
CAPACITATED FACILITY LOCATION PROBLEM WITH CUSTOMER AND

FACILITY DIFFERENTIATION

by

Özlem Çavuş

B.S., Industrial Engineering, Boğaziçi University, 2004

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2007

ii

CAPACITATED FACILITY LOCATION PROBLEM WITH CUSTOMER AND

FACILITY DIFFERENTIATION

APPROVED BY:

Prof. İ. Kuban Altınel

(Thesis Supervisor)

Assist. Prof. Deniz Aksen

Assoc. Prof. Necati Aras

DATE OF APPROVAL: 12.06.2007

iii

ACKNOWLEDGEMENTS

First and foremost, I am grateful to my thesis supervisor Prof. Kuban Altınel

for his continuous guidance, support and endless patience. Even in the hardest times,

he never gave up on me, and made possible the constitution of this thesis through

his leading comments and contributions. Apart from our thesis studies, he has always

been the person whose suggestions I truly needed and whom I confided in.

I would like to express my gratitude to Assoc. Prof. Necati Aras and Assist.

Prof. Deniz Aksen for taking time to examine this thesis and taking part in my thesis

jury.

I would like to thank my friends Hande Küçükaydın, Bilgen Öztürk, Evrim

Dalkıran, Gönül Tanuğur, Buket Avcı, Güray Güler, Engin Durmaz, and Mehmet

Gönen for their friendship, for their help and company at my hardest times.

Along with these people, I wish to thank all Industrial Engineering faculty, assis-

tants, and secretaries.

Finally, and above all, I would like to thank my parents and my brother, whose

love and support I could always count on. This thesis is dedicated to them, and

especially to my mother, whom I owe everything in my life.

This research has been partly supported by Boğaziçi University Research Fund

Grant No: 06HA304D.

iv

ABSTRACT

CAPACITATED FACILITY LOCATION PROBLEM WITH

CUSTOMER AND FACILITY DIFFERENTIATION

This thesis focuses on an extension of the capacitated facility location problem.

Every demand point consists of multiple customer classes whose demands are satisfied

by facilities having different capacities and costs for each facility class. We give integer

and mixed-integer linear programming formulations respectively for single-source and

multi-source versions of this problem. Then we propose exact and heuristic solution

procedures.

Capacitated facility location problems are difficult to solve exactly. However,

many accurate and efficient heuristic methods have been introduced for these problems.

In the light of these researches, we develop Lagrangean heuristics in order to find near

optimal solutions for our problems. The Lagrangean dual problems are solved using

three different subgradient optimization methods, namely classical subgradient opti-

mization, deflected subgradient optimization and volume algorithm. The Lagrangean

heuristics with the mentioned subgradient optimization methods are implemented and

computational results based on extensive experiments are also provided.

Furthermore, an exact solution technique based on Benders’ decomposition is

developed and implemented for the multi-source problem. Although optimal solutions

are found for some small test problems, this exact solution algorithm converges very

slowly.

v

ÖZET

MÜŞTERİ SINIFLARINI GÖZ ÖNÜNE ALARAK EN

UYGUN TESİSİ AÇAN TAMSAYI PROGRAMLAMA

MODELİNİN YAKLAŞIK ÇÖZÜMÜ

Bu çalışmada, müşteri sınıfları ve tesis tipleri göz önünde bulundurularak, klasik

sığa kısıtlı tesis yerseçimi problemini daha gerçekçi hala dönüştürmek amaçlanmaktadır.

Müşteri istemleri sınıf farkları dikkate alınacak şekilde sığaları açıldıkları yere ve tip-

lerine bağlı tesislerden sağlanmaktadır. Bu problemin tek kaynaklı ve çok kaynaklı

versiyonları için sırasıyla tamsayı ve karışık tamsayı programlama modelleri verilmekte

ve her iki problem için çözüm yöntemleri önerilmektedir.

Sığa kısıtlı tesis yerseçimi problemlerinin en iyi çözümünü bulmak zordur. Sezgisel

yöntemler kullanılarak bu problemler için etkin ve doğru sonuçlar elde edilmiştir. Bu

çalışmalar doğrultusunda hareket edilerek, en iyi çözüme yakın çözümler bulmak için

Lagrange sezgisel yöntemleri geliştirilmiştir. Lagrange ikili problemlerin çözümü için

klasik altgradyan, saptırılmış altgradyan ve hacim algoritması olmak üzere üç farklı

altgradyan yöntemi kullanılmıştır. Bütün bu yaklaşımlar rassal üretilmiş problemler

üzerinde denenmiş ve sonuçlar verilmiştir.

Yaklaşık çözümlerin yanısıra, çok kaynaklı problemin en iyi çözümü bulmak için

Benders ayrıştırması kaynaklı bir çözüm yöntemi geliştirilmiştir. Her ne kadar bazı

küçük sınama problemleri için en iyi çözümler bulunmuşsa da, algoritma en iyi çözüme

çok yavaş yaklaşmaktadır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS/ABBREVIATIONS . xi

1. INTRODUCTION . 1

2. LITERATURE SURVEY . 3

2.1. Formulations . 3

2.2. Solution Methods . 5

3. PROBLEM FORMULATION . 8

3.1. Single-Source Problem . 8

3.2. Multi-Source Problem . 10

4. LAGRANGEAN RELAXATION AND CLASSICAL SUBGRADIENT OPTI-

MIZATION . 13

5. IMPROVEMENTS IN THE SUBGRADIENT OPTIMIZATION 18

5.1. Deflected Subgradient Optimization Method 18

5.2. Volume Algorithm . 21

6. AUGMENTED LAGRANGEAN AND THE MODIFIED SUBGRADIENT AL-

GORITHM BASED ON FEASIBLE VALUES 25

7. BENDERS’ DECOMPOSITION . 29

8. SOLUTION METHODS . 33

8.1. Solution Procedure for Single-Source Problem 33

8.1.1. Computation of a Lower Bound 33

8.1.2. A Lagrangean Heuristic . 39

8.2. Solution Procedure for Multi-Source Problem 42

8.2.1. Using Lagrangean Relaxation and Subgradient Optimization . . 42

8.2.1.1. Computation of a Lower Bound 42

8.2.1.2. A Lagrangean Heuristic 46

vii

8.2.2. A Benders’ Decomposition Based Exact Solution Procedure . . 46

9. EXPERIMENTAL RESULTS . 52

9.1. Single-Source Problem . 52

9.1.1. Test Bed . 52

9.1.2. Performances of the Proposed Methods 56

9.2. Multi-Source Problem . 62

9.2.1. Test Bed . 62

9.2.2. Performances of the Proposed Methods 68

10. CONCLUSION AND FUTURE WORK . 75

REFERENCES . 77

viii

LIST OF FIGURES

Figure 5.1. The zigzagging phenomenon in the classical subgradient optimiza-

tion method. 20

Figure 5.2. (a) s(k) forms an acute angle with previous direction d(k−1) so it is

not deflected. (b) s(k) forms an obtuse angle with d(k−1) therefore

it is deflected. 20

ix

LIST OF TABLES

Table 4.1. The Subgradient Optimization Algorithm 16

Table 5.1. The Deflected Subgradient Optimization Algorithm 19

Table 5.2. The Volume Algorithm . 23

Table 6.1. F-MSG Algorithm . 27

Table 7.1. Benders’ Decomposition Algorithm 31

Table 8.1. Performances of the methods proposed for subproblem 37

Table 8.2. A Greedy Heuristic for SP3 . 38

Table 8.3. An Upper Bound Heuristic for P1 41

Table 8.4. Performances of the methods proposed for subproblem 45

Table 8.5. A Greedy Heuristic for SP6 . 46

Table 8.6. An Upper bound Heuristic for P2 47

Table 9.1. Optimal and linear programming (LP) relaxation results of the

single-source test problems . 54

Table 9.2. Results for the single-source test problems: Lagrangean heuristic

with classical subgradient optimization 57

x

Table 9.3. Results for the single-source test problems: Lagrangean heuristic

with deflected subgradient optimization 59

Table 9.4. Results for the single-source test problems: Lagrangean heuristic

with volume algorithm . 61

Table 9.5. Optimal and linear programming (LP) relaxation results of the

multi-source test problems: weak formulation 64

Table 9.6. Optimal and linear programming (LP) relaxation results of the

multi-source test problems: strong formulation 66

Table 9.7. Results for the multi-source test problems: Lagrangean heuristic

with classical subgradient optimization 69

Table 9.8. Results for the multi-source test problems: Lagrangean heuristic

with deflected subgradient optimization 71

Table 9.9. Results for the multi-source test problems: Lagrangean heuristic

with volume algorithm . 73

Table 9.10. Results for the multi-source test problems: Benders’ decomposition 74

xi

LIST OF SYMBOLS/ABBREVIATIONS

cikjl Cost of serving all demand of a customer of class l at location

j from a facility of class k at location i

djl Total demand of class l customer at location j

fik Fixed cost of opening a facility of class k at location i

gikjl Fixed cost of serving a customer of class l at location j from

a facility of class k at location i

i Index of the facility locations

j Index of the customer locations

k Index of the facility classes

l Index of the customer classes

sik Capacity of class k facility at location i

u Lagrange multiplier vector

vik Binary variable indicating whether a facility of class k is

opened at location i

xikjl Binary variable indicating whether a customer of class l at

location j is served by a facility of class k at location i

yikjl Binary variable indicating whether a customer of class l at

location j is served by a facility of class k at location i

μ Step length parameter

λ Step length

CFLP Capacitated facility location problem

FLP Facility location problem

IP Integer programming

LB Lower bound

LDP Lagrangean dual problem

LP Linear programming

LR Lagrangean relaxation

LSP Lagrangean subproblem

xii

MCFLP Multi-source capacitated facility location problem

MIP Mixed integer programming

SCFLP Single-source capacitated facility location problem

UB Upper bound

UFLP Uncapacitated facility location problem

1

1. INTRODUCTION

Facility Location Problems (FLPs) are combinatorial optimization problems for-

mulated to locate new facilities such as retailers, warehouses or factories and to assign

customers to these facilities. In general, the objective is to minimize the total cost,

which consists of the fixed cost of opening a facility and variable cost of serving a

customer. If there is no limit on the number of the customers that can be assigned to

a facility, the problem becomes the Uncapacitated Facility Location Problem (UFLP).

On the other hand, if a facility can serve a limited number of customers, the problem

is called the Capacitated Facility Location Problem (CFLP). Both the UFLP and the

CFLP are NP-hard problems [13] and many exact and heuristic solution approaches

have been proposed for these problems in the literature [34].

In the CFLP, each facility has a capacity so there is a limit on the demand

that each facility can supply. CFLP can be categorized into two categories: Single-

Source Capacitated Facility Location Problem (SCFLP) and Multi-Source Capacitated

Facility Location Problem (MCFLP). When there is a restriction that a customer can

be served from only one facility, the problem becomes SCFLP which is also known

as the simple plant location problem. This is also the case when there is no capacity

restriction for the facilities, each customer is served from the closest facility. If there

is no single-source restriction, meaning that a customer can be served from more than

one facility, the problem is the MCFLP.

The problem we consider in this work is the Capacitated Facility Location Prob-

lem with Customer and Facility Differentiation and aims to locate facilities in such a

way that each customer class is served from the appropriate facility class. It differs

from conventional CFLPs in two aspects:

1. Conventional CFLPs assume that there is only one class of customers at a given

location. However, this assumption may be unrealistic if customers with different

profiles exist at the same location. Thus, in our problem we include customer dif-

2

ferentiation; customers at a location are differentiated according to their profiles.

2. In today’s competitive environment, suppliers prefer opening facilities which are

equipped according to the demand profiles of customers they serve. However,

conventional CFLPs may not exactly meet the needs of these suppliers since they

assume that facilities have the same class. The CFLP with Customer and Facility

Differentiation assumes that there are different classes of facilities that can be

opened at a location and aims to open a facility which is equipped according to

the profiles of potential customers.

In this work, we consider both single-source and multi-source versions of this

problem. In the single-source problem, each class of customer is served by only one

facility, which is not necessary for the multi-source problem. We use the Lagrangean

relaxation technique and develop a Lagrangean heuristic for both problems in order to

find near optimal solutions. Then, we try to find an exact solution for the multi-source

problem using Benders’ decomposition method.

The rest of this thesis is organized as follows. Chapter 2 gives a brief overview

of different capacitated facility location problem formulations and solution methods.

New formulations with customer profiles are presented in Chapter 3. In Chapter 4, we

remind the principles of Lagrangean relaxation and subgradient optimization. Different

variants of subgradient methods are investigated in Chapter 5. Next, a new subgradi-

ent optimization method which was proposed for nonconvex minimization problems is

described in Chapter 6. We provide a review of the Benders’ decomposition method

which can be used to find an exact solution for mixed-integer programming problems in

Chapter 7. In Chapter 8, our solution methodology is explained and the experimental

results are given in Chapter 9. Finally, Chapter 10 includes the general conclusions

drawn from the research of this thesis.

3

2. LITERATURE SURVEY

The facility location problems are not new to the operations research society,

they have been studied for many years. In the literature, different model formulations

and solution methodologies are proposed for these problems. The formulations and

solution methods vary depending on the assumptions, mathematical complexity and

computational performance [29]. In this chapter, we first give a brief review of models

for deterministic CFLPs and then summarize the solution methods which are proposed

for these problems.

2.1. Formulations

In deterministic CFLPs, the input is assumed to be known with certainty. The

input is generally the demands of customers, the capacities of facilities, the locations of

customers, the candidate locations of facilities, variable and fixed costs. The problem

formulations introduced in the literature range in complexity from single-product to

multi-product, single-facility to multi-facility, single-source to multi-source and single-

stage to two-stage models. First, we review the models for single-stage problems and

then we briefly mention the models for two-stage ones. While in single-stage prob-

lems the products are transported from facilities to customers, in two-stage problems

products flow from facilities to warehouses and from warehouses to customers.

Classical CFLPs assume that there is only one class of facility that can be opened

at a candidate location. Agar and Salhi [1] work on a problem called multi-capacitated

facility location problem (multi-CFLP) where each facility has different possible capac-

ities and corresponding fixed costs. Both multi-source and single-source problems are

considered in this study and their formulations are presented. In these formulations,

a set Nk is defined as the set of possible capacities for each facility site k. Then an

additional constraint, which depends on this set definition and restricts that at most

one class of facility is opened at each site, is added to the classical CFLP formulation.

Correia and Captivo [14] present a different formulation, which does not require a set

4

definition, for this problem.

Mazzola and Neebe [33] introduce a model for a problem named multi-product

CFLP with choice of facility type, where demand for a number of different product

families is supplied from a set of facility sites. Each site offers a common series of

facility classes with different capacities. The capacities of facilities only depend on the

class of the facility, they do not depend on the site. The model decides on both the

class of the facility that will be opened at a site and the product composition that

each opened facility produces. Different from our problem, this problem takes into

consideration that a customer demand may be composed of different product families.

However, it ignores the existence of different customer profiles. In addition, in our

problem the capacities of facilities depend not only on the class of the facility but also

on the site.

The location problems we have considered so far are single-stage problems. Klose

[30] presents a two-stage capacitated facility location problem which aims to find the

optimal locations of warehouses in a distribution network where products flow from

facilities to warehouses and from warehouses to customers. Two mixed-integer models

are introduced. In one of them unit transportation cost has three indices: cijk is the

unit cost of transporting products from facility i to customer k through warehouse j.

In the other model, this cost is split into two linear parts. The first part deals with

the transport from facilities to warehouses and the second one deals with the transport

from warehouses to customers. Although the first formulation is more realistic, the

second one is preferable since it is tractable. The formulations of Klose [30] assume

that there is only one type of product. On the other hand, the second formulation,

where the transportation cost is split into two, has already been extended to include

many product types in the earlier works by Geoffrion and Graves [20] and by Bramel

and Simchi-Levi [9].

Here, we have only provided a review of models for deterministic CFLPs. Further

literature on plant location models can be seen in the review papers presented by Klose

and Drexl [29], ReVelle and Eiselt [35], ReVelle and Laporte [36].

5

2.2. Solution Methods

Both MCFLP and SCFLP are integer-programming (IP) problems belonging to

the class of NP-hard problems. Many hard integer-programming problems, including

the CFLP, consist of an easy problem which is complicated by addition of a small set

of side constraints. Thus, dualizing these constraints by a method called Lagrangean

relaxation provides an easy problem that can be solved in polynomial time. Lagrangean

relaxation combined with subgradient optimization can give good lower bounds for the

optimal objective value of these kinds of problems. Lagrangean heuristics generally

include upper bound heuristics which use Lagrangean relaxation solutions in order to

construct feasible solutions to the original problem, so provide upper bounds for the

optimal objective value of the original problem [16]. Since Lagrangean heuristics give

good bounds at reasonable computation time, this approach has been widely used to

solve the CFLP.

Cornuéjols, Sridharan, and Thizy [12] compare heuristics and relaxations pro-

posed in the literature for CFLP. Their computational results reveal that relaxing

demand constraints or capacity constraints in a Lagrangean fashion provides better

bounds than other relaxations. They test a Lagrangean heuristic, a greedy heuristic,

and an interchange heuristic on a set of test problems and observe that Lagrangean

heuristic gives better solutions and is also superior in terms of computational time.

Beasley [5] presents a framework for developing Lagrangean heuristics for location

problems. In his research, both capacity constraints and customer demand constraints

are dualized. However, it is common for CFLP applications to dualize either capacity

constraints or customer demand constraints since the quality of the bounds obtained by

Lagrangean relaxation decreases or remains same as the number of dualized constraints

increases [12].

Agar and Salhi [1] describe Lagrangean heuristics for a variety of CFLPs. Their

solution procedure is similar to the one described by Beasley [5]. They adopt this

procedure to solve multi-source multi-CFLP and single-source multi-CFLP, which are

6

not addressed much in the literature. They model these problems via adding an addi-

tional constraint, which allows the opening of at most one class of facility at a given

site, to their classical CFLP formulations. In order to obtain a feasible solution, first

a solution ignoring the additional constraint is obtained. This is essentially solving a

classical CFLP. If the solution obtained does not satisfy the additional constraint, then

a procedure is utilized to make the solution feasible.

Hindi and Pieńkosz [24] combined Lagrangean heuristic with restricted neighbor-

hood and steepest descent searches to solve SCFLP. The proposed upper bound heuris-

tic, which includes the mentioned search procedures, provides good upper bounds.

