactose in the cell is very low) OR (lacZ activity is very high THEN

lactose in the cell is very low)
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A novel algorithm using fuzzy logic for analyzing gene expression data was developed.
A model to find activators, repressors, and targets in a yeast gene expression data set was
designed (Woolf and Wang, 2000). The algorithm can assist in determining the function of
uncharacterized proteins and is able to detect a substantially larger number of transcription
factors than could be found at random. In analyzing genetic expression data, the data was
transformed from crisp values to fuzzy values. Data was fuzzified by first normalizing the data

from O to 1, then the normalized value was broken up into various membership classes.

The three fuzzy sets used in this algorithm, “HL” “MED,” and “LO” as a function of the
normalized value is given in Figure 4.11. The three fuzzy sets HI, MED, and LO were chosen
after manually examining expression data and finding that the abundance of most transcripts

was high, medium or low.
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Figure 4.11. Fuzzy membership as a function of a normalized expression data

(Woolf and Wang, 2000)

Triplets of data were compared using a set of heuristic rules in the form of a decision
matrix given in Figure 4.12. Triplets were defined as the expression values of three different
proteins (A, B, and C) all taken at the same time point in the yeast growth cycle time series.
Fuzzified values of A and B are entered into this matrix, and at points where their predictions
overlap, a score is generated as the fuzzified value of predicted C. A fuzzy value for C can be
defuzzified back into a crisp number. The predicted expression values of C for each time point

in the time series were calculated.
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Figure 4.12. Decision matrix describing an activator (A) and a repressor (B) acting on a target

(Woolf and Wang, 2000)
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S. SUGAR UPTAKE REGULATION IN MICROORGANISMS

Every organism has a large number of genes and it is important to express them in the
right circumstances and in the right amount. Models of gene regulation in prokaryotic cells
lead to a better understanding of gene regulation in more complex eukaryotic cells. Generally,
prokaryotes need to regulate their gene expression temporally to accommodate for changing
environments. Microbial growth on mixtures of substrates is a classical problem of gene
regulation. Indeed, the molecular basis of gene regulation was discovered by studying the

diauxic phenomenon observed during growth of E. coli on a mixture of glucose and lactose.

An operon is a cluster of bacterial genes along with an adjacent promoter that controls
the transcription of the genes. The genes to be controlled coordinately are next to each other
on the DNA. The linked genes are transcribed as a unit to give one single mRNA. One mRNA
is made per operon, because all the genes in a cluster share a single promotor. Regulation is at
the level of transcription. The level of translation is controlled by regulating the synthesis of

mRNA. This is the usual method for regulation of protein synthesis in prokaryotes.

Repressible system and inducible system are the two major types of regulations. When
the end product of the system increases, it will shut off transcription of the coding region in
repressible system. In inducible system, the expression of genes depends on the presence or
absence of certain substances. In carbon catabolite repression (CCR), the expression of genes
required for the utilization of secondary sources of carbon is prevented by the presence of the
preferred substrate (Hillen, 1999). Actually, it enables the organism to increase its fitness by

optimizing growth rate in natural environments.

5.1. Lac Operon in Esherichia coli

The lac operon describes the regulation of lactose uptake in bacterium. The schematic
diagram of this operon is shown in Figure 5.1. Lactose is broken down into glucose and
galactose. There are very few molecules of the enzyme [B-galactosidase (coded for by lacZ

gene) in normal cells of E. coli when no lactose is present. When lactose is added to the
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medium, the concentration of this enzyme increases rapidly. Also, two other enzymes
increase: 3-galactoside permease (coded for by the lacY gene), B-galactoside acetyltransferase
(coded for by lacA). These three are the proteins involved in lactose metabolism in the E. coli
cell. Actually, B-galactosidase converts lactose into glucose and galactose, and the permease is
involved in transport of lactose across the membrane whereas, the function of B-galactoside
transacetylase is unknown. The three genes are all transcribed together by the same mRNA.
However, there is a regulatory molecule, the repressor (coded for by the lacl gene), which
interferes with the transcription of genes involved in lactose metabolism. It is also located

adjacent to the other three but its regulation is totally independent of the other lac genes.

Bacteria (E. coli) adapt to changes in their surroundings by using regulatory proteins to
turn groups of genes on and off in response to various environmental signals. Whenever
glucose is present, E. coli metabolizes it before using alternative energy sources such as
lactose, arabinose, galactose, and maltose. Lactose is not the preferred carbohydrate source for
E. coli. 1f lactose and glucose are present, the cell will use all of the glucose before

the lac operon is turned on. This is a type of regulation, called catabolite repression.

There are two binding sites for the promoter of the lac operon to be turned on. One site
is the location where RNA polymerase binds. The second location is the binding site for a
complex between the catabolite activator protein (CAP) and cyclic AMP (cAMP). To
prevent lactose metabolism, the binding of RNA polymerase and the complex must be

hindered.

The Lacl protein is a REPRESSOR that binds to the lacO sequence, which lies close to
the promoter. This prevents RNA polymerase accessing the promoter to transcribe the operon.
Inducer molecules can bind to the repressor and this causes a change in conformation so that it
no longer binds DNA. In E. coli, allolactose is an inducer molecule, which is produced from
lactose as a side reaction of -galactosidase in the conversion. Then, the RNA polymerase can
transcribe the operon and LacY, LacZ proteins are produced. Thus, presence of inducer

switches on the operon.
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Another control of the lac operon mediated by glucose is the binding of the
CAP-cAMP complex. If glucose is present the lac operon gets expressed to less than 5% of its
level in the absence of glucose. This turns out to be mediated by an intracellular signal of

cAMP. The presence of this complex is closely associated with the presence of glucose in the
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Figure 5.1. The scheme of lac Operon

cell. When the concentration of glucose increases in the medium, the amount of cAMP will
decrease. As the cAMP decreases, the amount of complex decreases. This decrease in the
complex inactivates the promoter, and the /ac operon is turned off. The CAP-cAMP exerts a

positive control over the expression of the /ac operon.

cAMP is synthesized from ATP by the membrane-bound enzyme adenylate cyclase.
Glucose is transported into the cell by a system that phosphorylates the glucose during
transport and has several membrane components. These react with adenylate cyclase and stop
its activity during glucose transport. Thus, when glucose is present there are low levels of
cAMP in the cell and the level rises when glucose is not present. The lac-promoter is actually
a very weak promoter when only RNA polymerase is present. However, catabolite activator
protein bounded by cAMP is strong promoter and stimulates a better transcription. Thus, there

is only good expression when there is no glucose present.
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5.2. Glucose Phosphotransferase System (PTS) in Escherichia coli

The purpose of the bacterial phosphotransferase system, is the specific uptake of sugars
into the cells, the sugars are transported uphill a concentration gradient with concomitant
phosphorylation. The phosphate donor is the 'energy rich' phosphoenolpyruvate (PEP). As
shown in Figure 5.2, the phosphate is transferred via the soluble (and non sugar specific)
enzymes EI and HPr to the enzyme complex EII. EIl is made up of the components A, B and
C, which according to sugar specificity and bacterium involved may be domains of composite
proteins. Component/domain C is the permease and anchored to the cytoplasmic membrane. In

the glucose PTS EIIA is a soluble protein, EIIB/C is membrane bound.
Glucose-6-phosphate
Fat
[GIpK] \
A
@ {:;Giruuuae

PEFP Q,\ A HPr-P
F’}fm‘ﬂmé\y EL-P D"« HPr

ATP

cAMP

Activation of catabaolic oparons

Figure 5.2. Glucose Phosphotransferase System in Escherichia coli (Postma et al., 1993)

The amount of phosphorylation of the enzymes influences other regulatory mechanisms
in the cells (eg., catabolite repression). Carbon catabolite repression in E. coli is mainly
mediated by the glucose-specific EIIA of the PTS. As shown in Figure 5.2, in the presence of
glucose, EITA" binds and inactivates the lactose permease (LacY) and glycerol kinase
(GlpK). In the absence of sugars, phosphorylated EIIA®" activates adenylate cyclase (AC) to

result in Crp-mediated transcriptional activation of catabolic operons (Postma et al., 1993).
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5.3. Galactose (Gal) Operon in Escherichia coli

An example of negative regulation is the galactose (gal) operon in E. coli. Galactose
enters central metabolism by a rather indirect route. The regulation is accomplished by the gal
operon having two promoters, two operators and two repressors. The structure of galactose

operon is shown in Figure 5.3.
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Figure 5.3. Structure of gal operon in Escherichia coli (Snyder, 1997)

The galE, galT, and galK genes are transcribed from two promoters, pg; and pgy. The
CAP protein with cyclic AMP (cAMP) bound turns on pg; and turns off pg,. There are also
two operators, galpg and galp;. The repressor genes are some distance away, as indicated by
the broken line but, the GalR repressor gene is shown. It negatively controls the transcription
initiation of the galETKM operon and galS gene in the absence of galactose. The other pair of
repressor GalS selectively represses the downstream promoter, pg; of the gal operon and
slightly activates the promoter, pg,. It strongly interacts with other operator mgl operator

(Adhya, 1997).

The biological interconversion of galactose to glucose is the galactose degradation
pathway (Leloir pathway). The three enzymes; galactokinase (Frey et al., 1996), galactose-1-
phosphate uridylyltransferase, and UDP-galactose 4-epimerase (Neiderhart ef al., 1996) are
coded from galK, galT, galE, are required for the degradation.
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A model for the regulation of the galactose operon is structured in such a way that the

absence of galactose results in the bending of the DNA and disruption of promoter activity.

e galE o,
s oo i
&0 +1 +50
I L.

Figure 5.4. Regulatory model for gal operon in Escherichia coli (Snyder, 1997)

In the presence of galactose, the repressor is not bound to the operators, and the operon
is on. In the absence of galactose, a dimer repressor molecule binds simultaneously to both
operators, bending the DNA and preventing binding of the RNA polymerase to the promoter
region, and the operon is off (Snyder, 1997).

5.4. Gut Operon in Escherichia coli

The enzymes and proteins responsible for glucitol (sorbitol) catabolism are coded within
the gut operon in E. coli. Expression of the glucitol (gut) operon is regulated by an unusual,
complex system which consists of an activator (encoded by the gutM gene) and a repressor
(encoded by the gutR gene) in addition to the cAMP-CRP complex (CRP, cAMP receptor
protein). The GutM protein encoded by gutM gene, is a positive DNA-binding transcriptional
regulator for glucitol utilization. GutR protein is required for the repression of the expression
of the srlAEBD-gutM-srIR-gutQ genes. The gut operon consists of at least five structural
genes and has the following gene order: gutOPABDMR (Yamada, 1988).
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Figure 5.5. Gut operon gene expression sequence in Escherichia coli (biocyc.org)

Synthesis of the mRNA, which initiates at the promoter specific to the gutR gene, occurs
within the gutM gene. Expressional control of the gut operon appears to occur as a
consequence of the antagonistic action of the products of the spontaneously regulated gutM

and gutR genes (Yamada, 1988).

There are two open frames downstream from gutD, which are termed gutM and gutR.
The physiological function of the GutM protein is activation of gut operon transcription. It
unusually invokes participation of both a glucitol-specific repressor and a glucitol-specfic
activator in addition to the general activator, the cAMP-CRP complex. On the other hand, the
physiological function of gutR gene product is to bind the inducer presumed to be glucitol
(Lengeler & Steinberger, 1978). Each of the two regulatory proteins exhibits an effect on gut
operon expression in the absence of others, but normal regulation depends upon the structural
integrity of both. The cAMP-CRP complex is indispensable for the expression of the operon
and functions independently of the GutM and GutR protein (Yamada, 1988).

5.5. Glycerol Transport System (GlpK) in Escherichia coli

Unlike other carbonhydrates, glycerol enters the cytoplasm by facilitated diffusion
across the cytoplasmic membrane. The facilitator protein provides a selective channel. Internal
glycerol is trapped as G3P by the action of an ATP-dependent kinase (GlpK) that can also
phosphorylate dihydroxyacetone.

Glycerol+ ATP ————G3P
8ip:

As a catabolic enzyme, the kinase has the unusual feature of being subject to

noncompetitive allosteric inhibition by fructose 1,6-biphosphate and the nonphosphorylated
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form of enzyme I11°°, a feature which would account for the extreme effectiveness of glucose

utilization in preventing glycerol consumption (Neidhardt, 1996).

411164 -)
Figure 5.6. Transcriptional unit glpKF in Escherichia coli (biocyc.org)

In wild-type cells, both glycerol and G3P induce the glp regulon, but in mutants lacking
glycerol kinase only G3P has this effect. The expression of the glpKF operon itself is also
induced by G3P, rather than by glycerol, was demonstrated with a mutant that produces a
glycerol kinase protein without catalytic activity. Thus, G3P seems to be the true inducer of

the entire g/p operon.

5.6. Glucose, Lactose, Galactose Transport System in Lactococcus lactis

Lactic acid bacteria and particularly Lactococcus lactis are widely used for the
production of lactic acid in fermented foods as a starter in milk fermentation and cheese
manufacture. Control of the catabolic rate in L. lactis is determinant for dairy product quality.
Also, it remains unclear whether the catabolic rate is controlled at the level of transcription,
translation or enzyme activity. However, low genetic information and metabolic studies
concerning anaerobic sugar catabolism in L. lactis give clues on growth rate and lactic acid

production.

Most sugars are taken up either by the phosphoenolpyruvate (PEP)-dependent
phosphotransferase systems (PTS) or by permease systems in L. lactis. PTS involves coupled
transport and phosphorylation of the sugar. In permease transport, sugar transport is followed

by kinase-mediated phosphorylation of the free sugar within the cytosol (Yamada, 1987).
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Figure 5.7. Major pathway for the transport and metabolism of sugars in galactose grown cells

in Streptococcus lactis (Thompson, 1978)

In a medium containing a mixture of glucose, galactose, and lactose, the growth of
Lactococcus lactis (Streptococcus lactis) is initially on the simultaneous metabolism of
glucose and lactose. Galactose has been utilized only after the latter sugars have been
exhausted from the medium (Thompson, 1978). Therefore, there is an inhibition of galactose
utilization when glucose or lactose is added to medium. As shown in Figure 5.7, glucose and
lactose are simultaneously taken up through the cell membrane on coupled PTS system,
whereas galactose is transported via permease system. Lactose-P is broken down to glucose

and galactose-P and the latter enters the EMP pathway by the D-tagatose 6-P pathway.
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5.7. Galactose (Gal) Operon in Lactococcus lactis

Lactococcus lactis is a low GC gram-positive bacterium. The carbon catabolite
repression of L. lactis is different than E. coli and other gram-negative bacteria. Catabolite
Repression (CR) is mediated by a negative regulatory mechanism with a catabolite control
protein CcpA (Hueck & Hillen, 1995). Catabolite-responsive element (cre) is present near the
promoter of genes which is affected by CR. Increase/decrease in the CcpA protein will result

in the same way with cre.

