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ABSTRACT 

A FUZZY LOGIC APPROACH FOR REGULATION IN  

FLUX BALANCE ANALYSIS 

Technological advances in experimental observations give the ability to examine 

complex biological systems and the chance to forecast the bacterial behaviour in silico. In this 

thesis, the experimentally observed behavior by which bacteria are able to establish a time 

hierarchy of sugar utilization is examined and simulated. The optimal growth of bacteria on 

defined carbon sources are now easily predicted from the solutions of constraint-based 

metabolic models. However, these methods are unable to predict the sequence of carbon 

utilization and changes in cellular behavior of growth in mixed substrates. In this work a 

regulatory structure describing transcriptional regulation of catabolic genes or operons 

expressed in Fuzzy Logic Formalism is combined with dynamic Flux Balance Analysis 

(FBA). Since the transcription of operons is regulated by specific promoters and inducers that 

evolve from substrate usage, this regulatory structure is a natural part of any model of carbon 

source utilization. The Fuzzy Logic Formalism is a good alternative to differential equation 

models that require kinetic parameter values and superior to Boolean Formalism which 

automatically sets regulation as “on” or “off” rules.  

The FBA/Fuzzy Logic combination was successfully used to simulate aerobic growth of 

Escherichia coli in mixed double (glucose-lactose) or triple (glucose-lactose-galactose, 

glucose-sorbitol-glycerol) substrates and anaerobic growth of Lactococcus lactis in a triple 

substrate (glucose-lactose-galactose). When well-defined data are available, the computed 

results are in good agreement with the data. The method also allows for the prediction of 

growth lag periods upon substrate substitution and changes in growth pattern and substrate 

utilization upon pulse injection of substrates in existing growth media. 
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ÖZET 

AKI DENGE ANALİZİ İÇERİSİNDEKİ DÜZENLEME İÇİN  

FUZZY LOJİK YAKLAŞIMI 

Deneysel olarak yapılan çalışmalarda teknolojik gelişmeler hem karışık biyolojik 

sistemlerin incelenmesine hem de bilgisayar ortamında bakteriyel davranışların tahmin 

edilmesine olanak sağlamaktadır. Bu tez çalışması kapsamında, deneysel olarak incelenen 

bakterilerin, zaman içerisinde değişik şeker kullanımına karşı uyumu modellendi ve benzetimi 

yapıldı. Bakterilerin farklı karbon kaynaklarında en uygun çoğalmaları, sınırlı ortamda 

metabolik modeller ile çözümü kolaylıkla tahmin edilmektedir. Fakat, bu metodlar karbon 

kullanım sıralarını ve böylelikle çoklu substrat ortamında büyüme sürecini kestirememektedir. 

Bu çalışmayla, karbon kullanımını düzenleyen genlerin transkripsiyonel düzenleyici yapısı 

veya operon, Fuzzy Lojik Biçimselliği içinde tanımlanarak dinamik Akı Denge Analizi (Flux 

Balance Analysis-FBA) ile birleştirildi. Operonların transkripsiyonu substrat kullanımından 

doğan spesifik destekleyiciler ve endükleyiciler tarafından düzenlenmektedir. Bu düzenleyici 

yapı karbon kullanımının doğal şeklidir. Fuzzy Lojik Biçimselliği kinetik parametrelere 

gereksinim duyan diferansiyel denklem modellerine alternatif ve “on”/“off” hükümlerine bağlı 

Boolean Lojik Biçimselliğinden daha iyi bir yöntemdir. 

FBA/Fuzzy lojik birleşimi çoklu ortamlarda (glikoz-laktoz, glikoz-laktoz-galaktoz ve 

glikoz-sorbitol-gliserol) Escherichia coli’nin (Koli basili) oksijenli ortamda büyümesi 

benzetimini ve Lactococcus lactis’in (süt ürünlerinde kullanılan bir tür bakteri) oksijensiz 

ortamda büyümesi benzetimini çok iyi yapılabilmektedir. Hesaplanan sonuçlar elimizde 

bulunan iyi tanımlanmış deneysel veriler ile uyumlu olarak eşleşmektedir. Buna ilave olarak, 

bu metod bir substratın diğerinin yerine geçmesi ile oluşan lag fazındaki büyümeyi veya 

açıkça büyüme değişikliğini ve uyarı enjeksiyonu ile oluşan substrat kullanımını var olan 

ortamlarda tanımlayabilmektedir. 
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1. INTRODUCTION 

Technological advances in data collection give biologist the ability to study complex 

systems. Based on experimental observations, a biological model can be developed to predict 

the organism behaviour in silico. To model a biological pathway for a cellular process, 

chemical reaction network and regulatory structure must be combined. Transcriptional 

regulatory events as time dependent constraints on a metabolic network would be necessary to 

simulate bacterial growth on various environmental conditions. 

In this work, flux balance analysis (FBA) and fuzzy logic formalism are used to find 

optimal solutions to selected metabolic networks and for the regulation of the structure, 

respectively. Mathematical modeling of a large system is hard to handle if parameter values 

are necesssary. Flux Balance Analysis (FBA) which is a type of Metabolic Flux Analysis 

(MFA), is explained in detail in the second chapter. The analysis does not deal with the 

parameters. It gives an optimal flux distribution upon substrate uptake rate. The dynamic 

behavior in the medium outside the cell provides a time course of by-product secretion, and 

biomass growth.  

Fuzzy logic is a tool that describes human reasoning. It uses the whole interval between 

0 (False) and 1 (True) of the logical statement. Fundamentals and applications of fuzzy logic 

are explained in Chapter 4. Fuzzy IF-THEN rules are incorporated for the analysis of complex 

biological systems. In principle, a crisp set of input is converted into fuzzy quantities to have a 

decision in human knowledge. Then, the conclusion is defuzzified to have a discrete result.  

The utilization of carbon sources by organisms are described by central metabolism 

pathways. Substrate uptake mechanism through the cell membrane and ways to utilize 

multiple carbon source mixtures may be different for different microorganisms. A series of 

genes called operons regulate the sequence of utilization. Lac operon, gal operon, gut operon, 

glp operon in E. coli and gal operon in L. lactis are described in Chapter 5. The responses of 

biological operon structures and sugar uptake transport systems to environmental conditions 

are described in terms of fuzzy logic formalism.  
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The computational algorithm described in Chapter 6 is performed in Matlab. The 

algorithm contains two separate modules, which are constantly interacting with each other. 

The algorithm consists of a regulatory module and a metabolic network module. Dynamical 

flux balance analysis is performed to determine metabolic transients in response to regulatory 

signals in each time step of an interval.  

Available experimental data found in literature are included in the results for the 

validation of simulations. Metabolic network maps containing the flux distribution at some 

chosen time intervals are also included in the results and discussion section. The differences 

between the main pathways for the utilization of substrates and different growth regimes are 

examined in E. coli for aerobic growth and in L. lactis for anaerobic growth.  

The conclusion chapter enumerates the advantages of using Fuzzy Logic over Boolean 

formalism as a regulatory tool for regulatory metabolic flux analysis. 
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2. METABOLIC FLUX ANALYSIS 

Genome sequencing and bioinformatics are producing detailed lists of the molecular 

components contained in many prokaryotic organisms. By the help of this information, in 

silico representations of integrated metabolic functions can be constructed and analyzed. 

Kinetic information on the dynamics and regulation of metabolic reactions are usually 

accompanied with problems concerning availability and in vivo/in vitro discrepancies. 

Metabolic Flux Analysis (MFA) is a method based on the fundamental physicochemical 

constraints on metabolic networks which can be used successfully instead of the ones using 

kinetic parameters of enzymes. Stoichiometry of metabolic pathways and metabolic demands 

are required for the analysis. Moreover, additional information can be incorporated in terms of 

imposing regulation on the growth performance. 

In general, MFA is useful for analyzing specific flux distribution but is not able to 

characterize the complete admissible steady state solution space. By applying metabolic flux 

analysis (MFA), one tries to shrink the possible solution space of (Eq. 1) by measuring some 

of the reaction rates (such as uptake or excretion rates) in a certain steady state experiment. 

The stiochiometric matrix represents the central equation for MFA and characterizes a flux 

scenario. The ideal case where only one unique and exact solution exists occurs, if S is a 

square matrix and invertible, because then all unknown rates in νννν can be determined. If a 

scenario is underdetermined, then only some or even none of the unknown rates can be 

determined. In redundant systems, a consistency check can be performed, which is useful for 

detecting gross measurement or modeling errors. In larger networks, despite a number of 

measurements, all rates in the system often remain completely unobservable. However, for the 

general case, depending on the rank of S, a scenario must be classified with respect to 

determinacy (determined or underdetermined) and redundancy (redundant or non-redundant). 

Flux Balance Analysis (FBA) is the same as Metabolic Flux Analysis (MFA). However, 

the characteristic assumption of FBA is the optimal function of the network. In most cases, the 

linear objective function is maximizing growth, sometimes; maximizing product yield. The 
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three constraints, quasi-steady state, reaction capacities and optimal function form the linear 

optimization problem.  

FBA enables one to predict production capabilities of a micro-organism such as 

predicting optimal yield and optimal behavior. Another very useful application of FBA is to 

investigate whether a certain function can be performed at all in a network, especially after 

removal of network elements by simulating gene deletions. It means that, if a reaction is 

removed in the network, then one may optimize the network again. If the optimal value, e.g. 

for the growth rate, now becomes zero, then one definitely knows that this function (growth) is 

not possible anymore. 

The significance of whole-cell computational modeling is to combine detailed 

biochemical information with biological insight to produce testable predictions. The 

biochemical information and growth performance on prokaryotes such as Escherichia coli 

(E. coli) is known quiet well that FBA can predict metabolic flux distribution at steady state 

by using linear programming. It also gives an interpretation of experimental data, provides a 

guide to metabolic engineering, enables optimal medium formulation, and provides a method 

for bioprocess optimization.  

2.1. Steady-State Methods 

2.1.1. Flux Balance Analysis (FBA) 

The first step in FBA is the construction of the metabolic network containing the most 

important metabolites and reactions between them. The central metabolism pathway reactions 

(glycolysis, pentose phosphate pathway, TCA cycle, electron transport system, etc.) are used 

to identify the growth and end products on sugar utilization. A metabolic steady state is 

assumed on the metabolism, meaning that, the metabolic pathway flux leading to the 

formation of the metabolite and that leading to the degradation of a metabolite must balance. 

This generates the flux balance equation. 

S ���� νννν = b   (1) 
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where S is a matrix comprising the stoichiometry of the catabolite reactions, νννν is a vector 

of metabolic fluxes, and b is a vector containing the net metabolic uptake by the cell. The 

number of metabolic reaction rates (also called; fluxes) normally exceeds the number of 

metabolites. Therefore, there is a plurality of solutions. A particular solution may be found by 

using linear optimization by stating an objective and searching its maximal value within 

stoichiometrically defined domain. In other words, optimization of the growth rate will 

determine the specific metabolic pathway utilization in the organism (Varma & Palsson, 

1994a, b). 

Upon this approach, certain constraints can be imposed to the biochemical reaction 

network to limit cellular possible behaviors. These physicochemical constraints are used to 

define a closed solution space within which the steady-state solution to the flux vector must lie 

(Palsson, 2000). The constraints can be coming from thermodynamic limitations (e.g. effective 

irreversibility of a given reaction due to an extremely high equilibrium constant), capacity 

limitations (e.g. maximum uptake rate for a given transport protein), or experimental data. 

iii βνα ≤≤    (2) 

αi or βi may be set to zero or to another finite value to constrain the direction or 

magnitude of a flux.  

 

Figure 2.1. Constraints-based analysis of metabolic networks in geometrical term  

(Covert et al., 2001) 

Figure 2.1 depicts metabolic network in geometrical terms. By imposing the constraints, 

the solution space is bounded to a convex subset.  
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Some representative works on either metabolic flux analysis or flux balance analysis are 

given in Table 2.1 and 2.2. The metabolic system, aim of the work, constraints and auxiliary 

variables are tabulated for comparison. 

Table 2.1. Representative studies in MFA and FBA 

MAJEWSKI and 
DOMACH, 1990 

14 metabolic reactions, 4 load fluxes. 
Optimal production of high-energy phosphate bonds on ATP and GTP. 
Enzymatic capacity constraints and electron transport chain constraints. 
The onset of acetate overflow and the rate of acetate production. FBA 

NEIDHARDT, 
1987-1990 

Reconstruction of E. coli metabolic network contained both anabolic and 
catabolite reactions (53 catabolic reactions and 94 biosynthetic reactions). 
Optimal production of cofactors (ATP, NADPH, NADH), optimal 
production of metabolic precursors (Pryuvate or Succinate). 
Energy, redox or stoichiometric constraints. 
Maximal theoretical yields for amino acid and nucleic acid, optimal flux 
distributions for biomass constituents. FBA 

NISSEN, 1997 

37 pathway reactions involving 43 compounds. 
Anaerobic metabolism of Saccharomyces cerevisiae. 
Intracellular fluxes based on measurements of the uptake of substrates 
from the medium, secretion of products from the cells, and of 
the rate of biomass formation are calculated. 
Production rates of malate and fumarate are calculated. MFA 

PRAMANIK and 
KEASLING, 
1997-1998 

317 reactions and 305 metabolites. 
Optimal growth rate. 
Equations relate growth rate to biomass requirments. 
The biomass composition varies with the carbon source. 
Aerobic growth on acetate plus glucose. FBA 

GULIK, 1999 

Growth and penicillin-G production in Penicillium Chrysogenum. 
Potential bottlenecks nodes for increased productivity. 
Stoichiometric model for yeast (Cytosol, mitochondrion, peroxisome;Van 
Gulik and Heijnen, 1995). MFA 

EDWARDS  
and PLASSON, 
1999 

Metabolic capabilities of Haemophilus influenzae. 

488 metabolic reactions operating on 343 metabolites. 
Six different optimal metabolic phenotypes are obtained on different 
constraining features. 
Redundant functions under defined functions are also studied. FBA 

RAMKRISHNA 
and PALSSON, 
1999 

Mitochondrial energy metabolism. 
Systemic stoichiometric constraints. 
Optimal flux distributions for maximal ATP production in the 
mitochondrion are characterized. 
Metabolic behaviour due to genetic deletions at the metabolic level is 
characterized. 
Glycolytic pathways, TCA cycle, and the electron transport system (ETS) 
are modeled for mitochondria. FBA 
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Table 2.2. Representative studies in MFA and FBA (Cont’d) 

EDWARD and 
PALSSON, 2000 

720 reactions and 436 metabolites (Glycolysis, TCA cycle,  
pentose phosphate pathway, respiration, anaplerotic reactions, 
fermentative reactions, amino acid biosynthesis and degradation,  
nucleotide biosynthesis and interconversions, fatty acid biosynthesis and  
degradation phospholipid biosynthesis cofactor biosynthesis and 
metabolite transport). 
In silico gene deletions and growth characteristics of a series  
of E. coli mutants on several different carbon sources. FBA 

EDWARDS and 
IBARRA, 2001 

E. coli MG1655 metabolic network is used to obtain quantitative 
genotype-phenotype relationship. 
Reconstruction of complete metabolic network from annotated genome 
sequence.  
Optimal performance of a metabolic network under a range of growth 
conditions. FBA 

COVERT and 
PALSSON, 2002 

113 metabolic reactions (45 of which are regulated by 16 regulatory 
proteins), 149 genes. 
Transcriptional regulation incorporated. 
The genes can be either on or off (Boolean Logic). rFBA 

KIM and 
MAVITUNA, 
2004 

400 reactions for the primary and secondary  
metabolism of Streptomyces coelicolor. 
Some of the factors affecting growth and production of  
calcium dependent antibiotic (CDA) investigated. 
Optimal (maximized) specific growth rates for different growth phases of 
the batch. 
Maximization of the specific CDA production rate. 
Experimental specific growth and glucose uptake rates are constraints. 

MFA/ 
FBA 

 

2.1.2. Minimization of Metabolic Adjustment (MOMA) 

Minimization of Metabolic Adjustment (MOMA) is a method for the prediction of 

phenotypes of knocked-out (mutant) organisms (Segre et al., 2002). Metabolic Flux Analysis 

looks for the flux distribution that maximizes the growth rate. However, MOMA searches for 

the distribution that is closest to wild-type strain one. It uses the same stoichiometric 

constraints as MFA, but it does not find the optimal growth flux for gene deletions. 
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Figure 2.2. Optimal solution of wild-type strain and MOMA result (Segre et al., 2002) 

The size of the feasible solution space will be reduced (Figure 2.2) because the reactions 

associated with the knocked-out gene are constrained to zero. The flux distribution of the 

wild-type organism (denoted w) will reside outside the feasible solution space. MOMA 

employs quadratic programming to identify a point in flux space, which is closest to the wild-

type point (denoted v), compatibly with the gene deletion constraint. In MOMA, in contrast to 

FBA, the objective function does not explicitly depend on biomass production. The goal is to 

find the vector v such that the Euclidean distance is minimized as shown in Eq. (3). 
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If a solution for the wild-type FBA problem w exists, and if the solution space of the 

knocked-out type is not empty (i.e., knocked-out genes constraints set to zero is compatible 

with the other constraints), then a solution to this problem always exists. 

The prediction of essential genes in E. coli central carbon metabolism, comparison with 

measured growth performance of insertional mutants and comparison with experimental flux 
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measurements of an E. coli pyruvate kinase knockout (Segre et al., 2002) have been examined 

by Minimization of Metabolic Adjustment method.  

2.1.3. Regulatory on/off Minimization (ROOM) 

Regulatory On-Off Minimization (ROOM) is a constraint-based algorithm for predicting 

the behavior of metabolic networks in response to gene knockouts (Ruppin et al., 2005). It 

aims to minimize the number of significant flux changes (hence on/off) with respect to the 

wild type. The regulatory system governs a series of transient metabolic changes that converge 

to a steady-state condition. ROOM also shows its ability to correctly identify alternative 

pathways for reactions associated with the knocked-out genes, thus strengthening its biological 

plausibility. ROOM outperforms MOMA in predicting intracellular fluxes and gene knockout 

lethality in mutated E. coli and the S. cerevisiae strains, respectively. 

ROOM has been tested to predict metabolic fluxes for five different E. coli knockouts: 

pyruvate kinase (pyk), phosphoglucose isomeras (pgi), glucose 6-phosphate 1-dehydrogenase 

(zwf ), 6-phosphogluconate dehydrogenase (gnd), and phosphoenolpyruvate carboxylase (ppc) 

under growth conditions (Ruppin et al., 2005). It was aimed to compare the results with the 

experimental findings and with the predictions of FBA and MOMA. ROOM’s flux predictions 

are either equal to or more accurate than its contemporaries.  

 

2.2. Dynamic Metabolic Modeling Method 

MFA can be used in dynamic modeling even though it is based on a steady-state 

assumption. The biomass growth is performed in a batch culture. Because the time constants 

which describe metabolic transients and metabolic reactions are fast (on the order of milli-

seconds to seconds) as compared to the time constants associated with cell growth (on the 

order of hours to days) and regulation (on the order of tens of minutes), the system may be 

treated by only considering the steady state behavior inside the cell and the dynamic behavior 

in the medium outside of the cell (quasi-steady state assumption). 
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Figure 2.3. Time courses of aerobic growth on glucose and acetate reuptake (Covert, 2002) 

The experimental time is divided into several small time steps. MFA is used to 

determine the steady state metabolic flux distribution for the given time interval. Then, 

substrate uptake, by-product secretion, and biomass growth are determined by solving the 

relevant differential equations. The new conditions of the system are the FBA inputs for the 

next time step (Varma, 1994a,b). The relevant differential equations to determine 

concentrations for each time step are; 
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Where X is the cell density, µ is the growth rate, Su is the substrate uptake rate, Sc is the 

substrate concentration and Sc0 is the previous step substrate concentration. 
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Sugar substrates and by-products are all considered as substrates that can be used by 

cells. As a result of implementing the above set of equations, the solution yields time profiles 

of biomass, substrate and extracellular products such as shown in Figure 2.3. 

In another dynamic modeling study (Provost et al., 2004), the metabolic network is 

divided into two groups of nodes; boundary nodes, extracellular metabolite, and internal 

nodes, intracellular metabolite. Boundary nodes can be further separated into initial and 

terminal nodes. Initial nodes correspond to the external substrates that are consumed but not 

produced. Terminal nodes correspond either to extracellular products released in the culture 

medium or intracellular products which form the cellular material during the growth.  

The main purpose in the dynamical modeling is to combine macroscopic dynamical 

model with metabolic flux analysis. The elementary flux modes are computed and translated 

into a set of macro-reactions connecting the extracellular substrates and products (boundary 

and internal nodes). Then, a dynamical model, which is compatible with the underlying 

metabolic network, is build on the basis of these macro-reactions (Provost and Bastin, 2004). 

During the growth of the cells, the internal metabolites are supposed to be at quasi-steady 

state. Mass balance equations related to a fictional metabolic network, depicted in Figure 2.4 

were written as follows; 

X
dt

dX
µ=    (6) 

X
dt

ds
sν−=    (7) 

XN
dt

cXd
⋅⋅= ν

)(
   (8) 

X
dt

dp
pν=    (9) 

where  

c denotes mass fractions of the intracellular metabolites inside the cells. 
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N denotes corresponding stoichiometric matrix. 

p denotes terminal extracellular or intracellular product. 

s denotes extracellular substrate. 

X denotes cell density. 

µ denotes specific growth rate. 

ννννp denotes vector of the specific accumulation rates for intracellular products or 

excretion rates for extracellular products. 

ννννs denotes vector of the specific uptake rate. 

From the experimental data, the specific uptake and excretion rates (ννννs and ννννp) are 

computed by linear regression during the growth phase. The steady state flux balance 

equations at the internal nodes of the network are expressed as N.v = 0. By eliminating the 

internal metabolites between the reactions, the set of fundamental macro-reactions that 

connect the extracellular substrates and the end-products is obtained. Coupled with the steady 

state flux balance equations, the set of mass balance equations are solved. A simple fictional 

metabolic network is given in Figure 2.4. C denotes intracellular metabolite, S denotes 

extracellular substrate and P denotes terminal extracellular or intracellular product. 
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Figure 2.4. A simple fictional metabolic network (Provost and Bastin, 2004) 

The proposed approach had been illustrated with the example of Chinese Hamster Ovary 

(CHO) cell metabolism. This has been proposed to provide a firm basis for the design of 

online monitoring and optimization of cell culture processes (Provost and Bastin, 2004). In 

particular, the underlying metabolic basis of the model could be helpful in determining how to 

alter the culture environment so as to achieve robust control and maintain optimal conditions.  

 

2.3. Regulatory Metabolic Flux Analysis Using Boolean Logic 

Metabolic flux balance analysis does not include transcriptional regulation meaning that 

all gene products in the metabolic reaction network are assumed to be available to contribute 

to an optimal solution. These regulations, which are biological in origin, are self-imposed 

regulatory constraints by the organism and the high level transcriptional regulation can have a 

significant effect on the cell behavior. The transcriptional regulatory structure and its resulting 

transcribed protein or enzyme has been described using Boolean logic equations (Covert. et 

al., 2002). This approach involves restricting expression of a transcription unit (meaning; 

transcribed enzyme or regulatory protein) to the value 1 if the transcription unit is transcribed 

and 0 if it is not. Similarly, the presence of certain conditions inside or outside of the cell may 

be expressed as 1 if a certain condition is present and 0 if it is not. 
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In geometrical term, regulation imposes temporary, adjustable constraints on the 

solution space.  