However, it is computationally expensive. Therefore, for large problems, the restricted

neighborhood and steepest descent searches are carried out only at the subgradient

iterations that lead to an improvement of the lower bound. Cortinhal and Captivo

[15] presented a different Lagrangean heuristic method for SCFLP. Their upper bound

heuristic consists of two phases. In the first phase a simple heuristic is used to find a

feasible solution from the lower bound solution. Then, in the second phase this solution

is improved by implementing tabu search or local search procedures. Ahuja et al. [2]

introduced a neighborhood search algorithm for the single-source problem, where the

search is induced by customer multi-exchanges and facility moves.

Mazzola and Neebe [33] presented a Lagrangean heuristic and a branch and bound

algorithm for the multi-product CFLP with choice of facility type. The proposed

branch and bound algorithm utilizes bounds obtained by the Lagrangean heuristic

described in their paper. Given computational results reveal that branch and bound

algorithm solves all of the test problems to optimality, while Lagrangean heuristic

generates solutions on the average within 2% of the optimal. On the other hand,

Lagrangean relaxation is much more superior in terms of computational time.

Klose [29] developed a linear programming heuristic for his two-stage CFLP. At

each iteration a lower bound is obtained via solving the linear programming (LP)

relaxation of the problem. Then, valid inequalities and facets are added to the LP

formulation iteratively in order to improve the lower bound which is provided at each

7

iteration. After each re-optimization step, that is the recalculation of the LP solution

after the addition of valid inequalities, feasible solutions are obtained from the current

LP solution by applying simple heuristics. Good lower and upper bounds were obtained

by this algorithm. Bramel and Simchi-Levi [9] presented a Lagrangean relaxation based

solution procedure for a similar problem, where product types are included, in order

to obtain bounds for the optimal objective value.

In their pioneering work, Geoffrion and Graves [20] used Benders’ decomposition

algorithm to find an optimal solution for their two-stage CFLP. When the binary

variables are fixed at a feasible value, the remaining LP problem separates into classical

transportation problems which are much easier to solve. The algorithm was applied to

a set of real life problems and some improvement methods were proposed in order to

increase the efficiency of the algorithm.

8

3. PROBLEM FORMULATION

In this part, the mathematical programming formulations of both single-source

and multi-source problems are given. Some common assumptions are made in order to

formulate the problems. In both models, it is assumed that the locations of customers

and potential facility locations are predetermined. Furthermore, customer demands

and facility capacities are also known and they are deterministic. Since each facility

has a capacity, there is a restriction on the demand that a facility can satisfy.

3.1. Single-Source Problem

Firstly, we will consider Single-Source CFLP with Customer and Facility Dif-

ferentiation, where a customer can be served from only one facility. The aim of this

problem is to locate facilities in such a way that each customer class is served from

appropriate facility class. The model tries to minimize the sum of two types of incurred

costs:

1. Fixed cost of opening a facility, which depends on the candidate location and

class of a facility.

2. Cost of serving a customer class, which depends on facility class, customer class,

and the distance between facility and assigned customer.

The indices and parameters used in the model are defined as follows:

I : the number of potential facility locations

J : the number of customer locations

K : the number of facility classes

L : the number of customer classes

fik : fixed cost of opening a facility of class k at location i

cikjl : cost of serving all demand of a customer of class l at location j from a facility

of class k at location i

9

sik : capacity of class k facility at location i

djl : total demand of class l customer at location j

The decision variables used in the model are as follows:

vik : binary variable indicating whether a facility of class k is opened at location i

xikjl : binary variable indicating whether a customer of class l at location j is served

by a facility of class k at location i

The model can be formulated as:

P1 : zIP = min
I∑

i=1

K∑
k=1

J∑
j=1

L∑
l=1

cikjlxikjl +
I∑

i=1

K∑
k=1

fikvik (3.1)

s.t.

I∑
i=1

K∑
k=1

xikjl = 1 j = 1, . . . , J ; l = 1, . . . , L (3.2)

J∑
j=1

L∑
l=1

djlxikjl ≤ sikvik i = 1, . . . , I; k = 1, . . . , K (3.3)

K∑
k=1

vik ≤ 1 i = 1, . . . , I (3.4)

vik = 0, 1 i = 1, . . . , I; k = 1, . . . , K (3.5)

xikjl = 0, 1 i = 1, . . . , I; k = 1, . . . , K; j = 1, . . . , J ; (3.6)

l = 1, . . . , L

The objective (3.1) minimizes the sum of fixed costs and service costs. Constraints

(3.2) are demand constraints which ensure that all demand of customer of class l at

location j is met. Since the problem is a capacitated problem, capacity constraints

should be also included in the model. Constraints (3.3) are capacity constraints, in-

dicating that total number of units supplied from a facility cannot be bigger than its

capacity. Because the right hand side of the constraints are multiplied with the deci-

sion variable vik, these constraints also ensure that a customer cannot be assigned to a

facility which is not opened. It is assumed that at most one facility can be opened at a

10

potential location. This assumption is satisfied by constraints (3.4). They provide the

selection of at most one facility class from K facility classes at each potential location.

Constraints (3.5) and (3.6) are integrality constraints.

3.2. Multi-Source Problem

In this problem, a customer can be served from more than one facility, which

is different from the single-source problem. In addition to the costs incurred in the

single-source model, objective function of this model includes fixed cost of assigning

a customer with a specific profile to a facility of a specific class. This cost takes into

account the class mismatch between customers and facilities. When a customer class

is assigned to an appropriate facility class, less cost is incurred than assigning these

customers to an inappropriate facility class.

The indices and parameters used in the model are defined as follows:

I : the number of potential facility locations

J : the number of customer locations

K : the number of facility classes

L : the number of customer classes

fik : fixed cost of opening a facility of class k at location i

gikjl : fixed cost of serving a customer of class l at location j from a facility of class k

at location i

cikjl : cost of serving all demand of a customer of class l at location j from a facility

of class k at location i

sik : capacity of class k facility at location i

djl : total demand of class l customer at location j

The decision variables used in the model are as follows:

vik : binary variable indicating whether a facility of class k is opened at location i

xikjl : the fraction of demand of a customer of class l at location j supplied from a

facility of class k at location i

11

yikjl : binary variable indicating whether a customer of class l at location j is served

by a facility of class k at location i

The model can be formulated as below:

P2 : zMIP = min

I∑
i=1

K∑
k=1

J∑
j=1

L∑
l=1

cikjlxikjl +

I∑
i=1

K∑
k=1

J∑
j=1

L∑
l=1

gikjlyikjl

+

I∑
i=1

K∑
k=1

fikvik (3.7)

s.t.

I∑
i=1

K∑
k=1

xikjl = 1 j = 1, . . . , J ; l = 1, . . . , L (3.8)

J∑
j=1

L∑
l=1

djlxikjl ≤ sik i = 1, . . . , I; k = 1, . . . , K (3.9)

K∑
k=1

vik ≤ 1 i = 1, . . . , I (3.10)

yikjl ≤ vik i = 1, . . . , I; k = 1, . . . , K; (3.11)

j = 1, . . . , J ; l = 1, . . . , L

xikjl ≤ yikjl i = 1, . . . , I; k = 1, . . . , K; (3.12)

j = 1, . . . , J ; l = 1, . . . , L

xikjl ≥ 0 i = 1, . . . , I; k = 1, . . . , K; (3.13)

j = 1, . . . , J ; l = 1, . . . , L

yikjl = 0, 1 i = 1, . . . , I; k = 1, . . . , K; (3.14)

j = 1, . . . , J ; l = 1, . . . , L

vik = 0, 1 i = 1, . . . , I; k = 1, . . . , K (3.15)

The objective function (3.7) minimizes the sum of fixed cost of opening a facility,

fixed cost of assigning a customer to a facility, and service cost. Fixed cost of assigning

a customer can also be included in the single-source model. However, since xikjl’s are

binary variables in the single-source model, they represent the same thing as yikjl’s.

Therefore, there is no need to use both decision variables in the model. As a result,

12

cikjl can be thought as a sum of service cost and fixed cost of assigning a customer to

a facility in (3.1).

Constraints (3.8) and (3.9) are demand constraints and capacity constraints re-

spectively. (3.10) provides that at most one facility class from K facility classes is

opened at each potential location. Constraints (3.11) require that serving decision

from a facility is valid only when such a facility is opened. (3.12) ensures that a cus-

tomer can be served from a facility if it is assigned to this facility. Constraints (3.13)

are non-negativity constraints, (3.14) and (3.15) are integrality constraints.

13

4. LAGRANGEAN RELAXATION AND CLASSICAL

SUBGRADIENT OPTIMIZATION

Many integer-programming problems including the CFLP are in the class of hard

problems for which all known algorithms require exponential time in the worst-case.

Therefore, obtaining upper and lower bounds as close as possible to the optimal ob-

jective value is important for the efficient solution of these problems. Upper bounds

are essentially generated by means of heuristic methods. There are different tech-

niques to generate the lower bounds, two well-known methods among these are Linear

programming (LP) and Lagrangean (LR) relaxations.

The idea of Lagrangean relaxation was first developed in 1970 by Held and Karp

[23] in their study on the traveling salesman problem. Many hard integer programming

problems can be reduced to an easy problem through adding complicating constraints to

the objective function as penalty terms. The resulting relaxation problem is called the

Lagrangean subproblem (LSP), which provides a lower bound for the optimal objective

value of the original problem.

Consider the following linear integer-programming problem (IP):

IP : zIP = min cT x (4.1)

s.t. Ax ≥ b (4.2)

Bx ≥ d (4.3)

x ∈ Zn
+ (4.4)

where c ∈ Rn, (A, b) and (B, d) are m × (n + 1) and r × (n + 1) matrices respectively,

finally x is an n-dimensional vector of non-negative integers. The above problem IP

is called the primal problem and its optimal solution is called the primal solution.

Suppose that constraints (4.2) are complicating constraints which make the primal

14

problem hard to solve and the following problem which excludes these constraints,

min
{
cT x : Bx ≥ d, x ∈ Zn

+

}
(4.5)

can easily be solved.

The complicating constraints (4.2) can be added to the objective function with

penalty cost vector u ∈ Rm
+ , known as Lagrange multiplier vector, and the following

Lagrangean subproblem can be obtained:

LSP : zLR(u) = min cT x + u(b − Ax) (4.6)

s.t. Bx ≥ d (4.7)

x ∈ Zn
+ (4.8)

Let x be any feasible solution of the primal problem (IP). Notice that for any

u ∈ Rm
+ and any optimal solution x∗ of (IP) we obtain,

zLR(u) ≤ cT x + u(b − Ax) ≤ cT x and zLR(u) ≤ cT x∗ + u(b − Ax∗) ≤ cT x∗ = zIP .

Using the fact zLR(u) ≤ zIP , it can be said that the optimal solution of the

Lagrangean subproblem provides a lower bound for the optimal objective value of the

primal problem (IP). Different lower bounds can be obtained by changing the values

of Lagrange multipliers u. Therefore, in order to obtain the largest lower bound, the

following Lagrangean dual problem (LDP) is solved:

LDP : zLD = max
u≥0

{
zLR(u) = min cT x + u(b − Ax)

}
(4.9)

s.t. Bx ≥ d (4.10)

x ∈ Zn
+ (4.11)

It has been shown by Geoffrion [19] that Lagrangean dual problem provides better

lower bounds than LP relaxation of the primal problem if the Lagrangean subprob-

15

lem does not have the integrality property. Otherwise, the bounds obtained by both

relaxations are equal to each other. Lagrangean relaxation is also preferable to LP

relaxation in the case where the primal problem includes complicating constraints or

large number of constraints and variables. The LP relaxation problem is generally

solved using a simplex based procedure. On the other hand, the Lagrangean subprob-

lem can usually be decomposed to small problems which can be solved using heuristic

methods. Furthermore, although the solution of the Lagrangean subproblem may not

be feasible for the original problem, this solution can easily be modified by a heuristic

method to be feasible. Since a feasible solution to a minimization problem gives an

upper bound for that problem, we can obtain both an upper bound and a lower bound

for the primal problem through Lagrangean heuristics.

Beasley [6] states that two key issues determine the quality of the lower bound

obtained from Lagrangean relaxation: deciding which constraints to dualize; and de-

ciding how to find numerical values for Lagrange multipliers. The values of Lagrange

multipliers can be decided by using subgradient optimization or multiplier adjustment

methods [6]. Subgradient optimization is an iterative procedure which, from an ini-

tial set of Lagrange multipliers, generates further multipliers in a systematic fashion

and provides a solution to the Lagrangean dual problem. It attempts to maximize

the lower bound obtained from Lagrangean relaxation by a suitable choice of multipli-

ers. Subgradient optimization combined with Lagrangean relaxation gives good lower

bounds for many combinatorial optimization problems, so it has been widely used in

the literature. Multiplier adjustment changes a single multiplier in each iteration in

contrast to subgradient optimization. It is computationally cheaper and it produces

an improvement (or at least no deterioration) in the lower bound at each iteration.

However, the quality of the lower bound obtained is not as good as the one obtained

from subgradient optimization and different problems require different multiplier ad-

justment algorithms. On the other hand, subgradient optimization can directly be

applied to many different problems.

The classical subgradient optimization is an adaptation of the gradient method in

which a gradient vector is replaced by a subgradient vector at a point where the gradient

16

Table 4.1. The Subgradient Optimization Algorithm

Step 0: (Initialization) Initialize the Lagrange multiplier vector u ∈ Rm
+ and set

k = 1.

Step 1: Solve the Lagrangean subproblem:

zLR(u(k)) = min cT x + u(k)(b − Ax) (4.12)

s.t. Bx ≥ d (4.13)

x ∈ Zn
+ (4.14)

Let x(k) be the solution of the subproblem. Then find the subgradient vector s(k)

at u(k),
s(k) = b − Ax(k)

Step 2: If s(k) ≤ 0 and u(k)s(k) = 0, then zLR(u(k)) = zIP and STOP. This

means that x(k) and u(k) are optimal solutions for the primal and Lagrangean

dual problems respectively. Otherwise, go to Step 3.

Step 3: Update the Lagrange multiplier vector such that u(k+1) = PRm
+
(u(k) +

λ(k)s(k)), where

PRm
+
(u) =

⎧⎪⎨⎪⎩
ui if ui ≥ 0

0 otherwise.

(4.15)

λ(k) ≥ 0 is a step length calculated as:

λ(k) = μ(k)(UB−LB)

‖s(k)‖2

where μ(k) is step length parameter satisfying 0 < μ(k) ≤ 2, UB and LB are

upper and lower bounds on optimal objective value. Set k = k + 1, and go to

Step 1.

17

does not exist. The steps of the method are explained in Table 4.1. The stopping

condition in Step 2 can only be satisfied if the duality gap does not exist. However,

this is not usually the case for many integer programming problems. Therefore some

alternative stopping conditions can be used. One possible way is stopping the algorithm

after a predetermined number of iterations are completed. Another way is reducing the

value of step length parameter μ during the procedure and stopping when this value

gets below a threshold value.

If an equality constraint is relaxed in a Lagrangean fashion instead of an inequality

constraint, then there is no need to have nonnegative Lagrange multiplier values. In

this case, we do not use the projection (4.15) in Step 3.

18

5. IMPROVEMENTS IN THE SUBGRADIENT

OPTIMIZATION

In this chapter, some improvements in the subgradient optimization method,

which exist in the literature are explained. The classical subgradient optimization can

result in slow convergence if the current subgradient vector forms an obtuse angle

with the previous direction of motion and such a phenomenon is called zigzagging.

The deflected subgradient optimization method is developed in order to overcome this

phenomenon. Barahona and Anbil [3] present an extension of the subgradient algorithm

that produces an approximate primal solution. This method is called volume algorithm

and it uses the information generated in the process of deflected subgradient. Here, we

only give a brief review of these methods. A detailed review including the optimality

conditions and convergence properties can be found in the study presented by Guta

[22].

5.1. Deflected Subgradient Optimization Method

Studies of Bazaraa et al. [4], Camerini et al. [11], Sherali and Ulular [41] show

that during the subgradient optimization procedure current subgradient direction can

form an obtuse angle with the previous direction of motion as the iterates progress. As

a result, the distance between the next Lagrange multiplier and the optimal Lagrange

multiplier value is closed only with a small step, therefore this case may result in slow

convergence of the subgradient procedure. This phenomenon which is called zigzagging

is explained in Figure 5.1. In order to overcome this behavior, the subgradient direction

is deflected whenever it forms an obtuse angle with the previous direction. Camerini

et al. [11] propose a method to find the deflected direction given by,

d(k) = s(k) + δ(k)d(k−1) (5.1)

19

where s(k) is the subgradient direction found at iteration k, d(k) is the deflected sub-

gradient direction and δ(k) ≥ 0 is the deflection parameter. The deflection parameter

is defined as:

δ(k) =

⎧⎪⎪⎨⎪⎪⎩
−τ (k) s(k)d(k−1)

‖d(k−1)‖2 if s(k)d(k−1) < 0

0 otherwise

(5.2)

with 1 ≤ τ (k) < 2.

Table 5.1. The Deflected Subgradient Optimization Algorithm

Step 0: (Initialization) Initialize the Lagrange multiplier vector u, set k = 1 and

d(k−1) = 0.

Step 1: Solve the Lagrangean subproblem and find the subgradient vector s(k)

at u(k).

Step 2: If s(k) ≤ 0 and u(k)s(k) = 0, then zLR(u(k)) = zIP and STOP. Otherwise,

go to Step 3.

Step 3: Calculate the deflected subgradient direction:

d(k) = s(k) + δ(k)d(k−1)

Update the Lagrange multiplier vector such that u(k+1) = PRm
+
(u(k) + λ(k)d(k)),

where

PRm
+
(u) =

⎧⎪⎨⎪⎩ui if ui ≥ 0

0 otherwise.

(5.3)

λ(k) ≥ 0 is a step length calculated as:

λ(k) = μ(k)(UB−LB)

‖d(k)‖2

where μ(k) is step length parameter satisfying 0 < μ(k) < 1. Set k = k + 1, and

go to Step 1.