The binding of CcpA to cre sites is reported to be enhanced by elevated concentrations
of early glycolytic intermediates such as glucose 6-P. Another signal involved in the activation
of ccpA is the PTS phosphate carrier HPr. A metabolite activated kinase has been shown to
phosphorylate HPr on residue series 46. This phosphorylated form of HPr interacts with CcpA
which enhances the binding of CcpA to cre sites (Luecsink, 1998)

Pgal galA gali galK galT galE

Figure 5.8. Schematic representation of the Lactococcus lactis gal operon (Kuipers, 1998)

The gal operon shown in Figure 5.8 consists of 5 genes with the order galAMKTE and
encodes the promoter necessary for the uptake and conversion of galactose to glucose 1-P via
the Leloir pathway. The presence of a putative cre site in the promoter region of the L. lactis
gal genes suggested a possible involvement of CcpA in the regulation of the expression of
these genes. No gal transcription could be detected in a wild-type strain grown on glucose, but
when the cells were grown on galactose the transcription is increased. This observation could
be attributed to negative regulation by CcpA promotion of the gal genes. The repression may
result from either prevention of transcription initiation, a transcriptional block or interference

with interaction between RNA polymerase and an activation (Stiilke et al., 1999).
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6. COMPUTATIONAL STRATEGY FOR REGULATORY FBA

Regulation of gene transcription with constraints-based models of prokaryotic
metabolism is under investigation in order to understand and predict the cellular behavior. Our
goal is to develop a modeling and simulation approach that uses current advances in the
knowledge of regulatory structures and genetic consequences. The computational algorithm
performed in MatLab contains two separate, but constantly interacting modules: a regulatory
module and a metabolic network module. The regulatory module uses fuzzy logic to quantify
transcriptional regulation and enzyme activity. The latter uses dynamical flux balance analysis
to determine metabolic transients in response to regulatory signals. The modeling framework
is applied to carbon-source utilization, aerobic/anaerobic diauxic shifts in bacteria;

Escherichia coli and Lactococcus lactis.

The utilization of carbon sources in E. coli and in any other bacteria are described by
central metabolism pathways. Substrate uptake mechanism through the cell membrane may be
different in many organisms. Also, the way to utilize multiple carbon source mixtures can be
different; namely, sequential or simultaneous. The sequence of utilization of some substrates is

regulated by a series of genes called operons.

The most studied operon in E. coli, lac operon, contains genes whose transcription is
regulated by a repressor protein and by catabolic repression from glucose. Gene expression of
enzymes necessary for lactose utilization is dependent on the concentrations of the regulatory
substances. The activation or repression of these genes depends on the level of corresponding
molecules in the cell. Rather than using a flux to be turned “on” or “off”, a gradual shift from
totally turned on system to totally turned off one (or vice versa) is crucial to determine internal
concentrations on the activation or repression of the operon. Therefore, knowing the
mechanism of operon is not enough to construct the interaction between extracellular
metabolite and regulatory protein or enzyme. The concentration profiles of each coming from

experimental data or mathematical model plays important role (Wong, 1997; Kremling, 2001).
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Fuzzy logic considers the level of high and low between two end points, so there will be

smooth shift from glucose utilization to lactose.

Two separate, but constantly interacting modules are written in matlab/simulink: a
regulatory module and a dynamic metabolic network module. Fuzzy Logic Controller network
in Matlab/Simulink was used for various operon regulatory structures co-operating with
membrane transport system. Dynamical structure of metabolic network module is constructed
by Flux Balance Analysis of metabolites in Matlab. In every iteration of the FBA, the program
developed calls for the regulatory module in Simulink to simulate the uptake rate of the

corresponding substrate.

6.1. Model Formulation of Flux Balancing

Basic metabolic pathways of E. coli are used for the model formulation of flux balancing
to generate maximal time courses of growth for the two model bacteria, E. coli and L. lactis.
The basic pathways of catabolism in E. coli are shown in Figure 6.2 and a list of reaction list is
provided in Appendix C. These pathways consist of glycolysis, pentose phosphate pathway,
TCA cycle, electron transport system, and reactions that interconnect these. Especially, E. coli
is chosen for the model because its physiological and biochemical structure has been well
known for a long time. E. coli is a gram-negative bacteria. It is a prokaryote belonging to the

family Enterobacteria.

Substrate uptake and by-product secretion uptake rates, the initial concentrations of
carbon sources and oxygen amount in the media must be all set to a value in order to simulate
flux balancing. Then, the simulation is run until the carbon sources have been completely
exhausted. Glucose, lactose, galactose, glycerol, sorbitol are the main carbon sources that are
involved in the catabolism of E. coli or L. lactis. In order to simulate, some data provided in
the literature, initial concentrations of biomass, glucose and lactose as well as uptake rate
constraints for the growth on glucose and lactose are the same as the parameters used by

Covert et al.
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The computational flow diagram as shown in Figure 6.1, gives the strategy to solve
optimal time growth of a bacterium including transcriptional regulation. The regulatory
module always interacts with metabolic network for the flux distributions in all iterations. By
looking at the uptake rates of the substrate(s) the logical controlling mechanism permits the
uptake of the others. The biomass yield and substrate concentrations are modeled for the
exponential phase of growth at constant substrate uptake rates given in chapter 2. The

stationary phase is not considered.

The metabolic network system of E. coli having 113 reactions is used as a model. As
shown in Figure 6.2, the map for E. coli includes the basic pathways for the utilization of
external substrates. A maintenance requirement for ATP per substrate is included. The
substrate is processed by the glycolytic pentose phosphate pathway and the TCA cycle and for
aerobic cultures the electron transport system. There are multiple arrows on the map that show
fluxes from one metabolite to another. Each reaction is catalyzed by different enzymes that are

synthesized from their respective genes.
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As the first example, diauxic growth on glucose and lactose is investigated. As discussed
in Chapter 5, the bacterium takes them sequentially. Lactose is only utilized in a very small
proportion (less than 5% of that in the absence of glucose) as glucose is present in the
medium. With a constant uptake rate of substrates, biomass concentration, glucose and lactose
concentrations, O, uptake rate by the bacteria are computed from dynamic FBA while, cAMP

level in the cell which is dependent on the glucose concentration, from the fuzzy logic module.

Table 6.1 shows the initial conditions and uptake rate constraints used for the diauxic
growth on glucose and lactose in E. coli. These are just the estimated values and are taken

from the previous works (Covert et al., 2002).

Table 6.1. Initial conditions used and uptake rate constraints for the growth in glucose and

lactose only

Initial Conditions

Biomass (g/L) 0.011

Glucose (mmol/L) 1.6

Lactose (mmol/L) 5.8

Uptake Rate Constraints

Glucose (mmol/(gDW hr)) 6.5

Lactose (mmol/(gDW hr)) 3

Oxygen (mmol/(gDW hr)) 15
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Figure 6.3. Uptake map of external glucose, lactose, and galactose in Escherichia coli
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Based on the glucose-lactose diauxic growth, different scenarios are imposed on the
growth condition in order to examine the operon working principles. Pulse injections of
glucose only, or galactose only, and a mixture of glucose and galactose while lactose is the
dominant substrate on the growth, are studied. Figure 6.3 shows the pathways before
glycolysis for the uptake of glucose, lactose and galactose in E. coli. The reactions are given in
Appendix C. The lac operon and gal operon in E. coli as discussed in Chapter 5 are tested and

the Simulink structures are explained below.

The pulse injection of glucose will show how the concentration of CAP-cAMP complex
will change and how the uptake rate of lactose to the cell will be effected because the presence
of this complex is closely associated with the presence of glucose in the cell. When the
concentration of glucose increases in the medium, the amount of cAMP will decrease.
However, there will be molecules of the enzyme [-galactosidase and B-galactoside permease
in the cell which are responsible for the catabolism and transport of the lactose. Therefore,
lactose transport is expected to be in small amount during the utilization of injected glucose.
The same initial concentrations of the biomass, glucose, and lactose will be used and 2.50

mmol/L glucose will be injected to the medium of the batch culture.

Galactose injection is expected to show how the gal operon in E. coli will work. Because
the injection is held while lactose is being utilized by the bacterium, galactose will be present
in the cell. Galactose is a self inducer that binds to the repressor molecule. Therefore, lactose
and galactose all together will be taken up and utilized simultaneously. However, the situation
will be different when a mixture of glucose and galactose are injected. 2.50 mmol/L glucose
and 8.5 mmol/L galactose will be given to the medium of the batch culture immediately.
Again, the amount of cAMP will decrease as glucose concentration of the medium increases.
This means that, CAP-cAMP complex will not transcribe the corresponding promoter region
to activate the gal operon. Table 6.2 shows the initial conditions and uptake rates used in the

pulse simulations.
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Table 6.2. Initial conditions and uptake rate constraints used for the growth in glucose, lactose,

and galactose pulse

Initial Conditions
Biomass (g/L) 0.011
Glucose (mmol/L) 1.6
Lactose (mmol/L) 5.8
Galactose (mmol/L) 0
Uptake Constraint Rates

Glucose (mmol/(gDW hr)) 6.5
Lactose (mmol/(gDW hr)) 3
Galactose (mmol/(gDW hr)) 6.5
Oxygen (mmol/(gDW hr)) 15

In addition to the glucose, lactose and galactose pairs, growth on glucose, glucitol
(sorbitol) and glycerol in E. coli will be investigated. Gut operon discussed in Chapter 4 is the
crucial mechanism that controls the uptake of the sugar metabolisms of glucose and glucitol.
Similar to growth on glucose and lactose, glucose has a repressive effect on the uptake of
glucitol. Glucose and glucitol are taken up by both PTS system in the cell membrane. Like
growth on glucose and lactose, the cAMP-CRP complex is the significant catabolite repressor
in an unknown manner besides GutM protein in E. coli. Actually, both are consumed, but the
rate of glucitol consumption is less in the presence of glucose than in the absence of it. On the
other hand, the third component, glycerol, is transported directly through the cell membrane.
But, there are inhibitory effects of non-phosphorylated form of EIIA belonging to both glucose
and glucitol on the formation of Glycerol 3-Phosphate (G3P). G3P is formed from glycerol
catalyzed by glpK kinase. Therefore, glucose and glucitol have both repressive effects on

glycerol metabolism in E. coli.

In Figure 6.4, the uptake map of glucose, sorbitol and glycerol is given. Glucose and
sorbitol are directly converted to 6-Phosphate forms, whereas glycerol is taken up by normal
diffusion. Table 6.3 gives the initial conditionsy the PTS mechanism and uptake rate
constraints for the growth on glucose, glucitol, and glycerol. These parameters are just the
estimates which give satisfactory results with respect to experimental data (Kompala and

Ramkrishna, 1984).
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Table 6.3. Initial conditions and uptake rate constraints used for the growth in glucose, glucitol

and glycerol
Initial Conditions

Biomass (g/L) 0.008

Glucose (mmol/L) 1.2

Glucitol/Sorbitol (mmol/L) 1.1

Glycerol (mmol/L) 1.1

Uptake Rate Constraints

Glucose (mmol/(gDW hr)) 8.5

Glucitol/Sorbitol (mmol/(gDW hr)) 4.5

Glycerol (mmol/gDW hr) 4.0

Oxygen (mmol/(gDW hr)) 15
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Figure 6.5. Uptake map of external glucose, lactose, and galactose in Lactoccoccus lactis

including Tagatose 6-P and Leloir pathways

In addition to E. coli metabolic network, Tagatose 6-P pathway of lactose transport and
Leloir pathway of galactose transport through the cell membrane are used to form the

metabolic network of L. lactis.
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L. lactis 1s a gram-positive bacteria and catabolic repression is mediated by a negative
regulatory mechanism (Heuck and Hillen, 1995). Gal operon discussed in Chapter 5 in L.
lactis is investigated to realize the repression of galactose by glucose and lactose. A mixture of
glucose, lactose and galactose is assumed to be in the medium for the simulation. Initially, a
simultaneous catabolism of glucose and lactose sugars is expected. Galactose utilization will
start when glucose and lactose are depleted. Glucose and lactose are simultaneously taken up
through the cell membrane on coupled PTS system, whereas galactose is transported via
permease system. Gal operon controls the production of permease system which is a key
factor of galactose uptake in the membrane. The metabolic pathway for the utilization of

glucose, lactose and galactose in L. lactis is shown in Figure 6.5.

6.2. Model Formulation of Fuzzy Inference System and Fuzzy Contoller

A logic based on the two truth values True and False is sometimes inadequate when
describing human reasoning. Fuzzy logic uses the whole interval between 0 (False) and 1
(True) to describe human reasoning. As a result, fuzzy logic is being applied in rule based

automatic controllers.

In order to construct the fuzzy system, Matlab® Fuzzy Toolbox is used. Toolbox can
easily make fuzzification interface, fuzzy inference, knowledge base (result), and
defuzzification interface. Toolbox consists of two useful tools: FIS editor and Fuzzy
Controller. FIS editor in combination with four other editors provides a powerful environment
to define and modify Fuzzy Inference System (FIS) variable whereas, Fuzzy Controller is a
block in Fuzzy Toolbox Library in Simulink environment. This admits FIS variable produced

by FIS Editor and implements the desirable rules.
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Figure 6.6. Fuzzy Inference System (FIS) in MATLAB fuzzy toolbox

MATLAB® Simulink can build the system that use fuzzy logic. By combining Fuzzy
Logic Controller blocks, a controlling action is structured. The structure variable describing its
Fuzzy Inference System must be entered to a Fuzzy Controller block and the variable must be

located in the MATLAB workspace.

