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ABSTRACT

FLEXIBLE CODE CHECKER

In software system development, the most important issue is to build a system

that satisfies the requirements and works correctly. But even if a software system

works correctly, this does not show that its source code is well-written. The source

code may contain unnecessary codes, may have undetected bugs, or may not conform

to the required coding standards or rules. This will make the code dirty and unreadable

making it very difficult for other people (except the writer) to understand, update or

analyze the source code. The motivation for this thesis underlies in this issue. The

idea is to analyze a given source code and check it according to user defined flexible

checker rules and coding standards (conventions). This could be useful in checking

source codes in a variety of areas such as student projects in programming courses and

deciding how good the source codes were written according to the defined rules of the

checker.
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ÖZET

ESNEK KOD DENETİMİ

Yazılım geliştirme sürecinde üzerinde durulan en önemli nokta, gereksinim-

leri karşılayan ve doğru şekilde çalışan bir sistem üretmektir. Ancak, bir yazılımın

doğru şekilde çalışması, onun kaynak kodunun kaliteli olduğunu ve düzgün yazıldığını

göstermez. Kaynak kod içersinde fark edilmemiş hatalar veya gereksiz kodlar bulun-

abilir yada kaynak kod belirlenmiş kodlama standart ve kurallarına uymayabilir. Bu

tip durumlar kaynak kodunun okunaksız bir hale gelmesine yol açar ve kaynak kodunu

yazan kişi dışındaki kişiler tarafından anlaşılmasını, geliştirilmesini ve analiz edilmesini

oldukça zor hale getirir. Bu tez çalışmasına kaynaklık eden en önemli nokta da bu tip

durumları engellemektir. Bu çalışmadaki fikir, verilen bir kaynak kodunu analiz et-

mek ve onu kullanıcı tarafından tanımlanan esnek kontrol kurallarına ve kaynak kod

standartlarına göre denetlemektir. Böylece, programlama derslerindeki projeler gibi

çeşitli alanlarda verilen bir kaynak kodunu denetlemek ve kaynak kodunun tanımlanan

kurallara göre kalitesini belirlemek mümkün olacaktır.
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1. INTRODUCTION

The basic steps in software development cycle are requirements elicitation, design,

implementation and testing. The implementation phase includes the conversion of

formal designs and specifications into source code by utilizing a programming language.

The most important concern in this phase is to build a reliable system that works

correctly and satisfies the requirements. Thus, programmers generally focus on these

issues. On the other hand, the quality of the source code is another important issue

in the programming phase. Code quality is crucial in source code maintenance and

analysis. However, programmers usually pay little attention to it.

Code quality is important in many aspects. Analyzing a well-written source code

is a far easier task than analyzing a code that is full of unnecessary or untidy code

segments, even if both do the same task. Thus, the source code of a correctly working

program may not be well-written. Furthermore, the maintenance of a bad-written

code is really difficult. A programmer that needs to update the code or continue the

development on the software must first understand the code which can be a daunting

task for any programmer. In fact, only the author of the code can understand this

code easily. As a result, the maintenance of the system can really be hard and costly.

Therefore, a good software system needs to have a well-written source code besides

reliable and correct operation. For this purpose, source code checker systems have

been proposed. A source code checker analyzes a given source code and identifies

possible violations against the rules of the checker. There exists a wide range of rules

for checking a source code, including naming conventions, indentation controls, variable

initialization and usage checks, memory allocation checks, security flaws etc.

In this thesis, a generic source code checker framework is proposed. The flexible

code checker is designed to analyze a given source code against the user defined rules

of the checker. The motivation for this thesis is to analyze the source codes of students

in programming courses and grade the source codes according to the quality of the

source code. The rules for the analysis of the code are flexible and are defined by the
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user via the graphical interface of the code checker. The user defines the rules of the

checker as methods by defining the conditions to be satisfied by the code fragments and

the checks to be done on the code items. Each rule of the checker has an associated

importance defined with it, denoting its importance level in the code analysis. The

checker analyzes the source code according to these checker rules and identifies the

violations of these rules for the given source the code. The violations are displayed

based on the importance of the violated rules, showing the quality of the source code

according to the checker rules.

In order to build this code checker, a generic parser framework that is used

for generating a parser from a given grammar of the target language is proposed.

This parser framework generates a parser for the target language that contains the

grammar information of the target language and a checker that contains the checker

rule information to make source code checking with the generated parser with the

associated checker rules in the generated checker. The required inputs for this generic

parser are the grammar of the target language, which defines the grammar items and

the methods for parsing the target language code, and the checker rules for the checker

on the grammar of the target language. Hence, the rules of the checker are defined by

the user providing a flexible framework.

In the next chapter, the topic of code analysis and the related work on code

checking in the literature is summarized. There exist also commercial tools for source

code checking. Some of them are also shortly reviewed. Then in chapter 3, design

and implementation details of the proposed flexible code checker are given. Chapter 4

summarizes the sample applications of the checker framework on two target program-

ming languages, C# and C++, for building code checkers for these languages. Finally,

conclusions and future research directions are discussed in chapter 5.
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2. CODE ANALYSIS

Software maintenance is one of the most expensive and time consuming phases

in the software life-cycle. However, despite its importance, it is given little emphasis

by software developers. In reality, maintenance of the software is not quite simple as

it is perceived by software developers. The cost of software maintenance is estimated

to be around 70 percent of the total life-cycle cost [1]. As a result, the need for code

analysis during the maintenance and evolution of existing software systems is widely

recognized by maintenance programmers and designers.

Even if a software system compiles and works correctly, it does not show that its

source code is well-written and is maintainable. Software systems may have some de-

fects that reduce the maintainability and that may not be recognized by the compilers.

In order to identify these defects, some form of code analysis is necessary.

The code analysis approaches basically can be grouped in two categories: dynamic

analysis and static analysis. Dynamic analysis comprises the analysis methods that

execute the program while making the analysis. In dynamic analysis, actual behavior

is compared with the expected behavior for testing the software. However dynamic

analysis can be difficult and costly depending on the complexity of the software.

On the other hand, static analysis approaches do not execute the program for

analysis; they go over the source of the program trying to match certain patterns for

identifying potential bugs.

The rest of this chapter is organized as follows: Static source code analysis is

discussed in section 2.1. Then, in section 2.2, related work on the topic of code checking

is covered.
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2.1. Static Code Analysis

Static Code Analysis is a process of checking programs for errors without exe-

cuting them. It covers the area of performing all kinds of tests on the source code of

programs. Static analysis is performed to improve and ensure the quality of source

codes of software programs.

The tools utilizing static code analysis are called static checkers. They examine

the source code of the programs looking for certain known error patterns and coding

standard violations. Hence, the power of static checkers is limited by the definition of

error patterns or coding standard violations of the checker. Thus, the static checkers

do not verify the correctness of programs; they help in identifying certain bugs and

violations. On the other hand, the earlier the bugs are identified; it is easier to fix

them. Hence, catching certain coding errors or violations during implementation and

before the testing phase would be better.

The static checkers are usually applied after compilation and before testing.

Hence, a static checker assumes the source is precompiled and makes the checking

on a syntactically correct source code. They apply the defined error patterns and stan-

dards on the source for identifying bugs and violations. A static checker basically takes

a program source and constructs an abstract model representing it. Then it uses this

model for checking the code according to the rules of the checker and identifies the

violations.

In traditional software design, the basic software design lifecycle consists of code

editing (implementation), compilation, linking and testing. The traditional software

design cycle does not include code analysis as a phase of the lifecycle; it is the respon-

sibility of the programmer to write readable and maintainable code. The traditional

software design lifecycle is depicted in figure 2.1. The programmer develops and com-

piles the source code and tests the resulting program until a desirable and working

program is obtained.
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Figure 2.1. Traditional software design lifecycle

With the recognition of the need for code analysis in the evolution of software

systems by the developers, code analysis is introduced into the software design lifecycle.

The visionary software design lifecycle includes code checking after the compilation

phase of the lifecycle. It is depicted in figure 2.2. The programmer develops, compiles

and then analyzes the source code before the testing phase to obtain a clean code

in terms of the analysis phase. Then the resulting code is linked and the resulting

program is tested until obtaining the desired working program.

Figure 2.2. Visionary software design lifecycle

A code checker helps in enforcing coding standards by detecting violations against

the standards. A coding standard defines the way a programmer must and should write

the source code of the program. The rules of the checker describe a coding standard for

the target language. The result of the analysis shows how much the program adheres

to the coding standard, a measure of the quality of the source code. Coding standards

are useful in improving the readability, reliability and maintainability of source codes.
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Although adoption of coding standards is difficult, coding standards are necessary

for improving the code quality. On the other hand, no code checker can assure the

correctness of a program, it helps in detecting certain errors in the program that are

not detected by the compiler.

2.2. Related Work

There have been a number of proposals devised related to the problem of code

checking in the literature, some of them in research or conference papers and some

as a part of commercial tools provided. Most of these have been proposed for specific

purposes and cannot be used for general purpose checking. They are briefly summarized

in this section.

The problem of checking and grading student software codes considering their

style has not been a wide research topic. Ala-Mutka, Uimonen and Jarvinen [2], have

discussed the topic thoroughly and have proposed an approach for automatic checking

of programming projects for specific coding styles. They focused on programming style

and argued that it is a quality measure for software and it strongly affects readability

and maintainability of the code (especially for bigger projects). They discussed that

students perceive programming style as a secondary issue and generally pay little or

none at all attention to it. Furthermore, they argue that students should not be allowed

to use bad convention habits freely, because it can be difficult to change that later.

But checking coding style in programming courses is not easy since it takes a lot of

time and generally the size of the class is large. Thus, a software tool for this purpose

is required.

For this purpose, they have proposed and implemented a tool, called Style++,

for analyzing C++ programming style which can be used by students and instructors

at their university for C++ code assessment. They have collected a set of coding rules

and conventions for this purpose and implemented the analyzer based on these style

rules. In the implementation, they have omitted the features that can be analyzed by

compilers with full warning options. The features that are checked can be categorized
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as follows: modularity (various C++ class implementation issues, general encapsula-

tion issues), typography (commenting, naming conventions and code layout), clarity

(average length of functions, blocks and short-circuit statements), independence (cor-

rect return values and avoiding numeric literals), effectiveness (small variable scopes)

and reliability (float comparisons, default case for switch statements).

For the assessment of codes, the instructors have the ability of deciding the con-

tribution of each feature (assigning a weight for each feature), thus the tool is customiz-

able for different practices. In their analysis of related work, they have stated that it

is difficult to find assessment approaches for the C++ language and they could not

find any available assessment tools for C++ for educational purposes in the literature.

The implementation has been used in the university and the results have shown that

the tool is useful and the students have started to pay more attention for the coding

style. Thus the quality of students’ coursework has been improved after the adoption

of Style++.

Another approach on grading student programs has been discussed by Jackson

and Usher [3]. They have built a software tool with a graphical user interface, called

ASSYST (Assessment System), for grading student programs. They have argued in

their discussion that grading student programs is a laborious and long process and

which is subject to human errors. They have identified that some areas that automatic

checking of codes is possible. For this purpose, they have built a tool in which the

assessment process (grading) is directed by the user. The tool attempts to check the

correctness (by checking the outputs of a program against a given output pattern),

efficiency (running time), complexity and style. The tool was applied to a few courses

and the initial reactions were positive.

Holzmann [4], have presented a nice analysis of source code checking tools and

have proposed a static source code checking tool called UNO. He argued that developing

a tool that can detect all defects in a program with certainty is impossible and instead of

trying to build a tool that tries to detect all types of errors, it is better to concentrate on

more common errors for a specific area. This would lead to better signal to noise ratio
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and hence better performance. The UNO tool checks three types of software faults in

C codes by default (where its name comes from): Uninitialized variables, dereferencing

Nil-pointers and Out-of-bound array index checking. The other faults to check are

completely user-controlled, that is the user can define application specific controls to

check for via simple functions. Thus, the tool is extendible with user-defined properties

which should be written in C, the language of the tool, and this feature increases the

power of the tool but at the same time requires user assistance for code checking. The

UNO tool uses an external parser, namely the parse tree output by the ctree compiler,

and makes the analysis using the parse tree.

In his work, Holzmann [4] also included an analysis of commercial code analyzers

available. He presented that checks done by a compiler cannot be enough for a detailed

checking of source code, thus special purpose analyzers are necessary. An early example

of a code check tool is lint, which dates back to 1977, but provides limited checking. A

recent extension for it is lclint, which provides significant improvements. Another tool

in this area is Microsoft’s PREfix that targets large code bases. He also argued that

the checking power of code checker can significantly be increased if more information

on the code is provided by the programmer. An example for this type of checker is

Microsoft’s Vault system for C code.

Clarke, Kroening and Lerda [5], have proposed a tool for formal verification of C

programs that uses Bounded Model Checking (BMC). They argue that formal verifica-

tion of C code is challenging due to the usage of arithmetic, pointers, bitwise operators

and pointer arithmetic; and that security of these applications is critical for low level

applications. They have described a tool that formally verifies C programs in their

work. The tool checks for safe pointer usage, array bounds, dynamic memory alloca-

tion, recursion and float and double data types. The tool utilizes a technique called

Bounded Model Checking that converts the C program into a Boolean formula which

is satisfiable if and only if there is an error in the program. Afterwards the formula is

checked for satisfiability. The results are then shown and can be traced in a graphical

user interface.



9

Potrich and Tonella [6] have presented an open architecture for the analysis of

C/C++ code. It discusses the model for the analysis of a source code, and gives details

on the architecture. The architecture discusses a different view for the analyzer and

a complier, and explains that the analyzer extracts higher level information from the

code and does not require a performance comparable with that of a compiler since the

analysis of C/C++ code is really a complex task. The model contains a parser for

parsing and a separate package for the rules allowing for addition of new rules. The

first objective was development of a coding rule checking tool, while the future work is

a reverse engineering module.

