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Boğaziçi University

2006



ii

THREE DIMENSIONAL FACE RECOGNITION

APPROVED BY:

Prof. Lale Akarun . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. Fikret Gürgen . . . . . . . . . . . . . . . . . . .

Prof. Bülent Sankur . . . . . . . . . . . . . . . . . . .
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Assist. Prof. Yücel Yemez . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 13.10.2006



iii

ACKNOWLEDGEMENTS

This thesis you are about to read is just a mere summary of a great deal of ef-

fort carried out over the last few years. During this period, I have benefited from the

support of many people to whom I should express my gratitude. First and foremost,

I would like to thank Prof. Lale Akarun for her invaluable guidance, support and

patience. I am indebted to Prof. Bülent Sankur and Prof. Ethem Alpaydın for their

helpful comments and feedbacks that have greatly improved the work. Technically,
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ABSTRACT

THREE DIMENSIONAL FACE RECOGNITION

In this thesis, we attack the problem of identifying humans from their three di-

mensional facial characteristics. For this purpose, a complete 3D face recognition sys-

tem is developed. We divide the whole system into sub-processes. These sub-processes

can be categorized as follows: 1) registration, 2) representation of faces, 3) extraction

of discriminative features, and 4) fusion of matchers. For each module, we evaluate the

state-of-the art methods, and also propose novel ones. For the registration task, we

propose to use a generic face model which speeds up the correspondence establishment

process. We compare the benefits of rigid and non-rigid registration schemes using a

generic face model. In terms of face representation schemes, we implement a diverse

range of approaches such as point clouds, curvature-based descriptors, and range im-

ages. In relation to these, various feature extraction methods are used to determine the

discriminative facial features. We also propose to use local region-based representation

schemes which may be advantageous in terms of both dimensionality reduction and for

determining invariant regions under several facial variations. Finally, with the realiza-

tion of diverse 3D face experts, we perform an in-depth analysis of decision-level fusion

algorithms. In addition to the evaluation of baseline fusion methods, we propose to use

two novel fusion schemes where the first one employs a confidence-aided combination

approach, and the second one implements a two-level serial integration method. Recog-

nition simulations performed on the 3DRMA and the FRGC databases show that: 1)

generic face template-based rigid registration of faces is better than the non-rigid vari-

ant, 2) principal curvature directions and surface normals have better discriminative

power, 3) representing faces using local patch descriptors can both reduce the feature

dimensionality and improve the identification rate, and 4) confidence-assisted fusion

rules and serial two-stage fusion schemes have a potential to improve the accuracy

when compared to other decision-level fusion rules.
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ÖZET

ÜÇ BOYUTLU YÜZ TANIMA

Bu tezde, üç boyutlu (3B) bir yüz tanıma sistemi geliştirilmiştir. Önerilen tanıma

sistemi 1) çakıştırma, 2) betimleme, 3) öznitelik çıkarma, ve 4) karar tümleştirme

kısımlarından oluşmaktadır. Yaptığımız çalışmada bu kısımların herbiri incelenmiş,

ve bu alt problemler için yeni çözümler sunulmuştur. Önerilen yöntemlerin her biri

standart algoritmalar ile karşılaştırılmıştır. 3B yüzlerin karşılaştırılması ve benzer-

lik derecelerinin bulunması için kayıtlama safhası önemli bir yere sahiptir. Yaptığımız

çalışmada, yüzlerin ortalama bir yüz modeli kullanılarak çakıştırılması önerilmiştir. Or-

talama yüz modelinin kullanımı çakıştırma safhasının zamansal karmaşıklığını oldukça

azaltmaktadır. Hareketli bir yapıya sahip yüz yüzeylerinin çakıştırılması için katı ve

katı olmayan varsayımlara sahip iki farklı çakıştırma yöntemi önerilmiştir. Yaptığımız

tanıma ve doğrulama deneylerinde katı yüzey varsayımına dayalı Döngülü Yakın Nokta

(DYN) yönteminin daha iyi sonuç verdiği görülmüştür. Yüzlerin betimlenmesi için

nokta kümeleri, yüzey kıvrımları, ve derinlik imgeleri gibi çeşitli yöntemler denenmiştir.

Her betimleme yöntemiyle uyumlu farklı öznitelik çıkarımları yapılmıştır. 3D RMA

ve FRGC yüz kütüphanerinde yapmış olduğumuz deneylerde, yüzey normallerinin ve

kıvrım doğrultularının daha iyi tanıma başarımına sahip oldukları gösterilmiştir. Tezde

ayrıca, birden fazla tanıma algoritmasının kullanıldığı durumlarda, bu tanıyıcıların

karar seviyesinde birleştirilmesinin yararlı olduğu gösterilmiştir. Standart tümleştirme

algoritmalarına ek olarak, güvenilirliğe dayalı ve iki-seviyeli tümleştirme yöntemleri

önerilmiştir. Öğrenme kümesinin az olduğu durumlarda güvenilirlik tabanlı yöntemin,

diğer durumda ise iki-seviyeli tümleştirme yönteminin diğer yöntemlerden iyi tanıma

başarımı gösterdiği gösterilmiştir. Tezde son olarak, yüzlerin yerel bölgelere ayrılarak

betimlenmesi ile ilgili çalışmalar yapılmıştır. Yerel betimleme yöntemlerinin hem öznitelik

boyutlarında azalmayı sağladığı hem de yüz yüzeylerindeki yerel değişimlere karşı daha

dayanıklı olduğu ve böylece tanıma başarımını arttırdıkları gösterilmiştir.
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1

1. Introduction

Recognizing humans from their biological and behavioral characteristics has al-

ways been a crucial need for secure applications. A measurable characteristic of a

human is commonly called as a biometric, and several special biometrics are suitable

for differentiating persons from others. Biometrics such as faces, iris patterns, hand

geometry, fingerprints, speech, retina, dynamic signature, and gait are among the most

frequently used modalities. Depending on the needs of the application, one can choose

an appropriate biometric. For instance, high-security applications use iris patterns or

fingerprints because these modalities offer better discriminatory information among

humans. Automatic recognition of humans from their facial characteristics has a spe-

cial importance due to several reasons: 1) no contact with the subject is required, 2)

faces can be sensed easily with available cameras. On the other hand, automatic iden-

tification systems that use facial biometrics have to deal with important difficulties.

These difficulties stem from the following reasons: 1) facial images may have lighting,

expression and pose variations, 2) external factors such as glasses, hats, makeup and

hair change the appearance of a face drastically, 3) faces change over time. The neg-

ative effect of these factors is generally significant if we consider the non-cooperative

nature of the face acquisition phase.

Traditional approaches employed in face recognition systems generally use 2D

static intensity images. However, due to the previously mentioned difficulties, many

of these systems may not provide acceptable accuracies under more realistic operating

conditions. Especially in adverse situations, intra-class facial variations, i.e., differ-

ences between the two images of the same person, are larger than the inter-class facial

variations, i.e., differences between the images of different persons. This intra-class and

inter-class variation problem makes the face recognition task as one of the most chal-

lenging pattern recognition problems. In terms of pattern recognition viewpoint, face

recognition problem has several unique properties which further complicate the task:

1) feature dimensionality is so high that without the use of efficient feature selection

and feature extraction algorithms, it is almost impossible to design a successful classi-
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fication system, 2) sample size per class is scarce which makes it harder for a learning

function to generalize to unknown examples. In terms of computer vision point of view,

representation of faces also encounters significant obstacles such as 1) the detection and

normalization faces, 2) extraction of discriminative features, and 3) correction of illu-

mination differences. Therefore, in the classical pattern classification chain, the feature

extraction phase is the most studied part in face recognition systems, and most of the

time state-of-the-art pattern classifiers are used at the recognition phase. However,

we see the dominance of instance-based classification algorithms, especially the k-nn

algorithm, in face recognition systems.

In the biometrics literature, recognition is a general term which includes identi-

fication and verification. However, recognition mostly refers to identification in many

papers, and authentication is used instead of verification. In identification, the task is

to find the ID (class) of the person from the template database. Template database is

the collection of biometric features of the previously enrolled users, and may be called

as training set or gallery set. In closed set identification, we assume that the gallery set

contains the biometric templates of all of the users. On the other hand, in an open set

identification scenario, the template database may not contain the biometric samples

of the unknown person. Therefore, the system should also provide an output indicating

that the ID of the unknown person is not in the database. The open set identification

scenario is useful in watchlist type of applications, where the aim is to detect whether

the person is in the wanted list or not. In identification, the biometric template of the

client (test person, or probe) should be matched with all of the templates in the gallery

set (training set). The matcher simply calculates the similarity between two biometric

features. The ID of the gallery template whose similarity is greatest to the client is

given as the output ID. If the ID of the client and the ID of the found gallery template

is the same, then it is said to reach a correct identification; otherwise misclassification

occurs. In open set identification, an extra decision should also be produced indicating

that the ID of the client is not present in the template database. In verification or

authentication, the client provides both his biometric template and ID to the system.

Then, the task of the authenticator is to accept or reject the claimed identity. In an

authentication scenario, there is no need to match the client’s template with all of the
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templates in the gallery set. It suffices just to match with the gallery templates of

the claimed ID. However, authentication systems should learn a general or a subject-

specific threshold in order to output an accept or a reject decision. In general, the

performance characteristics of identification systems are presented via rank-1 or rank-

N statistics. If the ID of the client is found at the first N similar gallery templates, then

it is said to have a correct classification. Cumulative statistics obtained from rank-1

to rank-N experiments are usually summarized in cumulative match characteristics

(CMC) curves. In verification systems, performance characteristics are summarized by

two measures: false accept rate (FAR) and false reject rate (FRR). FAR denotes the

proportion of imposters accepted, and FRR denotes the proportion of genuine users

rejected. Changing the threshold parameter in the verification system, one can obtain

different FAR and FRR. It is therefore common to summarize the performance of a

verification system using different thresholds and plot the FAR/FRR values in receiver

operating characteristics (ROC) curves. Another frequently used technique is to report

the equal error rate (EER) where FAR equals FRR.

Identification and verification systems that use facial characteristics have shown

great promise under controlled environments. However, under more realistic conditions

they can not guarantee acceptable accuracy. In order to improve the recognition perfor-

mance of the face recognition systems, the search for other modalities is indispensable.

For this purpose, researchers now try to incorporate additional information coming

from videos, infra-red sensors, and 3D acquisition devices. With the availability of 3D

sensors, a great deal of effort is devoted to developing recognition systems that use 3D

shape of a human facial surface [1]. In the last five years, a rapid increase for the need

to design 3D face recognition algorithms has taken place both in academy and industry.

However, it is clearly visible that the 3D face recognition technology is at the beginning

steps. The motivation to use 3D technology was to overcome the disadvantages of 2D

face recognition systems that arise especially from significant pose, expression and illu-

mination differences. However, with the exception of few recent works, most of the 3D

systems generally study controlled frontal face recognition. With the construction of

bigger 3D face databases that contain enough samples for different illumination, pose,

and expression variations, it is expected to develop more realistic 3D face recognition



4

systems.

3D face recognition concept usually contains three main categories: 1) 3D-to-3D,

2) 3D-to-2D or 2D-to-3D, and 3) 2D-to-2D via 3D. With the exception of the 3D-to-3D

case, the other two categories are usually referred to as 3D-assisted face recognition

since they specifically involve 2D images. In this thesis, we refer to the 3D-to-3D case as

3D face recognition, and will not mention other approaches in the other two categories.

It is just sufficient to note that these approaches benefit from 3D head or face models

in the matching process of 2D images. In Chapter 2, we provide a detailed literature

survey of 3D face recognition algorithms according to their use of face representation

methods.

1.1. Contributions of the Thesis

In this thesis, we concentrate on the fundamental problems of 3D face recognition

algorithms, provide comparative analysis of several approaches, and offer novel solu-

tions for each of the problems analyzed. The contributions can be grouped according

to the following categories:

• Evaluation of facial registration techniques: Efficient registration of facial surfaces

is crucial for any 3D face recognition system. Without the use of registration and

alignment phases, it is very hard to define similarity between faces. The nature

of the face recognition problem, the similarity of faces as 3D objects, makes

the efficient registration part as an important requirement as opposed to more

general 3D object classification tasks. However, facial surfaces have a free-form

characteristic which complicates the task. In addition, typical deformations due

to expression variations drastically change the structure of the facial surface. We

propose two different facial registration systems where the first one assumes only

rigid transformations, and the second one allows non-rigid deformations also [2, 3].

These two registration methods are presented in Chapter 3.

• Evaluation of representation and feature extraction techniques: 3D raw facial

data coming from acquisition devices can be represented in various forms. Addi-
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tionally, depending on the employed representation method, a number of feature

extractors can be utilized to extract distinctive facial features. The combina-

tion of representation and feature extraction methods constitute the core of the

3D recognition algorithm. We evaluate the benefits of different recognition algo-

rithms according to their identification power, and also propose novel ones [2, 4].

Chapter 4 is devoted to the explanation of these algorithms.

• Evaluation of feature selection techniques for face recognition: Local feature-

based approaches offer viable alternatives to holistic approaches. Their power

stems from their ability to robustly represent faces locally. In order to harness

this property, we formulate the face representation task through the use of lo-

cal features, and apply this methodology to both 2D and 3D face recognition

problem [5, 6, 7, 8, 9]. Employed methodologies and experimental results are

presented in Chapter 5.

• Evaluation of fusion methods: It is widely believed in the biometrics community

that through the use of different modalities, or matchers, it is possible to improve

the performances of the recognition systems. To accomplish the integration of

multiple algorithms or modalities, information fusion principles are frequently

exploited. In this thesis, we utilize several decision-level fusion algorithms and

also propose new ones to boost the performance of 3D face recognition algo-

rithms [10, 11, 2, 4]. The explanation of fusion schemes is provided in Chapter 6.

This thesis is organized as follows: Chapter 2 presents the review of state-of-

the-art 3D face recognition systems. Facial registration algorithms are explained in

Chapter 3. Representation and feature extraction approaches are provided in Chap-

ter 4. Chapter 5 is devoted to the explanation of local region-based face representation

schemes. The algorithms that are used in the fusion processes are provided in Chap-

ter 6. Experimental results of the proposed approaches are presented in Chapter 6.
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2. Literature Survey

The 3D shape of a human face can be represented as a non-rigid free-form surface.

Currently, most of the static 3D sensors acquire data from only the visible part of the

human facial surface from the viewpoint of the camera lenses. It is also possible to

acquire full 3D model of a human head from multi-view stereo systems or using rotating

tables during the scanning process. However, multi-view or rotating sensors are not

practical for identification scenarios. Therefore, static 3D sensors such as laser scanners

or structured light based stereo systems produce the so-called 2.5D surface data. 2.5D

surface is usually defined as having at most one z-depth measurement from a given (x,y)

coordinate. It is possible to generate full 3D face models by combining several 2.5D

images. In the 3D face recognition literature, the term 3D is commonly used to denote

2.5D data. If equipped with standard 2D cameras, 3D sensors provide registered shape

and texture information: for each (x,y,z) coordinate, the corresponding RGB texture

information is provided.

Initial works which propose identification algorithms for 3D faces use only the

facial shape information. However, current systems generally take into account tex-

ture information as well as shape. Systems which use texture and shape information

together are referred to as multi-modal systems. In order to comply with the existing

literature, we classify the 3D face recognition systems according to the shape represen-

tations they use. According to the shape representations utilized to represent 3D face

data, algorithms can be broadly grouped as:

• Point Cloud-based Approaches: Human facial surface is represented by a 3D point

cloud. In this category, only (x,y,z) coordinates of the sampled points from the

facial surface are used.

• Depth Image-based Approaches: This is an appearance-based approach where the

2.5D data is projected to an image where pixel intensities denote z-depths.

• Curve-based Approaches: Approaches in this category extract vertical, horizontal,

or contour curves from the facial surface, and represent the face using features
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extracted from these curves.

• Differential Geometry-based Approaches: Algorithms in this category use dif-

ferential geometry-based descriptors such as surface normals or curvature-based

features.

• Facial Feature-based Geometrical Approaches: The fundamental aim of this type

of approach is first to locate several facial features such as nose tip, eye corners,

and mouth and then extract several features from them such as lengths, angles,

or geometrical invariants.

• Shape Descriptor-based Approaches: Inspired by 3D free-form object representa-

tion methods, these approaches consider the facial surfaces as free-form surfaces,

and try to describe them using local or global shape descriptors such as point

signatures or spin images. See Figure 2.1 for the specific methods used in each

of these categories.

Figure 2.1. Taxonomy of 3D face recognition systems.

2.1. Point Cloud-based Approaches

Many 3D acquisition systems provide 3D point clouds as raw data, possibly cou-

pled with 2D texture information. Thus, for many 3D face recognition systems, point

cloud or point set data is the default input data representation [12, 13, 14]. The popu-
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larity of the point cloud representation scheme is due to i) its generality: almost every

3D acquisition device produces (x,y,z) coordinates without any higher-level informa-

tion such as connectivity, and ii) its simplicity: point coordinates, if sampled with good

accuracy, are simple and sufficient to represent a complex surface. On the other hand,

point cloud-based representation has several drawbacks, most notably: i) since there

is no connectivity information, search for nearest points may be cumbersome, and ef-

ficient search algorithms usually require advanced data structures such as kd-trees, ii)

storage requirements are high.

Generally all of the proposed approaches for 3D face recognition systems and

specifically, point cloud-based algorithms require alignment and registration of facial

surfaces before the matching module. The reason for the necessity of accurate align-

ment and registration is due to the similarity of different facial surfaces as opposed

to more general 3D object classes. Thus, in contrast to the most of the 3D object

identification systems, face identification algorithms put a great deal of emphasis on

the correct alignment of different facial surfaces. To this end, algorithms which oper-

ate on point clouds make use of registration algorithms such as iterative closest point

algorithm (ICP). Given two models, i.e., two point clouds, the ICP algorithm tries to

find the best rotation and translation parameters to align one model to the other one

iteratively. The limitation of of the ICP algorithm is that: it can not handle non-rigid

deformations. The quality of the alignment found by the ICP algorithm can also be

considered as a dissimilarity between two input models. Therefore, most of the 3D

face recognition systems that use point sets utilize the ICP dissimilarity as a matching

metric. The usage of the ICP-based matching algorithms is so common that it is now

considered as a baseline 3D face matcher [15]. For example, the systems presented

in [16, 17] use the ICP method as a core shape matching algorithm. The basic princi-

ple is to align a given test image, i.e., its point cloud data, to all of the images in the

training set, and select the ID of the training image which produces the lowest ICP

alignment error. Although many of the ICP-based algorithms work using this scheme,

it is worthwhile to note that aligning each training image with the probe image at the

identification phase is computationally very expensive.
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In order to handle the computational complexity of the ICP-based matchers, sev-

eral systems use template faces or average face models to align and register faces [18, 3].

Russ et al. [18] utilize a reference face to establish dense point-to-point correspondence

between faces. A given face is registered to the reference face using the ICP algorithm.

However, after the ICP transformation, nearest points are found using the surface nor-

mal directions which is different from using Euclidean distance. The aim of the overall

scheme is to get an ordering of facial points which is necessary for the PCA. Here, PCA

is directly applied to the point coordinates, as opposed to range images. Experiments

are performed on two databases: FRGC v1.0 (198 subjects, 745 probe images) and

FRGC v2.0 (242 subjects, 1287 probe images). In all experiments, single gallery image

is used. Proposed approach attains 91 and 97 per cent rank-1 classification rates for

v1.0 and v2.0 databases, respectively, which are superior to depth image-based PCA

approach.

A notable extension to the standard ICP-based matching algorithms can be re-

ferred to as local ICP methods. Two important reasons for the use of local ICP methods

are: 1) it is rarely the case that all of the facial surfaces exhibits rigid deformations,

and 2) matching local regions is faster. A typical local ICP-based scheme is presented

in [19]. Koudelka et al. [19] first locate several facial landmarks such as nose tip, sel-

lion, inner eye corners and mouth center automatically, and then sample 150 random

points in their neighborhood. The matching of two facial surfaces is then accomplished

via a mixture of ICP and Hausdorff algorithms. The use of the Hausdorff measure is

beneficial if there is incomplete or missing data in one the facial surfaces. The authors

show the feasibility of their method on FRGC v1.0 database. Achermann and Bunke

[20] also use an extension of Hausdorff distance for matching point clouds.

Another local ICP-based method is presented in [21] where Mian et al. propose

the fusion of four different face classifiers. The first two classifiers use a local region

based ICP algorithm where the regions are selected from nose and forehead parts.

Each gallery face is segmented into three regions (nose, forehead/eyes, cheeks) by

manually locating six points around nose and eye regions. During the identification

phase, nose parts of the gallery faces are registered to the probe images. Initialization
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of the ICP matching is performed by automatically locating nose ridge line, thus by

finding the nose in the probe image. After locating the nose, forehead/eyes region-

based ICP matcher is initialized automatically. In addition to ICP-based matchers,

authors use two holistic PCA-based matchers that use texture and depth images. The

scores obtained from four matchers are normalized by min-max rule, and fused by

product rule in order to calculate the final fused score. The proposed system achieves

100 per cent verification rate at 0.0006 FAR on the FRGC v.10 database (275 subjects,

668 probe scans). Forehead/eyes region-based ICP algorithm is found to be the best

matcher among the four matchers.

Wang et al. [22] use a different ICP-based scheme to deal with expression vari-

ations. During the similarity calculation at each iteration of the ICP algorithm, a

fixed percentage of closest point pairs that has a large point-to-point distance are re-

moved dynamically. The assumption is that these points correspond to the regions

where deformation is present due to expression changes. The recognition experiments

on ZJU-3DFED database (40 subject, 9 scans per subject) which contains expression

variations show that their partial-ICP approach obtains 96.88 per cent rank-1 identi-

fication rate, whereas standard ICP approach attains 89.69 per cent accuracy. They

denote the percentage of the used points as the p-rate in the partial ICP iterations.

p-rates are empirically chosen to optimize performance for the given test set.

As noted previously, one shortcoming of the ICP algorithm is that it can only

handle rigid transformations, and human faces generally exhibit non-rigid deformations

under expression variations. Therefore, non-rigid registration algorithms could be ben-

eficial in establishing the correspondence between facial surfaces. A representative idea

is proposed in [23] where a generic face model is fitted to a given face, and the related

displacement information forms a separate deformation image. Finally, the biometric

signature is obtained from the wavelet analysis of this deformation image.

Another system which is designed specifically to deal with local non-rigid defor-

mations is given in [24] where Lu and Jain propose a deformable model-based matching

scheme. Using manually labeled fiducial landmarks i.e., the nose tip, eye corners, and
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mouth corners, along with the mouth contour, detailed dense landmark points are

sampled at the geodesic paths between several feature points. Surface deformation is

then learned using a set of training images having expression variations. Then, this

knowledge is used to synthesize new deformed faces from a given neutral face. These

deformable models are fitted to the probe images with the help of an optimization

technique in order to find the similarity. Using deformable models, it is possible to

account for expression variations present in the probe images. Experimental results

on two different databases (DB1: 10 subjects, 21 scans per subject, DB2: 90 subjects,

6 scans per subject, from FRGC v2.0) demonstrate that with deformation modeling,

classification accuracy improves from 87.6 per cent to 92.1 per cent.

It is also possible to use other means to establish registration between two facial

models apart from the ICP algorithm. However, even these type of systems use ICP at

the early stages of the alignment phase. The ultimate aim is to construct point-to-point,

or vertex-to-vertex correspondence. Using the correspondence information, an ordering

of 3D points can be established. For instance, Papatheodorou and Rueckert [25] present

a system where facial surfaces are modeled by B-splines. First, 19 landmarks are

selected manually, and the central facial region is cropped. Cropped faces are registered

to a template face using the ICP algorithm. Spherical B-spline-based model is then

fitted to the facial surface. After fitting, 3D facial points are sampled according to an

average face model. This procedure produces faces with equal number of registered

points. PCA is applied to the 3D coordinates, and extracted coefficients are used as

features having a dimensionality of 83. Stereo camera-based Vision RT VRT3D system

is used to collect a 3D face database which contains 83 subjects. In the recognition

experiments, authors report 100 per cent and 90 per cent accuracies for shape and

texture channels, respectively.

Another approach to establish point correspondences is given in [26]. Hong et al.