Modeling the lac operon is conceptualized in two parts, an inducible operon and
catabolite repression. Therefore, simulink fuzzy control system of the lac operon in
Escherichia coli s divided into two parts; one will implement the inducible part and the other
will implement the catabolite repression due to glucose. In the inducible operon (part 1), the
expression of the genes will increase by the presence of the inducer which is allolactose in lac
operon. The main property of allolactose is to bind the repressor molecule attached on the way
of transcription and to maintain mRNA translation on the DNA sequence. LacY, LacZ and
LacA proteins are produced as a result and lactose can be taken up by the action of LacY

permease.
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Figure 6.7. Simulink fuzzy controller system of /ac operon in Escherichia coli (part 1)

Figure 6.7 and Table 6.4 give clues as to how the fuzzy controller system works. Lactose
uptake rate value is taken from the workspace (MATLAB) which is fuzzified in the
“LactoseUptakeAllolactoseRepressor” controller. Then, the rate is quantified with the values
very low, low, medium, etc. The decision on the result between lactose uptake and allolactose
repressor concentration in normalized form is judged based on the fuzzy rule bases stated in
Table 6.4. The table can be read simply as , “If Lactose Uptake is Very Low, THEN
Normalized form of Allolactose + Repressor Product is Low”. A numerical result is taken
from the controller after the defuzzification of a fuzzy result has been held. The same
procedure is applied to other two controller to have a new numerical result of Lactose Uptake

rate used for the calculations at the end.

Table 6.4. Fuzzy rule base configuration for lac operon in Escherichia coli (part 1)

IF VL | L | ME | H | VH
Allolactose + Repressor Product
(Normalized)
Lactose
Uptake L L L H H
LacY, LacZ, LacY Production (Normalized)
Allolactose L [ ME | ME | H | VH
Lactose Uptake
LacY
Production VL VL L ME H

Catabolite repression is the second part, glucose is the preferred energy substrate to
lactose in E. coli. The cell will use glucose in preference to lactose, when both are present.

Catabolite activator protein (CAP) is involved in the control of transcription of lac operon.
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CAP must bind to cAMP molecule to promote the transcription in addition to inducible part.
However, the concentratrion of cCAMP is dependent on the glucose transport rate to the cell.
When it is high, cCAMP level will be low (or vice versa). The cAMP-CAP complex exerts a
positive control over the expression of the lac operon. When this region of the promoter is
bound, RNA polymerase has a greater ability to bind and produce transcripts. Again, LacY,
LacZ and LacA proteins will be produced as a result. In these two parts, the lactose uptake rate

through the cell will be much higher in catabolite repression part than the inducible part.
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Figure 6.8. Simulink fuzzy controller system of lac operon in Escherichia coli (part 2)

Table 6.5 is the summary of fuzzy rule configurations used for Figure 6.8. Glucose
repression is the second part of lac operon. Glucose uptake rate value is taken from the
workspace and fuzzified in order to calculate normalized cAMP value. The first line of
Table 6.5 can be read as such; If the glucose uptake is very low, the normalized cAMP will be
very high or if the glucose uptake is low, the normalized cAMP will be high. In all time steps,
cAMP concentration is collected to form a time profile which gives indication of the shift
from glucose utilization to lactose utilization. The controllers for the calculation of cAMP
concentration, Permease (LacY) concentration and lactose uptake rate are combined in

sequence to determine lactose uptake through the cell membrane due to glucose repression.
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Table 6.5. Fuzzy rule base configuration for lac operon in Escherichia coli (part 2)

IF VL | L | ME | H | VH
Normalized cAMP

Glucose

Uptake VH H ME L VL

LacY, LacZ, LacY Production (Normalized)

Normalized

cAMP VL VL L ME H
Lactose Uptake

LacY

Production VL L ME ME H

The rule viewer of fuzzy inference system shown in Figure 6.9 for the calculation of
normalized cAMP gives the details of input (Normalized Glucose Uptake Rate) and output
(Normalized cAMP) relation. The scaling method is used to scale down the resulting
membership functions. All result coming from each rules are combined to produce an inferred
conclusion. The center of area (COA) is taken as a numerical result of all combined

conclusions.
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Figure 6.9. FIS rule viewer of glucose uptake to cAMP
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In addition to the catabolite repression (part2), membrane transport phosphorylation is
added in order to compare the results with part 2 shown in Figure 6.10. The phosphorylated
form of glucose-specific EIIA of the PTS is important for cAMP production which affects the
transcription in the same manner. Normally, EIIA-P results in both cAMP production and
LacY repression. The signal of EITA-P is connected with dashed line to the fuzzy controller of

LacY because the pathway is not considered in this work.

The rules for the calculation of EIIA-P concentration (normalized), cAMP concentration
(normalized), Permease (LacY) concentration (normalized) and lactose uptake rate are
combined in sequence in Table 6.6 to determine lactose uptake through the cell membrane due

to glucose repression.
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From
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¥
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h

h
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EllAPLacY LacYLactoselptake To Workspace2

Figure 6.10. Simulink fuzzy controller system of lac operon in Escherichia coli

(membrane transport phosphorylation is added)
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Table 6.6. Fuzzy rule base configuration for lac operon in Escherichia coli

(membrane transport phosphorylation is added)

IF VL | L | ME | H | VH
Normalized EITIA-P
Glucose
Uptake VH H ME L VL
Normalized cAMP
EIIA-P VL L H H VH
LacY, LacZ, LacY Production (Normalized)
Normalized
cAMP VL L ME H H
Lactose Uptake
LacY
Production VL L ME ME H
GlucaseJptake :& :& »| GalactcseUptake
.,Iﬁ’.:_'::; = Fuzzy Legic Fuzzy Logic

GlucosecAMP cAMPGalactose To Werkspace

Figure 6.11. Simulink fuzzy controller system for gal operon in E. coli

The gal operon in E. coli has three important parts; promoter, operator and repressor
parts as usual. The CAP protein with cyclic AMP activates the promoter of the gal operon.
Because free cAMP is abundant in the absence of glucose, galactose uptake and glucose
uptake are inversely related. As glucose concentration diminishes, galactose uptake level will
increase with the activation of gal operon promoter site. The inducer of gal repressor is the
galactose itself. The function of the other parts of the genome of the gal/ operon are not clear,

hence only the promoter site is included in the modeling of Simulink fuzzy controller.

The rules that combine glucose uptake to normalized cAMP and finally to galactose

uptake is given in the Table 6.7.
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Table 6.7. Fuzzy rule base configuration for gal operon in Escherichia coli

IF VL | L | ME | H | VH
Normalized cAMP
Glucose
Uptake VH H ME L VL
Galactose Uptake (Normalized)
Normalized
cAMP VL L ME H VH

Glucitol (gut) Operon is controlled by both positive and negative regulation. Expression
of the glucitol (gut) operon is regulated by a complex system which consists of an activator
(encoded by the gutM gene) and a repressor (encoded by the gutR gene) in addition to the
cAMP-CRP complex (CRP, cAMP receptor protein). In simulink fuzzy controller system,
CRP (cAMP receptor) is modeled as shown in Figure 6.12 for the repression of
glucitol/sorbitol. The repression effect of GutR is lower than cAMP-CRP. Therefore, the main
effect is controlled by cAMP-CRP. The physiological function of the GutM protein is
activation of gut operon transcription. The physiological function of gutR gene product is to

bind the inducer presumably to be glucitol. Normal regulation depends upon the structural

integrity of both.
GlucossUptake |= = m = = CcAMPCRP
From . =
Workspace2 uzzy Loglc —
- GlucosectMPCRP1 To Wordspace1
GlucoseUptake > jm > jm »|  GSorbitolUptsks
From - -
Workspace Fuzzy Logic Fuzzy Logic =
GlucosecAMPCRP cAMPCRPScrbitolUptake To Womkspace

Figure 6.12. Simulink fuzzy controller system for glucitol/sorbitol operon in Escherichia coli
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The rules that combine glucose uptake to normalized cAMP-CRP complex and finally to
sorbitol uptake is given in the Table 6.8. As an example, first line of Table 6.8 can be read as
such; If the normalized cAMP-CRP complex is very low, Sorbitol Uptake will be very low or
if the normalized cAMP-CRP complex is low, Sorbitol Uptake will be very low.

Table 6.8. Fuzzy rule base configuration for gut operon in Escherichia coli

IF VL | L | ME | H | VH
Normalized cAMPCRP

Glucose

Uptake VH H ME L VL
Sorbitol Uptake (Normalized)

Normalized

cAMPCRP VL VL L ME H

GlucoseSorbitol ptake - m{\ »> m{\ - m{\ |  G3FFormation

Workspace

Figure 6.13. Simulink fuzzy controller system for glpK regulon in Escherichia coli

In wild-type cells, EIIA is for the inhibition of glycerol kinase (GIpK). EIIA is
synthesized in the presence of glucose and sorbitol and GlpK protein is responsible for the
phosphorlylation of glycerol by ATP. When the glycerol 3-phosphate is formed, the
succeeding fluxes become active for the catabolism of glycerol. Thus, G3P is the true inducer
of the entire glp operon. EIIA is high when both glucose and sorbitol are present. On the other
hand, GlpK is low when EIIA is high because of its inhibitory effect. In Figure 6.13, simulink
fuzzy controller is modeled as it is explained by the preceding relations. The fuzzy rule base

configuration for the glp regulon in E. coli is cited in Table 6.9.
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Table 6.9. Fuzzy rule base configuration for glp regulon in Escherichia coli

IF VL | L | ME | H | VH
Normalized EITA

Glucose/

Sorbitol

Uptake VL L ME H VH
GIpK (Normalized)

Normalized

EIIA VH H ME L VL

G3P Formation (Normalized)
Normalized
GIpK VL L ME H VH

Unlike in E. coli, glucose and lactose can be consumed simultaneously in Lactococcus
lactis. The transport phenomena of both belong to the phosphotransferase system (PTS).
However, galactose is transported by the permease system. Therefore, there is an operon
system that controls the utilization and even transport through the cell membrane. CcpA
protein and Galactokinase (GalK) are the key enzymes that play role in the Leloir pathway.
CcpA protein is involved in the negative regulation, the level of CcpA will be low on glucose

growth and will increase as glucose level decreases and galactose increases.
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Figure 6.14. Simulink fuzzy controller system for gal operon in Lactococcus lactis



Table 6.10. Fuzzy rule base configuration for gal operon in Lactococcus lactis

IF VL | L | ME | H | VH
Normalized ccpAcre
Glucose or
Lactose
Uptake VH H ME L VL
GalK Production (Normalized)
Normalized
ccpAcre VL L ME VH VH
Galactose Uptake
GalK
Production VL L ME H VH
JRI=TEY
File Edit View Options
LGlucose = 0.302
copAcre = 0.25
1
2
3
) L
” | >
0
Input: [ 08018 Plet paints: 101 Mover et | right | down| uwe |
Opened system LGlucozeccpbore, B rules Help | Flass I

Figure 6.15. FIS rule viewer of lactose or glucose uptake to ccpAcre
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The rule viewer of fuzzy inference system shown in Figure 6.15 for the calculation of
normalized CcpAcre gives the details of input (Normalized Glucose and Lactose Uptake Rate)
and output (Normalized CcpAcre) relation. The scaling method is used to scale down the
resulting membership functions. All result coming from each rules are combined to produce an
inferred conclusion. The center of area (COA) is taken as a numerical result of all combined
conclusions. For instance, normalized value of glucose and lactose uptake of 0.8018 is given
to the corresponding controller and a normalized value of 0.25 is taken out for the CcpAcre

concentration.
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7. RESULTS AND DISCUSSION

In this section, the computational results and discussions for the following systems are

presented.
1. Single substrate of glucose or lactose is fed to E. coli.
2. Mixed substrates of glucose and lactose are fed to E. coli.

3. Mixed substrates of glucose and lactose are fed and a pulse of glucose is

injected on lactose growth to E. coli.

4. Mixed substrates of glucose and lactose are fed and a pulse of galactose is

injected on lactose growth to E. coli.

5. Mixed substrates of glucose and lactose are fed and a pulse of glucose and

galactose mixture is injected on lactose growth to E. coli.
6. Mixed substrates of glucose, sorbitol (glucitol) and glycerol are fed to E. coli.

7. Mixed substrates of glucose, lactose and galactose are fed to L. lactis.

The sequence of utilization of the mixed substrates is controlled by transcriptional
regulatory constraints of the relevant operons. Instead of using a logic based on the True and
False values (Boolean Logic), fuzzy logic is used to explain the whole interval between these
two values. Therefore, in all these constrained uptakes there is no sharp change of substrate

utilization.



7.1. Dynamics of Single Substrate Uptake in Escherichia coli
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Figure 7.1. Glucose concentration profile during glucose uptake in Escherichia coli
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Figure 7.2. Biomass profile during glucose uptake in Escherichia coli
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Figure 7.3. Lactose concentration profile during lactose uptake in Escherichia coli
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Figure 7.4. Biomass profile during lactose uptake in Escherichia coli

Figures 7.1 and 7.3 show the time courses of utilization of glucose and lactose,
respectively. Correspondingly, biomass profiles are given in Figures 7.2 and 7.4. The initial

substrate and biomass concentrations, and substrate uptake rates are given in Table 6.1. As it
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can be seen for Figures 7.2 and 7.4, the maximum growth rate for glucose (W) 1S greater than

that for lactose (Wiac).

7.2. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, in Escherichia

coli
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Figure 7.5. Experimental and calculated glucose concentration profile for mixed substrates;

glucose and lactose in Escherichia coli
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Figure 7.6. Experimental and calculated lactose concentration profile for mixed substrates;

glucose and lactose in Escherichia coli
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Figure 7.7. O, uptake rate for mixed substrates; glucose and lactose in Escherichia coli
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Figure 7.8. Experimental and calculated biomass production profile for mixed substrates;

glucose and lactose in Escherichia coli
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Figure 7.9. Normalized cAMP profile for mixed substrates; glucose and lactose in

Escherichia coli

Figures (7.5 - 7.9) are the plots of dynamic glucose and lactose utilization profile in the

mixed substrates, glucose and lactose. Experimental data taken from the literature (Covert, et
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al., 2002) are indicated, to show the accuracy of the simulated results. For the starting point of
FBA, initial conditions and substrate uptake rate constraints must be estimated in order to get
an output of growth rate. These parameters are taken from the same reference. A best fit of
biomass yield is obtained in the exponential phases of growth because the simulations are for
constant uptake rates of relevant substrates. The preference of glucose over lactose results in
sequential utilization of glucose, and then lactose. This is due to the catabolite repression of
glucose over lactose. In Figure 7.8, it is clear that there is a lag phase between the two
exponential growth phases. This lag phase results from both catabolite repression by glucose
and induction of /ac operon by lactose. Another crucial point about the lag phase is the gradual
increase of lactose uptake to the cell. Namely, it does not mean that there is no growth at this
stage. In general, a lag phase of lac operon in E. coli takes place in 10 to 30 minutes. If a
Boolean formalism is held for the regulation of glucose and lactose utilization, the time of lag
phase must be specified in the calculations. In the work of Covert et al. (2002), nearly half an
hour was taken and inserted to the calculation to simulate a lag as the shift occurs in diauxic
growth on glucose and lactose. In fuzzy logic formalism, the lag phase of about 30 minutes is
the natural result of gradual shift of the lactose uptake from low to high level after glucose is
depleted. Oxygen uptake rate shown in Figure 7.7 and normalized cAMP concentrations
shown in Figure 7.9 are given to show the shift from glucose uptake to lactose uptake. cAMP
concentration is directly related to the glucose concentration in the medium and helps to
promote the lac operon by the CAP-cAMP complex. When glucose comes to exhaustion,
cAMP level will give a shift from a low level to a high one. O, uptake rate level will decrease
as the shifting occurs. It will increase and come to another level because of the new substrate
uptake. In Figure 7.7, O, uptake rate level of lactose is lower than the glucose. It means that

the growth rate on lactose is being low compared to glucose.
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Figure 7.10. Flux distribution for aerobic metabolism of glucose by Escherichia coli
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Figure 7.11. Flux distribution for aerobic metabolism of lactose by Escherichia coli

Flux distributions of glucose (PTS), and lactose (permease) aerobic metabolisms on

metabolic network of E. coli are given in Figure 7.10 and 7.11. The red arrows show the
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dominant fluxes, whereas the black ones are stagnant (zero) rates on the metabolism. When
there is a shift from one substrate to another, flux distribution on the metabolism is more or
less the same. But, the fluxes change a little bit. In general, fluxes are higher which give more
biomass production on glucose than lactose. The only difference on flux distributions is the

pathway of the substrate uptake.