Notice that the deflected direction is a linear combination of previous direction

20

 s(k+1)

 s(k)

 s(k-1)

 u(k+1)

 u(k)

 u(k-1)

 u*

Figure 5.1. The zigzagging phenomenon in the classical subgradient optimization

method.

and current subgradient direction. If the deflection parameter is taken as in (5.2),

the new direction always forms an acute angle with the previous direction, therefore

zigzagging is avoided. If the subgradient direction s(k) forms an acute angle with

the previous direction d(k−1), then δ(k) is zero and the deflected direction is equal to

the current subgradient direction s(k) (see Figure 5.2.(a)). Otherwise if s(k) forms an

obtuse angle then it is deflected (see Figure 5.2.(b)). During the deflected subgradient

procedure the sequence
{∥∥u(k) − u∗∥∥}

decreases strictly, therefore a point which gets

closer and closer to an optimal Lagrange multiplier is obtained at each iteration [22].

(k) d(k-1)

 s(k)
 d(k)

 sk

 s(k) = d(k)

 d(k-1)
 u(k)

 u(k-1)

 u*

 d(k-1)
 u(k)

 u(k-1)

 u*

(a) (b)

Figure 5.2. (a) s(k) forms an acute angle with previous direction d(k−1) so it is not

deflected. (b) s(k) forms an obtuse angle with d(k−1) therefore it is deflected.

Table 5.1 summarizes the steps of the deflected subgradient optimization method.

As in the classical subgradient optimization, the ideal stopping condition in Step 2

cannot be satisfied in general. Therefore, the stopping conditions proposed for the

21

classical method can also be used in the deflected subgradient method. The choice of

τ (k) is also important and computational results show that taking τ (k) = 1.5 gives good

results [11].

5.2. Volume Algorithm

Although the classical subgradient optimization is an attractive method due to

its low computational cost, it has some disadvantages. This method usually provides

good approximations to optimal dual variables however it does not produce values

for the primal variables. Another drawback is that classical subgradient algorithm

does not have a well-defined stopping condition. In order to solve these problems,

Barahona and Anbil [3] present an extension of the subgradient algorithm called the

volume algorithm that produces an approximation to a primal solution. While this

method preserves the low computational cost of the classical subgradient method, it

also provides well-defined stopping criterion.

The idea behind the volume algorithm depends on the Lagrangean dual problem

formulation stated in the following theorem by Geoffrion [19]:

Theorem 5.1 [19] Given a problem (IP) (see Chapter 4), the Lagrangean dual problem

(LDP) (see Chapter 4) can be written as:

zLD = min cT x (5.4)

s.t. Ax ≥ b

x ∈ conv(X) =
{
x ∈ Zn

+ : Bx ≥ d
}

.

The Lagrangean dual problem in Theorem 5.1 is equivalent to the following prob-

lem,

22

zLD = min cT x (5.5)

s.t. Ax ≥ b

x ∈ conv(X) =

{
x : x =

S∑
s=1

αsx
s,

S∑
s=1

αs = 1, αs ≥ 0, xs ∈ X

}

where
{
xs ∈ Zn

+ : s ∈ S
}

is the set of extreme points of conv(X).

If we insert
S∑

s=1

αsx
s in the place of x, we can write the problem (5.5) as:

zLD = min
S∑

s=1

(cT xs)αs (5.6)

s.t.

S∑
s=1

(Axs − b)αs ≥ 0

S∑
s=1

αs = 1

αs ≥ 0 s = 1, ..., S.

The problem (5.6) is also the master problem in Dantzig-Wolfe decomposition.

Taking the dual of (5.6), we obtain the following problem:

maximize η (5.7)

s.t. η + u(Axs − b) ≤ cT xs s = 1, ..., S.

The basic idea of the volume algorithm comes from applying the theorem of

volume and duality due to Barahona and Anbil [3] to problem (5.7). This theorem

tells that in a neighborhood of an optimal solution of (5.7), the subproblem (LSP)

(see Chapter 4) produces a face s with probability αs, which is an optimal solution of

the master problem (5.6) in Dantzig-Wolfe decomposition. The volume algorithm is

developed as an extension of the classical subgradient algorithm in order to estimate

these probabilities. The steps of the volume algorithm are described in Table 5.2. Let

23

x(0), ...,x(k) be the solutions of the Lagrangean subproblem at iteration k. Then,

x = βx(k) + (1 − β)βx(k−1) + ... + (1 − β)kx(0). (5.8)

As you can see that x is a convex combination of the solutions of Lagrangean subprob-

lem. The algorithm uses the coefficients β, (1 − β)β,...,(1 − β)k as an approximate

optimal solutions of the master problem (5.6), that is to say the approximate values of

αs.

Table 5.2. The Volume Algorithm

Step 0: (Initialization) Initialize the Lagrange multiplier vector u and solve the

Lagrangean subproblem (LSP). Let x and z be the optimal solution and optimal

objective function of the subproblem respectively. Set x(0) = x, z(0) = z, k = 1.

Step 1: Compute d(k) = b − Ax and u(k) = PRm
+
(u + λ(k)d(k)) for the step size

λ(k) =
μ(k)(UB − z)

‖d(k)‖2 (5.9)

where μ(k) is step length parameter satisfying 0 < μ(k) ≤ 2. Solve the subproblem

with u(k), let x(k) and zLR(u(k)) be the solutions obtained. Then x is updated as,

x = βx(k) + (1 − β)x (5.10)

where β is a number between 0 and 1.

Step 2: If zLR(u(k)) > z update u and z as,

u = u(k), z = zLR(u(k)). (5.11)

Let k = k + 1 and go to Step 1.

In order to determine the value of β Barahona and Anbil suggest to set it to a

24

fixed value for a number of iterations and then decrease. Another method they suggest

is to find the values by solving the following problem:

min
∥∥b − A(βx(k) + (1 − β)x)

∥∥ (5.12)

s.t.
a

10
≤ β ≤ a

The value of a is initialized to 0.1, and after every 100 iterations it is checked

whether z has increased by at least 1 %, if not a is divided by 2. When a becomes less

than 10−5, it is kept constant [22]. The algorithm stops when ‖d‖ and |cx − z| are both

below a certain threshold. Barahona and Anbil claim that they provided a well-defined

stopping condition for their algorithm. However, it may not be an easy subject to find

good thereshold values which are common for many problem sets. Therefore, it may

be better to stop the algortihm when μ(k) becomes smaller than a predefined value.

Barahona and Anbil propose the following method in order to update the step

length parameter μ(k) during the algorithm:

• If the lower bound is not improved, this iteration is called red. After a sequence

of 20 red iterations μ is decreased by 0.66 (μ(k) = 0.66μ(k−1)).

• If the lower bound is improved, we compute

θ = d(k)s(k) (5.13)

where d(k) is the direction of movement and s(k) = b − Ax(k).

- If θ < 0, this iteration is called yellow and the value of μ is not changed.

- If θ > 0, this iteration is called green and the value of μ is increased by 1.1 (μ(k)

= 1.1μ(k−1)).

25

6. AUGMENTED LAGRANGEAN AND THE MODIFIED

SUBGRADIENT ALGORITHM BASED ON FEASIBLE

VALUES

Classical Lagrangean method works for some special classes of constrained op-

timization problems. It may fail to find a zero duality gap for a nonconvex problem.

Augmented Lagrangean method is therefore introduced in order to overcome this draw-

back [8], [25], [37], [38].

The dual problem obtained via augmented Lagrangean can be solved using sub-

gradient methods. Gasimov [17] studies nonconvex continuous minimization problems

with equality constraints and proposes a subgradient method called modified subgra-

dient (MSG) algorithm that solves the dual problem obtained via sharp augmented

Lagrangean. The convergence properties of the algorithm are provided in [17] and [10].

This algorithm guarantees zero duality gap for a wide class of nonconvex optimiza-

tion problems. On the other hand the MSG algorithm uses the global minimum of

the augmented Lagrangean problem and the approximate upper bound of the primal

problem in order to update step length parameters at each iteration. This drawback is

also shared in many subgradient algorithms. Gasimov et al. [18] then propose a new

subgradient method (F-MSG) based on feasible values, which does not require to know

the optimal value of the primal problem and seeks it iteratively beginning from an

arbitrary value. In addition, global minimum of the augmented Lagrangean problem is

not essential to update the step length parameters. The performance of the algorithm

is tested on a set of nonconvex test problems and also the convergence properties of

the new algorithm are given [18].

Gasimov et al. devise the F-SMG algorithm to solve the dual problem obtained

via sharp augmented Lagrangeans which are introduced by Rockafellar and Wets [39].

26

Consider the nonlinear programming problem:

P : z = min f0(x) (6.1)

s.t. f(x) = 0

x ∈ X

where X is a subset of Rn, f0 : Rn → R and f0 : Rn → Rm are given functions. Let

‖.‖ and 〈., .〉 denote the Euclidean norm and the inner product respectively. Then, the

sharp augmented Lagrangean associated with problem (6.1) is given by,

L(x, u, c) = min f0(x) + c ‖f(x)‖ − 〈u, f(x)〉 . (6.2)

Here, u ∈ Rm and c ∈ R+ are the Lagrange multipliers and c penalty parameter

respectively. The associated dual function is defined by,

H(u, c) = min
x∈X

[f0(x) + c ‖f(x)‖ − 〈u, f(x)〉] . (6.3)

Then we can write the dual problem for problem (6.1) as,

P ∗ : max
(u,c)∈Rm×R+

H(u, c). (6.4)

The F-MSG algorithm which is devised by Gasimov et al. to solve the dual

problem (6.4) is explained in Table 6.1. The algorithm starts with an arbitrary H value,

and solves the constraint satisfaction problem in Step 2. The update methodology of

H depends whether the problem (6.5) is feasible or not. If a feasible solution is not

obtained, then H is increased by Δ. When a feasible solution is found, the value of f(xk)

is checked. If f(xk) = 0, meaning that a feasible solution for the original problem 6.1

is obtained, H is updated as Hn+1 = min {f0(x
n
k), Hn − Δn+1}. Otherwise, the value

of H is not changed and the Lagrange multipliers and penalty parameter are updated.

27

Table 6.1. F-MSG Algorithm

Step 0: Choose positive numbers ε1, ε2, Δ1 and a number H1. Set n = 1, p = 0,

q = 0.

Step 1: Then initialize the Lagrange multipliers and penalty parameter such

that (un
1 , c

n
1) ∈ Rm × R+. Set k = 1, u(k) = un

1 , c(k) = cn
1 .

Step 2: Given (u(k), c(k)), solve the following constraint satisfaction problem:

Find an element x ∈ X such that f0(x) + c(k) ‖f(x)‖− 〈
u(k), f(x)

〉 ≤ Hn. (6.5)

If a solution does not exist, go to Step 5. Otherwise, if a solution x(k) exists,

check f(x(k)). If f(x(k)) = 0 (or
∥∥f(x(k)) ≤ ε1

∥∥) then go to Step 4, otherwise go

to Step 3.

Step 3: Update Lagrange multipliers and penalty parameter as:

u(k+1) = u(k) − αs(k)f(x(k)) (6.6)

c(k+1) = c(k) + (1 + α)s(k)
∥∥f(x(k))

∥∥ (6.7)

where s(k) is a positive step length parameter defined as,

0 < s(k) =
δα(Hn − L(x(k), u(k), c(k)))

[α2 + (1 + α2)] ‖f(x(k))‖2 (6.8)

or

0 < s(k) =
δ
[
α(Hn − L(x(k), u(k), c(k))) + (c − c(k))

∥∥f((k))
∥∥]

[α2 + (1 + α2)] ‖f((k))‖2 (6.9)

with α > 0 and 0 < δ < 2. Step length parameter s(k) should also satisfy the

following property:

28

s(k)
∥∥f(x(k)

∥∥ + c(k) − ∥∥u(k)
∥∥ >
(k) (6.10)

where
(k) → +∞ as k → +∞. Set k = k + 1 and go to Step 2.

Step 4: Let x(k) be a solution of problem (6.5) with f(x(k)) = 0, then

L(x(k), u(k), c(k)) = f0(x
(k)). Set q = q + 1 and check p. If p = 0 then set

Δn+1 = Δn, otherwise set Δn+1 = 1
2
Δn. If Δn+1 < ε2 then stop, f0(x

(k)
n) is an ap-

proximate optimal value, x
(k)
n is an approximate primal solution and (u

(k)
n , c

(k)
n) is

an approximate dual solution; otherwise set Hn+1 = min
{

f0(x
(k)
n), Hn − Δn+1

}
,

n = n + 1 and go to Step 1.

Step 5: Set p = p + 1. If q = 0, set Δn+1 = Δn. Otherwise, set Δn+1 = 1
2
Δn.

Set Hn+1 = Hn + Δn+1, n = n + 1 and go to Step 1.

Since the method is very sensitive to the initial values, in some cases the solution

time may be very large or even no solution may be obtained [42].

29

7. BENDERS’ DECOMPOSITION

Benders’ decomposition [7] is a method which can be used to solve stochastic or

mixed-integer programming problems. Linear mixed-integer problems are complicated

by the integer variables since once these variables are fixed the resulting problem is a

linear programming problem. Therefore, the idea behind Benders’ decomposition is di-

viding the primal problem into two problems called Benders’ subproblem and Benders’

master problem via separating the continuous variables from integer variables.

Consider the following linear mixed-integer programming problem:

MIP : z = min cT x + fT y (7.1)

s.t. Ax + By ≥ b

y ∈ Y ⊆ Zn
+

x ∈ Rp
+

where b ∈ Rm.

Suppose that the integer variables y are fixed at y, then the resulting problem is

a linear programming problem

LP : z = min cT x (7.2)

s.t. Ax ≥ b − By

x ∈ Rp
+

and its dual is

DP : z = max (b − By)T u (7.3)

s.t. AT u ≤ c

u ∈ Rm
+ .

30

Notice that, we can write the MIP as,

MIP : z = min
y∈Y

[fT y + max
u≥0

(b − By)T u] (7.4)

s.t. AT u ≤ c.

Let
{
us ∈ Rm

+ : s ∈ S
}

be the set of extreme points of Q =
{
u ∈ Rm

+ : AT u ≤ c
}

and let
{
vo ∈ Rm

+ : o ∈ O
}

be the set of extreme rays of
{
u ∈ Rm

+ : AT u ≤ 0
}
. If Q �= ∅,

then
{
vo ∈ Rm

+ : o ∈ O
}

is also the set of extreme rays of Q. Then, the MIP (7.4) can

be written as:

MIP ′ : z = min
y

η (7.5)

s.t. η ≥ fT y + (b − By)Tus s = 1,...,S (7.6)

(b − By)Tvo ≤ 0 o = 1,...,O (7.7)

y ∈ Y ⊆ Zn
+ (7.8)

η ∈ R. (7.9)

The problem MIP′ is called Benders’ master problem. Then the Benders’ sub-

problem can be stated as:

z = max fT y + (b − By)T u (7.10)

s.t. AT u ≤ c

u ∈ Rm
+ .

Benders’ decomposition algorithm (Table 7.1) iterates between the master prob-

lem and the subproblem. At each iteration one of the cuts (7.6) and (7.7) is added to

the master problem according to the solution of the subproblem. If the subproblem

is bounded, meaning that the solution of the master problem satisfies the integer con-

straints of the original problem, then extreme point cut (7.6) is added. Otherwise, if it

is unbounded, extreme ray cut (7.7) is added to the master problem. The solution of

the master problem provides a lower bound for the original problem while the solution

31

Table 7.1. Benders’ Decomposition Algorithm

Step 0: (Initialization) Initialize y0 to a feasible solution of MIP. Then set lower

bound LB = −∞, upper bound UB = +∞, y = y0, k = 1, and ε to a small

nonnegative number.

Step 1: Solve the Benders’ subproblem (7.10). If the problem is bounded, get

extreme point u(k). And add cut η ≥ fT y +(b−By)T u(k) to the master problem.

Set UB = min
{
UB, fT y + (b − By)T u(k)

}
. If the subproblem is unbounded, get

unbounded ray v(k), and add cut (b − By)Tv(k) ≤ 0 to the master problem. Go

to Step 2.

Step 2: Solve the master problem. If the master problem is infeasible, then the

original problem is infeasible, STOP. Otherwise, let η and y(k) be the optimal

objective value and optimal solution of the master problem respectively. Set

LB = η and y = y(k). If (UB − LB) <= ε, STOP. Otherwise, set k = k + 1 and

go to Step 1.

of the subproblem gives an upper bound. As the algorithm iterates, the number of cuts

added to the master problem increases providing an improvement in the lower bound.

The subproblem is a linear programming problem which can be solved in a short

time. However, the master problem is a mixed-integer programming problem and

we have to solve it at each iteration. The efficiency of the Benders’ decomposition

algorithm mainly depends on the solution time of the master problem. Therefore,

it is important to solve the master problem efficiently. There are different methods

proposed in the literature in order to accelerate the Benders’ algorithm.

Geoffrion and Graves [20] propose the so-called ε-method in 1974. In this method,

the master problem is not solved to optimality rather the η value is fixed to UB − ε

at each iteration so a feasible solution which produces a value below UB − ε is found.

Since the master problem is not solved to optimality, we could not further obtain a

lower bound. In this case the algorithm stops whenever the master problem has no

feasible solution with value below UB − ε.

32

The LP problem (7.2) obtained by fixing the integer variables y is generally highly

degenerate so the Benders’ subproblem formed by taking the dual of problem (7.2) has

many optimal solutions. Since the solution of the subproblem provides a cut for the

master problem, it is crucial to find the solution that gives the strongest cut. Magnanti

and Wong [32] present the concept of dominance and pareto-optimality and introduce a

linear model for the construction of pareto-optimal cuts. A cut is called pareto-optimal

if no cut dominates it. Let w(ŷ) be the optimal value of the subproblem (7.10) and

U(ŷ) is the set of alternate optimal solutions. Then, in order to find a pareto-optimal

point among the points in set U(ŷ), Magnanti and Wong provide the following linear

program:

z = max
u

fT y0 + (b − By0)T u (7.11)

s.t. fT ŷ + (b − Bŷ)T u = w(ŷ)

AT u ≤ c

u ∈ Rm
+

where y0 is a core point. A point y ∈ Y is a core point if y ∈ ri(conv(Y)), where ri(Y)

and conv(Y) are respectively the relative interior and the convex hull of the set Y .

When we fix the integer variables of the problem MIP to a solution given by

the master problem, we cannot always obtain a feasible solution. Adding inequalities

which are valid for the MIP but not valid for the master problem eliminates some of

infeasible solutions. Therefore, the chance of obtaining solutions which are feasible

for MIP increases and the number of iterations required for the convergence of the

algorithm may decrease.

33

8. SOLUTION METHODS

The literature on CFLP reveals that Lagrangean heuristics provide good bounds

for these problems in a reasonable computational time. Therefore, we decide on using

Lagrangean relaxation in order to solve single-source and multi-source problems.