[26] present a 3D deformable model-based face recognition system. Correspondences

between face vertices among all facial surfaces are established by a pixel-to-vertex map

method. The pixel-to-vertex map method produces a sparse vertex representation

around 5000 vertices. After finding corresponded vertices in the training set, PCA-



12

based synthesis algorithm is used to construct a deformable 3D facial model for both

shape and texture information. Given a probe image, this deformable model is fitted to

the probe image using inverse compositional image alignment algorithm. Texture and

shape coefficients of the fitted model are then used as features. Recognition experiments

performed on a 3D Korean face database (110 subjects, totally 218 3D face scans)

demonstrate that using only texture coefficients for frontal test images, 90.4 per cent

accuracy is obtained. With both shape and texture coefficients, accuracy is found to

be the same. If test images contain pose variations, accuracies drop to 71.4 per cent for

both texture and shape-based matchers. It is also worthwhile to note that fitting-based

identification is computationally very expensive, since it is reported that identification

takes 11.2 seconds on the average.

A novel registration and representation scheme which is based on point clouds

is presented in [27]. Bellon et al. [27] propose a new metric, called the Surface Inter-

penetration Measure (SIM) to define similarity between two registered surfaces. SIM

can be considered as an alternative to the commonly used Root Mean Square Error

(RMSE). SIM basically quantifies the amount of interpenetration around the regions

crossing over each other for the overlapping surfaces. Authors also propose a genetic

algorithm (GA)-based registration algorithm and compare it with the ICP algorithm.

Though no recognition experiments are reported, authors show that the use of SIM

may be a better alternative to common metrics such as point differences.

A completely different idea was proposed in [28] where the distances between

3D facial points are approximated by geodesic distances. In their work, authors ap-

ply multidimensional scaling algorithm to the geodesic distance matrix to obtain a

canonical face representation. In their later work [29, 30], they have extended their

approach using surface gradients field. Their experimental results confirms that canon-

ical form matching is robust to expression variations and outperforms 2D image-based

eigenfaces [30].
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2.2. Depth Image-based Approaches

As discussed previously, currently used 3D sensors generally produce 2.5D infor-

mation. 2.5D data can easily be projected to a 2D image plane. Therefore, it is very

popular to convert 2.5D facial data to a depth image, also called the range image. Each

pixel in the depth image represents the distance of the corresponding 3D facial point

to the camera. Although some sensors are capable of producing range images directly,

point cloud data acquired from sensors is usually converted to yield depth images.

During the conversion, some information may be lost. Most importantly, two sources

of information loss should be mentioned: 1) In the surface areas whose normals are

almost perpendicular to the camera view, such as the lower nose regions, a significant

portion of the depth measurements is generally under-represented in the depth images,

and 2) 8-bit standard gray-level quantization may lose accuracy information. Another

important concern in depth image construction is the conversion of irregularly sampled

3D points to a regular (x,y) grid. To accomplish this task, interpolation methods are

generally used.

Once the depth images are formed, one can treat the 3D face recognition problem

as simply a 2D image-matching problem. Therefore, depth image solutions employ

well-known subspace techniques borrowed from intensity images, such as PCA, LDA,

and ICA. As in the 2D face recognition literature, PCA-based eigenface approach is

considered as a baseline 3D face algorithm [31]. It is of great interest to researchers

to compare which subspace methods offer best accuracies in the depth image domain.

For example, in [32], Srivastava et al. compare the optimal component analysis with

PCA and ICA methods, and show the superior performance of the optimal component

analysis. Similarly, Hesher et al. [33] show the superiority of ICA to the PCA for depth

image representation. Zhong et al. [34] show that extracting depth image features

using the Discriminant Common Vectors (DCV) method is superior to PCA and LDA

methods. It is also possible to generate several binary depth images by intersecting the

original depth images by planes at different altitudes. Lee et al. [35] present a system

where several depth image levels are used as face representation after locating the nose

tip.
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Depth image construction should be preceded with a pose normalization module

in order to transform faces to a frontal configuration. ICP algorithm can be used for

this purpose. However, once several facial features are located, a coarse alignment can

be sufficient as well. In [36], Pan et al. design a pose-invariant recognition system by

projecting the 3D point cloud data to a plane parallel to the face plane. The projection

flattens out the facial surface, which is the point where this algorithm differs from other

depth image-based techniques. Their PCA-based identification method outperforms

other depth image-based approaches on the FRGC v1.0 database.

An approach for matching range images, using original measured data and not its

subspace projection, is discussed in [37]. In this work, Russ et al. apply partial shape

Hausdorff distance metric to range images. The motivation behind using Hausdorff

distance is its partial invariance to inconsistencies such as noise, holes, and occlusions

in the 3D facial data. Proposed approach enables a reduction in Hausdorff distance

computation from O(N2) to O(N) in range images. Their classification experiments

conducted on the FRGC v1.0 database show the superiority of the proposed scheme

to the standard PCA-based matching algorithm. Another system which generates

local depth image features is presented in [38] where Cook et al. extract Log-Gabor

features from depth and texture images. Filter coefficients are compressed by the PCA

algorithm. Scores obtained from shape and texture-based matchers are fused with the

sum rule.

2.3. Curve-based Approaches

Early studies for 3D face recognition emphasize the use of 2D curves extracted

from facial surface such as the facial profiles. Once these curves are extracted, 2D shape

analysis techniques for curves can be used for identification purpose. In this category,

a seminal work is presented in [39]. In [39], central and a number of lateral profiles

derived from 3D facial surfaces are used for recognition. Matching of the profiles of

is carried out using Iterative Conditional Mode (ICM) optimization. Curvature values

computed along the profile curves are used as features. In [40], authors extend their

system where gray level information is fused with shape features.
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Zhang et al. [41] also present a profile-based face matcher. Authors propose a

system which automatically finds the vertical symmetry profile curve, and three points

on this curve (nose bridge, nose tip, and lower nose point). After finding vertical pro-

file curve, two horizontal profile curves that pass through forehead and cheek regions

are computed. Each of these three profile curves are matched separately, and their

similarity scores are fused by a weighted sum rule. Weights are determined by the

LDA algorithm. It is found that the most discriminative profile curve is the symmetry

profile. However, the fusion of three matchers significantly improves the identifica-

tion/verificiaton accuracy. Experiments done on a 3D face database constructed via

3Q stereo system (32 subjects) illustrates 0.8 per cent EER / 96.9 per cent rank-1

identification rates for neutral-to-neutral case, and 10.8 per cent EER / 87.5 per cent

rank-1 identification rates for non-neutral case.

Feng et al. [42] extracts 35 horizontal and 35 vertical facial curves from the

facial surface. Facial curves are represented by integral invariants which are robust to

several transformations such as translation, rotation, and scale. After describing curves

using invariants, 12 curves are selected according to discriminant analysis and Jensen-

Shannon divergence analysis. It is found that 10 of the selected curves are vertical

and extracted from the nose and eye regions. PCA-based dimensionality reduction

is applied to produce a more compact representation. Recognition experiments on a

subset of UND 3D face database (35 subjects) shows that it is possible to obtain 92.57

per cent rank-1 classification accuracy using feature vectors of dimensionality 96.

2.4. Differential Geometry-based Approaches

The use of differential geometry-based surface descriptors which are invariant

to typical transformations such as rotation and translation is a very common tech-

nique for face representation. The most prominent approach in this category is to use

curvature-based surface descriptors. Due to their attractive characteristics, curvature-

based systems are frequently used to locate facial landmarks, and to classify local

surface types [43, 44]. Moreno et al. [45] segment a facial surface into seven regions

using curvature and extract several features such as region areas, area relations, and
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curvature means. In [46], maximum and minimum principal directions are represented

by two Enhanced Gaussian Images (EGIs) and similarity between faces is computed by

Fisher’s spherical correlation method. Lee et al. [47] propose a curvature-based face

recognition system. Proposed approach uses PCA to extract features. Classification

is performed by a cascade architecture of fuzzy neural networks (CAFNN). Experi-

ments conducted on a very small database (46 subject, 2 scans per subject) shows that

CAFFN-based classification scheme is better than the k-nn method.

Abate et al. [48] generate normal maps, which store three-variate mesh normals as

RGB components. The difference between the normal maps of two images is calculated

in terms of three difference angle histograms. In their later work, Abate et al. [49]

propose a system where each face vertex is mapped to a sphere. Sphere mesh is

constructed regularly from an icosahedron by generating triangles recursively. Each

spherical triangle has three neighboring triangles. Each triangle on the sphere is then

represented by the difference of surface normal directions according to its neighbors.

Three surface normal differences are considered as RGB values after a quantization

step. As features, Fourier descriptors computed from these RGB images are used.

Experimental results on a 120 subject (10 scans per subject) face database confirm

that when there are significant pose variations, the proposed approach attains better

identification rate than PCA and surface normal-based approaches.

2.5. Facial Feature-based Geometrical Approaches

As in the early stages of 2D face recognition systems, facial feature-based systems

are also applied in 3D face recognition algorithms. Riccio and Dugelay [50] present a

geometric invariant-based face recognition system. 19 control points are first manually

located on the 2D intensity images. Using the mapping between 2D and 3D images,

3D locations of these landmarks are found. A number of cross ratios computed from

the 2D landmark locations are used to produce a candidate class list. Among these

candidate classes, the final decision is made according to the voting of several 3D

geometrical invariant-based face classifiers. The proposed system relies only on the

19 control points which makes the system sensitive to their localization performance.
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Recognition experiments conducted on the small database of EURECOM (50 subject,

3 samples per subject) reveals that their approach may obtain 80 per cent rank-5

identification rate when the random noise added to the control point coordinates is

moderate.

Lee et al. [51] propose two feature based 3D face recognition systems. The

first one uses depth coordinates of four vertical and two horizontal curves which are

extracted from the central facial region. As a matcher, the dynamic programming

(DP) algorithm is used. The second recognizer uses facial landmark coordinates, their

distances, and angles computed from them as features. A Support Vector Machine

(SVM) classifier is then used to classify faces according to these geometrical features.

Identification experiments demonstrate that DP-based and SVM-based classifiers can

obtain 95 per cent and 96 per cent accuracies, respectively. For the DP-based system,

authors use their own face database that contains 20 subject, and for the SVM-based

system, Biometrics Engineering Research Center (BERC) face database (100 subjects)

is used.

2.6. Shape Descriptor-based Approaches

Inspired by the 3D free-form object recognition systems, a number of free-form

object representation techniques are applied to extract either local or global surface

features. Point signatures are among these popular 3D descriptors for face recognition.

In [52], point signatures are used for both coarse registration and for rigid facial region

detection which provide expression invariance. In their later work [53], authors include

texture into their systems by using 2D Gabor wavelets. Another 3D shape descriptor

similar to point signatures was used for face recognition in [54] where authors proposed

local shape maps to extract 2D histograms from 3D feature points. Their approach does

not require registration, and the similarity between two faces is calculated by a voting

algorithm as in [52].

Xu et al. [55] fit a regular mesh to a 3D point cloud data, and then extract

local shape descriptors at each vertex from the mesh. Gaussian-Hermite moments of
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these shape features are then computed and used as features. Recognition experi-

ments performed on 3DRMA (120 subjects, leave-one-out protocol) and 3DPEF (30

subjects) databases implies the advantage of the proposed approach when compared

with other local shape descriptors such as point signatures and surface curvature. In

their later work [56], authors try to select most discriminative features using the Ad-

aBoost algorithm. Their original features comprise: z-depths of regular mesh vertices

(545 dimensions), cosine signatures (2814 dimensions), and associative features com-

puted from 0th, 1st, and 2nd order Gaussian-Hermite moments (2814 × 3). Thus,

original input dimensionality is 11,801. AdaBoost algorithm is used to learn a cascade

of classifiers by converting the original multi-class face recognition task into a binary

classification problem. This conversion is performed by constructing inter-personal and

intra-personal features. Authors perform several recognition experiments on a 3D face

database that contains 123 subjects, with each subject having 37 (without glasses) or

38 (with glasses) scans with expression, pose, and illumination variation. AdaBoost

algorithm is trained on a separate training set in the experiments. They report that

AdaBoost-based fusion scheme is slightly better than fusing three different classifiers

(classifiers that are based on: z-depth, cosine signatures, and associative features) by

a weighted sum rule.

Wang et al. [57] propose a new 3D free-form representation scheme called Sphere-

Spin-Images (SSI). The difference between SSI and spin images is that, shape his-

tograms are calculated with the help of a local sphere centered on the point to be

represented, as opposed to a plane passing thorough all of the object. Since it is infea-

sible to match two facial models using the local features extracted from all 3D points,

authors select a subset of points around the center of the face where minimum princi-

pal curvature is below a certain threshold. Matching models is carried out by a voting

mechanism similar to that of spin images. However, authentication experiments are

performed on a very small 3D face database (SAMPL, 31 models of six subjects).
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2.7. Multiple Representation-based Approaches

Up to now, we have discussed a number of 3D face recognition approaches ac-

cording to their shape representations. However it is possible to combine different

matchers with the aim of increased classification rate. For this purpose, a number of

systems propose to fuse different shape- or texture-based individual matchers. The

most typical example in this category is to design two classifiers, one for shape and

the other for the texture modality, and fuse their opinions at the decision level. For

instance, Tsalakanidou et al. [58, 59] propose a classic approach where shape and

texture images are coded using PCA and their scores are fused at the decision level.

Their experimental findings confirms that using both of the modalities is better than

using shape or texture only. In their later work, Malassiotis and Strintzis [60] present a

pose correction and illumination correction scheme for 3D face recognition. Proposed

algorithm starts with locating the facial region by a statistical modeling of the head

and torso points using a mixture of Gaussians assumption [61]. After detecting the

head region, an automatic algorithm is used to locate the nose tip and the nose ridge

line. Using the coordinates of these features, pose correction is carried out. After pose

correction, illumination compensation is done by rendering a novel image illuminated

from a frontal direction. Given normalized shape and texture images, an embedded

hidden Markov model-based (EHMM) classifier produces similarity scores and these

scores are fused by a weighted sum rule. Experiments carried out on two databases

(each has 20 subjects) demonstrate that correction of pose and illumination increases

the correct identification rates.

Similar approach which uses PCA is given in [31], Chang et al. [31] use PCA-

based matchers for shape (depth image) and texture modalities. The outputs of these

matchers are fused by a weighted sum rule. The experimental results obtained on a

database containing 198 subjects reveal that fusing modalities achieves 97 per cent

identification rate whereas individual 2D and 3D modalities have 96 and 91 per cent

identification rates, respectively.

Subspace-based representations are frequently used for the fusion. BenAbdelka-
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der and Griffin [62] use Local Feature Analysis (LFA) technique instead of the classical

PCA to extract features from both shape and texture modalities. This classifier com-

bines texture and shape information with the sum rule. Another interesting variant

in this work is the data-level fusion. The depth image pixels are concatenated to the

texture image pixels to form a single vector. Linear discriminant analysis (LDA) is

then applied to the concatenated feature vectors to extract features. Authors report

100 and 98.58 per cent accuracies for the LFA-based and LDA-based fusion methods,

respectively, for a face database of 185 persons. These accuracies improve the best sin-

gle modality (texture) rates by 0.24 and 1.36 per cent for the LFA and LDA methods,

respectively.

A prominent example of shape and texture feature fusion is presented in [63].

Wang and Chua [63] select 2D Gabor wavelet features as local descriptors for the texture

modality, and use point signatures as local 3D shape descriptors. These feature-based

representations are matched separately using structural Hausdorff distance, and then

their similarity scores are fused at the score-level by using a weighted sum rule. The

authors had previously used 3D Gabor features instead of point signatures as local

shape descriptors in [64] in the same setting.

Maurer et al. [65] use the ICP algorithm to align two facial surfaces. After

alignment, a difference map is produced. Each pixel in the difference map represents

the distance between registered point clouds. Average pixel intensities are calculated

as the final dissimilarity between facial surfaces. A texture-based matcher is adopted

from a commercial product. Shape and texture scores are fused by the weighted sum

rule. However, authors simply discard the results of the texture matcher if the score of

shape-based classifier is very high. Verification experiments performed on the FRGC

v2.0 database reveal that by fusing shape and texture matchers, verification error can

be reduced by a factor of 2-2.5.

Pan and Wu [13] present a 3D face recognition system, which combines profile

and surface matchers. The three profile experts use one vertical and two horizontal

profile measurements. The surface expert is based on a weighted ICP-based surface
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matcher. The similarity scores from these four matchers are combined by the sum rule.

Obviously, their system is based on shape information only. Their recognition perfor-

mance on the 3DRMA database having 120 persons show that the surface matcher

which obtains 8.79 per cent error rate is better than profile matchers, and the fusion

of four experts reduces the error rate to 7.93 per cent.

Another type of shape-based expert fusion is proposed in [66]. This approach is

essentially a multi-region approach where different matchers responsible for the differ-

ent facial regions are combined at the decision level by the product rule. Local experts

compute the surface similarities of three overlapping regions around the nose by using

the ICP algorithm. The distance scores produced by three ICP-based surface matchers

are then combined. The local experts choose regions around the nose to obtain expres-

sion invariance. The recognition experiments conducted on the FRGC v2.0 database

show that the proposed multi-region approach obtains 91.9 per cent classification rate

in multiple probe experiments which is better holistic PCA (70.7 per cent) and ICP

(78.1 per cent) algorithms.

Although most of the studies that use decision level fusion of different matchers

that are trained on different modalities, it is also possible to combine the modalities

before the decision phase. A typical example is given in [14], where shape and texture

information is merged at the point cloud level thus producing 4D point features. A

variant of the ICP method is then employed to determine the combined similarity of

textured 3D facial shapes.

A two-level sequential combination idea was also used in [12] for 2D texture

images, where the ICP-based surface matcher eliminates the unlikely classes at the first

round, and at the second round, LDA analysis is performed on the texture information

to finalize the identification at the second round.

An interesting algorithm that uses feature fusion via hierarchical graph matching

(HGM) is presented in [67]. HGM method has the role of an elastic graph, which stores

local features at its nodes, and structural information in its edges. HGM is fitted to



22

both the texture image and shape features, since the shape image is registered to the

texture image. The scores produced from texture and shape HGM’s are then fused

by a weighted sum rule. Experimental results obtained on the FRGC v2.0 database

show that although texture modality significantly outperforms shape modality, the

integration of scores outperforms the texture modality.

Li et. al. [68] present a system which learns discriminative 2D and 3D features

using AdaBoost algorithm. Local Binary Pattern (LBP) features are first extracted

from 2D texture images and 3D depth images. LBP features are local descriptors and

their contribution to the identification task is learned automatically by the AdaBoost

algorithm. Using AdaBoost, a number of weak learners are produced from 2D and 3D

modalities. Each weak learner is responsible for a local region in the images. In the

first part of their experimental results, authors demonstrate that LBP-based features

are superior to a PCA-based baseline algorithm. In the second part of the proposed

algorithm, authors use the AdaBoost algorithm to fuse combined 2D and 3D features

at the feature level. Experimental results on a 3D face database which contains 2,305

images shows that AdaBoost-based learned fusion scheme obtains better identification

rate than sum rule-based fusion of PCA matchers.

Kakadiaris et al. [69] present a multimodal identification system which fuses

shape, texture and Infrared (IR) imagery. 3D shape-based identification algorithm fits

an annotated deformable model to a face, and computes the deformation image. The

deformation image is then coded using Haar wavelets. For the thermal image modality,

first a segmentation is carried out to locate skin pixels. After segmentation, a binary

image indicating the presence of vessels is computed around the forehead region. This

binary image thus represents the facial vasculature. The matching scores produced

from shape, texture, and thermal modalities are first normalized, and then fused using

product rule. 3D-shape based classifier obtains 99.3 per cent rank-1 identification rate

on the FRGC v1.0 database (gallery set: 152 images, probe set 608 images). On

a second database (University of Houston face database, 88 subjects, 1-5 scans per

subject, totally 356 scans, with expression variations, gallery set: 62, probe set: 223),

the fused system obtains 98.22 per cent rank-1 identification rate.
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[70] et al. uses three nose region-based surface matchers. Their approach au-

tomatically locates nose tip, nose bridge and inner eye corners using curvature in-

formation. Once these points are located, three overlapping regions around nose are

distinguished, and matched by the ICP algorithm. ICP scores are then combined by

product rule. Experimental results on FRGC v2.0 database show that using only nose

region is significantly better in terms of recognition accuracy even in neutral-to-neutral

comparisons when compared to depth image-based PCA approach.

Table 2.1 and Table 2.2 summarize the 3D face recognition algorithms according

to their representation techniques, and their coarse alignment methodologies. Many

systems use several fiducial landmark coordinates as input to their coarse alignment

algorithms. For each system, the details of the 3D face database used is given (column

DB). Each system is analyzed according to: 1) the experimental protocol used (column

P): recognition (R), or authentication (A), 2) whether they handle expression or not

(column E), 3) modalities used (column M): shape (S) or texture (T), 4) whether they

use fusion or not (column F), and 5) the year of publication (column Year).
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Table 2.1. 3D face recognition algorithms that were published in 2005.

Ref. Year Representation Database P E M F

[13] 2005 Point cloud, profiles 3DRMA A - S Y

[37] 2005 Depth image, Hausdorff FRGC v1.0, single probe RA - S -

[32] 2005 Depth images, NN/SVM 67 subjects, FSU R - S -

[67] 2005 Depth and texture image FRGC v2.0 A - ST Y

[64] 2005 2D/3D Gabor wavelets 30× 12, METRICOR-3D R - ST Y

[63] 2005 2D Gabor and point sign. 80× 12, METRICOR-3D R Y ST Y

[62] 2005 Texture and depth image 185 subjects, Rainbow250 RA - ST Y

[66] 2005 Point cloud, local ICP FRGC v2.0 R Y S Y

[25] 2005 B-splines, point clouds 83 subjects, VRT3D RA - ST -

[65] 2005 Point cloud, ICP FRGC v2.0 A Y ST Y

[48] 2005 Surface normal diff. map Synth. images, 102 subjects R Y S -

[31] 2005 Depth image, PCA FRGC v1.0, 198 subjects RA - ST Y

[50] 2005 2D/3D invariants 50× 3, Geometrix R - S Y

[27] 2005 Surface interpenetration UND, OSU SAMPL - - S -

[30] 2005 MDS-based surface rep. 30 subjects, 220 scans RA Y ST Y

[36] 2005 Depth images, PCA FRGC v1.0 RA - S -

[19] 2005 Point clouds + Local ICP,

Hausdorff

FRGC v1.0 R - S -

[23] 2005 Point cloud, deformation

image

FRGC v2.0 A Y S -

[68] 2005 Depth and texture im.,

LBP features

2305 scans, Minolta R - ST Y

[51] 2005 Facial curves, SVM 100 subjects, BERC db. R - S -

[69] 2005 Shape deformation, tex-

ture, IR image

FRGC v1.0, University of

Houston DB, 356 scans

RA - STIY

[38] 2005 Log-Gabor features UND database A - ST Y

[60] 2005 Depth and texture,

EHMM classifier

Two databases (20 sub-

jects)

R - ST Y
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Table 2.2. 3D face recognition algorithms that were published in 2006.

Ref. Year Representation Database P E M F

[18] 2006 Point clouds + ICP FRGC v1.0 and v2.0 RA Y S N

[34] 2006 Depth Images + DCV 123× 10, CASIA R Y S -

[42] 2006 Facial curves + Integral in-

variants

UND (35 subjects) R - S -

[21] 2006 Segmented ICP,

PCA(2D/3D)

FRGC v1.0 RA - ST Y

[22] 2006 Point clouds + ICP 40 × 9, ZJU-3DFED, In-

speck Mega Capturor

R Y S -

[41] 2006 Facial profiles 32 subjects, 3Q stereo sys-

tem

RA Y S Y

[12] 2006 Point cloud 100 subjects MSU DB +

100 subjects USF DB

RA - ST -

[24] 2006 Point cloud + deformable

model

DB1: 10 × 21, DB2 (from

FRGC v2.0): 90× 6

R Y S -

[26] 2006 Deformable model (shape

and texture)

110 subjects, Geometrix

FaceVision.