 

Figure 2.5. Regulatory constraint-based geometrical analysis of metabolic networks  

(Covert et al., 2001) 

Regulatory constraints change the shape of the solution space. Figure 2.5 (a) shows 

constraint based analysis of MFA with non-adjustable constraint. The flux through a certain 

reaction may be constrained by a transcriptional regulatory event. Therefore, the size of the 

solution space is reduced. In this case, the optimal solution may either be in the reduced 

solution space (Figure 2.5 (b)) or may not be (Figure 2.5 (c)) where new solution will be 

determined that is, new behavior will be searched by the cell. 

As an example, the formalism of the Boolean logic has been applied to carbon 

uptake/catabolic repression in an organism. The organism can prefer one sugar source to 

another. The presence of one sugar source in the extracellular medium can inhibit the transport 

of the other through the cell membrane (diauxie on two carbon sources). Therefore, the 

resulting undesirable transport flux will be zero in FBA.  
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Figure 2.6. Metabolic network for central metabolism in Escherichia coli used in the 

calculations (Covert, 2002) 

A regulatory metabolic network having 149 genes, the products of which include 16 

regulatory proteins and 73 enzymes, which catalyze 113 reactions was studied to determine 

the ability of the model to make accurate phenotypic predictions (Covert, 2002). The analysis 

of the combined metabolic/regulatory network using Flux Balance Analysis may be called 

regulatory flux-balance analysis (rFBA). In the model, the synthesis of 43 of the enzymes is 

controlled by transcriptional regulation and as a result 45 of the reactions to the system is 

controlled by a logic statement. As an application of this model, the dynamic simulation of 

growth under three environmental conditions, aerobic growth on glucose with acetate 

reutilization, glucose fermentation, and a mixed aerobic glucose-lactose batch culture, are 

described. 
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Figure 2.7. Aerobic growth on glucose and lactose in Escherichia coli (Covert, 2002) 

The results for aerobic growth of E. coli on glucose and lactose are given in Figure 2.7. 

Experimental mixed batch culture, detailed kinetic model (Kremling et al., 2001), metabolic 

flux balance analysis (FBA) model with/without regulation are all given together for 

comparison. Regulatory FBA model predictions are in good agreement with the data, 

comparable with the predictions made by the Kremling model, and far better than the 

predictions of the stand-alone FBA model. Due to the concurrent uptake of glucose and 

lactose, FBA predictions are far apart from the experimental data. Also, there is a much more 

rapid depletion of the substrates and a higher growth rate. Interestingly, because of the larger 

flux of carbon source uptake, the FBA model predicts that E. coli growth should be oxygen-

limited rather than carbon-limited. The time 4:51 designates the shift in gene expression point. 

Lactose is utilized as a carbon source once the glucose in the medium has been depleted. 
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2.4. Genetically Constrained Metabolic Flux Analysis 

Existing metabolic databases can be used to estimate metabolic fluxes. By adding or 

removing the corresponding pathway(s), one can analyze the behavior of organism due to the 

transcriptional regulation on the substrate uptake. A new framework on the regulation is 

modeled that utilizes genomic and metabolic databases, including available genetic/regulatory 

network structures and gene chip expression data, to constrain metabolic flux analysis. The 

genetic network consisting of the sensing/regulatory circuits activate or deactivate a specific 

set of genes in response to external stimulus. The activation and/or repression of this set of 

genes result in different gene expression levels that change the structure of the metabolic map. 

The adaptation to the external stimulus can be driven to the sub network from the pool of 

feasible reactions. The Escherichia coli oxygen and redox sensing/regulatory system has been 

modeled for metabolic pathways controlling of glycolysis and the TCA cycle (Cox et al., 

2005).  

The analysis scheme is an extension of the traditional regulatory FBA. It includes the 

regulatory network shown in Figure 2.8. Two new components, ‘‘genetic network’’ and 

‘‘expression pattern’’ shown inside dashed box, which were designed to capture any changes 

in the metabolic pathways in response to environmental variation, were included (San et al., 

2003).  

The critical genetic network component was constructed from existing gene regulation 

knowledge in the literature and was supplemented with gene expression patterns from gene 

chip expression analysis experiments. The metabolic map was generated by the existing 

pathway data bases (KEGG Metabolic Pathways).  
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Figure 2.8. Schematic of genetic network assisted flux balance analysis (Cox et al., 2005) 

The central metabolism network pathways were included that are active in either aerobic 

and anaerobic conditions. The environment (via O2) was perturbed in the gene network by 

FNR and ArcA/B. The regulatory impact of the transcription factors, FNR and ArcA/B was 

illustrated on extreme cases of either purely aerobic or anaerobic. In these two conditions, 

related genes are either “on” or “off” so, gene activity was modeled by Boolean variables. In 

particular, ArcA and FNR are “on” in the absence of oxygen. A small network was formed 

with two enzymes directing the flow of 7 metabolites. 
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Figure 2.9. A small sub-network demonstrating cause and effect of the aerobic/anaerobic 

switch (Cox et al., 2005) 

The master stoichiometric matrix encodes 25 possible reactions between 16 potential 

intermediates. When this underdetermined system was solved by FBA, the original 25 variable 

problem was reduced to a 10 variable problem. The environment, acting through the gene net, 

placed further constraints on metabolism. Namely, in the absence of oxygen some reactions 

were inactivated. The dimension of the stoichiometric matrix has been changed by the 

activation and deactivation of the gene expression. 
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3. DIFFERENTIAL EQUATION MODELS 

3.1. Signal-Oriented Approach in Using Differential Equation Models 

A global signal transduction system has been used to describe carbon catabolite 

repression in E. coli is given in the below figure (Kremling et al., 2001). As shown in this 

figure, the system includes the phosphoenolpyruvate (PEP)-dependent glucose 

phosphotransferase system (Glc-PTS), the synthesis of name cAMP, and the interaction of the 

name cAMP.CrpA complex with the specific DNA binding sites.  

 

Figure 3.1. The elements of the crpA-modulon (Kremling et al., 2001) 

The model is aggregated from two functional units describing glucose and lactose 

transport and degradation. Both units are members of the crp modulon and are under the 

control of a global signal transduction system which calculates the signals that turn on or off 

gene expression for the specific enzymes.  

In this contribution a mathematical model describing glucose and lactose uptake and 

metabolism was introduced by the current biological knowledge about the systems under 
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consideration. A subset of parameters related to glucose and lactose transport was estimated 

based on the measurements of biomass, extracellular glucose and lactose, and LacZ activity. A 

dynamic model was used to predict the growth behavior as well as the induction of genes and 

enzymatic activities very well. The model presented was used to simulate time courses of 

some variables that are difficult to measure but nevertheless essential toward an understanding 

of the system function. Influence of preculture on glucose-lactose diauxie was also 

investigated.  

Although the preculture greatly influences the induction status of the genes of interest, 

there was no effect on the production of biomass and on the usage of carbohydrates (Kremling 

et al., 2001). No matter which carbohydrate is present in the preculture (glucose or lactose) 

and regardless of preinduction of the lac operon, glucose is preferred in mixed cultures with 

glucose and lactose. As shown in Figures 3.2 and 3.3, the sugar consumption and biomass 

production are nearly identical.  

Calculated EIIA, P~EIIA, cAMP, intracellular lactose, allolactose, and Glc6P, in 

addition to the measured data which was taken for the glucose preculture medium are given in 

Figure 3.2. As expected for the glucose phase, protein EIIA is mainly unphosphorylated. The 

lactose phase exhibits an interesting dynamics. Since intracellular glucose is also 

phosphorylated by the PTS, EIIA becomes again more and more unphosphorylated after a 

very quick drop in EIIA. The quick drop in EIIA phosphorylation state can be explained by 

the run out of glucose. The relatively slow rise of the phosphorylation state afterward reflects 

induction of the lac operon which leads to increased uptake of lactose and thereby to increased 

production of intracellular glucose 6 phosphates. The concentration of cAMP rises very fast, 

reflecting the drop in P~EIIA, and due to the high value of the degradation parameter, it drops 

down afterward. With increasing concentration of P~EIIA in the end of the growth phase, 

cAMP rises again. a low level of allolactose is synthesized from the beginning which leads to 

a small increase of LacZ in the glucose phase. 
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Figure 3.2. Diauxic growth of glucose and lactose with glucose preculture in Escherichia coli 

(Kremling et al., 2001) 

 

Figure 3.3. Diauxic growth of glucose and lactose with lactose preculture in Escherichia coli  

(Kremling et al., 2001) 
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3.2. Simple Ordinary Differential Equation (ODE) Model 

In studying biological behavior of an organism, regulatory structure plays an important 

role for its identification. In order to understand the metabolic regulation requires quantitative 

information about the concentrations of enzymes, metabolites, nucleotides and cofactors. The 

quantitative knowledge in combination with the known network of metabolic pathways allows 

the construction of mathematical models that describe the dynamic changes in metabolite 

concentrations over time. The constructed models will be high-dimensional systems of 

ordinary, non-linear differential equations. The main problems of the approach are the 

formation of the equations that describe the metabolic pathways in the form of kinetic rate 

equations and the parameter identification of the system parameters. It is hard to find a 

solution due to these model equations. A variety of pathway modeling software has been 

developed for the model construction and analysis.  

A model was defined for the regulation of induction and repression of lac operon in 

E. coli (Wong et al., 1997). The model contained twelve ordinary differential equations 

describing glucose transport through the cell, catabolite repression, induction and repression of 

the lac operon, lactose transport through the cell, degradation of lactose and cell growth. The 

parameters are collected from literature. The transient responses showed similar behavior to 

experimental data. Slow growth between glucose and lactose utilization is observed. Two 

possible models for the phosphorylation of internal glucose and catabolite repression were also 

investigated. 

A mathematical model for the regulation of induction in the Lac operon in E. coli was 

also formulated (Yildirim and Mackey, 2003) to explain the dynamics of the permease 

facilitating the internalization of external lactose, internal lactose, β-galactosidase, glucose and 

galactose, the allolactose interactions with the lac repressor, and mRNA. The final model 

consists of five nonlinear differential delay equations with delays due to the transcription and 

translation process (dynamics of mRNA production, β-galactosidase, allolactose, permease 

productions and lactose). The parameters were determined from an extensive search of the 

existing literature. The model had been tested against the experimental data of β-galactosidase 
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activity versus time which gives changes after a step change from glucose to lactose growth 

for E. coli (Pestka et al., 1984) and during periodic phosphate feeding which gives 

β-galactosidase concentration oscillations (Goodwin, 1969). Analytical and numerical studies 

had indicated that for physiologically realistic values of the external lactose and the bacterial 

growth rate, a regime existed where there might be bistable steady-state behavior.  

A mathematical modeling work to show classical paradigms (Mackey et al., 2004) for 

repressible and inducible operons of the tryptophan and lactose operons was presented. The 

model described for lactose operon is more or less the same with their previous work 

(Yildirim and Mackey, 2003). Some dilution rates and degradation terms of metabolites are 

added to the set of equations and better results than the previous one are obtained. The 

tryptophan operon is defined on a set of four nonlinear differential equations with delay for 

mRNA polymerase, trp mRNA molecules with free TrpE related ribosome binding sites, the 

enzyme anthranilate synthase, tryptophan concentrations. The model was solved numerically, 

and the results compared with the respective experiments performed (Yanofsky and Horn, 

1994) on wild-type bacterial cultures as well as trpL29 and trpL75 mutant strains of E. coli. 

The model gave a reasonable qualitative agreement with the experimental results 
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4. FUZZY LOGIC  

The fuzzy theory began in the 1960s and a paper explaining fuzzy sets was published in 

1965 (Zadeh, 1965). The theory is the foundation for computing with words. The point of 

importance is the emphasis on precision in classical control theory. Therefore, the complex 

(biological) systems cannot be handled. Mathematics of fuzzy or cloudy quantities, which are 

not describable in terms of probability distributions, can define vague concepts. Using fuzzy 

theory, a new approach (Fuzzy IF-THEN rules) to the analysis of complex systems and 

decision processes was outlined for fuzzy control to formulate human knowledge (Zadeh, 

1973).  

In traditional set theory, membership of an object belonging to a set can only be one of 

two values: 0 or 1. An object either belongs to a set completely or it does not belong at all. No 

partial membership is allowed. However, there are countless vague concepts that humans can 

easily describe, understand, communicate with each other but that traditional mathematics, 

including the set theory, fails to handle in a rational way. The concept “young” is an example. 

For any specific person, his or her age is precise. However, relating a particular age to 

“young” involves fuzziness and is sometimes confusing and difficult. What age is young and 

what age is not? The nature of such questions is deterministic and has nothing to do with 

stochastic concepts such as probability and possibility (Yen and Langari, 1999). 

4.1. Fundamentals of Fuzzy Logic 

The introduction to fuzzy logic given in the following sections are summarized from the 

books, Yen & Langari and Ying. 

4.1.1. Fuzzy Set 

A fuzzy set generalizes 0 and 1 membership values of a traditional set to a membership 

function of a fuzzy set. Using the theory, one relates an age to “young” with a membership 

value ranging from 0 to 1; 0 means no association at all, and 1 indicates complete association. 
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One might think that age 10 is “young” with the membership value 1, age 30 with a 

membership value 0.75, age 50 with membership value 0.1, and so on. That is, every 

age/person is “young” to a certain degree. The fuzzy set (Figure 4.1) is called membership 

function of the fuzzy set “young”. Usually, the membership or characteristic function is 

denoted by the Greek lower-case letter µ. 
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Figure 4.1. A possible description of the vague concept “young” by a fuzzy set 

People have different views on the same (vague) concept. Fuzzy sets can be used to 

easily accommodate this reality. Some people might think age 50 is “young” with membership 

value as high as 0.9, whereas others might consider that 20 is ”young” with membership value 

merely 0.2. Different membership functions can be used to represent these different versions 

of “young”. Not only do people have different membership functions for the same concept, but 

even for the same person, the membership function for “young” can be different when the 

context in which age is addressed varies. A 40 year old president of the country would likely 

be regarded as young, whereas a 40 year athlete would not. Two different fuzzy sets “young” 

are needed to effectively deal with the two situations. 

A fuzzy set can be defined in two ways: (1) by enumerating membership values of those 

elements in the set (completely or partially), or (2) by defining the membership function 

mathematically.  
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4.1.2. Designing Membership Functions 

The crucial question is; “How would the exact shape of the membership function for a 

fuzzy set be determined?” The important thing about membership function is that it provides a 

gradual transition from regions completely outside a set to regions completely in the set. 

A membership function can be designed in three ways: (1) Interview those who are 

familiar with the underlying concept and later adjust it based on a tuning strategy. (2) 

Construct it automatically from data; (3) learn it based on feedback from the system 

performance.  

The parameterizable membership functions most commonly used in practice are the 

triangular membership function and trapezoid membership function. The former has three 

parameters and the latter has four parameters.  

Simplicity is the main advantage of triangular and trapezoidal membership functions. A 

membership function is intended to approximate a smooth transition between two regions (the 

region outside the set and that inside the set).  

To summarize, the following guidelines for the membership function design is used. 

1. Always use parameterizable membership functions. Do not define a 

membership function point by point. 

2. Use a triangular or trapezoidal membership function, unless there is a good 

reason to do otherwise. 

3. If you want to learn the membership function using neural network learning 

techniques, choose a differentiable (or even continuous differentiable) 

membership function (e.g., Gaussian) 

The membership functions of an input variable’s fuzzy sets should usually be designed 

in a way such that the following two conditions are satisfied: (1) each membership function 

overlaps only with the closest neighboring membership functions; (2) for any possible input 

data, its membership values in all relevant fuzzy sets should sum to 1 (or nearly so). These 

conditions are usually represented as: 
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The three fundamental operations in classical sets are union, intersection, and 

complement. The union of two sets A and B (denoted as A∪B) is the collection of those 

objects that belong to either A or B. the intersection of A and B (denoted as A∩B) is the 

collection of those objects that belong to both A and B. The complement of a set A (denoted 

as AC and A ) is the collection of objects that belonging to A. 

4.1.3. Tools for Implementing Fuzzy Logic Applications 

There are several companies that market hardware and software packages for developing 

fuzzy logic applications in the late 1980s and early 1990s. Even though these companies had 

some initial success, several did not survive through the mid- 1990s. This is partially due to 

the fact that vendors of conventional control design software such as MathWorks started 

introducing add-on toolboxes for designing fuzzy systems. The Fuzzy Logic Toolbox for 

MATLAB was introduced as an add-on component to MATLAB in 1994. 

4.2. Basics of Fuzzy Rules 

A fuzzy if-then rule is a knowledge representation scheme for capturing knowledge 

(typically human knowledge) that is imprecise and inexact by nature. This is achieved by 

using linguistic variables to describe elastic conditions (i.e., conditions that can be satisfied to 

a degree) in the “if part” of fuzzy rules.  

The main feature of fuzzy rule-based inference is its capability to perform inference 

under partial matching. That is, it computes the degree the input data matches the condition of 

a rule. 
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4.2.1. Fuzzy Rule-Based Inference 

The algorithm of fuzzy rule-based inference consists of three basic steps and an 

additional optional step. 

1. Fuzzy Matching: Calculate the degree to which the input data match the 

condition of the fuzzy rules. 

2. Inference: Calculate the rule’s conclusion based on its matching degree. 

3. Combination: Combine the conclusion inferred by all fuzzy rules into a 

conclusion. 

4. (Optional) Defuzzification: for applications that need a traditional output (e.g., 

in control systems), an additional step is used to convert a fuzzy conclusion into 

a discrete one. 

Fuzzy Matching can be explained in terms of an example discussed below. 

The degree to which the input target variables (V) satisfies the condition of rule R3 

“target temperature is Low” is the same as the degree to which the input target variable 

belongs to the fuzzy set Low. 

MatchingDegree(V, R3)=µLow 

where”=” represents assignment (not equality test) 

MatchingDegree(V, R3)=µHigh 

The variable V is 0.2 Low (µLow) and 0.8 High (µHigh) at the value of 60 as shown in 

Figure 4.2. The sum of two membership functions at the value 60 is equal to unity (Eq. 10) 

and the two membership functions do not overlap on the other (Eq. 11). When an input is 

entered to fuzzy inference system, it is matched to a degree of any fuzzy set, initially. There 

are two fuzzy sets in this example (i.e., Low and High). 
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Figure 4.2. Fuzzy matching for simple conditions of variable V 

When a rule has multiple conditions combined using AND (conjunction), a fuzzy 

conjunction operator to combine the matching degree of each condition is used. The most 

commonly used fuzzy conjunction operators is the min operator or the product (i.e., 

multiplication) operator.  

After the functional mapping relationship between inputs and outputs has been 

performed, a fuzzy inference step is invoked for each of the relevant rules to produce a 

conclusion based on their matching degree. How should the conclusion be produced? There 

are two methods: (1) the clipping method and (2) the scaling method. Both methods generate 

an inferred conclusion by suppressing the membership function of the consequent. The extent 

to which they suppress the membership function depends on the degree to which the rule is 

matched. The lower the matching degree, the more severe the suppression of membership 

function will be. 

The clipping and scaling methods produce their inferred conclusion by suppressing the 

membership function of the consequent differently. The clipping method cuts off the top of the 

membership function whose value is higher than the matching degree. The scaling method 

scales down the membership function in proportion to the matching degree.  
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Figure 4.3. The clipping method for fuzzy inference 

 

Figure 4.4. The scaling method for fuzzy inference 

The fuzzy inference is exemplified in Figure 4.3 and 4.4. The matching degree of the 

input 60 is 0.8 High. After the mapping between inputs and outputs has been performed, the 
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conclusion (output) is a membership function belonging to a fuzzy set. The difference of fuzzy 

inference to a conclusion between scaling and clipping methods can be seen easily. The 

clipping method of inference is used for the calculation in this work. 

The two steps in fuzzy inference described so far enable each fuzzy rule to infer a fuzzy 

statement about the value of the consequent variable. Because a fuzzy rule-based system 

consists of a set of fuzzy rules with partially overlapping conditions, a particular input to the 

system often “triggers” multiple fuzzy rules (i.e., more than one rule will match the input to a 

nonzero degree). Therefore, a third step is needed to combine the inference results of these 

rules. This is accomplished typically by superimposing all fuzzy conclusion about a variable.  

 

 

Figure 4.5. Combining fuzzy conclusions inferred by the clipping method 
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Figure 4.6. Combining fuzzy conclusions inferred by the scaling method 

Combining fuzzy conclusions through superimposition is based on applying the max 

fuzzy disjunction operator to multiple possibility distributions of the output variable.  

In Figures 4.5 and 4.6, combining fuzzy inference conclusions by scaling and clipping 

methods are explained. Every fuzzy set for an input is mapped to a conclusion of an output. In 

order to evaluate the result, all fuzzy conclusions must be combined through superimposition.  

For a fuzzy system whose final output needs to be a crisp (nonfuzzy) form, a fourth step 

is needed to convert the final combined fuzzy conclusion into a crisp one. This step is called 

the defuzzification. 

There are two major defuzzification techniques: (1) the Mean of Maximum (MOM) 

method and (2) the Center of Area (COA) or the centroid method. The mean of maximum 

defuzzification calculates the average of all variable values with maximum membership 

degrees. However, center of area defuzzification calculates the center of the whole shape 

formed after the superimposition of all conclusions. 

The crisp output is formed either MOM or COA as shown in Figures 4.7 and 4.8. The 

center of area is used in this work to have a conclusion in nonfuzzy form.  
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Figure 4.7. An example of MOM defuzzification 

 

Figure 4.8. An example of COA defuzzification 

4.2.2. Types of Fuzzy Rules 

There are two types of fuzzy rules: 1) fuzzy mapping rules, and 2) fuzzy implication 

rules. A fuzzy mapping rule describes a functional mapping relationship between inputs and 

an output using linguistic terms, while a fuzzy implication rule describes a generalized logic 

implication relationship between two logic formulas involving linguistic variables and 

imprecise linguistic terms. The types of fuzzy rules are related to different disciplines. Fuzzy 

mapping rules are related to functional approximation techniques in system identification and 

artificial neural networks, whereas fuzzy implication rules are related to classical two-valued 

logic and multi-valued logic.  
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Fuzzy Mapping Rules 

In many real-world problems, one is interested in finding the functional relationship 

between a set of observable parameters and one or multiple parameters whose values are not 

known. Indeed, fuzzy logic tools use rules of this type to approximate a mapping (typically 

nonlinear) from the observed state to a desired control or regulatory action. The needs to 

approximate a function of interest are often due to one or more of the following reasons. First, 

the mathematical structure of the function is not precisely known, but the structure is known. 

One could use various parameter identification techniques to find the parameters. Second, the 

function is so complex that finding its precise mathematical form is either impossible or 

practically unfeasible due to its high cost. Third, even if finding the function is not impractical, 

implementing the function in its precise mathematical form in a product or service may be too 

costly. 

The entire function is approximated by a set of fuzzy mapping rules. The inference (i.e., 

mapping) for this type of rule is always in forward direction. The main difference between 

fuzzy rules and non-fuzzy rules for function approximation lies in their “interpolative 

reasoning” capability, which allows the output of multiple fuzzy rules to be fused for a given 

input. Function approximation technique is classified in three categories: global techniques, 

superimposition techniques, and partition based techniques. The global techniques 

approximate a function globally using one mathematical structure (e.g., linear, second order 

polynomial). The issue of the technique lies in finding the suitable model structure for a given 

problem. The superimposition techniques approximate a function by superimposing a function 

of a given form (e.g., Taylor expansion). The partition-based approximate techniques 

approximate the function by partitioning the input space of the function and approximate the 

function in each partitioned region separately (e.g., piecewise linear approximation). 