Beasley [6] states that two key issues determine the quality of the solution ob-

tained from Lagrangean relaxation: deciding which constraints to dualize; and decid-

ing how to find numerical values for Lagrange multipliers. Cornuéjols, Sridharan, and

Thizy [12] denote that dualizing demand constraints generally provide good bounds.

We have also stated before that Lagrangean relaxation with subgradient optimization

gives good results. Taking all these facts into consideration, we decide to work on a

Lagrangean problem formed by dualizing demand constraints and use subgradient opti-

mization to update Lagrange multipliers. Although classical subgradient optimization

is widely used in the literature to solve the Lagrangean dual problem, there are some

extensions of this method which are proposed in order to overcome some limitations

of it. Two of these methods are deflected subgradient [4], [11], [41] and volume algo-

rithm [3]. In addition to the classical subgradient method, we also consider these two

methods and compare their performances.

We then focus on exact solution methods and develop a Benders’ decomposition

method for the multi-source problem only. We do not try to find exact solutions for

the single-source model since Lagrangean heuristic gives good results and furthermore

CPLEX solves these problems to optimality in reasonable time.

8.1. Solution Procedure for Single-Source Problem

8.1.1. Computation of a Lower Bound

As mentioned above, we dualize the demand constraints (3.2) and obtain the

following Lagrangean subproblem:

34

LSP1 : z(u) = min
I∑

i=1

K∑
k=1

J∑
j=1

L∑
l=1

(cikjl − ujl)xikjl +
I∑

i=1

K∑
k=1

fikvik (8.1)

+
J∑

j=1

L∑
l=1

ujl (8.2)

s.t.

J∑
j=1

L∑
l=1

djlxikjl ≤ sikvik i = 1, . . . , I; k = 1, . . . , K (8.3)

K∑
k=1

vik ≤ 1 i = 1, . . . , I (8.4)

vik = 0, 1 i = 1, . . . , I; k = 1, . . . , K (8.5)

xikjl = 0, 1 i = 1, . . . , I; k = 1, . . . , K; j = 1, . . . , J ; (8.6)

l = 1, . . . , L

where u is the Lagrange multiplier vector.

It can be seen that the above problem is decomposable over facility locations.

When we decompose the problem LSP1 over i, we obtain the following subproblem:

SP1 : zi(u) = min

K∑
k=1

J∑
j=1

L∑
l=1

(cikjl − ujl)xikjl +

K∑
k=1

fikvik (8.7)

s.t.

J∑
j=1

L∑
l=1

djlxikjl ≤ sikvik k = 1, . . . , K (8.8)

K∑
k=1

vik ≤ 1 (8.9)

vik = 0, 1 k = 1, . . . , K (8.10)

xikjl = 0, 1 k = 1, . . . , K; j = 1, . . . , J ; l = 1, . . . , L (8.11)

Assume that the value of variable vik is known for each k, meaning that if a

facility is opened at location i, we know the class of the facility that is opened. In this

case, we can further decompose the problem over the index k. If vik = 0 for all k, no

35

facility is opened at location i, then no customer can be assigned and xikjl = 0 for all

j and l. Therefore, zi(u) = 0.

However, if vik = 1, namely a facility of class k is located at location i, then we

end up with the following optimization problem:

SP2 : zik(u) = min
J∑

j=1

L∑
l=1

(cikjl − ujl)xikjl + fik (8.12)

s.t.

J∑
j=1

L∑
l=1

djlxikjl ≤ sik (8.13)

xikjl = 0, 1 j = 1, . . . , J ; l = 1, . . . , L (8.14)

Since fik is constant, we can ignore this term and the problem reduces to,

SP3 : zik(u) = min
J∑

j=1

L∑
l=1

(cikjl − ujl)xikjl

s.t. (8.13) − (8.14)

The optimal objective value of LSP1 can be obtained by solving SP3 to optimality,

which is easier than solving LSP1. The following equations explain how to obtain the

objective value of the relaxed problem LSP1:

zik(u) = min {0, zik(u) + fik} (8.15)

zi(u) = min
k

{zik(u)} (8.16)

z(u) =
I∑

i=1

zi(u) +
J∑

j=1

L∑
l=1

ujl (8.17)

SP3 is a 0-1 knapsack problem (KP) which is smaller than the Lagrangean sub-

problem LSP1. However, 0-1 knapsack problems (KP) are known to be NP-complete

36

[27]. Therefore, we use a heuristic method in order to find a good feasible solution. We

propose three different methods: A greedy heuristic which is described in Table 8.2,

a Lagrangean heuristic obtained via relaxing constraint (8.13), and feasible modified

subgradient algorithm (F-MSG) [18], [42].

The F-SMG algorithm is originally developed for nonconvex continuous mini-

mization problems with equality constraints. Saraç and Sipahioğlu [42] modify it for

solving the 0-1 knapsack problem. They use the theorem by Li [31] to make the binary

variables continuous. In addition, a slack variable is added to transform the inequality

constraint into an equality one. As a result, we modify our knapsack problem as:

zik(u) = min

J∑
j=1

L∑
l=1

(cikjl − ujl)xikjl (8.18)

s.t.

J∑
j=1

L∑
l=1

djlxikjl + w = sik (8.19)

J∑
j=1

L∑
l=1

(xikjl − x2
ikjl) = 0 (8.20)

xikjl ∈ [0, 1] j = 1, . . . , J ; l = 1, . . . , L (8.21)

w ≥ 0 (8.22)

where w is the slack variable. Notice that the above problem is equivalent to our

knapsack problem SP3. Then, the corresponding augmented Lagrangean problem can

be written as:

zLP (u) = min
J∑

j=1

L∑
l=1

(cikjl − ujl)xikjl

− λ1(
J∑

j=1

L∑
l=1

djlxikjl + w − sik) − λ2(
J∑

j=1

L∑
l=1

(xikjl − x2
ikjl))

+ μ

[
(

J∑
j=1

L∑
l=1

djlxikjl + w − sik)
2 + (

J∑
j=1

L∑
l=1

(xikjl − x2
ikjl))

2

]
(8.23)

37

s.t.

xikjl ∈ [0, 1] j = 1, . . . , J ; l = 1, . . . , L

w ≥ 0

Here, λ1 and λ2 denote the Lagrange multipliers used to relax constraints (8.19) and

(8.20), μ is the penalty parameter.

Thirteen test problems are generated to evaluate the performances of the proposed

methods. Since cikjl − ujl can take negative values when ujl > cikjl, the coefficients

of xikjl are allowed to have negative values when generating the test problems. The

results of the methods, average percentage deviations of solutions from the optimal

values and average execution times are provided in Table 8.1. In the table, the lower

bounds given by the Lagrangean heuristic are not reported, only the upper bounds are

presented. We use N/A to indicate that a solution is not available.

Table 8.1: Performances of the methods proposed for

subproblem

Problem No J L opt. Greedy Lagrangean F-MSG

1 10 3 -666.06 -666.06 -666.06 -673.99

2 15 3 -1600.54 -1600.54 -1600.54 -1604.86

3 25 3 -2810.77 -2810.69 -2758.31 -2793.64

4 25 5 -4569.78 -4565.36 -4535.62 -4492.47

5 50 3 -9666.78 -9646.44 -9602.70 -8810.63

6 50 5 -3076.07 -3070.63 -2948.27 N/A

7 100 3 -13617.70 -13617.70 -13593.71 -13606.83

8 150 3 -26006.15 -26003.31 -25952.56 N/A

9 100 5 -42695.41 -42693.33 -42669.68 -42647.12

10 200 3 -22843.74 -22829.95 -22816.32 N/A

11 150 5 -11458.20 -11433.36 -11322.41 N/A

12 200 5 -22488.56 -22476.76 -22476.77 -22454.80

13 50 50 -112745 -112742 -112726 N/A

average CPU time 0.00 0.62 39.50

average deviation (%) 0.06 0.71 1.62

38

When we apply the F-MSG algorithm to Lagrangean problem (8.23), we observe

that the algorithm is very sensitive to the initial values and does not give good solutions

in reasonable amount of time for some test problems. Furthermore when the value of H

is initialized randomly, no solution is obtained. Therefore, for each problem the initial

value of H is set to a value close to optimal objective value of SP3. We can see that

the greedy heuristic and the Lagrangean heuristic give good near optimal solutions in

reasonable time. We prefer to use the greedy heuristic in particular because it is not

only more accurate but also simple to use and efficient.

Table 8.2. A Greedy Heuristic for SP3

1. Calculate aikjl = cikjl − ujl for j = 1, ..., J, l = 1, ..., L

2. Set rjl =
aikjl

djl
for j = 1, ..., J, l = 1, ..., L

3. Sort rjl in increasing order; starting from the smallest continue as,

if rjl < 0 and sik ≥ djl

set xikjl = 1

set sik = sik − djl

else

set xikjl = 0.

4. Repeat until remaining capacity is not adequate to satisfy the demand of any

unassigned customer or until rjl ≥ 0.

The steps of the greedy heuristic are expressed in Table 8.2. The unit cost rjl

is calculated for each customer and these costs are sorted in increasing order. Since

it is aimed to minimize the objective function, only the aikjl’s which are smaller than

zero contribute to the objective. Thus xikjl’s with nonnegative rjl are set to zero.

Then, starting from the smallest negative rjl, corresponding xikjl is set to 1 until the

remaining capacity is not adequate to satisfy the demand of any unassigned customer

with negative rjl value.

Notice that, the greedy heuristic provides a feasible solution for SP3. A feasible

solution gives an upper bound for the optimal objective value. Consequently, obtaining

39

a feasible solution to the relaxed problem LSP1 may result in overestimating the lower

bound of the original problem. However, experimental results show that this bound is

quite accurate.

8.1.2. A Lagrangean Heuristic

In this section, our Lagrangean heuristic with classical subgradient optimization

is explained. The steps of the heuristic are summarized below, using the following

notation:

ZLB : value of the maximum lower bound found

ZC
LB : value of the current lower bound

ZUB : value of the minimum upper bound found

ZC
UB : value of the current upper bound

N : the number of subgradient iterations since the maximum lower bound last in-

creased

f : the step length parameter for the subgradient optimization procedure

Step 1(Initialization): Set ZLB = −∞, ZUB = +∞ , N = 0, μ = 2; initialize

Lagrange multipliers so that ujl is equal to the difference between the minimum cikjl

over all facilities that satisfy the demand of the customer of class l at location j and

the second best serving cost [40], [24].

Step 2 (Initial Upper Bound): In our problem it may be possible that total

capacity of some facility combinations does not satisfy the total demand. As a result

the upper bound heuristic described in Table 8.3 does not guarantee a feasible solution

at each iteration. In this case ZUB is not updated. If this situation occurs at the first

iteration, ZUB = +∞ is used to update the Lagrange multipliers which slows down

the convergence. Therefore, we find an initial feasible solution for the general problem.

The initial upper bound is provided through the following procedure:

1. The demands of the customers and the capacities of the facilities are sorted in

decreasing order.

40

2. Starting from the facility with maximum capacity, the sorted customers are as-

signed to the facility until it cannot satisfy the demand of any customer.

3. If total demand is not satisfied, repeat 2 with the next facility.

The above heuristic does not take costs into consideration, meaning that it does

not try to find a good feasible solution.

Step 3: Solve the Lagrangean subproblem with the current set of multipliers. If

ZC
LB > ZLB then set N=0 and ZLB = ZC

LB, else set N = N +1. If the solution obtained

is not feasible for the original problem, go to Step 4. Otherwise go to Step 6.

Step 4: Apply the upper bound heuristic described in Table 8.3 in order to find

a feasible solution to the original problem from the solution of relaxed problem LSP1.

If ZC
UB < ZUB, then set ZUB = ZC

UB.

Since the demand constraints (3.2) are relaxed, the solution of the relaxed problem

may not satisfy these constraints. Therefore it may be the case that some customers are

assigned to more than one facility or some customers are not assigned to any facility.

Table 8.3 tries to remedy these situations taking into consideration the cost issues.

First of all, the customers which are assigned to more than one facility are considered.

Each of these customers is assigned to the facility which possess the minimum serving

cost among the assigned facilities and the remaining capacities are adjusted. Therefore,

the real remaining capacity of each facility is obtained. Secondly, the customers which

are not assigned to any facility are considered. If there are open facilities that can

satisfy demand of a customer, the customer is assigned to one with minimum serving

cost. Otherwise, a new facility is opened.

Step 5: If N = 20 then set μ = 1
2
μ and N = 0.

Step 6: If the solution obtained is feasible to the original problem or μ ≤ 0.005

then go to Step 8.

41

Table 8.3. An Upper Bound Heuristic for P1

1. If a customer is assigned to more than one facility, assign the customer to

the facility which has the minimum serving cost (cikjl) among the assigned facil-

ities and adjust the remaining capacities. Repeat this step until no customer is

assigned to more than one facility.

2. If there exist customers that are not assigned to any facility:

– sort these customers according to their demands,

– starting from the customer with maximum demand, assign each customer

to an open facility with minimum serving cost for that customer,

– if remaining capacity of any open facility does not satisfy demand of the

customer, open a facility with minimum unit fixed cost (
fik

sik
) ,

– repeat these steps until total demand is satisfied or until I facilities are

opened and the remaining capacities of these facilities do not satisfy demand

of any unassigned customer.

3. If total demand is satisfied, calculate ZC
UB.

Step 7: Define the step size λ using the formula:

λ =
μ(ZUB − ZLB)

J∑
j=1

L∑
l=1

(Gjl)2

(8.24)

where
Gjl = 1 −

I∑
i=1

K∑
k=1

xikjl (8.25)

and update the Lagrange multipliers using the formula:

ujl = ujl + λGjl (8.26)

and go to Step 3.

Step 8(Stop): Record ZLB and ZUB.

42

8.2. Solution Procedure for Multi-Source Problem

We use two different methods to solve the multi-source problem, the Lagrangean

heuristic and the Benders’ decomposition. While the Lagrangean heuristic provides a

feasible solution, Benders’ decomposition finds the optimal solution for our problem.

8.2.1. Using Lagrangean Relaxation and Subgradient Optimization

As in the single-source problem, Lagrangean heuristic is used to find bounds for

the multi-source problem. The proposed method is very similar to the one used for the

single-source version.

8.2.1.1. Computation of a Lower Bound. When demand constraints (3.8) are relaxed,

the following Lagrangean subproblem is obtained:

LSP2 : z(u) = min

I∑
i=1

K∑
k=1

J∑
j=1

L∑
l=1

(cikjl − ujl)xikjl +

I∑
i=1

K∑
k=1

J∑
j=1

L∑
l=1

gikjlyikjl

+

I∑
i=1

K∑
k=1

fikvik +

J∑
j=1

L∑
l=1

ujl (8.27)

s.t.

J∑
j=1

L∑
l=1

djlxikjl ≤ sik i = 1, . . . , I; k = 1, . . . , K (8.28)

K∑
k=1

vik ≤ 1 i = 1, . . . , I (8.29)

yikjl ≤ vik i = 1, . . . , I; k = 1, . . . , K; (8.30)

j = 1, . . . , J ; l = 1, . . . , L

xikjl ≤ yikjl i = 1, . . . , I; k = 1, . . . , K; (8.31)

j = 1, . . . , J ; l = 1, . . . , L

xikjl ≥ 0 i = 1, . . . , I; k = 1, . . . , K; (8.32)

j = 1, . . . , J ; l = 1, . . . , L

43

yikjl = 0, 1 i = 1, . . . , I; k = 1, . . . , K; (8.33)

j = 1, . . . , J ; l = 1, . . . , L

vik = 0, 1 i = 1, . . . , I; k = 1, . . . , K (8.34)

Observe that the above problem can be decomposed with respect to facility lo-

cations. Hence for facility location i we have,

SP4 : zi(u) = min
K∑

k=1

J∑
j=1

L∑
l=1

(cikjl − ujl)xikjl +
K∑

k=1

J∑
j=1

L∑
l=1

gikjlyikjl

+

K∑
k=1

fikvik (8.35)

s.t.

J∑
j=1

L∑
l=1

djlxikjl ≤ sik k = 1, . . . , K (8.36)

K∑
k=1

vik ≤ 1 (8.37)

yikjl ≤ vik k = 1, . . . , K; j = 1, . . . , J ; l = 1, . . . , L (8.38)

xikjl ≤ yikjl k = 1, . . . , K; j = 1, . . . , J ; l = 1, . . . , L (8.39)

xikjl ≥ 0 k = 1, . . . , K; j = 1, . . . , J ; l = 1, . . . , L (8.40)

yikjl = 0, 1 k = 1, . . . , K; j = 1, . . . , J ; l = 1, . . . , L (8.41)

vik = 0, 1 k = 1, . . . , K (8.42)

as the ith subproblem.

When vik is known, we can further decompose the problem over the facility classes.

If vik = 0 for all k, meaning that no facility is opened at location i, then xikjl = 0 and

yikjl = 0 for all j and l. Therefore, no serving and assignment costs are occurred and

zi(u) = 0.

However, if vik = 1, namely a facility of class k is located at location i, then we

44

end up with the following optimization problem:

SP5 : zik(u) = min
J∑

j=1

L∑
l=1

(cikjl − ujl)xikjl +
J∑

j=1

L∑
l=1

gikjlyikjl + fik (8.43)

s.t.

J∑
j=1

L∑
l=1

djlxikjl ≤ sik (8.44)

xikjl ≤ yikjl j = 1, . . . , J ; l = 1, . . . , L (8.45)

xikjl ≥ 0 j = 1, . . . , J ; l = 1, . . . , L (8.46)

yikjl = 0, 1 j = 1, . . . , J ; l = 1, . . . , L (8.47)

Since fik is constant, we can ignore this term and the problem reduces to,

SP6 : zik(u) = min
J∑

j=1

L∑
l=1

(cikjl − ujl)xikjl +
J∑

j=1

L∑
l=1

gikjlyikjl (8.48)

s.t. (8.44) − (8.47)

The objective value of LSP2 can be obtained by using the following equations:

zik(u) = min {0, zik(u) + fik} (8.49)

zi(u) = min
k

{zik(u)} (8.50)

z(u) =

I∑
i=1

zi(u) +

J∑
j=1

L∑
l=1

ujl (8.51)

SP6 is a Single-Node Fixed-Charge Transportation (SNFCT) Problem [21]. Since

this problem is known to be NP-hard [21], we use a heuristic method to find a feasible

solution. We propose three heuristics: Lagrangean heuristic, F-MSG algorithm and a

heuristic (Table 8.5) which is similar to the greedy heuristic used to solve the Knapsack

Problem. The performances of the methods are tested on thirteen test problems. The

45

results are provided in Table 8.4. F-MSG algorithm is not able to find solutions for all

problems. In addition, it is strictly dependent on the initial values and requires more

execution time than the other two methods. Among the three methods, our simple

heuristic performs the best so it is considered in the solution of SP6.