R - ST -

[56] 2006 Regular mesh, cosine sig-

natures, G-H moments

110×38 Minolta VIVID 910 R Y S Y

[70] 2006 Local ICP FRGC v2.0 RA Y S Y

[47] 2006 Depth images, curvatures,

PCA

46× 2 R - S -

[49] 2006 Fourier descriptors. 120× 10 R - S -

[17] 2006 Point Cloud + ICP 50 3D full faces, 400 2.5D

faces, (8 scans per subject)

A Y S -
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3. 3D Face Preprocessing, Alignment and Registration

The 3D face recognition problem can be considered as a special case of a more

general 3D object recognition problem. An important distinction of human faces when

compared to other 3D objects is that they all share common attributes and are similar

to each other. In 3D object retrieval, one aims to categorize 3D objects that have large

dissimilarities, such as different animals, archeological objects, or items of furniture. As

opposed to this, face recognition presents a different challenge: All surfaces are similar

in that there is a nose, two eyes, a mouth, and a chin. It is needed to characterize more

subtle differences in order to differentiate between human faces. Due to this important

distinction, the registration problem becomes a crucial step in 3D face recognition

systems. Although there are methods which do not need any registration in the object

recognition systems, the similarity of human face shapes makes it a necessity to first

align and register facial surfaces before proceeding to feature extraction and recognition

steps.

In this chapter, we present our registration methods in detail. Registration can

be considered as a two step procedure: 1) alignment and 2) dense point-to-point corre-

spondence establishment. Our approach is based on a generic face template. Most of

the previous studies register the probe image to all of the gallery images in the gallery

set. However, this approach may become infeasible in actual systems since the registra-

tion process is computationally very intensive. Therefore, we first construct an average

face model and register all of the training images prior to the identification phase. At

the identification phase, registering the client image with the average face model is

sufficient to establish correspondence with gallery images. We also propose two differ-

ent registration schemes using this methodology. The first one uses iterative closest

point approach to find optimal translation and rotation parameters, and the second

one additionally employs warping in order to handle non-rigid local deformations.

In this chapter, we first explain preprocessing modules which are responsible

for noise removal, smoothing, and hole filling. Then, we provide our alignment and
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registration algorithms starting with average face model construction algorithm. Com-

parative analysis of registration methods will be given in Chapter 7.

3.1. Noise removal, Smoothing, and Cropping

3D acquisition devices generally output raw 3D point measurements that are

sampled from the surface of the scanned object. According to the type of the 3D sensor,

these point measurements may contain noise, or, in some cases, the device may not be

able to obtain a measurement. Currently available 3D face sensors generally produce

small to large surface protrusions, and may not measure 3D points on the areas that

have low reflectance, such as eyebrows. In order to deal with noisy protrusions over the

facial surface, a two phase filtering methodology is applied. In the first phase, median

filtering is applied to remove impulse-like protrusions. Input 3D data is provided in a

2D matrix format where each entry in the matrix contains the z-depth measurement of

a point. Each row and column of the matrix corresponds to specific x and y coordinates,

respectively. In this form, input data can be considered as a range image. This input

data representation makes it easy to apply 2D filters. This representation makes it also

easy to interpolate the depth coordinates of missing points to some extent. We apply

median filtering in order to fill small holes: If a point in the 2D matrix does not have

z-depth measurement, we interpolate it by using the median value of its neighbors’ z-

depth values. The neighborhood is determined by the size of the median filter mask. In

summary, the first preprocessing phase eliminates the large protrusions and fills small

holes with the aid of median filtering. In the second phase, we apply mean filtering in

order to smooth the facial surface. Figure 3.1 shows sample outputs of the median and

mean filtering operations.

In a typical scanning scenario, the acquired face data contains non-face regions

such as shoulders, neck, or background clutter. It is therefore needed to isolate the

central facial region. For this purpose, a 3D face detector can be used. However, since

our main concern is not to detect the facial region, a simple method is used to crop the

central facial region with the help of manually labeled nose tip coordinates. Cropping

is performed by discarding any 3D point outside a spherical volume which is centered
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Figure 3.1. Original noisy face, median filtered version, smoother version.

on the nose tip. Figure 3.2 shows a sample cropped face.

Figure 3.2. Original face, cropped shape and texture images.

3.2. Alignment

Careful alignment and registration of facial surfaces are crucial to the performance

of a 3D face recognizer. In this thesis, alignment refers to the transformation of a

given facial surface to a common coordinate system such that one can define similarity

between any two facial surfaces. Our approach is based on aligning each facial surface

to a common face model. It is possible to compare two facial surfaces which are aligned

to a common face model. Most of the previous approaches [16, 19, 21, 22, 66] align a

given probe face to each gallery image directly and compute the similarities. However

this approach is computationally expensive since it performs N registration operations

if there are N gallery images in the training set. If all of the gallery images are

previously registered to a common face, then it is sufficient to register the given probe

image to the common face once. Therefore, using only one registration operation at the
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identification phase, it is possible to compare the probe image to all of the previously

registered gallery images. Most of the current systems now start to employ a similar

scheme of using a generic face for registration [18, 23].

We will define an average face model (AFM) and construct it off-line from a given

set of training faces. In order to construct the AFM, several manually located facial

landmark coordinates of the training faces are needed. We have labeled seven facial

landmarks (inner and outer eye corners, nose tip, and mouth corners) on each training

face. Given a set of training images and their landmark coordinates, the AFM can be

constructed as follows:

1. Computation of average landmark locations: If all of the training faces were per-

fectly frontal and had a same scale with a gaze direction parallel to the z-axis,

then it would be enough to employ a simple averaging to compute the average

landmark locations. However, in practice, some of the facial images may have

slight rotation and scale variations, which may lead to incorrect average landmark

coordinates. Therefore, it is useful to first transform faces into a canonical posi-

tion. In order to compute average landmarks, we employ a two phase procedure.

In the first phase, we average the individual landmark coordinates in order to

compute a rough estimation of the final average landmarks. This phase assumes

that majority of faces have the same scale and orientation parameters. In the sec-

ond phase, each set of landmark coordinates in the training set is transformed to

the estimated average locations. This accomplished by Procrustes analysis [71].

Procrustes analysis finds the best translation, rotation and scale parameters in

order to transform one set of measurements to another set of measurements in

the least squares sense. Once all of the transformed landmark coordinates are

found, the final average landmark locations are found by averaging them.

2. Surface fitting and average facial surface computation: Once the locations of the

average face landmarks are found as explained in the previous stage, each train-

ing face is transformed to these landmarks with the help of Procrustes analysis.

After this transformation, faces can be considered as fully frontal with the same

scale, with a gaze direction parallel to the z-axis. After transformation, faces are
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resampled at regular (x,y) intervals by using linear interpolation. After resam-

pling, the average facial surface can be computed by averaging the z-depth values

of the training faces at regular (x,y) positions. Figure 3.3 shows the average face

model together with its landmark positions.

Figure 3.3. AFM and its seven landmarks.

Once the AFM is computed, we can proceed to the alignment procedure. The

alignment procedure consists of two phases: coarse alignment and fine alignment.

Coarse alignment is needed for the correct convergence of the fine alignment phase.

Our aim in the alignment step is to align a given face image to the AFM by finding the

transformation parameters such as translation and rotation matrices. If the locations

of several facial landmarks of a given face is known, Procrustes analysis can be used

to align the face to the AFM. If only the nose tip coordinate is known beforehand,

then simply translating the face to the AFM model such that nose tips coincide may

suffice. Either method can be used in the coarse alignment phase. After coarse align-

ment which operates on landmark coordinates only, a more detailed alignment step

is necessary. In this fine alignment step, all of the 3D points over the facial surface

is taken into account to better align the face to the AFM. For this purpose, Iterative

Closest Point (ICP) method is used. ICP algorithm iteratively finds the best rotation

and translation parameters to align a given face to the AFM [72].
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3.3. Dense Correspondence Establishment

At each iteration, the ICP algorithm finds pointwise correspondences between

the given face and the AFM. Correspondences are established by searching the nearest

point in the given face to a point in the AFM. Once the ICP algorithm converges,

the final correspondences established for each AFM point can be considered as the

final dense point-to-point correspondence between a face and the AFM. Thus, ICP

algorithm essentially finds a mapping for each AFM point to its corresponding nearest

point in the given face. Given any two faces, their correspondence can be found via

their correspondences with the AFM. For instance, let pi
AFM be the ith point in the

AFM, and pi
F1

and pi
F2

be the corresponding points (i.e., nearest points) to the pi
AFM

in faces F1 and F2, respectively. Then, one can say that points pi
F1

and pi
F2

are the

corresponding points. Using this method, if there are M points in the AFM, then a

dense point-to-point correspondence between subsets of M points in any two faces can

be established.

Figure 3.4. AFM-based ICP registration.

ICP-based registration handles only rigid transformations. However, human faces

may exhibit local non-rigid deformations especially around the mouth region. There-
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fore, if such variations are present in the input face, the use of the ICP-based reg-

istration method may obtain sub-optimal registration performance. In order to deal

with such problems, warping-based registration can be utilized. This warping-based

alternative registration method may deform a facial surface to find dense pointwise

correspondences between faces. For this purpose, Thin Plate Spline (TPS) warping

method can be used. TPS non-linearly warps facial surfaces such that their facial

landmarks coincide exactly, and the rest of the surface points are transformed as a thin

plate. In order to apply TPS-based registration, several facial landmarks should be

known beforehand. The general outline of the TPS-based registration algorithm can

be stated as follows:

1. Compute warping parameters: Given the AFM and a facial image together with

their landmark locations, find the warping parameters using the TPS method.

Finding warping parameters depends only on the landmark coordinates.

2. Warp the face to the AFM: Once the warping parameters are known, apply the

warping function to all of the points in the given face to warp it to the AFM.

3. Dense point-to-point correspondence establishment: Given the warped input face

and the AFM, find the nearest points in the input face to every point in the AFM.

Figure 3.5 shows the effect of TPS warping on a sample face.

(a) (b) (c)

Figure 3.5. (a) AFM, (b) the original face, and (c) the warped/cropped version of the

original face.



33

4. Representation and Feature Extraction

The 3D face data obtained from the sensors originally contains only 3D point

measurements. Representing facial data using 3D points is just an example among

various possible representation schemes. In this chapter, we present different repre-

sentation schemes including point clouds, surface normals, surface curvatures, facial

profiles, 3D voxels, depth images, and 2D intensity images.

According to the representation schemes used, several feature extraction meth-

ods can be applied to construct feature spaces. For example, statistical dimensionality

reduction techniques such as PCA or LDA can be applied to depth images, or Ga-

bor wavelets can be used to compute feature coefficients from 2D intensity images.

Additionally, (x,y,z) coordinates can also be viewed as features for point cloud repre-

sentation, or transformations can be applied to extract more compact and descriptive

features.

Therefore, face patterns that will be recognized are constructed using a two-level

scheme: 1) by choosing the representation method, and 2) by choosing the feature

extraction method. As stated previously, chosen feature extraction method depends

on the representation technique used.

The use of point clouds [66, 12, 70], facial profiles [39, 40, 41], or depth images [31,

33, 34] as face representation methods are very common in 3D face recognition systems.

Prior to our work, surface normals were not used to describe registered faces. Recently,

their use is also presented in [48, 49]. Similarly, surface curvatures are heavily used in

segmentation and facial feature localization, but their usage for the representation and

identification of human faces is very rare [46]. Here, we attempt to define similarities

between faces using their mean, Gaussian curvatures and their principal directions.

The voxel-based volumetric face representation scheme is also novel, and first studied

in [73]. Together with the use of different feature extraction techniques, we form a large

number of 3D face recognizers. Therefore, a thorough comparative analysis of various
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3D face recognition algorithms is made. In addition, we also use them as individual

face experts in a fusion setting.

4.1. Point Cloud Representation

Let Λi be a 3D face of the ith individual. In the point cloud representation

method, Λi is represented by the set of 3D point coordinates: ΛP
i = {pi

1, p
i
2, ...p

i
m},

where pis are the (x, y, z) coordinates of each 3D point and m is the number of points

in the face (See Figure 4.1 for sample point clouds). After the registration phase, we

know that each 3D point has a corresponding point. So, for example, if the kth point

pi
k is the nose tip in face Λi, then the point pj

k in face Λj is also the nose tip.

Figure 4.1. Two point cloud samples.

4.1.1. (x,y,z) Coordinate Features

The natural feature that can be extracted from point cloud representation is the

set of (x,y,z) coordinates of the ordered 3D points. We define the distance between two

faces Λi and Λj as: D(ΛP
i , ΛP

j ) =
∑m

k=1 ||pi
k − pj

k||, where ||.|| denotes Euclidean norm.

This distance function can be viewed as a discrete approximation of the volumetric

difference between two facial surfaces.
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4.1.2. ICA of Point Clouds

Independent Component Analysis (ICA) is a powerful unsupervised statistical

method which is frequently used in 2D face recognition systems [74]. ICA features

have been tested for 3D face recognition in [33, 32, 73, 75]. The sensitivity of ICA to

the high-order relationships among pixels makes it an attractive alternative to other

methods such as PCA. There are two ICA variants: ICA Architecture I and ICA

Architecture II [74]. In our work, we use the second architecture, and refer to it as

ICA. Basically, given a training image set X, where each column in X represents

different faces, ICA computes the matrices W−1 and U such that X = W−1U . Here,

columns of W−1 are the basis images (also called the mixing matrix ), and columns of U

are the coefficients of the basis images in W−1. ICA attempts to make the outputs, U ,

as independent as possible. In [4], FastICA method [76] has been used to compute the

W−1 matrix. Once the basis images (W−1) are computed, the representational code

for test images is obtained by: Utest = WXtest. The columns of Xtest and Utest contain

test images and found ICA coefficients, respectively. In practice, instead of applying

ICA directly on the high-dimensional image features such as pixels, PCA analysis is

first performed to reduce the dimensionality the columns in matrix X.

For the point cloud representation, all (x,y,z) coordinates of a face are concate-

nated to a single vector. Its dimensionality is then reduced by applying PCA to the

training set of point-cloud vectors. Each face is then represented by the first K PCA

coefficients. The columns of the data matrix X for the ICA analysis are constituted of

PCA coefficient vectors. Then, the FastICA algorithm described by [76] is applied to

obtain the basis and the independent coefficients.

4.1.3. NMF of Point Clouds

Nonnegative Matrix Factorization [77] is a matrix factorization technique which

factorizes a given data matrix V into two matrices W and H such that every coefficient

in matrices W and H are non-negative. Formally, given an n×m data matrix V that

contains n-dimensional data vectors in m columns, the NMF technique produces W
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and H matrices such that V = WH, where W is an n × r basis matrix, and H is an

r ×m coefficient matrix. Non-negativity constraint on W and H matrices leads to a

part-based representation of the input images.

W and H matrices are computed iteratively and in [4], we use the multiplicative

update rules presented in [77]. Parallel to the preprocessing stage of ICA decompo-

sition, we first apply PCA to reduce the dimensionality of the raw data (point cloud

coordinates) and place the first M PCA coefficients of each face into the columns of

the data matrix. We add a constant to the PCA coefficients to obtain a nonnegative

data matrix.

4.2. Surface Normal Representation

Surface normals are features inspired by differential geometry of surfaces and they

actually encode the rate of change of the surface over local patches. Surface normals

can be used as 3D features. For each 3D point on the facial surface, surface normals

are computed with the help of Delaunay triangulation. For each triangular polygon,

we compute the polygon’s surface normal using its corner points. For each vertex

in the triangulated face data, we can compute the surface normal by averaging the

neighboring polygon’s surface normals.

4.2.1. Raw Surface Normal Features

At each 3D point on the facial surface, we encode the points using their unit

surface normal vectors: ΛN
i = {ni

1, n
i
2, ..., n

i
m} where ni

ks are 3D unit normals: ni
k =

{nx, ny, nz}. The distance between two registered facial surfaces is then described by:

D(ΛN
i , ΛN

j ) =
∑m

k=1 ||ni
k − nj

k||. Figure 4.2 shows all of the surface normals calculated

for a given facial surface.
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Figure 4.2. Surface normals of a sample face surface.

4.2.2. LDA of Surface Normals

Once the surface normals of all of the registered face vertices are computed,

concatenation of them produces a single feature vector. Linear discriminant analysis

can be applied to these feature vectors to obtain a discriminative feature subspace.

Then LDA coefficients in the reduced subspace can be used as features. In order to

deal with the large dimensionality of the input feature vectors, PCA is first applied, and

then LDA is used to extract final coefficients. The distance between faces is calculated

by the Euclidean norm.

4.3. Facial Profile Set Representation

Facial profiles are defined as 2D curves extracted from the facial surface [39, 40,

41]. Figure 4.3 shows seven vertical profiles of a sample face. We locate the central

profile of the AFM using the nose region, and use dense registration information to

locate central profiles for every test face. The direction of the central profile on the

AFM is found by the principal directions of the (x, y) coordinates of the points over the

nose region (See Figure 4.4.a). Once the central profile is found, it is straightforward to

locate left/right lateral profiles. The algorithm to locate central and six lateral profile

curves (three left and three right) is presented in Figure 4.5.

Before matching profile curves, we need a registration between them. Registration
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Figure 4.3. Seven equally spaced vertical profiles.

of profile contours is performed by translating profile curves using the nose tip coordi-

nate. A spline is fitted to the profile curve, and it is regularly sampled in order to be

able to compute Euclidean distances between two profiles. Figure 4.4.b illustrates the

alignment and regular sampling operations. In this work, we use seven equally spaced

vertical profiles. The distance between faces Λi and Λj is defined as the sum of the

distances between each corresponding profile curve.

(a) (b)

Figure 4.4. (a) Finding central profile for the AFM, (b) Aligning profile curves

4.4. Curvature-based Representation

Curvature of a surface in 3D measures the amount of local bending. Curvature-

related descriptors are attractive since they are invariant to rotations, and therefore,
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Algorithm: Facial Profile Curve Set Extraction

Function: Locates central and lateral profile curves on the AFM

Input:

Average face model: a set of points Ω = {p1, . . . , pm},
Nose tip location: n = {nx, ny, nz}
Lateral profile spacing: l

Output:

Central and three left and right lateral profile curves: C1, . . . , C7

where each Ci = {c1, . . . , ck} contains 3D points

1 FindProfileCurves(Ω,n,l)

2 Find topmost nose points, Ωn ∈ Ω, whose z-depths are in the range:

[nz, nz − t], where t is depth range value.

3 Apply PCA to the (x,y) coordinates of points in Ωn.

Compute the maximum (dmax) and minimum (dmin) principal directions.

4 Select a subset of points, C1, whose projections to the xy-plane are

nearest to the dmax. C1 is the central profile curve.

5 Obtain the xy- projections of three left and three right lateral profiles

curves using l and dmax. Repeat Step.4 for all lateral profile curves.

6 Return: C1, . . . , C7.

Figure 4.5. Pseudocode of the profile set finding algorithm.

they are frequently used in segmenting 3D surfaces [78]. There are different forms

of curvature-based descriptors such as minimum/maximum curvatures, their principal

directions, mean/Gaussian curvatures, and shape-index values. These descriptors can

be used to represent facial surfaces, and are suitable as discriminative features.

4.4.1. Principal Directions

Given a point on a surface, there are many curves passing through that point,

and each of them has a curvature. Among these curves, two extremal curves have a
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special importance: the one that has the minimum curvature, and the one that has

the maximum curvature. Therefore, each point on a surface can be characterized by

its minimum (κ1) and maximum curvature (κ2) values, and their directions. These

directions are called principal directions (ρ1, ρ2), and are expressed as vectors in 3-

space. Given two registered facial surfaces, we compute the distance using minimum

principal directions as: D(Λρ
i , Λ

ρ
j ) =

∑m
k=1 ||ρi

k − ρj
k|| where ρ may represent either the

minimum principal direction or the maximum principal direction. The final distance

is computed by the summation of these two distances.

4.4.2. Mean/Gaussian Curvatures

Mean and Gaussian curvature values are commonly used surface descriptors in

the computer vision community and they are related to the minimum and maximum

curvatures [43]. Let κ1 and κ2 be the maximum and minimum curvatures, respectively.

Then mean (H) and Gaussian (K) curvatures are defined as:

H =
1

2
(κ1 + κ2) (4.1)

K = κ1κ2 (4.2)

The distance between any two registered facial surfaces can be computed as: D(ΛH
i , ΛH

j ) =
∑m

k=1 ||H i
k−Hj

k|| for the mean curvature. Similarly, Gaussian curvature-based distance

can also ce computed.

4.4.3. Shape-index

A popular method to characterize the surface patches is the shape index. Shape

index is calculated by:

S =
1

2
− 1

π
arctan(

κ1 + κ2

κ1 − κ2

) (4.3)
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where κ1 > κ2. κ1 and κ2 are the principal curvatures. S has a range of [0, 1].

Note that for planar surfaces where κ1 = κ2, S is undefined. Figure 4.6.c illustrates

the shape-index values of a sample face. 3D faces can be represented by the shape

index values at each vertex. For instance, a 3D face image can be represented by:

ΛS
i = {si

1, s
i
2, ..., s

i
m} where sis are shape index values. The distance between two faces

in the shape-index representation is calculated by D(ΛS
i , ΛS

j ) =
∑m

k=1 ||si
k− sj

k||. In the

distance computation, the vertices having undefined si
j’s are simply discarded.

(a) Texture (b) Depth (c) Shape-index

Figure 4.6. Sample (a) texture, (b) depth and (c) shape-index images.

4.5. Depth Images

The facial data provided by 3D acquisition devices usually covers the surface

which is directly visible by the camera of the sensor. Due to this principle of operation,

facial data can be said to have 2.5D property: each (x,y) coordinate pair has at most

one z-depth measurement. This means that we usually have the depth data of the

visible region from the camera’s point of view. Therefore, it is natural to project the

2.5D data to an arbitrary image plane without significant loss of information. This

procedure produces the so called range image or the depth image where the depth

data is formatted similar to 2D intensity images. The only difference is that, in depth

images, pixel intensities denote the z-depth of the object scanned. Figure 4.6.b shows

a sample depth image formed in this way. In practice, z-depth measurements may not

be available for all of the pixels in the depth image. In this case, linear interpolation

may be used to obtain measurements at these regions. Once the 2.5D point clouds are

converted to 2D depth images, many of the feature extraction techniques such as DCT,
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DFT, and ICA can be applied to range images.

4.5.1. DFT/DCT of Depth Images

Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT) are

data independent methods which are frequently used in data representation and classi-

fication studies. Low-frequency coefficients extracted from DFT and DCT algorithms

are especially important in representing highly-correlated data. Given a a depth image

I(x, y), we calculate its DFT and extract low-frequency coefficients to form a feature

vector by concatenating the real and imaginary parts of the coefficients. Likewise, we

compute the global DCT and obtain a feature vector of real DCT coefficients. Details

on DFT/DCT-based face representation scheme can be found in [73, 75].

4.5.2. ICA of Depth Images

The ICA analysis for depth images follows a similar procedure as in the ap-

plication of ICA to point cloud representation. The columns of a depth image are

concatenated to form a single one-dimensional vector, one for each face. This data is

subjected to PCA reduction and ICA decomposition. Figure 4.7.a shows the first 10

basis functions derived from principal component analysis, whereas Figure 4.7.b shows

10 independent face components. PCA only captures the second order variations due

to the general face geometry, while ICA faces represent individual faces within the

database fairly well. One can observe more face-like structures from the ICA basis

images.

4.6. 3D Voxel Representation

Point cloud data can be converted to a voxel representation by defining a 3D grid

of size N ×N ×N . The grid is positioned such that the center cell coincides with the

center of the point cloud data. Voxel function V (x, y, z) takes the value of 1 if there is

at least one 3D point in the corresponding cell, otherwise it is set to 0. For facial point

cloud data, binary voxel function attains 1 at the surface region.
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(a) PCA bases (b) ICA bases

Figure 4.7. (a) First 10 basis faces obtained from PCA applied on depth images, and

(b) Basis faces from ICA of depth images (Taken from [4]).

Given a binary voxel structure defined by the function V (x, y, z), its continuous

version can be obtained by the distance transformation. Based on the Manhattan

distance between voxels, 3D distance transformation is applied to propagate the infor-

mation present in the facial surface to the neighboring cells. Distance function is zero

at the surface, and increases as we move away from the surface. It is possible to visu-

alize the obtained continuous 3D voxel function Vd(x, y, z) through slices, as depicted

in Figure 4.8.

Figure 4.8. Slices from the voxel representation based on the distance transform

(Taken from [4]).