Fuzzy Implication Rules 

Fuzzy implication rules are a generalization of “implication” in two-value logic. Their 

aim is to mimic human reasoning in its ability to reason with ideas or statements that are 

imprecise by nature. Even though it is obvious that human beings perform certain kinds of 
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approximate reasoning, it is unclear how one can characterize such a reasoning process due to 

our present limited understanding of the human reasoning process to date. Consequently, there 

has not been imagined a unique set of desired properties for fuzzy implication rules. Rather, 

several sets of desired properties have been developed. Even though, the set of desired 

properties are not unique, they are useful for comparing different reasoning schemes using 

fuzzy implication rules. It is important to point out this “non uniqueness” aspect of fuzzy 

implication, because it is in sharp contrast with many other techniques in science and 

engineering that were built on a set of well defined axioms, properties, or principles. 

The inference of fuzzy implications generalizes two kinds of logic inference using the 

implications in classical logic: modus ponens and modus tollens. As an example; 

IF a person’s IQ is high THEN the person is smart. 

Modus ponens, “Jack’s IQ is high”, is a given implication or fact and enables us to infer 

modus tollens “Jack is smart”. Also, the implication and fact “Jack is not smart” can be given 

to infer “Jack’s IQ is not high”.  

These if-then rule statements are used to formulate the conditional statements that 

comprise fuzzy logic. Another example can be given as; 

IF service is good THEN tip is average. 

Good is represented as a number between 0 and 1, and so the modus ponens is an 

interpretation that returns a single number between 0 and 1. In general, the input to an if-then 

rule is the current value for the input variable (in this case, service) and the output is an entire 

fuzzy set (in this case, average). This set will later be defuzzified, assigning one value to the 

output. Interpreting an if-then rule involves distinct parts: first evaluating the modus ponens 

(which involves fuzzifying the input and applying any necessary fuzzy operators) and second 

applying that result to the consequent (known as implication). 

The modus ponens of a rule can have multiple parts. 

IF sky  is gray and wind is strong and barometer is falling, THEN… 
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All parts of the antecedent are calculated simultaneously and resolved to a single number 

using the logical operators (AND, OR etc.).  

The consequent (modus tollen) of a rule can also have multiple parts. All consequents 

are affected equally by the result of the modus ponen.  

IF temperature is cold THEN hot water valve is open AND cold water valve is shut. 

The degree of support is used for the entire rule to shape the output fuzzy set. The 

consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set is 

represented by a membership function that is chosen to indicate the qualities of the 

consequent. If the antecedent is only partially true, (i.e., is assigned a value less than 1), then 

the output fuzzy set is truncated according to the implication method. 

4.3. Fuzzy Logic Applications in Biological Systems 

Recent technological advances in huge data collection give biologist the ability to study 

complex systems. To develop and test biological models based on experimental observations 

and predict the effect of perturbations of the network, a biological pathway can be modeled in 

two general categories; a logical network and chemical reaction network. Boolean logic 

models cannot represent necessary biological details. Chemical kinetics simulations require 

large numbers of parameters that are very difficult to accurately measure.  

Fuzzy Logic has been successfully used in some mathematical modeling of biological 

systems. One of these is the enzyme kinetic modeling (Lee et al., 1999) which is the one that 

accounts for metabolite effects that contribute significantly to the regulation of enzyme 

activity. In order to incorporate the effect of metabolite effector to the three enzyme kinetic 

equations of E. coli central metabolisms (phosphoenolpyruvate carboxylase, 

phosphoenolpyruvate carboxykinase, and pyruvate kinase I), a strategy using fuzzy logic-

based factor was used. The use of fuzzy logic in phosphoenolpyruvate carboxylase 

metabolism was described as follows; 
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E. coli phosphoenolpyruvate carboxylase (PPC) catalyzes the carboxylation of 

phosphoenolpyruvate (PEP) to form oxaloacetate (OAA). The reaction rate of PPC is 

formulated as: 

][

][

PEPK

PEP
VV

m

mppcppc
+

= α   (12) 

The rate constant Vm is modulated by the two activators; acetyl-CoA (ACoA) and 

fructose 1,6-diphosphate (FDP). Km is the parameter and [ ] is the concentration. αppc captures 

the various activation effects of ACoA and FDP by the following fuzzy rules.  

If [ACoA] is LOW and [FDP] is LOW, then αppc = c1 

If [ACoA] is LOW and [FDP] is HIGH, then αppc = c2 

If [ACoA] is HIGH and [FDP] is LOW, then αppc = c3 

If [ACoA] is HIGH and [FDP] is LOW, then αppc = c4 

c1, c2, c3, and c4 are parameters to be optimized with respect to experimental data.  
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Figure 4.9. Membership functions of the fuzzy sets for PPC modeling (Lee et al., 1999) 

The membership functions of the fuzzy sets (i.e., LOW and HIGH), shown in  

Figure 4.9, were chosen based on experimental data. The fuzzy logic IF-THEN rules stated 

above are conceptually clear and can be readily generalized. By setting the rules, the 

parameters c1-4 can be obtained from the rules and their respective membership function.  

Another modeling and simulation of gene regulation was studied on lac operon of E. coli 

(Sokhansanj and Fitch, 2001).  
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Figure 4.10. Model of lac operon regulation (Sokhansanj, 2001) 

Union Rule Configuration (URC) in the fuzzy rule base was utilized to describe the 

system. In the linear (URC) fuzzy logic scheme, there are distinct fuzzy rules for each 

individual input to a given output. Then, the fuzzy rules are combined with the logical 

statement of “OR”. The system consists of four genes and a number of protein binding sites 

clustered near each other in E. coli chromosome. The genes and their protein products are lacI 

(lac repressor), lacZ (β-galactoside permease) and lacA (not involved in lactose regulation). 

When RNA polymerase (RNAP) binds to the promoter of the gene (P(lacI) and P(lacZY)), it 

catalyzes its transcription. Promoters have different binding strengths. The rule IF (promoter 

strength) THEN (protein production) refers to the absolute promoter strength independent of 

any other regulatory activity. 

The model for lac operon in E. coli is the prototype for most genetic regulatory systems 

in bacteria. It involves a group of genes regulated together by one or two stimuli. Lactose is 

used secondly as a carbon source after glucose is depleted. The proteins and sugars are all 

fuzzified on different domains and URC fuzzy rule base for the lac operon was constructed 

given in Table 4.1. However, a clear result indicating the effectiveness of the model was not 

described in this paper. 
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Table 4.1. Table of URC fuzzy rule base for lac operon (Sokhansanj, 2001) 

IF VL LO ME HI VH 
  lacI production 

P(lacl) strength VL LO ME HI VH 
  lacl activity 
lacl production VL LO ME HI VH 
lactose (in cell) VH ME LO LO VL 
protease VH HI HI LO VL 
  cAMP activity 
glucose VH HI ME LO VL 
  lacY, lacZ production 
P(lacZY) strength VL LO ME HI VH 
lacl activity VH HI LO LO VL 
cAMP activity VL LO HI HI VH 
  lacY activity 
lacy production VL LO ME HI VH 
glucose VH HI ME LO LO 
protease VH HI HI LO VL 
  lacZ activity 
lacZ production VL LO ME HI VH 
peotease VH HI HI LO VL 
  lactose (in cell) 
lactose (outside 
cell) VL LO ME HI VH 
lacy activity VL LO ME HI VH 
lacZ activity VH HI ME LO VL 

 

The genes and their protein products are modeled by IF-THEN rule based fuzzy logic. 

The list can be read as;  

(IF lactose (outside cell) is very low THEN lactose in the cell is very low) OR (lacY 

activity is very low THEN lactose in the cell is very low) OR (lacZ activity is very high THEN 

lactose in the cell is very low) 
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A novel algorithm using fuzzy logic for analyzing gene expression data was developed. 

A model to find activators, repressors, and targets in a yeast gene expression data set was 

designed (Woolf and Wang, 2000). The algorithm can assist in determining the function of 

uncharacterized proteins and is able to detect a substantially larger number of transcription 

factors than could be found at random. In analyzing genetic expression data, the data was 

transformed from crisp values to fuzzy values. Data was fuzzified by first normalizing the data 

from 0 to 1, then the normalized value was broken up into various membership classes.  

The three fuzzy sets used in this algorithm, “HI,” “MED,” and “LO” as a function of the 

normalized value is given in Figure 4.11. The three fuzzy sets HI, MED, and LO were chosen 

after manually examining expression data and finding that the abundance of most transcripts 

was high, medium or low. 

 

Figure 4.11. Fuzzy membership as a function of a normalized expression data  

(Woolf and Wang, 2000) 

Triplets of data were compared using a set of heuristic rules in the form of a decision 

matrix given in Figure 4.12. Triplets were defined as the expression values of three different 

proteins (A, B, and C) all taken at the same time point in the yeast growth cycle time series. 

Fuzzified values of A and B are entered into this matrix, and at points where their predictions 

overlap, a score is generated as the fuzzified value of predicted C. A fuzzy value for C can be 

defuzzified back into a crisp number. The predicted expression values of C for each time point 

in the time series were calculated. 
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Figure 4.12. Decision matrix describing an activator (A) and a repressor (B) acting on a target 

(Woolf and Wang, 2000) 
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5. SUGAR UPTAKE REGULATION IN MICROORGANISMS 

Every organism has a large number of genes and it is important to express them in the 

right circumstances and in the right amount. Models of gene regulation in prokaryotic cells 

lead to a better understanding of gene regulation in more complex eukaryotic cells. Generally, 

prokaryotes need to regulate their gene expression temporally to accommodate for changing 

environments. Microbial growth on mixtures of substrates is a classical problem of gene 

regulation. Indeed, the molecular basis of gene regulation was discovered by studying the 

diauxic phenomenon observed during growth of E. coli on a mixture of glucose and lactose.  

An operon is a cluster of bacterial genes along with an adjacent promoter that controls 

the transcription of the genes. The genes to be controlled coordinately are next to each other 

on the DNA. The linked genes are transcribed as a unit to give one single mRNA. One mRNA 

is made per operon, because all the genes in a cluster share a single promotor. Regulation is at 

the level of transcription. The level of translation is controlled by regulating the synthesis of 

mRNA. This is the usual method for regulation of protein synthesis in prokaryotes.  

Repressible system and inducible system are the two major types of regulations. When 

the end product of the system increases, it will shut off transcription of the coding region in 

repressible system. In inducible system, the expression of genes depends on the presence or 

absence of certain substances. In carbon catabolite repression (CCR), the expression of genes 

required for the utilization of secondary sources of carbon is prevented by the presence of the 

preferred substrate (Hillen, 1999). Actually, it enables the organism to increase its fitness by 

optimizing growth rate in natural environments.  

5.1. Lac Operon in Esherichia coli 

The lac operon describes the regulation of lactose uptake in bacterium. The schematic 

diagram of this operon is shown in Figure 5.1. Lactose is broken down into glucose and 

galactose. There are very few molecules of the enzyme β-galactosidase (coded for by lacZ 

gene) in normal cells of E. coli when no lactose is present. When lactose is added to the 
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medium, the concentration of this enzyme increases rapidly. Also, two other enzymes 

increase: β-galactoside permease (coded for by the lacY gene), β-galactoside acetyltransferase 

(coded for by lacA). These three are the proteins involved in lactose metabolism in the E. coli 

cell. Actually, β-galactosidase converts lactose into glucose and galactose, and the permease is 

involved in transport of lactose across the membrane whereas, the function of β-galactoside 

transacetylase is unknown. The three genes are all transcribed together by the same mRNA. 

However, there is a regulatory molecule, the repressor (coded for by the lacI gene), which 

interferes with the transcription of genes involved in lactose metabolism. It is also located 

adjacent to the other three but its regulation is totally independent of the other lac genes. 

Bacteria (E. coli) adapt to changes in their surroundings by using regulatory proteins to 

turn groups of genes on and off in response to various environmental signals. Whenever 

glucose is present, E. coli metabolizes it before using alternative energy sources such as 

lactose, arabinose, galactose, and maltose. Lactose is not the preferred carbohydrate source for 

E. coli. If lactose and glucose are present, the cell will use all of the glucose before  

the lac operon is turned on. This is a type of regulation, called catabolite repression.  

There are two binding sites for the promoter of the lac operon to be turned on. One site 

is the location where RNA polymerase binds. The second location is the binding site for a 

complex between the catabolite activator protein (CAP) and cyclic AMP (cAMP). To 

prevent lactose metabolism, the binding of RNA polymerase and the complex must be 

hindered.  

The LacI protein is a REPRESSOR that binds to the lacO sequence, which lies close to 

the promoter. This prevents RNA polymerase accessing the promoter to transcribe the operon. 

Inducer molecules can bind to the repressor and this causes a change in conformation so that it 

no longer binds DNA. In E. coli, allolactose is an inducer molecule, which is produced from 

lactose as a side reaction of β-galactosidase in the conversion. Then, the RNA polymerase can 

transcribe the operon and LacY, LacZ proteins are produced. Thus, presence of inducer 

switches on the operon.  
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Another control of the lac operon mediated by glucose is the binding of the  

CAP-cAMP complex. If glucose is present the lac operon gets expressed to less than 5% of its 

level in the absence of glucose. This turns out to be mediated by an intracellular signal of 

cAMP. The presence of this complex is closely associated with the presence of glucose in the  

 

Figure 5.1. The scheme of lac Operon 

cell. When the concentration of glucose increases in the medium, the amount of cAMP will 

decrease. As the cAMP decreases, the amount of complex decreases. This decrease in the 

complex inactivates the promoter, and the lac operon is turned off. The CAP-cAMP exerts a 

positive control over the expression of the lac operon. 

cAMP is synthesized from ATP by the membrane-bound enzyme adenylate cyclase. 

Glucose is transported into the cell by a system that phosphorylates the glucose during 

transport and has several membrane components. These react with adenylate cyclase and stop 

its activity during glucose transport. Thus, when glucose is present there are low levels of 

cAMP in the cell and the level rises when glucose is not present. The lac-promoter is actually 

a very weak promoter when only RNA polymerase is present. However, catabolite activator 

protein bounded by cAMP is strong promoter and stimulates a better transcription. Thus, there 

is only good expression when there is no glucose present. 
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5.2. Glucose Phosphotransferase System (PTS) in Escherichia coli 

The purpose of the bacterial phosphotransferase system, is the specific uptake of sugars 

into the cells, the sugars are transported uphill a concentration gradient with concomitant 

phosphorylation. The phosphate donor is the 'energy rich' phosphoenolpyruvate (PEP). As 

shown in Figure 5.2, the phosphate is transferred via the soluble (and non sugar specific) 

enzymes EI and HPr to the enzyme complex EII. EII is made up of the components A, B and 

C, which according to sugar specificity and bacterium involved may be domains of composite 

proteins. Component/domain C is the permease and anchored to the cytoplasmic membrane. In 

the glucose PTS EIIA is a soluble protein, EIIB/C is membrane bound.  

 

Figure 5.2. Glucose Phosphotransferase System in Escherichia coli (Postma et al., 1993) 

The amount of phosphorylation of the enzymes influences other regulatory mechanisms 

in the cells (eg., catabolite repression). Carbon catabolite repression in E. coli is mainly 

mediated by the glucose-specific EIIA of the PTS. As shown in Figure 5.2, in the presence of 

glucose, EIIAGlc binds and inactivates the lactose permease (LacY) and glycerol kinase 

(GlpK). In the absence of sugars, phosphorylated EIIAGlc activates adenylate cyclase (AC) to 

result in Crp-mediated transcriptional activation of catabolic operons (Postma et al., 1993). 
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5.3. Galactose (Gal) Operon in Escherichia coli 

An example of negative regulation is the galactose (gal) operon in E. coli. Galactose 

enters central metabolism by a rather indirect route. The regulation is accomplished by the gal 

operon having two promoters, two operators and two repressors. The structure of galactose 

operon is shown in Figure 5.3. 

 

Figure 5.3. Structure of gal operon in Escherichia coli (Snyder, 1997) 

The galE, galT, and galK genes are transcribed from two promoters, pG1 and pG2. The 

CAP protein with cyclic AMP (cAMP) bound turns on pG1 and turns off pG2. There are also 

two operators, galOE and galOI. The repressor genes are some distance away, as indicated by 

the broken line but, the GaIR repressor gene is shown. It negatively controls the transcription 

initiation of the galETKM operon and galS gene in the absence of galactose. The other pair of 

repressor GalS selectively represses the downstream promoter, pG1 of the gal operon and 

slightly activates the promoter, pG2. It strongly interacts with other operator mgl operator 

(Adhya, 1997).  

The biological interconversion of galactose to glucose is the galactose degradation 

pathway (Leloir pathway). The three enzymes; galactokinase (Frey et al., 1996), galactose-1-

phosphate uridylyltransferase, and UDP-galactose 4-epimerase (Neiderhart et al., 1996) are 

coded from galK, galT, galE, are required for the degradation.  
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A model for the regulation of the galactose operon is structured in such a way that the 

absence of galactose results in the bending of the DNA and disruption of promoter activity.  

 

Figure 5.4. Regulatory model for gal operon in Escherichia coli (Snyder, 1997) 

In the presence of galactose, the repressor is not bound to the operators, and the operon 

is on. In the absence of galactose, a dimer repressor molecule binds simultaneously to both 

operators, bending the DNA and preventing binding of the RNA polymerase to the promoter 

region, and the operon is off (Snyder, 1997).  

5.4. Gut Operon in Escherichia coli 

The enzymes and proteins responsible for glucitol (sorbitol) catabolism are coded within 

the gut operon in E. coli. Expression of the glucitol (gut) operon is regulated by an unusual, 

complex system which consists of an activator (encoded by the gutM gene) and a repressor 

(encoded by the gutR gene) in addition to the cAMP-CRP complex (CRP, cAMP receptor 

protein). The GutM protein encoded by gutM gene, is a positive DNA-binding transcriptional 

regulator for glucitol utilization. GutR protein is required for the repression of the expression 

of the srlAEBD-gutM-srlR-gutQ genes. The gut operon consists of at least five structural 

genes and has the following gene order: gutOPABDMR (Yamada, 1988).  
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Figure 5.5. Gut operon gene expression sequence in Escherichia coli (biocyc.org) 

Synthesis of the mRNA, which initiates at the promoter specific to the gutR gene, occurs 

within the gutM gene. Expressional control of the gut operon appears to occur as a 

consequence of the antagonistic action of the products of the spontaneously regulated gutM 

and gutR genes (Yamada, 1988). 

There are two open frames downstream from gutD, which are termed gutM and gutR. 

The physiological function of the GutM protein is activation of gut operon transcription. It 

unusually invokes participation of both a glucitol-specific repressor and a glucitol-specfic 

activator in addition to the general activator, the cAMP-CRP complex. On the other hand, the 

physiological function of gutR gene product is to bind the inducer presumed to be glucitol 

(Lengeler & Steinberger, 1978). Each of the two regulatory proteins exhibits an effect on gut 

operon expression in the absence of others, but normal regulation depends upon the structural 

integrity of both. The cAMP-CRP complex is indispensable for the expression of the operon 

and functions independently of the GutM and GutR protein (Yamada, 1988). 

5.5. Glycerol Transport System (GlpK) in Escherichia coli 

Unlike other carbonhydrates, glycerol enters the cytoplasm by facilitated diffusion 

across the cytoplasmic membrane. The facilitator protein provides a selective channel. Internal 

glycerol is trapped as G3P by the action of an ATP-dependent kinase (GlpK) that can also 

phosphorylate dihydroxyacetone.  

PGATPGlycerol
glpK

3 →+  

As a catabolic enzyme, the kinase has the unusual feature of being subject to 

noncompetitive allosteric inhibition by fructose 1,6-biphosphate and the nonphosphorylated 
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form of enzyme IIIGlc, a feature which would account for the extreme effectiveness of glucose 

utilization in preventing glycerol consumption (Neidhardt, 1996).  

 

Figure 5.6. Transcriptional unit glpKF in Escherichia coli (biocyc.org) 

In wild-type cells, both glycerol and G3P induce the glp regulon, but in mutants lacking 

glycerol kinase only G3P has this effect. The expression of the glpKF operon itself is also 

induced by G3P, rather than by glycerol, was demonstrated with a mutant that produces a 

glycerol kinase protein without catalytic activity. Thus, G3P seems to be the true inducer of 

the entire glp operon. 

5.6. Glucose, Lactose, Galactose Transport System in Lactococcus lactis 

Lactic acid bacteria and particularly Lactococcus lactis are widely used for the 

production of lactic acid in fermented foods as a starter in milk fermentation and cheese 

manufacture. Control of the catabolic rate in L. lactis is determinant for dairy product quality. 

Also, it remains unclear whether the catabolic rate is controlled at the level of transcription, 

translation or enzyme activity. However, low genetic information and metabolic studies 

concerning anaerobic sugar catabolism in L. lactis give clues on growth rate and lactic acid 

production. 

Most sugars are taken up either by the phosphoenolpyruvate (PEP)-dependent 

phosphotransferase systems (PTS) or by permease systems in L. lactis. PTS involves coupled 

transport and phosphorylation of the sugar. In permease transport, sugar transport is followed 

by kinase-mediated phosphorylation of the free sugar within the cytosol (Yamada, 1987).  



 52 

 

Figure 5.7. Major pathway for the transport and metabolism of sugars in galactose grown cells 

in Streptococcus lactis (Thompson, 1978) 

In a medium containing a mixture of glucose, galactose, and lactose, the growth of 

Lactococcus lactis (Streptococcus lactis) is initially on the simultaneous metabolism of 

glucose and lactose. Galactose has been utilized only after the latter sugars have been 

exhausted from the medium (Thompson, 1978). Therefore, there is an inhibition of galactose 

utilization when glucose or lactose is added to medium. As shown in Figure 5.7, glucose and 

lactose are simultaneously taken up through the cell membrane on coupled PTS system, 

whereas galactose is transported via permease system. Lactose-P is broken down to glucose 

and galactose-P and the latter enters the EMP pathway by the D-tagatose 6-P pathway. 
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5.7. Galactose (Gal) Operon in Lactococcus lactis 

Lactococcus lactis is a low GC gram-positive bacterium. The carbon catabolite 

repression of L. lactis is different than E. coli and other gram-negative bacteria. Catabolite 

Repression (CR) is mediated by a negative regulatory mechanism with a catabolite control 

protein CcpA (Hueck & Hillen, 1995). Catabolite-responsive element (cre) is present near the 

promoter of genes which is affected by CR. Increase/decrease in the CcpA protein will result 

in the same way with cre.  

The binding of CcpA to cre sites is reported to be enhanced by elevated concentrations 

of early glycolytic intermediates such as glucose 6-P. Another signal involved in the activation 

of ccpA is the PTS phosphate carrier HPr. A metabolite activated kinase has been shown to 

phosphorylate HPr on residue series 46. This phosphorylated form of HPr interacts with CcpA 

which enhances the binding of CcpA to cre sites (Luecsink, 1998) 

 

Figure 5.8. Schematic representation of the Lactococcus lactis gal operon (Kuipers, 1998) 

 

The gal operon shown in Figure 5.8 consists of 5 genes with the order galAMKTE and 

encodes the promoter necessary for the uptake and conversion of galactose to glucose 1-P via 

the Leloir pathway. The presence of a putative cre site in the promoter region of the L. lactis 

gal genes suggested a possible involvement of CcpA in the regulation of the expression of 

these genes. No gal transcription could be detected in a wild-type strain grown on glucose, but 

when the cells were grown on galactose the transcription is increased. This observation could 

be attributed to negative regulation by CcpA promotion of the gal genes. The repression may 

result from either prevention of transcription initiation, a transcriptional block or interference 

with interaction between RNA polymerase and an activation (Stülke et al., 1999). 