Table 8.4: Performances of the methods proposed for

subproblem

Problem No J L opt. Greedy Lagrangean F-MSG

1 10 3 -498.44 -498.44 -498.44 -506.95

2 15 3 -1025.88 -1016.62 -1016.62 -1029.28

3 25 3 -2122.97 -2103.28 -2103.28 -2066.45

4 25 5 -3375.16 -3366.64 -3366.64 -3379.06

5 50 3 -7120.80 -7110.61 -7110.61 -7115.98

6 50 5 -2344.69 -2337.30 -2337.30 -2296.84

7 100 3 -9278.54 -9275.85 -9275.85 -9278.20

8 150 3 -19218.05 -19204.08 -19204.08 -19156.96

9 100 5 -31594.79 -31594.43 -30696.99 N/A

10 200 3 -17118.47 -17118.28 -17118.29 -17062.27

11 150 5 -9190.91 -9178.38 -9178.38 N/A

12 200 5 -14381.12 -14373.51 -14373.50 -14129.83

13 50 50 -71661.05 -71658.05 -69181.52 N/A

average CPU time 0.08 0.38 30

average deviation (%) 0.22 0.70 0.93

Steps of the greedy heuristic are summarized in Table 8.5. The unit cost rjl is

calculated for each customer and they are sorted in increasing order. This unit cost is

composed of unit service cost and unit fixed service cost. Since it is aimed to minimize

the objective function, only the unit costs which are smaller than zero contribute to

the objective. Thus xikjl’s with nonnegative rjl and the corresponding yikjl’s are set to

zero. Starting from the smallest negative rjl, corresponding xikjl and yikjl are set to 1 if

the remaining capacity is adequate to satisfy the demand of the customer. Otherwise,

xikjl and yikjl are set to sik

djl
and 1 respectively if cost improvement is obtained, namely

if (cikjl − ujl)
sik

djl
+ gikjl < 0 .

46

Table 8.5. A Greedy Heuristic for SP6

1. Calculate unit carriage cost rjl

set rjl =
(cikjl−ujl)+gikjl

djl
for j = 1, ..., J ; l = 1, ..., L

2. Sort rjl in increasing order; starting from the smallest continue as,

if rjl < 0 and sik ≥ djl

set xikjl = 1 and yikjl = 1

set sik = sik − djl

else if rjl < 0, sik < djl, and (cikjl − ujl)
sik

djl
+ gikjl < 0

set xikjl = sik

djl
and yikjl = 1

set sik = 0 and STOP

else

set xikjl = 0 and yikjl = 0.

4. Repeat 2 until all capacity is replenished (sik = 0) or until rjl ≥ 0

8.2.1.2. A Lagrangean Heuristic. We modify the heuristic we propose for the single-

source problem in order to obtain an upper bound from the lower bound solution. The

upper bound heuristic is defined in Table 8.6, using the following notation:

dr
jl : amount of the unsatisfied demand for customer of class l at location j

sr
ik : amount of the remaining capacity for facility of class k at location i

where r means remaining.

The initial upper bound heuristic is also similar to heuristic used in the single-

source problem, except that in this case a customer can be assigned to more than one

facility.

8.2.2. A Benders’ Decomposition Based Exact Solution Procedure

The main purpose of Benders’ decomposition for linear mixed-integer program-

ming problems is to obtain an easy to solve LP subproblem and an MIP master problem

with only one continuous variable by separating the continuous variables from the inte-

47

Table 8.6. An Upper bound Heuristic for P2

1. If a customer is assigned to more than one facility, such that more than its

demand is provided, assign the customer to the facilities which have the minimum

unit cost
cikjlxikjl+gikjl

xikjldjl
among the assigned facilities until the customer demand is

satisfied. Repeat this step until no customer is served with more than its demand.

2. If there exist customers with unsatisfied demand:

– sort them according to their demands,

– starting from the customer with maximum demand, assign each customer

to open facilities with minimum unit cost
cikjld

r
jl/djl+gikjl

dr
jl

if sr
ik ≥ dr

jl

cikjls
r
ik/djl+gikjl

sr
ik

if sr
ik < dr

jl

for that customer,

– if any open facility does not satisfy demand of the customer, open a facility

with minimum unit fixed cost (
fik

sik
) ,

– repeat these steps until total demand is satisfied or until number of I facilities

are opened and their capacity does not satisfy total demand.

3. If total demand is satisfied, calculate ZC
UB.

ger ones. The information obtained from one problem is passed repeatedly to another

and this may lead to efficient solution procedures.

When the binary variables y and v are fixed to y and v respectively, the following

LP subproblem is obtained:

LP : z = min
I∑

i=1

K∑
k=1

J∑
j=1

L∑
l=1

cikjlxikjl +
I∑

i=1

K∑
k=1

J∑
j=1

L∑
l=1

gikjlyikjl

+

I∑
i=1

K∑
k=1

fikvik (8.52)

s.t.

I∑
i=1

K∑
k=1

xikjl = 1 j = 1, . . . , J ; l = 1, . . . , L (8.53)

48

J∑
j=1

L∑
l=1

djlxikjl ≤ sik i = 1, . . . , I; k = 1, . . . , K (8.54)

xikjl ≤ yikjl i = 1, . . . , I; k = 1, . . . , K; (8.55)

j = 1, . . . , J ; l = 1, . . . , L

xikjl ≥ 0 i = 1, . . . , I; k = 1, . . . , K; (8.56)

j = 1, . . . , J ; l = 1, . . . , L

Taking the dual of the above problem LP, the Benders’ subproblem is obtained

as:

SP : z = max
I∑

i=1

K∑
k=1

J∑
j=1

L∑
l=1

gikjlyikjl +
I∑

i=1

K∑
k=1

fikvik −
J∑

j=1

L∑
l=1

πjl

−
I∑

i=1

K∑
k=1

sikμik −
I∑

i=1

K∑
k=1

J∑
j=1

L∑
l=1

yikjlwikjl (8.57)

s.t.

− πjl − djlμik − wikjl ≤ cikjl i = 1, . . . , I; k = 1, . . . , K; (8.58)

j = 1, . . . , J ; l = 1, . . . , L

wikjl ≥ 0 i = 1, . . . , I; k = 1, . . . , K; (8.59)

j = 1, . . . , J ; l = 1, . . . , L

μik ≥ 0 i = 1, . . . , I; k = 1, . . . , K; (8.60)

πjl = free j = 1, . . . , J ; l = 1, . . . , L (8.61)

where w, μ, and π are dual variables.

Then the obtained Benders’ master problem MP is in the form:

MP : z = min η (8.62)

s.t.

η ≥ Ωm
1 m = 1, . . . , M (8.63)

Ωn
2 ≤ 0 n = 1, . . . , N (8.64)

49

K∑
k=1

vik ≤ 1 i = 1, . . . , I (8.65)

yikjl ≤ vik i = 1, . . . , I; k = 1, . . . , K; j = 1, . . . , J ; l = 1, . . . , L (8.66)

yikjl = 0, 1 i = 1, . . . , I; k = 1, . . . , K; j = 1, . . . , J ; l = 1, . . . , L (8.67)

vik = 0, 1 i = 1, . . . , I; k = 1, . . . , K (8.68)

where Ωm
1 and Ωn

2 are defined as:

Ωm
1 =

I∑
i=1

K∑
k=1

J∑
j=1

L∑
l=1

gikjlyikjl +

I∑
i=1

K∑
k=1

fikvik −
J∑

j=1

L∑
l=1

πm
jl

−
I∑

i=1

K∑
k=1

sikμ
m
ik −

I∑
i=1

K∑
k=1

J∑
j=1

L∑
l=1

yikjlw
m
ikjl, (8.69)

Ωn
2 = −

J∑
j=1

L∑
l=1

πn
jl −

I∑
i=1

K∑
k=1

sikμ
n
ik −

I∑
i=1

K∑
k=1

J∑
j=1

L∑
l=1

yikjlw
n
ikjl. (8.70)

In the master problem MP, there are two kinds of cuts: extreme point cuts (8.63)

and extreme ray cuts (8.64). If the Benders’ subproblem SP is bounded, an extreme

point cut is added to the master problem. On the other hand, if it is unbounded then

the Benders’ modified subproblem MSP is solved in order to obtain an extreme ray

cut.

MSP : z = max 0 (8.71)

s.t.

−
J∑

j=1

L∑
l=1

πjl −
I∑

i=1

K∑
k=1

sikμik −
I∑

i=1

K∑
k=1

J∑
j=1

L∑
l=1

yikjlwikjl = 1 (8.72)

− πjl − djlμik − wikjl ≤ 0 i = 1, . . . , I; k = 1, . . . , K; (8.73)

j = 1, . . . , J ; l = 1, . . . , L

wikjl ≥ 0 i = 1, . . . , I; k = 1, . . . , K; (8.74)

j = 1, . . . , J ; l = 1, . . . , L

μik ≥ 0 i = 1, . . . , I; k = 1, . . . , K; (8.75)

πjl = free j = 1, . . . , J ; l = 1, . . . , L (8.76)

50

Notice that a feasible solution for the multi-source problem P2 may not be ob-

tained when variables y and z are fixed to the values provided by the Benders’s master

problem. In this case, the Benders’ subproblem SP is unbounded therefore we solve the

modified subproblem MSP. And the added extreme ray cut eliminates this infeasible

solution. On the other hand, if we can find some additional constraints for the master

problem such that they are valid for the original problem P2 but not valid for the

master problem, we can eliminate some of these infeasible solutions without solving

the modified subproblem. So, we add two additional types of constraints to the master

problem. Observe that master problem may provide a solution such that total capacity

of the opened facilities is smaller than the total demand of the customers. Then, we

add constraints (8.77) to the master problem. Furthermore, in the original problem

constraints (3.12) ensure that a customer can be served from a facility if it is assigned

to that facility. However, master problem may give a solution such that the variable y

is zero for all i and k for a customer of class l at location j. In this case, this customer

cannot be served from any facility. As a result, we add constraints (8.78).

J∑
j=1

L∑
l=1

djl ≤
I∑

i=1

K∑
k=1

sikvik (8.77)

I∑
i=1

K∑
k=1

yikjl ≥ 1 j = 1,...,J; l = 1,...,L (8.78)

Obtaining the master problem and subproblems, we use the Table 7.1 in order

to obtain an exact solution for our multi-source problem. The initial feasible solution

is found using the initial upper bound heuristic which is developed for our Lagrangean

heuristic. Although our Benders’ decomposition algorithm finds an exact solution, it

is not more efficient than some of the widely used commercial solvers (e.g. CPLEX).

Therefore, we focus on some acceleration techniques which are proposed in the litera-

ture.

Since the master problem is a mixed-integer programming problem, overall com-

putation time of the algorithm mainly depends on the solution time of the master

problem. So, we decide to try the ε-method of Geoffrion and Graves [20], a method

which suggests to find a feasible solution for the master problem instead of solving it to

51

optimality. Although this method decreases the average computation time of an itera-

tion, the number of iterations required to find an exact solution for the original problem

increases considerably. As a consequence, we are not able to obtain an improvement

in the overall computation time through this method.

Magnanti and Wong [32] introduce the concept of pareto-optimality and present

a linear program (7.11) for finding pareto-optimal cuts. At each iteration where the

Benders’ subproblem provides an extreme point cut, we solve the suggested linear

program to find the strongest cut. The pareto-optimal solutions depend to the selection

of the core points, different core points can give different pareto-optimal cuts. We

change the core points at each iteration taking the convex combination of points which

are provided by the master problem and at the same time which can give a feasible

solution for the original problem.

To sum up, in our Benders’ algorithm we solve the master problem to optimal-

ity at each iteration and find a pareto-optimal cut whenever the subproblem is not

unbounded.

52

9. EXPERIMENTAL RESULTS

In this chapter, we present the results of our computational experiments per-

formed by using the methods proposed in the previous sections. In the first and second

sections we give the implementation details and present the computational results for

the single-source and the multi-source problems respectively. As we know, both the

single-source and multi-source CFLP with customer and facility differentiation have

not been addressed in the literature before. Consequently, we are not able to find

benchmark problems and create some test problems randomly in order to evaluate the

performances of the methods we propose. We conduct all of our experiments on a

PC with 2.40 GHz Intel(R) Core(TM)2 processor and 3.92 GBytes of RAM, under

the Windows XP operating system. We encode new heuristics in Microsoft Visual

Studio.Net 2005 and the Benders’ decomposition algorithm in GAMS. The Benders’

algorithm is adopted from the GAMS code provided by Kalvelagen [26] for a fixed

charge transportation problem.

9.1. Single-Source Problem

9.1.1. Test Bed

The test problems are generated randomly in the following way. We assume that

the customer serving cost depends on the distance between the customers and facilities.

On the other hand, it is also expected that there should be differences in the costs of

serving customers of different classes from facilities of different classes. Therefore,

customer serving cost is calculated as,

cikjl = distij ∗ ρkl (9.1)

where distij is the distance between facility i and customer j, ρkl is a random multiplier

generated from normal distribution with mean 6 and standard deviation 4. These

values are selected arbitrarily. When normal distribution is used, it may be possible

53

that negative values can exist. Since negative cost values are meaningless, the random

number generation is repeated until positive values are obtained.

The fixed cost of opening a facility fik is obtained in a manner analogous to that

process of determination of ρkl. It is randomly generated from a normal distribution

with mean 500 and standard deviation 180. Again the values are selected arbitrarily.

Locations of customers and facilities are generated uniformly from range (0,10).

Demands of customers are drawn in the same way but in the range (5,50) and rounded

down to the greatest integer. The capacities of facilities are obtained uniformly in the

range,

(⌊
5JLq

I

⌋
,

⌊
50JLq

I

⌋)
(9.2)

which is similar to the range proposed by Cortinhal and Captivo [15]. Here J is the

number of customer locations, L is the number of customer classes, I is the number of

potential facility locations, and q is a ratio. Facility capacities are also rounded to the

greatest integer.

We generate 41 test problems with q = 0.9, 1.0, 1.1, 1.2. For each instance the

number of candidate facility locations I, the number of facility classes K, the number

of customers J , and the number of customer classes L are given in Table 9.1. We try

to solve the test problems to optimality using CPLEX 10.1 solver through the instru-

mentality of GAMS 22.2 interface. Unfortunately, CPLEX is not able to solve all test

problems to optimality in our computational environment because of memory limita-

tions. In such cases, the problems are solved with small relative optimality criterion

(relative tolerance) ϑ. We present optimal or near optimal objective values, the num-

ber of nodes, relative tolerance ϑ, linear programming (LP) relaxation values, relative

percentage deviation of LP relaxation values from optimal objective values, and total

execution time (CPU time) of solved test instances in Table 9.1. We use the formula(
100opt - LP relax

opt
%

)
to denote relative percentage deviations of LP relaxation values.

54

Table 9.1: Optimal and linear programming (LP) relax-

ation results of the single-source test problems

Problem No I K J L opt. nodes CPU time ϑ (%) LP relax. CPU time dev. (%)

1 2 3 10 3 1628.32 10 0.17 0.00 1193.71 0.00 26.69

2 4 3 10 3 1471.80 20 0.17 0.00 1156.96 0.03 21.39

3 4 3 15 3 1634.33 0 0.03 0.00 1573.53 0.02 3.72

4 5 3 15 3 2216.81 100 0.23 0.00 2098.62 0.02 5.33

5 8 3 25 3 2601.80 652 1.06 0.00 2528.67 0.02 2.81

6 9 3 25 5 2586.41 376 1.69 0.00 2399.05 0.03 7.24

7 10 3 50 3 4409.81 6135 9.89 0.00 4183.70 0.05 5.13

8 10 4 50 5 5004.22 102203 435.70 2.80 4657.34 0.11 6.93

9 15 3 100 3 5010.65 16794 76.33 0.00 4674.28 0.13 6.71

10 25 4 100 5 6708.17 9800 274.93 0.06 6387.75 0.56 4.78

11 15 3 150 3 9152.76 20825 218.22 0.10 8915.96 0.17 2.59

12 25 4 150 5 9476.45 5200 273.10 0.04 9274.21 0.86 2.13

13 15 3 200 3 7753.82 55200 449.02 0.05 7327.80 0.27 5.49

14 25 4 200 5 11808.78 9376 469.81 0.05 11412.85 1.14 3.35

15 15 3 250 3 9543.55 24101 289.96 0.00 9064.91 0.31 5.02

16 25 4 250 5 12979.69 18669 1819.78 0.09 12089.60 1.42 6.86

17 15 3 300 3 9175.17 112 32.83 0.00 8343.88 0.31 9.06

18 25 4 300 5 12032.67 5080 745.61 0.04 11086.43 2.22 7.86

19 15 3 400 3 9698.17 69714 3365.71 0.00 8944.99 0.59 7.77

20 25 4 400 5 16885.40 13800 2326.83 0.04 15775.98 3.88 6.57

21 15 3 500 3 13537.65 4400 149.71 0.01 12606.51 0.80 6.88

22 25 4 500 5 27491.55 3255 1537.75 0.03 25339.85 2.84 7.83

23 15 3 600 3 16712.14 5000 272.10 0.01 15476.59 0.97 7.39

24 25 4 600 5 15436.26 3000 2287.08 0.04 14153.83 9.27 8.31

Continued on Next Page. . .

55

P
r
o
b
le

m
N

o
I

K
J

L
o
p
t.

n
o
d
e
s

C
P

U
ti

m
e

ϑ
(%

)
L
P

r
e
la

x
.

C
P

U
ti

m
e

d
e
v
.