7.3. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, Glucose Pulse in

Escherichia coli

Mixed substrates of glucose and lactose are fed to the batch culture and a pulse of
glucose (2.5 mmol/L) is injected to the medium at the 7™ hour on the lactose growth. The aim

is to see the immediate changes caused by the shift in substrate uptake.
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Figure 7.12. Glucose concentration profile for mixed substrates; glucose and lactose, and

glucose pulse injection in Escherichia coli
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Figure 7.13. Lactose concentration profile for mixed substrates; glucose and lactose, and

glucose pulse injection in Escherichia coli
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Figure 7.14. O, uptake rate for mixed substrates; glucose and lactose, and glucose pulse

injection in Escherichia coli
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Figure 7.15. Biomass yield profile for mixed substrates; glucose and lactose, and glucose pulse

injection in Escherichia coli
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Figure 7.16. Normalized cAMP profile for mixed substrates; glucose and lactose, and glucose

pulse injection in Escherichia coli

In Figure 7.12, it is clear that there is a glucose pulse injection on the lactose growth.

The glucose pulse is delivered between the 7™ and 8™ hours. Again, glucose is the preferable
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substrate over lactose in this system. Upon glucose injection, the consumption of lactose is
reduced due to the catabolite repression, but lactose is being utilized in small amounts by the
cell because of the presence of LacY (Permease) and lactose (allolactose) in the cell medium.
As glucose becomes depleted at 8.5 hour, growth on lactose is slowly resumed and there is a
decrease in the biomass. O, uptake rate level gives two minimums for the alteration of
substrates. The first one is due to the shift from glucose to lactose, but the second is due to the
repression of glucose on lactose. It is usual to observe a decrease in the normalized cAMP
level. Glucose becomes dominant substrate, but the injected amount is small compared to the
whole biomass present in the batch culture. Therefore, the depletion of glucose added is very

quick. Then, lactose becomes the only substrate available.

7.4. Dynamics of Mixed Substrates Uptakes Including Membrane Transport

System; Glucose and Lactose, Glucose Pulse in Escherichia coli
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Figure 7.17. Glucose concentration profile for mixed substrates including membrane transport

system; glucose and lactose, and glucose pulse injection in Escherichia coli
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Figure 7.18. Lactose concentration profile for mixed substrates including membrane transport

system; glucose and lactose, and glucose pulse injection in Escherichia coli
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Figure 7.19. O, uptake rate for mixed substrates including membrane transport system;

glucose and lactose, and glucose pulse injection in Escherichia coli
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Figure 7.20. Biomass profile for mixed substrates including membrane transport system;

glucose and lactose, and glucose pulse injection in Escherichia coli
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Figure 7.21. Normalized cAMP profile for mixed substrates including membrane transport

system; glucose and lactose, and glucose pulse injection in Escherichia coli

A membrane transport system is added to the mixed substrate uptake; glucose and

lactose and injection of glucose on lactose growth system. EIIAC" only repress the production
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of LacY permease which allows lactose transport through the cell membrane. Glucose is
transported by the phosphotransferase system. EIIA® is phosphorylated as glucose is
depleted. Phosphorylated EIIA®“ activates adenylate cyclase to result in the production of
cAMP which effects the activation of the lac operon. Therefore, cAMP level and EITAS-P
levels are all interrelated. When cAMP level increases, EIIAS“-P will increase in the same
proportion. The result for the same system with the added membrane transport mechanism will
will give identical outcomes. Therefore, Figures 7.12 — 7.16 are the same as with

Figures 7.17 - 7.21.

7.5. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, Galactose Pulse

in Escherichia coli
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Figure 7.22. Glucose concentration profile for mixed substrates; glucose and lactose, and

galactose pulse injection in Escherichia coli
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Figure 7.23. Lactose concentration profile for mixed substrates; glucose and lactose, and

galactose pulse injection in Escherichia coli
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Figure 7.24. Galactose concentration profile for mixed substrates; glucose and lactose, and

galactose pulse injection in Escherichia coli
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Figure 7.25. O, uptake rate for mixed substrates; glucose and lactose, and galactose pulse

injection in Escherichia coli
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Figure 7.26. Biomass profile for mixed substrates; glucose and lactose, and galactose pulse

injection in Escherichia coli
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Figure 7.27. Normalized cAMP profile for mixed substrates; glucose and lactose, and

galactose pulse injection in Escherichia coli

Galactose pulse injection is studied on growth of glucose and lactose substrates in order
to illustrate the gal operon in E. coli. There is no difference on the glucose uptake part of
growth. The difference comes as the galactose (8.5 mmol/L) is injected. The concentration of
the galactose gives a peak and is consumed immediately due to high biomass yield in the
medium. O, uptake rate level gives a rise as the injection occurs. In that time interval, lactose
and galactose are taken up together and O, amount necessary for the aerobic growth is
increased in that proportion. Galactose itself is the inducer of the REPRESSOR protein.
Galactose is actually taken up by the permease system with an unknown mechanism and
known gal operon interactions. The known operon operation was discussed in Chapter 5.
Therefore, galactose must be present in the cell in order to permit the galactose transport. The
injection is done during the lactose growth. Lactose is present in the medium and is
hydrolyzed to glucose and galactose, so there is no problem for the uptake of galactose. The
cAMP level is related neither with lactose, nor with galactose. So, there is only one shift in
Figure 7.26 showing the change of substrates from glucose to lactose. The biomass growth on
glucose was held upto 4.5 hour. Then, the biomass had been grown on lactose until the

injection time of galactose. Galactose had been injected to the solution at 7.5 hour. Because
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lactose was present and was converted to galactose and glucose in the metabolism, galactose
was automatically taken up and utilized by the cell. However, the concentration of lactose is
diminished at 8.5 hour. After that point on, there is only residual galactose in the culture and it
gives a low growth rate of 0.019 hr'. The growth rate in the first period is 0.6165 hr' where
the glucose is the dominant substrate over lactose. Then, in the second period lactose is taken
up giving 0.5318 hr' growth rate. When galactose is injected, lactose and galactose are

utilized simultaneously giving 1.184 hr™' growth rate.

7.6. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, Mixture of

Glucose and Galactose Pulse in Escherichia coli
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Figure 7.28. Glucose concentration profile for mixed substrates; glucose and lactose, and

mixture of glucose and galactose pulse injection in Escherichia coli
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Figure 7.29. Lactose concentration profile for mixed substrates; glucose and lactose, and

mixture of glucose and galactose pulse injection in Escherichia coli
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Figure 7.30. Galactose concentration profile for mixed substrates; glucose and lactose, and

mixture of glucose and galactose pulse injection in Escherichia coli
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Figure 7.31. O, uptake rate for mixed substrates; glucose and lactose, and mixture of glucose

and galactose pulse injection in Escherichia coli
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Figure 7.32. Biomass yield profile for mixed substrates; glucose and lactose, and mixture of

glucose and galactose pulse injection in Escherichia coli
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Figure 7.33. Normalized cAMP profile for mixed substrates; glucose and lactose, and mixture

of glucose and galactose pulse injection in Escherichia coli

Mixture of glucose and galactose pulse injection is examined on the diauxic growth of
glucose and lactose. It is aimed to decide and study the gal operon in terms of the glucose
effect in E. coli. There is no difference on the glucose uptake part of growth. A mixture of
glucose (4.5 mmol/L) and galactose (8.5 mmol/L) is added instantaneously on the lactose
growth. Now, there are lactose, galactose and glucose all together in the cell. Glucose is taken
up automatically. However, there are LacY (permease), allolactose and galactose present, and
allow small lactose and galactose uptakes. Therefore, both O, uptake rate level and biomass
yield will give a sharp rise. But, again glucose is the preferable sugar among the others. It will
diminish the rise in the second step. From that time on, lactose and galactose uptakes are
completely repressed until all injected glucose is consumed. Then, lactose and galactose are
used simultaneously. Biomass yield will increase in an unstable manner during the injection

period. It is sure that the cAMP level will decrease as the glucose is added to the medium.
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7.7. Dynamics of Mixed Substrates Uptakes; Glucose, Sorbitol (Glucitol), and

Glycerol in Escherichia coli
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Figure 7.34. Glucose concentration profile for mixed substrates; glucose, sorbitol (glucitol)

and glycerol in Escherichia coli
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Figure 7.35. Sorbitol concentration profile for mixed substrates; glucose, sorbitol (glucitol)

and glycerol in Escherichia coli
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Figure 7.36. Glycerol concentration profile of mixed substrates; glucose, sorbitol (glucitol)

and glycerol in Escherichia coli
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Figure 7.37. O, uptake rate of mixed substrates; glucose, sorbitol (glucitol), and glycerol in

Escherichia coli
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Figure 7.38. Biomass production profile for mixed substrates; glucose, sorbitol (glucitol) and

glycerol in Escherichia coli
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Figure 7.39. Normalized cAMPCRP profile for mixed substrates; glucose, sorbitol (glucitol),

and glycerol in Escherichia coli
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Another example of E. coli growth on mixed substrate is based on glucose, sorbitol
(glucitol), and glycerol. Glucose and sorbitol are transported through the membrane by the
phosphotransferase system (PTS). On the other hand, glycerol is transported by normal
diffusion through the membrane. As it was explained in Chapter 5, there are two operons
acting on the system; a gut operon and glp operon. Namely, the gut operon acting on sorbitol
is repressed due to glucose in the medium and glp operon acting on glycerol metabolism is
inhibited due to the presence of glucose and sorbitol. There are two shifts on biomass curve
which gives a consistent result as given in the work of Kompala and Ramkrishna, (1984).
However, the reported data of biomass concentration range was very small and these values
cannot be obtained with the range of assumed initial conditions and substrate uptake rates.
Figures from 7.34 to 7.39 give substrate concentrations, biomass yield, oxygen uptake and
normalized cAMPCRP complex. The glucose is nearly depleted at 2.5 hr which is used
simultaneously with sorbitol. However, as the glucose is depleted, glycerol starts being
utilized in a small quantity. Sorbitol is all successively consumed at 4 hr and then glycerol at
4.5 hr. As a result, there are two refractions on the biomass concentrations indicating that one
substrate is depleted and the other is started to be used. From the simulation results relying on
the initial conditions, the growth rate of sorbitol is greater than both glucose and lactose and

the growth rate of glucose is greater than the glycerol (Usor > UeLe > MoLy)-
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7.8. Dynamics of Mixed Substrates Uptakes; Glucose, Lactose, and Galactose in

Lactococcus lactis
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Figure 7.40. Glucose concentration profile for mixed substrates; glucose, lactose, and

galactose in Lactococcus lactis
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Figure 7.41. Lactose concentration profile for mixed substrates; glucose, lactose, and galactose

in Lactococcus lactis
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Figure 7.42. Galactose concentration profile for mixed substrates; glucose, lactose, and

galactose in Lactococcus lactis
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Figure 7.43. Biomass profile for mixed substrates; glucose, lactose, and galactose in

Lactococcus lactis
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Figure 7.44. Normalized ccpAcre profile for mixed substrates; glucose, lactose, and galactose

in Lactococcus lactis

The growth behaviour of Lactococcus lactis which is a gram positive bacterium, is
examined glucose, lactose and galactose. First of all, this strain is different from E. coli. The
membrane transport system and operon structure of gal operon are different in L. lactis.
Glucose and lactose belong to the phosphotransferase system (PTS), whereas galactose
belongs to permease transport system. It means that glucose and lactose will be used
simultaneously at the beginning and galactose will be taken up sequentially. The same uptake
rates and initial conditions on glucose and lactose are assumed in order to make a comparison
between L. lactis and E. coli. L. lactis is a lactic acid bacteria. It is used for the production of
lactic acid in fermented foods. Fermentation is anaerobic growth of biomass. It is clear that the
biomass yield is lower than in E. coli which possesses aerobic growth. Due to the low growth
rate for all substrates, they are consumed totally only after long of time periods. The inhibition
of galactose transport is accomplished by both glucose and lactose. Since there is a high
glucose uptake, glucose is depleted earlier than the others, like in E. coli. Finally, galactose is
the only substrate in the medium. Catabolite Repression (CR) is mediated via a negative
regulatory mechanism. Disruption of the ccpA gene reduces catabolite repression of several

genes involved in the carbohydrate metabolism. A cis-acting sequence, termed catabolite-
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responsive element (cre), present near the promoter of genes affected by CR, was found to be
essential for mediating CR. A normalized ccpAcre is drawn Figure 7.44 to show the induction
of galactose transport through the cell membrane. In Figure 7.43, there are two shifts in the
growth level giving an allowance of uptake. The growth of biomass due to galactose is
negligible. Moreover, growth on glucose is higher than the growth on lactose. Therefore, the
same conclusion (Ugrc > Hicts > Uerac) on the growth rates can be made as was the case in E.
coli. Experimental results are also given on the Figures 7.40 — 7.43 for the validation of
simulation result. Simulated glucose and galactose concentrations fit the experimental data
well. However, the simulated results of lactose utilization occur earlier than the experimental
results. There is also a discrepancy between simulated and experimental results of biomass
profile especially on galactose utilization. There are two noticeable slopes of the experimental
data parts. In the simulation, there is no lag phase on the shift from one substrate to another,
because glucose and lactose are transported through the membrane by phosphotransferase
system and both have repression on the production of galactose permease. The substrates are
always taken up by pairs. The pairs are glucose and lactose, lactose and galactose, and
galactose itself. Therefore, the slope of biomass concentration curve (growth rate) is only

slightly changed upon the substitution of one substrate to another in a pairwise manner.
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The flux distributions of glucose and lactose (PTS), and galactose (permease) anaerobic
metabolisms of L. lactis are given in Figure 7.45 and 7.46. The red arrows show the dominant
fluxes, whereas the black ones are stagnant rates on the metabolism. When there is a shift from
one substrate to another, flux distribution on the metabolism is more or less the same. But, the
fluxes change a little bit. In general, fluxes are higher which give more biomass production on
glucose and lactose than galactose. The only difference on flux distributions is the pathway of
the substrate uptake. The flux distribution on the TCA cycle is different than the aerobic
growth in E. coli. Flux is not distributed all over the cycle completely and the dominant
reactions, which give rise to entrance to the cycle, are different in anaerobic growth. External
succinate, lactate and acetate are formed from the substrates in anaerobic growth which reduce

the biomass yield.
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8. CONCLUSION AND RECOMMENDATION

8.1. Conclusion

Aerobic growth of Escherichia coli and anaerobic growth of Lactococcus lactis in
multiple carbon source of substrates are examined incorporating transcriptional regulation
based on fuzzy logic. The computational method consists of dynamic flux balance analysis

(FBA) and transcriptional regulation which are structured in MATLAB/SIMULINK.