4.6.1. DFT of Voxel

3D DFT is applied to the continuous voxel function Vd(x, y, z) which was obtained

by the distance transform. The low-pass real and imaginary DFT coefficients are used

as features. Details of the DFT-based representation of voxels can be found in [73, 75].
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4.7. 2D Intensity Images

For each 3D face, we have its 2D color texture information, which is also densely

registered to its shape image. In other words, for each 3D point we have the corre-

sponding RGB intensity values. We make use solely of the gray-level information in the

algorithms. Therefore, we first convert the color image to gray-scale, and then apply

histogram equalization to remove some of the global illumination effects.

4.7.1. Pixel Features

It is well-known in the face recognition community that if faces do not contain

significant illumination differences, it is possible to use directly the pixel information as

features. However, in this case, dimensionality reduction should be carried out to de-

crease the dimensionality. This approach provides a baseline recognition performance.

4.7.2. PCA of 2D Intensity Images

Eigenface method [79] is one of the most popular 2D intensity-based feature

extraction algorithm in the face recognition community. Therefore, we choose to extract

and use PCA coefficients for intensity images.

4.7.3. 2D Gabor Wavelet Features

A biologically motivated representation of face images is to code them using

convolutions with 2D Gabor-like filters. In order to represent face images using Gabor

filters, we have placed a square grid over the face region in the image. Since the

intensity images are aligned in the registration phase, we do not need to employ a

time-consuming facial feature localization algorithm. At each grid point on the image

we have convolved the image with Gabor kernels. The set of convolution coefficients

for kernels of different orientations and frequencies at one image pixel is called a jet

[80]. A jet contains responses of convolutions in an image, I(~x) around a given pixel

~x = (x, y). It is based on a wavelet transform, defined as a convolution with a family
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of Gabor kernels

ψj(~x) =
k2

j

σ2
e−

k2
j

x2

2σ2 [ei ~kj~x − e−
σ2

2 ] (4.4)

in the shape of plane waves with wave vector ~kj , restricted by a Gaussian envelope

function. We employ a discrete set of 5 different frequencies, with v = 0, . . . , 4, and 8

orientations, with w = 0, . . . , 7,




kjx

kjy


 =




kv cos ϕµ

kv sin ϕµ


 , kv = 2−

v+2
2 π, ϕµ = µ

π

8
, (4.5)

with index j = µ + 8v. The width σ/k of the Gaussian is controlled by the parameter

σ = 2π. Therefore, in Gabor-based representation scheme we obtain a feature vector

of dimensionality M ×N × 40 where M ×N is the rectangular lattice resolution.

(a) (b)

Figure 4.9. (a) Rectangular grid points, and (b) 2D Gabor kernels for five different

frequencies and eight different orientations.
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5. Selection of Local Features/Descriptors for Face

Recognition

Face recognition algorithms can be categorized according to their use of local

or global features. Local and global approaches are distinguished by the size of the

region of interest. To clarify this statement, consider the PCA approach. Although

PCA-based methods are frequently cited as global (holistic) approaches, it is possible

to use PCA to design a local feature-based algorithm by applying PCA to local regions

of interest, i.e, by simply dividing the whole facial image into rectangular patches.

Therefore, the size of the region that is used to extract features determines whether

the algorithm should be considered as global or local.

At the early stages of the face recognition research, global approaches were pre-

ferred since they usually provide more compact features. Later on, when the researchers

tried to overcome the problems caused by pose, expression, and illumination changes,

local approaches received more attention. A prominent example can be given by the

frequent use of 2D Gabor wavelets for facial feature extraction. Usually, 2D Gabor

wavelet features are extracted from salient facial points. Alternatively, several systems

use full pixelwise convolutions. However, it is crucial to determine which facial regions

provide most discriminative information in order to: i) increase the identification accu-

racy, ii) reduce the computational load of the feature extraction phase, and iii) reduce

the sensitivity of the system to various variations such as facial expressions.

For this purpose, we aim to select the most useful local features from both 2D and

3D facial data using the formalism of feature selection. In the next section (Section 5.1),

we propose a novel, local feature-based face representation method based on two-stage

subset selection where the first stage finds the informative regions and the second stage

finds the discriminative features in those locations. The key motivation is to learn

the most discriminative regions of a human face and the features in there for person

identification, instead of assuming a priori any regions of saliency. We use the subset
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selection-based formulation and compare three variants of feature selection and genetic

algorithms for this purpose. In Section 5.2, we extend the fundamental idea presented

in Section 5.1 to the learning of 3D surface features for the 3D face recognition task.

5.1. Feature Selection for 2D Intensity-based Face Recognition

The main idea in a feature-based face representation scheme is the extraction and

analysis of local facial features. Salient facial features are first found and then used

to code a face. Coding is generally carried out by extracting local image descriptions.

2D Gabor-like filters are found to be very suitable as local descriptors because of their

robustness against translation and rotation [81, 82, 83]. It is essential to analyze the

contribution of each feature component to the recognition performance. Important

parameters of 2D Gabor wavelets are: 1) spatial location of the kernel in the image, 2)

kernel orientation, and 3) spatial kernel frequency.

Several studies have concentrated on examining the importance of the Gabor ker-

nel parameters for face analysis. These include: the weighting of Gabor kernel-based

features using the simplex algorithm [84], the extraction of facial subgraph for head

pose estimation [85], the analysis of Gabor kernels using univariate statistical tech-

niques for discriminative region finding [80], the weighting of elastic graph nodes using

quadratic optimization [86], the use of Principal Component Analysis (PCA) to deter-

mine the importance of Gabor features [87], boosting Gabor features [88] and Gabor

frequency/orientation selection using genetic algorithms [89]. In almost all previous

studies, we see two fundamental assumptions: First, the contribution of each feature

dimension is analyzed independently of others (independence assumption); and second,

Gabor kernel placement over the face region is strongly affected by prior knowledge

(saliency assumption). Placing the kernel at visually salient facial points, e.g., eyes,

mouth, etc. is one of the frequently used methods. The first assumption of indepen-

dence of features is not valid, and one should incorporate more complex methodologies

to analyze the relationship between the features. Moreover, the effectiveness of the

fiducial points should also be studied systematically, and a better solution would be to

learn these locations from given training data for a given task. In our previous work,
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we have analyzed topographically important facial locations for both pose estimation

and identity recognition [7], and used feature selection methods to extract optimal local

image descriptor parameters for frontal face recognition [6]. We have also used such

features to calculate bottom-up saliency in a selective attention-based face recognizer

[90].

5.1.1. Proposed Approach: Learning the Best Features

Our aim is to relax the independence and saliency assumptions for face recogni-

tion by reformulating the optimal Gabor basis extraction problem as a feature subset

selection problem. Doing this, we allow our approach to detect more complex rela-

tionships and correlations between feature dimensions, thus extracting a near-optimal

Gabor basis. For this purpose, we have devised a two-stage subset selection mecha-

nism [5]. In the first stage, a genetic algorithm is used to find the most informative

facial locations. Depending on the locations of these image descriptors, useful fre-

quencies and orientations should be found since specific parts of a face contain high

frequency information (e.g., eyes) and some other parts contain low frequency informa-

tion (e.g., cheeks). Orientation selectivity also depends on the location of the Gabor

kernels. Therefore, in the second stage, a floating search method is used to learn the

individual parameters, that is, frequency and orientation, of Gabor wavelet-based local

descriptors. The overall diagram of the proposed approach is shown in Figure 5.1.

In feature selection, the aim is to select a subset from a given set such that the

classification accuracy of the selected subset is maximized [91]. We use sub-optimal

sequential and parallel subset selection algorithms in our system. As sequential selec-

tion algorithms, best-individual selection algorithm (BIF), sequential forward selection

(SFS), and sequential floating forward search algorithm (SFFS) are used [91]. BIF

approach simply selects the best k features and performs well only if each local de-

scriptor contributes independently to the discrimination performance. In SFS, at each

step, we add the most significant feature with respect to the previously selected subset.

SFFS algorithm takes this idea one step further by backtracking to remove the least

useful features from an existing feature subset to overcome the nesting effect. As a
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Figure 5.1. Overall diagram of our approach.

parallel subset selection method, we use a genetic algorithm where a chromosome rep-

resents a subset and a chromosome’s fitness is calculated according to the classification

performance of its subset.

We have designed three different methods to learn the important facial locations:

lattice-based sampling, landmark-based sampling, and dense sampling. In lattice-based

sampling (Figure 5.2a), we place a rectangular lattice of size N×N over the central part

of the face region. At each point in the lattice, M different Gabor kernel convolutions

are carried out composed of v different frequencies and u different orientations with

M = u × v. The concatenation of the magnitudes of the complex outputs of Gabor

convolutions forms a feature vector for the whole face. In landmark-based sampling,

we have identified S = 30 salient locations over the face region commonly used by

researchers as seen in Figure 5.2b. The aim of constructing such a sampling scheme is

to test our prior information as to whether these points are really discriminative and to

determine whether these points are really important for recognition. With lattice-based

and landmark-based sampling, in order to determine the important locations among

these points, we perform BIF, SFS, and SFFS-based subset selection. We consider each
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(a) (b) (c)

Figure 5.2. Different sampling types shown over the mean image: (a) lattice-based

sampling, (b) landmark-based sampling, and (c) dense sampling.

feature vector of the ith face location as a single dimension. As a stopping condition,

we have defined the cardinality of the resulting subset to a value d = 15.

Dense sampling uses full convolutions at each pixel as shown in Figure 5.2c.

This dramatically enlarges the cardinality of the feature set. SFS- and SFFS-based

algorithms become infeasible for this search space. In order to cope with this problem,

we have employed a GA-based subset selection algorithm. In our GA formulation,

each gene in a chromosome represents the position of a Gabor kernel. We define the

dimensionality of the selected subset as d = 15; so, each chromosome consists of d genes.

The fitness function depends on the classification accuracy of the selected subset.

Once we find the locations of features, we determine the most useful orientations

and frequencies of the Gabor kernels at the selected locations, using SFFS. The first

stage returns a subset Xloc of dimensionality d×M . In the second stage of frequency

and orientation selection, we search for a subset Xfo of Xloc where |Xfo| << |Xloc|.
Note that each dimension corresponds to a specific frequency and orientation pair of

the outputs of a previously selected Gabor kernel at some specific location. Again,

the feature selection criterion in SFFS is the supervised classification accuracy of the

selected subset.
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5.1.2. Feature Selection Results

In our experiments, we have used a subset of the FERET face database [92]

which contains 146 subjects having four frontal images. Faces contain facial expression

and illumination variations. Each experimental session contains two training, one

validation, and one test image, and we present the average identification results of

four sessions. After training with two images per person, the validation set is used

to determine when to stop training (that is, adding features) and the test set is used

to report the final accuracy. The classifier is the nearest neighbor classifier. We use

paired t-test to compare the accuracies for statistically significant difference.

5.1.2.1. Kernel Location Selection. First experiments on kernel location selection were

carried out using the lattice-based sampling method. A 7× 7 lattice is positioned over

the face. Gabor kernels are 15 × 15 pixels wide, and contain five frequencies and

eight orientations [81]. At each lattice point i, we have extracted the local feature

vector, υi of dimensionality |υi| = 40. Combining all local feature vectors, we obtain a

global feature vector, Φ = {υ1, υ2, ..., υk} where k = 49 for lattice-based sampling. The

cardinality of Φ is |Φ| = 49 × 40. Let ΦLOC be the selected subset of dimensionality

d, ΦLOC = {υi : i ∈ 1, ..., k}, where d is set to 15 in our experiments. Notice that we

treat each local feature vector υi as a single feature dimension in the subset selection

formalism. Figure 5.3 shows the selected kernel locations in the subset ΦLOC graphically

for the experiment S1 using BIF,SFS, and SFFS methods.

Looking at the BIF results, we see that most of the kernels are located at the

upper part of the face, and are highly symmetric. These results comply with the find-

ings of previous works and are expected. Eyes, eyebrows, and forehead seem to have

more discriminating information. The symmetry property is not present in SFS and

SFFS, since they evaluate the importance of a new candidate feature with respect to

the existing subset, and take feature dependencies into account. This is an advantage

of SFS and SFFS over BIF: They avoid redundant, symmetric features. Classification

accuracies of lattice-based sampling approach for each experimental session are shown
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Figure 5.3. Selected Gabor kernel locations for: lattice-based sampling, and

landmark-based sampling. Locations found by BIF,SFS, and SFFS are shown at the

left, middle, and right columns, respectively.

Table 5.1. Average classification accuracies of lattice, landmark, and dense sampling

methods.

Lattice-based Landmark-based Dense Sampling

BIF SFS SFFS BIF SFS SFFS GA

Mean 84.22 86.96 86.97 82.16 84.39 84.22 88.85

STD 1.65 2.40 1.09 2.93 4.23 2.42 1.97

in Table 5.1. Remember that subset selection is based on classifier accuracy and se-

lection criterion function is calculated on the validation set. Using the 6-fold paired

t-test, SFS and SFFS methods are statistically significantly more accurate than BIF,

while SFS and SFFS are statistically equivalent (with 95 per cent confidence) again

proving wrong the independence assumption.

The same set of experiments were carried out for landmark-based sampling. Fig-

ure 5.3 shows the locations of selected kernels in the set ΦLOC for landmark-based sam-

pling. As in the lattice case, BIF approach favors the upper face region by selecting

symmetric locations around eyes, eyebrows and forehead. We see that the lower part
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of the nose also contributes to the subset. With SFS and SFFS, although the contri-

bution of the nose region and cheeks are more visible, forehead, eyes, and eyebrows are

generally found to be informative. The classification performance of landmark-based

sampling is shown in Table 5.1. Again, we see that SFS and SFFS are significantly

more accurate than BIF and that SFS and SFFS are statistically equivalent. An impor-

tant observation is that lattice-based sampling is more accurate than landmark-based

sampling. This indicates that our prior beliefs in saliency regions is not always correct

and that it is better to extract salient locations from data.

In dense sampling, parallel search for a subset ΦLOC is done via constructing

genetic chromosomes of size |ΦLOC | where each gene points to a location in the face

image. As in previous experimental settings, |ΦLOC | is set to 15. As the fitness function,

we have used the recognition performance of the subset on the validation set. The

single-point crossover operator was implemented to produce new individuals. Since

we have the (x, y) coordinates in genes, the mutation operator is implemented as a

displacement vector, where the gene to be mutated is displaced by a vector η = {ηx, ηy}.
In both operators, we require that the coordinates of face points in a single chromosome

do not overlap by more than a specified amount in order to extract independent local

information and this distance is selected to be 20 pixels. The probability of crossover

and mutation are selected to be Pc = 0.5 and Pm = 0.05, respectively. The selection of

a new population is based on the probability distribution of fitness values. For quick

convergence, elitism is employed, where the elitism ratio is 0.05. The initial population

size is 1600. GA terminates when there is no improvement on the accuracy of the best

individuals for a specified time interval.

In Figure 5.4, the 15 feature points found by the best individuals of GAs are

shown. From the figures, it is clear that the outline of the face, the outline of the nose

region, eyes and eyebrows contribute to the most discriminative subset ΦLOC . Almost

in all configurations, cheeks, mouth region and the center area of the forehead are

absent. In S1 there is a feature point outside the face area. This may happen because

of two reasons: i) the sub-optimal convergence of the GA algorithm, ii) the selected

point does not positively or negatively contribute to the recognition performance (i.e.,
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Figure 5.4. Selected kernel positions found by the GA.

effectively there are 14 useful points). The average recognition performance of GA-

based location selection is shown in Table 5.1.

The comparison of classification accuracies of lattice, landmark and dense sam-

pling methods shows that dense sampling using GA performs the best. Lattice-based

sampling is found to be statistically more accurate than landmark-based sampling, and

between lattice-based and landmark-based sampling, SFS or SFFS on lattice-based

sampling is the most accurate. These results indicate that our prior beliefs as to the

saliency of certain regions for discrimination (as in landmark-based sampling) are not

true and that it is better to allow a general sampling from a grid (as in lattice-based

sampling) and it is even better to allow a more general sampling from the whole image

(as in dense sampling).

5.1.2.2. Kernel Frequency and Orientation Selection. Now, our aim is to select the

useful frequency and orientation pairs from ΦLOC to construct the subset ΦFO, where

ΦFO ⊂ ΦLOC . Since dense sampling method is the top performer in the previous part,

we will continue our experiments using its output as our input set in this section.

Recall that ΦLOC consists of local feature vectors υi, each υi contains magnitudes from

Gabor kernel convolutions and |ΦLOC | is 15 × 40 = 600. Frequency and orientation

(F/O) selection is carried out using the SFFS algorithm since our experiments have

shown that it has the best trade-off between complexity and accuracy. The termination

condition is determined empirically by observing the behavior of the classification rate

on the validation set, and the dimensionality of the subset ΦFO is set to a value where
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(a) S1 (b) S2

(c) S3 (d) S4

(e) S5 (f) S6

Figure 5.5. Selected frequency and orientation pairs at the selected kernel locations.

Filled circles on each oriented line represent the selected kernel frequency where

innermost circles are for low frequencies and outermost frequencies are for high

frequencies. Oriented lines represent the kernel orientations.
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the classification performance does not improve significantly for a specified time. Our

experiments have shown that the target dimensionality of 200 is sufficient for best

accuracy on the validation set, which implies a decrease of complexity to one-third

Figure 5.5 shows the selected F/O pairs at their specific facial locations for each of the

six sessions. In general, we see that the selected kernel orientations are correlated with

the underlying characteristics of facial texture. This is more obvious in locations where

non-complex local facial directions are present, i.e., at the outline of faces. In terms of

frequencies, some positions favor low frequencies, some high frequencies, and in some

places, both of them are used together. The average recognition performance of ΦFO

is found to be 87.31 per cent (with STD=1.73). This indicates that the dimensionality

can be decreased from 600 to 200 without losing from accuracy.

5.2. Local Representations for 3D Face Recognition

Representing 3D faces locally is advantageous because holistic approaches may

suffer from local deformations. Another important advantage is that it is possible

to learn informative regions for the identification task. For this purpose, we choose

to represent facial surfaces locally. We distinguish two different types of local rep-

resentations: 1) biologically inspired division of facial surfaces (semantic division or

part-based division), and 2) a regular patch-based division. Part-based local represen-

tation scheme segments the facial surface according to meaningful facial parts, such as

forehead region, eye region, and mouth region. On the other hand, the regular patch-

based representation scheme considers the facial surface as a more general free-form

surface and employs regular surface primitives such as rectangles or circular disks to

form local regions. In the rest of this thesis, we specifically refer to the semantic divi-

sion process as the part-based scheme, and refer to the regular division scheme as the

patch-based scheme. Figure 5.6 shows a sample division of a facial surface according to

meaningful regions. Automatic segmentation of a facial surface into meaningful parts

is a complex problem and needs an accurate detection of several fiducial landmarks.

In our work, we obtain the facial parts manually on the average face model. Thus, fine

registration of faces to the average face model results in the segmentation into parts.
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Figure 5.6. Local facial regions used in the part-based representation scheme. These

regions are determined manually on the average face model.

In the patch-based segmentation scheme, we use rectangular windows in order

to obtain regular regions. Since 3D faces may be considered as 2.5D surfaces, the

determination of rectangular windows can be accomplished on a 2D planar surface,

and then, orthographic projection can be applied to construct 3D rectangular patches.

Figure 5.12 shows several examples of rectangular patch-based segmentations with

different window sizes.

5.3. Features for Local Representations

Surface features that are used to represent local regions are dependent on the di-

vision scheme employed. However, low-level features such as point coordinates, surface

normals and curvature values are common to all division schemes. Therefore, in both

part-based and patch-based division schemes, we make use of these low-level features.

However, their usage may differ according to the segmentation methods used. The

details of the features used in these segmentation methods can be explained as:

• Part-based Representation Scheme: Let Φ be a part-based representation of a

facial surface that consists of k local parts: Φ = ∪k
i=1Φi. Here, each Φi corresponds
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to regions such as eyes, nose, mouth, cheeks, etc. Assume that we use point

coordinates, p = {px, py, pz}, as low-level features. Then, each part is represented

as Φi = ∪m
j=1pj where m is the number of points in part Φi. This representation

approach uses all of the low-level features present in the surface parts to represent

that part. It is possible to replace point coordinates with surface normals or

curvature directions in this scheme. Thus we can obtain different part-based

features. Since all of the low-level features are used to denote patches in the

part-based representation scheme, this type of feature usage methodology can be

called as dense feature scheme.

• Patch-based Representation Scheme: Using the similar methodology as in the

part-based approach, dense feature scheme can be applied to patches as well. Let

Ψ be the patch-based representation of a face containing n patches: Ψ = ∪n
i=1Ψi.

Each patch Ψi is represented as a collection of low-level features in the dense

feature scheme: Ψi = ∪m
j=1pj. As in the part-based approach, surface normals or

curvature directions can be used as low-level features as well. Since patch-based

division approach employs regular windows and may cover smaller regions than

the part-based scheme, it is possible to use local descriptors as features. We refer

to the descriptor-based feature extraction scheme as patch descriptor scheme in

the rest of this thesis. In the patch descriptor-based feature extraction scheme,

not all of the low-level features are used to represent a local patch. Instead,

a more compact descriptor is computed and used as a feature to represent the

patch. In our work, we use the statistical mean operator to compute descriptors.

Therefore, in patch descriptor-based scheme, each local patch Ψi is represented

by Ψi = {d(pj), j ∈ 1 . . . m}, where d(.) is the mean operator that computes the

descriptor of m point coordinates. It is possible to compute descriptors of surface

normals or curvature directions also. Figure 5.7 illustrates the dense feature

scheme and patch descriptor approaches for a sample face. As can be seen in

Figure 5.7, the dense scheme stores all point cloud coordinates, or surface normal

directions over the patch surface, whereas the patch-descriptor approach stores

only a statistic computed from all of the low-level features.
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Figure 5.7. Illustration of the dense feature scheme and patch descriptor scheme for

point cloud and surface normal features.

5.4. High-level Feature Analysis: Selection and Extraction

In this section, we briefly overview some of the feature analysis techniques that

can be used to select or extract high-level features from local parts. We focus on two

different methodologies: 1) feature subset selection techiques, and 2) statistical feature

extraction techniques. Both of them will be applied to patch-based representation

scheme in order to boost the identification accuracy.

5.4.1. Local Region Selection

We use near-optimal feature selection techniques to find the most discriminating

patch subsets for identification. Our aim is to find the patch subset Ψ = ∪c
i=1Ψi where

c << n (n = the number of patches over the facial surface). In this method, dense

feature scheme is used. Formulating a local feature-based 3D face recognition problem

as a subset selection methodology has three important advantages: 1) Floating back-

ward elimination algorithm takes into account the dependencies between features, 2)
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Regions which are not selected can be discarded from the representation, thus allowing

to reduce the representation complexity 3) Floating backward elimination is a super-

vised procedure which uses the class information in determining the subsets. Similar

methodology was presented in Section 5.1 to find discriminatory feature subsets for 2D

face recognition problem. In feature selection, the goal is to find a subset maximizing a

selected criterion. This criterion can be inter-class distance measure or the classification

rate of a classifier. The optimal solution could be found by using exhaustive search.

However, for higher dimensional problems, this solution is unusable. Alternative to

optimal algorithms, several fast sub-optimal algorithms can be used. In order to find

the most discriminative image locations of faces for recognition, we have used floating

backward search (SFBS). SFBS tries to remove a feature from the initial set, and then

tries to add previously removed features to the current set if the inclusion is beneficial.

Nested removal and addition operators in SFBS increases the run-time complexity of

the search process, however this methodology produces near-optimal subsets.