 54 

6. COMPUTATIONAL STRATEGY FOR REGULATORY FBA 

Regulation of gene transcription with constraints-based models of prokaryotic 

metabolism is under investigation in order to understand and predict the cellular behavior. Our 

goal is to develop a modeling and simulation approach that uses current advances in the 

knowledge of regulatory structures and genetic consequences. The computational algorithm 

performed in MatLab contains two separate, but constantly interacting modules: a regulatory 

module and a metabolic network module. The regulatory module uses fuzzy logic to quantify 

transcriptional regulation and enzyme activity. The latter uses dynamical flux balance analysis 

to determine metabolic transients in response to regulatory signals. The modeling framework 

is applied to carbon-source utilization, aerobic/anaerobic diauxic shifts in bacteria; 

Escherichia coli and Lactococcus lactis. 

The utilization of carbon sources in E. coli and in any other bacteria are described by 

central metabolism pathways. Substrate uptake mechanism through the cell membrane may be 

different in many organisms. Also, the way to utilize multiple carbon source mixtures can be 

different; namely, sequential or simultaneous. The sequence of utilization of some substrates is 

regulated by a series of genes called operons.  

The most studied operon in E. coli, lac operon, contains genes whose transcription is 

regulated by a repressor protein and by catabolic repression from glucose. Gene expression of 

enzymes necessary for lactose utilization is dependent on the concentrations of the regulatory 

substances. The activation or repression of these genes depends on the level of corresponding 

molecules in the cell. Rather than using a flux to be turned “on” or “off”, a gradual shift from 

totally turned on system to totally turned off one (or vice versa) is crucial to determine internal 

concentrations on the activation or repression of the operon. Therefore, knowing the 

mechanism of operon is not enough to construct the interaction between extracellular 

metabolite and regulatory protein or enzyme. The concentration profiles of each coming from 

experimental data or mathematical model plays important role (Wong, 1997; Kremling, 2001). 
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Fuzzy logic considers the level of high and low between two end points, so there will be 

smooth shift from glucose utilization to lactose. 

Two separate, but constantly interacting modules are written in matlab/simulink: a 

regulatory module and a dynamic metabolic network module. Fuzzy Logic Controller network 

in Matlab/Simulink was used for various operon regulatory structures co-operating with 

membrane transport system. Dynamical structure of metabolic network module is constructed 

by Flux Balance Analysis of metabolites in Matlab. In every iteration of the FBA, the program 

developed calls for the regulatory module in Simulink to simulate the uptake rate of the 

corresponding substrate. 

6.1. Model Formulation of Flux Balancing 

Basic metabolic pathways of E. coli are used for the model formulation of flux balancing 

to generate maximal time courses of growth for the two model bacteria, E. coli and L. lactis. 

The basic pathways of catabolism in E. coli are shown in Figure 6.2 and a list of reaction list is 

provided in Appendix C. These pathways consist of glycolysis, pentose phosphate pathway, 

TCA cycle, electron transport system, and reactions that interconnect these. Especially, E. coli 

is chosen for the model because its physiological and biochemical structure has been well 

known for a long time. E. coli is a gram-negative bacteria. It is a prokaryote belonging to the 

family Enterobacteria.  

Substrate uptake and by-product secretion uptake rates, the initial concentrations of 

carbon sources and oxygen amount in the media must be all set to a value in order to simulate 

flux balancing. Then, the simulation is run until the carbon sources have been completely 

exhausted. Glucose, lactose, galactose, glycerol, sorbitol are the main carbon sources that are 

involved in the catabolism of E. coli or L. lactis. In order to simulate, some data provided in 

the literature, initial concentrations of biomass, glucose and lactose as well as uptake rate 

constraints for the growth on glucose and lactose are the same as the parameters used by 

Covert et al.  
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Figure 6.1. Computational Flow Diagram 
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The computational flow diagram as shown in Figure 6.1, gives the strategy to solve 

optimal time growth of a bacterium including transcriptional regulation. The regulatory 

module always interacts with metabolic network for the flux distributions in all iterations. By 

looking at the uptake rates of the substrate(s) the logical controlling mechanism permits the 

uptake of the others. The biomass yield and substrate concentrations are modeled for the 

exponential phase of growth at constant substrate uptake rates given in chapter 2. The 

stationary phase is not considered. 

The metabolic network system of E. coli having 113 reactions is used as a model. As 

shown in Figure 6.2, the map for E. coli includes the basic pathways for the utilization of 

external substrates. A maintenance requirement for ATP per substrate is included. The 

substrate is processed by the glycolytic pentose phosphate pathway and the TCA cycle and for 

aerobic cultures the electron transport system. There are multiple arrows on the map that show 

fluxes from one metabolite to another. Each reaction is catalyzed by different enzymes that are 

synthesized from their respective genes. 
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Figure 6.2. Model metabolic network map for Escherichia coli 
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As the first example, diauxic growth on glucose and lactose is investigated. As discussed 

in Chapter 5, the bacterium takes them sequentially. Lactose is only utilized in a very small 

proportion (less than 5% of that in the absence of glucose) as glucose is present in the 

medium. With a constant uptake rate of substrates, biomass concentration, glucose and lactose 

concentrations, O2 uptake rate by the bacteria are computed from dynamic FBA while, cAMP 

level in the cell which is dependent on the glucose concentration, from the fuzzy logic module. 

Table 6.1 shows the initial conditions and uptake rate constraints used for the diauxic 

growth on glucose and lactose in E. coli. These are just the estimated values and are taken 

from the previous works (Covert et al., 2002).  

Table 6.1. Initial conditions used and uptake rate constraints for the growth in glucose and 

lactose only 

Initial Conditions 
Biomass (g/L) 0.011 
Glucose (mmol/L) 1.6 
Lactose (mmol/L) 5.8 

Uptake Rate Constraints 
Glucose (mmol/(gDW hr)) 6.5 
Lactose (mmol/(gDW hr)) 3 
Oxygen (mmol/(gDW hr)) 15 

 

Figure 6.3. Uptake map of external glucose, lactose, and galactose in Escherichia coli 
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Based on the glucose-lactose diauxic growth, different scenarios are imposed on the 

growth condition in order to examine the operon working principles. Pulse injections of 

glucose only, or galactose only, and a mixture of glucose and galactose while lactose is the 

dominant substrate on the growth, are studied. Figure 6.3 shows the pathways before 

glycolysis for the uptake of glucose, lactose and galactose in E. coli. The reactions are given in 

Appendix C. The lac operon and gal operon in E. coli as discussed in Chapter 5 are tested and 

the Simulink structures are explained below.  

The pulse injection of glucose will show how the concentration of CAP-cAMP complex 

will change and how the uptake rate of lactose to the cell will be effected because the presence 

of this complex is closely associated with the presence of glucose in the cell. When the 

concentration of glucose increases in the medium, the amount of cAMP will decrease. 

However, there will be molecules of the enzyme β-galactosidase and β-galactoside permease 

in the cell which are responsible for the catabolism and transport of the lactose. Therefore, 

lactose transport is expected to be in small amount during the utilization of injected glucose. 

The same initial concentrations of the biomass, glucose, and lactose will be used and 2.50 

mmol/L glucose will be injected to the medium of the batch culture. 

Galactose injection is expected to show how the gal operon in E. coli will work. Because 

the injection is held while lactose is being utilized by the bacterium, galactose will be present 

in the cell. Galactose is a self inducer that binds to the repressor molecule. Therefore, lactose 

and galactose all together will be taken up and utilized simultaneously. However, the situation 

will be different when a mixture of glucose and galactose are injected. 2.50 mmol/L glucose 

and 8.5 mmol/L galactose will be given to the medium of the batch culture immediately. 

Again, the amount of cAMP will decrease as glucose concentration of the medium increases. 

This means that, CAP-cAMP complex will not transcribe the corresponding promoter region 

to activate the gal operon. Table 6.2 shows the initial conditions and uptake rates used in the 

pulse simulations. 
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Table 6.2. Initial conditions and uptake rate constraints used for the growth in glucose, lactose, 

and galactose pulse 

Initial Conditions 
Biomass (g/L) 0.011 
Glucose (mmol/L) 1.6 
Lactose (mmol/L) 5.8 
Galactose (mmol/L) 0 

Uptake Constraint Rates 
Glucose (mmol/(gDW hr)) 6.5 
Lactose (mmol/(gDW hr)) 3 
Galactose (mmol/(gDW hr)) 6.5 
Oxygen (mmol/(gDW hr)) 15 

 

In addition to the glucose, lactose and galactose pairs, growth on glucose, glucitol 

(sorbitol) and glycerol in E. coli will be investigated. Gut operon discussed in Chapter 4 is the 

crucial mechanism that controls the uptake of the sugar metabolisms of glucose and glucitol. 

Similar to growth on glucose and lactose, glucose has a repressive effect on the uptake of 

glucitol. Glucose and glucitol are taken up by both PTS system in the cell membrane. Like 

growth on glucose and lactose, the cAMP-CRP complex is the significant catabolite repressor 

in an unknown manner besides GutM protein in E. coli. Actually, both are consumed, but the 

rate of glucitol consumption is less in the presence of glucose than in the absence of it. On the 

other hand, the third component, glycerol, is transported directly through the cell membrane. 

But, there are inhibitory effects of non-phosphorylated form of EIIA belonging to both glucose 

and glucitol on the formation of Glycerol 3-Phosphate (G3P). G3P is formed from glycerol 

catalyzed by glpK kinase. Therefore, glucose and glucitol have both repressive effects on 

glycerol metabolism in E. coli. 

In Figure 6.4, the uptake map of glucose, sorbitol and glycerol is given. Glucose and 

sorbitol are directly converted to 6-Phosphate forms, whereas glycerol is taken up by normal 

diffusion. Table 6.3 gives the initial conditionsy the PTS mechanism and uptake rate 

constraints for the growth on glucose, glucitol, and glycerol. These parameters are just the 

estimates which give satisfactory results with respect to experimental data (Kompala and 

Ramkrishna, 1984). 



 62 

 

Figure 6.4. Uptake map of external glucose, sorbitol and glycerol in Escherichia coli 
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Table 6.3. Initial conditions and uptake rate constraints used for the growth in glucose, glucitol 

and glycerol 

Initial Conditions 
Biomass (g/L) 0.008 
Glucose (mmol/L) 1.2 
Glucitol/Sorbitol (mmol/L) 1.1 
Glycerol (mmol/L) 1.1 

Uptake Rate Constraints 
Glucose (mmol/(gDW hr)) 8.5 
Glucitol/Sorbitol (mmol/(gDW hr)) 4.5 
Glycerol (mmol/gDW hr) 4.0 
 Oxygen (mmol/(gDW hr)) 15 

 

 

Figure 6.5. Uptake map of external glucose, lactose, and galactose in Lactoccoccus lactis 

including Tagatose 6-P and Leloir pathways 

In addition to E. coli metabolic network, Tagatose 6-P pathway of lactose transport and 

Leloir pathway of galactose transport through the cell membrane are used to form the 

metabolic network of L. lactis.  
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L. lactis is a gram-positive bacteria and catabolic repression is mediated by a negative 

regulatory mechanism (Heuck and Hillen, 1995). Gal operon discussed in Chapter 5 in L. 

lactis is investigated to realize the repression of galactose by glucose and lactose. A mixture of 

glucose, lactose and galactose is assumed to be in the medium for the simulation. Initially, a 

simultaneous catabolism of glucose and lactose sugars is expected. Galactose utilization will 

start when glucose and lactose are depleted. Glucose and lactose are simultaneously taken up 

through the cell membrane on coupled PTS system, whereas galactose is transported via 

permease system. Gal operon controls the production of permease system which is a key 

factor of galactose uptake in the membrane. The metabolic pathway for the utilization of 

glucose, lactose and galactose in L. lactis is shown in Figure 6.5. 

6.2. Model Formulation of Fuzzy Inference System and Fuzzy Contoller 

A logic based on the two truth values True and False is sometimes inadequate when 

describing human reasoning. Fuzzy logic uses the whole interval between 0 (False) and 1 

(True) to describe human reasoning. As a result, fuzzy logic is being applied in rule based 

automatic controllers.  

In order to construct the fuzzy system, Matlab® Fuzzy Toolbox is used. Toolbox can 

easily make fuzzification interface, fuzzy inference, knowledge base (result), and 

defuzzification interface. Toolbox consists of two useful tools: FIS editor and Fuzzy 

Controller. FIS editor in combination with four other editors provides a powerful environment 

to define and modify Fuzzy Inference System (FIS) variable whereas, Fuzzy Controller is a 

block in Fuzzy Toolbox Library in Simulink environment. This admits FIS variable produced 

by FIS Editor and implements the desirable rules. 
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Figure 6.6. Fuzzy Inference System (FIS) in MATLAB fuzzy toolbox 

MATLAB® Simulink can build the system that use fuzzy logic. By combining Fuzzy 

Logic Controller blocks, a controlling action is structured. The structure variable describing its 

Fuzzy Inference System must be entered to a Fuzzy Controller block and the variable must be 

located in the MATLAB workspace.  

Modeling the lac operon is conceptualized in two parts, an inducible operon and 

catabolite repression. Therefore, simulink fuzzy control system of the lac operon in 

Escherichia coli is divided into two parts; one will implement the inducible part and the other 

will implement the catabolite repression due to glucose. In the inducible operon (part 1), the 

expression of the genes will increase by the presence of the inducer which is allolactose in lac 

operon. The main property of allolactose is to bind the repressor molecule attached on the way 

of transcription and to maintain mRNA translation on the DNA sequence. LacY, LacZ and 

LacA proteins are produced as a result and lactose can be taken up by the action of LacY 

permease. 



 66 

 

 

Figure 6.7. Simulink fuzzy controller system of lac operon in Escherichia coli (part 1) 

Figure 6.7 and Table 6.4 give clues as to how the fuzzy controller system works. Lactose 

uptake rate value is taken from the workspace (MATLAB) which is fuzzified in the 

“LactoseUptakeAllolactoseRepressor” controller. Then, the rate is quantified with the values 

very low, low, medium, etc. The decision on the result between lactose uptake and allolactose 

repressor concentration in normalized form is judged based on the fuzzy rule bases stated in 

Table 6.4. The table can be read simply as , “If Lactose Uptake is Very Low, THEN 

Normalized form of Allolactose + Repressor Product is Low”. A numerical result is taken 

from the controller after the defuzzification of a fuzzy result has been held. The same 

procedure is applied to other two controller to have a new numerical result of Lactose Uptake 

rate used for the calculations at the end. 

Table 6.4. Fuzzy rule base configuration for lac operon in Escherichia coli (part 1) 

IF VL L ME H VH 

  
Allolactose + Repressor Product 

(Normalized) 
Lactose 
Uptake  L L L H H 

  LacY, LacZ, LacY Production (Normalized) 
Allolactose L ME ME H VH 
  Lactose Uptake  
LacY 
Production  VL VL L ME H 

Catabolite repression is the second part, glucose is the preferred energy substrate to 

lactose in E. coli. The cell will use glucose in preference to lactose, when both are present. 

Catabolite activator protein (CAP) is involved in the control of transcription of lac operon. 



 67 

CAP must bind to cAMP molecule to promote the transcription in addition to inducible part. 

However, the concentratrion of cAMP is dependent on the glucose transport rate to the cell. 

When it is high, cAMP level will be low (or vice versa). The cAMP-CAP complex exerts a 

positive control over the expression of the lac operon. When this region of the promoter is 

bound, RNA polymerase has a greater ability to bind and produce transcripts. Again, LacY, 

LacZ and LacA proteins will be produced as a result. In these two parts, the lactose uptake rate 

through the cell will be much higher in catabolite repression part than the inducible part. 

 

Figure 6.8. Simulink fuzzy controller system of lac operon in Escherichia coli (part 2) 

 

Table 6.5 is the summary of fuzzy rule configurations used for Figure 6.8. Glucose 

repression is the second part of lac operon. Glucose uptake rate value is taken from the 

workspace and fuzzified in order to calculate normalized cAMP value. The first line of  

Table 6.5 can be read as such; If the glucose uptake is very low, the normalized cAMP will be 

very high or if the glucose uptake is low, the normalized cAMP will be high. In all time steps, 

cAMP concentration is collected to form a time profile which gives indication of the shift 

from glucose utilization to lactose utilization. The controllers for the calculation of cAMP 

concentration, Permease (LacY) concentration and lactose uptake rate are combined in 

sequence to determine lactose uptake through the cell membrane due to glucose repression.  
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Table 6.5. Fuzzy rule base configuration for lac operon in Escherichia coli (part 2) 

IF VL L ME H VH 
  Normalized cAMP 
Glucose 
Uptake  VH H ME L VL 
  LacY, LacZ, LacY Production (Normalized) 
Normalized 
cAMP VL VL L ME H 
  Lactose Uptake  
LacY 
Production  VL L ME ME H 

 

The rule viewer of fuzzy inference system shown in Figure 6.9 for the calculation of 

normalized cAMP gives the details of input (Normalized Glucose Uptake Rate) and output 

(Normalized cAMP) relation. The scaling method is used to scale down the resulting 

membership functions. All result coming from each rules are combined to produce an inferred 

conclusion. The center of area (COA) is taken as a numerical result of all combined 

conclusions. 

 

Figure 6.9. FIS rule viewer of glucose uptake to cAMP 



 69 

In addition to the catabolite repression (part2), membrane transport phosphorylation is 

added in order to compare the results with part 2 shown in Figure 6.10. The phosphorylated 

form of glucose-specific EIIA of the PTS is important for cAMP production which affects the 

transcription in the same manner. Normally, EIIA-P results in both cAMP production and 

LacY repression. The signal of EIIA-P is connected with dashed line to the fuzzy controller of 

LacY because the pathway is not considered in this work.  

The rules for the calculation of EIIA-P concentration (normalized), cAMP concentration 

(normalized), Permease (LacY) concentration (normalized) and lactose uptake rate are 

combined in sequence in Table 6.6 to determine lactose uptake through the cell membrane due 

to glucose repression.  

 

 

Figure 6.10. Simulink fuzzy controller system of lac operon in Escherichia coli  

(membrane transport phosphorylation is added) 
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Table 6.6. Fuzzy rule base configuration for lac operon in Escherichia coli  

(membrane transport phosphorylation is added) 

IF VL L ME H VH 
  Normalized EIIA-P 
Glucose 
Uptake  VH H ME L VL 
  Normalized cAMP 

EIIA-P VL L H H VH 
  LacY, LacZ, LacY Production (Normalized) 
Normalized 
cAMP VL L ME H H 
  Lactose Uptake  
LacY 
Production  VL L ME ME H 

 

 

Figure 6.11. Simulink fuzzy controller system for gal operon in E. coli 

The gal operon in E. coli has three important parts; promoter, operator and repressor 

parts as usual. The CAP protein with cyclic AMP activates the promoter of the gal operon. 

Because free cAMP is abundant in the absence of glucose, galactose uptake and glucose 

uptake are inversely related. As glucose concentration diminishes, galactose uptake level will 

increase with the activation of gal operon promoter site. The inducer of gal repressor is the 

galactose itself. The function of the other parts of the genome of the gal operon are not clear, 

hence only the promoter site is included in the modeling of Simulink fuzzy controller.  

The rules that combine glucose uptake to normalized cAMP and finally to galactose 

uptake is given in the Table 6.7. 
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Table 6.7. Fuzzy rule base configuration for gal operon in Escherichia coli 

IF VL L ME H VH 
  Normalized cAMP 
Glucose 
Uptake  VH H ME L VL 
  Galactose Uptake (Normalized) 
Normalized 
cAMP VL L ME H VH 

 

Glucitol (gut) Operon is controlled by both positive and negative regulation. Expression 

of the glucitol (gut) operon is regulated by a complex system which consists of an activator 

(encoded by the gutM gene) and a repressor (encoded by the gutR gene) in addition to the 

cAMP-CRP complex (CRP, cAMP receptor protein). In simulink fuzzy controller system, 

CRP (cAMP receptor) is modeled as shown in Figure 6.12 for the repression of 

glucitol/sorbitol. The repression effect of GutR is lower than cAMP-CRP. Therefore, the main 

effect is controlled by cAMP-CRP. The physiological function of the GutM protein is 

activation of gut operon transcription. The physiological function of gutR gene product is to 

bind the inducer presumably to be glucitol. Normal regulation depends upon the structural 

integrity of both.  

 

Figure 6.12. Simulink fuzzy controller system for glucitol/sorbitol operon in Escherichia coli 
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The rules that combine glucose uptake to normalized cAMP-CRP complex and finally to 

sorbitol uptake is given in the Table 6.8. As an example, first line of Table 6.8 can be read as 

such; If the normalized cAMP-CRP complex is very low, Sorbitol Uptake will be very low or 

if the normalized cAMP-CRP complex is low, Sorbitol Uptake will be very low.  

Table 6.8. Fuzzy rule base configuration for gut operon in Escherichia coli 

IF VL L ME H VH 
  Normalized cAMPCRP 
Glucose 
Uptake  VH H ME L VL 
  Sorbitol Uptake (Normalized) 
Normalized 
cAMPCRP VL VL L ME H 

 

 

Figure 6.13. Simulink fuzzy controller system for glpK regulon in Escherichia coli 

In wild-type cells, EIIA is for the inhibition of glycerol kinase (GlpK). EIIA is 

synthesized in the presence of glucose and sorbitol and GlpK protein is responsible for the 

phosphorlylation of glycerol by ATP. When the glycerol 3-phosphate is formed, the 

succeeding fluxes become active for the catabolism of glycerol. Thus, G3P is the true inducer 

of the entire glp operon. EIIA is high when both glucose and sorbitol are present. On the other 

hand, GlpK is low when EIIA is high because of its inhibitory effect. In Figure 6.13, simulink 

fuzzy controller is modeled as it is explained by the preceding relations. The fuzzy rule base 

configuration for the glp regulon in E. coli is cited in Table 6.9. 
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Table 6.9. Fuzzy rule base configuration for glp regulon in Escherichia coli 

IF VL L ME H VH 
 Normalized EIIA 
Glucose/ 
Sorbitol 
Uptake VL L ME H VH 

 GlpK (Normalized) 
Normalized  
EIIA VH H ME L VL 
 G3P Formation  (Normalized) 
Normalized  
GlpK VL L ME H VH 

 

Unlike in E. coli, glucose and lactose can be consumed simultaneously in Lactococcus 

lactis. The transport phenomena of both belong to the phosphotransferase system (PTS). 

However, galactose is transported by the permease system. Therefore, there is an operon 

system that controls the utilization and even transport through the cell membrane. CcpA 

protein and Galactokinase (GalK) are the key enzymes that play role in the Leloir pathway. 

CcpA protein is involved in the negative regulation, the level of CcpA will be low on glucose 

growth and will increase as glucose level decreases and galactose increases. 

 

 

Figure 6.14. Simulink fuzzy controller system for gal operon in Lactococcus lactis 
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Table 6.10. Fuzzy rule base configuration for gal operon in Lactococcus lactis 

IF VL L ME H VH 
  Normalized ccpAcre 
Glucose or 
Lactose 
Uptake  VH H ME L VL 

  GalK Production (Normalized) 
Normalized 
ccpAcre VL L ME VH VH 
  Galactose Uptake  
GalK 
Production  VL L ME H VH 

 

 

Figure 6.15. FIS rule viewer of lactose or glucose uptake to ccpAcre 
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The rule viewer of fuzzy inference system shown in Figure 6.15 for the calculation of 

normalized CcpAcre gives the details of input (Normalized Glucose and Lactose Uptake Rate) 

and output (Normalized CcpAcre) relation. The scaling method is used to scale down the 

resulting membership functions. All result coming from each rules are combined to produce an 

inferred conclusion. The center of area (COA) is taken as a numerical result of all combined 

conclusions. For instance, normalized value of glucose and lactose uptake of 0.8018 is given 

to the corresponding controller and a normalized value of 0.25 is taken out for the CcpAcre 

concentration. 
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7. RESULTS AND DISCUSSION 

In this section, the computational results and discussions for the following systems are 

presented. 