(%
)

2
5

1
5

3
7
0
0

3
1
9
7
8
8
.9

7
3
2
0
4

1
6
0
.0

5
0
.0

0
1
7
7
2
3
.7

4
0
.7

2
1
0
.4

4

2
6

2
5

4
7
0
0

5
2
3
3
2
6
.1

7
1
2
0
0

1
7
3
1
.4

1
0
.0

1
2
0
7
5
5
.6

9
3
.9

1
1
1
.0

2

2
7

2
0

3
5
0
0

3
1
4
5
3
1
.9

7
2
4
4
0
0

2
8
6
2
.1

9
0
.0

4
1
3
4
1
5
.0

9
1
.0

9
7
.6

9

2
8

3
0

4
5
0
0

5
1
9
8
0
6
.3

8
7
8
2
9

7
4
1
6
.4

7
0
.0

7
1
8
3
5
3
.1

8
4
.9

1
7
.3

4

2
9

2
0

3
5
5
0

3
1
3
3
8
3
.9

4
1
4
1
1

1
8
0
.6

8
0
.0

1
1
2
6
9
5
.9

5
2
.2

0
5
.1

4

3
0

3
0

4
5
5
0

5
2
5
8
4
3
.9

6
1
2
3
2
5

1
5
0
2
5
.4

3
0
.0

4
2
2
3
5
6
.1

9
3
.6

1
1
3
.5

0

3
1

2
0

3
6
0
0

3
1
5
2
7
7
.3

7
2
0
0
0

5
2
6
.8

9
0
.0

2
1
3
9
2
4
.1

5
1
.5

3
8
.8

6

3
2

3
0

4
6
5
0

5
3
2
0
9
9
.2

0
8
2
2
0

9
7
5
0
.0

0
0
.2

0
2
9
8
9
7
.3

2
4
.8

4
6
.8

6

3
3

2
0

3
7
0
0

3
2
0
0
7
9
.4

8
3
8
0
0

3
6
3
.3

4
0
.0

2
1
9
0
8
9
.5

1
1
.3

0
4
.9

3

3
4

3
0

4
7
5
0

5
2
4
4
1
5
.8

4
6
0
0

2
9
6
3
.7

6
0
.0

2
2
2
1
5
3
.0

7
6
.5

0
9
.2

7

3
5

2
0

3
8
0
0

3
1
6
3
1
2
.9

8
2
6
4
4

1
7
8
0
.8

8
0
.0

1
1
5
4
0
1
.2

9
4
.0

8
5
.5

9

3
6

3
0

4
8
5
0

5
2
1
9
9
3
.0

4
4
1
6
2

8
1
2
3
.5

3
0
.0

2
2
1
0
5
8
.8

3
1
7
.9

2
4
.2

5

3
7

2
0

3
9
0
0

3
1
7
9
0
4
.2

3
1
0
7
0

9
3
2
.7

5
0
.0

2
1
5
4
2
2
.2

4
1
.4

5
1
3
.8

6

3
8

3
0

4
9
5
0

5
2
3
4
1
7
.2

7
6
4
0
0

2
4
4
1
6
.1

8
0
.0

3
2
0
5
8
7
.5

0
2
1
.2

7
1
2
.0

8

3
9

2
0

3
1
0
0
0

3
2
8
1
7
6
.5

6
1
8
3
5
9

4
6
5
1
.9

2
0
.0

7
2
6
7
4
7
.6

8
2
.2

8
5
.0

7

4
0

3
0

4
1
0
5
0

5
3
0
5
4
0
.4

2
5
4
2
1

1
4
2
5
5
.2

5
0
.0

3
2
7
7
4
8
.6

7
9
.0

9
9
.1

4

4
1

4
0

4
1
4
0
0

5
4
8
0
4
4
.2

5
4
4
9
9

6
8
6
0
5
.6

7
0
.2

2
4
2
5
7
7
.9

5
1
5
.5

5
1
1
.3

8

A
v
e
r
a
g
e

4
3
6
0
.5

9
3
.1

3
7
.9

1

56

Since the relative tolerances are very small except problem 8, it can be said that

the solutions found are optimal values or very close to them. The test problems are

solved in 4360.59 seconds on the average and LP relaxation gives bounds with average

deviation of 7.91% from optimal values. The results in Table 9.1 are used as a reference

in the rest of the study.

9.1.2. Performances of the Proposed Methods

In this section, we compare experimentally our Lagrangean heuristic results with

the results provided by CPLEX both in terms of solution quality and execution time

efficiency on a number of test instances. The initial value of step length parameter μ

of the subgradient algorithm is initialized to 2 for classical subgradient method and

volume algorithm. Since, the step length parameter should be in the interval (0, 1)

for the deflected subgradient method, it is initialized to 1 if deflected method is used.

When there is no improvement in the lower bound after a sequence of 20 iterations, μ is

halved if we use classical and deflected subgradient methods. In the volume algorithm,

the step length parameter is updated using a different procedure which is explained

clearly in Section 5.2. All three algorithms stop when μ gets below 0.005. Camerini

et al. [11] suggest to initialize τ , a coefficient used to calculate deflection parameter,

to 1.5 in the deflected subgradient method. Therefore, we use this value in all our

experiments. Barahona and Anbil [3] propose two methods to determine the value of

coefficient β, which is used to take the convex combination of Lagrangean subproblem

solutions. One method is to fix it to a value for a number of iterations and then

decrease. The other method is to find the values by solving a non-linear programming

problem. The details of this suggestions can be found in Section 5.2. We prefer to

use the first method instead of solving the given problem. However, the constraint of

the suggested problem is taken into consideration during the initialization and update

procedure. The value of β is initialized to 0.1, and after every 100 iterations it is

checked whether the lower bound has increased by at least 1 %, if not β is divided by

2. When β becomes less than 10−5, it is kept constant.

Table 9.2: Results for the single-source test problems:

Lagrangean heuristic with classical subgradient optimiza-

tion

Classical Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

1 1628.32 1298.77 1650.38 20.24 1.35 0

2 1471.80 1196.43 1676.14 18.71 13.88 0

3 1634.33 1612.17 1634.33 1.36 0.00 1

4 2216.81 2141.74 2549.72 3.39 15.02 0

5 2601.80 2612.95 2610.04 -0.43 0.32 1

6 2586.41 2549.55 2664.02 1.43 3.00 2

7 4409.81 4394.49 4438.31 0.35 0.65 3

8 5004.22 4827.44 5123.52 3.53 2.38 10

9 5010.65 5016.57 5106.05 -0.12 1.90 19

10 6708.17 6643.57 6786.04 0.96 1.16 117

11 9152.76 9109.65 9302.92 0.47 1.64 36

12 9476.45 9450.47 9787.41 0.27 3.28 202

13 7753.82 7724.94 8021.65 0.37 3.45 58

14 11808.78 11774.16 11902.90 0.29 0.80 306

15 9543.55 9500.87 9596.75 0.45 0.56 84

16 12979.69 12943.32 13338.55 0.28 2.76 603

17 9175.17 9156.60 9192.99 0.20 0.19 125

18 12032.67 12008.54 12208.46 0.20 1.46 752

19 9698.17 9661.70 10052.34 0.38 3.65 200

20 16885.40 16854.78 17493.82 0.18 3.60 1540

21 13537.65 13522.66 13560.65 0.11 0.17 328

22 27491.55 27472.44 28023.36 0.07 1.93 2118

23 16712.14 16632.49 16800.46 0.48 0.53 483

24 15436.26 15416.26 15979.20 0.13 3.52 4393

25 19788.97 19789.99 19789.94 -0.01 0.00 722

26 23326.17 23321.52 23348.65 0.02 0.10 5707

27 14531.97 14389.13 14859.84 0.98 2.26 499

28 19806.38 19715.11 20346.30 0.46 2.73 2957

29 13383.94 13310.17 13566.87 0.55 1.37 551

30 25843.96 25755.70 26323.84 0.34 1.86 3349

Continued on Next Page. . .

58

Classical Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

31 15277.37 15250.32 15384.29 0.18 0.70 680

32 32099.20 32026.12 32429.82 0.23 1.03 6074

33 20079.48 20021.46 20127.82 0.29 0.24 932

34 24415.84 24403.64 24521.88 0.05 0.43 7569

35 16312.98 16141.96 16525.90 1.05 1.31 1744

36 21993.04 21941.99 22083.27 0.23 0.41 9416

37 17904.23 17899.96 18018.52 0.02 0.64 1642

38 23417.27 23389.69 23681.27 0.12 1.13 10367

39 28176.56 28066.48 28286.97 0.39 0.39 1647

40 30540.42 30517.82 30656.21 0.07 0.38 14813

41 48044.25 47900.42 49044.23 0.30 2.08 40742

Average 1.56 2.06 2946.15

During the interpretation of all results we use LB and UB to denote lower and

upper bounds respectively, and opt to denote the optimal or near optimal objective

values of the test problems. The percentage deviations of lower and upper bounds

from the optimal values are calculated as
(
100opt - LB

opt
%

)
and

(
100opt - UB

opt
%

)
respec-

tively. Table 9.2 presents the results of Lagrangean heuristic with classical subgradient

optimization. Notice that, for some problem instances the obtained lower bound is

greater than the optimal value. This is because, in our Lagrangean heuristic we find a

feasible solution for our subproblems instead of solving them to optimality or solving

their LP relaxations. These problem instances are discarded when average deviations

of lower bounds are calculated. On the average, lower bound deviation is around 1.6%

which is a clear indication of the lower bound qualities. Except the problems 1 and 2,

lower bound deviation is less than 3.53% for all test problems. In addition, the average

deviations of upper bounds is around 2.1%. Futhermore, discarding the problems 2

and 4 upper bounds deviate less than 3.65%.

The results of the deflected subgradient optimization method are given in Table

9.3. The average deviations obtained do not differ much from the ones obtained by us-

ing the classical subgradient method. Discarding the same problems as in the previous

paragraph, lower bound and upper bound deviations are less than 3.51% and 4.34%

59

respectively for all test problems. It can be said that both classical and deflected sub-

gradient optimization methods provide good bounds. Although classical method solves

the test problems in 2946.15 seconds on the average, deflected one solves in 2359.71

seconds. However, since bounds given by the classical method are slightly tighter we

cannot say that one method is better than the other for our single-source problem.

Table 9.3: Results for the single-source test problems:

Lagrangean heuristic with deflected subgradient opti-

mization

Deflected Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

1 1628.32 1300.00 1650.38 20.16 1.35 0

2 1471.80 1191.46 1676.14 19.05 13.88 0

3 1634.33 1614.42 1634.33 1.22 0.00 0

4 2216.81 2139.83 2556.35 3.47 15.32 1

5 2601.80 2613.12 2614.35 -0.43 0.48 0

6 2586.41 2548.89 2667.76 1.45 3.14 2

7 4409.81 4393.02 4448.84 0.38 0.89 3

8 5004.22 4828.65 5118.74 3.51 2.29 8

9 5010.65 5014.96 5135.93 -0.09 2.50 17

10 6708.17 6644.60 6786.59 0.95 1.17 83

11 9152.76 9105.76 9307.51 0.51 1.69 29

12 9476.45 9449.69 9800.05 0.28 3.41 201

13 7753.82 7721.92 8013.73 0.41 3.35 53

14 11808.78 11774.83 11899.06 0.29 0.76 367

15 9543.55 9500.69 9591.55 0.45 0.50 91

16 12979.69 12942.12 13421.90 0.29 3.41 559

17 9175.17 9156.50 9190.24 0.20 0.16 109

18 12032.67 12008.77 12208.68 0.20 1.46 957

19 9698.17 9660.77 10049.60 0.39 3.62 218

20 16885.40 16853.55 17617.43 0.19 4.34 1721

21 13537.65 13523.18 13559.11 0.11 0.16 386

22 27491.55 27470.77 28010.64 0.08 1.89 2203

23 16712.14 16631.63 16799.06 0.48 0.52 454

Continued on Next Page. . .

60

Deflected Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

24 15436.26 15416.16 15980.61 0.13 3.53 3698

25 19788.97 19790.09 19794.03 -0.01 0.03 649

26 23326.17 23321.51 23347.59 0.02 0.09 4808

27 14531.97 14389.09 14800.81 0.98 1.85 430

28 19806.38 19714.97 20272.57 0.46 2.35 2533

29 13383.94 13310.45 13570.75 0.55 1.40 611

30 25843.96 25754.33 26390.35 0.35 2.11 3267

31 15277.37 15251.01 15407.74 0.17 0.85 705

32 32099.20 32024.53 32494.28 0.23 1.23 4348

33 20079.48 20021.13 20143.45 0.29 0.32 1045

34 24415.84 24403.77 24515.17 0.05 0.41 6603

35 16312.98 16140.61 16521.17 1.06 1.28 1086

36 21993.04 21943.07 22084.23 0.23 0.41 6821

37 17904.23 17900.25 17990.64 0.02 0.48 1700

38 23417.27 23390.51 23796.79 0.11 1.62 7679

39 28176.56 28067.17 28301.90 0.39 0.44 1640

40 30540.42 30518.14 30680.35 0.07 0.46 12283

41 48044.25 47898.09 49144.02 0.30 2.29 29380

Average 1.57 2.13 2359.71

On the other hand, volume algorithm does not provide bounds as good as ones

given by deflected and classical subgradient methods. From Table 9.4, it is observed

that average deviations of lower bounds and upper bounds from the optimal values are

1.67% and 2.52% respectively. In addition, this method solves the test problems on the

average in 5062.29 seconds which is much larger than the time required for the other

two methods.

Our Lagrangean heuristics with three different subgradient methods give good

bounds in reasonable execution time. Furthermore, the obtained lower bounds are

tighter than the lower bounds given by LP relaxations for all test problems. However,

it can be noticed that total execution time of CPLEX is better than the execution

time of the Lagrangean heuristic with volume algorithm. On the other hand, although

61

the heuristics using the classical and deflected subgradient optimization methods solve

some of the test problems in an execution time larger than that of CPLEX, on the

average both methods require less time than CPLEX in order to solve all test problems.

The bounds given by deflected subgradient method are as good as the bounds

given by classical method. For some problem instances, classical subgradient optimiza-

tion requires less time than deflected subgradient optimization. However, deflected

subgradient method solves all test problems in less average execution time than other

methods. Therefore, taking the average execution time into consideration, Lagrangean

heuristic with deflected subgradient optimization method seems more preferable than

our other heuristics.

Table 9.4: Results for the single-source test problems:

Lagrangean heuristic with volume algorithm

Volume Algorithm

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

1 1628.32 1286.06 1650.38 21.02 1.35 0

2 1471.80 1185.03 1583.23 19.48 7.57 0

3 1634.33 1611.83 1634.33 1.38 0.00 0

4 2216.81 2137.01 2538.18 3.60 14.50 1

5 2601.80 2618.07 2616.77 -0.63 0.58 1

6 2586.41 2541.65 2706.71 1.73 4.65 3

7 4409.81 4376.67 4464.64 0.75 1.24 4

8 5004.22 4814.31 5133.76 3.80 2.59 14

9 5010.65 4995.54 5232.76 0.30 4.43 30

10 6708.17 6636.74 6793.56 1.06 1.27 200

11 9152.76 9083.53 9313.28 0.76 1.75 61

12 9476.45 9433.85 9804.27 0.45 3.46 348

13 7753.82 7689.37 8242.33 0.83 6.30 115

14 11808.78 11760.18 11989.93 0.41 1.53 695

15 9543.55 9487.89 9595.02 0.58 0.54 178

16 12979.69 12907.46 13512.31 0.56 4.10 1033

17 9175.17 9152.59 9191.77 0.25 0.18 234

Continued on Next Page. . .

62

Volume Algorithm

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

18 12032.67 11993.10 12202.45 0.33 1.41 1750

19 9698.17 9639.87 10011.78 0.60 3.23 474

20 16885.40 16757.18 17952.08 0.76 6.32 3206

21 13537.65 13520.24 13561.90 0.13 0.18 743

22 27491.55 27431.13 28683.26 0.22 4.33 4043

23 16712.14 16613.18 16841.81 0.59 0.78 1258

24 15436.26 15367.80 16350.07 0.44 5.92 10515

25 19788.97 19789.41 19810.08 0.00 0.11 1548

26 23326.17 23316.60 23397.82 0.04 0.31 7310

27 14531.97 14371.95 14777.17 1.10 1.69 888

28 19806.38 19686.90 20480.13 0.60 3.40 5188

29 13383.94 13287.05 13590.11 0.72 1.54 2026

30 25843.96 25722.42 26755.22 0.47 3.53 6173

31 15277.37 15238.11 15422.22 0.26 0.95 1730

32 32099.20 31991.77 32716.52 0.33 1.92 8203

33 20079.48 20013.02 20205.22 0.33 0.63 1738

34 24415.84 24392.83 24593.24 0.09 0.73 11556

35 16312.98 16104.68 16513.36 1.28 1.23 3419

36 21993.04 21936.22 22097.48 0.26 0.47 19210

37 17904.23 17884.65 18186.27 0.11 1.58 2962

38 23417.27 23362.67 23703.20 0.23 1.22 30675

39 28176.56 28052.07 28315.78 0.44 0.49 3549

40 30540.42 30495.62 31189.60 0.15 2.13 23723

41 48044.25 47793.60 49635.31 0.52 3.31 52750

Average 1.67 2.52 5062.29

9.2. Multi-Source Problem

9.2.1. Test Bed

The test problems are generated randomly in a way analogous to that of single-

source problem. Customer serving costs cikjl, fixed costs of opening a facility fik,

demands of customers djl, capacities of facilities sik, locations of customers and facilities

63

are obtained using the same distributions and formulations proposed for the single-

source problem. The parameter q representing the ratio of the total supply to total

demand is taken q = 0.8, 0.9, 1.0, 1.1, 1.2. In the multi-source problem, we include fixed

costs of serving a customer gikjl. These costs are generated from normal distribution

with mean 5 and standard deviation 10 and again negative numbers are discarded.

Mean and standard deviation are selected arbitrarily. We generate 40 test problems.

A strong formulation to our multi-source problem is obtained by modifying the

constraints (3.9) as follows:

J∑
j=1

L∑
l=1

djlxikjl ≤ sikvik i = 1,...,I, k = 1,...,K (9.3)

This strong formulation has the same number of constraints with the formulation P2.

Therefore, tighter LP relaxation bounds are obtained without increasing the number of

constraints. The solutions found using the weak formulation P2 and strong formulation

are given in Table 9.5 and Table 9.6 respectively. In Table 9.6, the test problems are

solved with small relative tolerances ϑ so the obtained solutions are very close to the

optimal solutions. Therefore, these solutions are taken as reference when calculating

the deviations of upper and lower bounds given by our Lagrangean heuristics. We use

both time and relative tolerance limitations when solving the test problems using the

weak formulation. For each problems, the time limitation for CPLEX is set to a time

larger than the execution time of our Lagrangean heuristic with classical subgradient

optimization. The time limitation is three hours for 34th and 36th problems, five hours

for 38th and 40th problems, two hours for the rest. The relative tolerance limitation

is taken 0.1 % for all test problems. Because of these limitations, the given objective

values are not generally close to the optimal values and they represent an upper bound.