5.4.2. Statistical Feature Extraction

Feature subset selection method can be viewed as a dimensionality reduction

technique. It selects the most useful features according to some criteria such as classi-

fication rate. An alternative would be to use statistical feature extraction techniques

for dimensionality reduction. For this purpose, we propose to use Principal Compo-

nent Analysis (PCA) and Linear Discriminant Analysis (LDA) to extract features. For

these methods, we use patch descriptor representation of faces. Formally, let the face

Ψ be represented by n patch descriptors: Ψ = ∪n
j=1Ψj where Ψj = d(pk), k ∈ 1 . . . m. If

pk’s are point coordinates, then the patch descriptor operation d(.) produces 3-vectors

for each patch. Concatenation of n 3-vectors constructs a feature vector. Once these

vectors are formed, PCA and LDA analysis can be carried out. Note that we apply

the statistical dimensionality reduction techniques to the patch descriptors, not to all

of the low-level features. By applying PCA or LDA, we form a new subspace of di-

mensionality s, (s << n × 3), and represent any face using PCA or LDA coefficients:

Φ = {c1, c2, ...cs}.
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5.5. Experimental Results on the 3DRMA Database

In this section, we present the results of the identification experiments on the

3DRMA database for both local region selection and statistical feature extraction

methods. We specifically deal with patch-based representations in this section, and

does not report on part-based scheme. As low-level features, we employ point coor-

dinates and surface normals. We exclude the use of curvature-based features since

the quality (i.e., resolution) of the 3DRMA database is poor. In our experiments, we

have used a subset of the 3DRMA dataset [40], which consists of 106 subjects each

having five or six shots. The data is obtained with a stereo vision assisted structured

light system. On the average, faces contain about 4,000 3D points, and they cover

different portions of the faces and the entire data is subject to expression and rota-

tion changes. To be able to statistically compare the algorithms, we have designed

five experimental sessions. Training and test set configurations of each experimen-

tal session are: S1 = Tr : {1, 2, 3, 4}, T s : {5, 6}, S2 = Tr : {1, 2, 3, 5}, T s : {4, 6},
S3 = Tr : {1, 2, 4, 5}, T s : {3, 6}, S4 = Tr : {1, 3, 4, 5}, T s : {2, 6}, S5 = Tr :

{2, 3, 4, 5}, T s : {1, 6}. Numbers in Tr and Ts sets denote which images of each

subject are placed into the training and test set, respectively. At each session, there

are 193 test shots. In order to determine the best subset Φbest, we have to use only

training instances, and then test the accuracy of Φbest on the test instances. For this

purpose, four cross-validation sets have been formed from training examples.

5.5.1. Local Region Selection Results

Suppose that at the jth iteration of the SFBS algorithm, we have a subset Φj

containing several patches. The recognition performance of Φj is calculated as the

average of the four cross-validation experiments. We have divided the whole facial

region into 93 non-overlapping rectangular patches. Each face contains 3,389 points

which are densely registered to the average face model. On the average, central patches

contain 36 points. Let ΦALL be the set containing all 93 patches. The average recog-

nition performance of ΦPC
ALL for point cloud representation in five experiments is found

to be 95.96 percent (See PC-All regions entry in the Table. 5.2). In surface normal
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representation, the average recognition accuracy of all regions, ΦSN
ALL, is 99.17 percent.

By applying the SFBS algorithm, we have found best subsets, ΦPC
BEST and ΦSN

BEST for

point cloud, and surface normal representations, respectively. The average recognition

performances of ΦPC
BEST and ΦSN

BEST in the test set are 96.79 and 98.14 percent.

Table 5.2. Average classification accuracies of the floating backward selection of

non-overlapping regions. Dense feature scheme is used. (PC = Point cloud, SN =

Surface normals).

Method Dimensionality Accuracy

PC - All regions 3,389 95.96

PC - Best Subset 53× 36 96.79

SN - All regions 3,389 99.17

SN - Best Subset 48× 36 98.14

The selected patches of ΦPC
BEST and ΦSN

BEST are shown in Figure 5.8 as dark regions.

These results confirm that by using SFBS method, we can reduce the dimensionality

of the face representation by half, and still have a comparable recognition accuracy.

Note that the recognition performance of ΦPC
BEST is better than ΦPC

ALL.

Figure 5.8. Selected regions (in dark color): left: point cloud, and right: surface

normal representations.

5.5.2. Statistical Feature Extraction Results

For PCA and LDA-based face representation methods, we use a different patch

formation scheme. In this scheme, we have formed overlapping regions over the face,

thus increased the number of patches. In these experiments, 327 overlapping regions
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are formed, where the size of each patch is the same as in the non-overlapping scheme.

In the non-overlapping case, each region is described by the 3D points lying on that

region. In the overlapping case, each patch is represented by a patch descriptor. In

point cloud representation, the mean of the 3D coordinates of each patch’s point cloud

is used as a patch descriptor. In surface normal representation, the mean of the surface

normals of a patch is used as a patch descriptor.

The mean recognition accuracies of the point cloud and surface normal represen-

tations using patch descriptors are found to be 96.06 and 99.28 percent respectively

(See PC-All regions and SN-All regions entries in the Table 5.3). These are the classi-

fication accuracies of using all patch descriptors without applying PCA or LDA. The

use of patch descriptors in the overlapping division scheme improved the classification

accuracy when compared to the non-overlapping case. It is found that dimensionality

reduction using PCA decreases the recognition performance to 90.88 and 94.51 percent

for point cloud and surface normal-based representations, respectively (See PC-PCA

and SN-PCA entries in Table 5.3). However, LDA is found to be very beneficial in re-

ducing the dimensionality of patch descriptor-based face representation scheme. LDA

obtained 99.69 percent accuracy in both point cloud and surface normal representa-

tions, using 60 and 40 features, respectively.

Table 5.3. Average classification accuracies of the statistical dimensionality reduction

techniques on patch descriptor-based feature scheme. 327 overlapping regions are

formed. (PC = Point cloud, SN = Surface normals).

Method Dimensionality Accuracy

PC - All regions 327× 3 96.06

PC - PCA 70 90.88

PC - LDA 60 99.69

SN - All regions 327× 3 99.28

SN - PCA 70 94.51

SN - LDA 40 99.69
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5.5.3. The Effect of Patch Resolution

In the previous section, we have presented the results of the classification experi-

ments where a fixed patch resolution is used for both overlapping and non-overlapping

patch division strategy. The patch height and width are selected to be H
10

and W
10

, where

H and W denote the height and width of the cropped mean face. We have shown that

the use of 327 patch descriptors is slightly better than using raw point clouds and sur-

face normals, where patch-based classification accuracies are ddepth = 96.06, dnormals =

99.28 and raw recognition accuracies are 95.96 and 99.17 percent for 3, 389 point clouds

and surface normals, respectively. This finding motivates us to analyze the effect of

patch resolution on the classification performance. For this purpose, we have used

different patch resolutions for segmenting the whole facial region. Figure 5.9 depicts

a subset of various patch resolutions that we have used. From coarse to fine scale, we

have extracted different face segmentations where the numbers of patches used are : 9,

16, 25, 34, 45, 72, 105, 124, 145, 166, 183, and 211.

Figure 5.9. Different patch resolutions and the total number of patches found over a

facial surface

Table 5.4 displays the classification accuracies of surface normal-based and point

cloud-based patch descriptors on different patch resolutions. The first column shows

the number of local patches formed over the face region and the second column shows

the average number of 3D points at each local patch. Patch descriptors form a feature

vector, and as in previous experiments, 1-nn algorithm is used as a pattern classifier.

Figure 5.10 graphically displays the recognition rates found in Table 5.4.

It is evident by analyzing Table 5.4 that significant dimensionality reduction is
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possible without a significant loss in classification accuracy. Recognition system can

obtain a very good accuracy using approximately 100 patch descriptors. Using only

105 non-overlapping patches, the system obtains 99.17 and 96.17 percent recognition

accuracies, and using more patches does not improve the accuracy significantly. These

results indicate that the local patch idea which can be considered as a local averaging

operator, helps to filter out redundant information. Another advantage would be the

de-noising characteristic of local averaging operation. However, in our experimental

face database, since we have no local perturbations or noise, this behavior is not visible.

Table 5.4. Classification accuracies of surface normal and point cloud representations

for different patch resolutions. First column denotes the number of patches and the

second column shows the average number of 3D points in each patch.

Number of Patch Surface Normal Point Cloud

Patches Density Accuracy Accuracy

9 375 92.64 72.64

16 225 94.61 86.01

25 136 95.96 91.81

34 99 97.62 92.64

45 84 97.62 94.82

72 47 98.86 95.34

105 32 99.17 96.17

124 27 99.17 95.86

145 24 99.28 96.37

166 26 99.07 96.17

183 19 99.28 96.37

211 18 99.17 96.48

230 15 99.17 96.06

5.6. Experimental Results on the FRGC v2.0 Database

In this section, we present the identification accuracies of the part-based and

patch-based representation schemes on the FRGC v2.0 database. Compared to the
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Figure 5.10. Recognition accuracy versus patch number plot for surface normal and

point cloud-based face representations.

3DRMA database, FRGC v2.0 face database is much more bigger and contains texture

information. The utilized part of the FRGC v2.0 database contains 3D scans of 310

subjects. Each subject has more than three scans. There are 3602 3D facial scans

in total. Data was acquired from subjects under challenging illumination conditions,

and it exhibits expression variations. There are six expression categories: smiling,

astonished, sad, frowning, puffy cheeks, disgust. Sample images of these expression

categories can be seen in Figure 5.11.b. On the average there are 35,000 to 40,000 3D

points over the facial region which is a very sufficient resolution for the identification

task. Note that, in the 3DRMA database, there are 4,000 points over the facial region

typically. The adequate resolution of the FRGC v2.0 database makes it reasonable to

apply more sophisticated feature extraction methods such as curvatures.

We have formed two different experimental protocols. The first protocol imple-

ments neutral-to-neutral matching (En) whereas the second one implements neutral-to-

expression matching (Ee). Both of these experiments use the same training set which

contains single neutral images of 310 subjects. In En, there are 1804 probe (test) scans,

and in Ee, there are 1488 probe scans. As low-level features, we use point clouds (PC),
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(a)

(b)

Figure 5.11. Sample images from the FRGC v2.0 database: (a) Neutral images, and

(b) expression variations

surface normals (SN), and principal curvature directions (CURV). Table 5.5 presents

the identification accuracies of the PC, SN and CURV-based matchers. Each 3D fa-

cial surface contains approximately 33,000 points. In neutral-to-neutral protocol En,

CURV method obtains the best rank-1 identification accuracy with 80.43 per cent clas-

sification accuracy. The second best matches in the En protocol is found to be the SN

approach with 77.05 per cent accuracy. In the neutral-to-expression protocol Ee, iden-

tification accuracies decrease significantly, where the two best classifiers SN and CURV

obtain 67.33 and 66.06 per cent correct classification rates, respectively. An important

observation when we compare the En and Ee protocols is that PC approach seems to

be the most sensitive matcher to the expression variations. It has a 20.54 per cent

performance degradation in the Ee protocol. The most resistant matcher is found to

be the SN approach with a 9.72 per cent performance loss in the Ee.
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Table 5.5. Baseline rank-1 identification performances of the point cloud (PC), surface

normal (SN) and principal curvature directions (CURV) on the FRGC v2.0 database.

En Ee (En − Ee)

PC 75.78 55.24 20.54

CURV 80.43 66.06 14.37

SN 77.05 67.33 9.72

5.6.1. Local Representation Results on the FRGC v2.0

In the FRGC v2.0 experiments, we have employed both part-based and patch-

based surface division schemes. Manually defined facial parts are shown in Figure 5.6.

Similar to the methodology used in the 3DRMA database, we obtain regular rect-

angular patches. The patches obtained with different window sizes are depicted in

Figure 5.12. The depicted window sizes are 5, 10, 15 and 20 (from left to right) in

Figure 5.12. Patch-based division is first performed on the average face model. Then,

for a given probe image, these patches are found by using the dense correspondence

information between the probe image and the average face model.

Figure 5.12. Rectangular divisions of a sample facial surface. From left to right,

window sizes are 5, 10, 15, and 20. Patches are colored randomly.

As low-level features, point clouds, surface normals, and principal curvature direc-

tions are used. Using a patch window size of 10, we have formed 174 local rectangular

regions (See Figure 5.12). For each patch, we extract patch descriptors using averaging.

Illustration of these patch descriptors is provided in Figure 5.13. Each patch is repre-

sented by its mean point coordinate, its mean surface normal, and its mean curvature

directions. In Figure 5.13, point coordinates are depicted as black dots, surface nor-
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mals are shown by blue lines, and curvature directions are expressed as two red lines.

Note that there are two principal curvature directions that correspond to minimum

and maximum curvature values. Using these patch-descriptors of size 10, any face can

be represented by 1) 174× 3 point cloud features, 2) 174× 3 surface normal features,

and 3) 2× 174× 3 curvature features.

Figure 5.13. Patch descriptors: point coordinates (black dots), surface normals (blue

lines), and principal curvature directions (red lines).

Table 5.6 presents the rank-1 correct classification accuracies of the patch descriptor-

based representation schemes. Identification performance of each method is given for

different patch sizes from 5 to 20 (rows). For each method, we present the identifica-

tion performances for two different experimental protocol: neutral-to-neutral En and

neutral-to-expression Ee. Performance figures presented in Table 5.6 should be com-

pared to the accuracies of the PC, SN, and CURV methods presented in Table 5.5.

Based on the recognition accuracies for different patch sizes, we see that patch size of

5 and 10 generally performs better than other patch sizes. This is especially visible

for the PC method. For each method in Table 5.6, we also provide their performance

deviations (in parentheses) according to the baseline performances found in Table 5.5.
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By looking at these deviations, we see that PC-based patch descriptors almost perform

equally or slightly better than using all of the low-level features. For example, using a

patch size of 10, PC-based patch descriptors attain 76.11 per cent identification rate,

whereas baseline PC performance is 75.78 per cent (See Table 5.5). Similarly SN-based

patch descriptors improve the accuracy by 1 to 3 per cent, depending on the patch size.

When we compare the experimental protocols, we see that performance improvement

is generally bigger in the neutral-to-neutral protocol.

Table 5.6. Patch descriptor results for patch sizes 5,10,15, and 20.

PC SN CURV

En Ee En Ee En Ee

76.33(0.55) 56.65(1.41) 78.22(1.17) 67.94(0.61) 87.03(6.59) 73.5(5.42)

76.11(0.33) 55.11(-0.13) 80.38(3.33) 67.20(-0.13) 87.47(7.04) 74.6(8.54)

74.78(-1.00) 53.09(-2.15) 79.10(2.05) 63.51(-3.82) 88.14(7.71) 74.7(4.43)

74.00(-1.78) 50.00(-5.24) 79.27(2.22) 61.96(-5.37) 88.08(7.65) 68.41(2.35)

Among the three low-level features, curvature-based patch descriptors attain the

best performance improvement. In the En protocol, patch-based curvature descriptors

(patch size 10) obtain 87.47 per cent correct classification rate which is 7.04 per cent

better than the baseline CURV method. 8.54 per cent improvement is also present

in the Ee protocol. This finding is very important and makes it clear that individual

matching of curvature directions at all points may be not optimal. This may be due

to the local surface noise that may degrade the curvature direction estimation per-

formance. Another important advantage is the reduced dimensionality of the feature

vectors. It is possible to reduce the 3D point count from 30,000 to 174 (for patch size

of 10), and still improve the identification rate significantly. Among all of our identi-

fication experiments, patch-based descriptors of curvature directions attained the best

accuracies.

We have also applied the part-based division scheme to the FRGC v2.0 database.

Manually determined regions are shown in Figure 5.6. These regions are segmented

for the average face model, and the dense point-to-point correspondence information is
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utilized to construct the parts in the given probe image. This approach assumes that

facial registration between the average face model and the probe image is accurate

enough. Another method would be to divide the probe facial surface independently

by using its surface characteristics. Although this approach may provide better seg-

mentation, it requires correct localization of fiducial landmarks. In our generic face

model, we identify the following regions coarsely: 1) upper forehead, 2) lower forehead,

3) eyes, 4) nose and its neighborhood, 5) upper cheek, 6) central cheek, 7) lower cheek,

8) upper mouth, 9) lower mouth, and 10) chin.

In part-based representation scheme, we choose to focus on the expression vari-

ations present in the FRGC v2.0 database. Experimentally, we select different com-

binations of local parts, and perform identification experiments on the Ee. As stated

before, in part-based representation scheme, all of the low-level features are combined

to represent single parts. Therefore, the dimensionality of the feature vectors are bigger

than the ones used in the patch-based descriptor approach. Symmetric regions such as

left eye/right eye, or left/right cheek are always selected together, so these regions are

considered as single parts.

Using different combinations of facial parts, we have formed an exhaustive list

of candidate subsets of facial parts. Among them, the one which discards the mouth,

lower cheeks, and chin region obtained the best identification accuracy. The rank-1

correct classification rates of this subset is shown in Table 5.7. Although we select

these regions according to the neutral-to-expression protocol, we also provide their

recognition accuracies for the neutral-to-neutral protocol in Table 5.7.

Table 5.7. Identification accuracies of the part-based local representation technique.

Selected parts of the face is shown in Figure 5.6 in red. Mouth, lower cheeks, and

chin regions are removed (these regions are shown in blue).

Method En Ee

PC 69.96 (-5.82) 57.33 (2.09)

SN 75.44 (-1.61) 68.78 (1.45)

CURV 83.7 (3.27) 73.79 (7.73)
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By looking at the results presented in Table 5.7, we see that removal of these

lower facial regions generally does not degrade the identification rate in the Ee proto-

col. Point cloud and surface normal features obtained marginal improvements when

compared to the baseline recognition rates presented in Table 5.5. As in the patch-

based descriptor approach, curvature directions significantly increase the identification

rate when these regions are discarded. In the Ee protocol, CURV method obtains

73.79 per cent identification rate which is 7.73 per cent better than using all regions.

However, when we look at the classification rates of the selected regions in the En

protocol, we observe that point clouds and surface normals degrade the baseline per-

formance. The only exception is the CURV method which improves the recognition

rate by 3.27 per cent. This observations reveal that these discarded regions still carry

discriminatory information when there are no expression variations.
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6. Fusion of 3D Face Classifiers

The 3D face recognition task is inherently multi-modal. Most of the 3D acquisi-

tion devices produce both shape and texture data registered to each other. Therefore,

it is possible to fuse the information present in both shape and texture channels when

arriving to a decision. Aside from being multi-modal, it is also beneficial to integrate

various classifiers that are based on a single modality. For instance, pattern recogniz-

ers trained on different shape representations may complement each other, and may

produce better identification rates when used together.

A survey of classifier fusion techniques used in 3D face recognition systems reveals

the dominance of fixed combination rules such as sum and product rules which operate

on measurement level outputs [15]. The preference for these methods stems from the

following facts: i) they are simple, yet effective; ii) the number of training samples per

subject is very limited in face recognition applications, and this limits the use of more

advanced classifier combination methods; iii) decision-level integration is flexible, in

that a new expert’s opinion can be easily incorporated without affecting the existing

experts.

In this thesis, we review and compare various decision-level fusion algorithms.

Specifically, we perform detailed examination of the following: 1) which fusion rules

attain the best identification rates, 2) how many individual experts are needed to ob-

tain a good ensemble, and 3) which type of individual experts should be integrated.

Based on our findings, we propose two different fusion architectures, where the first one

incorporates confidences during the fusion, and the second one utilizes a serial or cas-

caded architecture. For each of these two architectures, we develop several variants. In

the next section, we start our discussion with a general taxonomy of decision-level fu-

sion algorithms, and then formulate specific instances that are used in our experiments.

Lastly, we explain our proposed confidence-aided and cascaded fusion architectures.
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6.1. Overview of Fusion Methods

Combining different classifiers with the aim of increasing classification accuracy

is a common technique in the pattern recognition discipline. Classifiers which are

different from each other can be constructed 1) by using different classes of pattern

recognizers such as neural networks, decision trees, or k-nearest neighbor algorithms, 2)

by training the same algorithm on different training sets, or 3) by designing classifiers

that use different representations (or, modalities) of the same object. It is widely

believed that fusion of diverse experts produces the best ensemble performance in

terms of recognition accuracy [93].

Combination methods differ according to the type of information that comes from

individual classifiers. Although individual classifiers can be different, their outputs can

be grouped according to the following categories [94]:

• Type 1 (The Abstract Level) Let Ci denote the ith individual classifier. In abstract

level fusion, each classifier Ci provides a class label si ∈ Ω, where Ω is the set of

class labels.

• Type 2 (The Rank Level) The output of each Ci is a list of class labels ranked in

order of the probability of being the true class.

• Type 3 (The Measurement or Score Level) In measurement or score level, classifier

Ci provides a c-dimensional vector [di,1, . . . , di,c]
T where c is the number of classes.

The value di,j denote the support for the unknown pattern to come from class

ωj. di,j’s can be probabilities or similarity values.

In the sequel, we briefly review the decision-level fusion methods applicable to

3D face recognition systems.

6.2. Plurality Voting

In abstract level category, plurality voting is the most commonly used one, which

just outputs the class label having the highest vote. More formally, plurality voting
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can be defined as follows: Assume that classifier Ci outputs binary valued vectors

[di,1, . . . , di,c]
T ∈ [0, 1], i = 1, . . . , L, where L is the number of classifiers, and c is the

number of classes. di,j = 1 if classifier Ci thinks that the unknown pattern belongs to

the class ωj, and di,j = 0 otherwise. Plurality voting assigns the unknown pattern x to

the class having the highest vote:

arg
c

max
j=1

L∑

i=1

di,j (6.1)

If there are ties, random assignment is performed. Plurality voting is different

from majority voting since the number of votes does not have to be greater than L
2

for

a pattern to be assigned to a class.

6.3. Borda Count Method

Borda count method can be applied as a combination rule if the individual pattern

classifiers output rank lists. For a c class problem, ranks produced by any classifier

Ci are in the range of [1, . . . , c], where 1 is the topmost rank that denotes the highly

probable class. Assume that Ci produces [di,1, . . . , di,c]
T where di,j ∈ 1, . . . , c, then

Borda count method simply selects the class label which has the minimum total rank:

arg
c

min
j=1

L∑

i=1

di,j (6.2)

Borda count method is similar to the rank sum method. A modification of Borda

count method is possible by restricting the number of classes to be fused. For instance,

it is also possible to consider the fusion of top-k ranked classes when using the Borda

count method. Selected classes form the so-called combination set, and this approach
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has the assumption that most probable class of the unknown pattern is at the top ranks

of the individual classifiers. Figure 6.3.a illustrates rank-based parallel fusion archi-

tecture schematically. Since the individual experts output their decisions in parallel,

these type of fusion architectures are called parallel.

6.4. Fixed Arithmetic Combination Rules

When the individual classifiers produce class similarity scores or support values,

these scores can be combined by using simple arithmetic rules such as sum, product,

min, max and median rules [95]. Assume that classifier Ci outputs continuous valued

score values: [di,1, . . . , di,c]
T where di,j ∈ [0, . . . , 1]. Without any loss of generality,

assume that greater values close to 1 mean high similarity. In this case, fixed arithmetic

rules such as sum/product/max reach a decision according to the following equations:

• Sum rule:

arg
c

max
j=1

L∑

i=1

di,j (6.3)

• Product rule:

arg
c

max
j=1

L∏

i=1

di,j (6.4)

• Max Rule:

arg
c

max
j=1

(
L

max
i=1

[di,j]) (6.5)

Note that arithmetic rules assume the classifier outputs to be in a common range.

In practice, this is hardly the case, especially when using k-nearest neighbor classifiers.

It is therefore necessary to normalize scores before fusing them. There are several ways

to perform score normalization:
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• Min-max normalization: If the bounds of the score values are known, or can be

estimated, min-max normalization can be easily applied to normalize raw scores.

Let d be the original score value. The normalized score can be computed as:

d
′
=

d− dMIN

dMAX − dMIN

(6.6)

where dMAX and dMIN represent the minimum and maximum values of the score

range. Depending on the application, dMAX and dMIN values may be known

beforehand. Otherwise, they are generally estimated from the training set. When

the training set is sparse, these values may be estimated inaccurately. However,

this problem is not the case only for the min-max normalization: it is the general

problem for all of the score normalization methods.

• z-score normalization: z-score normalization method transforms the raw scores

into a new range with the help of sample arithmetic mean and standard deviation

as follows:

d
′
=

d− µ

σ
(6.7)

where µ and σ denote sample arithmetic mean and standard deviation, respec-

tively.