1. Single substrate of glucose or lactose is fed to E. coli. 

2. Mixed substrates of glucose and lactose are fed to E. coli. 

3. Mixed substrates of glucose and lactose are fed and a pulse of glucose is 

injected on lactose growth to E. coli. 

4. Mixed substrates of glucose and lactose are fed and a pulse of galactose is 

injected on lactose growth to E. coli. 

5. Mixed substrates of glucose and lactose are fed and a pulse of glucose and 

galactose mixture is injected on lactose growth to E. coli. 

6. Mixed substrates of glucose, sorbitol (glucitol) and glycerol are fed to E. coli. 

7. Mixed substrates of glucose, lactose and galactose are fed to L. lactis. 

 

The sequence of utilization of the mixed substrates is controlled by transcriptional 

regulatory constraints of the relevant operons. Instead of using a logic based on the True and 

False values (Boolean Logic), fuzzy logic is used to explain the whole interval between these 

two values. Therefore, in all these constrained uptakes there is no sharp change of substrate 

utilization. 
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7.1. Dynamics of Single Substrate Uptake in Escherichia coli 
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Figure 7.1. Glucose concentration profile during glucose uptake in Escherichia coli 
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Figure 7.2. Biomass profile during glucose uptake in Escherichia coli 
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Figure 7.3. Lactose concentration profile during lactose uptake in Escherichia coli 
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Figure 7.4. Biomass profile during lactose uptake in Escherichia coli 

Figures 7.1 and 7.3 show the time courses of utilization of glucose and lactose, 

respectively. Correspondingly, biomass profiles are given in Figures 7.2 and 7.4. The initial 

substrate and biomass concentrations, and substrate uptake rates are given in Table 6.1. As it 
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can be seen for Figures 7.2 and 7.4, the maximum growth rate for glucose (µglu) is greater than 

that for lactose (µlac).  

7.2. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, in Escherichia 

coli 
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Figure 7.5. Experimental and calculated glucose concentration profile for mixed substrates; 

glucose and lactose in Escherichia coli 
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Figure 7.6. Experimental and calculated lactose concentration profile for mixed substrates; 

glucose and lactose in Escherichia coli 
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Figure 7.7. O2 uptake rate for mixed substrates; glucose and lactose in Escherichia coli 
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Figure 7.8. Experimental and calculated biomass production profile for mixed substrates; 

glucose and lactose in Escherichia coli 
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Figure 7.9. Normalized cAMP profile for mixed substrates; glucose and lactose in  

Escherichia coli 

Figures (7.5 - 7.9) are the plots of dynamic glucose and lactose utilization profile in the 

mixed substrates, glucose and lactose. Experimental data taken from the literature (Covert, et 
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al., 2002) are indicated, to show the accuracy of the simulated results. For the starting point of 

FBA, initial conditions and substrate uptake rate constraints must be estimated in order to get 

an output of growth rate. These parameters are taken from the same reference. A best fit of 

biomass yield is obtained in the exponential phases of growth because the simulations are for 

constant uptake rates of relevant substrates. The preference of glucose over lactose results in 

sequential utilization of glucose, and then lactose. This is due to the catabolite repression of 

glucose over lactose. In Figure 7.8, it is clear that there is a lag phase between the two 

exponential growth phases. This lag phase results from both catabolite repression by glucose 

and induction of lac operon by lactose. Another crucial point about the lag phase is the gradual 

increase of lactose uptake to the cell. Namely, it does not mean that there is no growth at this 

stage. In general, a lag phase of lac operon in E. coli takes place in 10 to 30 minutes. If a 

Boolean formalism is held for the regulation of glucose and lactose utilization, the time of lag 

phase must be specified in the calculations. In the work of Covert et al. (2002), nearly half an 

hour was taken and inserted to the calculation to simulate a lag as the shift occurs in diauxic 

growth on glucose and lactose. In fuzzy logic formalism, the lag phase of about 30 minutes is 

the natural result of gradual shift of the lactose uptake from low to high level after glucose is 

depleted. Oxygen uptake rate shown in Figure 7.7 and normalized cAMP concentrations 

shown in Figure 7.9 are given to show the shift from glucose uptake to lactose uptake. cAMP 

concentration is directly related to the glucose concentration in the medium and helps to 

promote the lac operon by the CAP-cAMP complex. When glucose comes to exhaustion, 

cAMP level will give a shift from a low level to a high one. O2 uptake rate level will decrease 

as the shifting occurs. It will increase and come to another level because of the new substrate 

uptake. In Figure 7.7, O2 uptake rate level of lactose is lower than the glucose. It means that 

the growth rate on lactose is being low compared to glucose.  
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Figure 7.10. Flux distribution for aerobic metabolism of glucose by Escherichia coli 
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Figure 7.11. Flux distribution for aerobic metabolism of lactose by Escherichia coli 

Flux distributions of glucose (PTS), and lactose (permease) aerobic metabolisms on 

metabolic network of E. coli are given in Figure 7.10 and 7.11. The red arrows show the 
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dominant fluxes, whereas the black ones are stagnant (zero) rates on the metabolism. When 

there is a shift from one substrate to another, flux distribution on the metabolism is more or 

less the same. But, the fluxes change a little bit. In general, fluxes are higher which give more 

biomass production on glucose than lactose. The only difference on flux distributions is the 

pathway of the substrate uptake.  

7.3. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, Glucose Pulse in 

Escherichia coli 

Mixed substrates of glucose and lactose are fed to the batch culture and a pulse of 

glucose (2.5 mmol/L) is injected to the medium at the 7th hour on the lactose growth. The aim 

is to see the immediate changes caused by the shift in substrate uptake.  
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Figure 7.12. Glucose concentration profile for mixed substrates; glucose and lactose, and 

glucose pulse injection in Escherichia coli 

 



 86 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

Time (hr)

L
A

C
T

O
S

E
 (

M
M

O
L

/L
)

 

Figure 7.13. Lactose concentration profile for mixed substrates; glucose and lactose, and 

glucose pulse injection in Escherichia coli 
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Figure 7.14. O2 uptake rate for mixed substrates; glucose and lactose, and glucose pulse 

injection in Escherichia coli 
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Figure 7.15. Biomass yield profile for mixed substrates; glucose and lactose, and glucose pulse 

injection in Escherichia coli 
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Figure 7.16. Normalized cAMP profile for mixed substrates; glucose and lactose, and glucose 

pulse injection in Escherichia coli 

In Figure 7.12, it is clear that there is a glucose pulse injection on the lactose growth. 

The glucose pulse is delivered between the 7th and 8th hours. Again, glucose is the preferable 
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substrate over lactose in this system. Upon glucose injection, the consumption of lactose is 

reduced due to the catabolite repression, but lactose is being utilized in small amounts by the 

cell because of the presence of LacY (Permease) and lactose (allolactose) in the cell medium. 

As glucose becomes depleted at 8.5 hour, growth on lactose is slowly resumed and there is a 

decrease in the biomass. O2 uptake rate level gives two minimums for the alteration of 

substrates. The first one is due to the shift from glucose to lactose, but the second is due to the 

repression of glucose on lactose. It is usual to observe a decrease in the normalized cAMP 

level. Glucose becomes dominant substrate, but the injected amount is small compared to the 

whole biomass present in the batch culture. Therefore, the depletion of glucose added is very 

quick. Then, lactose becomes the only substrate available. 

 

7.4. Dynamics of Mixed Substrates Uptakes Including Membrane Transport 

System; Glucose and Lactose, Glucose Pulse in Escherichia coli 
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Figure 7.17. Glucose concentration profile for mixed substrates including membrane transport 

system; glucose and lactose, and glucose pulse injection in Escherichia coli 
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Figure 7.18. Lactose concentration profile for mixed substrates including membrane transport 

system; glucose and lactose, and glucose pulse injection in Escherichia coli 
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Figure 7.19. O2 uptake rate for mixed substrates including membrane transport system; 

glucose and lactose, and glucose pulse injection in Escherichia coli 
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Figure 7.20. Biomass profile for mixed substrates including membrane transport system; 

glucose and lactose, and glucose pulse injection in Escherichia coli 
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Figure 7.21. Normalized cAMP profile for mixed substrates including membrane transport 

system; glucose and lactose, and glucose pulse injection in Escherichia coli 

A membrane transport system is added to the mixed substrate uptake; glucose and 

lactose and injection of glucose on lactose growth system. EIIAGlc only repress the production 
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of LacY permease which allows lactose transport through the cell membrane. Glucose is 

transported by the phosphotransferase system. EIIAGlc is phosphorylated as glucose is 

depleted. Phosphorylated EIIAGlc activates adenylate cyclase to result in the production of 

cAMP which effects the activation of the lac operon. Therefore, cAMP level and EIIAGlc-P 

levels are all interrelated. When cAMP level increases, EIIAGlc-P will increase in the same 

proportion. The result for the same system with the added membrane transport mechanism will 

will give identical outcomes. Therefore, Figures 7.12 – 7.16 are the same as with  

Figures 7.17 – 7.21.  

7.5. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, Galactose Pulse 

in Escherichia coli 
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Figure 7.22. Glucose concentration profile for mixed substrates; glucose and lactose, and 

galactose pulse injection in Escherichia coli 
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Figure 7.23. Lactose concentration profile for mixed substrates; glucose and lactose, and 

galactose pulse injection in Escherichia coli 
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Figure 7.24. Galactose concentration profile for mixed substrates; glucose and lactose, and 

galactose pulse injection in Escherichia coli  
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Figure 7.25. O2 uptake rate for mixed substrates; glucose and lactose, and galactose pulse 

injection in Escherichia coli 

 

0.01

0.1

1

10

0 2 4 6 8 10

Time (hr)

B
IO

M
A

S
S

 (
g
r/
L
)

µglucose
µlactose

µlactose+µgalactose

 

Figure 7.26. Biomass profile for mixed substrates; glucose and lactose, and galactose pulse 

injection in Escherichia coli 
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Figure 7.27. Normalized cAMP profile for mixed substrates; glucose and lactose, and 

galactose pulse injection in Escherichia coli 

 

Galactose pulse injection is studied on growth of glucose and lactose substrates in order 

to illustrate the gal operon in E. coli. There is no difference on the glucose uptake part of 

growth. The difference comes as the galactose (8.5 mmol/L) is injected. The concentration of 

the galactose gives a peak and is consumed immediately due to high biomass yield in the 

medium. O2 uptake rate level gives a rise as the injection occurs. In that time interval, lactose 

and galactose are taken up together and O2 amount necessary for the aerobic growth is 

increased in that proportion. Galactose itself is the inducer of the REPRESSOR protein. 

Galactose is actually taken up by the permease system with an unknown mechanism and 

known gal operon interactions. The known operon operation was discussed in Chapter 5. 

Therefore, galactose must be present in the cell in order to permit the galactose transport. The 

injection is done during the lactose growth. Lactose is present in the medium and is 

hydrolyzed to glucose and galactose, so there is no problem for the uptake of galactose. The 

cAMP level is related neither with lactose, nor with galactose. So, there is only one shift in 

Figure 7.26 showing the change of substrates from glucose to lactose. The biomass growth on 

glucose was held upto 4.5 hour. Then, the biomass had been grown on lactose until the 

injection time of galactose. Galactose had been injected to the solution at 7.5 hour. Because 
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lactose was present and was converted to galactose and glucose in the metabolism, galactose 

was automatically taken up and utilized by the cell. However, the concentration of lactose is 

diminished at 8.5 hour. After that point on, there is only residual galactose in the culture and it 

gives a low growth rate of 0.019 hr-1. The growth rate in the first period is 0.6165 hr-1 where 

the glucose is the dominant substrate over lactose. Then, in the second period lactose is taken 

up giving 0.5318 hr-1 growth rate. When galactose is injected, lactose and galactose are 

utilized simultaneously giving 1.184 hr-1 growth rate.  

7.6. Dynamics of Mixed Substrates Uptakes; Glucose and Lactose, Mixture of 

Glucose and Galactose Pulse in Escherichia coli 
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Figure 7.28. Glucose concentration profile for mixed substrates; glucose and lactose, and 

mixture of glucose and galactose pulse injection in Escherichia coli 
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Figure 7.29. Lactose concentration profile for mixed substrates; glucose and lactose, and 

mixture of glucose and galactose pulse injection in Escherichia coli 
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Figure 7.30. Galactose concentration profile for mixed substrates; glucose and lactose, and 

mixture of glucose and galactose pulse injection in Escherichia coli 
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Figure 7.31. O2 uptake rate for mixed substrates; glucose and lactose, and mixture of glucose 

and galactose pulse injection in Escherichia coli 
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Figure 7.32. Biomass yield profile for mixed substrates; glucose and lactose, and mixture of 

glucose and galactose pulse injection in Escherichia coli 
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Figure 7.33. Normalized cAMP profile for mixed substrates; glucose and lactose, and mixture 

of glucose and galactose pulse injection in Escherichia coli 

 

Mixture of glucose and galactose pulse injection is examined on the diauxic growth of 

glucose and lactose. It is aimed to decide and study the gal operon in terms of the glucose 

effect in E. coli. There is no difference on the glucose uptake part of growth. A mixture of 

glucose (4.5 mmol/L) and galactose (8.5 mmol/L) is added instantaneously on the lactose 

growth. Now, there are lactose, galactose and glucose all together in the cell. Glucose is taken 

up automatically. However, there are LacY (permease), allolactose and galactose present, and 

allow small lactose and galactose uptakes. Therefore, both O2 uptake rate level and biomass 

yield will give a sharp rise. But, again glucose is the preferable sugar among the others. It will 

diminish the rise in the second step. From that time on, lactose and galactose uptakes are 

completely repressed until all injected glucose is consumed. Then, lactose and galactose are 

used simultaneously. Biomass yield will increase in an unstable manner during the injection 

period. It is sure that the cAMP level will decrease as the glucose is added to the medium. 
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7.7. Dynamics of Mixed Substrates Uptakes; Glucose, Sorbitol (Glucitol), and 

Glycerol in Escherichia coli 
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Figure 7.34. Glucose concentration profile for mixed substrates; glucose, sorbitol (glucitol) 

and glycerol in Escherichia coli 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

Time (hr)

S
O

R
B

IT
O

L
 (

M
M

O
L
/L

)

 

Figure 7.35. Sorbitol concentration profile for mixed substrates; glucose, sorbitol (glucitol) 

and glycerol in Escherichia coli 
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Figure 7.36. Glycerol concentration profile of mixed substrates; glucose, sorbitol (glucitol) 

and glycerol in Escherichia coli 
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Figure 7.37. O2 uptake rate of mixed substrates; glucose, sorbitol (glucitol), and glycerol in 

Escherichia coli 
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Figure 7.38. Biomass production profile for mixed substrates; glucose, sorbitol (glucitol) and 

glycerol in Escherichia coli 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5

Time (hr)

N
o
rm

a
liz

e
d
 c

A
M

P
C

R
P

 

Figure 7.39. Normalized cAMPCRP profile for mixed substrates; glucose, sorbitol (glucitol), 

and glycerol in Escherichia coli 
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Another example of E. coli growth on mixed substrate is based on glucose, sorbitol 

(glucitol), and glycerol. Glucose and sorbitol are transported through the membrane by the 

phosphotransferase system (PTS). On the other hand, glycerol is transported by normal 

diffusion through the membrane. As it was explained in Chapter 5, there are two operons 

acting on the system; a gut operon and glp operon. Namely, the gut operon acting on sorbitol 

is repressed due to glucose in the medium and glp operon acting on glycerol metabolism is 

inhibited due to the presence of glucose and sorbitol. There are two shifts on biomass curve 

which gives a consistent result as given in the work of Kompala and Ramkrishna, (1984). 

However, the reported data of biomass concentration range was very small and these values 

cannot be obtained with the range of assumed initial conditions and substrate uptake rates. 

Figures from 7.34 to 7.39 give substrate concentrations, biomass yield, oxygen uptake and 

normalized cAMPCRP complex. The glucose is nearly depleted at 2.5 hr which is used 

simultaneously with sorbitol. However, as the glucose is depleted, glycerol starts being 

utilized in a small quantity. Sorbitol is all successively consumed at 4 hr and then glycerol at 

4.5 hr. As a result, there are two refractions on the biomass concentrations indicating that one 

substrate is depleted and the other is started to be used. From the simulation results relying on 

the initial conditions, the growth rate of sorbitol is greater than both glucose and lactose and 

the growth rate of glucose is greater than the glycerol (µSOR > µGLC > µGLY). 
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7.8. Dynamics of Mixed Substrates Uptakes; Glucose, Lactose, and Galactose in 

Lactococcus lactis 
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Figure 7.40. Glucose concentration profile for mixed substrates; glucose, lactose, and 

galactose in Lactococcus lactis 
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Figure 7.41. Lactose concentration profile for mixed substrates; glucose, lactose, and galactose 

in Lactococcus lactis 
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Figure 7.42. Galactose concentration profile for mixed substrates; glucose, lactose, and 

galactose in Lactococcus lactis 
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Figure 7.43. Biomass profile for mixed substrates; glucose, lactose, and galactose in 

Lactococcus lactis 
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Figure 7.44. Normalized ccpAcre profile for mixed substrates; glucose, lactose, and galactose 

in Lactococcus lactis 

The growth behaviour of Lactococcus lactis which is a gram positive bacterium, is 

examined glucose, lactose and galactose. First of all, this strain is different from E. coli. The 

membrane transport system and operon structure of gal operon are different in L. lactis. 

Glucose and lactose belong to the phosphotransferase system (PTS), whereas galactose 

belongs to permease transport system. It means that glucose and lactose will be used 

simultaneously at the beginning and galactose will be taken up sequentially. The same uptake 

rates and initial conditions on glucose and lactose are assumed in order to make a comparison 

between L. lactis and E. coli. L. lactis is a lactic acid bacteria. It is used for the production of 

lactic acid in fermented foods. Fermentation is anaerobic growth of biomass. It is clear that the 

biomass yield is lower than in E. coli which possesses aerobic growth. Due to the low growth 

rate for all substrates, they are consumed totally only after long of time periods. The inhibition 

of galactose transport is accomplished by both glucose and lactose. Since there is a high 

glucose uptake, glucose is depleted earlier than the others, like in E. coli. Finally, galactose is 

the only substrate in the medium. Catabolite Repression (CR) is mediated via a negative 

regulatory mechanism. Disruption of the ccpA gene reduces catabolite repression of several 

genes involved in the carbohydrate metabolism. A cis-acting sequence, termed catabolite-
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responsive element (cre), present near the promoter of genes affected by CR, was found to be 

essential for mediating CR. A normalized ccpAcre is drawn Figure 7.44 to show the induction 

of galactose transport through the cell membrane. In Figure 7.43, there are two shifts in the 

growth level giving an allowance of uptake. The growth of biomass due to galactose is 

negligible. Moreover, growth on glucose is higher than the growth on lactose. Therefore, the 

same conclusion (µGLC > µLCTS > µGLAC) on the growth rates can be made as was the case in E. 

coli. Experimental results are also given on the Figures 7.40 – 7.43 for the validation of 

simulation result. Simulated glucose and galactose concentrations fit the experimental data 

well. However, the simulated results of lactose utilization occur earlier than the experimental 

results. There is also a discrepancy between simulated and experimental results of biomass 

profile especially on galactose utilization. There are two noticeable slopes of the experimental 

data parts. In the simulation, there is no lag phase on the shift from one substrate to another, 

because glucose and lactose are transported through the membrane by phosphotransferase 

system and both have repression on the production of galactose permease. The substrates are 

always taken up by pairs. The pairs are glucose and lactose, lactose and galactose, and 

galactose itself. Therefore, the slope of biomass concentration curve (growth rate) is only 

slightly changed upon the substitution of one substrate to another in a pairwise manner.  
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Figure 7.45. Flux distribution for anaerobic (microaerobic) metabolism of glucose and lactose 

by Lactococcus lactis 
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Figure 7.46. Flux distribution for anaerobic (microaerobic) metabolism of galactose by 

Lactococcus lactis 
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The flux distributions of glucose and lactose (PTS), and galactose (permease) anaerobic 

metabolisms of L. lactis are given in Figure 7.45 and 7.46. The red arrows show the dominant 

fluxes, whereas the black ones are stagnant rates on the metabolism. When there is a shift from 

one substrate to another, flux distribution on the metabolism is more or less the same. But, the 

fluxes change a little bit. In general, fluxes are higher which give more biomass production on 

glucose and lactose than galactose. The only difference on flux distributions is the pathway of 

the substrate uptake. The flux distribution on the TCA cycle is different than the aerobic 

growth in E. coli. Flux is not distributed all over the cycle completely and the dominant 

reactions, which give rise to entrance to the cycle, are different in anaerobic growth. External 

succinate, lactate and acetate are formed from the substrates in anaerobic growth which reduce 

the biomass yield.  
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8. CONCLUSION AND RECOMMENDATION 

8.1. Conclusion 

Aerobic growth of Escherichia coli and anaerobic growth of Lactococcus lactis in 

multiple carbon source of substrates are examined incorporating transcriptional regulation 

based on fuzzy logic. The computational method consists of dynamic flux balance analysis 

(FBA) and transcriptional regulation which are structured in MATLAB/SIMULINK.  

Mainly, diauxic shift on glucose and lactose growth is studied in E. coli. In order to 

explain the regulatory shift, the operon structure controlling the environmental conditions 

must be known. Lac operon is responsible for the repression of glucose over lactose and the 

induction of lactose uptake. Glucose and lactose diauxic growth is modeled by lac operon 

structured in Fuzzy Logic. Aditionally, pulse injections of glucose, galactose and mixture of 

glucose and galactose are simulated over diauxic growth in E. coli in order to validate lac 

operon construction and to study gal operon which is responsible for the galactose uptake. The 

membrane transport system is also important in the sequence of sugar uptakes. Glucose, 

sorbitol (glucitol), and glycerol mixture growth is examined in E. coli both to analyze the 

responsible operons namely, gut operon and glpKF transcriptional unit and investigate the 

sugar uptake strategy which are either sequential or simultaneous. Anaerobic growth on 

glucose, lactose and galactose mixture is also simulated in L. lactis, which is lactic acid 

bacterium. All operon regulatory structure including lac operon are arranged in Fuzzy Logic. 

Fuzzy Logic is introduced into regulatory flux balance analysis on the metabolic 

networks, where Boolean logic had been used earlier (Covert and Palsson, 2002). The results 

found in this study show that fuzzy logic can be better than Boolean logic. The structure of the 

operon, which controls the uptake of substrate or the rate of flux, is easily and quantitatively 

modeled by fuzzy controllers. The regulatory genes are considered either “on” or “off” in 

Boolean logic. Therefore, the adaptation of regulatory structure to changes in substrate 

concentration in the medium cannot be reflected as it happens. In the case of diauxic growth of 
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E. coli on glucose and lactose, the lag phase time period, which is formed due to catabolite 

repression and inducer exclusion, cannot be incorporated into the calculation of flux 

distributions when the regulatory structure is not modeled as when a Boolean formalism is 

preferred. Another result that can be deduced from fuzzy logic formalism, is the pulse 

injection of primarily preferred substrate to a medium when any other substrate uptake is 

being held. There will be an adaptation time to the uptake of preferred substrate that can easily 

be handled by this formalism. Fuzzy logic controlling action because of its gene expression 

model inside its inference, can deal with alteration from a higher level to a lower one, or vice 

versa. On simultaneous and sequential growth, fuzzy can be more effective than other logical 

structure. At any time, substrate that is repressed by other two substrates, cannot be modeled 

correctly in Boolean formalism. Partial substrate uptake rate is easily added in the metabolic 

network if fuzzy logic is used. The sugar can be utilized partially after the one of preferable 

sugars is totally consumed.  