The notation used in Table 9.6 is same as the notation in Table 9.1. In Table 9.5 a

similar notation is used but in this case instead of relative tolerances, deviations of

upper bounds from optimal solutions are indicated. In addition the deviations of lower

bounds obtained by LP relaxation are calculated using the near optimal values given

in Table 9.6. N/A indicates not available and is used when a solution is not found.

64

Table 9.5: Optimal and linear programming (LP) relax-

ation results of the multi-source test problems: weak for-

mulation

Problem No I K J L UB nodes CPU time UB dev. (%) LP relax. CPU time LB dev. (%)

1 2 3 10 3 2593.30 14 1.47 0.00 2150.43 0.02 17.08

2 4 3 10 3 2536.55 716 1.83 0.00 1391.03 0.06 45.16

3 4 3 15 3 2474.96 176 1.73 0.00 1889.13 0.05 23.67

4 5 3 15 3 2653.38 5342 11.08 0.03 1578.98 0.06 40.47

5 8 3 25 3 3258.91 88585 423.25 0.00 2358.45 0.14 27.63

6 9 3 25 5 4791.05 525001 7200.11 0.00 3918.43 0.27 18.21

7 10 3 50 3 6138.90 23791 7200.13 0.06 4056.33 0.36 33.88

8 10 4 50 5 7358.29 16474 7200.19 4.60 5024.93 1.44 28.57

9 15 3 100 3 8921.66 27801 7200.77 0.09 7898.81 1.66 11.39

10 25 4 100 5 11223.06 1226 7201.03 10.11 8174.01 17.52 19.80

11 15 3 150 3 9630.25 7200 7200.39 2.77 7598.02 4.59 18.92

12 25 4 150 5 N/A N/A 7200.00 N/A 13863.82 37.42 18.66

13 15 3 200 3 13657.31 6955 7200.55 1.27 12033.95 5.44 10.77

14 25 4 200 5 19389.58 430 7203.14 4.60 17470.56 37.69 5.75

15 15 3 250 3 14188.15 3726 7200.80 6.76 11659.17 10.70 12.27

16 25 4 250 5 N/A N/A 7200.00 N/A 19520.74 64.14 12.45

17 15 3 300 3 17999.92 3200 7200.81 5.04 16025.65 9.05 6.48

18 25 4 300 5 35330.98 260 7204.34 42.98 23816.71 80.48 3.62

19 15 3 400 3 16072.29 1482 7201.70 1.16 14457.08 18.05 9.00

20 25 4 400 5 41155.53 80 7205.41 52.30 24937.26 181.86 7.72

21 15 3 500 3 25519.09 9997 7201.89 0.27 24486.94 19.19 3.79

22 25 4 500 5 56970.33 233 7205.41 37.86 39146.21 166.91 5.27

23 15 3 600 3 24251.62 4516 7203.17 0.25 23580.95 31.88 2.52

Continued on Next Page. . .

65

P
r
o
b
le

m
N

o
I

K
J

L
U

B
n
o
d
e
s

C
P

U
ti

m
e

U
B

d
e
v
.

(%
)

L
P

r
e
la

x
.

C
P

U
ti

m
e

L
B

d
e
v
.

(%
)

2
4

2
5

4
6
0
0

5
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

4
0
9
8
9
.9

7
4
6
6
.5

2
5
.9

6

2
5

1
5

3
7
0
0

3
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

3
3
6
3
2
.7

9
4
4
.3

0
7
.2

1

2
6

2
5

4
7
0
0

5
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

4
8
9
5
7
.6

7
5
5
5
.7

8
3
.5

1

2
7

2
0

3
5
0
0

3
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

2
7
4
8
1
.5

3
3
2
.1

7
6
.7

4

2
8

3
0

4
5
0
0

5
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

3
5
8
9
0
.8

2
3
5
9
.5

3
4
.5

1

2
9

2
0

3
5
5
0

3
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

2
6
9
4
2
.7

4
5
5
.9

1
1
0
.9

5

3
0

3
0

4
5
5
0

5
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

3
6
7
0
2
.0

9
6
9
8
.5

3
1
0
.4

7

3
1

2
0

3
6
0
0

3
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

2
9
4
9
1
.1

7
5
6
.8

8
9
.1

3

3
2

3
0

4
6
5
0

5
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

4
5
6
6
8
.0

4
7
2
0
.1

4
6
.2

1

3
3

2
0

3
7
0
0

3
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

2
4
2
9
9
.4

0
9
7
.6

9
7
.3

2

3
4

3
0

4
7
5
0

5
7
1
2
5
0
.3

5
5
2

1
0
8
1
1
.0

8
3
3
.8

2
5
1
2
5
2
.9

1
6
2
3
.6

7
3
.7

4

3
5

2
0

3
8
0
0

3
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

3
0
4
4
1
.2

9
9
1
.4

7
1
0
.5

2

3
6

3
0

4
8
5
0

5
N

/
A

N
/
A

1
0
8
0
0
.0

0
2
4
.9

2
5
8
8
1
4
.6

6
8
4
4
.9

7
3
.2

1

3
7

2
0

3
9
0
0

3
5
2
0
4
4
.4

6
3
6
8

7
2
0
7
.6

2
2
2
.8

9
4
1
1
4
8
.6

2
1
3
4
.9

9
2
.8

4

3
8

3
0

4
9
5
0

5
N

/
A

N
/
A

1
8
0
0
0
.0

0
N

/
A

4
9
3
1
4
.6

9
1
5
3
6
.0

4
N

/
A

3
9

2
0

3
1
0
0
0

3
N

/
A

N
/
A

7
2
0
0
.0

0
N

/
A

3
6
7
3
7
.9

7
1
3
4
.4

4
3
.8

2

4
0

3
0

4
1
0
5
0

5
N

/
A

N
/
A

1
8
0
0
0
.0

0
N

/
A

6
4
6
1
8
.3

7
1
7
1
8
.6

1
N

/
A

A
v
e
r
a
g
e

7
0
3
2
.2

0
1
0
.4

9
2
2
1
.5

1
1
2
.6

1

66

Table 9.6: Optimal and linear programming (LP) relax-

ation results of the multi-source test problems: strong

formulation

Problem No I K J L opt. nodes CPU time ϑ (%) LP relax. CPU time dev. (%)

1 2 3 10 3 2593.30 3 0.28 0.00 2533.35 0.02 2.31

2 4 3 10 3 2536.55 297 0.59 0.00 2450.55 0.03 3.39

3 4 3 15 3 2474.88 176 0.98 0.00 2402.42 0.03 2.93

4 5 3 15 3 2652.60 144 0.50 0.00 2562.63 0.03 3.39

5 8 3 25 3 3258.91 1795 9.75 0.00 3195.34 0.11 1.95

6 9 3 25 5 4791.05 5057 31.80 0.00 4749.98 0.14 0.86

7 10 3 50 3 6135.25 5074 42.97 0.00 5969.77 0.14 2.70

8 10 4 50 5 7034.60 100663 1584.16 0.07 6913.55 2.70 1.72

9 15 3 100 3 8913.91 1780492 111576.06 0.00 8824.62 3.92 1.00

10 25 4 100 5 10192.34 39000 10727.27 0.09 10161.48 33.48 0.30

11 15 3 150 3 9370.70 35937 2105.72 0.05 9292.93 6.69 0.83

12 25 4 150 5 17045.17 20200 15757.73 0.12 16926.85 78.98 0.69

13 15 3 200 3 13485.98 25000 2697.44 0.04 13464.29 8.41 0.16

14 25 4 200 5 18536.19 14800 21518.85 0.05 18428.85 86.22 0.58

15 15 3 250 3 13289.75 9600 2925.16 0.04 13190.47 15.06 0.75

16 25 4 250 5 22297.18 11800 10630.58 0.06 22228.30 178.28 0.31

17 15 3 300 3 17135.98 15775 4802.70 0.03 17043.83 17.39 0.54

18 25 4 300 5 24710.56 16372 59460.75 0.06 24592.78 222.38 0.48

19 15 3 400 3 15887.65 2400 1951.00 0.03 15823.64 22.05 0.40

20 25 4 400 5 27023.27 19650 140178.93 0.67 26682.77 576.28 1.26

21 15 3 500 3 25451.22 79649 39110.81 0.04 25280.50 48.53 0.67

22 25 4 500 5 41323.99 12200 50022.53 0.03 41198.85 408.86 0.30

23 15 3 600 3 24191.27 33580 12934.28 0.03 23953.63 51.59 0.98

Continued on Next Page. . .

67

P
r
o
b
le

m
N

o
I

K
J

L
o
p
t.

n
o
d
e
s

C
P

U
ti

m
e

ϑ
(%

)
L
P

r
e
la

x
.

C
P

U
ti

m
e

d
e
v
.

(%
)

2
4

2
5

4
6
0
0

5
4
3
5
8
9
.2

4
2
4
4
9
4

2
3
2
0
0
0
.8

3
0
.1

2
4
3
1
4
5
.0

2
1
1
0
5
.8

3
1
.0

2

2
5

1
5

3
7
0
0

3
3
6
2
4
7
.7

1
2
6
0
0

3
1
1
3
.4

1
0
.0

2
3
6
1
5
9
.3

6
1
6
1
.7

0
0
.2

4

2
6

2
5

4
7
0
0

5
5
0
7
3
8
.0

4
1
3
4
8
3

1
1
8
9
4
6
.6

7
1
.7

0
4
9
7
8
1
.3

7
9
2
4
.0

9
1
.8

9

2
7

2
0

3
5
0
0

3
2
9
4
6
8
.3

0
3
8
2
4
0

4
2
1
8
6
.3

0
0
.0

6
2
9
3
4
9
.5

9
1
1
4
.7

3
0
.4

0

2
8

3
0

4
5
0
0

5
3
7
5
8
4
.0

4
9
7
0
9

3
3
9
6
2
.4

7
0
.1

3
3
7
4
3
9
.3

9
6
7
9
.8

6
0
.3

8

2
9

2
0

3
5
5
0

3
3
0
2
5
6
.8

5
3
8
0
0

5
5
1
4
.9

4
0
.0

3
3
0
1
5
3
.6

9
2
0
4
.9

4
0
.3

4

3
0

3
0

4
5
5
0

5
4
0
9
9
2
.1

4
4
0
0

7
9
7
2
.5

2
0
.1

3
4
0
9
3
6
.4

0
1
1
5
1
.5

9
0
.1

4

3
1

2
0

3
6
0
0

3
3
2
4
5
3
.0

2
8
2
8
9

8
6
4
5
.3

8
0
.0

4
3
2
4
1
7
.9

6
1
9
2
.0

7
0
.1

1

3
2

3
0

4
6
5
0

5
4
8
6
9
3
.8

3
4
8
8
2

8
4
4
5
2
.9

7
0
.1

4
4
8
3
7
7
.7

7
2
4
6
4
.0

5
0
.6

5

3
3

2
0

3
7
0
0

3
2
6
2
1
8
.9

2
2
3
8
7
5

7
1
1
7
2
.3

8
0
.0

3
2
6
1
5
0
.7

9
2
8
2
.1

3
0
.2

6

3
4

3
0

4
7
5
0

5
5
3
2
4
2
.9

6
2
2
0
0

5
2
7
9
6
.4

7
1
.0

0
5
2
5
0
4
.5

2
2
1
4
4
.2

4
1
.3

9

3
5

2
0

3
8
0
0

3
3
4
0
1
8
.6

1
2
1
6
4
6

3
0
0
3
1
.1

9
0
.5

0
3
3
8
0
2
.4

0
2
2
8
.5

0
0
.6

4

3
6

3
0

4
8
5
0

5
6
0
7
6
2
.7

5
0

6
4
1
1
.5

5
0
.9

0
6
0
2
7
2
.6

4
1
3
8
1
.7

5
0
.8

1

3
7

2
0

3
9
0
0

3
4
2
3
4
9
.6

4
2
6
8
0

1
0
6
4
0
.8

3
0
.2

3
4
2
2
1
3
.5

6
2
2
7
.9

6
0
.3

2

3
8

3
0

4
9
5
0

5
N

/
A

N
/
A

N
/
A

N
/
A

5
2
8
5
9
.6

4
4
0
8
9
.4

2
N

/
A

3
9

2
0

3
1
0
0
0

3
3
8
1
9
7
.4

8
1
0
0
4
1

1
0
8
0
4
.7

3
3
.8

0
3
8
1
0
3
.7

0
2
7
5
.9

5
0
.2

5

4
0

3
0

4
1
0
5
0

5
N

/
A

N
/
A

N
/
A

N
/
A

6
7
9
0
4
.7

9
4
8
9
6
.7

8
N

/
A

A
v
e
r
a
g
e

3
1
7
5
5
.8

8
5
5
7
.1

7
0
.9

8

68

From Tables 9.5 and 9.6, we can see that the good lower bounds are given by

strong formulation and they are strictly tighter than the ones given by weak for-

mulation. Furthermore, CPLEX requires less time when solving the problems with

strong formulation. Because of the time limitation used in solving weak formulations

a comparison is not possible for all problems. However looking at the first eight and

11th, 13th, 15th, 17th, 19th problems, we can see the decrease in execution time clearly.

It is seen from Table 9.6 that although strong formulation is used, CPLEX is not able

to find a solution for 38th and 40th problems.

9.2.2. Performances of the Proposed Methods

We propose two different solution procedures for our multi-source problem. We

obtain bounds for optimal solutions using a Lagrangean relaxation based solution pro-

cedure which is similar to the method proposed for the single-source problem. In ad-

dition, we try to obtain optimal solutions by an exact solution method called Benders’

decomposition.

In our Lagrangean heuristic, we again use the classical subgradient optimization,

deflected subgradient optimization and volume algorithm. We will not mention the

initialization and parameter update procedures of the subgradient methods since the

same procedures used for the single-source problem are utilized for the multi-source

problem.

Considering the results in Table 9.7, the average deviations of lower and upper

bounds from the optimal solutions are respectively 0.79% and 1.44%, which are clear

indications of the qualities of bounds obtained using classical subgradient optimiza-

tion method. In addition, lower bounds do not deviate more than 2.68% for all test

problems. The maximum deviation of upper bounds is 3%.

From Table 9.8, it is observed that although deflected subgradient optimization

method provides good bounds, in general the upper bounds are not as tight as the upper

bounds given by the classical subgradient method. On the average the method provides

69

a lower bound deviation of 0.8% and upper bound deviation of 1.59%. Futhermore,

the maximum deviations are 2.83% and 3.77% for lower bounds and upper bounds

respectively.

Table 9.7: Results for the multi-source test problems:

Lagrangean heuristic with classical subgradient optimiza-

tion

Classical Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

1 2593.30 2544.54 2593.30 1.88 0.00 0

2 2536.55 2468.49 2548.49 2.68 0.47 0

3 2474.88 2416.05 2484.14 2.38 0.37 1

4 2652.60 2592.20 2710.33 2.28 2.18 0

5 3258.91 3218.05 3342.53 1.25 2.57 0

6 4791.05 4771.10 4808.60 0.42 0.37 1

7 6135.25 6024.99 6156.51 1.80 0.35 3

8 7034.60 6929.95 7173.18 1.49 1.97 12

9 8913.91 8851.10 9049.43 0.70 1.52 18

10 10192.34 10187.41 10493.95 0.05 2.96 94

11 9370.70 9317.95 9461.73 0.56 0.97 44

12 17045.17 16966.03 17288.90 0.46 1.43 180

13 13485.98 13479.26 13649.50 0.05 1.21 82

14 18536.19 18442.01 18775.81 0.51 1.29 464

15 13289.75 13214.22 13398.81 0.57 0.82 108

16 22297.18 22253.71 22808.04 0.19 2.29 546

17 17135.98 17053.36 17358.33 0.48 1.30 184

18 24710.56 24601.58 25151.40 0.44 1.78 1073

19 15887.65 15838.35 16098.88 0.31 1.33 226

20 27023.27 26689.48 27626.95 1.24 2.23 1642

21 25451.22 25284.10 25833.60 0.66 1.50 458

22 41323.99 41208.77 41835.85 0.28 1.24 2386

23 24191.27 23955.94 24385.45 0.97 0.80 552

24 43589.24 43148.02 44895.83 1.01 3.00 3497

25 36247.71 36175.86 36512.15 0.20 0.73 1083

26 50738.04 49776.25 51827.18 1.90 2.15 6075

Continued on Next Page. . .

70

Classical Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

27 29468.30 29368.07 29976.43 0.34 1.72 538

28 37584.04 37453.67 38235.14 0.35 1.73 2989

29 30256.85 30174.29 30692.74 0.27 1.44 707

30 40992.14 40969.73 41355.43 0.05 0.89 4029

31 32453.02 32451.81 32706.51 0.00 0.78 1104

32 48693.83 48383.84 49982.07 0.64 2.65 6393

33 26218.92 26159.51 26668.13 0.23 1.71 1205

34 53242.96 52501.34 54596.56 1.39 2.54 8622

35 34018.61 33831.34 34362.81 0.55 1.01 1589

36 60762.75 60269.95 61449.49 0.81 1.13 8936

37 42349.64 42218.91 42865.79 0.31 1.22 2816

38 N/A 52877.13 53218.19 N/A N/A 16310

39 38197.48 38103.85 38600.05 0.25 1.05 2312

40 N/A 67909.63 70621.09 N/A N/A 17070

Average 0.79 1.44 2333.73

Table 9.9 reveals that volume algorithm is not as successful as the other two

methods both in terms of solution quality and execution time, which is also the case

for the single-source problem. The average lower bound deviation is 0.99% and the

maximum lower bound deviation is 2.76%. The upper bounds deviate from the optimal

results on the average 2.36% whereas the maximum upper bound deviation is 5.6%.

Our Lagrangean heuristic with each subgradient method gives good bounds for

all problems in reasonable execution time. The average execution time is much more

smaller than the time required by CPLEX in all cases. In addition, on the average our

Lagrangean heuristics with classical and deflected subgradient optimizations provide

tighter bounds than the ones given in Table 9.5 although their execution times are less

than the time limits of CPLEX for all test problems. When average execution time is

considered, it can also be said that volume algorithm also provides better bounds than

CPLEX in less average time. Furthermore, it should be noted that CPLEX is not able

to find a solution for nearly one third of the problems with weak formulation in given

71

time limits. Among the three methods the volume algorithm is the least successful

method. When deflected subgradient method is used, a bit less time is required than

the classical subgradient method in order to solve all test problems. Average execution

times are 2333.73 and 1919.35 for the classical and deflected methods respectively. On

the other hand, the classical subgradient method gives tighter bounds.