O’Callahan and Jackson [7] have developed a program understanding tool, called

Lackwit, and is a tool based on type inference for analyzing a C program efficiently.

They use type inference since they claim that it is automatic and can handle com-

plex language features of C such as recursive pointer based structures and pointers

of functions. The designed tool, Lackwit, is shown to be very efficient. They claim

that Lackwit has advantages over existing tools for program understanding. It has

been compared with another code checking tool, namely LCLint and is found to be

complementary with it for code checking (Each has advantages over the other).

The problem of unused components in source code is discussed in [8]. In this

research, Di Penta, Neteler, Antoniol and Merlo have proposed a framework and a tool

that provides removal of unused and unnecessary codes. They present that several fac-

tors such as unused code components, code clones which were added for maintenance

purposes, non-systematic addition of new functionalities that increase the software

complexity and reduce the software quality. Furthermore, these factors increase the

application sizes and memory requirements significantly and systems become difficult

to maintain. In order to control some of the above quality factors, they proposed a

framework called as the Software Renovation Framework (SRF). It performs refactoring

on the code, removing unused and unnecessary code segments, monitoring or factoring

out code clones and restructuring of libraries and objects. In this way the software

size and complexity will be reduced and the code will become more manageable. The

framework analyzes the dependencies among executables and object files which can
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be represented as a dependency graph. Thus, the software miniaturization (minimiza-

tion) problem can be modeled as a graph-partitioning problem which is known to be

NP-hard. Thus heuristic techniques were used for obtaining a good enough solution.

The proposed approach uses Genetic Algorithms as a heuristic approach but also it

is stated that a hybrid approach of genetic algorithms and hill climbing would give

better performance. Furthermore, SRF is applied on C/C++ but it is proposed as a

language independent framework. The result of the analysis stated that SRF performs

quite well and helps to monitor and improve the quality of a software system.

In [9], Reig proposes a flow-sensitive type checking algorithm for checking cer-

tain programming errors in C programs that may cause security vulnerabilities. They

present that automatic detection of such errors are necessary because manual code

inspection would not be suitable for large projects and many errors could be missed in

these checks. Some of these errors include dereferencing an invalid pointer, double-free

of pointers, reading uninitialized memory, and invalid deallocation of memory. These

errors may cause security vulnerabilities such as program crashes or denial of service

attacks. They have proposed a novel type checking algorithm for the detection of

many of these rules. Furthermore the proposed approach allows the use of temporal

rules, enabling/disabling of rules. The proposed algorithm checks for the types of ex-

pressions against the constraints, and the constraints are propagated transitively and

inter-procedurally.

Deeprasertkul, Bhattarakosol and O’Brien [10], discuss the importance of soft-

ware reliability and propose a technique called Precompiled Fault Detection (PFD) for

increasing the software reliability without increasing the programming responsibilities.

They argue that software reliability is very critical and some programming errors of

software developers cannot be detected by compilers which in turn can cause runtime

failures, causing unreliability. Developers try to prevent those programming errors and

achieve reliable software during development, but still some errors cannot be detected.

Hence they argue that automatic detection of these faults is a challenge for researchers

and many techniques have been proposed. They propose the precompiled fault de-

tection (PFD) technique for checking faults in source code before compilation. The
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technique was applied for C programs. They claim that hidden faults (that are not

detected by the compiler) occur rarely but an occurrence will cause critical system

failures. They have used the following hidden faults in C programs as a model for

detection of faults: out of bound array indexes, mismatches between actual and formal

parameters in function calls, nonterminating loops and use of uninitialized variables.

PFD was implemented using the C language and consists of two parts: detection and

correction. For validation of the technique they have used the following faults: out of

bound array indexes, mismatches in function arguments and no-default case in switch

statements. They have conducted experiments based on these faults and shown that

the PFD technique significantly reduces the number of faults and increases the software

reliability. They claim that the PFD technique is not limited to the above faults only,

it has wide applicability and that they will apply this technique to other programming

languages.

Another problem discussed in research papers is extracting syntactic information

from source code during the development process. C.Depradine [11] discusses the prob-

lem and proposes CITOR, Code Information Extractor, an expert system for extracting

syntactical information from Java code. They argue that extraction of syntactic in-

formation (program structure information) from source code cannot be done until the

code is near completion for many tools, which in fact can be too late. The syntactic

information can be used for various tasks such as syntax checking and code convention

maintenance. We know that conventions are very important for readability and soft-

ware maintenance. For this purpose, they proposed CITOR; a rule based expert system

for extracting information from Java code. It provides code and design maintenance;

and discovery of class names, field declarations, variable declarations, constructors and

exceptions. The experimental results have shown that using an expert system can be

useful in this context but the results should be used together with other information

for better controls in real time.

Van de Vanter has provided an analysis of documentary structure of source code

in his work [12]. They argue that design of language tools should take the documentary

structure into account and discuss that analyzing the documentary structure of source
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code provides better analysis of requirements of programming tools. A documentary

structure includes the information regarding the readability of the code such as com-

ments, white space and names; in addition to the language text. They examine the

documentary structure and its consequences for the design of language based tools.

The documentary structure consists of textual aspects of the code that are not part

of the programming language: comments, white space and choice for the names. The

documentary structure is added to the source code for aiding the human reader and

thus very important for the readability of the code. They treat the programmers as

authors taking responsible for the readability of the source code.

In [13], Jorgensen provides an analysis on the measurement of software quality.

He presents that no universal quality measure exists for measuring the software quality,

but there are some meaningful measures for the indicators that are the indicators of

software quality. Software quality can be measured in terms of a set of quality factors

or user satisfaction or by the unexpected behaviors (or errors) of the software. Each

of these measures the software quality from a different perspective of user needs and

may lead to different results. As a result of the analysis, he recommends that instead

of trying to develop a widely accepted quality measure, one should focus on better

measures for quality related properties such as user satisfaction and error density.

Furthermore, the results should not be interpreted as a direct quality measures since

it can be misleading.

In [14], Pollet and Le Charlier propose and design a Java code analyzer based

on an abstract interpretation technique. They attempt to provide a generic frame-

work for analysis. They use a representative subset of the Java language for analysis,

they exclude concurrency features. The proposed framework uses structural abstract

domains and is seen as a first step for an abstract interpretation framework for Java.

This work can be extended in a variety of ways such as investigating variants of the

abstract domains and extending this work to complete Java language which are indeed

given as future work.

LCLint, which is an extension of the lint, is a famous available tool for code
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checking. It was proposed in [15] by Evans, Guttag, Horning and Meng Tan. They

have proposed LCLint, an efficient and flexible tool for checking C programs. However,

it requires user involvement, since it requires a specification for better analysis. With-

out a specification it cannot perform better than traditional lint. The specifications

should be written in the LCL language. LCLint is a command line tool that reports

inconsistencies between the code and a combination of specification and the program-

ming conventions. The design goals considered in the design of LCLint are efficiency

(checking time), flexibility (customization of checking), incremental effort (more spec-

ification yields better check) and ease of use. Flexibility of the tool is provided via

various command line flags.

Splint (Secure Programming lint) [16] is a successor of LCLint, and developed

and maintained by the Secure Programming Group at the University of Virginia De-

partment of Computer Science. The splint tool is a freely available tool. It is useful

for static checking C programs for security vulnerabilities and programming mistakes.

Problems detected by Splint include: dereferencing a possibly null pointer, using pos-

sibly undefined storage, type mismatches, violations of information hiding, memory

management errors including uses of dangling references and memory leaks, dangerous

aliasing, problematic control flow such as likely infinite loops, fall through cases or in-

complete switches, buffer overflow vulnerabilities and violations of customized naming

conventions.

Another commercial tool for checking C code is Microsoft’s PREfast tool [17].

PREfast (successor of PREfix) is a static analysis tool for C/C++ that detects certain

kinds of errors in source code, which are not easily found by a typical compiler. It

simulates execution of all possible code paths on a function-by-function basis and checks

each possible path against a set of rules that identify potential errors or bad coding

practices, and then gives warnings for the parts breaking the rules. The code needs to be

compiled in order to be analyzed by the PREfast tool. It can detect several significant

categories of errors including memory, resources, function usage, coding practices and

precedence rules. Another available tool for C++ code checking is Cxxchecker [18]

which checks C++ code for common coding styles. Cxxchecker, a command line tool,
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has been implemented in Python and uses gccxml for parsing the code. The coding

styles that are checked include variable/class/function naming consistencies.
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3. FLEXIBLE CODE CHECKER

In this study, a general purpose and flexible source code checker framework is

designed and implemented. The designed source code checker is capable of analyzing

a given source code according to the given grammar of the target language and user

defined rules of the checker. The target grammar and rules of the checker are input

to the checker and are defined by the user. As a result of the analysis, the violated

checker rules are presented to the user based on the user-defined importance of the

rules, which in turn can be used for grading the code. Thus, the code checker can also

be applied to source code grading, which is indeed the motivation for this thesis.

3.1. Requirements

Commercial code checkers mostly are used for achieving code standardization

which is an important factor of code quality. Coding standards are useful for obtaining

consistent, more readable and maintainable codes. They are not necessary for the

success of software development but they can make the analysis and the maintenance

of source code easier.

Therefore, the first requirement for a general purpose code checker is the flexibility

and the adaptability of the checker for different coding standards. The checker should

be flexible in managing the rules of the checker for the analysis. The user should be

able to build his/her own schema for the rules of the code checker. Thus, a flexible

checker is necessary in which the user is able to build custom rules for the checker.

In order to carry out the analysis, the code checker first has to parse the source

code for identifying the building blocks in the source code such as statements, blocks,

functions, variables and expressions etc. Therefore, the code checker requires a good

and efficient parser for the target programming languages. The parser requires the

grammar of the target language in a convenient form in order to make the parsing

and analysis easier. In order to provide more flexibility, the checker should be made
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independent from the target languages as much as possible. This will make the addition

of new programming languages for the checker much easier.

Furthermore, the results of the analysis should be presented to the user in a con-

venient way. Each violation of the rules of the checker should be listed in a convenient

form based on the importance of the rules and the user should be able to see where

the violations occur. These results can be used for grading the code, thus measur-

ing the quality of the code, according to the importance of these violated rules. The

importance of the rules should also be managed by the user.

3.2. Target Users and Application Areas

The designed code checker system targets software developers for helping them

in analyzing their source codes and find the errors that they would like to check. For

this purpose, the user defines the grammar for the target language that specifies how

to parse a given source code in that language. Therefore, adding a new language to

the checker is done by defining its grammar. Hence, a grammar definition corresponds

to a new language in the checker.

For every target language, the user defines the set of rules to be checked in the

source code. The user is able to define different sets of checker rules for a single

language enabling the user to check different set of coding standards on the same

language. In order to analyze a source code, the user has to select the grammar

definition of the target language and the checker rule base for the analysis. Then the

checker analyzes the given source code based on the grammar and checker rules and

presents the violations of the checker rules.

The proposed system requires the grammar definition and checker rule definitions

from the user giving the freedom to the user for building totally customized code check-

ers. The user can build different rule bases (coding standards) for a single language

grammar and use them in different contexts. Therefore, the checker is completely

user-defined and it provides the flexibility to the checker.
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The complexity of the code checker depends on the user defined grammar and

code checking rules. Checking for a complex error pattern or a convention in the

source code may require a complex rule definition in the checker, which increases the

complexity of the checker. Furthermore, building the checker rule for such an item may

not be worth checking and may become infeasible.

The code checker system can be used by all programmers for analyzing their codes

by their custom rules and finding out the violations of these rules. The results of the

check, the list of violations of the checker rules based on their user-defined importance,

present the quality of the source code according to the rules of the checker. The checker

can also be used by instructors for grading student programs. Using the results of the

check, a code quality grade can be calculated. Furthermore, the checker can be used

in software projects for increasing code quality and maintainability of the source codes

in the project.

3.3. Design

In this thesis, a general purpose flexible source code checking framework is de-

signed and implemented. Using the framework, the users can build source code checkers

for programming languages by defining the grammar for a target language and checker

rule bases for checking a given source code for the target language. The framework is

designed as a flexible one in order to meet the requirements given in section 3.1.

The designed source code checker is made up of three stages basically: Tokenizer,

Parser and Analyzer. These stages are depicted in figure 3.1. The Analyzer stage is

actually a part of the Parser stage, due to the fact that the analysis is done during the

parse operation. The inputs for the Source Code Checker are the Grammar definition

of the target language and the Checker Rules definition for the analysis of the source

code checker specifying the checker rules.

The designed code checker takes a given source code and first parses it for ob-

taining language specific tokens according to the tokens defined in the grammar of
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Figure 3.1. Stages of the code checker

the target language. The grammar of the language is supplied in a special XML base

form to the code checker. This form is called as the Grammar Definition Markup

Language, referred as GDML, and is defined in section 3.4 in detail. The grammar

basically includes the tokens and syntactic rules of the language along with the trans-

formation methods to use in the parsing stage for generating the parse tree model of a

given source code to be used in the analysis.

On the other hand, the checker rules are defined in another special XML base

format, called as the Checker Rule Definition Markup Language (CDML). This

format is similar to the GDML format and is discussed in section 3.5 in detail. The

checker rules consist of the analysis method definitions on the rules of a target GDML

grammar that specifies the conditions to check. The analysis methods are completely

defined by the user and provide the flexibility to the user to define custom rules ac-

cording to the needs.

Hence by defining the target grammar and the checker rules, the user creates a

custom checker for the target programming language. The user is also able to define

different checker rules for a target grammar of a language, providing the checking with
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different coding rules and standards on a language.