Mainly, diauxic shift on glucose and lactose growth is studied in E. coli. In order to
explain the regulatory shift, the operon structure controlling the environmental conditions
must be known. Lac operon is responsible for the repression of glucose over lactose and the
induction of lactose uptake. Glucose and lactose diauxic growth is modeled by lac operon
structured in Fuzzy Logic. Aditionally, pulse injections of glucose, galactose and mixture of
glucose and galactose are simulated over diauxic growth in E. coli in order to validate lac
operon construction and to study gal operon which is responsible for the galactose uptake. The
membrane transport system is also important in the sequence of sugar uptakes. Glucose,
sorbitol (glucitol), and glycerol mixture growth is examined in E. coli both to analyze the
responsible operons namely, gut operon and glpKF transcriptional unit and investigate the
sugar uptake strategy which are either sequential or simultaneous. Anaerobic growth on
glucose, lactose and galactose mixture is also simulated in L. lactis, which is lactic acid

bacterium. All operon regulatory structure including /ac operon are arranged in Fuzzy Logic.

Fuzzy Logic is introduced into regulatory flux balance analysis on the metabolic
networks, where Boolean logic had been used earlier (Covert and Palsson, 2002). The results
found in this study show that fuzzy logic can be better than Boolean logic. The structure of the
operon, which controls the uptake of substrate or the rate of flux, is easily and quantitatively
modeled by fuzzy controllers. The regulatory genes are considered either “on” or “off” in
Boolean logic. Therefore, the adaptation of regulatory structure to changes in substrate

concentration in the medium cannot be reflected as it happens. In the case of diauxic growth of
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E. coli on glucose and lactose, the lag phase time period, which is formed due to catabolite
repression and inducer exclusion, cannot be incorporated into the calculation of flux
distributions when the regulatory structure is not modeled as when a Boolean formalism is
preferred. Another result that can be deduced from fuzzy logic formalism, is the pulse
injection of primarily preferred substrate to a medium when any other substrate uptake is
being held. There will be an adaptation time to the uptake of preferred substrate that can easily
be handled by this formalism. Fuzzy logic controlling action because of its gene expression
model inside its inference, can deal with alteration from a higher level to a lower one, or vice
versa. On simultaneous and sequential growth, fuzzy can be more effective than other logical
structure. At any time, substrate that is repressed by other two substrates, cannot be modeled
correctly in Boolean formalism. Partial substrate uptake rate is easily added in the metabolic
network if fuzzy logic is used. The sugar can be utilized partially after the one of preferable

sugars is totally consumed.

Fuzzy logic depends on human knowledge and experience on the system. Therefore,
there is no unique way to map and implicate the solution. If the solution is estimated correctly,

the logical structure can control the transcriptional regulation in an appropriate form.

Estimated initial conditions and substrate uptake rate constraints are taken either from
the literature or that best fit to the flux distribution of growth. Therefore, there is no problem
on the validation of experimental data if they exist. Fuzzy Inference System and Fuzzy
Controller included in the model are easy to implement and insert into the calculations of

Linear Programming.

8.2. Recommendation

The substrate uptake rates are held constant at each time step of calculations which is an
undesirable assumption. However, uptake rate in each step cannot be predicted with the
previous results. Actually, sugar uptake rate are different on initial, exponential, lag, stationary
phases. Only an average of exponential phase uptake rate is used which is assumed to be

constant. The uptake rate at each step must be estimated by a calculation method.
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The fuzzy models are structured on one antecedent to one conclusion in our work. If
more than one antecedent is used, the correlation of all in each other and effect on the
conclusion must be well known. Fuzzy logic relies on the human knowledge and expertise on
the system. Therefore, the gene expression and operon working principle must be examined
very well which is coming from the experimental data. A more complicated operon model can

be constructed relating two or more occasion to one or more conclusion.

Estimates of the initial conditions and substrate uptake rate constraints are chosen
somewhat dependent on the range experimental data. That is, if the biomass concentration and
substrate concentrations are increased in the medium, the behavior of biomass yield will be
different. A quantity of bacteria (biomass) is always treated as one bacterium. The starvation
on the substrate will be dominant if the biomass has been increased in excess amounts.

Therefore, the study must be carried out in a range of experiments.

The reaction list contains mainly 113 reactions which were studied to determine the
ability of the model to make accurate phenotypic predictions (Covert, 2002). These reactions
and additional ones for different substrate membrane transport systems in E. coli and L. lactis
are enough to model the regulation of the shift. Additional pathways can be included to the
list. If a pathway is missed which affects the biomass growth, the simulated result will deviate
from the experimental ones. Also, a better definition of biomass growth rate can be written to

form more precise results.



APPENDIX A: SIMULATION RESULTS

A.1. Growth in Single Substrate of Glucose or Lactose of Escherichia coli

Table A.1. Growth in Single Substrate of Glucose of Escherichia coli

Time GLUCOSE Biomass
(hr) (mmol/L) (g/L)
0.0 1.60 0.011
0.5 1.56 0.015
1.0 1.50 0.020
1.5 1.43 0.027
2.0 1.33 0.036
2.5 1.19 0.048
3.0 1.01 0.064
3.5 0.77 0.086
4.0 0.45 0.115
4.5 0.02 0.154
5.0 0.00 0.154
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Table A.2. Growth in Single Substrate Lactose of Escherichia coli

Time LACTOSE Biomass
(hr) (mmol/L) (g/L)
0.0 5.80 0.011
0.5 5.78 0.014
1.0 5.76 0.019
1.5 5.72 0.024
2.0 5.68 0.032
2.5 5.63 0.042
3.0 5.56 0.054
3.5 5.46 0.071
4.0 5.34 0.092
4.5 5.18 0.120
5.0 4.98 0.157
5.5 4.71 0.205
6.0 4.35 0.267
6.5 3.89 0.349
7.0 3.29 0.455
7.5 2.51 0.594
8.0 1.49 0.775
8.5 0.16 1.011
9.0 0.00 1.011
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A.2. Growth in Mixed Substrates of Glucose and Lactose of Escherichia coli

Table A.3. Growth in Mixed Substrates of Glucose and Lactose of Escherichia coli

GROWTH
Time | GLUCOSE | LACTOSE O, UPTAKE | Biomass RATE: pn
(hr) | (MMOL/L) | (MMOL/L) | (mM/g DW.hr) (g/L) cAMP (1/hr)
0 1.60 5.80 13.98 0.011 0.07 0.6166
0.5 1.56 5.80 13.98 0.015 0.07 0.6166
1 1.50 5.80 13.98 0.020 0.07 0.6166
1.5 1.42 5.80 13.98 0.028 0.07 0.6166
2 1.32 5.79 13.98 0.038 0.07 0.6166
2.5 1.17 5.79 13.98 0.051 0.07 0.6166
3 0.98 5.79 13.98 0.070 0.07 0.6166
3.5 0.71 5.78 13.98 0.095 0.07 0.6166
4 0.35 5.77 12.25 0.130 0.24 0.5053
4.5 0.00 5.76 5.64 0.167 0.93 0.0772
5 0.00 5.70 10.45 0.173 0.93 0.3805
5.5 0.00 5.48 12.87 0.210 0.93 0.5319
6 0.00 5.12 12.87 0.274 0.93 0.5319
6.5 0.00 4.65 12.87 0.357 0.93 0.5319
7 0.00 4.04 12.87 0.466 0.93 0.5319
7.5 0.00 3.24 12.87 0.608 0.93 0.5319
8 0.00 2.19 12.87 0.793 0.93 0.5319
8.5 0.00 0.83 8.38 1.034 0.93 0.2510
9 0.00 0.00 1.172
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A.3. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Glucose of Escherichia coli

Table A.4. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Glucose of Escherichia coli

GROWTH
Time GLUCOSE | LACTOSE | O2 UPTAKE | Biomass RATE: n
(hr) (MMOL/L) | MMOL/L) | (mM/g DW.hr) (g/L) cAMP (1/hr)
0 1.60 5.80 13.982 0.011 0.07 0.617
0.5 1.56 5.80 13.982 0.015 0.07 0.617
1 1.50 5.80 13.982 0.020 0.07 0.617
1.5 1.42 5.80 13.982 0.028 0.07 0.617
2 1.32 5.79 13.982 0.038 0.07 0.617
2.5 1.17 5.79 13.982 0.051 0.07 0.617
3 0.98 5.79 13.982 0.070 0.07 0.617
3.5 0.71 5.78 13.982 0.095 0.07 0.617
4 0.35 5.77 12.246 0.130 0.24 0.505
4.5 0.00 5.76 5.641 0.167 0.93 0.077
5 0.00 5.70 10.450 0.173 0.93 0.381
5.5 0.00 5.48 12.867 0.210 0.93 0.532
6 0.00 5.12 12.867 0.274 0.93 0.532
6.5 0.00 4.65 12.867 0.357 0.93 0.532
7 0.00 4.04 12.867 0.466 0.93 0.532
1.5 2.50 3.24 13.982 0.608 0.07 0.617
8 0.19 3.18 6.334 0.827 0.86 0.124
8.5 0.00 2.86 5.641 0.880 0.93 0.077
9 0.00 2.53 10.450 0.914 0.93 0.381
9.5 0.00 1.39 11.328 1.106 0.93 0.436
10 0.00 0.00 1.375 0.039
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A.4. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Glucose with Membrane Transport System of Escherichia coli

Table A.5. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Glucose with Membrane Transport System of Escherichia coli

GROWTH
Time | GLUCOSE | LACTOSE | 02 UPTAKE | Biomass RATE: 1
(hr) | (MMOL/L) | (MMOL/L) | (mM/gDW.hr) | (¢/L) |cAMP |  (l/hr)
0.0 1.60 5.80 13.98 0.011 | 0.14 0.6166
0.5 1.56 5.80 13.98 0.015 | 0.14 0.6166
1.0 1.50 5.80 13.98 0.020 | 0.14 0.6166
1.5 1.42 5.80 13.98 0.028 | 0.14 0.6166
2.0 1.32 5.79 13.98 0.038 | 0.14 0.6166
25 1.17 5.79 13.98 0.051 | 0.14 0.6166
3.0 0.98 5.79 13.98 0.070 | 0.14 0.6166
3.5 0.71 5.78 13.98 0.095 | 0.14 0.6166
4.0 0.35 5.77 12.25 0.130 | 0.25 0.5053
45 0.00 5.76 5.64 0.167 | 0.86 0.0772
5.0 0.00 5.70 10.45 0.173 | 0.86 0.3805
55 0.00 5.48 12.87 0.210 | 0.86 0.5319
6.0 0.00 5.12 12.87 0274 | 0.86 0.5319
6.5 0.00 4.65 12.87 0357 | 0.86 0.5319
7.0 0.00 4.04 12.87 0.466 | 0.86 0.5319
75 2.50 3.24 13.98 0.608 | 0.14 0.6166
8.0 0.19 3.18 6.33 0.827 | 0.77 0.1238
8.5 0.00 2.86 5.64 0.880 | 0.86 0.0772
9.0 0.00 2.53 10.45 0914 | 0.86 0.3805
9.5 0.00 1.39 11.33 1.106 | 0.86 0.4355
10.0 0.00 0.00 1.375 0.0386
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A.4. Growth in Mixed Substrates of Glucose and Lactose with a Pulse Injection of

Galactose of Escherichia coli

Table A.6. Growth in Mixed Substrates of Glucose and Lactose with a Pulse Injection of

Galactose of Escherichia coli

GROWTH
Time | GLUCOSE | LACTOSE | O, UPTAKE | Biomass RATE: p
(hr) | MMOL/L) | MMOL/L) | (mM/g DW.hr) | (g/L) | cAMP (1/hr)
0.0 1.60 5.80 13.98 0.011 0.14 0.6166
0.5 1.56 5.80 13.98 0.015 0.14 0.6166
1.0 1.50 5.80 13.98 0.020 0.14 0.6166
1.5 1.42 5.80 13.98 0.028 0.14 0.6166
2.0 1.32 5.79 13.98 0.038 0.14 0.6166
2.5 1.17 5.79 13.98 0.051 0.14 0.6166
3.0 0.98 5.79 13.98 0.070 0.14 0.6166
3.5 0.71 5.78 13.98 0.095 0.14 0.6166
4.0 0.35 5.77 12.25 0.130 0.25 0.5053
4.5 0.00 5.76 5.64 0.167 0.86 0.0772
5.0 0.00 5.70 10.45 0.173 0.86 0.3805
5.5 0.00 5.48 12.87 0.210 0.86 0.5319
6.0 0.00 5.12 12.87 0.274 0.86 0.5319
6.5 0.00 4.65 12.87 0.357 0.86 0.5319
7.0 0.00 4.04 12.87 0.466 0.86 0.5319
7.5 2.50 3.24 13.98 0.608 0.14 0.6166
8.0 0.19 3.18 6.33 0.827 0.77 0.1238
8.5 0.00 2.86 5.64 0.880 0.86 0.0772
9.0 0.00 2.53 10.45 0.914 0.86 0.3805
9.5 0.00 1.39 11.33 1.106 0.86 0.4355
10.0 0.00 0.00 1.375 0.0386
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A.5. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Glucose and Galactose Mixture of Escherichia coli.