• Tanh-estimators: Tanh-estimators method is similar to the z-score method, but

it is designed to be more robust. The normalization is given by:

d
′
=

1

2
{tanh(0.01(

d− µGH

σGH

)) + 1} (6.8)

where µGH and σGH are robust estimates of the score distribution statistics com-

puted with the help of Hampel estimators. See [96] for the details on the Hampel

estimators.
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6.5. Confidence-aided Fusion Rules

We have devised a method to improve the abstract-level combination methods

using estimated confidences of individual classifiers [2]. The confidences can be at-

tributed according to the similarity scores the classifiers report. A caveat is that it

may be misleading to use scores of the top-ranking class labels due to mismatched

score normalizations. Score normalization techniques, such as the min-max method,

use only the training set, and their generalization ability is not optimal. An example

case is presented in the piecewise linear curves in Figure 6.1.a, where the x axis denotes

ranks of the nearest class labels, and the y axis denotes the distance scores in increasing

order, for a given test pattern. Reading off from the graph at the first label (x=1),

we see that the nearest class found by the second classifier has a distance of 0.06, and

the nearest distance found by the first classifier is 0.13. Accordingly, the second classi-

fier seems to be more confident than the first one since it outputs a much lower score

value. However, in this particular case this is wrong since the score range of classifier 1

(0.13-0.9) is different from that of classifier 2 (0.06-0.8), and generally second classifier

gives lower score values. This pitfall is due to insufficient training data in estimating

the score normalization parameters. Obviously, if the classifier score ranges were the

same, then scores could be used right away as confidences.

To compensate for range disparity, we propose to use a differential confidence mea-

sure, that is, the relative distance between the first two nearest neighbors of the classi-

fier. The procedure is as follows: Given a probe image, we generate d = [d1, d2, . . . dc]

the vector of sorted distances to the c classes. Here d1 is the distance between the test

sample and its nearest class in the training set, while dc is that of the least similar one.

An obvious score range for a classifier is r = dc − d1, while we prefer the more robust

median estimate r = Med(d1, d2, . . . dc)− d1. The score normalization is then effected

via Eq. 6.9:
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d
′
i =

(di − d1)

Med(d1, d2, . . . dc)− d1

, i = 2 . . . c. (6.9)

Finally, the classifier confidence score is declared as simply d
′
2, as plotted in

Figure 6.1.b. One can interpret the d
′
2 corrected confidence as the slope of the d

′
curve

at the x-intercept. With this correction, Classifier 1 becomes the higher confidence

classifier. Note that confidence of a classifier is estimated dynamically when a new

unknown sample is presented to the system. In addition, it is important to observe

that in confidence-aided fusion scheme explained above the outputs of the classifier Ci

are 1) the nearest class label ωj found, and 2) the classifier’s confidence value τi. With

the exception of the availability of τi’s, this case is similar to the abstract level fusion

schemes.

Equipped with confidences, several fusion schemes can be proposed. Here we

propose two additional combination alternatives. The first alternative, named modified

plurality voting, operates exactly like original plurality voting, but differs from it when

there are ties. If ties are present, modified plurality voting calculates the average

confidences of the classifiers which cause a tie. Then, the class label having the highest

average confidence is chosen as output. The second alternative, highest confidence

fusion, operates similarly as the max-rule in the arithmetic fusion category, but uses

confidences as opposed to scores. In practice, highest confidence fusion rule selects

classifiers, and does not fuse them as in the max-rule.

6.6. Two-stage Cascaded Fusion

All of the aforementioned fusion methods are examples of parallel fusion schemes:

all of the individual pattern classifiers output their decisions in parallel, and the com-

biner fuses all of their decisions in a single step. This scheme is illustrated in Fig-

ure 6.3.a. It is possible to have different structures when combining classifiers such as

hierarchical or cascading schemes. We have developed two different two-stage cascaded
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(a) (b)

Figure 6.1. An illustrative example of the estimation of confidences for the top

ranked classes. (a) Normalized scores (distances) of a test example for each class in

the training set (in increasing order). Classifier.1 and classifier.2 have different score

ranges (denoted by double arrows), (b) Re-normalized distances calculated from the

Eq. 6.9. Slopes a and b denote the estimated confidences for the top ranked class for

classifier.1 and classifier.2, respectively.

fusion architectures [2]. Both are based on the following principle: Given an unknown

test pattern, the first classifier eliminates the unlikely classes, and retains the highly

probable ones and forwards them to the second classifier. The second classifier is a

more complex and accurate classifier which implements LDA. The motivation to use

LDA in the second classifier is based on the capability of LDA to generate a better

discriminative feature subspace when confronted with similar instances. Illustration of

the cascaded fusion scheme is given in Figure 6.3.b.

In the first cascaded architecture, named forward-always fusion, the first classifier

Cf , always forwards the labels of the the highly probable classes to the second classifier,

Cs. The number of labels forwarded to (r) is determined experimentally such that the

probability of the true class being in the forwarded labels is close to 1, and is set to a

fixed number beforehand. Alternatively, r parameter can be tuned automatically using

a cross-validation scheme. The task of the second classifier Cs is now to construct a

feature space using the LDA. Given r class labels, Cs constructs the LDA space using

the training examples of the forwarded r classes. Note that Cs dynamically determines
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the LDA subspace according to the forwarded class labels. This procedure could be

cumbersome and slow if r is very large. However, if the first classifier is chosen among

the accurate ones properly, then r is always a small number, and this does not result

in time complexity problems. Once the LDA space is constructed, the unknown face

pattern is projected to this LDA space and its feature coefficients are computed. One

possible way of obtaining the final decision could be just selecting the nearest class

found by Cs. However, we choose to fuse the rank lists of Cf and Cs using Borda count

method. It was observed experimentally that combining the decisions of the Cf and

Cs produces better classification accuracies.

The second cascaded architecture, named forward-if-unconfident fusion, has ex-

actly the same structure as the forward-always fusion scheme. The only difference is

the use of confidence-assisted decision making module at the output of the first classi-

fier Cf . Using the confidence estimation procedure presented previously, Cf determines

whether to use the second classifier or not. If the confidence of Cf is below a certain

threshold for a given test pattern, then the help of Cs is needed. In this case, Cs per-

forms the same operations as in the forward-always fusion scheme. In this architecture,

the only parameter that can be tuned is the confidence threshold. If the threshold is

set to a large number, then most of the time the consultation of Cs will be needed.

Otherwise, if it is too low, then most of the time the decision of the Cf will be selected.

However, the latter case may result in a performance degradation since the reliability

of the Cf may be low.
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Algorithm: Confidence-aided Fusion

Function: Performs confidence-aided fusion for the identification scenario.

Input:

Classifiers: C = {Ci, . . . , CL}
Training Examples: xtr = {x1, . . . , xntr}
Test Examples: yts = {y1, . . . , ynts}

Output: Error rate : a

1 ConfidenceFusion(C, xtr, yts)

2 Initialize error: err = 0

3 For each test example yi, i = {1, . . . , nts}
4 For each classifier Cj, j = {1, . . . , L}
5 Compute the nearest class label, kj and confidence value, wj

6 /* Highest Confidence Rule */

7 Select the class label having the highest confidence:

c = kj where arg maxj wj

8 /* Modified Plurality Voting */

9 If (No ties)

10 c = kj /* most frequent class label */

11 Elseif

12 Compute average confidences of equiprobable classes: we
j

13 Select the class having highest average confidence:

c = kj where arg maxj we
j

14 If c 6= the class ID of yi

15 err = err + 1

16 Return: Error rate: a = err
nts

Figure 6.2. Pseudocode of the confidence-aided fusion schemes: If the highest

confidence rule is employed, lines 6-7 is executed. If the modified plurality rule is

employed, lines 8-13 is executed.
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(a)

(b)

Figure 6.3. (a) Illustrative example of parallel fusion using rank-level combination

scheme, (b) Illustrative example of cascaded fusion using rank-level combination

scheme. Classifier2 performs LDA on the training samples of the forwarded classes.
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Algorithm: Two-Stage Cascaded Fusion

Function: Performs two-stage cascaded fusion for the identification scenario.

Input:

Classifiers: The first classifier, Cf and the second classifier, Cs

Training Examples: xtr = {x1, . . . , xntr}
Test Examples: yts = {y1, . . . , ynts}
Threshold to determine whether to use Cs or not: thres

Candidate class list size: s

Output: Error rate : a

1 CascadedFusion(Cf , Cs, xtr, yts, thres, s)

2 Initialize error: err = 0

3 For each test example yi, i = {1, . . . , nts}
4 Obtain ranked list r = {r1, . . . , rs} of similar classes using Cf

and compute the confidence w for the top class r1.

5 If w > thres /* Then do not consult Cs */

6 c = r1 /* Output the top class found by Cf */

7 Elseif /*Consult Cs*/

8 Apply LDA to the samples of classes in r,

construct LDA transformation: Λ

9 Represent yi using LDA: yΛ
i = Λ(yi)

10 Use yΛ
i and obtain new ranked list rΛ = {rΛ

1 , . . . , rΛ
m} using Cs

11 Fuse two ranked lists (r, rΛ) by Borda Count method,

select the top class as c

12 If c 6= the class ID of yi

13 err = err + 1

14 Return: Error rate: a = err
nts

Figure 6.4. Pseudocode of the forward-if-unconfident fusion scheme: Note that the

second classifier Cs may use another representation other than yts. For example, Cf

may use point cloud features as yts, and Cs may use depth images to construct LDA

transformation Λ.
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7. Experimental Results

In this chapter, we provide the results of the identification and verification ex-

periments performed on two different databases: the 3DRMA, and the UND (also called

the FRGC v1.0). In Section 7.1, experimental analysis mainly focuses on the effect of

two different registration methods: the one which allows rigid transformation and the

one which allows non-rigid transformations. For both of these approaches, various face

representation schemes, and their corresponding classifiers are presented. Integration

of different 3D face classifiers is also attempted. All of the experimental simulations

presented in Section 7.1 use the 3DRMA face database.

According to the conclusions drawn from the experiments in Section 7.1, we

continue to develop more sophisticated fusion schemes in Section 7.2. The main focuses

of Section 7.2 are i) to evaluate various face representation and facial feature extraction

algorithms, and ii) to evaluate their contribution in rich ensembles. For this purpose,

a wide range of different face classifiers were realized. The UND face database which

includes texture information is used throughout in Section 7.2.

7.1. The Effects of Registration and Representation on the 3DRMA

7.1.1. Comparison of 3D face classifiers

In our experiments, we have used the 3DRMA dataset [40]. Specifically, a subset

of the automatically prepared faces were used in experiments. The subset consists of

106 subjects each having five or six shots. The data is obtained with a stereo vision

assisted structured light system. Due to errors in the acquisition steps, some of the faces

contain significant amount of noise. There are slight pose variations in the 3DRMA for

left/right and up/down directions. Although faces are generally neutral, some subjects

have smiling expressions. Some artifacts such as glasses, hair, beard and moustache

are also present. All of the faces have almost uniform scale. Sample depth images from

the 3DRMA are shown in Figure 7.1. On the average, faces contain about 4000 3D
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points. After preprocessing steps, faces contain 2,239 3D points in RegTPS, and 3,389

points in RegICP. The resolution of depth images in these experiments are 99 × 77.

In profile set representation, each profile curve contains 220 points approximately, and

the total number of profile points in seven curves is 1,557.

Figure 7.1. Sample depth images from the 3DRMA database.

In the experiments, we present the classification accuracies of the algorithms

that are based on i) different 3D face representations and ii) two registration methods:

RegTPS and RegICP. The acronyms of the algorithms are shown in Table 7.1. The

names of the 3D face recognition algorithms which operate on ICP-based registered

faces start with WN and the ones which use TPS registered faces start with WY. We form

four different experimental setups with different number of shots in their respective

training sets. In the first experiment, E1, only one shot for each person is put into the

training set, and in E2, E3 and E4, there are two, three and four shots per person in

the training set, respectively. For each experimental setup, we perform k-fold runs and

report the mean accuracies and standard deviations. Each fold represents a different

combination of training and test set samples. In E1, E2, E3, and E4, the number of

folds are 5, 10, 10, and 5, respectively.

Which facial features are best?: Upper part of Table 7.2 shows the classifica-

tion accuracies of the different feature extraction methods for RegTPS for experiment

E4. Best performance is obtained using surface normal representation with 97.72 per
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Table 7.1. Acronyms of the algorithms for the two registration algorithms RegTPS

and RegICP.

RegTPS RegICP

WYPC: point cloud with warping

WYSN: surface normals with warping

WYSI: shape indices with warping

WYPCA: PCA of depth with warping

WYLDA-DI: LDA of depth with warping

WYPRO: profile sets with warping

WNPC: point cloud w/o warping

WNSN: surface normals w/o warping

WNSI: shape indices w/o warping

WNPCA: PCA of depth w/o warping

WNLDA-DI: LDA of depth w/o warping

WNPRO: profile sets w/o warping

cent correct identification rate. Point cloud and shape-index representations have ac-

curately identified 92.95 and 90.26 per cent of the test examples, respectively. In depth

image-based statistical methods, PCA performs worst, whereas LDA performs signifi-

cantly better than PCA. In general, depth image-based methods perform poorly when

compared to other representation techniques. Profile set representation have outper-

formed depth image methods, by obtaining 81.15 per cent recognition accuracy. We

have included the recognition performance of using only the central profile in Table 7.2

for comparative analysis. It is seen that using only the central profile reaches 60.48 per

cent recognition accuracy, which is worse than using profile sets.

The lower part of Table 7.2 shows the identification rates for the RegICP method.

As in the RegTPS, best recognition performance is obtained by surface normal rep-

resentation with 99.17 per cent accuracy. Point cloud and Depth-LDA methods have

obtained similar accuracies and Depth-PCA again performed the worst. The compar-

ative analysis of the different facial feature extractors have shown that the direction

of the surface normals carries more information than any other method. The most

important contribution of this analysis is that surface normals are better descriptors

than the 3D coordinates of the facial points. This contribution is significant because

most of the 3D face recognizers proposed so far largely depend on the 3D coordinate

information.
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Table 7.2. The mean and the standard deviations of the classification rates of different

features extracted from RegTPS- and RegICP-based registration methods for E4.

RegTPS

WYPC WYSN WYSI WYPCA WYLDA Central Profile WYPRO

Mean 92.95 97.72 90.26 45.39 75.03 60.48 81.14

STD 1.01 0.46 2.21 2.15 2.87 3.78 2.09

RegICP

WNPC WNSN WNSI WNPCA WNLDA Central Profile WNPRO

MEAN 96.48 99.17 88.91 50.78 96.27 82.49 94.51

STD 2.02 0.87 1.07 1.10 0.93 1.34 1.89

Which face registration technique is better?: When we compare the reg-

istration techniques RegTPS and RegICP, we see the advantage of registering faces

without warping. The accuracies of the best two feature extractors, namely surface

normals and point clouds, are improved by 1.45, and 3.53 per cent, respectively. An-

other important point is that the performance of the Depth-LDA method significantly

improves from 75.03 per cent to 96.27 per cent when the warping is not carried out. A

similar improvement is also present in using profiles. These results confirm that pro-

ducing shape-free faces with warping in 3D loses the discriminative shape information

in faces. Therefore, it is useful to extract facial features from the original faces.

The Effect of Training Set Size on the Recognition Performance: Up to

now, we have analyzed the performance characteristics of all algorithms in experiment

E4 which contains four training samples per subject. However, it is crucial to observe

the identification power under more realistic conditions where fewer samples are present

in the training set. For this purpose, we have compared the algorithms in experimental

configurations from E1 to E4. Note that the index i in experiment Ei denotes the

number of training patterns in the training set. Table 7.3 shows the average recognition

accuracies for all k-folds in each experiment. We have added (WNLDA-SN) method for

the RegICP-based registration method, and removed PCA-based methods in Table 7.3.

In all of the four experiments, surface normal-based features in RegICP (WNSN and
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WNLDA-SN) obtained the best accuracies. An interesting outcome of these experiments

is that even when using a single training shot, WNSN obtains a very good classification

accuracy, 90.14 per cent. The superiority of the features extracted from the RegICP-

based registration algorithm is more visible in E1 and E2 . This observation supports

the advantage of using RegICP when the recognition task becomes harder. The best

face recognizer in E4, WNLDA-SN, obtains 99.79 per cent average accuracy in five folds

of E4. There are a total of 193 test instances in each fold of E4. This corresponds to

misclassifying approximately two test instances out of 5 × 193 = 965 test instances.

Figure 7.2 shows some of the misclassified faces of the WNSN classifier. There are six face

image pairs. At each pair, left image is the query face and the right face is the nearest

face that is found by the classifier. Note that although the identities are different, query

faces are very similar to the found faces, i.e., smiling faces, faces with large or narrow

noses. It is also noticed that mistakes in the preprocessing stage, such as incorrect

cropping, or noisy data cause misclassifications.

Table 7.3. Mean and standard deviations of the recognition accuracies for four

experiments.

E1 E2 E3 E4

WNPC 86.03 (2.75) 93.43 (3.05) 95.42 (2.90) 96.48 (2.02)

WNSN 90.14 (3.47) 96.72 (2.42) 98.33 (1.60) 99.17 (0.87)

WNSI 69.47 (2.98) 81.65 (3.63) 86.69 (2.30) 88.91 (1.07)

WNLDA-DI N/A 74.84 (3.30) 93.58 (2.05) 96.27 (0.93)

WNPRO 78.90 (4.07) 89.01 (3.57) 92.71 (2.92) 94.51 (1.89)

WNLDA-SN N/A 95.46 (1.24) 99.46 (0.48) 99.79 (0.28)

WYPC 72.56 (2.38) 84.42 (3.58) 89.50 (2.94) 92.95 (1.01)

WYSN 84.85 (3.74) 94.47 (1.93) 96.89 (1.62) 97.72 (0.46)

WYSI 70.02 (4.26) 82.00 (3.81) 87.36 (2.54) 90.57 (2.52)

WYLDA N/A 47.48 (3.28) 63.51 (3.76) 70.67 (2.06)

WYPRO 58.67 (3.30) 70.81 (3.31) 77.29 (3.58) 81.14 (2.09)

Face Authentication Experiments: In this section, we have performed au-

thentication experiments on the 3DRMA dataset. In these experiments, a single shot
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Figure 7.2. Misclassified faces of the WNSN algorithm. For each image pair, left image

is the query face, and the right image is the nearest face found by the WNSN algorithm.

for each subject is used in the enrollment phase, i.e., experiment E1. In order to obtain

receiver operator characteristics (ROC) curves and to compute equal error rates (EER),

a varying threshold value t is used for the decision. Figure 7.3 shows eight ROC curves

for the algorithms: WNPC, WNSN, WNSI, WNPRO, WYPC, WYSN, WYSI, and WYPRO. The best

authentication results are obtained by WNSN which is the closest curve to the origin.

The worst performance is obtained by WYPRO. Equal Error Rates (EER) for warping-

based classifiers are: WYPC = 12.56, WYSN = 12.36, WYSI = 16.59, and WYPRO = 17.02

per cent. When you compare these EER’s with the ones in the second column (E1)

of Table 7.4 for RegICP, it is seen that ICP-based authenticators perform significantly

better. Table 7.4 shows authentication performances of RegICP-based classifiers for all

four experiments. Best authenticators WNSN and WNPC have 8.06 and 8.36 per cent EERs

in E1, respectively. As in the recognition experiments, if you have enough samples for

the WNLDA-SN method, it outperforms other methods: for experiment E4 in Table 7.4,

the WNLDA-SN method attained 0.72 per cent EER which is the best EER among all

classifiers.

Table 7.5 shows the comparative results for both authentication and recognition

algorithms on the 3DRMA database which were proposed in the literature so far. In

[13], comparative analysis of several approaches on the 3DRMA dataset were presented.

We only include the best of them in Table 7.5. The 3DRMA dataset contains six shots
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Figure 7.3. ROC curves for each method in experiment E1. x−axis and y−axis

denote false acceptance and rejection rates, respectively.

per each of the 120 subjects. However, a significant portion of the faces contains a huge

amount of noise. In order to reveal the true performance of the proposed algorithms, a

subset of these images are generally used which makes it harder to compare algorithms.

In addition, the number of training samples were not provided in [13] for authentication

experiments, so we include both WNSN and WNLDA-SN with one and four training samples

in the Table 7.5, respectively. In the third column of Table 7.5 we provide the number

of subjects selected for each experimental configuration, and provide EER and correct

classification rates (CCR) for authentication and recognition experiments in the fourth

column, respectively.
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Table 7.4. Authentication rates (equal error rates) for RegICP-based classifiers for

four experimental configurations. Best accuracies are typed in boldface.

Method E1 E2 E3 E4

WNPC 8.36 4.48 3.14 2.35

WNSN 8.06 4.36 3.29 2.92

WNSI 14.19 8.00 5.62 4.20

WNPRO 10.08 5.82 4.56 4.07

WNLDA-DI N/A 10.20 3.74 2.85

WNLDA-SN N/A 3.81 1.38 0.72

7.1.2. Fusion Experiments on the 3DRMA Database

In this section, we provide the experimental results of the fusion techniques that

are presented in 6. The following methods are analyzed: Plurality voting (CV), Borda

count(BC), product rule(MMP), modified plurality voting(ICV), highest confidence fu-

sion(HC), forward-always(FA), forward-if-not-confident(FC). For min-max normaliza-

tion, the minimum and maximum score values are calculated by the intra-class score

distributions of the training set. In ICV,HC, and FC fusion techniques, each classifier

should output the nearest class label together with its confidence value. The estimation

confidence values were presented in Chapter 6.

In the fusion experiments, we have used all the individual pattern recognizers

that are based on RegICP. From now on, they will be referred to as Ci’s where C1

= WNPC, C2 = WNSN, C3 = WNSI, C4 = WNPRO, C5 = WNLDA-DI, and C6 = WNLDA-SN.

Among them, C2 and C6 are the best ones in terms of classification accuracy. We report

the performance figures of the combined classifiers in three experiments: E2, E3, and

E4. Remember that Ej means that there are j training patterns for each class, and

the rest is put into the test set. We have constructed a number of distinct ensembles

from six pattern classifiers. These ensemble configurations are all combinations of six

classifiers with the size of six, five, four, and three: for instance ensemble Ω1 fuses clas-

sifiers {C1, C2, C3, C4, C5, C6}, Ω2 = {C2, C3, C4, C5, C6}, Ω3 = {C1, C3, C4, C5, C6},. . .,
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Table 7.5. Comparison of face authentication and recognition results on the 3DRMA

database.

Face Authentication Experiments

Algorithm Experimental Configuration EER

Facial profile (Beumier [39]) 30 subjects 9.50

SDM (Pan et al. [13]) 30 subjects 6.67

SDM (Pan et al. [13]) 120 subjects 8.79

WNSN 106 subjects, one training sample 8.06

WNLDA-SN 106 subjects, four training samples 0.72

Face Recognition Experiments

Algorithm Experimental Configuration CCR(%)

3D Eigenfaces (Xu et al. [97] ) 120 subjects, five training sample 71.1

3D Eigenfaces (Xu et al. [97] ) 91 subjects, five training sample 80.2

WNLDA-SN 106 subjects, four training sample 99.8

Ω41 = {C1, C2, C4}, and Ω42 = {C1, C2, C3}. There are a total of 42 distinct ensemble

configurations. Ensemble Ω1 deserves a special attention since it uses all pattern classi-

fiers. Figure 7.4.a shows the classification performances of all parallel fusion algorithms

for Ω1 for the experiments E2, E3 and E4. For each fusion method, white, gray, and

black bars denote the correct classification rates for E2, E3 and E4, respectively.

Which fusion algorithms are good?: By looking at Figure 7.4.a, we see that

MMP and ICV attain similar accuracies and they are the best fusion techniques. Borda

count is the worst fusion method in Ω1. However comparison of the fusion algorithms

for just ensemble Ω1 may not be valid. Therefore, in Figure 7.5.a, we show the average

performances of all fusion algorithms in all ensemble configurations from Ω1 to Ω42.

Figure 7.5.a makes clear that MMP, ICV, and HC are top performers.

When is the fusion useful? Figure 7.4.a contains horizontal lines, which

represent the best individual pattern classifier’s performance in the ensemble Ω1. The

horizontal dotted line represents the classification rate of the best individual classifier
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Figure 7.4. (a) Recognition accuracies of the ensemble architecture which consists of

all individual face recognizers, and (b) Recognition accuracies of the ensemble

architecture which consists of WNPC, WNSI, WNPRO, WNLDA.