Thus, the initial requirement of the checker for analyzing a given source code is to

prepare the parser for the target language using the language’s grammar. The generic

parser of the checker reads the given grammar of the target language and prepares the

language specific parser class that includes the necessary parsing rules for the language.

Hence, the language specific parser is automatically generated by the checker using the

CodeDOM libraries of Microsoft .NET Framework [19]. Code Document Object Model

(CodeDOM ) is shortly reviewed in section 3.3.1. The generated parser is used for the

tokenization and parsing of a given source code.

In the Tokenizer stage of the checker, the source code is converted to a list of

language specific tokens defined in the given grammar. A token is the simplest language

block in the source code such as keyword, identifier, operator, comment, whitespace,

literal etc.

In the next stage the tokenized code is parsed for obtaining the high level parse

tree of the source code. For instance, in the Parser stage, the tokens are combined to

obtain high level code phrases such as expressions, statements, functions, loop blocks

etc. The parse tree contains the tokens at the leaf nodes and the model definition of

the language defined in the entry rule of the grammar at the root node.

The parser constructs the parse tree using the rules specified in the grammar

starting with the entry rule and the methods defined in the grammar for transforming

lower level objects to higher level ones. For instance, the rules define the list of items

at level (n+1) of the tree, to match as children of a node at level (n); whereas the

transformation methods in the rules define the transformation of the child items at

level (n+1) to the parent node at level (n). Hence, the level of code phrases increases

from leaf nodes to the root node in the parse tree (i.e. tokens-expressions- statements-

functions-classes-grammar model definition). The parsed code includes all the relevant

information for the analysis stage.



20

The analysis of the source code is done during the parsing phase as a validation

mechanism. During the parsing, the user-defined analysis rule methods associated

with the parsing rules of the grammar are applied in order to find out the violations

at each grammar rule. The parsing engine executes the methods provided in the

analysis rules associated with each grammar rule for identifying the violations, hence

validating each analysis rule during the parsing of grammar rules. Within the checker

rule methods, the user defines the checking mechanism for the rule using the target

rule matching information and the state information. The violations are also saved

within the methods by the user. At the end of the analysis, the violations are listed

according to their user defined importance. The results of the analysis show how much

the source code adheres to the coding rules defined in the checker, in other words the

quality of the source code in terms of the analysis rules.

The grammar of the language, in GDML form, is managed by the user via the

grammar editor of the user interface. All the necessary grammar sections and rules can

be edited in this graphical interface. The analysis rules and their importance (error

level), defined using CDML, are managed by the user using the checker rule editor of

the user interface. The user manages the conditions to check in the grammar rules and

associate analysis rules to the grammar rules of the language.

3.3.1. Code Document Object Model

Document Object Model (DOM) is a platform and language-neutral interface that

permits scripts to access and update the content, structure, and style of a document.

Programmers can create documents, explore their structure, and insert, change, or

remove elements and content via DOM. On the other hand, CodeDOM is a language

independent representation of source code. The source code is represented as a graph

in CodeDOM, and this graph can be used for code generation.

Microsoft .NET Framework has the namespace System.CodeDom that supports

CodeDOM. The namespace includes objects for representing, in a language independent

fashion, most language structures. Using this namespace, one can generate source
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codes in supported programming languages (C#, J#, VB.NET and Visual C++).

CodeDomProvider can be used to create and retrieve instances of code generators and

code compilers. Code generators can be used to generate source code for a particular

language, and code compilers can be used to compile the source code into assemblies.

In this work, the System.CodeDom namespace of .NET Framework is used for

generating, compiling and running the language specific parser according to the gram-

mar and checker rules in the specified language.

3.4. Grammar Definition Language

Grammar Definition Language is the markup language that is used for defining

a grammar of a language for the checker. We call this markup language as GDML

(Grammar Definition Markup Language). GDML is based on XML. GDML comprises

the necessary information for the checker to generate a parser for a specific language.

The grammar of the language that includes the tokens and grammar rules of the lan-

guage, and the methods for generating the parse tree of a source in the language are

defined using GDML. In this section, GDML is discussed in detail.

Using a GDML definition for a specific programming language, the code checker

generates the parser for that language and the generated parser is used for analyzing a

given source code in that language according to a given checker rules definition for that

GDML file. Therefore, the proposed flexible code checker can be used with different

languages once their grammars are defined using GDML.

The syntax of the GDML file is depicted in figure 3.2. The figure shows the

sample GDML definition for the C# language. GDML has the root element Grammar

that defines the grammar of the language.

The root element Grammar has five attributes: targetNamespace, targetClass,

startRuleID, language and caseSensitive. The attributes targetNamespace and target-

Class define the namespace and the name of the generated language-specific parser
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<?xml version="1.0" encoding="utf-8"?>

<Grammar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="CSCodeParser"

targetClass="CSharpCodeParser"

startRuleID="CompilationUnit"

language="c#"

caseSensitive="true"

xmlns="http://www.cmpe.boun.edu.tr/grammar.xsd">

<References>...</References>

<Imports>...</Imports>

<Keywords>...</Keywords>

<TokenRegExs>...</TokenRegExs>

<TokenTypes>...</TokenTypes>

<StateDictionaries>...</StateDictionaries>

<ValidatorFunctions>...</ValidatorFunctions>

<ReplaceFunctions>...</ReplaceFunctions>

<Rules>...</Rules>

</Grammar>

Figure 3.2. Sample GDML definition

class. The attribute language defines the language which is used in the code snippets

in the parser, and should be one of the languages provided by CodeDOM Library (C#,

VB, J#, Managed C++). The generated parser for the grammar is also generated in

this language. The attribute caseSensitive denotes whether the language is case sensi-

tive in terms of keywords and identifiers. On the other hand, the attribute startRuleID

denotes the start rule of the grammar for parsing in the list of grammar rules and forms

the root of the parse tree for that language.

The GDML tree consists of nine sections: References, Imports, Keywords, To-

kenRegExs, TokenTypes, StateDictionaries, ValidatorFunctions, ReplaceFunctions, and
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Rules. Each section defines items that will be used in generating the parse tree of

a given source code in the generated parser. The sections Keywords, TokenRegExs,

TokenTypes constitute the tokenizer of the language for tokenizing a given source code

while the other sections basically define the parser of the target language. Each of

these sections is discussed in the following subsections.

There are some requirements that a GDML file has to satisfy for validity. First of

all, all the items under the grammar sections, i.e. all tokens, rules, replace functions,

must have non-empty and unique identifiers within a section. The keywords under

the Keywords section must also be non-empty and unique within that section. The

requirements of validity for each GDML section are summarized in the corresponding

section below.

3.4.1. References

The References section of the GDML defines the list of assembly references to

be used in the generated parser of the grammar. A project reference is by definition

used to access and use the properties, methods, and events of a defined object. The

items in the references section consist of valid assembly references that constitute the

references of the automatically generated parser. A sample References section for the

C# grammar that define the basic necessary references for the generated parser is given

in figure 3.3.

3.4.2. Imports

The Imports section of the GDML defines the list of namespace imports to be

used in the generated parser of the grammar. A namespace import is used for explic-

itly importing a namespace into a source file making all classes and interfaces of the

imported namespace available. The items in this section consist of valid namespace

imports that constitute the using namespace imports of the automatically generated

parser for the target language. A sample Imports section for the C# grammar that

define the basic necessary namespace imports is given in figure 3.4.
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<References>

<Reference>System.dll</Reference>

<Reference>System.Xml.dll</Reference>

<Reference>System.Drawing.dll</Reference>

<Reference>System.Windows.Forms.dll</Reference>

<Reference>LogicalLayer.dll</Reference>

<Reference>SourceCodeParser.dll</Reference>

</References>

Figure 3.3. Sample GDML Reference definition

<Imports>

<Import>System</Import>

<Import>System.Collections.Generic</Import>

<Import>System.ComponentModel</Import>

<Import>System.Text</Import>

<Import>System.Xml</Import>

<Import>System.Xml.Serialization</Import>

<Import>SourceCodeParser</Import>

</Imports>

Figure 3.4. Sample GDML Import definition

3.4.3. Keywords

The Keywords section of the GDML defines the list of language specific keywords

in the language of the grammar. The items in this section consist of the unique key-

words of the target language that are used in the tokenization. The uniqueness depends

on whether the language is case sensitive or not, which indeed is an attribute of the

grammar. Part of keyword definitions in C# grammar is given as a sample Keywords

definition in figure 3.5.
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<Keywords>

<Keyword>abstract</Keyword>

<Keyword>as</Keyword>

<Keyword>base</Keyword>

<Keyword>bool</Keyword>

<Keyword>break</Keyword>

<Keyword>byte</Keyword>

<Keyword>case</Keyword>

<Keyword>catch</Keyword>

<Keyword>char</Keyword>

<Keyword>class</Keyword>

</Keywords>

Figure 3.5. Sample GDML Keyword definition

3.4.4. TokenRegExs

This section defines the list of token regular expressions in the language of the

grammar. The token regular expressions are used for identifying the tokens during

the tokenization phase. Token regular expressions are associated with token types for

matching a token type.

A token regular expression consists of a unique identifier and a subsection called

Parts that define the regular expression. A regular expression definition consists of

a list of parts where each part is either a valid regular expression pattern or a valid

reference to another token regular expression with its identifier. In the tokenization

stage, the parts of the regular expressions are combined to obtain a single regular

expression for matching the tokens.

Part of token regular expression definitions in C# grammar is given as a sample

TokenRegExs definition in figure 3.6.
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<TokenRegExs>

<RegEx ID="NewLine">

<Parts>

<Part>(\r\n?|\n)</Part>

</Parts>

</RegEx>

<RegEx ID="WhiteSpace">

<Parts>

<Part>[ \t]</Part>

</Parts>

</RegEx>

<RegEx ID="NonNewLineChar">

<Parts>

<Part>[^\r\n]</Part>

</Parts>

</RegEx>

<RegEx ID="EOLComment">

<Parts>

<Part>(//</Part>

<Part ID="NonNewLineChar" />

<Part>*</Part>

<Part ID="NewLine" />

<Part>)</Part>

</Parts>

</RegEx>

</TokenRegExs>

Figure 3.6. Sample GDML TokenRegex definition

The sample token regular expression definition in figure 3.6 contains four regular

expression definitions. The first three regular expressions consist of single part that

defines the regular expression of the item. For instance the regular expression corre-
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sponding to the item WhiteSpace is: [ \t]. On the other hand, the fourth regular

expression definition EOLComment , that defines the regular expression for matching

single line code comments in C#, consists of five parts. Three of those parts are simple

parts that contain a regular expression. The other two parts contain the attribute ID

for referring to another regular expression with its identifier.

During the tokenization phase, the parts of each regular expression definition

are combined to obtain a single regular expression for matching a token using that

regular expression. Therefore the EOLComment regular expression definition in figure

3.6 corresponds to the regular expression: (//[^\r\n]*(\r\n?|\n)) for matching a

single line (end of line) code comment as a token.

3.4.5. TokenTypes

The section TokenTypes defines the list of token types in the language of the

grammar. A token is the building block used in the tokenization phase. A token type

is defined and matched using a valid regular expression definition.

A token type definition in GDML consists of a unique identifier, a regular ex-

pression reference called as RegExID, an optional flag called as IsSignificant and three

optional subsections called Summary, Example and Validator. The regular expression

reference must be the valid identifier of the regular expression definition associated

with the token type that was defined in the TokenRegExs section.

The optional flag IsSignificant indicates whether the token type has significance

in the parsing and execution of source codes in that language. For instance, comments

and whitespace characters in C or C# are not significant in source files for compilation;

they are mainly used for improving the readability of source files. Hence these token

types should be defined as non-significant. Non-significant tokens are ignored in the

parsing phase of the parser unless they are explicitly used in parsing for analysis.

Non-significant tokens can be explicitly used grammar rules for matching them in the

parsing phase and using them in checking the source code. For instance comments
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can be used in grammar rules for checking the comment usage in a given source file in

checker rules. The default value for the attribute IsSignificant is true; hence when it

is omitted the token type is treated as significant.

The optional sections Summary and Example can be used to describe the token

type and to specify an example for the token type definition respectively. The optional

section Validator can be used to specify a method to post-validate the match of the

token type. The method for the validator should be written in the language specified

in the language attribute of the grammar. The method has the prototype given in the

delegate definition in figure 3.7.

public delegate bool TokenValidatorDelegate(

ref string buffer,

ref int offset,

ref string tokenString);

Figure 3.7. Token validator method delegate

The buffer parameter in the validator method definition is the content of the given

source code being tokenized. The offset parameter of the method definition denotes

the offset of the token match in the parameter buffer. The parameter tokenString is

the matched token string at position offset in buffer. The validator method should

validate the match and return true if the match is accepted and false otherwise.

Part of token type definitions in C# grammar is given as a sample TokenTypes

definition in figure 3.8.

The sample token type definition in figure 3.8 contains four token type defini-

tions. The first two token types identified as Keyword and Identifier use the same

regular expression Identifier. In order to differentiate the token keyword from the to-

ken identifier, a validator method is defined that looks up the matched word from the

dictionary of keywords defined in the Keywords. If the matched word does not match
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<TokenType ID="Keyword" RegExID="Identifier">

<Summary>A reserved keyword of the language</Summary>

<Example>class, while, for, if</Example>

<Validator>return this.IsKeyword(tokenString);</Validator>

</TokenType>

<TokenType ID="Identifier" RegExID="Identifier">

<Summary>An identifier: a variable or type</Summary>

</TokenType>

<TokenType ID="EOLComment" RegExID="EOLComment" IsSignificant="false">

<Summary>End of line comment</Summary>

<Example>// ...</Example>

</TokenType>

<TokenType ID="NewLine" RegExID="NewLine" IsSignificant="false">

<Summary>Line break</Summary>

</TokenType>

Figure 3.8. Sample GDML TokenType definition

a keyword, then the word is matched as the token Identifier. The last two token types

EOLComment and NewLine have the attribute IsSignificant set to false, since the end

of line comment and newline are non-significant in the parsing phase.