Table A.7. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Glucose and Galactose Mixture of Escherichia coli

0, GROWTH
Time | GLUCOSE | LACTOSE | GALACTOSE | UPTAKE | Biomass RATE: pu
(hr) | MMOL/L) | (MMOL/L) | (MMOL/L) | mM/gDW.hr) | (¢/L) |cAMP| (1/hr)
0.0 1.60 5.80 0.00 13.982 0011 | 0.07 | 0.6166
0.5 1.56 5.80 0.00 13.982 0015 | 0.07 | 0.6166
1.0 1.50 5.80 0.00 13.982 0.020 | 0.07 | 0.6166
1.5 1.42 5.80 0.00 13.982 0.028 | 0.07 | 0.6166
2.0 1.32 5.79 0.00 13.982 0.038 | 0.07 | 0.6166
2.5 1.17 5.79 0.00 13.982 0051 | 0.07 | 0.6166
3.0 0.98 5.79 0.00 13.982 0.070 | 0.07 | 0.6166
3.5 0.71 5.78 0.00 13.982 0.095 | 0.07 | 0.6166
4.0 0.35 5.77 0.00 12.246 0.130 | 024 | 0.5053
45 0.00 5.76 0.00 5.6408 0.167 | 093 | 0.0772
5.0 0.00 5.70 0.00 10.45 0.173 | 093 | 0.3805
5.5 0.00 5.48 0.00 12.867 0210 | 093 | 0.5319
6.0 0.00 5.12 0.00 12.867 0274 | 093 | 0.5319
6.5 0.00 4.65 0.00 12.867 0357 | 093 | 0.5319
7.0 0.00 4.04 0.00 12.867 0466 | 093 | 0.5319
75 0.00 3.24 8.50 23.513 0.608 | 093 | 1.1838
8.0 0.00 1.99 5.81 23.513 1.098 | 093 | 1.1838
8.5 0.00 0.00 0.94 4.8088 1.985 | 093 | 0.0199
9.0 0.00 0.00 0.00 2.005
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A.6. Growth in Mixed Substrates of Glucose, Sorbitol (Glucitol) and Glycerol of

Escherichia coli

Table A.8. Growth in Mixed Substrates of Glucose, Sorbitol (Glucitol) and Glycerol of

Escherichia coli

GROWTH
Time | GLUCOSE | SORBITOL | GLYCEROL | O, UPTAKE | Biomass | cAMP | RATE:
(hr) | (MMOL/L) | (MMOL/L) | (MMOL/L) | (mM/¢DW.hr) | (2/L) | CRP | (1/hr)
0.0 1.20 1.10 1.10 19.379 0.0080 | 0.12 | 0.9712
0.5 1.16 1.09 1.10 19.379 0.0130 | 0.12 | 0.9712
1.0 1.09 1.08 1.09 19.379 0.0211 | 0.12 | 0.9712
15 0.98 1.06 1.08 19.379 0.0343 | 0.12 | 09712
2.0 0.81 1.02 1.05 19.379 0.0558 | 0.12 | 0.9712
25 0.52 0.96 1.02 19.379 0.0907 | 0.12 | 0.9712
3.0 0.05 0.87 0.97 17.271 0.1474 | 0.84 | 1.5387
35 0.00 0.41 0.67 15.269 03181 | 0.93 | 0.9749
4.0 0.00 0.00 0.17 4702 0.5179 | 0.93 | 0.0001
45 0.00 0.00 0.00 4.320 0.5179 | 0.93 | 0.0684




A.7. Growth in Mixed substrates of Glucose, Lactose and Galactose of

Lactococcus lactis
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Table A.9. Growth in Mixed substrates of Glucose, Lactose and Galactose of Lactococcus

lactis
GROWTH
Time | GLUCOSE | LACTOSE | GALACTOSE | Biomass | ccpA- | RATE: u

(hr) | MMOL/L) | MMOL/L) | (MMOL/L) (g/L) Cre (1/hr)
0.0 1.58 1.58 4.00 0.017 0.07 0.5039
0.5 1.51 1.54 3.99 0.021 0.07 0.5039
1.0 1.42 1.49 3.97 0.028 0.07 0.5039
1.5 1.31 1.43 3.94 0.036 0.07 0.5039
2.0 1.16 1.34 391 0.046 0.07 0.5039
2.5 0.97 1.24 3.87 0.059 0.07 0.5039
3.0 0.72 1.10 3.82 0.076 0.07 0.5039
3.5 0.41 0.92 3.75 0.097 0.07 0.5039
4.0 0.01 0.70 3.67 0.125 0.64 0.3457
4.5 0.00 0.42 3.39 0.149 0.73 0.3464
5.0 0.00 0.08 3.04 0.177 0.93 0.1828
55 0.00 0.00 2.52 0.194 0.93 0.1205
6.0 0.00 0.00 1.96 0.206 0.93 0.1205
6.5 0.00 0.00 1.36 0.219 0.93 0.1205
7.0 0.00 0.00 0.73 0.233 0.93 0.1205
7.5 0.00 0.00 0.05 0.247
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APPENDIX B: COMPUTATIONAL CODE STRUCTURED IN

MATLAB

The computational codes for growth in mixed substrates of Esherichia coli and
Lactococcus lactis are given in the successive sections as a hardcopy. The computational work
was performed in Matlab. The developed programs were also given in a separate CD as a
softcopy which is attached to the end of this Thesis. In addition to these programs, Fuzzy
Controller Blocks, structured in Simulink Matlab, were also included in the CD. The structure
variables describing their Fuzzy Inference System were entered to a Fuzzy Controller Blocks.

The variables must be located in the MATLAB workspace when the program is executed.

B.1. Matlab Code for Growth in Mixed Substrates of Glucose and Lactose of

Escherichia coli

cle

clear all

close all

GlucosecAMP=readfis('GlucosecAMP"); cAMPLacZY A=readfis('cAMPLacZYA'");
LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose');
LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor');
AllolactoseLacZY A=readfis('AllolactoseLacZYA");
LacYLactoseUptakeLactose=readfis("LacYLactoseUptakeLactose');

YoInitial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L)
LacMe=5.8; GluMe=1.6; XMe=0.011;

%Time step 0.5 hr

dt=0.5;



Y%1Initial Values of Substrate Glucose Concentration (mmol/L)
LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe; t(1)=0;
Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt;
Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5;
Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose;
GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup];

fori=1:19
JTime
t(d+1)=t(1)+dt;
9Linear Programming for the maximization of Biomass
9oStoichiometric matrix for MFA - E-COLI
A=xlsread('DENEMEECOLI', 'Matrix");
B=A";
Ib=zeros(167,1); ub=inf*ones(167,1);
% Upper&Lower Boundaries of ATP non-growth associated maintenance flux
Ib(151,1)=15; ub(151,1)=15;
9% Upper&Lower Boundaries of Biomass Production fluxes
Ib(152,1)=0; ub(152,1)=inf;
9% When the glucose concentration becomes considerable diluted level

9% Upper&Lower Boundaries of Glucose Transport fluxes

Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose);

de=Ib(154,1)/Supinitialglucose;
GlucoseUptake=[0 de];

9% Upper&Lower Boundaries of Transport fluxes
sim('GlucoseUptake")

cAMPList(i,1)=cAMP;
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if cAMP<=0.70
Suplactose=0.15;
Slacup=Suplactose/Supinitiallactose;

LactoseUptake=[0 Slacup]

elseif cAMP>0.70

if cAMP>=0.90

if i==x
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose;
LactoseUptake=[0 LactoseUptakeResult];

else
sim('LactoseUptake")
LUR=LactoseUptakeResult+GLactoseUptakeResult;
Suplactose=LUR*Supinitiallactose;
LactoseUptake=[0 LUR];

end

else
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose

LactoseUptake=[0 LactoseUptakeResult];

end

end
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9%Lac Operon regulation structured in Fuzzy Logic Controller in Simulink
Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose);
9%GLup

Ib(156,1)=0; ub(156,1)=0;
9%PYRup

Ib(157,1)=-inf; ub(157,1)=0;
%LACup

Ib(158,1)=-inf; ub(158,1)=0;
9%FORup

Ib(159,1)=-inf; ub(159,1)=0;
%ETHup

Ib(160,1)=-inf; ub(160,1)=0;
9 Acup

Ib(161,1)=-inf; ub(161,1)=0;
9% SUCCup

Ib(162,1)=-inf; ub(162,1)=0;
%RIBup

Ib(163,1)=0; ub(163,1)=0;
9Piup

Ib(164,1)=0; ub(164,1)=inf;
9%CO2up

Ib(165,1)=-inf; ub(165,1)=0;
%02up

Ib(166,1)=0; ub(166,1)=inf;
J%HEup

Ib(167,1)=0; ub(167,1)=0;
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f=zeros(167,1);
f(152,1)=-1;
b=zeros(77,1);
X=linprog(f,[],[1,B,b,Ib,ub);
SONC(:,1)=X;
O2up(i,1)=X(166,1);
LACTOSE(+1)=LACTOSE@{1)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
GLUCOSE(i+1)=GLUCOSEG)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
if LACTOSE(+1)<=0

LACTOSE(G+1)=0;
end
if GLUCOSE(i+1)<=0

GLUCOSE(i+1)=0;

if GLUCOSE(1)-GLUCOSE(i+1)>0

x=i+1

end
end
XBio(i+1)=XBio(i)*exp(X(152,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt
Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt
VGRO(,1)=X(152,1); UPG(i,1)=Ib(154,1); UPL(i,1)=Ib(155,1);
a(i)=t(1);
end
figure(1)
plot(t,XBio)
xlabel('Time (hr)")

title('Biomass Concentration (g/L) vs Time ')



figure(2)

plot(t, GLUCOSE)
xlabel('Time (hr)")
title(GLUCOSE (mM)")
figure(3)

plot(t, LACTOSE)
xlabel('Time (hr)")
title(LACTOSE (mM)")
figure(4)
plot(a,cAMPList)
xlabel('Time (hr)")
title(cAMPList')
figure(5)

plot(a,02up)

xlabel('Time (hr)")

title('O2up (mM/grDW.hr)")
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B.2. Matlab Code for Growth in Mixed Substrates of Glucose and Lactose with

Membrane Transport System of Escherichia coli

cle
clear all
close all
GlucoseEIIAP=readfis('GlucoseEIIAP"); EIIAPcAMP=readfis('EIIAPcAMP");
cAMPLacZY A2=readfis('cAMPLacZYA2'");
LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose');
LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor’);
AllolactoseLLacZY A=readfis('AllolactoseLacZYA");
LacYLactoseUptakeLactose=readfis("LacYLactoseUptakeLactose');
%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L)
LacMe=5.8; GluMe=1.6; XMe=0.011;
%Time step 0.5 hr
dt=0.5;
%1Initial Values of Substrate Glucose Concentration (mmol/L)
LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe; t(1)=0;
Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt;
Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5;
Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose;
GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup];

fori=1:21
%Time
t(i+1)=t(i)+dt;

9Linear Programming for the maximization of Biomass
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9o Stoichiometric matrix for MFA - E-COLI

A=xlsread(DENEMEECOLI', 'Matrix');

B=A";

Ib=zeros(167,1);

ub=inf*ones(167,1);

9% Upper&Lower Boundaries of ATP non-growth associated maintenance flux

Ib(151,1)=15; ub(151,1)=15;

% Upper&Lower Boundaries of Biomass Production fluxes

Ib(152,1)=0; ub(152,1)=inf;

9% When the glucose concentration becomes considerable diluted level

% Upper&Lower Boundaries of Glucose Transport fluxes
Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose);

de=Ib(154,1)/Supinitialglucose;

GlucoseUptake=[0 de];

% Upper&Lower Boundaries of Transport fluxes

if i==16

% Pulse 2.5mmol/L glucose is added to the medium.

Glupulse=2.5;

GLUCOSE(1)=Glupulse;

Scavglucose=Glupulse/XBio(i)/dt;

Supglucose=6.5; Supinitialglucose=6.5;

Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose);

de=Ib(154,1)/Supinitialglucose;

GlucoseUptake=[0 de];

end

sim('GlucoseEIIAPUptake")
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cAMPList(i,1)=cAMP;

if cAMP<=0.70
Suplactose=0.15;
Slacup=Suplactose/Supinitiallactose;
LactoseUptake=[0 Slacup]

elseif cAMP>0.70
if cAMP>=0.84

if i==x
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose;
LactoseUptake=[0 LactoseUptakeResult];
else

sim('LactoseUptake")
LUR=LactoseUptakeResult+GLactoseUptakeResult;
Suplactose=LUR*Supinitiallactose;
LactoseUptake=[0 LUR];

end
else
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose
LactoseUptake=[0 LactoseUptakeResult];

end

end

9Lac Operon regulation structured in Fuzzy Logic Controller in Simulink

Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose);

9%GLup



Ib(156,1)=0; ub(156,1)=0;
%PYRup

Ib(157,1)=-inf; ub(157,1)=0;
%L ACup

Ib(158,1)=-inf; ub(158,1)=0;
9%FORup

Ib(159,1)=-inf; ub(159,1)=0;
%ETHup

Ib(160,1)=-inf; ub(160,1)=0;
9 Acup

Ib(161,1)=-inf; ub(161,1)=0;
9% SUCCup

Ib(162,1)=-inf; ub(162,1)=0;
9% RIBup

Ib(163,1)=0; ub(163,1)=0;
9Piup

Ib(164,1)=0; ub(164,1)=inf;
% CO2up

Ib(165,1)=-inf; ub(165,1)=0;
%02up

Ib(166,1)=0; ub(166,1)=inf;
J%HEup

Ib(167,1)=0; ub(167,1)=0;
f=zeros(167,1);

f(152,1)=-1;

b=zeros(77,1);
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X=linprog(f,[],[],B,b,Ib,ub);
SON(:,1)=X;
O2up(i,1)=X(166,1);
LACTOSE(+1)=LACTOSE(1)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
GLUCOSE((+1)=GLUCOSE((1)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
if LACTOSE(+1)<=0