(See Table 7.3: WNSN = 96.72 per cent) for experiment E2. Similarly, dashed and

solid lines denote best individual accuracies for E3 and E4, respectively. Generally, we

expect the performance of the ensemble architecture to be superior to the performance

of the best individual classifier. However, in experiments E3 and E4, none of the fusion

methods improve the single best accuracies. Only the best fusion methods improve the

classification rates in E2 (See white bars over the horizontal dotted line). This behavior

is due to the so-called ceiling effect in these experiments. E3 and E4 are relatively easy

problems when compared to E2, and there are two very strong individual classifiers in

the ensemble, namely, C2 = WNSN, and C6 = WNLDA-SN. For instance, C6 obtains 99.46

and 99.79 per cent recognition accuracies in E3 and E4. These performance figures are
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Figure 7.5. (a) Average recognition accuracies of all ensemble architectures, and (b)

The average classification rates of different ensemble sizes for MMP fusion algorithm.

White, gray, and black bars denote the ensemble sizes of three, four, and five,

respectively.

very good in this dataset, and is very hard to get better results. In order to confirm

this analysis, we have to look at the fusion performances where the ensemble does not

contain these two strong classifiers C2 and C6. In this way, we can simulate a much

harder task and expect better improvements. A good candidate is the ensemble Ω16

which contains C1, C3, C4, and C5. Fusion results for Ω16 are shown in Figure 7.4.b.

These confirm our initial result that all of the better fusion schemes outperform the

best individual rates significantly. For example, the MMP technique improves the best

rates by 1.78, 2.34, and 2.38 per cent for E2, E3, and E4, respectively. We conclude

that if you have weak or moderate 3D face classifiers, then fusion is beneficial.

What should be the size of the ensemble?: An important question re-

garding the fusion performance is the number of pattern classifiers in the ensemble.

Theoretically, it is highly probable to get better performance by combining fewer com-

plementary classifiers than by combining many but similar classifiers. For this purpose,

we have analyzed the number of 3D face classifiers that should be used in the ensem-

bles. We have selected the MMP fusion algorithm for this experiment. We have six

ensembles (Ω2 to Ω7) of size five, 15 ensembles (Ω8 to Ω22) of size four, and 20 ensem-

bles (Ω23 to Ω42) of size three. Figure 7.5.b shows the average ensemble accuracies for
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ensemble sizes three(white bars), four(gray bars) and five(black bars) for experiments

E2, E3, and E4. It is found that for all of the experiments, increasing the ensemble size

improves the classification rate. This finding confirms the complementary behavior of

the individual 3D face classifiers.

What is the performance of serial fusion?: We propose two serial fusion

schemes: FA, and FC. In the realization of these algorithms, we use WNSN algorithm

as a first classifier Cf , and LDA of surface normals as a second classifier Cs. In FA,

given a test face, Cf sorts the classes in increasing order of distance scores, and passes

N = 10 nearest class labels to Cs. N is found empirically using the training set

such that the presence of the true class is highly probable in the first 10 classes. Cs

then dynamically constructs an LDA subspace using the training examples of these 10

classes. As features, surface normals are used in Cs. Notice that Cs is different from

WNLDA-SN. In WNLDA-SN, all classes are used to form the LDA subspace. On the other

hand, in FC, given a test face, if the confidence of Cf is lower than the confidence

threshold τ = 0.5 for the nearest class found, then Cf passes the nearest 10 class labels

to Cs. Otherwise, Cf just outputs the nearest class as a final decision. The average

recognition accuracies of the FA algorithm for the experiments E2, E3, and E4 are

91.65, 98.86, and 99.90 per cent respectively. The correct classification rate of FA in

experiment E2 is worse than other parallel fusion schemes. This is due to the fact that

it is practically very hard to estimate the within class scatter using only two training

examples per class. However, when you use enough training faces, as in E3 and E4,

then the performance of FA quickly gets better, and even exceeds the accuracies of the

other fusion schemes. The accuracy of 99.90 per cent in E4 is the top performance

obtained among all single classifiers and other fusion algorithms. This behavior is also

observed in FC experiments. The average recognition accuracies of the FC algorithm

for the experiments E2, E3, and E4 are 93.14, 98.90, and 99.90 per cent respectively.

The classification accuracies of FC fusion algorithm are better than FA. This validates

the benefit of the use of confidence idea in fusion. It is also worth noting that FC

is considerably faster than FA since it does not need to perform LDA for every test

instance. The identification performances of the serial fusion schemes prove that if you

have enough training samples, they can be better alternatives to parallel architectures,
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and it is possible to improve best individual accuracy even in the presence of strong

classifiers. Another interesting outcome of the serial fusion idea is that you can get

these performance figures using a feature vector of size nine which is the maximum

dimensionality in the LDA for a 10-class classifier Cs. This is worth noting since the

dimensionality of the original 3D face recognition problem using surface normals is

typically ∼ 3, 389× 3.

What are the authentication accuracies of the fusion algorithms?: We

have also analyzed the benefits of decision-level fusion algorithms for the face au-

thentication problem. Figure 7.6 depicts the authentication performance of the MMP

algorithm on experiments E2(white), E3(gray), and E4(black). y-axis shows the equal

error rate. Similar to the recognition experiments, horizontal lines illustrates the best

individual authentication accuracies in the ensembles. Note that the corresponding

bars should be below the horizontal lines since these are error rates. In Figure 7.6.a,

the accuracies of ensemble Ω1 which contains all pattern classifiers from C1 to C6 are

shown. In Figure 7.6.b, the accuracies of ensemble Ω16 which contains pattern classi-

fiers C1, C3, C4, and C5 (excluding strong classifiers) are shown. Authentication results

display a similar behavior as in the recognition experiments: if you have strong clas-

sifiers in the ensemble such as Ω1, then the fusion algorithms can not perform better

than the best individual accuracy. However, if you fuse moderate classifiers as in Ω16,

you can get significant accuracy improvements.

The effect of classifier weighting Up to now, we treat all individual classifiers

equally and does not employ a weighting scheme in the fusion process. However, it is

possible to weight the experts according to their individual performances. Basically,

the motivation is to trust more to the decision of the better classifiers. Although this

mechanism may generally result in better ensembles, automatic estimation of classi-

fier weights from a limited amount of validation set which is usually the case in face

recognition systems, may not produce optimal weights. Here, our aim is to show the

identification behavior of the ensembles where the expert weights are automatically

estimated from a separate validation set. For this purpose, we design a new experi-

mental protocol for the 3DRMA database. In our simulations, we put three images per
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Figure 7.6. The equal error rates for the face authentication experiments for the

MMP fusion algorithm. White, gray and black bars denote the experiments E2, E3,

and E4, respectively.

subject into the training set, one image to validation set, and remaining images into

the test set. We have formed four experimental folds where different combinations are

put into the training and validation sets. In each fold there are a total of 318 gallery

images, and 193 probe images. Validation set is used to determine classifier weights.

Table 7.6 presents the correct classification accuracies of the four individual 3D

face classifiers for four experimental folds. Point cloud-based (PC) classifier attains

the best performance with 91.19 per cent average accuracy. Facial profile (PRO) and

depth image-based (LDA-DI) have similar rates, whereas shape index-based classifier

(SI) performed worst.

In addition to the previously analyzed fusion methods, we implement two weighting-

based schemes: Weighted Sum Rule (WS): In original sum rule, individual pattern classi-

fiers are considered to be equally powerful. However, if some of them are more accurate,

then it is useful to weight them in the fusion process. Let wj’s be the weights of clas-

sifiers computed on a separate validation set, then weighted sum rule is written as:

yj =
∑K

k=1 wj × skj. Weighted Consensus Voting (CV-W): Similar to the weighted sum
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Table 7.6. 3D face classifier performances.

PC SI PRO LDA-DI

E1 86.01 78.76 83.42 88.08

E2 92.75 88.08 92.23 91.71

E3 92.75 86.53 93.26 89.64

E4 93.26 89.12 94.30 92.23

Mean 91.19 85.62 90.80 90.41

rule, individual classifier’s strengths can be embedded into a consensus voting scheme

where the counts of the top-ranked classes are increased by wj’s (in the original CV,

we simply count each vote as one). Table 7.7 presents the identification accuracies of

sum (SUM), weighted sum (WS), plurality voting (CV), weighted plurality voting (CV-W),

improved plurality voting (CV-A), Borda count (BC), highest confidence (HC), product

(PROD), and serial fusion (SF) methods.

We find that employing a weighting scheme in the sum rule (WS) degrades the

classification rate. Let Pi be the accuracy of classifier Ci on the validation set, then

weights wi are computed by:

wi =
Pi∑L

k=1 Pk

(7.1)

We have also tried other techniques (found in [94]) for weight estimation, but

this approach gave the best performance. The failure of weighting-based fusion can be

explained by the insufficient amount of validation data. However, in practical systems,

we generally do not have sufficient amount of training samples per subject. So, this

situation will always be the limiting factor. The same degradation is also present in

weighted consensus voting (CV-W).
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Table 7.7. Fusion performances on the 3DRMA database.

SUM WS CV CV-W CV-A BC HC PROD SF

E1 92.23 91.71 88.60 87.05 91.19 86.53 91.19 92.23 94.30

E2 96.37 96.89 95.34 94.82 95.86 94.82 96.37 96.89 98.96

E3 96.89 96.37 95.86 95.86 94.82 94.82 96.37 96.37 99.48

E4 96.37 94.82 96.89 95.86 95.34 94.82 96.37 95.86 98.96

MEAN 95.47 94.95 94.17 93.39 94.30 92.75 95.08 95.34 97.93

7.2. The Effects of Representation, Feature Extraction, and Ensemble

Construction

Our findings in the previous section (Section 7.1) reveal that AFM-based rigid

registration of faces is superior in terms of classification accuracy to more elaborate

TPS warping-based registration algorithm. Therefore, in this section we focus on the

ICP-based registration method. As opposed to the previous section, our aim in this

section is to concentrate on the benefits of classifier combination techniques where a

vast amount of individual face experts are present. The construction of face experts

is divided into two phases: first the representation of 3D facial images is considered.

In this context, the representation means the way 3D face signals are stored, i.e., as

point clouds, or depth images. The second phase is related to the feature extraction

techniques used for a specific type of face representation method. For instance, given

a texture-based (intensity image) representation, PCA and 2D Gabor wavelet can be

considered as two different feature extractors. Combining different representation and

feature extraction methods yields a large number of face experts. Complete list of

these experts are provided in Table 7.8, and we follow the notation presented in that

table. The second part of the experimental studies presented in this section is devoted

to constructing useful combination of individual face classifiers. To this end, various

ensemble construction methods are presented and compared.
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7.2.1. Summary of representation and feature extraction methods

Table 7.8 shows all of the representation techniques, and their corresponding

feature extraction methods. For each method, we provide feature dimensionality and

the distance measure used. Each expert relies on a different feature extraction method,

and thus has different input feature vector size. Note the wide disparity in feature

dimensionality: For example, transform-domain features have compression ratios of

1:350 vis-à-vis the raw point cloud data. Moreover, a distance measure appropriate

for each feature type was determined experimentally from the L1, L2 and COS set as

already given in Table 7.8. For the multidimensional features, i.e., surface normals,

principal directions, and point cloud coordinates, the distances are simply calculated

for each dimension separately and then summed. For these cases, the distance measure

has the additional symbol
∑

. One exception is the CURV-PD method, since this

feature consists of two 3-vectors. Therefore, the distance is calculated by the sum of

two 3-vector differences. After the preprocessing operations of alignment and cropping,

the original 3D point clouds with varying number of samples are reduced to a fixed

number of registered 16,560 points and correspondences are established. Similarly,

depth and texture image resolutions are 281× 321. Note that the original face texture

image containing both face and non-face regions was 480 × 640. After cropping the

face region, the new image size becomes 281× 321.

7.2.2. Face Database and Experimental Protocols

For the recognition tests, we have used the University of Notre Dame (UND) 3D

face database [98], also known as the Face Recognition Grand Challenge (FRGC) v1.0

database in the literature. The original UND database contains 943 3D scans of 275

subjects. We had to use a subset of the original database, since 75 subjects had only one

scan, and 14 3D scans were badly registered with the texture data. Thus, the part of the

database involved in our experiments contained 854 2D and 3D scans of 195 subjects.

Each subject had at least two, and at most eight 3D scans. The UND database consists

mostly of frontal faces and does not exhibit significant expression variations. However,

some scans have slight in-depth pose variations, and different expressions. Texture



102

Table 7.8. Representations, features, dimensionalities, and distance measures for face

experts. Registered faces contain 16,560 3D points.

Representations Features Acronym Dim. Distance M.

Point Clouds (x,y,z) coordinates PC-XYZ 49,680
∑

L2

NMF coefficients PC-NMF 90 COS

ICA coefficients PC-ICA 90 COS

Surface Normals (nx,ny,nz) unit normals SN 49,680
∑

L2

Depth Images Pixels DI-PIXEL 90,201 L2

DCT coefficients DI-DCT 49 COS

DFT coefficients DI-DFT 49 COS

ICA coefficients DI-ICA 80 COS

NMF coefficients DI-NMF 70 COS

Curvature Shape-index (SI) CURV-SI 16,560 L1

Principal directions CURV-PD 99,360
∑

(COS + COS)

Mean curvature CURV-H 16,560 L1

Gaussian curvature CURV-K 16,560 L1

Voxel 3D DFT coefficients VOXEL-DFT 53 COS

Texture Images Pixels TEX-PIXEL 90,201 L2

2D Gabor wavelets TEX-GABOR 35,480 L1

information is stored as RGB values with 480 × 640 resolution. Shape data contains

approximately 30,000 - 40,000 3D coordinates. Although the quality of the scanned

data is high, there are two types of noise affecting 3D faces: small protrusions and

impulse noise-like jumps. Median filtering is first used to remove impulse noise, and

then mean filtering is applied to smooth the facial surface. Figure 7.7 shows sample

faces from the UND database.

We have designed four different experimental configurations, as shown in Ta-

ble 7.9. Each configuration contains a different number of training samples per subject.

The subscript i in experiment Ei denotes the number of training samples per subject

in that experiment. The reason for different populations is that in the UND database,

195 subjects have more than two 3D scans, 164 subjects have more than three scans
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Figure 7.7. Sample faces from the FRGC database.

etc. Thus E1 is designed so that every subject possesses only one image in the training

set, and while the rest of 854 − 195 = 659 images are placed in the test set. For each

experiment, we have run several folds, and the number of folds for each experiment is

shown in the last column of Table 7.9. In the rest of the this report, we report only

the average of the recognition accuracies of the folds. The most difficult experiment

is obviously E1 (single gallery experiment) since not only there exists a single training

image per person, but also both the enrollment size and the number of test scans are

larger. Conversely, the easiest experiment is E4, since it contains four training images

per person and the test size is smaller. We choose not to report the even easier iden-

tification experiments, such as E5, and E6, since they are not sufficiently challenging.

Note that when the number of images in the training set increases, the number of

subjects that participate in that experiment decreases.
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Table 7.9. Experimental configurations.

Training samples Number of Total training Total test Fold

per subject Subjects scans scans count

E1 1 195 195 659 2

E2 2 164 328 464 3

E3 3 118 354 300 4

E4 4 85 340 182 5

7.2.3. Comparative Analysis of Individual Face Experts

Table 7.10 shows the rank-1 correct classification rates of the face experts for the

four experimental setups, where the boldface figures denote the three top competitors

in that category. While it may not be correct to generalize these results out of the

UND database case, nevertheless we find useful to state the following comments:

• Not surprisingly, there is a jump difference in performance between single gallery

case and the experiments with at least two training images per subject. In fact,

almost half of face experts attain nearly perfect classification whenever at least

two training face samples are provided.

• For the single gallery experiment E1, the top three experts are all related to sur-

face curvature (CURV-PD, CURV-SI, SN). We can consider the surface normals

as a different form of curvature-related descriptor. In the multi-gallery experi-

ments (E2, E3, and E4), subspace techniques PC-NMF, PC-ICA, and DI-DCT

outperform others. This shift from surface experts to subspace experts as more

data becomes available is intriguing. For example, PC-NMF which had the per-

fect score in E3 falls to a mediocre position in E1 with a score of only 85%. We

conjecture that the subspace techniques achieve their full potential when adequate

training data is supplied to construct their feature subspaces. The subspace tech-

niques need more training samples to model the within class variability through

the analysis into basis faces and the corresponding coefficients.

• One important observation is that the discrimination abilities of surface-based
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descriptors i.e., CURV-PD, CURV-SI, SN, and PC-XYZ are better than others.

Another observation is that the 3D directions of the minimum and maximum

curvatures carry better discriminatory information as compared to scalar version

of the curvature information, that is, the mean or Gaussian curvatures. For

example, principal directions-based CURV-PD expert improves the identification

accuracy by almost 2 per cent when compared to shape index-based CURV-SI

classifier.

• An in-depth analysis of the performance scores in Table 7.10 reveals that face

recognition experts using similar face representation methods achieve similar

scores. Thus, it is not the feature type that is the determining factor, but the

underlying information representation. In fact, we may group the face experts

in decreasing order as follows: curvature-based, point cloud-based, depth image-

based, texture-based, and voxel-based. Once the representation type is chosen,

the performance variations due to features become relatively small. Hence, one

should shift one’s focus from choice of feature to the choice of representation. To

give an example, consider ICA- versus NMF-based features for experiment E1.

The depth image-based classifiers DI-ICA and DI-NMF obtain 72 per cent aver-

age performance rate. On the other hand with the point cloud representation,

PC-ICA and PC-NMF achieve 85 per cent average recognition rate. In any case,

the feature extraction methods and the face representation methods should be

considered together.

• In terms of the usefulness of shape and texture modalities, we observe the clear

superiority of shape-based face classifiers. While we have implemented both

eigenface-based and Gabor wavelet-based 2D recognition algorithms, we only

provide the Gabor case since eigenface-based method is worse than both pixel

and Gabor-based texture classifiers. However, even the best 2D texture-based

Gabor method can only attain 74.73 per cent correct classification rate in E1.

We also analyze the identification behavior of the individual face experts in a

retrieval setting, and perform Rank-k experiments. From this analysis, we obtain

cumulative match characteristics (CMC) curves. Figure 7.8 shows five CMC curves for

the face experts for experiment E1: PC-XYZ, CURV-PD, TEX-GABOR, DI-DCT, and
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Table 7.10. Rank-1 correct classification accuracies of the face experts.

E1 E2 E3 E4

PC-XYZ 87.71 94.68 97.92 98.90

PC-NMF 85.13 97.77 99.25 100.00

PC-ICA 85.66 98.71 99.67 99.89

SN 89.07 96.84 98.92 99.45

DI-PIXEL 55.99 70.19 79.75 87.69

DI-DCT 78.53 97.63 99.58 99.78

DI-DFT 75.95 97.13 99.08 99.56

DI-ICA 72.46 96.55 98.92 99.01

DI-NMF 71.55 95.83 98.67 99.67

CURV-SI 90.06 96.55 98.67 99.34

CURV-PD 91.88 97.13 99.08 99.45

CURV-H 87.41 95.69 98.50 98.90

CURV-K 84.37 93.89 97.25 98.46

VOXEL-DFT 64.26 91.16 97.92 99.34

TEX-PIXEL 64.04 77.16 84.33 92.53

TEX-GABOR 74.73 87.36 91.92 96.26

PC-ICA. From the CMC curves, it is seen that Rank-1 classification rates presented in

Table III are correlated with the CMC performances of the face experts.

Figure 7.9 shows four sample face images misclassified by all of the 16 face experts

in experiment E1. Blue face (lighter) is the gallery image and the red (darker) face

is the misclassified probe image. Errors generally stem from incorrect registration of

faces. Pose variations in both vertical and horizontal axes are visible in the first and

third images. Another source of error is especially visible in the forehead regions due

to the presence of hair (see the fourth, and the first image).
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Figure 7.8. CMC curves of five face experts for E1.

7.2.4. Comparative Analysis of Fusion Methods

In this section, we discuss the impact of the decision fusion methods in improv-

ing the recognition performance. Table 7.11 presents the rank-1 correct classification

accuracies of the sum, product, plurality, highest confidence, modified plurality, Borda

count, min, max, and median fusion techniques for the four experimental configura-

tions. In each fusion method, all of the 16 base face experts listed in Table 7.10, are

combined. In the columns of Table 7.11, the numbers in parentheses denote the clas-

sification rate improvement (or loss) with respect to the best individual face expert

in that experimental category. For example, in experiment E1, the best face expert

(CURV-PD) obtains 91.88 percent classification rate, and all improvement figures in

the E1 column of Table 7.11 are calculated with respect to this base. To facilitate

comparisons, these base expert accuracies are shown in the second row of the table

with legend ”Best Individual”. For each experiment, the best fusion accuracies are

highlighted in boldface. As expected, the fusion gains diminish from harder toward
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Figure 7.9. Misclassified faces in experiment E1. 1) Pan variation, 2) Incorrectly

normalized faces, 3) Tilt variation, and 4) Errors due to hair region.

simpler experiments, i.e., from E1 to E4. Therefore, it makes sense to analyze the

advantage of fusion methods especially for the most challenging experiment, E1.

One can observe generally that fusion may cause significant classifier performance

losses with respect to the best expert’s, if the fusion method is not correctly chosen. On

the other hand, the contribution of fusion methods remains modest, even in the most

difficult experiment. More specifically, the sum rule, which is the most widely used

fusion technique in the 3D face community, reports a slight improvement of 0.15 per

cent. The product rule performs very badly in E1, but contributes positively in other

experiments, pointing out again to the singularity of single-gallery experiment. This

performance degradation in E1 is due to the insufficient amount of training samples to

estimate the score range with the min-max technique. If the training set is small, the

estimated normalization parameters do not generalize well in the identification phase.

This problem does not occur in experiments E2, E3, and E4 where sufficient training
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data exists.

Table 7.11. Rank-1 correct classification accuracies of the fusion methods.

E1 E2 E3 E4

Best Individual 91.88 98.77 99.67 100.00

MIN 88.54 (-3.34) 95.62 (-3.09) 97.75 (-1.92) 98.68 (-1.32)

MAX 61.15 (-30.73) 84.70 (-14.01) 89.00 (-10.67) 93.85 (-6.15)

MEDIAN 83.08 (-8.80) 95.19 (-3.52) 98.00 (-1.67) 99.34 (-0.66)

BORDA(C:All ) 88.31 (-3.57) 97.34 (-1.37) 99.33 (-0.34) 99.67 (-0.33)

SUM 92.03 (0.15) 99.21 (0.50) 99.75 (0.08 ) 100.00 (0.00)

PROD 72.23 (-19.65) 99.35 (0.64) 99.83 (0.16) 100.00 (0.00)

PLUR 93.40 (1.52) 99.50 (0.79) 99.83 (0.16) 100.00 (0.00)

HC 93.32 (1.44) 98.78 (0.07) 99.42 (-0.25) 100.00 (0.00)

MOD-PLUR. 93.63 (1.75) 99.43 (0.72) 99.83 (0.16) 100.00 (0.00)

Min, max, median and Borda count methods do not surpass the accuracy of

the best face expert in the respective experiment. A few words of comment are in

order for the Borda count method: Should one use all the possible ranks from one up

to the subject size or the top ranking ones? We have observed that combining the

ranks of the top three achieves better results as compared to combining, for example,

those of 195 subjects or any other subset. With this top-three Borda, the fusion loss

in Table Table 7.11, becomes a fusion gain, of 1.97, 0.64, 0.16, 0.00 points for the

four experiments E1, E2, E3, and E4, respectively. Apparently the most important

information is in the top ranking face experts.

Plurality voting, despite its simplicity, performs very well. For example, it im-

proves the best expert’s classification rate by 1.44 per cent in E1. The modified plurality

(MOD-PLUR), presented in Chapter 6, performs better than its classical version (cf.

MOD-PLUR with PLUR). The advantage of using confidence-aided fusion becomes

more evident when we compare it with the performance of the highest confidence (HC)

fusion rule. Essentially, HC rule is a classifier selection method similar to the frequently

used MIN fusion rule. The only difference between HC and MIN rule is that HC uses
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confidences to reach a decision whereas MIN rule uses normalized scores to select the

final class label. For experiment E1, MIN rule has 88.54 per cent identification rate.

However, HC obtains 93.32 per cent identification rate which is better than the best

face expert in the ensemble by 1.44 per cent. This observation is very important, and

proves the superiority of the confidence-assisted fusion scheme. To recap, we recom-

mend the use of the relative distance between the first and the second class candidates,

if correctly normalized score measurements are not available, which is usually the case

in single gallery experiments.