3.4.6. StateDictionaries

The StateDictionaries section of the GDML defines the list of names of the state

dictionaries that will be used to store the state information during the parsing phase.

The state information is tracked in the parser state object during the parsing and

analysis phases.

The state information consists of the list of dictionary items identified by the

names defined in the StateDictionaries section, a single dictionary item for holding

custom named item objects and the list of log items containing the objects logged
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during the parsing and analysis.

The state information is necessary to differentiate a local variable from a global

one or a parameter, or to identify the type or scope of a variable in grammar rules

during the parsing phase. The state information is useful in the parsing and code

checking phases to determine the current state of the parser, execute accordingly and

update the state.

A dictionary item is a hash table accessed by its name holding state objects of any

type. The modifications on dictionary items on the state are valid during the lifetime

of the grammar rule modifying the item. When the rule and its siblings in the parse

tree are matched successfully, the modifications made by these rules are reset by the

parent rule of these rules. Hence the modifications on state dictionary items are valid

through the siblings and children of a rule in the parse tree; they are not valid for the

parent of the rule.

On the other hand, log items are used for logging information during the parsing

and analysis phases. The modifications on the log items are permanent; they are valid

throughout the parsing and analysis. The results of the analysis, the errors found in

the analysis phase by the checker rules of the checker, are logged in the log items during

the analysis.

State information is used and updated in the Replace methods and Replaced

events of the rules to keep track of the parser’s state. Part of state dictionary name

definitions in C# grammar is given as a sample StateDictionaries definition in figure

3.9.

The sample state dictionary name definitions in figure 3.9 contains two dictionary

name definitions. Hence, the list of dictionary items for this sample grammar consists

of two dictionaries identified by names defined. Each of these dictionary items can be

used for a specific purpose, such as list of currently defined variables, in the parser

state.
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<StateDictionaries>

<Dictionary>VariableTypes</Dictionary>

<Dictionary>VariableScopes</Dictionary>

</StateDictionaries>

Figure 3.9. Sample GDML StateDictionary definition

3.4.7. ValidatorFunctions

The ValidatorFunctions section of GDML defines a list of functions for validating

the matches in complex grammar rules whenever necessary. These methods can be

executed with their name identifiers by the grammar rules in their Validator sections

for post validating a match. If the conditions validated by this method are not satisfied

and the method returns false, then the match of the rule fails. These methods use the

state information and the result of the rule match for validating the matches.

A validator function definition in GDML is identified by the Function element

and has the ID attribute for identifying the method and referencing the method for

validation in grammar rules. The method is defined under the Code section of the

Function using the language specified in the language attribute of the grammar. The

method has the prototype given in the delegate definition in figure 3.10 and should

define a valid function body under this prototype.

public delegate bool MatchValidatorDelegate(

ParserState state,

MatchResult match);

Figure 3.10. Match validator method delegate

The state parameter in the validator method definition is the current state infor-

mation of the parser to be used in the validation. The parameter match is the result

object containing the match information, in the other words the list of items matched.
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The validator method should validate the match and return true if the match is ac-

cepted. Otherwise it should return false and the match will be cancelled.

<ValidatorFunctions>

<Function ID="OptionalPostCommaValidator">

<Code>

// "," can be used only in non-empty list

return match.ItemCount(2) == 0 || match.ItemCount(1) == 1;

</Code>

</Function>

</ValidatorFunctions>

Figure 3.11. Sample GDML ValidatorFunction definition

A sample ValidatorFunctions definition from the C# grammar is given in figure

3.11. The sample validator method validates the result of the match by checking the

condition that the optional third match item (a comma) should only exist whenever

the optional second match item (first array item of the match result object) exists in

a rule. This method can be used in grammar rules with its identifier for validating the

condition that the optional comma should only exist when the optional list exists in

matching comma seperated lists.

3.4.8. ReplaceFunctions

The ReplaceFunctions section of GDML defines the list of reusable replace func-

tions for transforming the matches in grammar rules into higher level objects in the

parsing phase of the code checker. These methods can be executed with their name

identifiers by the grammar rules in their Replace sections for replacing matched items

into match objects in the parse tree. These methods use and update the state informa-

tion of the parser and use the result of the rule match for replacing the matched items

into higher level objects in the parser. These methods return the replacement object

for the match.
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The returned replacement object of these methods represents the node of the rule

in the parse tree in the generated parser, while the match items of the rule represents

the children of this node in the tree.

During the parsing phase, the replace methods of the rules are executed when a

rule is matched and matched items are removed from the match result. The replace-

ment object returned from the replace method of the rule is added to the match result

instead. Hence at each rule match, matched items are replaced with the replacement

object returned from the replace method of the rule.

A replace function definition in GDML is identified by the Function element and

has the ID attribute for identifying the method and using the method for replacement

in grammar rules. The method body is defined under the Code section just like the

validator functions. The method has the prototype given in the delegate definition in

figure 3.12 and should define a valid function body under this prototype that returns

the replacement object.

public delegate object MatchReplaceDelegate(

ParserState state,

MatchResult match);

Figure 3.12. Match replace method delegate

The state parameter in the replace method definition is the current state informa-

tion of the parser to be used and updated. For instance, in a variable declaration rule

replace method, the parser should determine the scope of the defined variable using the

current state information and then may add the newly declared variable’s information

into the state. The parameter match represents the list of matched items. The replace

method must return the replacement object for the match that represents the matched

items.

Part of replace function definitions in C# grammar is given as a sample Replace-
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<ReplaceFunctions>

<Function ID="RemoveMatch">

<Code>

// The function that will remove the match

return null;

</Code>

</Function>

<Function ID="ForwardItem0">

<Code>return match.Item(0);</Code>

</Function>

<Function ID="SeperatedList">

<Code>

// match of the form "item(,item)*".

// Return the items as an array

int count = match.ItemCount(1) + 1;

object[] list = new object[count];

list[0] = match.Item<object>(0);

for (int i = 1; i < count; i++)

list[i] = match.Item<object>(1, i - 1);

return list;

</Code>

</Function>

</ReplaceFunctions>

Figure 3.13. Sample GDML ReplaceFunction definition

Functions definition in figure 3.13. The first sample method, named as RemoveMatch,

simply returns null value as a replacement, which causes the removal of the matched

items from the match result as an effect. This method can be used for unsupported

constructs in the target language, removing those constructs from the result. The sec-

ond method ForwardItem0 returns the first item in the match items, causing the list of
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matched items to be replaced by the first matched item. On the other hand, the third

method SeperatedList can be used to replace the items in the form of a list separated

by commas into an array. The method returns the list as an object array.

3.4.9. Rules

The Rules section of GDML defines the list of grammar rules of the language. A

rule represents the transformations of grammar items in the grammar. The grammar

rules represent the grammar of the target language starting from the start rule, rep-

resented in the startRuleID attribute of the grammar. The grammar of the language

should be represented in BNF notation. The tokens represent the terminal or leaf

nodes of the grammar, while the start rule represents the root node.

A rule is identified by its ID attribute. A rule definition in GDML consists of

an attribute named matchType and four sections called Summary, Match, Replace and

Validator. The optional Summary section can be used to describe the rule.

The attribute matchType represents the type of the match of the rule. The

possible values for the match type are Sequence and Any. The default value of match

type is Sequence, hence when the match type is omitted it is treated as Sequence. The

Sequence type represents a rule that matches a sequence of rule items and requires

all of the match rule items to be matched for a successful match. Hence, it behaves

like a logical and operator for the rule items. The Any match type represents a rule

that matches any one of the rule items of the rule and requires any one of the match

rule items to be matched for a successful match. Hence, it behaves like a logical or

operator for the match rule items. In any mode, when any one of the rule items matches

successfully, the rule itself also succeeds without continuing with the other rule items.

Only in the case of a backtrack, the rest of the rule items can be executed.

Backtracking in matching rules of the grammar may occur when a rule matches

some rule items successfully but the matching of that rule subsequently fails in the

other rule items or the siblings of this rule. In this case, the parser engine tries to
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backtrack in the matched items, if possible, and tries to find a successful match. In

the case of a backtrack, all the effects of backtracked matches, including match result

updates and state updates (including log items), has to be undone to prevent side

effects.

The Match section is used for defining the rule items of the rule for matching the

rule. The rule must define the list of rule items for defining how to match with that rule

according to the match type of the rule. There are two types of rule items: Recursive

and Token. The rule items have the common attribute Quantity which specifies the

quantity of the rule item to match. The possible values for the Quantity attribute are

as follows:

• ? (ZeroOrOne) : Optional, match zero or one time

• 1 (ExactlyOne) : Match exactly once

• * (ZeroOrMore) : Match any number of times (as many as possible)

• + (OneOrMore) : Match one or more times (as many as possible)

The default value for the quantity is ExactlyOne. The combination of rule items and

match type specifies how to match that rule.

The Recursive rule item is used for referencing other rules with their identifiers.

The Recursive rule items have the attribute ID to specify the referenced rule. The

Token rule item is used for referencing token types with their identifiers. The Token

rule items have the attributes tokenType and token. The tokenType attribute specifies

the referenced token type. The optional token attribute can be used to specify a value

for matching a token. The rule items have to specify valid references to rules and

tokens to build a valid rule match list.

The optional Validator section can be used to specify a method to post validate

the match of the rule. Using a validator method, matches that do not fulfill the

required conditions can be filtered. In the validator section, either an inline method

is defined for validating the match or predefined validator function, defined in the
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section ValidatorFunctions, is referred with its identifier using the ID attribute of

the validator function. The inline validator method has the same prototype with the

reusable validator functions given in the delegate definition in figure 3.10.

The Replace section of the rule is necessary to specify a method to define a

transformation of matched items of a successfully matched rule into higher level objects

in the parse tree. In the replace section, similar to the validator section, either an inline

replace method is defined for constructing a replacement object for the list of matched

items or a method defined in the grammar section ReplaceFunctions is referred with

its identifier using the ID attribute. The inline replace method has the same prototype

with the reusable replace functions given in the delegate definition in figure 3.12. Each

rule must have a replace method, either inline or referred, that returns the replacement

object that replaces the list of matched items in the match result. The replace methods

use and update the state information during this operation.

A valid rule should have all the references to other grammar items valid; rules,

token types, replace functions and validator functions. The inline replace or validator

methods defined should have a valid function code under its prototype. A rule should

not have both an inline and referred function at the same time. Furthermore, in the

Any match type, the rule item quantities * and + are not allowed, since this may cause

an empty match.

Sample rule definitions from the rule definitions in C# grammar are given in

figure 3.14 and figure 3.15. The first rule in figure 3.14, ExpressionList, consists of two

match items (in sequence mode, both items have to match). Both items are recursive

items referring to other rules and the second one has the quantity * (match zero or

more times). The rule matches a list of expressions separated by commas using the

rule items and returns the list of matched items as an array using the reusable replace

function SeperatedList defined in the section ReplaceFunctions.

The second rule ThisAccess has a single match item of type token, which is a

keyword token and has the value this. The rule has an inline replace method that
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<Rule ID="ExpressionList">

<Match>

<Recursive ID="Expression" />

<Recursive quantity="*" ID="ExpressionListRecursive" />

</Match>

<Replace ID="SeperatedList" />

</Rule>

<Rule ID="ThisAccess">

<Match>

<Token tokenType="Keyword" token="this"/>

</Match>

<Replace>

return new ThisReferenceExpression();

</Replace>

</Rule>

<Rule ID="BaseAccess" matchType="any">

<Match>

<Recursive ID="BaseAccessMember" />

<Recursive ID="BaseAccessIndexer" />

</Match>

<Replace ID="ForwardObject" />

</Rule>

Figure 3.14. Sample GDML Rule definition 1

returns ’this reference’ as an expression as the replacement object using the constructs

in the logical layer. The third rule is an example of an Any type of rule. It contains

two match rule items and it succeeds when any one of these items match. The method

returns the replacement object of the rule item that has matched by referencing a

replace function.

The sample rule given in figure 3.15, ArrayInitializer, consists of a summary, four
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<Rule ID="ArrayInitializer">

<Summary>Returns the array initializer as a list</Summary>

<Match>

<Token tokenType="Operator" token="{" />

<Recursive quantity="?" ID="VariableInitializerList" />

<Token quantity="?" tokenType="Operator" token="," />

<Token tokenType="Operator" token="}" />

</Match>

<Validator ID="OptionalPostCommaValidator" />

<Replace ID="ForwardItem1" />

</Rule>

Figure 3.15. Sample GDML Rule definition 2

match items, a referred validator method and a referred replace method. The second

and the third match rule items have the match quanitiy ?, and are both optional. The

validator method validates this case; the third match item (comma) should exist when

the second match item (initializer list) exists. The rule returns the replacement of the

second rule item (item 1) as a replacement.

3.5. Checker Rule Definition Language

Checker Rule Definition Language is the markup language that is used for defining

the rules of the checker. We call this markup language as CDML (Checker rule Defi-

nition Markup Language). CDML is based on XML, similar to the syntax of GDML.

CDML consists of the rule method definitions for the checker that is to be executed

after the replace methods of the grammar rules as the replaced events of the grammar

rules. Thus each checker rule definition is associated with a grammar rule. The rules

of the checker are defined using CDML.