LACTOSE(G+1)=0;
end
if GLUCOSE(i+1)<=0

GLUCOSE(i+1)=0;

if GLUCOSE(1)-GLUCOSE(i+1)>0

x=i+1

end
end
XBio(i+1)=XBio(i)*exp(X(152,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt
Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt
VGRO(,1)=X(152,1); UPG(,1)=Ib(154,1); UPL(1,1)=Ib(155,1); a(i)=t(i);
end
figure(1)
plot(t,XBio)
xlabel('Time (hr)")
title('Biomass Concentration (g/L) vs Time ')
figure(2)
plot(t, GLUCOSE)
xlabel('Time (hr)")

title(GLUCOSE (mM)")



figure(3)

plot(t, LACTOSE)
xlabel('Time (hr)")
title(LACTOSE (mM)")
figure(4)
plot(a,cAMPList)
xlabel('Time (hr)")
title(cAMPList')
figure(5)

plot(a,02up)

xlabel('Time (hr)")

title('O2up (mM/grDW.hr)")
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B.3. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Glucose on Lactose of Escherichia coli

cle
clear all
close all
GlucosecAMP=readfis('GlucosecAMP'); cAMPLacZY A=readfis('cAMPLacZYA");
LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose');
LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor');
AllolactoseLLacZY A=readfis('AllolactoseLacZYA");
LacYLactoseUptakeLactose=readfis("LacYLactoseUptakeLactose');
%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L)
LacMe=5.8; GluMe=1.6; XMe=0.011;
%Time step 0.5 hr
dt=0.5;
9oInitial Values of Substrate Glucose Concentration (mmol/L)
LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe; t(1)=0;
Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt;
Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5;
Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose;
GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup];

fori=1:21
%Time
t(i+1)=t(i)+dt;
YLinear Programming for the maximization of Biomass

% Stoichiometric matrix for MFA - E-COLI
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A=xlsread('DENEMEECOLI', 'Matrix'); B=A";

Ib=zeros(167,1);

ub=inf*ones(167,1);

% Upper&Lower Boundaries of ATP non-growth associated maintenance flux

Ib(151,1)=15; ub(151,1)=15;

9% Upper&Lower Boundaries of Biomass Production fluxes

Ib(152,1)=0; ub(152,1)=inf;

% When the glucose concentration becomes considerable diluted level

9% Upper&Lower Boundaries of Glucose Transport fluxes
Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose);

de=Ib(154,1)/Supinitialglucose;

GlucoseUptake=[0 de];

9% Upper&Lower Boundaries of Transport fluxes

if i==16

% Pulse 2.5mmol/L glucose is added to the medium.

Glupulse=2.5; GLUCOSE()=Glupulse;

Scavglucose=Glupulse/XBio(i)/dt;

Supglucose=6.5; Supinitialglucose=6.5;

Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose);

de=Ib(154,1)/Supinitialglucose;

GlucoseUptake=[0 de];

end

sim('GlucoseUptake')

cAMPList(i,1)=cAMP;

if cAMP<=0.70

Suplactose=0.15;
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Slacup=Suplactose/Supinitiallactose;
LactoseUptake=[0 Slacup]
elseif cAMP>0.70
if cAMP>=0.90
if i==x
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose;
LactoseUptake=[0 LactoseUptakeResult];
else
sim('LactoseUptake")
LUR=LactoseUptakeResult+GLactoseUptakeResult;
Suplactose=LUR*Supinitiallactose;
LactoseUptake=[0 LUR];
end
else
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose
LactoseUptake=[0 LactoseUptakeResult];
end
end
9Lac Operon regulation structured in Fuzzy Logic Controller in Simulink
Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose);
9%GLup
Ib(156,1)=0; ub(156,1)=0;
%PYRup

Ib(157,1)=-inf; ub(157,1)=0;



%L ACup

Ib(158,1)=-inf; ub(158,1)=0;
9%FORup

Ib(159,1)=-inf; ub(159,1)=0;
9%ETHup

Ib(160,1)=-inf; ub(160,1)=0;
9 Acup

Ib(161,1)=-inf; ub(161,1)=0;
%SUCCup

Ib(162,1)=-inf; ub(162,1)=0;
%RIBup

Ib(163,1)=0; ub(163,1)=0;
90Piup

Ib(164,1)=0; ub(164,1)=inf;
9%CO2up

Ib(165,1)=-inf; ub(165,1)=0;
%02up

Ib(166,1)=0; ub(166,1)=inf;
90HEup

Ib(167,1)=0; ub(167,1)=0;
f=zeros(167,1);

f(152,1)=-1;

b=zeros(77,1);

X=linprog(f,[1.[],B,b,Ib,ub);

SON(:,1)=X; O2up(i,1)=X(166,1);

LACTOSE(+1)=LACTOSE@{1)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
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GLUCOSE((i+1)=GLUCOSE((1)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
if LACTOSE(+1)<=0

LACTOSE(+1)=0;
end
if GLUCOSE(i+1)<=0

GLUCOSE(i+1)=0;

if GLUCOSE(GI)-GLUCOSE(i+1)>0

x=i+1

end
end
XBio(i+1)=XBio(i)*exp(X(152,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt
Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt
VGRO(,1)=X(152,1); UPG(,1)=Ib(154,1); UPL(i,1)=Ib(155,1); a(i)=t(i);
end
figure(1)
plot(t,XBio)
xlabel('Time (hr)")
title('Biomass Concentration (g/L) vs Time ')
figure(2)
plot(t, GLUCOSE)
xlabel('Time (hr)")
title(GLUCOSE (mM)")
figure(3)
plot(t, LACTOSE)
xlabel('Time (hr)")

title(LACTOSE (mM)")



figure(4)
plot(a,cAMPList)
xlabel('Time (hr)")
title(cAMPList')
figure(5)
plot(a,02up)
xlabel('Time (hr)")

title('O2up (mM/grDW.hr)")
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B.4. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Galactose on Lactose of Escherichia coli

cle
clear all
close all
GlucosecAMP=readfis('GlucosecAMP");
cAMPLacZY A=readfis('cAMPLacZYA");
LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose');
LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor’);
AllolactoseLLacZY A=readfis('AllolactoseLacZYA");
LacYLactoseUptakeLactose=readfis("LacYLactoseUptakeLactose');
%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L)
LacMe=5.8; GluMe=1.6; XMe=0.011;
%Time step 0.5 hr
dt=0.5;
%1Initial Values of Substrate Glucose Concentration (mmol/L)
LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe;
t(1)=0;
Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt;
Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5;
Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose;
GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup];

for i=1:21
%Time

t(A+1)=t(1)+dt;
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YLinear Programming for the maximization of Biomass

% Stoichiometric matrix for MFA - E-COLI

A=xlsread(DENEMEECOLI', 'Matrix'); B=A";

Ib=zeros(167,1);

ub=inf*ones(167,1);

9% Upper&Lower Boundaries of ATP non-growth associated maintenance flux

Ib(151,1)=15; ub(151,1)=15;

% Upper&Lower Boundaries of Biomass Production fluxes

Ib(152,1)=0; ub(152,1)=inf;

9% When the glucose concentration becomes considerable diluted level

% Upper&Lower Boundaries of Glucose Transport fluxes
Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose);

de=Ib(154,1)/Supinitialglucose;

GlucoseUptake=[0 de];

% Upper&Lower Boundaries of Transport fluxes

if i==16

% Pulse 2.5mmol/L glucose is added to the medium.

Glupulse=2.5;

GLUCOSE(1)=Glupulse;

Scavglucose=Glupulse/XBio(i)/dt;

Supglucose=6.5; Supinitialglucose=6.5;

Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose);

de=Ib(154,1)/Supinitialglucose;

GlucoseUptake=[0 de];

end

sim('GlucoseUptake')
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cAMPList(i,1)=cAMP;

if cAMP<=0.70
Suplactose=0.15;
Slacup=Suplactose/Supinitiallactose;
LactoseUptake=[0 Slacup]

elseif cAMP>0.70
if cAMP>=0.90

if i==x
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose;
LactoseUptake=[0 LactoseUptakeResult];
else

sim('LactoseUptake")
LUR=LactoseUptakeResult+GLactoseUptakeResult;
Suplactose=LUR*Supinitiallactose;
LactoseUptake=[0 LUR];

end
else
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose
LactoseUptake=[0 LactoseUptakeResult];

end

end

9Lac Operon regulation structured in Fuzzy Logic Controller in Simulink

Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose);

9%GLup



Ib(156,1)=0; ub(156,1)=0;
%PYRup

Ib(157,1)=-inf; ub(157,1)=0;
%L ACup

Ib(158,1)=-inf; ub(158,1)=0;
9%FORup

Ib(159,1)=-inf; ub(159,1)=0;
%ETHup

Ib(160,1)=-inf; ub(160,1)=0;
9 Acup

Ib(161,1)=-inf; ub(161,1)=0;
9% SUCCup

Ib(162,1)=-inf; ub(162,1)=0;
9% RIBup

Ib(163,1)=0; ub(163,1)=0;
9Piup

Ib(164,1)=0; ub(164,1)=inf;
% CO2up

Ib(165,1)=-inf; ub(165,1)=0;
%02up

Ib(166,1)=0; ub(166,1)=inf;
J%HEup

Ib(167,1)=0; ub(167,1)=0;
f=zeros(167,1);

f(152,1)=-1;

b=zeros(77,1);
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X=linprog(f,[1.[],B,b,Ib,ub);
SON(:,1)=X;
O2up(i,1)=X(166,1);
LACTOSE(+1)=LACTOSEG)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
GLUCOSE(i+1)=GLUCOSE@)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));
if LACTOSE(+1)<=0

LACTOSE(G+1)=0;
end
if GLUCOSE(i+1)<=0

GLUCOSE(i+1)=0;

if GLUCOSE(@)-GLUCOSE(+1)>0

x=i+1

end
end
XBio(i+1)=XBio(i)*exp(X(152,1)*dt);
Scavlactose=LACTOSE((i+1)/XBio(i+1)/dt
Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt
VGRO(, 1)=X(152,1); UPG(i,1)=Ib(154,1); UPL(i,1)=Ib(155,1); a(i)=t(i);
end
figure(1)
plot(t,XBio)
xlabel('Time (hr)")
title('Biomass Concentration (g/L) vs Time ')
figure(2)
plot(t, GLUCOSE)

xlabel('Time (hr)")



title(GLUCOSE (mM)")
figure(3)

plot(t, LACTOSE)
xlabel('Time (hr)")
title(LACTOSE (mM)")
figure(4)
plot(a,cAMPList)
xlabel('Time (hr)")
title('c AMPList")
figure(5)

plot(a,02up)

xlabel('Time (hr)")

title('O2up (mM/grDW.hr)")
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B.S. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of

Mixture of Glucose and Galactose on Lactose of Escherichia coli

cle
clear all
close all
GlucosecAMP=readfis('GlucosecAMP'); cAMPLacZY A=readfis('cAMPLacZYA");
LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose');
LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor');
AllolactoseLLacZY A=readfis('AllolactoseLacZYA");
LacYLactoseUptakeLactose=readfis("LacYLactoseUptakeLactose');
cAMPGalactose=readfis('cAMPGalactose');
%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L)
LacMe=5.8; GluMe=1.6; XMe=0.011;
%Time step 0.5 hr
dt=0.5;
%1Initial Values of Substrate Glucose Concentration (mmol/L)
LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; GLACTOSE(1)=0; XBio(1)=XMe; t(1)=0;
Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt;
Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5;
Slacup=Suplactose/Supinitiallactose;
Sglup=Supglucose/Supinitialglucose;
GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup];

for i=1:19
%Time

t(A+1)=t(1)+dt;
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YLinear Programming for the maximization of Biomass

% Stoichiometric matrix for MFA - E-COLI
A=xlsread('DENEMEECOLIGALACTOSE', 'Matrix"); B=A";
Ib=zeros(170,1);

ub=inf*ones(170,1);

9% Upper&Lower Boundaries of ATP non-growth associated maintenance flux
Ib(153,1)=15; ub(153,1)=15;

% Upper&Lower Boundaries of Biomass Production fluxes

Ib(154,1)=0; ub(154,1)=inf;

9% When the glucose concentration becomes considerable diluted level

% Upper&Lower Boundaries of Glucose Transport fluxes

Ib(156,1)=min(Supglucose,Scavglucose); ub(156,1)=min(Supglucose,Scavglucose);

de=Ib(156,1)/Supinitialglucose;
GlucoseUptake=[0 de];
% Upper&Lower Boundaries of Transport fluxes
sim('GlucoseUptake')
cAMPList(i,1)=cAMP;
if cAMP<=0.70
Suplactose=0.15;
Slacup=Suplactose/Supinitiallactose;
LactoseUptake=[0 Slacup]
elseif cAMP>0.70
if cAMP>=0.90
if i==x
sim('LactoseUptake")

Suplactose=LactoseUptakeResult*Supinitiallactose;
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LactoseUptake=[0 LactoseUptakeResult];
else
sim('LactoseUptake")
LUR=LactoseUptakeResult+GLactoseUptakeResult;
Suplactose=LUR*Supinitiallactose;
LactoseUptake=[0 LUR];
end
else
sim('LactoseUptake")
Suplactose=LactoseUptakeResult*Supinitiallactose
LactoseUptake=[0 LactoseUptakeResult];
end
end
9Lac Operon regulation structured in Fuzzy Logic Controller in Simulink
Ib(157,1)=min(Suplactose,Scavlactose); ub(157,1)=min(Suplactose,Scavlactose);
9%GALACup
Ib(158,1)=0; ub(158,1)=0;
if GLACTOSE(1)>0
sim('GalactosevsGlucoseUptake")
Scavglactose=GLACTOSE()/XBio(i)/dt
Supglactose=GalactoseUptake*6.5;
Ib(158,1)=min(Supglactose,Scavglactose); ub(158,1)=min(Supglactose,Scavglactose);
end
if i==16
% Pulse 2.5mmol/L glucose is added to the medium.