Fuzzy logic depends on human knowledge and experience on the system. Therefore, 

there is no unique way to map and implicate the solution. If the solution is estimated correctly, 

the logical structure can control the transcriptional regulation in an appropriate form. 

Estimated initial conditions and substrate uptake rate constraints are taken either from 

the literature or that best fit to the flux distribution of growth. Therefore, there is no problem 

on the validation of experimental data if they exist. Fuzzy Inference System and Fuzzy 

Controller included in the model are easy to implement and insert into the calculations of 

Linear Programming. 

8.2. Recommendation 

The substrate uptake rates are held constant at each time step of calculations which is an 

undesirable assumption. However, uptake rate in each step cannot be predicted with the 

previous results. Actually, sugar uptake rate are different on initial, exponential, lag, stationary 

phases. Only an average of exponential phase uptake rate is used which is assumed to be 

constant. The uptake rate at each step must be estimated by a calculation method.  



 112 

The fuzzy models are structured on one antecedent to one conclusion in our work. If 

more than one antecedent is used, the correlation of all in each other and effect on the 

conclusion must be well known. Fuzzy logic relies on the human knowledge and expertise on 

the system. Therefore, the gene expression and operon working principle must be examined 

very well which is coming from the experimental data. A more complicated operon model can 

be constructed relating two or more occasion to one or more conclusion.  

Estimates of the initial conditions and substrate uptake rate constraints are chosen 

somewhat dependent on the range experimental data. That is, if the biomass concentration and 

substrate concentrations are increased in the medium, the behavior of biomass yield will be 

different. A quantity of bacteria (biomass) is always treated as one bacterium. The starvation 

on the substrate will be dominant if the biomass has been increased in excess amounts. 

Therefore, the study must be carried out in a range of experiments.  

The reaction list contains mainly 113 reactions which were studied to determine the 

ability of the model to make accurate phenotypic predictions (Covert, 2002). These reactions 

and additional ones for different substrate membrane transport systems in E. coli and L. lactis 

are enough to model the regulation of the shift. Additional pathways can be included to the 

list. If a pathway is missed which affects the biomass growth, the simulated result will deviate 

from the experimental ones. Also, a better definition of biomass growth rate can be written to 

form more precise results. 
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APPENDIX A: SIMULATION RESULTS 

A.1. Growth in Single Substrate of Glucose or Lactose of Escherichia coli 

 

Table A.1. Growth in Single Substrate of Glucose of Escherichia coli 

Time 
(hr) 

GLUCOSE 
(mmol/L) 

Biomass  
(g/L) 

0.0 1.60 0.011 
0.5 1.56 0.015 
1.0 1.50 0.020 
1.5 1.43 0.027 
2.0 1.33 0.036 
2.5 1.19 0.048 
3.0 1.01 0.064 
3.5 0.77 0.086 
4.0 0.45 0.115 
4.5 0.02 0.154 
5.0 0.00 0.154 
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Table A.2. Growth in Single Substrate Lactose of Escherichia coli 

Time 
(hr) 

LACTOSE 
(mmol/L) 

Biomass  
(g/L) 

0.0 5.80 0.011 
0.5 5.78 0.014 
1.0 5.76 0.019 
1.5 5.72 0.024 
2.0 5.68 0.032 
2.5 5.63 0.042 
3.0 5.56 0.054 
3.5 5.46 0.071 
4.0 5.34 0.092 
4.5 5.18 0.120 
5.0 4.98 0.157 
5.5 4.71 0.205 
6.0 4.35 0.267 
6.5 3.89 0.349 
7.0 3.29 0.455 
7.5 2.51 0.594 
8.0 1.49 0.775 
8.5 0.16 1.011 
9.0 0.00 1.011 
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A.2. Growth in Mixed Substrates of Glucose and Lactose of Escherichia coli 

 

Table A.3. Growth in Mixed Substrates of Glucose and Lactose of Escherichia coli 

Time 
(hr) 

GLUCOSE 
(MMOL/L) 

LACTOSE 
(MMOL/L) 

O2 UPTAKE 
(mM/g DW.hr) 

Biomass 
(g/L) cAMP 

GROWTH 
RATE: µ 

(1/hr) 

0 1.60 5.80 13.98 0.011 0.07 0.6166 

0.5 1.56 5.80 13.98 0.015 0.07 0.6166 

1 1.50 5.80 13.98 0.020 0.07 0.6166 

1.5 1.42 5.80 13.98 0.028 0.07 0.6166 

2 1.32 5.79 13.98 0.038 0.07 0.6166 

2.5 1.17 5.79 13.98 0.051 0.07 0.6166 

3 0.98 5.79 13.98 0.070 0.07 0.6166 

3.5 0.71 5.78 13.98 0.095 0.07 0.6166 

4 0.35 5.77 12.25 0.130 0.24 0.5053 

4.5 0.00 5.76 5.64 0.167 0.93 0.0772 

5 0.00 5.70 10.45 0.173 0.93 0.3805 

5.5 0.00 5.48 12.87 0.210 0.93 0.5319 

6 0.00 5.12 12.87 0.274 0.93 0.5319 

6.5 0.00 4.65 12.87 0.357 0.93 0.5319 

7 0.00 4.04 12.87 0.466 0.93 0.5319 

7.5 0.00 3.24 12.87 0.608 0.93 0.5319 

8 0.00 2.19 12.87 0.793 0.93 0.5319 

8.5 0.00 0.83 8.38 1.034 0.93 0.2510 

9 0.00 0.00   1.172     
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A.3. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Glucose of Escherichia coli 

 

Table A.4. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Glucose of Escherichia coli 

Time 
(hr) 

GLUCOSE 
(MMOL/L) 

LACTOSE 
(MMOL/L) 

O2 UPTAKE 
(mM/g DW.hr) 

Biomass 
(g/L) cAMP 

GROWTH 
RATE: µ 

(1/hr) 

0 1.60 5.80 13.982 0.011 0.07 0.617 

0.5 1.56 5.80 13.982 0.015 0.07 0.617 

1 1.50 5.80 13.982 0.020 0.07 0.617 

1.5 1.42 5.80 13.982 0.028 0.07 0.617 

2 1.32 5.79 13.982 0.038 0.07 0.617 

2.5 1.17 5.79 13.982 0.051 0.07 0.617 

3 0.98 5.79 13.982 0.070 0.07 0.617 

3.5 0.71 5.78 13.982 0.095 0.07 0.617 

4 0.35 5.77 12.246 0.130 0.24 0.505 

4.5 0.00 5.76 5.641 0.167 0.93 0.077 

5 0.00 5.70 10.450 0.173 0.93 0.381 

5.5 0.00 5.48 12.867 0.210 0.93 0.532 

6 0.00 5.12 12.867 0.274 0.93 0.532 

6.5 0.00 4.65 12.867 0.357 0.93 0.532 

7 0.00 4.04 12.867 0.466 0.93 0.532 

7.5 2.50 3.24 13.982 0.608 0.07 0.617 

8 0.19 3.18 6.334 0.827 0.86 0.124 

8.5 0.00 2.86 5.641 0.880 0.93 0.077 

9 0.00 2.53 10.450 0.914 0.93 0.381 

9.5 0.00 1.39 11.328 1.106 0.93 0.436 

10 0.00 0.00   1.375   0.039 
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A.4. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Glucose with Membrane Transport System of Escherichia coli 

 

Table A.5. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Glucose with Membrane Transport System of Escherichia coli 

Time 
(hr) 

GLUCOSE 
(MMOL/L) 

LACTOSE 
(MMOL/L) 

O2 UPTAKE 
(mM/g DW.hr) 

Biomass 
(g/L) cAMP 

GROWTH  
RATE: µ 

(1/hr) 

0.0 1.60 5.80 13.98 0.011 0.14 0.6166 

0.5 1.56 5.80 13.98 0.015 0.14 0.6166 

1.0 1.50 5.80 13.98 0.020 0.14 0.6166 

1.5 1.42 5.80 13.98 0.028 0.14 0.6166 

2.0 1.32 5.79 13.98 0.038 0.14 0.6166 

2.5 1.17 5.79 13.98 0.051 0.14 0.6166 

3.0 0.98 5.79 13.98 0.070 0.14 0.6166 

3.5 0.71 5.78 13.98 0.095 0.14 0.6166 

4.0 0.35 5.77 12.25 0.130 0.25 0.5053 

4.5 0.00 5.76 5.64 0.167 0.86 0.0772 

5.0 0.00 5.70 10.45 0.173 0.86 0.3805 

5.5 0.00 5.48 12.87 0.210 0.86 0.5319 

6.0 0.00 5.12 12.87 0.274 0.86 0.5319 

6.5 0.00 4.65 12.87 0.357 0.86 0.5319 

7.0 0.00 4.04 12.87 0.466 0.86 0.5319 

7.5 2.50 3.24 13.98 0.608 0.14 0.6166 

8.0 0.19 3.18 6.33 0.827 0.77 0.1238 

8.5 0.00 2.86 5.64 0.880 0.86 0.0772 

9.0 0.00 2.53 10.45 0.914 0.86 0.3805 

9.5 0.00 1.39 11.33 1.106 0.86 0.4355 

10.0 0.00 0.00   1.375   0.0386 
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A.4. Growth in Mixed Substrates of Glucose and Lactose with a Pulse Injection of 

Galactose of Escherichia coli 

 

Table A.6. Growth in Mixed Substrates of Glucose and Lactose with a Pulse Injection of 

Galactose of Escherichia coli 

Time 
(hr) 

GLUCOSE 
(MMOL/L) 

LACTOSE 
(MMOL/L) 

O2 UPTAKE 
(mM/g DW.hr) 

Biomass 
(g/L) cAMP 

GROWTH 
RATE: µ 

(1/hr) 
0.0 1.60 5.80 13.98 0.011 0.14 0.6166 
0.5 1.56 5.80 13.98 0.015 0.14 0.6166 
1.0 1.50 5.80 13.98 0.020 0.14 0.6166 
1.5 1.42 5.80 13.98 0.028 0.14 0.6166 
2.0 1.32 5.79 13.98 0.038 0.14 0.6166 
2.5 1.17 5.79 13.98 0.051 0.14 0.6166 
3.0 0.98 5.79 13.98 0.070 0.14 0.6166 
3.5 0.71 5.78 13.98 0.095 0.14 0.6166 
4.0 0.35 5.77 12.25 0.130 0.25 0.5053 
4.5 0.00 5.76 5.64 0.167 0.86 0.0772 
5.0 0.00 5.70 10.45 0.173 0.86 0.3805 
5.5 0.00 5.48 12.87 0.210 0.86 0.5319 
6.0 0.00 5.12 12.87 0.274 0.86 0.5319 
6.5 0.00 4.65 12.87 0.357 0.86 0.5319 
7.0 0.00 4.04 12.87 0.466 0.86 0.5319 
7.5 2.50 3.24 13.98 0.608 0.14 0.6166 
8.0 0.19 3.18 6.33 0.827 0.77 0.1238 
8.5 0.00 2.86 5.64 0.880 0.86 0.0772 
9.0 0.00 2.53 10.45 0.914 0.86 0.3805 
9.5 0.00 1.39 11.33 1.106 0.86 0.4355 
10.0 0.00 0.00   1.375   0.0386 
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A.5. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Glucose and Galactose Mixture of Escherichia coli. 

 

Table A.7. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Glucose and Galactose Mixture of Escherichia coli 

Time 
(hr) 

GLUCOSE 
(MMOL/L) 

LACTOSE 
(MMOL/L) 

GALACTOSE 
(MMOL/L) 

O2  
UPTAKE 

(mM/g DW.hr) 
Biomass 

(g/L) cAMP 

GROWTH  
RATE: µ 

(1/hr) 

0.0 1.60 5.80 0.00 13.982 0.011 0.07 0.6166 

0.5 1.56 5.80 0.00 13.982 0.015 0.07 0.6166 

1.0 1.50 5.80 0.00 13.982 0.020 0.07 0.6166 

1.5 1.42 5.80 0.00 13.982 0.028 0.07 0.6166 

2.0 1.32 5.79 0.00 13.982 0.038 0.07 0.6166 

2.5 1.17 5.79 0.00 13.982 0.051 0.07 0.6166 

3.0 0.98 5.79 0.00 13.982 0.070 0.07 0.6166 

3.5 0.71 5.78 0.00 13.982 0.095 0.07 0.6166 

4.0 0.35 5.77 0.00 12.246 0.130 0.24 0.5053 

4.5 0.00 5.76 0.00 5.6408 0.167 0.93 0.0772 

5.0 0.00 5.70 0.00 10.45 0.173 0.93 0.3805 

5.5 0.00 5.48 0.00 12.867 0.210 0.93 0.5319 

6.0 0.00 5.12 0.00 12.867 0.274 0.93 0.5319 

6.5 0.00 4.65 0.00 12.867 0.357 0.93 0.5319 

7.0 0.00 4.04 0.00 12.867 0.466 0.93 0.5319 

7.5 0.00 3.24 8.50 23.513 0.608 0.93 1.1838 

8.0 0.00 1.99 5.81 23.513 1.098 0.93 1.1838 

8.5 0.00 0.00 0.94 4.8088 1.985 0.93 0.0199 

9.0 0.00 0.00 0.00   2.005     
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A.6. Growth in Mixed Substrates of Glucose, Sorbitol (Glucitol) and Glycerol of 

Escherichia coli 

 

Table A.8. Growth in Mixed Substrates of Glucose, Sorbitol (Glucitol) and Glycerol of 

Escherichia coli 

Time 
(hr) 

GLUCOSE 
(MMOL/L) 

SORBITOL 
(MMOL/L) 

GLYCEROL 
(MMOL/L) 

O2 UPTAKE 
(mM/g DW.hr) 

Biomass 
(g/L) 

cAMP 
CRP 

GROWTH 
RATE: µ 

(1/hr) 
0.0 1.20 1.10 1.10 19.379 0.0080 0.12 0.9712 
0.5 1.16 1.09 1.10 19.379 0.0130 0.12 0.9712 
1.0 1.09 1.08 1.09 19.379 0.0211 0.12 0.9712 
1.5 0.98 1.06 1.08 19.379 0.0343 0.12 0.9712 
2.0 0.81 1.02 1.05 19.379 0.0558 0.12 0.9712 
2.5 0.52 0.96 1.02 19.379 0.0907 0.12 0.9712 
3.0 0.05 0.87 0.97 17.271 0.1474 0.84 1.5387 
3.5 0.00 0.41 0.67 15.269 0.3181 0.93 0.9749 
4.0 0.00 0.00 0.17 4.702 0.5179 0.93 0.0001 
4.5 0.00 0.00 0.00 4.320 0.5179 0.93 0.0684 
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A.7. Growth in Mixed substrates of Glucose, Lactose and Galactose of  

Lactococcus lactis 

 

Table A.9. Growth in Mixed substrates of Glucose, Lactose and Galactose of Lactococcus 

lactis 

Time 
(hr) 

GLUCOSE 
(MMOL/L) 

LACTOSE 
(MMOL/L) 

GALACTOSE 
(MMOL/L) 

Biomass 
(g/L) 

ccpA- 
Cre 

GROWTH 
RATE: µ 

(1/hr) 

0.0 1.58 1.58 4.00 0.017 0.07 0.5039 

0.5 1.51 1.54 3.99 0.021 0.07 0.5039 

1.0 1.42 1.49 3.97 0.028 0.07 0.5039 

1.5 1.31 1.43 3.94 0.036 0.07 0.5039 

2.0 1.16 1.34 3.91 0.046 0.07 0.5039 

2.5 0.97 1.24 3.87 0.059 0.07 0.5039 

3.0 0.72 1.10 3.82 0.076 0.07 0.5039 

3.5 0.41 0.92 3.75 0.097 0.07 0.5039 

4.0 0.01 0.70 3.67 0.125 0.64 0.3457 

4.5 0.00 0.42 3.39 0.149 0.73 0.3464 

5.0 0.00 0.08 3.04 0.177 0.93 0.1828 

5.5 0.00 0.00 2.52 0.194 0.93 0.1205 

6.0 0.00 0.00 1.96 0.206 0.93 0.1205 

6.5 0.00 0.00 1.36 0.219 0.93 0.1205 

7.0 0.00 0.00 0.73 0.233 0.93 0.1205 

7.5 0.00 0.00 0.05 0.247     
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APPENDIX B: COMPUTATIONAL CODE STRUCTURED IN 

MATLAB 

The computational codes for growth in mixed substrates of Esherichia coli and 

Lactococcus lactis are given in the successive sections as a hardcopy. The computational work 

was performed in Matlab. The developed programs were also given in a separate CD as a 

softcopy which is attached to the end of this Thesis. In addition to these programs, Fuzzy 

Controller Blocks, structured in Simulink Matlab, were also included in the CD. The structure 

variables describing their Fuzzy Inference System were entered to a Fuzzy Controller Blocks. 

The variables must be located in the MATLAB workspace when the program is executed.  

B.1. Matlab Code for Growth in Mixed Substrates of Glucose and Lactose of 

Escherichia coli 

clc 

clear all 

close all 

GlucosecAMP=readfis('GlucosecAMP'); cAMPLacZYA=readfis('cAMPLacZYA'); 

LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose'); 

LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor'); 

AllolactoseLacZYA=readfis('AllolactoseLacZYA'); 

LacYLactoseUptakeLactose=readfis('LacYLactoseUptakeLactose'); 

%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L) 

LacMe=5.8; GluMe=1.6; XMe=0.011; 

%Time step 0.5 hr 

dt=0.5; 
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%Initial Values of Substrate Glucose Concentration (mmol/L) 

LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe; t(1)=0; 

Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt; 

Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5; 

Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose; 

GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup]; 

    for i=1:19 

%Time  

t(i+1)=t(i)+dt; 

%Linear Programming for the maximization of Biomass  

%Stoichiometric matrix for MFA - E-COLI 

A=xlsread('DENEMEECOLI', 'Matrix'); 

B=A'; 

Ib=zeros(167,1); ub=inf*ones(167,1); 

%Upper&Lower Boundaries of ATP non-growth associated maintenance flux 

Ib(151,1)=15; ub(151,1)=15; 

%Upper&Lower Boundaries of Biomass Production fluxes 

Ib(152,1)=0; ub(152,1)=inf; 

%When the glucose concentration becomes considerable diluted level 

%Upper&Lower Boundaries of Glucose Transport fluxes 

  Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose); 

de=Ib(154,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

%Upper&Lower Boundaries of Transport fluxes 

sim('GlucoseUptake') 

cAMPList(i,1)=cAMP; 
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if cAMP<=0.70 

    Suplactose=0.15; 

    Slacup=Suplactose/Supinitiallactose; 

    LactoseUptake=[0 Slacup] 

     

elseif    cAMP>0.70 

    

    if cAMP>=0.90 

        if i==x 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose; 

    LactoseUptake=[0 LactoseUptakeResult]; 

        else    

    sim('LactoseUptake') 

    LUR=LactoseUptakeResult+GLactoseUptakeResult; 

    Suplactose=LUR*Supinitiallactose; 

    LactoseUptake=[0 LUR]; 

end 

         

    else 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose 

    LactoseUptake=[0 LactoseUptakeResult]; 

     

end 

end 
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%Lac Operon regulation structured in Fuzzy Logic Controller in Simulink 

Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose); 

%GLup 

Ib(156,1)=0; ub(156,1)=0; 

%PYRup 

Ib(157,1)=-inf; ub(157,1)=0; 

%LACup 

Ib(158,1)=-inf; ub(158,1)=0; 

%FORup 

Ib(159,1)=-inf; ub(159,1)=0; 

%ETHup 

Ib(160,1)=-inf; ub(160,1)=0; 

%Acup 

Ib(161,1)=-inf; ub(161,1)=0; 

%SUCCup 

Ib(162,1)=-inf; ub(162,1)=0; 

%RIBup 

Ib(163,1)=0; ub(163,1)=0; 

%Piup 

Ib(164,1)=0; ub(164,1)=inf; 

%CO2up 

Ib(165,1)=-inf; ub(165,1)=0; 

%O2up 

Ib(166,1)=0; ub(166,1)=inf; 

%HEup 

Ib(167,1)=0; ub(167,1)=0; 
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f=zeros(167,1); 

f(152,1)=-1; 

b=zeros(77,1); 

X=linprog(f,[],[],B,b,Ib,ub); 

SON(:,i)=X; 

O2up(i,1)=X(166,1); 

LACTOSE(i+1)=LACTOSE(i)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt)); 

GLUCOSE(i+1)=GLUCOSE(i)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));  

if LACTOSE(i+1)<=0 

   LACTOSE(i+1)=0; 

end 

if GLUCOSE(i+1)<=0 

    GLUCOSE(i+1)=0; 

    if GLUCOSE(i)-GLUCOSE(i+1)>0 

       x=i+1  

   end 

end 

XBio(i+1)=XBio(i)*exp(X(152,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt 

Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt 

VGRO(i,1)=X(152,1); UPG(i,1)=Ib(154,1); UPL(i,1)=Ib(155,1); 

a(i)=t(i); 

end 

figure(1) 

plot(t,XBio) 

xlabel('Time (hr)') 

title('Biomass Concentration (g/L)  vs Time ') 
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figure(2) 

plot(t,GLUCOSE) 

xlabel('Time (hr)') 

title('GLUCOSE (mM)') 

figure(3) 

plot(t,LACTOSE) 

xlabel('Time (hr)') 

title('LACTOSE (mM)') 

figure(4) 

plot(a,cAMPList) 

xlabel('Time (hr)') 

title('cAMPList') 

figure(5) 

plot(a,O2up) 

xlabel('Time (hr)') 

title('O2up (mM/grDW.hr)') 
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B.2. Matlab Code for Growth in Mixed Substrates of Glucose and Lactose with 

Membrane Transport System of Escherichia coli 

clc 

clear all 

close all 

GlucoseEIIAP=readfis('GlucoseEIIAP'); EIIAPcAMP=readfis('EIIAPcAMP'); 

cAMPLacZYA2=readfis('cAMPLacZYA2'); 

LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose'); 

LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor'); 

AllolactoseLacZYA=readfis('AllolactoseLacZYA'); 

LacYLactoseUptakeLactose=readfis('LacYLactoseUptakeLactose'); 

%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L) 

LacMe=5.8; GluMe=1.6; XMe=0.011; 

%Time step 0.5 hr 

dt=0.5; 

%Initial Values of Substrate Glucose Concentration (mmol/L) 

LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe; t(1)=0; 

Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt; 

Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5; 

Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose; 

GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup]; 

    for i=1:21 

%Time  

t(i+1)=t(i)+dt; 

%Linear Programming for the maximization of Biomass  
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%Stoichiometric matrix for MFA - E-COLI 

A=xlsread('DENEMEECOLI', 'Matrix'); 

B=A'; 

Ib=zeros(167,1); 

ub=inf*ones(167,1); 

%Upper&Lower Boundaries of ATP non-growth associated maintenance flux 

Ib(151,1)=15; ub(151,1)=15; 

%Upper&Lower Boundaries of Biomass Production fluxes 

Ib(152,1)=0; ub(152,1)=inf; 

%When the glucose concentration becomes considerable diluted level 

%Upper&Lower Boundaries of Glucose Transport fluxes 

  Ib(154,1)=min(Supglucose,Scavglucose);   ub(154,1)=min(Supglucose,Scavglucose); 

de=Ib(154,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

%Upper&Lower Boundaries of Transport fluxes 

if i==16 

% Pulse 2.5mmol/L glucose is added to the medium. 