A CDML definition is associated with a GDML grammar, and the checker rules

that are used for analyzing a given source code are associated with the grammar rules
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of this grammar. Therefore, multiple CDML definitions for a single GDML grammar

are possible, providing different checker rule bases to be used on the same grammar,

hence the same language.

Using a CDML definition targeting the grammar of a target programming lan-

guage, the code checker generates the checker for that language. The generated checker

class is used in association with the target grammar’s parser class for analyzing a given

source code in that language. The checker rules are applied during the parsing phase

of the parser.

The syntax of the CDML file is depicted in figure 3.16. The figure shows a sample

CDML definition for the C# language grammar. CDML has the root element Checker

that defines the checker rules.

The root element Checker has four attributes and three sections. The attributes

targetNamespace and targetClass define the namespace and the name of the generated

checker class. The attribute language defines the language which is used in the code

snippets in the checker for defining checker rules, similar to the case of GDML. The

generated checker class is generated in this language.

The attribute targetGrammar specifies the filename of the target grammar to use

for the defined checker. The checker is associated with the target grammar and the

checker rules are associated with the rules of the target grammar. Hence, a CDML

definition defines the checker and specifies the target grammar.

CDML tree consists of three sections: References, Imports, Rules. The References

section of the CDML defines the list of assembly references of the generated checker

class. The items in the references section consist of valid assembly references as in the

case of a GDML definition. Similarly, the Imports section of the CDML defines the

list of namespace imports to be used in the generated checker class. The syntax of the

References and Imports sections of CDML are same with that of GDML. Hence, the

samples given in figure 3.3 and figure 3.4 are also valid for a sample CDML definition.
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<?xml version="1.0" encoding="utf-8"?>

<Checker xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="CSCodeChecker"

targetClass="CSharpCodeChecker"

targetGrammar="D:\Grammars\CSharpCodeParser.xml"

language="c#"

xmlns="http://www.cmpe.boun.edu.tr/checker.xsd">

<References>...</References>

<Imports>...</Imports>

<Rules>

<Rule ID="MethodCommentCheck"

targetRule="MethodDeclaration"

importance="high">

<Checker>

if (e.Match.ItemCount(0) == 0)

e.Log("Missing method comment");

</Checker>

</Rule>

</Rules>

</Checker>

Figure 3.16. Sample CDML definition

The Rules section of CDML defines the rules of the checker. The rules specify the

custom checking methods for the code checker. The code checker rules are defined with

the Rule tag under the Rules section. A checker rule has the following three attributes:

• ID : Identifier of the checker rule.

• targetRule : The target grammar rule in the target grammar which the checker

rule is associated with.

• importance : The importance (severity) level of the checker rule in terms of
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analysis. The possible values for the importance are: lowest, low, medium, high,

highest. The default value for the importance is medium.

The checker rule function is defined under the Checker section of the rule. There

is also an optional section Summary for describing the rule. The checker rules are

executed as events in the parser during parsing. These events correspond to a Replaced

event for the GDML rules since they are executed after replace methods of GDML

grammar rules. The Rule Replaced event has the prototype given in the delegate

definition in figure 3.17.

public delegate void RuleReplacedEventHandler(

object sender,

RuleReplacedEventArgs e);

Figure 3.17. Rule replaced event delegate

The checker method defined in the Checker section is the handler of the Replaced

event of the target grammar rule. The method uses the event’s arguments as input,

performs the check operation and logs the violations found in the state as log items.

The event arguments are given as the class type RuleReplacedEventArgs that has the

following properties:

• State : Current state information of parser.

• Match : The list of matched items of the target grammar rule.

• Replacement : The replacement object returned from the replace method of

the grammar rule.

• CheckerRule : The checker rule object being executed.

• StartLine : The line number of the first token in the source code that matches

the target grammar rule (Starting line number of match).

• EndLine : The line number of the last token in the source code that matches

the target grammar rule (Ending line number of match).
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The checker rules use the state information, matched rule items in the target

grammar rule and the replacement object of the target grammar rule for performing

the analysis. The errors found in the analysis are added to the log items of the state

so that they are preserved during the parsing and they can be accessed at the end

of the parsing. The checker errors are added to the log of the state as a specific

CheckerError object so that they can be listed conveniently as the result of the check.

The CheckerError class has the following members:

• CheckerRule : The current checker rule object being executed.

• ErrorMessage : The specific error message for the error.

• LineNumber : The line number to navigate for the error in the source code.

A checker error can simply be logged in the state using the Log function of the

RuleReplacedEventArgs object. The Log method gets the error message as the param-

eter, and defines a new CheckerError using the information in the event arguments

and the error message. The error message specifies the specific error message to be

displayed for that specific checker error. The Log method uses the StartLine property

of the event arguments for determining the line number and uses the starting line num-

ber of the matched rule as the LineNumber. The user defines a checker error in the

log items of the state using the Log method and the list of errors are displayed at the

end of the analysis to the user in the form of (importance, rule ID, error message, line

number) according to the importance of the rules.

The sample CDML definition given in figure 3.16, contains a checker rule, named

as MethodCommentCheck, that checks the existence of a comment before a method

definition. If the optional first match item for the target grammar rule, MethodDec-

laration, is not matched (the item count is zero); then the matched method definition

does not have a comment before the method and this constitutes an error in the checker.

The rule has the importance high, specifying the error importance level for the rule.

The found error is registered in the log items of the state using the Log method of the

event arguments with the error message.
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There are some requirements that a CDML definition has to satisfy for validity.

First of all, a CDML definition must have a valid target grammar definition in order to

define a checker for that grammar. The checker rules must have unique identifiers and

must have valid target grammar rules. Furthermore, the checker rule methods must

define valid method bodies according to their prototype.

3.6. Implementation

The designed source code checker is implemented in C# by using Microsoft.NET

Framework. The implementation can be divided into five logical parts:

• Logical Layer

• GDML and CDML Deserialization

• Parser and Checker Generation

• Code Analysis

• User Interface

In the Logical Layer, the building blocks constituting the parse tree during the

parsing and analysis of the checker are defined. These building blocks are used in

transformation of match rule items to higher levels in the parse tree in the rule replace

methods.

GDML and CDML Deserialization phase is used for deserializing GDML and

CDML content into specific code checker classes. A given GDML definition is deserial-

ized into the Grammar class that contains all the GDML content. A CDML definition

is on the other hand is deserialized into the CheckerDefinition class.

The Parser and Checker Generation phase is used for generating the language

specific parser and checker for the target language according to its grammar and code

checker definitions. This phase provides the functionality for generating a parser class

and a checker class for the target language, that extend the language independent base

parser and checker classes and that contain all definitions in the given GDML and
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CDML contents respectively.

The Code Analyzer layer contains the necessary classes and methods for checking

a given source code using the generated parser and checker classes. A given source code

is parsed according to the generated parser, and the checker rules defined in the gen-

erated checker class are executed during the parsing for finding out the corresponding

violations.

On the other hand, the User Interface layer comprises the high level graphical

user interfaces that interfere with the user and provides the interface for the checker

by making use of the methods in the underlying analysis layer.

The implementation details of these five phases are discussed in the following

subsections.

3.6.1. Logical Layer

The Logical Layer of the code checker defines the building blocks of the generated

parse tree in parsing a given source code. The parse tree consists of the tokens of the

tokenized source code at leaf nodes and logical layer items in the other nodes. Hence,

the logical layer defines the objects for the transformation of lower level parse tree

objects into a higher level object. These objects are used in the parsing and analysis

phases of the checker. The replace methods of grammar rules and checker rule methods

use these building blocks. The replace methods of grammar rules use the logical layer

objects for defining the replacement object for the match items of a rule.

In the logical layer, language independent constructs representing generic con-

structs in programming languages such as expressions, statements, methods etc. are

defined. The defined constructs are similar to the CodeDOM structures for represent-

ing language specific constructs but also includes some constructs that are not included

in CodeDOM library. The highest level building blocks in the logical layer are struc-

tural definition blocks such as model definition, class definition, method definition etc.
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On the other hand lower level building blocks in the logical layer consist of operational

building blocks in a programming language such as statements and expressions. The

expressions form the lowest level building blocks in the logical layer and they reside

above the tokens, which form the leaf nodes, in the parse tree. Each building block

represents a language construct and contains the necessary fields for representing the

specific construct. The class diagrams of the logical layer classes are given in the

appendix.

Structural definition blocks in the logical layer include namespace declarations,

delegate declarations, class declarations, event declarations, field declarations, prop-

erty declarations and method declarations for modeling these definitions. The classes

representing the structural definition blocks are summarized in table 3.1.

The operational definition blocks in the logical layer consist of class definitions

for representing operational language constructs in programming languages. The oper-

ational constructs consist of statements and the statements consist of expressions and

tokens. The classes representing the operational definition blocks are summarized in

table 3.2.

Statement class is the basic building block for representing the statements in a

language. It is extended by statement type classes representing different statement

types in programming languages. Each statement class represents a different type of

a statement and contains different members for this purpose. The statement type

classes are summarized in table 3.3. The Statement class contains the following utility

functions:

• EmptyLineCount : Number of blank lines in the statement (extended by state-

ment type classes).

• IsSpecificStatement : Check whether the statement is of a specific type given

in the predicate delegate method as the parameter (not extended).

• StatementCount : Number of effective (significant, non-whitespace) statements

in the statement (extended by statement type classes).
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Table 3.1. Logical Layer structural definition classes

Class Name Explanation

ModelDefinition Stores project related information and list of namespace

definitions

NamespaceDefinition Stores namespace information such as name, imported

namespaces, and lists of class, delegate, enum, struct and

interface definitions

DelegateDefinition Stores delegate information such as name, return type

and parameter definitions

ClassDefinition Stores class information such as name, access modifiers

and list of member definitions

StructDefinition Stores struct information such as name, access modifiers

and list of member definitions

EnumDefinition Stores enum information such as name, access modifiers

and list of member definitions

EventDefinition Stores event information such as type, name and access

modifiers

FieldDefinition Stores field information such as type, name, access mode

and optional initialization value

PropertyDefinition Stores property information such as name, return type,

access modifiers and get/set method definitions

MethodDefinition Represents a method definition and stores method infor-

mation such as method name, return type, access modi-

fiers, list of parameter definitions and list of statements

of the method body

ParameterDefinition Represents a parameter definition and stores parameter

information such as name, type and access modifier

InterfaceDefinition Stores interface information such as name, access modi-

fiers and list of member definitions

AttributeDefinition Stores attribute information such as name and attribute

value list
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Table 3.2. Logical Layer operational definition classes

Class Name Explanation

Statement Base class for representing a statement

StatementCollection Represents a list of statements, used to model statement

blocks

Expression Base class for representing an expression

These utility functions are extended by necessary statement type classes (that in-

clude blocks as statement collections) for obtaining the desired behavior. For instance,

the StatementCount method returns one by default in the Statement class, but the

WhileStatement class extends the method and returns the number of statements in

the while block (by recursively invoking the method) plus one.

On the other hand, StatementCollection class represents a list of statements and

is used for representing statement blocks consisting of a list of statements. It is used

within language constructs containing statement blocks such as methods or statements

(i.e. if statement, while statement etc.). It contains the following utility functions for

working with statement blocks:

• EmptyLineCount : Total number of blank lines in the statement collection.

• StatementCount : Total number of effective statements in the statement col-

lection.

• GetStatement : Get a specific statement in the statement collection with an

index.

• LastStatement : Get the last statement in the statement collection.

Expression class represents the smallest building blocks other than tokens in a

language. Statements are composed of tokens and expressions in the parse tree. The

Expression class is extended by expression type classes representing different types of

expressions in programming languages. The expression type classes are summarized in

table 3.4 and table 3.5. The Expression class contains the following utility functions

that are extended by necessary expression type classes:



49

Table 3.3. Logical Layer statement types

Class Name Members

AssignStatement leftExpression, rightExpression

AttachEventStatement eventReference(Expression), listener(Expression)

RemoveEventStatement eventReference(Expression), listener(Expression)

BreakStatement -

ContinueStatement -

CommentStatement text

WhiteSpaceStatement element

ConditionStatement condition, trueBlock, falseBlock

SwitchStatement switchExpression, switchBlock (section list)

ExpressionStatement expression

GotoStatement label

LabeledStatement label, statement

IterationForStatement initStatements, testExpression, incerementState-

ments, iterationBlock

IterationWhileStatement testExpression, iterationBlock

IterationDoWhileStatement testExpression, iterationBlock

IterationForeachStatement variableType,varName,loopExpr,iterationBlock

MethodReturnStatement expression

ThrowExceptionStatement toThrow (Expression)

CatchClause name, exceptionType, catchBlock

TryCatchFinallyStatement tryBlock, catchClauses, finallyBlock

UsingStatement acquisition, usingBlock

VariableDeclarationStatement name, type, initExpression

• ExpressionCount : Number of subexpressions of the expression.

• ContainsExpression : Check whether the expression contains a specific expres-

sion type given in the predicate.