7.2.5. Construction of Face Classifier Ensembles

7.2.5.1. Classifier Selection by Sequential Floating Backward Search. In Section 7.2.4,

we have fused the decisions of all of the 16 face experts. However, it is not immedi-

ately obvious whether inputting all experts in a fusion scheme is the best scheme to

follow, simply because these individual experts may be correlated. One idea is to use

a classifier selection method to design a better ensemble to be fused. Brute-force so-

lution would be to construct all possible ensembles with number of selected classifiers

ranging from 1 to 16. However, this is not practical given the number of combinations.

Instead, the problem can be formulated as a feature selection problem. In analogy

to the feature selection methods, we consider each classifier as a feature, and apply

the sequential floating backward search (SFBS) [91] to find the near-optimal subset

for each fusion technique. SFBS-based classifier selection algorithm can be stated as

follows:

1. Initialization step: Start with the total ensemble set (Ωin) of all of the face

experts: Ωin = {e1 . . . en}. Set the discarded face expert subset to an empty set:

Ωout = ∅
2. Exclusion step: For each face expert ei ∈ Ωin, remove this expert from Ωin and

obtain the candidate subset Ωcand = {Ωin − ei}. Calculate the classification rate

of the candidate ensembles. Select the candidate subset, which produces the best

classification rate (Ω∗
cand). If the accuracy of the selected candidate is greater

than or equal to the accuracy of the set Ωin, then perform the following updates,
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Ωin = Ω∗
cand, and Ωout = {Ωout

⋃
ei}. Otherwise, stop.

3. Inclusion step: (If the cardinality of the Ωout > 2) Form a candidate subset Ωcan

by including a single face expert ei from the previously discarded face experts

subset Ωcan : {Ωin
⋃

ei}. If the classification rate of the candidate set Ωcan is

better than the accuracy of the set Ωin, then include expert ei to the subset

Ωin = {Ωin
⋃

ei}, and remove ei from the Ωout = {Ωout − ei}. Try all of the

remaining experts in the subset Ωout to include to Ωin in this fashion.

4. Try the exclusion and inclusion steps successively until there is no performance

improvement. Output the subset Ωin.

We have applied the SFBS algorithm to SUM, PROD, PLUR, HC, and MOD-

PLUR fusion schemes, and found near-optimal subsets for E1. The results are shown

in Table 7.12 and Table 7.13. The second column of Table 7.12 shows the selected face

experts in the found subsets. It is clear from the classification accuracies of experiment

E1 that it is possible to get better ensembles in terms of identification performance.

For example, MOD-PLUR fusion rule attains 95.22 per cent identification rate by

combining only eight face experts which is significantly better than using all of the 16

face experts in the original MOD-PLUR method (93.63 per cent). It should be noted

that these subsets were found by applying SFBS for experiment E1, and the recognition

accuracies of the other experiments were reported for these specific subsets. This

explains the performance degradation of the PRO fusion rule in E4. We have chosen to

report the accuracies for experiments E2, E3, and E4 in order to test the generalization

ability of the SFBS-based classifier selection algorithm. It is more appropriate to apply

SFBS algorithm to a separate validation set, and then to report the final classification

rates on an independent test set. However, our main concern is not to design a classifier

selection algorithm, but to give a proof of the concept, that it is possible to construct

better ensembles without using all of the available face experts.

7.2.5.2. Correlation Analysis of Face Experts. The SFBS-based construction of the

face ensembles has proven that some of the base classifiers are redundant and inclusion

of them may lead to sub-optimal identification rates. To validate this finding, we want
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Table 7.12. Selected classifier subsets for different fusion methods.

Fusion Expert Subset

SUM PC-XYZ, CURV-{SI,PD,K}, TEX-PIXEL, TEX-GABOR, DI-ICA, PC-NMF

PRO PC-XYZ, CURV-SI, CURV-{PD,H,K}, TEX-GABOR, DI-DFT, DI-ICA, DI-NMF

PLUR CURV-SI, CURV-PD, CURV-K, TEX-PIXEL, TEX-GABOR, DI-DCT, PC-ICA

HC CURV-SI, CURV-PD, CURV-H, TEX-GABOR, PC-ICA

MOD-PLUR PC-XYZ, CURV-{SI,PD}, TEX-PIXEL, TEX-GABOR, DI-DFT, DI-NMF, PC-ICA

Table 7.13. Identification accuracies of the selected classifier subsets for different

fusion methods (See Table 7.12).

Fusion E1 E2 E3 E4

SUM 94.23 (2.35) 99.14 (0.43) 99.75 (0.08) 100.00 (0.00)

PRO 88.39 (-3.49) 99.14 (0.43) 99.75 (0.08) 99.89 (-0.11)

PLUR 94.84 (2.96) 99.28 (0.57) 99.75 (0.08) 100.00 (0.00)

HC 94.69 (2.81) 98.99 (0.28) 99.42 (-0.25) 100.00 (0.00)

MOD-PLUR 95.22 (3.34) 99.50 (0.79) 99.92 (0.25) 100.00 (0.00)

to conduct a correlation analysis of the binary decision outputs of the face experts.

Correlation is a particular type of binary similarity measure techniques [94], and given

two classifier outputs with [0,1] values, it can be computed as:

ρi,j =
N11N00 −N10N01√

(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)
(7.2)

where, for classifiers Ci and Cj, N values denote the probabilities for the respective

pair of correct/incorrect outputs, and can be calculated as in Table 7.14.

Given the 16 experts in Table 7.10, we have computed 120 pairwise correlation

values, and we have found significant correlations between certain pairs of face experts.

In order to visualize the multidimensional relationships between face experts, we have
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Table 7.14. 2× 2 probability computation for two classifiers Ci and Cj where

N11+N01+N10+N00 = 1

Cj correct (1) Cj wrong (0)

Ci correct (1) N11 N10

Ci wrong (0) N01 N00

first obtained the dissimilarities between pairs of classifiers by using di,j = 1 − ρi,j.

Here di,j’s can be considered as a distance measure between classifier pairs. Then

we apply multidimensional scaling (MDS) algorithm to construct a two dimensional

space <2 where the coordinates denote the individual classifiers. We have found that

the space of the two largest eigenvectors suffices to reasonably reproduce the space of

face experts. Figures 7.10.a and 7.10.b show the reproduced face expert coordinates

in <2. The coordinates of the face experts (black dots) are the same in both figures.

Figures 7.10.a also shows visually delineated face expert clusters (dashed ellipses).

There are five salient clusters, and with few exceptions, each cluster matches one of

the face representation methods. For instance, curvature-based, depth image-based,

point cloud-based and texture-based face experts form their own clusters.

In Figure 7.10.a, gray circles denote the selected face classifiers for the SUM

fusion rule. Selected face experts for the MOD-PLUR fusion scheme are shown as

gray circles in Figure 7.10.b, similarly. When we examine the selected face experts

for both the SUM and MOD-PLUR fusion methods, we see that these experts come

from different clusters. This finding shows that if you have different base classifiers,

then their combination can attain better accuracies, although their own accuracies are

moderate.

7.2.5.3. Classifier Selection by Best-N Method. A second alternative method to con-

struct the ensemble would be to combine the best N face experts. However, since this

method does not exploit the diversity of decision takers, we conjecture that it may

not perform as well. In order to validate this hypothesis, we have combined best N

face experts where N ∈ {2, 3, . . . 16} with MOD-PLUR fusion rule. The fusion per-
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formance of the best ensembles is plotted in Figure 7.11 (black dotted curve), while

the two lines correspond to the accuracies of the total ensemble (the N=16 case and

the SFBS ensemble, respectively. As expected, the indiscriminate ensemble of the best

ones performs worse than the judiciously chosen SFBS subset case.

7.2.5.4. Classifier Selection by Correlation Analysis. The third and final ensemble con-

struction method is to hand-pick them using the cluster map of Figure 7.10. The

heuristic for the ensemble construction is to select one face expert from each cluster in

order to enforce diversity of opinions. Although each cluster offers the choice of more

than one expert, we follow the greedy approach of choosing the best performing face

expert from each cluster. Table 7.15 shows the performance of the five fusion rules ap-

plied to the hand-picked ensemble, namely, CURV-PD, TEX-GABOR, DI-DCT, and

PC-ICA for the experiment E1. We exclude the VOXEL-DFT method because its solo

classification performance is very low. The second row of Table 7.15 replicates the fu-

sion performances from Table 7.11. Comparison of these results reveals the advantage

of getting guidance from clustering of experts. The only drop in accuracy occurs for

the PLUR method since voting within an ensemble of small cardinality is known not

to perform well.

Table 7.15. Selection of classifier ensembles by clustering.

SUM PRO PLUR HC MOD-PLUR

All 16 experts 92.03 72.23 93.40 93.32 93.63

Best of Clusters 92.26 85.82 91.35 94.23 94.01

7.2.5.5. Fusion of single shape and single texture expert. So far, we have let the al-

gorithms to treat the experts taking role in the consultation session. However, most

papers in the 3D face recognition literature fuse only two face experts with the SUM

rule: one for the shape modality, and one for the texture modality. Typically, for

the shape modality, ICP-based point cloud algorithm is chosen. For completeness, we

present the results of this restricted fusion scheme, where one choice from texture cat-

egory and another one from shape category is imposed. In Table 7.16 we provide the
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results of three ensembles, with TEX-GABOR being the only choice for the texture-

based expert. In the shape category three different shape experts take role, namely

PC-XYZ, DI-DCT, CURV-PD, each a best representative of its own group. From the

performance figures in Table 7.16, one can see that the combination of TEX-GABOR

and CURV-PD algorithms significantly outperforms the other two ensembles, and that

this twosome has classification performance comparable to that of all 16 face experts

fused.

Table 7.16. Fusion of shape and texture experts using the SUM rule.

Texture Expert Shape Expert Rank-1 Accuracy in E1

TEX-GABOR PC-XYZ 89.98

TEX-GABOR DI-DCT 84.67

TEX-GABOR CURV-PD 93.63

7.2.5.6. Overall comparison of fusion schemes and classifier selection methods. The bar

chart in Figure 7.12 summarizes the fusion results given in the previous sections. There

are four fusion schemes (SUM, PLUR, HC, and MOD-PLUR) and four ensemble con-

struction algorithms (Ens-All, Ens-SFBS, Ens-Cluster, and Ens-BestN). We have al-

ready seen that the optimal ensemble formation is SFBS, adopted from feature selection

literature. The essential pre-requisite for a good ensemble formation is the complemen-

tariness. Since fusing best N individual experts does not enforce complementariness, it

only attains a moderate performance (see Ens-BestN in Figure 7.12), while the cluster-

guided method (Ens-Cluster) satisfies it heuristically, and performs better. In terms of

fusion algorithms, the following conclusions can be drawn: 1) in good ensembles, sum

rule does not perform as well as the others, 2) if one has several face experts, plurality

voting can be a better alternative to the sum rule, 3) it is possible to improve plurality

voting with the aid of confidence weights, 4) if there are few experts, then selecting

the class having the highest confidence (not the smallest score or distance) can lead to

better identification rate than plurality voting
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(a)

(b)

Figure 7.10. Correlation analysis of the face experts. In both images, black dots

denote the two-dimensional positions of the face experts calculated from the MDS

analysis of pairwise correlations for the first experiment E1. Gray circles denote the

expert subset found from (a) the SUM rule, and (b) the MOD-PLUR rule. In (a),

large dashed ellipses denote visually salient clusters.
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Figure 7.11. The identification performance of fusing best N classifiers where where

N ∈ {2, 3, . . . 16} (x-axis) for the MOD-PLUR rule. Black-dotted curve denotes the

Rank-1 accuracy of the best N fusion method. Horizontal dashed line, and the

horizontal solid line denote the performance of the fused ensemble for i) SFBS-based

face expert subset, and ii) using all 16 face experts in the ensemble, respectively.
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Figure 7.12. Overall comparison of the i) fusion techniques and ii) ensemble

construction methods: Ens-All: All 16 experts in the ensemble, Ens-SFBS: Subset of

face experts selected by the SFBS method, Ens-Cluster: Selection of best experts

from each cluster (see Figure 7.10), Ens-BestN: Selection of the most accurate five

face experts. Horizontal line denotes the best face expert’s accuracy in the

experiment E1.
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8. Conclusions

In this thesis, we have developed a complete 3D face recognition system. The

developed system essentially matches 3D facial shapes in order to identify or verify a

person. Depending on the availability of the texture modality, the 3D face recogni-

tion engine may also incorporate the 2D appearance information during its decision

phase. Currently, the recognition system requires only the coordinates of the nose tip

for coarse localization. However, if several landmark coordinates corners are available,

it employs this information for more advanced alignment algorithms such as the Pro-

crustes analysis. The overall system is divided into four main modules: 1) registration,

2) face representation, 3) facial feature extraction, and 4) decision-level fusion for the

pattern identification phase. For all of these modules, we provide our novel algorithms

and compare them with baseline approaches. Based on our findings in this thesis, we

can draw conclusions under the following categories:

Registration Task: For the face recognition task, efficient normalization, align-

ment and registration of faces play an important role due to the similarities between

faces. Many of the previously proposed systems register gallery and probe faces at

the identification phase. However, this approach may be infeasible in terms of time

complexity. In order to overcome this disadvantage, we propose to use a generic face

model. Our approach register the gallery images with the face template at the enroll-

ment phase, and requires only single registration with the probe image at the identi-

fication phase. Our findings show that using this registration method, we can obtain

sufficiently good identification performance in a very fast manner.

Secondly, since faces are typical examples of deformable surfaces, local deforma-

tions may produce unacceptable correspondences. In order to examine this, we realize

and compare two different dense point-to-point registration algorithms. Both of these

algorithms employ a generic face model. The first one employs rigid estimation of cor-

respondences using the Iterative Closest Point algorithm, and the second one allows the

warping of individual faces to the generic face template. The warping-based approach
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requires the localization of several fiducial landmarks. In our experimental simula-

tions, we observe that rigid estimation of correspondences offers better classification

rates than the warping-based approach. However, this finding should be validated un-

der more extreme conditions such as when significant expression variations are present

in the probe set. Identification experiments performed on the 3DRMA face database

which contains largely neutral faces reveal that it is possible to improve the correct

classification rates by 1.45 to 21.24 per cent for different face recognizers when ICP-

based rigid registration is used. The best individual face expert which is based on

surface normals obtains 97.72 per cent accuracy for the non-rigid case, and 99.17 per

cent accuracy for the rigid case. The greatest difference (21.24 per cent improvement)

is obtained by the LDA-based pattern recognizer.

Representation and Feature Extraction Task: There are various ways of repre-

senting faces. Two of the most commonly used techniques utilize point coordinates

and depth images. In addition to these techniques, we propose the use of other surface

descriptors such as surface normals and curvature-related descriptors. Depending on

the representation technique used, discriminative features should be extracted. For this

task, we employ various schemes such as statistical feature extraction methods (i.e.,

PCA and LDA) for depth images or principal curvature directions for the curvature-

based representation scheme. Our findings show that i) it is possible to design better

3D face matchers using surface normals or curvature-based descriptors, and ii) it is

possible to significantly reduce the feature dimensionality with the use of efficient fea-

ture extraction techniques without degrading the identification accuracy significantly.

However, the efficiency of these extraction methods heavily depends on the availability

of enough training samples. For instance, in single-gallery experiments on the 3DRMA

database, surface normals attain the best classification rate with 90.14 per cent rate.

If there are three gallery images per subject, then LDA features extracted from surface

normals obtain 99.46 per cent identification rate. For the same configuration, the direct

use of surface normals can only reach 98.33 per cent classification rate. Similarly, for

the FRGC face database, surface normal features and principal curvature directions at-

tain 89.07 and 91.88 per cent accuracies in the single-gallery experiments, respectively.

In multiple-gallery experiments (i.e., four training images per person) NMF and ICA-
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based extraction of point cloud features yield 100.00 and 99.89 per cent classification

accuracies, respectively. These results confirm the benefit of using feature extraction

techniques when sufficient training samples are available.

In addition to the use of feature extraction methods, selection of local features can

also be viewed as another way of determining optimal feature sets. For this purpose,

we offer to use local region based surface descriptors. Our experimental results show

that it is possible to provide some invariance with the careful elimination of several

facial regions. Based on our previous work for 2D face recognition, we propose to use

a floating search-based subset selection mechanism to determine the useful regions for

identification. Our preliminary results on the 3DRMA show that it is possible to accu-

rately identify a person by focusing on these important regions. We found that these

regions cover nearly the half of the whole facial surface. The locations of these regions

can be found from a separate validation set, and thus, it is important to use big train-

ing and validation sets to converge to global optimum. We also observe that, without

the selection of local regions, regular patch-based surface descriptors can both reduce

the feature dimensionality significantly, and improve the identification rate consider-

ably. For example, in the FRGC database, the best face recognizer which use principal

directions obtain 80.43 per cent identification rate. By employing an averaging-based

curvature descriptor, it is possible to improve the identification rate by 7.71 per cent.

Another advantage of this approach is that the input feature dimensionality also re-

duces from 33.000 to 174.

Decision-level Fusion Task: Multi-modal nature of the 3D face signals makes it

popular to use information fusion methods in 3D face recognition systems. Currently,

most of the previously proposed approaches fuse shape and texture channels. In this

thesis, we consider the fusion task from a more general perspective, and use various

face experts (that use both shape and texture channels) as individual classifiers in

the ensemble. The diversity of the face experts are provided by designing them by

selecting different representations and feature extraction methods. We observe that

it is beneficial to construct combined ensembles by selecting them according to their

complementariness, i.e., fusing experts that are based on different representations may
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be better than fusing different feature extraction-based algorithms that use the same

representation scheme. This conclusion is observed in the FRGC fusion experiments

where the best classifier ensemble is constructed using a floating search-based subset

selection algorithm. We see that the best performing ensemble always contains indi-

vidual face experts from different representations even if some of the base experts are

weak. It is also observed that eliminating some experts may increase the identification

rate. For instance, by fusing all of the 16 base classifiers, 92.03 per cent identifica-

tion rate is obtained for the sum rule in the single-gallery experiment. However, by

selecting only eight of them using floating search, it is possible to attain 94.23 per cent

classification rate.

For the fusion task, we also propose to use two different decision-level combination

algorithms. The first one employs the confidence idea where each classifier output

its nearest class label together with its confidence. Thus it is possible to use these

confidence values to determine the final class. We have implemented two variants of

this approach. The first variant consults the confidence information when ties are

present in the plurality voting algorithm, and the second variant simply selects the

output of the classifier having the highest confidence. So, the second variant can be

treated as a dynamic classifier selection algorithm. Experimentally, we notice that if

the score normalization is problematic due to insufficient amount of training samples,

it is better to rely on confidences since the confidences are estimated by the relative

distance between the first and the second nearest neighbor. In our FRGC experiments,

we observe that both confidence-aided plurality voting and highest confidence-based

classifier selection improves the fusion performance of standard sum rule (92.03 per

cent) by attaining 93.63 and 93.32 per cent identification rates, respectively. In addition

to the confidence-assisted fusion scheme, our second proposal benefits from a two-stage

architecture. At the first stage, first base classifier finds the nearest classes given a test

image, and forwards this class information to the second classifier. The second classifier

dynamically constructs an LDA space using the training samples of the forwarded

classes. Therefore, it better distinguishes the classes in this new subspace, and works

more accurately. In multiple-gallery experiments for the FRGC database, we see that

two-stage serial fusion may improve the accuracies of the sum-based and confidence-
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based combination schemes by approximately 3 per cent, obtaining 97.93 per cent

classification rate.

In summary, we have shown that it is possible to improve the performance of a 3D

face recognition system by utilizing the proposed algorithms in the registration, repre-

sentation, feature extraction and fusion stages. However, it is worthwhile to perform a

comparative analysis of two different registration techniques, namely: registration with

the aid of generic face template, and the registration without the generic face template

(i.e., matching the probe image to all of the gallery images at the identification phase).

It would also be beneficial to estimate coarsely the expression of a face before pro-

ceeding to the matching step. Local representations may provide such information,

and it is thus possible to concentrate on other parts of the facial surface for identity

recognition. Another future work is related to the fusion phase. It is shown that the

confidence idea is promising for both fusion or selection of base face experts. It would

be interesting to explore possible alternatives for the estimation of confidences or the

use of confidences. More general and long-term future interests should also include the

followings 1) search for alternative 3D descriptors, 2) robust methods for significant

pose and expression variations (i.e., uncontrolled acquisition), 3) design of matchers

for occluded facial surfaces, 4) issues related to the operating conditions of a typical

3D face recognizer (i.e, what should be the quality of the data?) and 5) conformance

of the proposed algorithms to the needs of real-time systems.
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APPENDIX A: Iterative Closest Point Algorithm

The ICP algorithm is a quaternion-based least square solution for finding rotation

and translation transformations between two point sets [72]. The pseudocode of the

ICP algorithm is illustrated in Figure A.1. Aim is to rotate and translate point set

P such that it aligns best to the point set X. The ICP algorithm is an iterative

algorithm and it terminates when the alignment error is below a certain threshold τ

or a maximum number of iteration is reached. At step 4, for each point in the set

X, its corresponding nearest point is found in the set P (operation C). Once the

correspondence established, registration parameters can be found at step 5 (operation

Q). The operation Q is explained in the next section (Section A.1).

A.1. Calculation of Registration Parameters

A 3× 3 rotation matrix can be expressed via quaternion notation as:

R(−→qR) =




q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 + q2

2 − q2
1 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

1




(A.1)

where the unit rotation quaternion is a four vector −→qR = [q0q1q2q3]
t. q0 ≥ 0 and

q2
0 + q2

1 + q2
2 + q2

3 = 1. Let −→qT = [q4q5q6]
t be a translation vector. The complete

registration vector −→q is denoted by −→q = [−→qR
−→qT ]t. Let P = {−→pi } be a measured data

point set to be aligned with a model point set X = {−→xi}, where Np = Nx and the

points having the same index correspond to each other. The mean square objective

function to be minimized is:

f(−→q ) =
1

Np

Np∑

i=1

‖−→xi −R(−→qR)−→pi −−→qT‖2 (A.2)



125

Algorithm: Iterative Closest Point Algorithm (ICP)

Function: Finds the rigid transformation between two point sets.

Input:

Scene Point Set: P = {−→p i} with Np points

Model Point Set: X = {−→x i} with Nx points

Convergence Threshold: τ

Output:

Transformation parameters: −→q
Registration error: d

1 ICP(P,X, τ)

2 Initialize P0 = P , q0 = [1, 0, 0, 0, 0, 0, 0]T , and k = 0.

3 Repeat until dk − dk+1 < τ

4 Compute the closest points: Yk = C(Pk, X)

5 Compute the registration: (−→q k, dk) = Q(P0, Yk)

6 Apply the registration: Pk+1 = −→q k(P0)

7 Return: (−→q , d)

Figure A.1. Pseudocode of the Iterative Closest Point algorithm.

In the minimization of f(−→q ), first the rotation matrix is computed, then the

translation translation matrix is estimated. In order to show the computation of ro-

tation parameters, the following notation should be presented. The cross-covariance

matrix Σpx of the sets P and X is given by

Σpx =
1

Np

Np∑

i=1

[(−→pi −−→µp)(−→xi −−→µx)
t] =

1

Np

Np∑

i=1

[−→pi
−→xi

t]−−→µp

−→
µt

x (A.3)

where the center of mass of P and the center of mass of X are given by

−→µp =
1

Np

Np∑

i=1

−→pi and −→µx =
1

NX

NX∑

i=1

−→xi (A.4)
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The optimal rotation (−→qR = [q0q1q2q3]
t) corresponds to the maximum eigenvalue

of the matrix Q(Σpx). The symmetric 4× 4 matrix Q(Σpx) is formed by

Q(Σpx) =




tr(Σpx) ∆T

∆ Σpx + ΣT
px − tr(Σpx)I3


 (A.5)

where I3 is a 3 × 3 identity matrix and ∆ is the column matrix: ∆ = [A23A31A12]
t.

Here, the Aij is calculated by Aij = (Σpx − ΣT
px)ij. Lastly, the optimal translation

vector is given by

−→qT = −→µx −R(−→qR)−→µp (A.6)
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