Glupulse=2.5; 

GLUCOSE(i)=Glupulse; 

Scavglucose=Glupulse/XBio(i)/dt; 

Supglucose=6.5; Supinitialglucose=6.5; 

Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose); 

de=Ib(154,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

end 

sim('GlucoseEIIAPUptake') 
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cAMPList(i,1)=cAMP; 

if cAMP<=0.70  

    Suplactose=0.15; 

    Slacup=Suplactose/Supinitiallactose; 

    LactoseUptake=[0 Slacup] 

elseif    cAMP>0.70 

    if cAMP>=0.84 

        if i==x 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose; 

    LactoseUptake=[0 LactoseUptakeResult]; 

        else    

    sim('LactoseUptake') 

    LUR=LactoseUptakeResult+GLactoseUptakeResult; 

    Suplactose=LUR*Supinitiallactose; 

    LactoseUptake=[0 LUR]; 

end 

    else 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose 

    LactoseUptake=[0 LactoseUptakeResult]; 

end 

end 

%Lac Operon regulation structured in Fuzzy Logic Controller in Simulink 

Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose); 

%GLup 
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Ib(156,1)=0; ub(156,1)=0; 

%PYRup 

Ib(157,1)=-inf; ub(157,1)=0; 

%LACup 

Ib(158,1)=-inf; ub(158,1)=0; 

%FORup 

Ib(159,1)=-inf; ub(159,1)=0; 

%ETHup 

Ib(160,1)=-inf; ub(160,1)=0; 

%Acup 

Ib(161,1)=-inf; ub(161,1)=0; 

%SUCCup 

Ib(162,1)=-inf; ub(162,1)=0; 

%RIBup 

Ib(163,1)=0; ub(163,1)=0; 

%Piup 

Ib(164,1)=0; ub(164,1)=inf; 

%CO2up 

Ib(165,1)=-inf; ub(165,1)=0; 

%O2up 

Ib(166,1)=0; ub(166,1)=inf; 

%HEup 

Ib(167,1)=0; ub(167,1)=0; 

f=zeros(167,1); 

f(152,1)=-1; 

b=zeros(77,1); 
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X=linprog(f,[],[],B,b,Ib,ub); 

SON(:,i)=X; 

O2up(i,1)=X(166,1); 

LACTOSE(i+1)=LACTOSE(i)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt)); 

GLUCOSE(i+1)=GLUCOSE(i)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));  

if LACTOSE(i+1)<=0 

   LACTOSE(i+1)=0; 

end 

if GLUCOSE(i+1)<=0 

    GLUCOSE(i+1)=0; 

    if GLUCOSE(i)-GLUCOSE(i+1)>0 

       x=i+1  

   end 

end 

XBio(i+1)=XBio(i)*exp(X(152,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt 

Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt 

VGRO(i,1)=X(152,1); UPG(i,1)=Ib(154,1); UPL(i,1)=Ib(155,1); a(i)=t(i); 

end 

figure(1) 

plot(t,XBio) 

xlabel('Time (hr)') 

title('Biomass Concentration (g/L)  vs Time ') 

figure(2) 

plot(t,GLUCOSE) 

xlabel('Time (hr)') 

title('GLUCOSE (mM)') 



 133 

figure(3) 

plot(t,LACTOSE) 

xlabel('Time (hr)') 

title('LACTOSE (mM)') 

figure(4) 

plot(a,cAMPList) 

xlabel('Time (hr)') 

title('cAMPList') 

figure(5) 

plot(a,O2up) 

xlabel('Time (hr)') 

title('O2up (mM/grDW.hr)') 
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B.3. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Glucose on Lactose of Escherichia coli 

clc 

clear all 

close all 

GlucosecAMP=readfis('GlucosecAMP'); cAMPLacZYA=readfis('cAMPLacZYA'); 

LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose'); 

LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor'); 

AllolactoseLacZYA=readfis('AllolactoseLacZYA'); 

LacYLactoseUptakeLactose=readfis('LacYLactoseUptakeLactose'); 

%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L) 

LacMe=5.8; GluMe=1.6; XMe=0.011; 

%Time step 0.5 hr 

dt=0.5; 

%Initial Values of Substrate Glucose Concentration (mmol/L) 

LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe; t(1)=0; 

Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt; 

Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5; 

Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose; 

GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup]; 

    for i=1:21 

%Time  

t(i+1)=t(i)+dt; 

%Linear Programming for the maximization of Biomass  

%Stoichiometric matrix for MFA - E-COLI 
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A=xlsread('DENEMEECOLI', 'Matrix'); B=A'; 

Ib=zeros(167,1); 

ub=inf*ones(167,1);  

%Upper&Lower Boundaries of ATP non-growth associated maintenance flux 

Ib(151,1)=15; ub(151,1)=15; 

%Upper&Lower Boundaries of Biomass Production fluxes 

Ib(152,1)=0; ub(152,1)=inf; 

%When the glucose concentration becomes considerable diluted level 

%Upper&Lower Boundaries of Glucose Transport fluxes 

  Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose); 

de=Ib(154,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

%Upper&Lower Boundaries of Transport fluxes 

if i==16 

% Pulse 2.5mmol/L glucose is added to the medium. 

Glupulse=2.5; GLUCOSE(i)=Glupulse; 

Scavglucose=Glupulse/XBio(i)/dt; 

Supglucose=6.5; Supinitialglucose=6.5; 

Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose); 

de=Ib(154,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

end 

sim('GlucoseUptake') 

cAMPList(i,1)=cAMP; 

if cAMP<=0.70 

    Suplactose=0.15; 
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    Slacup=Suplactose/Supinitiallactose; 

    LactoseUptake=[0 Slacup] 

elseif    cAMP>0.70 

    if cAMP>=0.90 

        if i==x 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose; 

    LactoseUptake=[0 LactoseUptakeResult]; 

        else    

    sim('LactoseUptake') 

    LUR=LactoseUptakeResult+GLactoseUptakeResult; 

    Suplactose=LUR*Supinitiallactose; 

    LactoseUptake=[0 LUR]; 

end 

    else 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose 

    LactoseUptake=[0 LactoseUptakeResult]; 

end 

end 

%Lac Operon regulation structured in Fuzzy Logic Controller in Simulink 

Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose); 

%GLup 

Ib(156,1)=0; ub(156,1)=0; 

%PYRup 

Ib(157,1)=-inf; ub(157,1)=0; 
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%LACup 

Ib(158,1)=-inf; ub(158,1)=0; 

%FORup 

Ib(159,1)=-inf; ub(159,1)=0; 

%ETHup 

Ib(160,1)=-inf; ub(160,1)=0; 

%Acup 

Ib(161,1)=-inf; ub(161,1)=0; 

%SUCCup 

Ib(162,1)=-inf; ub(162,1)=0; 

%RIBup 

Ib(163,1)=0; ub(163,1)=0; 

%Piup 

Ib(164,1)=0; ub(164,1)=inf; 

%CO2up 

Ib(165,1)=-inf; ub(165,1)=0; 

%O2up 

Ib(166,1)=0; ub(166,1)=inf; 

%HEup 

Ib(167,1)=0; ub(167,1)=0; 

f=zeros(167,1); 

f(152,1)=-1; 

b=zeros(77,1); 

X=linprog(f,[],[],B,b,Ib,ub); 

SON(:,i)=X; O2up(i,1)=X(166,1); 

LACTOSE(i+1)=LACTOSE(i)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt)); 
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GLUCOSE(i+1)=GLUCOSE(i)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));  

if LACTOSE(i+1)<=0 

   LACTOSE(i+1)=0; 

end 

if GLUCOSE(i+1)<=0 

    GLUCOSE(i+1)=0; 

    if GLUCOSE(i)-GLUCOSE(i+1)>0 

       x=i+1  

   end 

end 

XBio(i+1)=XBio(i)*exp(X(152,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt 

Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt 

VGRO(i,1)=X(152,1); UPG(i,1)=Ib(154,1); UPL(i,1)=Ib(155,1); a(i)=t(i); 

end 

figure(1) 

plot(t,XBio) 

xlabel('Time (hr)') 

title('Biomass Concentration (g/L)  vs Time ') 

figure(2) 

plot(t,GLUCOSE) 

xlabel('Time (hr)') 

title('GLUCOSE (mM)') 

figure(3) 

plot(t,LACTOSE) 

xlabel('Time (hr)') 

title('LACTOSE (mM)') 



 139 

figure(4) 

plot(a,cAMPList) 

xlabel('Time (hr)') 

title('cAMPList') 

figure(5) 

plot(a,O2up) 

xlabel('Time (hr)') 

title('O2up (mM/grDW.hr)') 
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B.4. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Galactose on Lactose of Escherichia coli 

clc 

clear all 

close all 

GlucosecAMP=readfis('GlucosecAMP'); 

cAMPLacZYA=readfis('cAMPLacZYA'); 

LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose'); 

LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor'); 

AllolactoseLacZYA=readfis('AllolactoseLacZYA'); 

LacYLactoseUptakeLactose=readfis('LacYLactoseUptakeLactose'); 

%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L) 

LacMe=5.8; GluMe=1.6; XMe=0.011; 

%Time step 0.5 hr 

dt=0.5; 

%Initial Values of Substrate Glucose Concentration (mmol/L) 

LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; XBio(1)=XMe; 

t(1)=0; 

Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt; 

Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5; 

Slacup=Suplactose/Supinitiallactose; Sglup=Supglucose/Supinitialglucose; 

GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup]; 

    for i=1:21 

%Time  

t(i+1)=t(i)+dt; 
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%Linear Programming for the maximization of Biomass  

%Stoichiometric matrix for MFA - E-COLI 

A=xlsread('DENEMEECOLI', 'Matrix'); B=A'; 

Ib=zeros(167,1); 

ub=inf*ones(167,1); 

%Upper&Lower Boundaries of ATP non-growth associated maintenance flux 

Ib(151,1)=15; ub(151,1)=15; 

%Upper&Lower Boundaries of Biomass Production fluxes 

Ib(152,1)=0; ub(152,1)=inf; 

%When the glucose concentration becomes considerable diluted level 

%Upper&Lower Boundaries of Glucose Transport fluxes 

  Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose); 

de=Ib(154,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

%Upper&Lower Boundaries of Transport fluxes 

if i==16 

% Pulse 2.5mmol/L glucose is added to the medium. 

Glupulse=2.5; 

GLUCOSE(i)=Glupulse; 

Scavglucose=Glupulse/XBio(i)/dt; 

Supglucose=6.5; Supinitialglucose=6.5; 

Ib(154,1)=min(Supglucose,Scavglucose); ub(154,1)=min(Supglucose,Scavglucose); 

de=Ib(154,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

end 

sim('GlucoseUptake') 
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cAMPList(i,1)=cAMP; 

if cAMP<=0.70 

    Suplactose=0.15; 

    Slacup=Suplactose/Supinitiallactose; 

    LactoseUptake=[0 Slacup] 

elseif    cAMP>0.70 

    if cAMP>=0.90 

        if i==x 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose; 

    LactoseUptake=[0 LactoseUptakeResult]; 

        else    

    sim('LactoseUptake') 

    LUR=LactoseUptakeResult+GLactoseUptakeResult; 

    Suplactose=LUR*Supinitiallactose; 

    LactoseUptake=[0 LUR]; 

end 

    else 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose 

    LactoseUptake=[0 LactoseUptakeResult]; 

end 

end 

%Lac Operon regulation structured in Fuzzy Logic Controller in Simulink 

Ib(155,1)=min(Suplactose,Scavlactose); ub(155,1)=min(Suplactose,Scavlactose); 

%GLup 
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Ib(156,1)=0; ub(156,1)=0; 

%PYRup 

Ib(157,1)=-inf; ub(157,1)=0; 

%LACup 

Ib(158,1)=-inf; ub(158,1)=0; 

%FORup 

Ib(159,1)=-inf; ub(159,1)=0; 

%ETHup 

Ib(160,1)=-inf; ub(160,1)=0; 

%Acup 

Ib(161,1)=-inf; ub(161,1)=0; 

%SUCCup 

Ib(162,1)=-inf; ub(162,1)=0; 

%RIBup 

Ib(163,1)=0; ub(163,1)=0; 

%Piup 

Ib(164,1)=0; ub(164,1)=inf; 

%CO2up 

Ib(165,1)=-inf; ub(165,1)=0; 

%O2up 

Ib(166,1)=0; ub(166,1)=inf; 

%HEup 

Ib(167,1)=0; ub(167,1)=0; 

f=zeros(167,1); 

f(152,1)=-1; 

b=zeros(77,1); 
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X=linprog(f,[],[],B,b,Ib,ub); 

SON(:,i)=X; 

O2up(i,1)=X(166,1); 

LACTOSE(i+1)=LACTOSE(i)+X(155,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt)); 

GLUCOSE(i+1)=GLUCOSE(i)+X(154,1)/X(152,1)*XBio(i)*(1-exp(X(152,1)*dt));  

if LACTOSE(i+1)<=0 

   LACTOSE(i+1)=0; 

end 

if GLUCOSE(i+1)<=0 

    GLUCOSE(i+1)=0; 

    if GLUCOSE(i)-GLUCOSE(i+1)>0 

       x=i+1  

   end 

end 

XBio(i+1)=XBio(i)*exp(X(152,1)*dt); 

Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt 

Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt 

VGRO(i,1)=X(152,1); UPG(i,1)=Ib(154,1); UPL(i,1)=Ib(155,1); a(i)=t(i); 

end 

figure(1) 

plot(t,XBio) 

xlabel('Time (hr)') 

title('Biomass Concentration (g/L)  vs Time ') 

figure(2) 

plot(t,GLUCOSE) 

xlabel('Time (hr)') 
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title('GLUCOSE (mM)') 

figure(3) 

plot(t,LACTOSE) 

xlabel('Time (hr)') 

title('LACTOSE (mM)') 

figure(4) 

plot(a,cAMPList) 

xlabel('Time (hr)') 

title('cAMPList') 

figure(5) 

plot(a,O2up) 

xlabel('Time (hr)') 

title('O2up (mM/grDW.hr)') 
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B.5. Growth in Mixed Substrates of Glucose and Lactose and a Pulse Injection of 

Mixture of Glucose and Galactose on Lactose of Escherichia coli 

clc 

clear all 

close all 

GlucosecAMP=readfis('GlucosecAMP'); cAMPLacZYA=readfis('cAMPLacZYA'); 

LacYLactoseUptakeGlucose=readfis('LacYLactoseUptakeGlucose'); 

LactoseUptakeAllolactoseRepressor=readfis('LactoseUptakeAllolactoseRepressor'); 

AllolactoseLacZYA=readfis('AllolactoseLacZYA'); 

LacYLactoseUptakeLactose=readfis('LacYLactoseUptakeLactose'); 

cAMPGalactose=readfis('cAMPGalactose'); 

%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L) 

LacMe=5.8; GluMe=1.6; XMe=0.011; 

%Time step 0.5 hr 

dt=0.5; 

%Initial Values of Substrate Glucose Concentration (mmol/L) 

LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; GLACTOSE(1)=0; XBio(1)=XMe; t(1)=0; 

Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt; 

Supinitiallactose=3.0; Supinitialglucose=6.5; Suplactose=0.15; Supglucose=6.5; 

Slacup=Suplactose/Supinitiallactose; 

Sglup=Supglucose/Supinitialglucose; 

GlucoseUptake=[0 Sglup]; LactoseUptake=[0 Slacup]; 

    for i=1:19 

%Time  

t(i+1)=t(i)+dt; 
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%Linear Programming for the maximization of Biomass  

%Stoichiometric matrix for MFA - E-COLI 

A=xlsread('DENEMEECOLIGALACTOSE', 'Matrix'); B=A'; 

Ib=zeros(170,1); 

ub=inf*ones(170,1); 

%Upper&Lower Boundaries of ATP non-growth associated maintenance flux 

Ib(153,1)=15; ub(153,1)=15; 

%Upper&Lower Boundaries of Biomass Production fluxes 

Ib(154,1)=0; ub(154,1)=inf; 

%When the glucose concentration becomes considerable diluted level 

%Upper&Lower Boundaries of Glucose Transport fluxes 

Ib(156,1)=min(Supglucose,Scavglucose); ub(156,1)=min(Supglucose,Scavglucose); 

de=Ib(156,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

%Upper&Lower Boundaries of Transport fluxes 

sim('GlucoseUptake') 

cAMPList(i,1)=cAMP; 

if cAMP<=0.70 

    Suplactose=0.15; 

    Slacup=Suplactose/Supinitiallactose; 

    LactoseUptake=[0 Slacup] 

elseif    cAMP>0.70 

    if cAMP>=0.90 

        if i==x 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose; 
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    LactoseUptake=[0 LactoseUptakeResult]; 

        else    

    sim('LactoseUptake') 

    LUR=LactoseUptakeResult+GLactoseUptakeResult; 

    Suplactose=LUR*Supinitiallactose; 

    LactoseUptake=[0 LUR]; 

end 

    else 

    sim('LactoseUptake') 

    Suplactose=LactoseUptakeResult*Supinitiallactose 

    LactoseUptake=[0 LactoseUptakeResult]; 

end 

end 

%Lac Operon regulation structured in Fuzzy Logic Controller in Simulink 

Ib(157,1)=min(Suplactose,Scavlactose); ub(157,1)=min(Suplactose,Scavlactose); 

%GALACup 

Ib(158,1)=0; ub(158,1)=0; 

if GLACTOSE(i)>0 

sim('GalactosevsGlucoseUptake') 

Scavglactose=GLACTOSE(i)/XBio(i)/dt 

Supglactose=GalactoseUptake*6.5;     

Ib(158,1)=min(Supglactose,Scavglactose); ub(158,1)=min(Supglactose,Scavglactose); 

end 

if i==16 

% Pulse 2.5mmol/L glucose is added to the medium. 

Glupulse=4.5;  
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GLUCOSE(i)=Glupulse; 

Scavglucose=Glupulse/XBio(i)/dt 

Supglucose=6.5; Supinitialglucose=6.5; 

Ib(156,1)=min(Supglucose,Scavglucose); ub(156,1)=min(Supglucose,Scavglucose); 

de=Ib(156,1)/Supinitialglucose; 

GlucoseUptake=[0 de];     

sim('GlucoseUptake') 

cAMPList(i,1)=cAMP; 

% Pulse 8.5mmol/L galactose is added to the medium. 

if X(10,1)-X(11,1)>0 

sim('GalactosevsGlucoseUptake') 

Glacpulse=8.5; 

GLACTOSE(i)=Glacpulse; 

Scavglactose=GLACTOSE(i)/XBio(i)/dt; Supglactose=GalactoseUptake*6.5; 

Ib(158,1)=min(Supglactose,Scavglactose); ub(158,1)=min(Supglactose,Scavglactose); 

else 

Ib(158,1)=0; ub(158,1)=0; 

end 

end 

%GLup 

Ib(159,1)=0; ub(159,1)=0; 

%PYRup 

Ib(160,1)=-inf; ub(160,1)=0; 

%LACup 

Ib(161,1)=-inf; ub(161,1)=0; 

%FORup 
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Ib(162,1)=-inf; ub(162,1)=0; 

%ETHup 

Ib(163,1)=-inf; ub(163,1)=0; 

%Acup 

Ib(164,1)=-inf; ub(164,1)=0; 

%SUCCup 

Ib(165,1)=-inf; ub(165,1)=0; 

%RIBup 

Ib(166,1)=0; ub(166,1)=0; 

%Piup 

Ib(167,1)=0; ub(167,1)=inf; 

%CO2up 

Ib(168,1)=-inf; ub(168,1)=0; 

%O2up 

Ib(169,1)=0; ub(169,1)=inf; 

%HEup 

Ib(170,1)=0; ub(170,1)=0; 

f=zeros(170,1); 

f(154,1)=-1; 

b=zeros(78,1); 

X=linprog(f,[],[],B,b,Ib,ub); 

SON(:,i)=X; 

O2up(i,1)=X(169,1); 

LACTOSE(i+1)=LACTOSE(i)+X(157,1)/X(154,1)*XBio(i)*(1-exp(X(154,1)*dt)); 

GLUCOSE(i+1)=GLUCOSE(i)+X(156,1)/X(154,1)*XBio(i)*(1-exp(X(154,1)*dt)) 

GLACTOSE(i+1)=GLACTOSE(i)+X(158,1)/X(154,1)*XBio(i)*(1-exp(X(154,1)*dt)); 
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if GLACTOSE(i+1)<=0 

   GLACTOSE(i+1)=0; 

end 

if LACTOSE(i+1)<=0 

   LACTOSE(i+1)=0; 

end 

if GLUCOSE(i+1)<=0 

    GLUCOSE(i+1)=0; 

    if GLUCOSE(i)-GLUCOSE(i+1)>0 

       x=i+1  

   end 

end 

XBio(i+1)=XBio(i)*exp(X(154,1)*dt); Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt 

Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt 

VGRO(i,1)=X(154,1); UPG(i,1)=Ib(156,1); UPL(i,1)=Ib(157,1);a(i)=t(i); 

end 

figure(1) 

plot(t,XBio) 

xlabel('Time (hr)') 

title('Biomass Concentration (g/L)  vs Time ') 

figure(2) 

plot(t,GLUCOSE) 

xlabel('Time (hr)') 

title('GLUCOSE (mM)') 

figure(3) 

plot(t,LACTOSE) 
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xlabel('Time (hr)') 

title('LACTOSE (mM)') 

figure(5) 

plot(t,GLACTOSE) 

xlabel('Time (hr)') 

title('GLACTOSE (mM)') 

figure(4) 

plot(a,cAMPList) 

xlabel('Time (hr)') 

title('cAMPList') 

figure(6) 

plot(a,O2up) 

xlabel('Time (hr)') 

title('O2up (mM/grDW.hr)') 
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B.6. Growth in Mixed Substrates of Glucose, Sorbitol (Glucitol) and Glycerol of 

Escherichia coli 

clc 

clear all 

close all 

GlucosecAMPCRP=readfis('GlucosecAMPCRP'); 

cAMPCRPSorbitolUptake=readfis('cAMPCRPSorbitolUptake'); 

GlucoseSorbitolEIIA=readfis('GlucoseSorbitolEIIA'); 

EIIAGlpK=readfis('EIIAGlpK'); GlpKG3PFormation=readfis('GlpKG3PFormation'); 

%Initial concentration of External Biomass (XMe)(g/L) & External Glucose 

%(GluMe)(mmol/L) External Sorbitol (GluMe)(mmol/L) External Glycerol 

GluMe=1.2; SorMe=1.1; GlyMe=1.1; XMe=0.008; 

%Time step 0.5 hr 

dt=0.5; 

%Initial Values of Substrate Glucose Concentration (mmol/L) 

SORBITOL(1)=SorMe; GLUCOSE(1)=GluMe; GLYCEROL(1)=GlyMe; XBio(1)=XMe; t(1)=0; 

Scavsorbitol=SORBITOL(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt; 

Scavglycerol=GLYCEROL(1)/XBio(1)/dt; 

Supinitialsorbitol=4.5; Supinitialglucose=8.5; Supinitialglycerol=4; Supsorbitol=1.6; 

Supglucose=8; Supglycerol=4.0; 

Ssorup=Supsorbitol/Supinitialsorbitol; Sglup=Supglucose/Supinitialglucose; 

Sglyup=Supglycerol/Supinitialglycerol; Ssorglup=Supsorbitol+Supglucose; 