• ContainsBinaryOperator : Check whether the expression contains a specific

binary operator.
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Table 3.4. Logical Layer expression types - 1

Class Name Explanation

AddressOfExpression Represents an address of reference

ArgumentReferenceExpression Represents a parameter reference

ArrayCreateExpression Represents an array creation

ArrayIndexerExpression Represents an array index reference

BaseReferenceExpression Represents base class reference

BinaryOperatorExpression Represents a binary operator expression

CastExpression Represents a cast to a specified type

DelegateCreateExpression Represents a delegate creation

DelegateInvokeExpression Represents a delegate invocation

DereferenceExpression Represents a dereferencing of a pointer

DirectionExpression Represents the direction of a parameter

EventReferenceExpression Represents an event reference

FieldReferenceExpression Represents a field reference

IndexerExpression Represents an index reference

MethodInvokeExpression Represents a method invocation

MethodReferenceExpression Represents a method reference

A sample source code to parse tree transformation using the logical layer building

blocks is depicted in figure 3.18 and figure 3.19. Figure 3.18 contains a sample source

and figure 3.19 represents the corresponding parse tree.

public int Add (int a, int b)

{

int sum = a + b;

return sum;

}

Figure 3.18. Sample method for parse tree generation



51

Table 3.5. Logical Layer expression types - 2

ObjectCreateExpression Represents a new instance creation or a

pointer memory allocation

ObjectDeleteExpression Represents a pointer memory deallocation

ParameterDeclarationExpression Represents a parameter declaration

PreDecrementExpression Represents a predecrement expression

PreIncrementExpression Represents a preincrement expression

PostDecrementExpression Represents a postdecrement expression

PostIncrementExpression Represents a postincrement expression

PrimitiveExpression Represents a primitive value

PropertyReferenceExpression Represents a property reference

PropertySetValueReferenceExpression Represents value argument of property

SizeofExpression Represents a sizeof expression

SwitchDefaultCaseExpression Represents default case of switch

ThisReferenceExpression Represents current local class instance

TypeOfExpression get type of an object

TypeReferenceExpression Referencing a type

VariableReferenceExpression Represents a variable reference

WhitespaceExpression Represents a whitespace

The simple method definition in figure 3.18, represents a simple add function

implementation in C#. The corresponding parse tree for this method according to the

sample C# grammar is given in figure 3.19. The parse tree consists of the method

definition at the root. The method definition consists of two parts, the header and

the body. The header part matches the method information. The body is a statement

collection and consists of two statements; a declaration statement, which declares an

integer variable, and a method return statement.
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Figure 3.19. Parse tree for the sample source code

3.6.2. GDML and CDML Deserialization

The first step in checking a given source code is to prepare the language specific

parser for the target language according to the given GDML grammar and CDML

checker rules. Thus the first step is to deserialize given GDML and CDML definitions

into code checker classes. In this section, the classes used in deserialization operation

are discussed.

The GDML content is deserialized as an instance of the Grammar class. Hence,

the Grammar class corresponds to the GDML definition and has the members for

holding the information in the attributes and sections of the GDML grammar definition.

The Grammar class contains the following properties that correspond to the at-

tributes and sections of the GDML grammar:

• TargetNamespace: Corresponds to the attribute targetNamespace, represents the

namespace of the generated parser.

• TargetClass : Corresponds to the attribute targetClass, represents the name of
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the main class of the generated parser.

• Language: Corresponds to the attribute language, represents the programming

language used in method definitions and in generation of the parser.

• StartRuleID : Corresponds to the attribute startRuleID, marks the start rule of

the generated parser.

• CaseSensitive: Corresponds to the attribute caseSensitive, represents whether

the identifiers in the target language are case sensitive.

• References : Corresponds to the section References, represents the list of assembly

references for the generated parser.

• Imports : Corresponds to the section Imports, represents the list of namespace

imports for the generated parser.

• Keywords : Corresponds to the section Keywords, represents the list of keywords

in the target language.

• TokenRegExs : Corresponds to the section TokenRegExs, represents the collec-

tion of regular expression definitions in GDML. Each token regular expression is

mapped to the XmlTokenRegEx class, that represents a token regular expression

definition.

• TokenTypes : Corresponds to the section TokenTypes, represents the collection of

token types in GDML. Each token type definition is deserialized to the XmlTo-

kenType class, that represents a token type definition.

• StateDictionaries : Corresponds to the section StateDictionaries, represents the

list of state dictionary names for the generated parser.

• ValidatorFunctions : Corresponds to the section ValidatorFunctions, represents

the collection of validator functions in GDML. Each validator function defini-

tion is mapped to the XmlIdentifiableFunction class, that represents a function

definition.

• ReplaceFunctions : Corresponds to the section ReplaceFunctions, represents the

collection of replace functions in GDML. Each replace function definition is

mapped to the XmlIdentifiableFunction class, that represents a function defi-

nition.

• Rules : Corresponds to the section Rules, represents the collection of rules in

GDML. Each grammar rule definition is deserialized to the MatchRule class,
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that represents a grammar rule definition.

The TokenRegExs, TokenTypes, ValidatorFunctions, ReplaceFunctions and the

Rules properties of the Grammar class are collections that are identified with an ID

property, IdentifiableElementCollection. Each of these is mapped to their corresponding

classes: XmlTokenRegEx, XmlTokenType, XmlIdentifiableFunction (for validator and

replace functions) and MatchRule. Each of these classes extends the IdentifiableEle-

mentCollection class and contains the properties for mapping the corresponding GDML

sections into the instances of these classes.

The Grammar class also contains the necessary methods for handling the se-

rialization to and deserialization from grammar files, generation of the parser and

validation of the grammar. The grammar is validated against the constraints defined

in the GDML section 3.4 for the sections of the GDML.

On the other hand, the CDML content is deserialized as an instance of the Check-

erDefinition class that corresponds to the CDML definition, and has the members for

holding the information in the attributes and sections of the CDML checker rules def-

inition like the Grammar class. The CheckerDefinition class contains the following

properties that correspond to the attributes and sections of the CDML checker:

• TargetGrammar : Corresponds to the attribute targetGrammar, represents the

filename of the target grammar.

• TargetNamespace: Corresponds to the attribute targetNamespace.

• TargetClass : Corresponds to the attribute targetClass.

• Language: Corresponds to the attribute language, represents the programming

language used in checker rule method definitions and in generation of the checker.

• Rules : Corresponds to the section Rules, represents the collection of checker rules

in CDML. Each checker rule definition is mapped to the CheckerRule class, that

represents a checker rule definition.

The CheckerDefinition class also contains the necessary methods for handling
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the serialization to and deserialization from checker rule base files and validation of the

checker rules similar to that of the Grammar class.

3.6.3. Parser and Checker Generation

The Parser and Checker Generation phase is used for generating the language

specific parser and checker classes for the target language according to the given gram-

mar and code checker definitions. Once a checker definition is given, the grammar to

use for that checker for parsing is identified from the target grammar of the checker.

The language specific parser and checker classes for the target language are gen-

erated when the GDML and CDML content are deserialized into a Grammar and

CheckerDefinition instances. These classes are generated in the language specified in

the language attribute of the GDML and CDML files respectively. These programming

languages should be one of the programming languages supported by the CodeDOM

library. These languages also specify the language for defining the code snippets for

validation, replace methods in GDML and checker methods in CDML definitions re-

spectively. They are not related with the language of the target grammar.

The generated parser and checker classes can be used for analyzing a given source

code. Furthermore, these classes can be saved as text files for checking them and also

as dynamic assemblies for packaging them. These assemblies can be used directly to

analyze a given source code without needing to generate them every time for analysis.

There is a base parser class which is extended by the generated language specific

parser class. This base class contains the language independent features of the parser

such as the parse operation (using tokens, rules and methods). The same argument

also holds for the checker class. The generated checker class extends the base checker

class, which contains language independent features such as running the checker.

The generated classes have the namespace, class name, assembly references and

namespace imports defined in the respective GDML and CDML definitions. Further-
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more, they contain the items defined under the GDML and CDML definitions.

The token regular expressions, token types and rules are defined as subclasses

in the generated parser. These subclasses contain the relevant information of the

corresponding grammar section (TokenRegexs, TokenTypes and Rules). On the other

hand the token validator methods, rule validator methods (ValidatorFunctions and

inline validator methods), rule replace methods (ReplaceFunctions and inline replace

methods) are defined as methods under the generated parser. The checker rule methods

are defined as methods in the generated checker.

3.6.4. Code Analysis

This layer of the code checker is the operational part of the application and

provides the necessary operations for code checking. It consists of the three stages

mentioned in the design section: Tokenizer, Parser and Analyzer. It is responsible for

the following tasks:

• Tokenization of the source code

• Parsing of the tokenized code

• Checking the parsed code according to the rules of the checker

• Saving and loading grammar definition bases for the checker

• Saving and loading checker rule definition bases for the checker

The first step in the code checker is to load the given checker definition and

then using the target grammar of the checker definition to load the grammar for the

target language into the checker definition and grammar instances. The next step is to

generate the parser and checker classes as described in the previous sections 3.6.2 and

3.6.3. These operations are done using the functionalities provided in those sections.

The code checker phase uses the generated parser and checker for performing the above

tasks.
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On the other hand, if the checker and grammar definitions are supplied as a

previously saved assembly, the generation is not necessary since the parser or checker

classes can be loaded directly from a valid assembly in this case.

In the tokenization part, the given source code is read and parsed into tokens

of the target language using the token regular expressions and token types in the

grammar of the language. A token is the simplest code segment in the language that

can be identified. At the end of this part; a list of tokens,tokenized source, is obtained

for the given source code.

The keywords of the target language are also used as a token type during the

tokenization phase. The case sensitive flag of the grammar specifies whether the tokens

should be matched as case sensitive or not.

The next phases in code checking are the parsing and the analysis phases. These

phases are closely related and overlap since the code checking is also done during the

parsing operation.

In the parse operation, the obtained list of tokens from the tokenization phase

is parsed according to the grammar rules and functions obtained from the grammar

of the target language into the generated parser. The parser of the code checker is a

recursive descent parser. A recursive descent parser is defined as a top-down parser

built from a set of recursive procedures where each procedure implements one of the

production rules of the grammar. As a result, the structure of the resulting program

closely mirrors that of the grammar it recognizes. Therefore, in the parsing phase we

start with the list of tokens as the result object and they form the leaves of the parse

tree of the source file. Then, starting with the start rule of the grammar, we start

matching the rules on the list of tokens in a top-down manner.

For each rule during the matching of the rules, if the match type is Sequence, all

of the rule match items have to match for a successful match of the rule. On the other

hand, if the match type is Any, then a match of one of the rule items is enough for
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the success of the rule. For each rule, rule items of the rule are successively applied

trying to match the rule (until a rule item matches in any mode or a rule item fails in

sequence mode).

For each rule item of rules; if the match rule item is a token, that token has to

be matched in the current position in the token list for success. When a match rule

item that refers to another rule item (Recursive) is encountered, the match function is

recursively called with that rule at the current position in the token list and that rule

tries to match. When a rule is called at the same token position in the second time,

the second call fails in order to avoid an infinite recursion. In this way, the recursive

calls will terminate upon reaching token items since the tokens form the leaves of the

parse tree and the terminals of the BNF grammar of the language. The position in the

token list is updated during the advancing in the match rule items with success in the

Sequence mode or with successes of rules.

When a rule matches successfully, its validator method is executed for post val-

idating the match whenever it exists. If it also succeeds, the rule succeeds and its

replace method is executed. The list of matched items is removed from the result and

the replacement object returned from the replace method is inserted instead. Hence,

the rule completes a transformation from the list of matched items to the replacement

in the result. After the replace method, the replaced event that is used for the checker

rules is fired. If the rule has an associated checker rule, then the method of the checker

rule is executed for checking the relevant rule and logging the errors found in the state.

When a rule item fails, the matching operation continues with the other rule

items in Any mode. On the other hand, in Sequence mode or when all rule items fail

in Any mode, the associated rule also fails and this effect is transmitted to the parent

rule (the corresponding rule item running this rule also fails).

The state information is used and updated during the replace and checker rule

methods for keeping track of the parser state. Furthermore, there is the possibility of

backtracking in the rules. When a rule succeeds in some match items but then fails in
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a succeeding match rule item, the parser backtracks to try to find another successful

match whenever possible. In the case of backtracking, all modifications done by the

backtracked rules are cancelled including the logged items in the state.

With the above operation methodology, the list of tokens is transformed into

higher level structures (i.e. 2+3 is combined into an expression, x=2+3 is then com-

bined into an assignment statement etc.). At the end, we end up with the parse tree

of the source code for a valid source.

As a result we also obtain all the violations of the checker rules in the log items

of the state. All the found defects are listed in the interface based on their checker

rule importance. The violations together with their importance show the quality of

the source code against the specified checker rules

3.6.5. User Interface

The user interface layer of the Flexible Code Checker includes the graphical user

interfaces of the application. It is the front end of the source code checker application

and presents the user the functionalities provided by the underlying analyzer layer.

The user interface is responsible for the following tasks:

• Collecting the inputs from the user

• Providing the interface for executing the rule checker

• Displaying the violation of checker rules found in the source code

• Providing the interface for GDML grammar management

• Displaying the errors of validation of the grammar

• Providing the interface for CDML checker rules management

• Displaying the errors of validation of the checker rule base

• Providing the interface for loading, editing and saving language grammars

• Providing the interface for loading, editing and saving checker rule bases

• Providing the interface for loading, editing and saving project files



60

The user interface contains the forms for managing a GDML definition and a

CDML definition. The user can build the grammar or the checker and validate them

using these interfaces. Furthermore the execution form of the checker is used for run-

ning the checker on a target source file by selecting the CDML definition (or assembly)

and the target source file. These files can be also be saved and loaded as project bases

for later usage.



61

4. SAMPLE APPLICATIONS

In this chapter, sample applications built with the proposed flexible code checker

framework are described. The developed flexible code checking system has been used

to build code checkers for two programming languages: C# and C++. The grammars

of the languages have been defined using GDML and sample checker rules for analyzing

sample sources are defined using CDML. Then the checkers are tested on sample source

codes for identifying the violations of the checker rules.

The details on the sample checkers are given in sections 4.1 and 4.2. Then in

section 4.3; performance, accuracy and feasibility issues of the code checker framework

are discussed. In section 4.4, the proposed checker framework is compared against

some of the existing commercial tools.