Table 9.8: Results for the multi-source test problems: La-

grangean heuristic with deflected subgradient optimiza-

tion

Deflected Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

1 2593.30 2546.25 2593.30 1.81 0.00 0

2 2536.55 2464.81 2544.80 2.83 0.33 0

3 2474.88 2412.55 2489.02 2.52 0.57 1

4 2652.60 2595.04 2715.83 2.17 2.38 0

5 3258.91 3215.72 3356.81 1.33 3.00 1

6 4791.05 4767.99 4808.60 0.48 0.37 1

7 6135.25 6030.90 6146.80 1.70 0.19 3

8 7034.60 6936.04 7198.99 1.40 2.34 7

9 8913.91 8844.44 9055.21 0.78 1.59 11

10 10192.34 10187.79 10512.42 0.04 3.14 88

11 9370.70 9316.90 9466.98 0.57 1.03 33

12 17045.17 16965.26 17291.63 0.47 1.45 173

13 13485.98 13479.42 13687.48 0.05 1.49 52

14 18536.19 18438.90 18838.94 0.52 1.63 421

15 13289.75 13211.27 13393.82 0.59 0.78 85

16 22297.18 22251.37 22798.89 0.21 2.25 551

17 17135.98 17055.66 17319.71 0.47 1.07 124

18 24710.56 24600.86 25371.06 0.44 2.67 926

19 15887.65 15840.43 16019.48 0.30 0.83 178

20 27023.27 26686.34 27703.80 1.25 2.52 1655

21 25451.22 25282.69 26000.06 0.66 2.16 283

22 41323.99 41208.55 41864.69 0.28 1.31 2148

23 24191.27 23953.58 24419.82 0.98 0.94 448

Continued on Next Page. . .

72

Deflected Subgradient Optimization

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

24 43589.24 43145.69 45232.41 1.02 3.77 3014

25 36247.71 36175.39 36544.40 0.20 0.82 623

26 50738.04 49772.92 51957.18 1.90 2.40 4184

27 29468.30 29370.92 29945.47 0.33 1.62 555

28 37584.04 37449.83 38399.14 0.36 2.17 2127

29 30256.85 30172.32 30619.38 0.28 1.20 549

30 40992.14 40969.51 41389.85 0.06 0.97 3057

31 32453.02 32445.38 32818.96 0.02 1.13 886

32 48693.83 48383.20 50022.52 0.64 2.73 4895

33 26218.92 26157.73 26632.26 0.23 1.58 920

34 53242.96 52498.44 54267.49 1.40 1.92 7238

35 34018.61 33829.38 34599.86 0.56 1.71 1167

36 60762.75 60268.44 62022.21 0.81 2.07 8130

37 42349.64 42216.05 42900.10 0.32 1.30 1630

38 N/A 52872.39 53207.04 N/A N/A 12865

39 38197.48 38106.47 38582.15 0.24 1.01 2302

40 N/A 67903.73 71132.97 N/A N/A 15443

Average 0.80 1.59 1919.35

In the proposed Benders’ decomposition algorithm, the subproblems and the

master problem are solved to optimality at each iteration using the solver CPLEX

10.1. At each iteration whenever we obtain an extreme point cut, we solve the linear

program suggested by Magnanti and Wong in order to find a pareto-optimal cut. We

test this algorithm on first ten test problems and limit the execution time to two

hours on the average. The obtained upper and lower bounds are provided in Table

9.10. Although we are able to obtain optimal solutions for the first four problems,

comparing the results with Table 9.5 it is clear that the algorithm is not competitive

with CPLEX taking the execution time into consideration. Because a mixed-integer

programming problem (master problem) is solved to optimality at each iteration, the

overall computation time is large. The algorithm provides very loose bounds for 8th

and 8th problems and it is not able to find bounds for the 10th problem.

73

Table 9.9: Results for the multi-source test problems:

Lagrangean heuristic with volume algorithm

Volume Algorithm

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

1 2593.30 2543.75 2593.30 1.91 0.00 0

2 2536.55 2466.44 2546.04 2.76 0.37 0

3 2474.88 2408.38 2488.14 2.69 0.54 0

4 2652.60 2588.63 2716.97 2.41 2.43 0

5 3258.91 3202.88 3359.78 1.72 3.10 1

6 4791.05 4764.12 4809.72 0.56 0.39 3

7 6135.25 5999.43 6152.45 2.21 0.28 5

8 7034.60 6892.00 7315.51 2.03 3.99 16

9 8913.91 8826.40 9106.34 0.98 2.16 27

10 10192.34 10174.79 10499.51 0.17 3.01 161

11 9370.70 9308.79 9489.50 0.66 1.27 58

12 17045.17 16944.74 17548.61 0.59 2.95 376

13 13485.98 13462.72 13765.47 0.17 2.07 101

14 18536.19 18389.22 18931.78 0.79 2.13 609

15 13289.75 13193.20 13404.40 0.73 0.86 184

16 22297.18 22203.34 23027.60 0.42 3.28 1168

17 17135.98 17032.04 17399.70 0.61 1.54 276

18 24710.56 24553.76 25416.36 0.63 2.86 1399

19 15887.65 15793.55 16368.39 0.59 3.03 406

20 27023.27 26637.15 27577.53 1.43 2.05 3494

21 25451.22 25200.34 26307.87 0.99 3.37 619

22 41323.99 41151.54 42179.42 0.42 2.07 4112

23 24191.27 23906.42 24528.95 1.18 1.40 1177

24 43589.24 42952.64 45479.82 1.46 4.34 6259

25 36247.71 36159.31 36471.34 0.24 0.62 1273

26 50738.04 49632.22 52096.39 2.18 2.68 8321

27 29468.30 29298.53 30529.56 0.58 3.60 923

28 37584.04 37386.06 38699.38 0.53 2.97 5187

29 30256.85 30132.46 30816.26 0.41 1.85 1178

30 40992.14 40900.14 43249.78 0.22 5.51 5794

31 32453.02 32424.15 33001.74 0.09 1.69 1580

Continued on Next Page. . .

74

Volume Algorithm

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

32 48693.83 48288.33 50518.21 0.83 3.75 10516

33 26218.92 26091.69 27303.28 0.49 4.14 2023

34 53242.96 52402.59 54117.53 1.58 1.64 14811

35 34018.61 33769.36 35922.63 0.73 5.60 2098

36 60762.75 60185.84 61979.38 0.95 2.00 18645

37 42349.64 42171.84 43164.55 0.42 1.92 3719

38 N/A 52799.13 54195.77 N/A N/A 26005

39 38197.48 38034.98 39080.93 0.43 2.31 3455

40 N/A 67733.92 71789.35 N/A N/A 24201

Average 0.99 2.36 3754.50

Table 9.10: Results for the multi-source test problems:

Benders’ decomposition

Benders’ Decomposition

Problem No opt. LB UB LB dev. (%) UB dev. (%) CPU time

1 2593 2593 2593 0.00 0.00 8.53

2 2537 2537 2537 0.00 0.00 82.81

3 2475 2475 2475 0.00 0.00 416.97

4 2653 2653 2653 0.00 0.00 335.27

5 3259 2952 3518 9.42 7.94 7899.31

6 4791 4432 5399 7.50 12.69 8087.61

7 6135 5699 6703 7.10 9.26 7269.42

8 7035 5456 13582 22.44 93.07 7713.58

9 8914 6773 16043 24.02 79.98 7264.64

10 10192 N/A N/A N/A N/A 7200.00

Average 7.83 22.55 4627.814

75

10. CONCLUSION AND FUTURE WORK

Throughout this study, we are concerned with the CFLP. We assume that each

market consists of customers with different profiles and consider the situation where

additional costs occur when the customers are not served by the right type of facility.

We present mathematical formulations for the single-source and multi-source versions

of this problem and then attempt to solve them.

CFLPs are difficult combinatorial optimization problems. As a consequence of

this fact, many heuristic solutions are proposed in the literature in order to obtain

near optimal solutions. A successful example of these heuristic methods is Lagrangean

relaxation which is widely used to provide bounds for the CFLPs. Therefore, at the

initial phases of our study, we make use of the Lagrangean relaxation with classical

subgradient optimization for our two problem types. By comparing our results with

the optimal values of our test problems, we notice that lower and upper bounds are

fairly close to the optimal values for both problems. However, although our Lagrangean

heuristic requires much less execution time than CPLEX in order to provide bounds for

the multi-source problem, this case is not valid for the single-source problem. Conse-

quently, we decide to use subgradient optimization methods different than the classical

method in order to see their effects on both execution time and solution quality. De-

flected subgradient optimization provides bounds that are closer to the bounds of the

classical subgradient method in shorter average computation time. However, the de-

crease in the average computation time is not so significant. This situation is valid for

both single-source and multi-source problems. On the other hand, volume algorithm

provides an improvement neither in bounds nor in average computation time.

In addition to the heuristic methods, there exist algorithms that give optimal

solutions. We adopt Benders’ decomposition method to the multi-source problem in

order to solve it optimally. We are able to obtain optimal solutions for small sized test

problems, but the execution time considerably increases when the problem size grows.

Although we attempt to decrease the overall computation time by employing some

76

modifications such as finding pareto-optimal cuts and providing additional constraints

for the master problem, we do not obtain a significant improvement.

Our Benders’ decomposition and Lagrangean heuristic can be combined in order

to develop an efficient exact solution method. The feasible solutions given by La-

grangean upper bound heuristic can be used to find extreme point cuts for the master

problem. Therefore, we can develop a Benders’ decomposition algorithm composed

of two phases. In the initial phase, the cuts can be added to the master problem by

only solving the Benders’ subproblem. There is no need to solve the master problem

since we already have a sample of feasible solutions. In the second phase, the iterative

procedure of our Benders’ algorithm between the master problem and subproblem is

executed. It may be possible that the LP relaxation of the master problem obtained

in the initial phase is very close to the optimal solution if enough cuts are added. In

this case the solution given by LP relaxation can be made feasible for the original

problem using a heuristic method. Therefore instead of solving the master problem,

its LP relaxation can be solved in the second phase. To obtain a feasible solution a

tabu search procedure can be utilized so that the solutions obtained before are added

to the tabu list.

What is more, although our Benders’ algorithm is very inefficient, its applicability

to our multi-source problem is promising for similar exact solution methods. Conse-

quently, Dantzig-Wolfe decomposition and column generation methods can be utilized

to find exact solutions for the multi-source problem.

When the LP relaxation of the strong formulation proposed for the multi-source

problem is solved, very tight lower bounds are obtained. This formulation can be made

much stronger through generalizing the strong valid inequalities proposed for UFLPs

and other CFLPs.

77

REFERENCES

1. Agar, M.C. and S. Salhi, “Lagrangean heuristics applied to a variety of large ca-

pacitated plant location problems”, Journal of the Operational Research Society,

No. 49, pp. 1072-1084, 1998.

2. Ahuja, R.K., J.B. Orlin, S. Pallottino, M.P. Scaparra and M.G. Scutella, “A

multi-exchange heuristic for the single-source capacitated facility location prob-

lem”, Management Science, No. 50-6, pp. 749-760, 2004.

3. Barahona, F. and R. Anbil, The Volume Algorithm: producing primal solutions with

a subgradient method, Research Report, RC 21103(94395), IBM Watson Research

Center, 1997.

4. Bazaraa, M.S., H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory

and Algorithms, John Wiley and Sons, New York, 1993.

5. Beasley, J.E., “Lagrangean heuristics for location problems”, European Journal of

Operations Research, No. 65, pp. 383-399, 1993.

6. Reeves, C.R., Modern heuristic techniques for combinatorial problems, John Wiley

and Sons, New York, 1993.

7. Benders, J.F., “Partitioning producers for solving mixed-variables programming

problems”, Numerische Mathematik, No. 4, pp. 238-252, 1962.

8. Bestsekas, D.P., Constrained optimization and Lagrangean multiplier methods, Aca-

demic Press, New York, 1982.

9. Bramel, J. and D. Simchi-Levi, The Logic of Logistics: Theory, Algorithms, and

Applications for Logistics Management, Springer Series in Operations Research,

1999.

78

10. Burachik, R.S., R.N. Gasimov, N.A. Ismayilova and C.Y. Kaya, “On a modified

subgradient algorithm for dual problems via sharp augmented Lagragian”, Journal

of Global Optimization, No. 34, pp. 55-78, 2006.

11. Camerini, P.M., L. Fratta and F. Maffioli, “On improving relaxation methods by

modified gradient techniques”, Mathematical Programming Study, No. 3, pp. 26-34,

1975.

12. Cornuéjols, G., R. Sridharan and J.M. Thizy, “A Comparison of Heuristics and

Relaxations for the Capacitated Plant Location Problem”, European Journal of

Operations Research, No. 50, pp. 280-297, 1991.

13. Cornuéjols, G., G.L. Nemhauser and L.A. Wolsey, The Uncapacitated Facility Lo-

cation Problem, in P.B. Mirchandani and R. L. Francis (eds), Discrete Location

Theory, Wiley, New York, pp. 119-171, 1990.

14. Correia, I. and M.E. Captivo, “A Lagrangean heuristic for a modular capacitated

location problem”, Annals of Operations Research, No. 122, pp. 141-161, 2003.

15. Cortinhal, M.J. and M.E. Captivo, “Upper and lower bounds for the single source

capacitated location problem”, European Journal of Operational Research, No. 151,

pp. 333-351, 2003.

16. Fisher, M.L., “The Lagrangean relaxation method for solving integer programming

problems”, Management Science, No. 27-1, pp. 1-18, 1981.

17. Gasimov, R.N., “Augmented Lagrangean duality and nondifferentiable optimiza-

tion methods in nonconvex programming”, Journal of Global Optimization, No.

24, pp. 187-203, 2002.

18. Gasimov, R.N., O. Ustun and A. M. Rubinov, “The modified subgradient algorithm

based on feasible values”, Journal of Global Optimization, Article in Press.

19. Geoffrion, A.M., “Lagrangean relaxation and its uses in integer programming”,

79

Mathematical Programming, No. 2, pp. 82-114, 1974.

20. Geoffrion, A.M. and G.W. Graves, “Multicommodity distribution system design

by Benders’ decomposition”, Management Science, No. 5-20, pp. 822-844, 1974.

21. Görtz, S. and A. Klose, Analysis of Some Greedy Algorithms for the Single-Sink

Fixed-Charge Transportation Problem, Working Paper, No. 2006/6.

22. Guta, B., Subgradient optimization methods in integer programming with an ap-

plication to a radiation therapy problem, PhD Thesis, Kaiserslautern University,

2003.

23. Held, M. and R.M. Karp, “The traveling salesman problem and minimum spanning

trees”, Operations Research, No. 18, pp. 1138-1162, 1970.

24. Hindi, K.S. and K. Pieńkosz, “Efficient solution of large scale, single-source, ca-

pacitated plant location problems”, Journal of the Operational Research Society,

No. 50, pp. 268-274, 1999.

25. Ioffe, A., “Necessary and sufficient conditions for a local minimum. 3: Second-order

conditions and augmented duality”, SIAM J. Control and Optimization, No. 17,

pp. 266-288, 1979.

26. Kalvelagen, E., Benders decomposition with gams, http://www.gams.com/ er-

win/benders/benders.pdf

27. Karp, R.M., Reducibility among combinatorial problems, Complexity of Computer

Computations, R.E. Miller and J.W. Thatcher, eds, Plenum Press, New York,

1972.

28. Kellerer, H., U. Pferschy and D. Pisinger, Knapsack problems, Springer, Berlin,

2004.

29. Klose, A. and A. Drexl, “Facility location models for distribution system design”,

80

European Journal of Operational Research, Article in Press.

30. Klose, A., “An LP-based heuristic for two stage capacitated facility location prob-

lems”, Journal of the Operational Research Society, No. 50, pp. 157-166, 1999.

31. Li, H.L., “An approximate method for local optima for nonlinear mixed integer

programming problems”, Computers and Operations Research, No. 19-5, pp. 435-

444, 1992.

32. Magnanti, T.L. and R.T. Wong, “Accelerating Benders’ decomposition: Algorith-

mic enhancement and model selection criteria”, Operations Research, No. 29-3, pp.

464-484, 1981.

33. Mazzola, J.B. and A.W. Neebe, “Lagrangean-relaxation-based solution procedures

for a multiproduct capacitated facility location problem with choice of facility

type”, European Journal of Operations Research, No. 115, pp. 285-299, 1999.

34. Mirchandani, P.B. and R.L. Francis, Discrete Location Theory, Wiley, New York,

1990.

35. ReVelle, C.S. and H.A. Eiselt, “Location Analysis: A synthesis and survey”, Eu-

ropean Journal of Operations Research, No. 165, pp. 1-19, 2005.

36. ReVelle, C.S. and G. Laporte, “The plant location problem: new models and

research prospects”, Operations Research, No. 44-6, pp. 864-874, 1996.

37. Rockafellar, R.T., “Augmented Lagrange multiplier functions and duality”, J. Con-

trol and Optim., No. 12, pp. 268-285, 1974.

38. Rockafellar, R.T., “Lagrange multipliers and optimality”, SIAM Rev., No. 35, pp.

183-238, 1993.

39. Rockafellar, R.T. and R.J B. Wets, Variational Analysis, Springer, Berlin, 1998.

81

40. Ross, G.T. and R.M. Soland, “A branch and bound algorithm for the generalized

assignment problem”, Mathematical Programming, No. 8, pp. 91-103, 1975.

41. Sherali, H.D. and O. Ulular, “A primal-dual conjugate subgradient algorithm for

specially structured linear and convex programming problems”, Applied Mathe-

matics and Optimization, No. 20, pp. 193-221, 1989.

42. Saraç, T. and A. Sipahioğlu, 0-1 Sırt çantası probleminin çözümünde genişletilmiş

subgradient yönteminin kullanımı, YA/EM’2004 - Yöneylem Araştırması/Endüstri

Mühendisliği - XXIV Ulusal Kongresi, 2004.

43. Wentges, P., “Accelerating Benders’ decomposition for the capacitated facility loca-

tion problem”, Mathematical Methods of Operations Research, No. 44, pp. 267-290,

1996.