GlucoseUptake=[0 Sglup]; 

    for i=1:10 

%Time  



 154 

t(i+1)=t(i)+dt; 

%Linear Programming for the maximization of Biomass  

%Stoichiometric matrix for MFA - E-COLI 

A=xlsread('DENEMEECOLIGLUCOSESORBITOL', 'Matrix'); B=A'; 

Ib=zeros(171,1); ub=inf*ones(171,1); 

%Upper&Lower Boundaries of ATP non-growth associated maintenance flux 

Ib(154,1)=15; ub(154,1)=15; 

%Upper&Lower Boundaries of Biomass Production fluxes 

Ib(155,1)=0; ub(155,1)=inf; 

%When the glucose concentration becomes considerable diluted level 

%Upper&Lower Boundaries of Glucose Transport fluxes 

Ib(157,1)=min(Supglucose,Scavglucose); ub(157,1)=min(Supglucose,Scavglucose); 

de=Ib(157,1)/Supinitialglucose; 

GlucoseUptake=[0 de]; 

%Upper&Lower Boundaries of Transport fluxes 

sim('SorbitolUptake') 

cAMPList(i,1)=cAMPCRP; 

%Gut Operon regulation structured in Fuzzy Logic Controller in Simulink 

Ib(160,1)=min(GSorbitolUptake*Supinitialsorbitol+Supsorbitol,Scavsorbitol); 

ub(160,1)=min(GSorbitolUptake*Supinitialsorbitol+Supsorbitol,Scavsorbitol); 

if cAMPCRP<=0.15 

    Ib(160,1)=Supsorbitol;  ub(160,1)=Supsorbitol; 

end 

SUM=Ib(160,1)+Ib(157,1) 

GlucoseSorbitolUptake=[0 SUM/Ssorglup] 

sim('GlucoseSorbitolEIIAG3PFormation') 
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%Glycerol Operon regulation structured in Fuzzy Logic Controller in Simulink 

Ib(107,1)=min(G3PFormation*Supinitialglycerol,Scavglycerol); 

ub(107,1)=min(G3PFormation*Supinitialglycerol,Scavglycerol); 

%LCTSup 

Ib(158,1)=0; ub(158,1)=0; 

%GLup 

Ib(159,1)=0; ub(159,1)=inf; 

%PYRup 

Ib(161,1)=-inf; ub(161,1)=0; 

%LACup 

Ib(162,1)=-inf; ub(162,1)=0; 

%FORup 

Ib(163,1)=-inf; ub(163,1)=0; 

%ETHup 

Ib(164,1)=-inf; ub(164,1)=0; 

%Acup 

Ib(165,1)=-inf; ub(165,1)=0; 

%SUCCup 

Ib(166,1)=-inf; ub(166,1)=0; 

%RIBup 

Ib(167,1)=0; ub(167,1)=0; 

%Piup 

Ib(168,1)=0; ub(168,1)=inf; 

%CO2up 

Ib(169,1)=-inf; ub(169,1)=0; 

%O2up 
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Ib(170,1)=0; ub(170,1)=inf; 

%HEup 

Ib(171,1)=0; ub(171,1)=0; 

f=zeros(171,1); f(155,1)=-1; b=zeros(79,1); 

X=linprog(f,[],[],B,b,Ib,ub); 

SON(:,i)=X; O2up(i,1)=X(170,1); 

SORBITOL(i+1)=SORBITOL(i)+X(160,1)/X(155,1)*XBio(i)*(1-exp(X(155,1)*dt)); 

GLUCOSE(i+1)=GLUCOSE(i)+X(157,1)/X(155,1)*XBio(i)*(1-exp(X(155,1)*dt));  

GLYCEROL(i+1)=GLYCEROL(i)+X(159,1)/X(155,1)*XBio(i)*(1-exp(X(155,1)*dt));  

if SORBITOL(i+1)<=0 

   SORBITOL(i+1)=0; 

end 

if GLUCOSE(i+1)<=0 

    GLUCOSE(i+1)=0; 

end 

XBio(i+1)=XBio(i)*exp(X(155,1)*dt); Scavsorbitol=SORBITOL(i+1)/XBio(i+1)/dt 

Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt; Scavglycerol=GLYCEROL(i+1)/XBio(i+1)/dt 

VGRO(i,1)=X(155,1); UPG(i,1)=Ib(157,1); UPS(i,1)=Ib(160,1); UPGLY(i,1)=X(159,1); 

UPGL3P(i,1)=Ib(107,1); a(i)=t(i); 

end 

figure(1) 

plot(t,XBio) 

xlabel('Time (hr)') 

title('Biomass Concentration (g/L)  vs Time ') 

figure(2) 

plot(t,GLUCOSE) 
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xlabel('Time (hr)') 

title('GLUCOSE (mM)') 

figure(3) 

plot(t,SORBITOL) 

xlabel('Time (hr)') 

title('SORBITOL (mM)') 

figure(4) 

plot(a,cAMPList) 

xlabel('Time (hr)') 

title('cAMPList') 

figure(5) 

plot(a,O2up) 

xlabel('Time (hr)') 

title('O2up (mM/grDW.hr)') 

figure(6) 

plot(t,GLYCEROL) 

xlabel('Time (hr)') 

title('GLYCEROL (mM)') 
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B.7. Growth in Mixed Substrates of Glucose, Lactose and Galactose of Lactococcus lactis 

clc 

clear all 

close all 

LGlucoseccpAcre=readfis('LGlucoseccpAcre'); ccpAcreGalK=readfis('ccpAcreGalK'); 

GalKGalactoseUptake=readfis('GalKGalactoseUptake'); 

%Initial concentration of External Biomass (XMe)(g/L) & External Glucose (GluMe)(mmol/L) 

LacMe=1.58; GlacMe=4.0; GluMe=1.58; XMe=0.0167; 

%Time step 0.5 hr 

dt=0.5; 

%Initial Values of Substrate Glucose Concentration (mmol/L) 

LACTOSE(1)=LacMe; GLUCOSE(1)=GluMe; GLACTOSE(1)=GlacMe; XBio(1)=XMe; t(1)=0; 

Scavlactose=LACTOSE(1)/XBio(1)/dt; Scavglucose=GLUCOSE(1)/XBio(1)/dt; 

Scavglactose=GLACTOSE(1)/XBio(1)/dt; 

Supinitiallactose=4.1; Supinitialglucose=7.3; Supinitialglactose=6.7; Supglucose=7.3; Suplactose=4.1; 

Sglup=Supglucose/Supinitialglucose; 

LGlucoseUptake=[0 Sglup]; 

    for i=1:15 

%Time  

t(i+1)=t(i)+dt; 

%Linear Programming for the maximization of Biomass  

%Stoichiometric matrix for MFA - E-COLI 

A=xlsread('DENEMEECOLILCTSGLCGLAC', 'Matrix'); B=A'; 

Ib=zeros(178,1); 

ub=inf*ones(178,1); 
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%Upper&Lower Boundaries of ATP non-growth associated maintenance flux 

Ib(161,1)=15; ub(161,1)=15; 

%Upper&Lower Boundaries of Biomass Production fluxes 

Ib(162,1)=0; ub(162,1)=inf; 

%When the glucose concentration becomes considerable diluted level 

%Upper & Lower Boundaries of Glucose and Lactose Transport fluxes 

  Ib(164,1)=min(Supglucose,Scavglucose); ub(164,1)=min(Supglucose,Scavglucose); 

  Ib(165,1)=min(Suplactose,Scavlactose); ub(165,1)=min(Suplactose,Scavlactose);  

de=(Ib(164,1)+Ib(165,1))/(Supinitialglucose+Supinitiallactose); 

TOTAL(i)=de; 

GlucoseLactoseUptake=[0 de]; 

%Upper & Lower Boundaries of Galactose Transport fluxes by Simulink 

sim('LLactisgalactoseuptake') 

ccpAcreList(i,1)=ccpAcre; 

Ib(166,1)=GalactoseUptake*Supinitialglactose; ub(166,1)=GalactoseUptake*Supinitialglactose; 

Glact=GalactoseUptake*Supinitialglactose 

%GLup 

Ib(167,1)=0; ub(167,1)=0; 

%PYRup 

Ib(168,1)=-inf; ub(168,1)=0; 

%LACup 

Ib(169,1)=-inf; ub(169,1)=0; 

%FORup 

Ib(170,1)=0; ub(170,1)=0; 

%ETHup 

Ib(171,1)=0; ub(171,1)=0; 
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%Acup 

Ib(172,1)=-inf; ub(172,1)=0; 

%SUCCup 

Ib(173,1)=-inf; ub(173,1)=0; 

%RIBup 

Ib(174,1)=0; ub(174,1)=0; 

%Piup 

Ib(175,1)=0; ub(175,1)=inf; 

%CO2up 

Ib(176,1)=-inf; ub(176,1)=0; 

%O2up 

Ib(177,1)=0; ub(177,1)=2.5; 

%HEup 

Ib(178,1)=0; ub(178,1)=0; 

f=zeros(178,1); f(162,1)=-1; b=zeros(82,1); 

X=linprog(f,[],[],B,b,Ib,ub); 

SON(:,i)=X; O2up(i,1)=X(177,1); 

LACTOSE(i+1)=LACTOSE(i)+X(165,1)/X(162,1)*XBio(i)*(1-exp(X(162,1)*dt)); 

GLUCOSE(i+1)=GLUCOSE(i)+X(164,1)/X(162,1)*XBio(i)*(1-exp(X(162,1)*dt));  

GLACTOSE(i+1)=GLACTOSE(i)+X(166,1)/X(162,1)*XBio(i)*(1-exp(X(162,1)*dt));  

if LACTOSE(i+1)<=0 

   LACTOSE(i+1)=0; 

end 

if GLUCOSE(i+1)<=0 

  GLUCOSE(i+1)=0; 

end 
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XBio(i+1)=XBio(i)*exp(X(162,1)*dt); 

Scavlactose=LACTOSE(i+1)/XBio(i+1)/dt; Scavglucose=GLUCOSE(i+1)/XBio(i+1)/dt; 

Scavglactose=GLACTOSE(i+1)/XBio(i+1)/dt; 

VGRO(i,1)=X(162,1); UPG(i,1)=Ib(164,1); UPL(i,1)=Ib(165,1); UPGL(i,1)=Ib(166,1); a(i)=t(i); 

end 

%plot(t,LACTOSE,t,GLUCOSE,t,XBio) 

figure(1) 

plot(t,XBio) 

xlabel('Time (hr)') 

title('Biomass Concentration (g/L)  vs Time ') 

figure(2) 

plot(t,GLUCOSE) 

xlabel('Time (hr)') 

title('GLUCOSE (mM)') 

figure(3) 

plot(t,LACTOSE) 

xlabel('Time (hr)') 

title('LACTOSE (mM)') 

figure(5) 

plot(t,GLACTOSE) 

xlabel('Time (hr)') 

title('GALACTOSE (mM)') 
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APPENDIX C: LIST OF METABOLIC REACTIONS IN  

Escherichia coli AND Lactococcus lactis 

Table C.1. List of Reactions Used in Escherichia coli and Lactococcus lactis 

 



 163 

 



 164 



 165 

 



 166 

 



 167 

 



 168 

 



 169 

 



 170 

 



 171 

 



 172 

REFERENCES 

Adhya, S. and M. Geanacopoulos, 1997, “Functional Characterization of Roles of GalR and 

GalS as regulators of the gal Regulon”, J. Bacteriology, pp. 228-234. 

Adhya, S., 1996, “Regulation of Gene Expression in Escherichia coli”, (Lin, E. C. C. and A. 

S. Lynch, eds), pp. 181–200, R. G. Landes Company, Austin, TX 

Bonarius, H. P. J., G. Schmid and J. Tramper, 1997, “Flux Analysis of Underdetermined 

Metabolic Networks: the Quest for the Missing Constraints”, Trends Biotechnol., 15, 

pp. 308-314. 

Covert, M. W. and B. Palsson, 2002, “Transcriptional Regulation in Constraints-based 

Metabolic Models of Escherichia coli” J. Biological Chemistry, 277, 31, pp. 28058-

28064. 

Covert, M. W., C. H. Schilling and B. Palsson, 2001, “Regulation of Gene Expression in Flux 

Balance Models of Metabolism”, J. Theoretical Biology, 213, pp. 73-88. 

Cox, S. J., S. S. Levanon, G. N. Bennett and K. Y. San, 2005, “Genetically Constrained 

Metabolic Flux Analysis”, Metabolic Engineering, Article in Press, pp. 1-12. 

Edwards, J. and B. Palsson, 1999, “Properties of the Haemophilus influenzae Rd Metabolic 

Genotype”, J. Biol. Chem., 274, pp. 17410-17416. 

Edwards, J. S. and B. O. Palsson, 2000, “The Escherichia coli MG1655 in Silico Metabolic 

Genotype: its Definition, Characteristics, and Capabilities”, Proceedings of the 

National Academy of Sciences, 97, pp. 5528-5533. 

Edwards, J. S., R. U. Ibarra and B. O. Palsson, 2001, “In Silico Predictions of Escherichia coli 

Metabolic Capabilities are Consistent with Experimental Data”, Natural 

Biotechnology, 19, pp. 125-130. 



 173 

Edwards, J. S., R. Ramakrishna, C. H. Schilling and B. O. Palsson, 1999, “Metabolic Flux 

Balance Analysis”, In Lee S. Y., and E. T. Papoutsakis (ed.), Metabolic engineering, 

Marcel Dekker, New York, N.Y., pp. 13–57. 

Frey, P. A., 1996, "The Leloir Pathway: a Mechanistic Imperative for Three Enzymes to 

Change the Stereochemical Configuration of a Single Carbon in Galactose." J. FASEB, 

10(4), pp. 461-70. 

Goodwin, B. C., 1969, “Control Dynamics of β-galactosidase in Relation to the Bacterial Cell 

Cycle”, Eur. J. Biochem., 10, pp. 515–522. 

Gulik, W. M., W. T. Laat, J. L. Vinke and J. J. Heijnen, 2000, “Application of Metabolic Flux 

Analysis for the Identification of Metabolic Bottlenecks in the Biosynthesis of 

Penicillin-G”, Biotechnol. Bioeng, 68, 6, pp. 602-618. 

Hong Bum Kim, H. B., C. P. Smith, J. Micklefield and F. Mavituna, 2004, “Metabolic Flux 

Analysis for Calcium Dependent Antibiotic (CDA) Production in Streptomyces 

coelicolor”, Metabolic Engineering, 6, pp. 313–325 

Hueck, C. J. and Hillen, W., 1995, “Catabolite Repression in Bacillus subtilis: a Global 

Regulatory Mechanism for the Gram-positive Bacteria”, Molecular Microbiology, 15, 

pp. 395–401. 

Kompala, D. S., D. Ramkrishna and T. T. Tsao, 1984, “Cybernetic Modeling of Microbial 

Growth on Multiple Substrates”, Biotechnology and Bioengineering, 26, pp. 1272-

1281. 

Kremling, A., K. Bettenbrock, B. Laube, K. Jahreis, J. W. Lengeler and E. D. Gilles, 2001, 

“The Organization of Metabolic Reaction Networks: III. Application for Diauxic 

Growth on Glucose and Lactose”, Metabolic Engineering, 3, pp. 362-379. 

Kuipers, O. P., E. J. Luesink, R. E. Herpen, B. P. Grossiord, O. P. Kuipers and W. M. Vos, 

1998, “Transcriptional Activation of the Glycolytic Las Operon and Catabolite 



 174 

Repression of the Gal Operon in Lactococcus lactis are Mediated by the Catabolite 

Control Protein CcpA”, Molecular Microbiology, 30(4), pp. 789-798. 

Lee, B., J. C. Liao, L. Yang and J. Yen, 1999, “Incorporating Qualitative Knowledge in 

Enzyme Kinetic Models Using Fuzzy Logic”, Biotechnol., Bioeng., 62, pp. 722-729. 

Lee, S. B. and J. E. Bailey, 1984a,b “Genetically Structured Models for Lac Promoter-

Operator Function in the Esherichia coli Chromosome and in Multicopy Plasmids: Lac 

Operator Function”, Biotechnology Bioengineering, 26, pp. 1372-1389. 

Lengeler, J. and H.Steinberger, 1978, Mol. Gen. Genet., 164, pp. 163-169. 

Luesink, E. J., R. van Herpen, B. P. Grossiord, O. P. Kuipers and W. M. deVos, 1998, 

“Transcriptional Activation of the Glycolytic las Operon and Catabolite Repression of 

the gal Operon in Lactococcus lactis are Mediated by the Catabolite Control Protein 

ccpA”, Mol. Microbiol., 30, pp. 789–798. 

Mackey, M. C., M. Santillan and N. Yildirim, 2004, “Modeling Operon Dynamics: the 

Tryptophan and Lactose Operons as Paradigms”, C. R. Biologies, 327, pp. 211-224. 

Majewski, R. A. and M. M. Domach, 1990, “Simple Constrained Optimization View of 

Acetate Overflow in E. coli”, Biotechnol. Bioeng., 35, pp. 732–738. 

Neidhardt, F. C., R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low Jr, B. Magasanik, 

W.S. Reznikoff, M. Riley, M. Schaechter, and H. E. Umbarger, 1996, "Escherichia 

coli and Salmonella, Cellular and Molecular Biology”, Second Edition, American 

Society for Microbiology, Washington, D.C.  

Neidhardt, F. C., J. L. Ingraham and M. Schaechter, 1990, “Physiology of the Bacterial Cell”, 

Sinauer Associates, Inc., Sunderland, Mass. 

Neidhardt, F. C., J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter and H. E. 

Umbarger, 1987, “Escherichia coli and Salmonella typhimurium: Cellular and 

Molecular Biology”, American Society for Microbiology, Washington, D.C. 



 175 

Palsson, B., 2002, “Flux Balance Analysis: Basic Concepts”, Class Notes, BE160C/203 topic 

II.10. 

Pestka, S., B. L. Daugherty, V. Jung, K. Hotta and R. K. Pestka, 1984, “Anti-mRNA: Specific 

Inhibition of Translation of Single mRNA Molecules”, Proc. Natl. Acad. Sci., USA, 81, 

pp. 7525–7528. 

Postma, P. W., J. W. Lengeler and G. R. Jacobson, 1993, “Phosphoenolpyruvate: 

Carbohydratephosphotransferase Systems of Bacteria” Microbiol. rev., 57, pp. 543-

594. 

Pramanik, J. and J. D. Keasling, 1997, “Stoichiometric Model of Escherichia coli Metabolism: 

Incorporation of Growth-Rate Dependent Biomass Composition and Mechanistic 

Energy Requirements”, Biotechnol. Bioeng., 56, pp. 398–421. 

Pramanik, J. and J. D. Keasling, 1998. “Effect of Escherichia coli Biomass Composition on 

Central Metabolic Fluxes Predicted by a Stoichiometric Model”, Biotechnol. Bioeng., 

60, pp. 230–238. 

Provost, A. and G. Bastin, 2004, “Dynamic Metabolic Modelling Under the Balanced Growth 

Condition”, J. Process Control, 14, pp. 717-728. 

Ramkrishna, D., S. J. Parulekar and N. B. Jansen, 1989, “Bacterial Growth on Lactose: An 

Experimental Investigation”, Biotech. Bioeng., 34, pp. 705-716. 

Ruppin, E., O. Berkman and T. Shlomi, 2004 “Constraint-Based modeling of perturbed 

Organisms: A Room for improvement”, School of Computer Science, Tel-Aviv 

University, pp. 1-3. 

Ruppin, E., O. Berkman and T. Shomi, 2005, “Regulatory On/Off Minimization Of Metabolic 

Flux Changes Following Genetic Perturbations”, Biological Sciences:Microbiology, 

pp. 1-14. 



 176 

San, K. Y., S. Cox, S. Shalel Levanon and G. N. Bennett, 2003, “Metabolic Flux Analysis 

Based on Dynamic Genomic Information”, In: 225th American Chemical Society 

National Meeting, New Orleans, LA. 

Segre, D., G. M. Church and D. Vitkup, 2002, “Analysis of Optimality in Natural and 

Perturbed Metabolic Networks”, PNAS, 99, 23, pp. 15112-15117. 

Snyder, D., A. Larry and E. E. Wendy Champness, 1997, “Molecular Genetics of Bacteria”, 

Washington DC: ASM Press, pp. 275. 

Sokhansanj, B. A., J. P. Fitch, J. N. Quong and A. A. Quong, 2004, “Linear Fuzzy Gene 

Network Models Obtained from Microarray Data by Exhaustive Search”, BMC 

Bioinformatics, 5, 108, pp. 1-12. 

Sokhansanj, B. A. and J. P. Fitch, 2001, “URC Fuzzy Modeling and Simulation of Gene 

Regulation”, 23
rd

 Annual EMBS International Conference, pp. 2918-2021. 

Stelling, J. and S. Klamt, 2003, “Stoichiometric Analysis of Metabolic Network”, 4
th

 

International Conference on Systems Biology, pp. 18-24. 

Thomas, R., 1973, “Boolean Formalization of Genetic Control Circuits”, J. Theor. Biol., 42, 

pp. 563-585. 

Thompson, J., K. W. Turner and T. D. Thomas, 1978, “Catabolite Inhibition and Sequential 

Metabolism of Sugars by Streptococcus lactis”, J. Bacteriology, pp. 1163-1174. 

Varma, A. and B. O. Palsson, 1994a, “Metabolic Flux Balancing: Basic Concepts, Scientific 

and Practical Use”, Bio. Technology, pp. 994-998. 

Varma, A. and B. O. Palsson, 1994b, “Stoichiometric Flux Balance Models Quantitatively 

Predict Growth and Metabolic By-Product Secretion in Wild-Type Escherichia coli 

W3110”, A. Environ. Micro., pp. 3724-3731. 



 177 

Wong, P., S. Gladney and J. D. Keasling, 1997, “Mathematical Model of the lac Operon: 

Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and 

Lactose”, Biotechnological Progress, 13, pp. 132-143. 

Woolf, P. J. and Y. Wang, 2000 “A Fuzzy Logic Approach to Analyzing Gene Expression 

Data”, Physiol. Genomics, 3, pp. 9-15. 

Yagil, G. and E. Yagil, 1971, “On the Relation Between Effector Concentration and the Rate 

of Induced Enzyme Synthesis”, J. Biophys., 11, pp. 11-29. 

Yamada, M. and M. H. Jr Saier, 1988, “Positive and Negative Regulators for Glucitol (gut) 

Operon Expression in Escherichia coli”, J. Molecular Biol., 203, pp. 569-583. 

Yamada, T., 1987, “Regulation of Glycolysis in Streptococcus lactis. Sugar Transport and 

Metabolism in Gram Positive Bacteria”, Ellis Howood Series in Biochemistry and 

Biotechnology, In: J. Reizer and A. Peterkofsky (eds), Chichester, UK, pp. 69–93. 

Yanofsky, C. and V. Horn, 1994, “Role of Regulatory Features of the trp Operons of E. coli in 

Mediating a Response to a Nutritional Shift”, J. Bacteriol., 176, pp. 6245–6254. 

Yen, J. and Langari R., 1999, “Fuzzy Logic: Intelligence, Control, and Information”, Penntice 

Hall, ch. 1-5, pp. 1-140. 

Yildirim, N. and M. C. Mackey, 2003, “Feedback Regulation in the Lactose Operon: A 

Mathematical Modeling Study and Comparison with Experimental Data”, Biophysical 

Journal, 84, pp. 2841-2851. 

Ying H., 2000, “Fuzzy Control and Modeling: Analytical Foundations and Applications”, 

IEEE Press, ch. 1, pp. 1-13. 

 