4.1. Sample C# Checker

A sample source code checker for the C# language is implemented using the

developed code checker framework in this study. The language constructs in the C#

language are defined in the form of GDML for parsing given C# sources. Then the

checker rules are defined in the form of CDML for analyzing given sources according

to these rules.

The sample C# code checker has been the main testing platform for the flexible

code checker in this study since C# grammar was the first grammar fully defined in

GDML form.

In order to build the sample C# checker, the first step is to define the grammar

of the C# language in GDML form and then define the necessary transformation func-

tions in the grammar for building a parse tree using the grammar. The C# language

grammar defined in the MSDN Library [20], has been used for defining the grammar.

The root of the C# grammar, hence the start rule in the GDML definition, is defined in
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the CompilationUnit rule of the grammar. The target grammar is mapped to a GDML

definition using the GDML Editor of the code checker by defining the keywords, tokens,

token regular expressions for matching tokens and grammar rules.

The target C# grammar is fully defined covering all of the language constructs in

the language. Only unsafe language constructs in the target grammar are not covered

for standardization. After representing the target grammar in GDML form, the replace

functions of grammar rules are defined for transforming matched rule objects to higher

level representations. The constructs in the logical layer of the code checker are used

in the transformation process for mapping lower level parse tree objects to higher level

constructs. For instance, the replace function of the grammar rule MethodDeclaration

constructs and returns a MethodDefinition object of the logical layer by using the

matched items in the rule: the method header and the method body. Therefore the

matched method header and method body are transformed into a method definition in

this rule. The preprocessing directives are not handled for simplification in this phase,

and they are skipped during the parsing in the defined grammar.

Since the grammar of the C# language is quite complex and long, the definition

of the target grammar is also a time consuming task. But once the grammar is defined,

it can be reused in defining various checkers for the C# language.

After defining the target grammar in GDML form, a sample checker on this

grammar is defined in CDML form by defining sample rules for the analysis. The

sample checker contains various types of checker rules for analyzing a given source in

C#. The sample checker rules are summarized in tables 4.1 and 4.2.

The sample checker rules contain various types of analysis rules ranging from

naming and complexity rules to convention rules. The definition of these rules are

not complex, since the necessary items for checking a match such as matched items,

state information and replacement objects are available. The checker executes the rules

defined in the checker and the items logged in the checker methods are collected as a

result.
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Table 4.1. Sample C# checker rules - 1

Rule Name Explanation

MethodCommentCheck Checks for a comment preceding a method declaration

(for describing the method)

MethodLengthCheck Checks the number of significant statements in a

method body (should not be too high)

MethodEmptyLineRate Checks the number of effective (non-empty) lines

(should not be too high) and the rate of empty lines

over the effective lines (should not be too low) in a

method body.

MethodCommentRate Checks the rate of comments over the total number of

statements (should not be too low) in a method body

MethodParameterCount Checks the number of parameters in a method decla-

ration (should not be too high)

MethodIfCounter Checks number of if statements (number of branches)

in a method body

SwitchDefaultCheck Checks for existence of the default case in switch state-

ments

SwitchCaseBreakCheck Checks for a break statement at the end of case blocks

in switch statements

The behavior of the checker is completely defined in the checker rules, hence no

false positives or false negatives will occur with properly defined checker rule methods.

On the other hand, the complexity of the checker rule methods entirely depend on the

implementation of the method and the complexity of the analysis rule. Some analysis

rules may require complex checker rule method definitions or too much tracking in the

parsing using the state, making the analysis on these items quite infeasible.

The sample checker is executed on different sample C# source files for analyzing

them according to the defined checker rules. The violations of the checker rules are

correctly identified and listed according to their importance.
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Table 4.2. Sample C# checker rules - 2

Rule Name Explanation

VariableNameCheck Checks whether local integer variable names start with

i and does not include in local variable declarations

VariableInitializerCheck Checks whether local integer variables are initialized

in local variable declarations

IfConditionCheck Checks for assignment in conditions of if statements

WhileConditionCheck Checks for assignment in conditions of while state-

ments

ComplexExpressionCheck Checks expressions for the number of subexpressions

included (for detecting complex expressions)

ComplexExpPrePostInc Checks usage of pre/post increment and decrement

expressions other than stand-alone in expressions

MethodReturnCount Checks number of return points of a method declara-

tion (should not be more than a few)

MethodReturnCheck Checks whether the final statement of a non-void

method is a return statement

PrivateFieldNameCheck Checks whether private field names start with in field

declarations

4.2. Sample C++ Checker

A sample source code checker for the C++ language is implemented using the

developed code checker framework to emphasize the flexibility of the checker on different

target languages and checker bases. For this purpose, the language constructs in the

C++ language are defined in the form of GDML and the checker rules are defined in

the form of CDML for analyzing given sources according to these rules for the sample

C++ checker.

In building the sample C++ checker, the first step is to define the grammar of the

C++ language in GDML form and then define the necessary transformation functions



65

in the grammar for building a parse tree using the grammar. The C++ language

grammar defined in the BNF form in [21], has been used for defining the grammar.

The root of the C++ grammar, hence the start rule in the GDML definition, is defined

in the TranslationUnit rule of the grammar, which defines a series of declarations. The

target grammar is mapped to a GDML definition using the GDML Editor of the code

checker by defining the keywords, tokens, token regular expressions for matching tokens

and grammar rules.

In order to simplify the grammar definition, some language constructs are not im-

plemented in the target grammar definition. The preprocessing directives and template

constructs are not implemented in the grammar definition for this purpose. The pre-

processing directives are marked as non-siginificant and are skipped during the parsing

phase. After representing the target grammar in GDML form, the replace functions

of the grammar rules are defined for transforming matched rule objects to higher level

representations. The constructs in the logical layer of the code checker are used in

the transformation process for mapping lower level parse tree objects to higher level

constructs.

After defining the target grammar in GDML form, a sample checker on this

grammar can be defined in CDML form by defining sample rules for the analysis. The

sample checker for C++ uses some of the sample checker rules given in tables 4.1 and

4.2 by mapping them to the GDML definition of the C++ language. Furthermore, it

also includes the rules summarized in table 4.3 that are specific for the C++ grammar.

The sample checker is executed on different sample C++ source files for analyzing

them according to the defined checker rules. The violations of the checker rules are

correctly identified according to the checker rule methods and listed according to their

importance.

The CDML definition of the sample C++ checker and the results of a sample

execution of the checker on a sample source file are given in the appendix.
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Table 4.3. Sample C++ checker rules

Rule Name Explanation

VariableNameCheck Checks whether local integer variable names does not

start with in local variable declarations

PtrVariableInitializerCheck Checks whether pointer variables are initialized in dec-

larations

PrivateFieldNameCheck Checks whether private field names in classes start

with in field declarations and usage of non-private

fields in classes

GlobalVariableDeclaration Checks for global variable declarations

GlobalVariableModification Checks for modification of global variables in methods

as a side effect

GlobalVariableUsage Checks for usage of each global variable in methods

4.3. Performance Issues

The performance of a checker that is built using the code checker framework de-

pends on the user defined methods in the checker. The factors affecting the performance

of the checker can be summarized as follows:

• Complexity of language independent internal parser.

• Complexity of target grammar.

• Complexity of user-defined replacement methods in grammar definition.

• Complexity of user-defined checker methods in checker definition.

Only the complexity of the first item, the complexity of the internal language

independent parser is fixed. The other items depend on the specific target language

grammar and user-defined methods in the checker. The complexity of the first item is

mostly dominated by the complexity of the other items. Hence, the complexity of a

checker depends on the complexity of the target language and definition of the checker

via the complexity of the grammar definition, the complexity of the replacement meth-
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ods and the complexity of checker rule methods. The definition of the target grammar

via the order of rule items or the amount of recursions also affect the performance.

On the other hand, the accuracy of the checker is also user-defined and it depends

on the accuracy of the user defined checker methods. The behavior of a checker is

defined in the checker methods and the accuracy of this observed behavior against the

desired behavior depends on the checker methods. There will be no false positives and

false negatives in an appropriately defined checker.

Defining a grammar definition for a target language in the checker may be complex

due to the complexity of the grammar of the target language. In fact, it is the most

difficult part in building a new checker for a target language using the framework. On

the other hand, once the grammar is defined, the grammar definition can be used with

different checker rule bases.

In general, the checker rule method definitions are not too complex. But in some

cases, building a checker rule for analyzing a certain behavior may require too much

tracking in the grammar and state, and may become too complex to implement. Hence,

it will not be feasible and worth to define that checker rule for analyzing that behavior

in this case.

4.4. Comparison with Existing Tools

There exists a variety of tools for static source code checking. In this section,

some of them are shortly reviewed and compared with the proposed code checking

system. In general, commercial static analysis tools focus on specific domains for

analysis. They perform analysis on specific programming languages and some of them

focus the analysis on specific purposes such as security or layout. They usually have

a set of predefined analysis rules and some of them allow the customization of these

rules.

On the other hand, the proposed flexible code checking system is a generic frame-
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work and allows the user to build custom checker s for any target language for any

domain. The basic advantage of this approach is the ability to adapt and generalize to

different domains as opposed to the specific domains of commercial checkers. On the

other hand, the advantage of focusing on specific domains is to have a deeper and easier

analysis for specific purposes since the main focus of the checker is on those items.

The first tool utilizing source code analysis was lint, that flagged suspicious and

non-portable constructs (likely to be bugs) in C language source code. An extension

of lint called as Splint, short for Secure Programming Lint, is a programming tool

for statically checking C programs for security vulnerabilities and coding mistakes.

Formerly called as LCLint, it is a modern version of the lint tool.

One of the commercial tools for static analysis of C++ code is C++test of Para-

soft [22]. It is a static analyzer for C++ that can be used from command line or can

be integrated into leading development environments (IDEs) such as Eclipse or Visual

Studio .NET. It contains a number of predefined checks for the C++ language covering

many standard analysis rules. It also contains a graphical interface called RuleWiz-

ard for creating custom checker rules. The graphical wizard allows addition of custom

rules and provides flexibility in the analysis. New rules are attached to the rules of

the grammar similar to the proposed code checker system but they are designed via a

graphical interface. Nevertheless, adding custom rules using this interface is not sim-

ple and requires significant level of knowledge and experience. Building a custom rule

using RuleWizard is depicted in figure 4.1.

The C++Test tool works reliably and is able to produce graphical tool reports on

the analysis. There also exists similar tools from Parasoft for Java and .NET languages

called as JTest and .TEST respectively.

Programming Research’s QA C++ is another powerful static analysis tool tar-

geting the C++ programming language. It includes lots of predefined analysis rules

and the user selects the rules to use in the checker. The tool allows usage of headers

and libraries and takes them as command line arguments. It can also be integrated
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Figure 4.1. Parasoft’s C++Test rule wizard

into known IDE’s such as Visual Studio .NET. Various forms of quality reports can be

obtained from the tool. The tool can also be used to calculate various metrics for the

quality of the source code.
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5. CONCLUSIONS

In this thesis, a flexible language independent code checker framework is designed.

Using the framework, one can build custom checkers for target programming languages

by defining the grammar of the target language and by defining the rules of the checker

to be applied in the checking of a given source code. The built custom checker is than

can be used to analyze source codes in the target programming language and identifying

violations of the defined checker rules. Hence, the rules of the checker are completely

defined by the user providing the flexibility of the checker.

The main contribution of the proposed code checking framework is providing a

flexible and language independent mechanism for building user defined custom checkers

as opposed to domain specific code analyzers. Commercial code checkers are designed

for helping software developers to analyze source codes in a specific domain for specific

purposes for specific target languages. Some of them allow the user to define custom

checker rules in that domain.

Instead of concentrating on specific domains and languages, the proposed code

checker framework allows the user to build custom checkers in any target language.

The user defines the grammar of the target language and specifies the rules for parsing

a given source code in that language. The user also defines the checker rules of the

checker specifying the conditions to check in the analysis. Different checker rule bases

can be defined and used with a single grammar, which allows building checkers for

different coding standards on a specific language. Therefore, a checker is completely

defined by the user in this framework.

The framework requires programming and target language grammar from the

user in defining a checker. However, since the target users are software developers, this

does not constitute a major disadvantage. Moreover, the flexibility of the checker comes

from this fact. The basic assumption in using the checker is that a given source code

for analysis is compilable. Hence, the analysis should be performed after compilation.
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Defining the grammar of a target language is not a straightforward task in the

framework; in fact it is the most difficult part of building a checker since grammars

of programming languages are generally complex. However, once the grammar of a

target language is defined, the user can define different checker rule bases for the

target grammar.

Two sample checkers, C# checker and C++ checker, are implemented using the

proposed flexible code checker framework to demonstrate the flexibility of the checker.

The proposed code checker system can be used by software developers for analyzing

their codes by their custom rules and finding out the violations of these rules. The

results of the check, the list of violations of the checker rules based on their user-defined

importance, present the quality of the source code according to the rules of the checker.

The system can also be used in software projects for increasing code quality and

maintainability of the source codes in the project, or by instructors for assessing student

programs. Furthermore, the framework can also be applied to analyzing any type of

text that has a certain representation and can be represented as a grammar in GDML

form, thus the framework is not limited to only source codes theoretically.

The performance and the accuracy of the checker depend on the user-defined

methods in the grammar and checker definitions respectively. The complexity of the

target grammar and the way it is defined using GDML affect the performance of the

parsing phase. The amount of recursion in grammar rule items, the complexity of the

replacement and checker methods, and even the order of the rule items in grammar

rules affect the performance.

The proposed framework can be extended by improving the logical layer for repre-

senting different types of constructs in some languages. The framework can be applied

to different classes of languages other than object oriented languages, such as markup

languages like HTML. Furthermore, code generation capability can be added to the

logical layer for generating source codes using the represented constructs similar to that

of CodeDOM’s but with more expression power. In this way, translation of analyzed
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source codes into other languages will be possible.