Glupulse=4.5;
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GLUCOSE(1)=Glupulse;

Scavglucose=Glupulse/XBio(i)/dt

Supglucose=6.5; Supinitialglucose=6.5;
Ib(156,1)=min(Supglucose,Scavglucose); ub(156,1)=min(Supglucose,Scavglucose);
de=Ib(156,1)/Supinitialglucose;

GlucoseUptake=[0 de];

sim('GlucoseUptake')

cAMPList(i,1)=cAMP;

% Pulse 8.5mmol/L galactose is added to the medium.

if X(10,1)-X(11,1)>0

sim('GalactosevsGlucoseUptake')

Glacpulse=8.5;

GLACTOSE(i)=Glacpulse;

Scavglactose=GLACTOSE(i)/XBio(i)/dt; Supglactose=GalactoseUptake*6.5;
Ib(158,1)=min(Supglactose,Scavglactose); ub(158,1)=min(Supglactose,Scavglactose);
else

Ib(158,1)=0; ub(158,1)=0;

end

end

9%GLup

Ib(159,1)=0; ub(159,1)=0;

%PYRup

Ib(160,1)=-inf; ub(160,1)=0;

%L ACup

Ib(161,1)=-inf; ub(161,1)=0;

9%FORup



Ib(162,1)=-inf; ub(162,1)=0;
%ETHup

Ib(163,1)=-inf; ub(163,1)=0;
% Acup

Ib(164,1)=-inf; ub(164,1)=0;
%SUCCup

Ib(165,1)=-inf; ub(165,1)=0;
%RIBup

Ib(166,1)=0; ub(166,1)=0;
9Piup

Ib(167,1)=0; ub(167,1)=inf;
9%CO2up

Ib(168,1)=-inf; ub(168,1)=0;
%02up

b(169,1)=0; ub(169,1)=inf;
90HEup

Ib(170,1)=0; ub(170,1)=0;
f=zeros(170,1);

f(154,1)=-1;

b=zeros(78,1);
X=linprog(f,[1.[],B,b,Ib,ub);
SONC(:,1)=X;

02up(i,1)=X(169,1);

LACTOSE(G+1)=LACTOSE(1)+X(157,1)/X(154,1)*XBio(i)*(1-exp(X(154,1)*dt));
GLUCOSE(i+1)=GLUCOSE(1)+X(156,1)/X(154,1)*XBio(1)*(1-exp(X(154,1)*dt))

GLACTOSE(i+1)=GLACTOSE(@)+X(158,1)/X(154,1)*XBio(i)*(1-exp(X(154,1)*dt));
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if GLACTOSE(+1)<=0
GLACTOSE((i+1)=0;
end
if LACTOSEG+1)<=0
LACTOSE(+1)=0;
end
if GLUCOSE(i+1)<=0
GLUCOSE(i+1)=0;
if GLUCOSE(GI)-GLUCOSE((i+1)>0
x=i+1
end
end
XBio(i+1)=XBio(i)*exp(X(154,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt
Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt
VGRO(,1)=X(154,1); UPG(i, 1)=Ib(156,1); UPL(i,1)=Ib(157,1);a(i)=t(i);
end
figure(1)
plot(t,XBio)
xlabel('Time (hr)")
title('Biomass Concentration (g/L) vs Time ')
figure(2)
plot(t, GLUCOSE)
xlabel('Time (hr)")
title(GLUCOSE (mM)")
figure(3)

plot(t, LACTOSE)



xlabel('Time (hr)")
title(LACTOSE (mM)")
figure(5)

plot(t, GLACTOSE)
xlabel('Time (hr)")
title(GLACTOSE (mM)")
figure(4)
plot(a,cAMPList)
xlabel('Time (hr)")
title('cAMPList")
figure(6)

plot(a,02up)

xlabel('Time (hr)")

title('O2up (mM/grDW.hr)")
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B.6. Growth in Mixed Substrates of Glucose, Sorbitol (Glucitol) and Glycerol of

Escherichia coli

cle
clear all
close all
GlucosecAMPCRP=readfis('GlucosecAMPCRP");
cAMPCRPSorbitolUptake=readfis('cAMPCRPSorbitolUptake');
GlucoseSorbitolEITA=readfis('GlucoseSorbitol EIIA");
EITAGIlpK=readfis('EIIAGIpK"); GlpKG3PFormation=readfis('GlpKG3PFormation');
YInitial concentration of External Biomass (XMe)(g/L) & External Glucose
9%(GluMe)(mmol/L) External Sorbitol (GluMe)(mmol/L) External Glycerol
GluMe=1.2; SorMe=1.1; GlyMe=1.1; XMe=0.008;
%Time step 0.5 hr
dt=0.5;
9oInitial Values of Substrate Glucose Concentration (mmol/L)
SORBITOL(1)=SorMe; GLUCOSE(1)=GluMe; GLYCEROL(1)=GlyMe; XBio(1)=XMe; t(1)=0;
Scavsorbitol=SORBITOL(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt;
Scavglycerol=GLYCEROL(1)/XBio(1)/dt;
Supinitialsorbitol=4.5; Supinitialglucose=8.5; Supinitialglycerol=4; Supsorbitol=1.6;
Supglucose=8; Supglycerol=4.0;
Ssorup=Supsorbitol/Supinitialsorbitol; Sglup=Supglucose/Supinitialglucose;
Sglyup=Supglycerol/Supinitialglycerol; Ssorglup=Supsorbitol+Supglucose;
GlucoseUptake=[0 Sglup];

for i=1:10

%Time
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t(i+1)=t(1)+dt;
9Linear Programming for the maximization of Biomass
% Stoichiometric matrix for MFA - E-COLI
A=xlIsread(DENEMEECOLIGLUCOSESORBITOL', 'Matrix"); B=A";
Ib=zeros(171,1); ub=inf*ones(171,1);
9% Upper&Lower Boundaries of ATP non-growth associated maintenance flux
Ib(154,1)=15; ub(154,1)=15;
% Upper&Lower Boundaries of Biomass Production fluxes
Ib(155,1)=0; ub(155,1)=inf;
9% When the glucose concentration becomes considerable diluted level
% Upper&Lower Boundaries of Glucose Transport fluxes
Ib(157,1)=min(Supglucose,Scavglucose); ub(157,1)=min(Supglucose,Scavglucose);
de=Ib(157,1)/Supinitialglucose;
GlucoseUptake=[0 de];
% Upper&Lower Boundaries of Transport fluxes
sim('SorbitolUptake")
cAMPList(i,1)=cAMPCRP;
9%Gut Operon regulation structured in Fuzzy Logic Controller in Simulink
Ib(160,1)=min(GSorbitolUptake*Supinitialsorbitol+Supsorbitol,Scavsorbitol);
ub(160,1)=min(GSorbitolUptake*Supinitialsorbitol+Supsorbitol,Scavsorbitol);
if cAMPCRP<=0.15

Ib(160,1)=Supsorbitol; ub(160,1)=Supsorbitol;
end
SUM=Ib(160,1)+Ib(157,1)
GlucoseSorbitolUptake=[0 SUM/Ssorglup]

sim('GlucoseSorbitolEIIAG3PFormation')
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9%Glycerol Operon regulation structured in Fuzzy Logic Controller in Simulink
Ib(107,1)=min(G3PFormation*Supinitialglycerol,Scavglycerol);
ub(107,1)=min(G3PFormation*Supinitialglycerol,Scavglycerol);
9% L.CTSup

Ib(158,1)=0; ub(158,1)=0;

9%GLup

Ib(159,1)=0; ub(159,1)=inf;

%PYRup

Ib(161,1)=-inf; ub(161,1)=0;

%L ACup

Ib(162,1)=-inf; ub(162,1)=0;

%FORup

Ib(163,1)=-inf; ub(163,1)=0;

9%ETHup

Ib(164,1)=-inf; ub(164,1)=0;

9 Acup

Ib(165,1)=-inf; ub(165,1)=0;

9% SUCCup

Ib(166,1)=-inf; ub(166,1)=0;

%RIBup

Ib(167,1)=0; ub(167,1)=0;

%Piup

Ib(168,1)=0; ub(168,1)=inf;

9% CO2up

Ib(169,1)=-inf; ub(169,1)=0;

%02up
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Ib(170,1)=0; ub(170,1)=inf;
90HEup
Ib(171,1)=0; ub(171,1)=0;
f=zeros(171,1); f(155,1)=-1; b=zeros(79,1);
X=linprog(f,[],[],B,b,Ib,ub);
SON(:,1)=X; O2up(i,1)=X(170,1);
SORBITOL(i+1)=SORBITOL(1)+X(160,1)/X(155,1)*XBio(i)*(1-exp(X(155,1)*dt));
GLUCOSE((+1)=GLUCOSE(1)+X(157,1)/X(155,1)*XBio(i)*(1-exp(X(155,1)*dt));
GLYCEROL(i+1)=GLYCEROL(1)+X(159,1)/X(155,1)*XBio(i)*(1-exp(X(155,1)*dt));
if SORBITOL(i+1)<=0

SORBITOL(i+1)=0;
end
if GLUCOSE(i+1)<=0

GLUCOSE(i+1)=0;
end
XBio(i+1)=XBio(i)*exp(X(155,1)*dt); Scavsorbitol=SORBITOL(i+1)/XBio(i+1)/dt
Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt; Scavglycerol=GLYCEROL(i+1)/XBio(i+1)/dt
VGRO(,1)=X(155,1); UPG(i, 1)=Ib(157,1); UPS(,1)=Ib(160,1); UPGLY(,1)=X(159,1);
UPGL3P(,1)=Ib(107,1); a(i)=t(i);
end
figure(1)
plot(t,XBio)
xlabel('Time (hr)")
title('Biomass Concentration (g/L) vs Time ')
figure(2)

plot(t, GLUCOSE)



xlabel('Time (hr)")
title(GLUCOSE (mM)")
figure(3)

plot(t, SORBITOL)
xlabel('Time (hr)")
title('SORBITOL (mM)")
figure(4)
plot(a,cAMPList)
xlabel('Time (hr)")
title('cAMPList")
figure(5)

plot(a,02up)

xlabel('Time (hr)")

title('O2up (mM/grDW.hr)")

figure(6)
plot(t, GLYCEROL)
xlabel('Time (hr)")

title(GLYCEROL (mM)")
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B.7. Growth in Mixed Substrates of Glucose, Lactose and Galactose of Lactococcus lactis

cle
clear all
close all
LGlucoseccpAcre=readfis('LGlucoseccpAcre'); ccpAcreGalK=readfis('ccpAcreGalK');
GalKGalactoseUptake=readfis('GalKGalactoseUptake');
%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L)
LacMe=1.58; GlacMe=4.0; GluMe=1.58; XMe=0.0167;
%Time step 0.5 hr
dt=0.5;
9oInitial Values of Substrate Glucose Concentration (mmol/L)
LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; GLACTOSE(1)=GlacMe; XBio(1)=XMe; t(1)=0;
Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt;
Scavglactose=GLACTOSE(1)/XBio(1)/dt;
Supinitiallactose=4.1; Supinitialglucose=7.3; Supinitialglactose=6.7; Supglucose=7.3; Suplactose=4.1;
Sglup=Supglucose/Supinitialglucose;
LGlucoseUptake=[0 Sglup];
fori=1:15
%Time
t(A+1)=t(1)+dt;
9Linear Programming for the maximization of Biomass
90 Stoichiometric matrix for MFA - E-COLI
A=xlIsread(DENEMEECOLILCTSGLCGLAC', 'Matrix'); B=A";
Ib=zeros(178,1);

ub=inf*ones(178,1);



% Upper&Lower Boundaries of ATP non-growth associated maintenance flux

Ib(161,1)=15; ub(161,1)=15;

9% Upper&Lower Boundaries of Biomass Production fluxes

b(162,1)=0; ub(162,1)=inf;

% When the glucose concentration becomes considerable diluted level

% Upper & Lower Boundaries of Glucose and Lactose Transport fluxes
Ib(164,1)=min(Supglucose,Scavglucose); ub(164,1)=min(Supglucose,Scavglucose);
Ib(165,1)=min(Suplactose,Scavlactose); ub(165,1)=min(Suplactose,Scavlactose);

de=(Ib(164,1)+Ib(165,1))/(Supinitialglucose+Supinitiallactose);

TOTAL(G)=de;

GlucoseLactoseUptake=[0 de];

% Upper & Lower Boundaries of Galactose Transport fluxes by Simulink

sim('LLactisgalactoseuptake')

ccpAcreList(i,1)=ccpAcre;

Ib(166,1)=GalactoseUptake*Supinitialglactose; ub(166,1)=GalactoseUptake*Supinitialglactose;

Glact=GalactoseUptake*Supinitialglactose

9%GLup

Ib(167,1)=0; ub(167,1)=0;

%PYRup

Ib(168,1)=-inf; ub(168,1)=0;

%L ACup

Ib(169,1)=-inf; ub(169,1)=0;

9%FORup

Ib(170,1)=0; ub(170,1)=0;

%ETHup

Ib(171,1)=0; ub(171,1)=0;
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90 Acup

Ib(172,1)=-inf; ub(172,1)=0;
%SUCCup

Ib(173,1)=-inf; ub(173,1)=0;
9% RIBup

Ib(174,1)=0; ub(174,1)=0;
90Piup

Ib(175,1)=0; ub(175,1)=inf;
%CO2up

Ib(176,1)=-inf; ub(176,1)=0;
%02up

Ib(177,1)=0; ub(177,1)=2.5;
90HEup

Ib(178,1)=0; ub(178,1)=0;

f=zeros(178,1); f(162,1)=-1; b=zeros(82,1);

X=linprog(f,[],[1,B,b,Ib,ub);

SON(:,i)=X; 02up(i,1)=X(177,1);
LACTOSE(i+1)=LACTOSE(i)+X(165,1)/X(162,1)*XBio(i)*(1-exp(X(162,1)*dt));
GLUCOSE(i+1)=GLUCOSE(i)+X(164,1)/X(162,1)*XBio(i)*(1-exp(X(162,1)*dt));

GLACTOSE(i+1)=GLACTOSE(@1)+X(166,1)/X(162,1)*XBio(i)*(1-exp(X(162,1)*dt));

if LACTOSEG+1)<=0
LACTOSE(+1)=0;

end

if GLUCOSE(G+1)<=0
GLUCOSE(i+1)=0;

end
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XBio(i+1)=XBio(i)*exp(X(162,1)*dt);
Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt; Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt;
Scavglactose=GLACTOSE(+1)/XBio(i+1)/dt;
VGRO(, 1)=X(162,1); UPG(i,1)=Ib(164,1); UPL(i,1)=Ib(165,1); UPGL(,1)=Ib(166,1); a(i)=t(i);
end

%plot(t, LACTOSE,t, GLUCOSE.,t,XBio)
figure(1)

plot(t,XBio)

xlabel('Time (hr)")

title('Biomass Concentration (g/L) vs Time ')
figure(2)

plot(t, GLUCOSE)

xlabel('Time (hr)")

title(GLUCOSE (mM)")

figure(3)

plot(t, LACTOSE)

xlabel('Time (hr)")

title(LACTOSE (mM)")

figure(5)

plot(t, GLACTOSE)

xlabel('Time (hr)")

title(GALACTOSE (mM)")
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APPENDIX C: LIST OF METABOLIC REACTIONS IN

Escherichia coli AND Lactococcus lactis

List of Reactions Used in Escherichia coli and Lactococcus lactis

Table C.1.
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