The framework can also be extended for helping users in defining grammars and

checker rules with sample building blocks and visual aids in the user interface without

affecting the flexibility of the checker. Furthermore, support for analyzing multiple

source files at once in a specified order as a single project can be added to provide

deeper analysis in a project.
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APPENDIX A: CODE CHECKER CLASS DIAGRAMS

The design process of the Flexible Code Checker can be documented using the

class diagrams. This chapter includes the class diagrams of the classes that reside in

the Flexible Code Checker.
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Figure A.1. Code Checker class diagrams - I
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Figure A.2. Code Checker class diagrams - II
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Figure A.3. Code Checker class diagrams - III
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Figure A.4. Code Checker class diagrams - IV

Figure A.5. Code Checker class diagrams - V
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Figure A.6. Code Checker class diagrams - VI

Figure A.7. Code Checker class diagrams - VII
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Figure A.8. Code Checker class diagrams - VIII
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APPENDIX B: CHECKER LOGICAL LAYER CLASS

DIAGRAMS

The class diagrams of the classes that reside in the Logical Layer of the Code

Checker are given in this chapter.
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Figure B.1. Code Checker logical layer class diagrams - I
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Figure B.2. Code Checker logical layer class diagrams - II



83

Figure B.3. Code Checker logical layer class diagrams - III

Figure B.4. Code Checker logical layer class diagrams - IV
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Figure B.5. Code Checker logical layer class diagrams - V
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Figure B.6. Code Checker logical layer class diagrams - VI

Figure B.7. Code Checker logical layer class diagrams - VII
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Figure B.8. Code Checker logical layer class diagrams - VIII
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Figure B.9. Code Checker logical layer class diagrams - IX
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Figure B.10. Code Checker logical layer class diagrams - X

Figure B.11. Code Checker logical layer class diagrams - XI
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Figure B.12. Code Checker logical layer class diagrams - XII
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APPENDIX C: SCREENSHOTS OF FLEXIBLE CODE

CHECKER



91

Figure C.1. Code Checker main screen

Figure C.2. Code Checker result screen
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Figure C.3. CDML editor main screen

Figure C.4. CDML editor rule edit screen
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Figure C.5. GDML editor main screen

Figure C.6. GDML editor rule edit screen
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Figure C.7. GDML editor token edit screen

Figure C.8. GDML editor token regex edit screen
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Figure C.9. GDML editor replace function edit screen
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APPENDIX D: SAMPLE C++ CHECKER

The details on the sample checker implemented for C++ is given in this chapter.

In section D.1, the CDML definition of the checker rules are given in the form of XML.

Then in section D.2, the execution of these checker rules on a sample file and the

identified violations are given.

D.1. CDML Definition

<?xml version="1.0" encoding="utf-8"?>

<Checker xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="CPPChecker" targetClass="CPPCodeChecker"

targetGrammar="D:\MYDOCS\CmpE690\SourceCode\

Grammars\Parsers\CPPGrammarES.xml"

xmlns="http://www.cmpe.boun.edu.tr/checker.xsd">

<References>

<Reference>System.dll</Reference>

<Reference>System.Xml.dll</Reference>

<Reference>System.Drawing.dll</Reference>

<Reference>System.Windows.Forms.dll</Reference>

<Reference>Checker.LogicalLayer.dll</Reference>

<Reference>SourceCodeParser.dll</Reference>

</References>

<Imports>

<Import>System</Import>

<Import>System.Collections</Import>

<Import>System.Collections.Generic</Import>

<Import>System.ComponentModel</Import>

<Import>System.Text</Import>

<Import>System.Windows.Forms</Import>
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<Import>System.Xml</Import>

<Import>System.Xml.Serialization</Import>

<Import>Checker.LogicalLayer</Import>

<Import>SourceCodeParser</Import>

<Import>CPPParser</Import>

</Imports>

<Rules>

<Rule ID="MethodLengthCheck"

targetRule="FunctionDefinition" importance="low">

<Summary>Checks the number of effective

statements of method</Summary>

<Checker>

int count =

e.Match.Item<StatementCollection>(1).StatementCount();

if (count > 40)

e.Log("Method statement count too high: " + count);

</Checker>

</Rule>

<Rule ID="MethodEmptyLineRate"

targetRule="FunctionDefinition" importance="low">

<Checker>

int lineCount = e.EndLine - e.StartLine + 1;

if (lineCount > 50)

e.Log("Method is too long: "+ lineCount + " lines");

int emptyLineCount =

e.Match.Item<StatementCollection>(1).EmptyLineCount();

int rate = 1000;

if (emptyLineCount > 0)

rate = lineCount / emptyLineCount;



98

if (lineCount > 50 && rate > 10)

e.Log("Method Empty Line/Total Line Rate too low: "

+ emptyLineCount + "/" + lineCount);

else if (lineCount > 50 && rate < 5)

e.Log("Method Empty Line/Total Line Rate too high: "

+ emptyLineCount + "/" + lineCount);

</Checker>

</Rule>

<Rule ID="MethodCommentRate"

targetRule="FunctionDefinition" importance="lowest">

<Checker>

int commentCount =

e.Match.Item<StatementCollection>(1).StatementCount(

delegate(Statement s)

{

return s is CommentStatement;

}

);

int count =

e.Match.Item<StatementCollection>(1).StatementCount();

int rate = 1000;

if (commentCount > 0)

rate = count / commentCount;

if (count > 40 && rate > 10)

e.Log("Method Comment/Total Statement Rate too low: "

+ commentCount + "/" + count);

</Checker>

</Rule>
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<Rule ID="MethodIfCounter"

targetRule="FunctionDefinition" importance="lowest">

<Summary>Checks the number branching in method.</Summary>

<Checker>

int ifCount =

e.Match.Item<StatementCollection>(1).StatementCount(

delegate(Statement s)

{

return s is ConditionStatement;

});

int count =

e.Match.Item<StatementCollection>(1).StatementCount();

if (ifCount >= 5)

e.Log("If/Total Count: " + ifCount + "/" + count);

</Checker>

</Rule>

<Rule ID="SwitchDefaultCheck"

targetRule="SwitchStatement" importance="high">

<Checker>

SwitchStatement sst = (SwitchStatement)e.Replacement;

if (!sst.ContainsLabel(

delegate(Expression exp)

{

return exp is SwitchDefaultCaseExpression;

}))

e.Log("Switch with no default case");

</Checker>

</Rule>

<Rule ID="SwitchCaseBreakCheck"

targetRule="SwitchSection" importance="highest">

<Checker>
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StatementCollection ss =

e.Match.Item<StatementCollection>(1);

int statementCount = ss.Count;

if (statementCount > 0 &&

ss.LastStatement() != null &&

!ss.LastStatement().IsSpecificStatement(

delegate(Statement s)

{

return s is BreakStatement;

}))

e.Log("Switch case without a break at the end!");

</Checker>

</Rule>

<Rule ID="VariableNameCheck"

targetRule="SimpleDeclaration" importance="lowest">

<Summary>

Checks whether integer variable names start with _.

</Summary>

<Checker>

StatementCollection vds =

(StatementCollection)e.Replacement;

foreach (VariableDeclarationStatement vd in vds)

{

if (vd.Type == "int" &&

vd.Name.StartsWith("_"))

e.Log("Local integer variables" +

" should not begin with _.");

}

</Checker>

</Rule>
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<Rule ID="PtrVariableInitializerCheck"

targetRule="SimpleDeclaration">

<Summary>

Checks whether pointer variables are initialized

in declaration.

</Summary>

<Checker>

StatementCollection vds =

(StatementCollection)e.Replacement;

foreach (VariableDeclarationStatement vd in vds)

{

if (vd.Type.Contains("*")

&& vd.InitExpression == null)

e.Log("Uninitialized pointer variable declaration: "

+ vd.Name);

}

</Checker>

</Rule>

<Rule ID="IfConditionCheck"

targetRule="IfStatement" importance="highest">

<Summary>Checks for assignment in if condition</Summary>

<Checker>

Expression condition = e.Match.Item<Expression>(0);

if (condition.ContainsBinaryOperator("assign"))

e.Log("Use of assignment in If condition");

</Checker>

</Rule>

<Rule ID="WhileConditionCheck"

targetRule="WhileStatement" importance="highest">

<Summary>Checks for assignment in while condition</Summary>
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<Checker>

Expression condition = e.Match.Item<Expression>(0);

if (condition.ContainsBinaryOperator("assign"))

e.Log("Use of assignment in While condition");

</Checker>

</Rule>

<Rule ID="ComplexExpressionCheck"

targetRule="ExpressionStatement">

<Summary>

Checks expressions for the number of subexpressions

included

</Summary>

<Checker>

Expression ex = e.Match.Item<Expression>(0);

int count = ex.ExpressionCount();

if (count > 10)

e.Log("Complex expression usage.");

</Checker>

</Rule>

<Rule ID="ComplexExpPrePostIncrementCheck"

targetRule="ExpressionStatement" importance="highest">

<Summary>

Checks usage of pre/post increment and decrement

expressions other than stand-alone

</Summary>

<Checker>

Expression ex = e.Match.Item<Expression>(0);

// pre/post increment-decrement should be stand-alone

if (ex.ExpressionCount() > 2)
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{

if (ex.ContainsExpression(

delegate(Expression expr)

{

return expr is PostIncrementExpression ||

expr is PostDecrementExpression;

}))

e.Log("Post increment/decrement expressions" +

" should be used stand-alone.");

if (ex.ContainsExpression(

delegate(Expression expr)

{

return expr is PreIncrementExpression ||

expr is PreDecrementExpression;

}))

e.Log("Pre increment/decrement expressions" +

" should be used stand-alone.");

}

</Checker>

</Rule>

<Rule ID="MethodReturnCount"

targetRule="FunctionDefinition">

<Summary>Checks number of return points of a method.</Summary>

<Checker>

int returnCount =

e.Match.Item<StatementCollection>(1).StatementCount(

delegate(Statement s)

{

return s is MethodReturnStatement;

});



104

if (returnCount > 2)

e.Log("Too many return points in method");

</Checker>

</Rule>

<Rule ID="MethodReturnCheck"

targetRule="FunctionDefinition" importance="highest">

<Summary>

Checks whether the final statement of a non-void

method is return statement

</Summary>

<Checker>

MethodDefinition md = (MethodDefinition)e.Replacement;

StatementCollection ss = md.Statements;

int statementCount = ss.Count;

if (statementCount > 0 &&

md.Type != "void" &&

ss.LastStatement() != null &&

!ss.LastStatement().IsSpecificStatement(

delegate(Statement s)

{

return s is MethodReturnStatement;

}

))

e.Log("Final statement of the method" +

" should be return statement!");

</Checker>

</Rule>

<Rule ID="PrivateFieldNameCheck"

targetRule="ClassSpecifier" importance="lowest">

<Summary>

Checks class fields should be private and
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the private field names should start with _

</Summary>

<Checker>

ClassDefinition cd = (ClassDefinition)e.Replacement;

foreach (FieldDefinition fd in cd.Fields)

{

if (fd.Access.Contains("private"))

{

if (!fd.Name.StartsWith("_"))

e.Log("Private fields should begin with _.");

}

else

e.Log("Nonprivate field: " + fd.Name + " in class.");

}

</Checker>

</Rule>

<Rule ID="GlobalVariableDeclaration"

targetRule="SimpleDeclaration" importance="low">

<Summary>Check for a global variable declaration.</Summary>

<Checker>

if (e.State.HasNamedItem("CurrentMethod") ||

e.State.HasNamedItem("CurrentClass"))

return;

StatementCollection vds =

(StatementCollection)e.Replacement;

foreach (VariableDeclarationStatement vd in vds)

e.Log("Global variable declaration: " + vd.Name);

</Checker>
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</Rule>

<Rule ID="GlobalVariableModification"

targetRule="Assignment" importance="highest">

<Summary>

Checks for modification of global variables

in functions

</Summary>

<Checker>

Expression lhs = e.Match.Item<Expression>(0);

if (lhs is VariableReferenceExpression &&

e.State.HasNamedItem("CurrentMethod"))

{

MethodDefinition md =

e.State.NamedItem<MethodDefinition>("CurrentMethod");

VariableReferenceExpression vre =

lhs as VariableReferenceExpression;

if (e.State.HasDictionaryItem(

ParserStates.Globals, vre.VariableName))

e.Log("Global variable modification in function "

+ md.Name);

}

</Checker>

</Rule>

<Rule ID="GlobalVariableUsage"

targetRule="FunctionDefinition">

<Summary>

Checks the usage of each global variable within function.

</Summary>

<Checker>
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MethodDefinition md = (MethodDefinition)e.Replacement;

StatementCollection ss = md.Statements;

foreach (string key in

e.State.DictionaryItemKeys(ParserStates.Globals))

{

if (ss.ContainsExpression(

delegate(Expression ex)

{

return ex is VariableReferenceExpression &&

((VariableReferenceExpression)ex).VariableName == key;

}))

e.Log("Global variable " + key +

" used in function " + md.Name + ".");

}

</Checker>

</Rule>

</Rules>

</Checker>

D.2. Checker Results

In this section, the analysis results of the sample C++ checker are given. The

results are depicted in the following figures, where in each figure the sample analyzed

source file is on the top and the list of violations including the error messages and line

numbers are listed below.
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Figure D.1. Sample C++ checker results - I
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Figure D.2. Sample C++ checker results - II
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Figure D.3. Sample C++ checker results - III



111

Figure D.4. Sample C++ checker results - IV
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Figure D.5. Sample C++ checker results - V
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