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ABSTRACT

OPTIMAL MULTI-PERIOD PRICING STRATEGY FOR

REMANUFACTURABLE LEASED GOODS

The aim of this thesis is to determine in a multi-period setting the optimal pric-

ing strategy for a profit-maximizing firm leasing new, durable, and remanufacturable

products as well as selling remanufactured products. The resulting problem is nonlin-

ear optimization problem and it is solved by a variant of Nelder-Mead simplex search

method which can also handle the constraints.

We focus on a scenario where new products can only be leased and remanufac-

tured products can only be sold after remanufacturing used equipments returned by the

lessee at the end of the lease period. In this setting, if returned items in stock are not

enough to meet the demand for remanufactured products, the manufacturer purchases

the shortage in used products from the third-party core supplier. Two types of demand

model are proposed in our work: In the base model, the customer preferences are ex-

plained through a maximum utility type approach. The second one is constructed as a

linear function of prices of new and remanufactured products. We focus on the first one

since it is more realistic in the marketing environment, and discuss attributes of the

new and remanufactured products based on the experimental results. We characterize

the roles that key product characteristics such as deterioration in age, cost of sup-

plying used remanufacturable products from the third-party core supplier and initial

inventory level, and key target market characteristics such as relative willingness-to-

pay for buying a remanufactured product and relative willingness-to-pay for leasing a

new product play in determining the optimal pricing strategy.
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ÖZET

YENİDEN İMAL EDİLEBİLİR KİRALANAN ÜRÜNLER

İÇİN ÇOK DÖNEMDE EN İYİ FİYATLANDIRMA

STRATEJİSİ

Bu tezin amacı yeni, dayanıklı ve yeniden imal edilebilir ürünleri kiralayan ve

yeniden üretilmiş ürünleri satan, karını en büyüklemeye çalışan bir firma için çoklu

dönemde en iyi fiyatlandırma stratejisini belirlemektir. Ortaya çıkan problem karı en

büyüklemeye çalışan doğrusal olmayan bir programlama modelidir ve kısıtları kontrol

altında tutan farklı bir Nelder-Mead simleks arama işlemiyle çözülmüştür.

Senaryomuza göre yeni ürünler sadece kiralanabilir ve kiralama dönemi sonunda

kiracının döndürdüğü kullanılmış ürünlerden imal edilen ürünler sadece satılabilir. Bu

ortamda eğer eldeki eski ürünler yeniden üretilmiş ürüne olan talebi karşılamıyorsa

eksik miktar üçüncü-parti eski ürün tedarikçisinden sağlanır. Çalışmamızda iki tip

talep modeli öneriliyor: Ana modelde müşteri tercihleri en yüksek yarar tipi yaklaşıma

göre anlatılmaktadır. İkinci talep modeli yeni ve yeniden üretilmiş ürünlerin fiyat-

larının doğrusal fonksiyonu olarak kurulmuştur. Gerçek durumu daha iyi yansıttığı için

ana model ele alınmaktadır ve deneysel sonuçlara dayanarak yeni ve yeniden üretilmiş

ürünlerin nitelikleri tartışılmaktadır. Zaman içinde eskime payı, üçüncü-parti eski ürün

tedarikçisinden yeniden üretilebilir eski ürün elde etme maliyeti ve dönem başında elde

bulunan eski ürün miktarı gibi ürün özellikleri ile yeniden üretilmiş ürünü satın alma

ve yeni ürünü kiralama için göreceli ödeme isteğinin en iyi fiyatlandırma stratejisi

üzerindeki etkisi incelenmiştir.
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1. INTRODUCTION

Remanufacturing is the process of disassembling used items, inspecting and re-

pairing their components and using these in manufacturing new products. A product

is considered remanufactured if its primary components come from a used product.

Recently, remanufacturing has been receiving growing attention for various reasons.

For instance, consumer awareness, environmental activism and legislative pressure are

forcing firms to design remanufacturable products. Moreover, the cost of remanufac-

turing is typically less than the cost of manufacturing a new product. Remanufacturing

is practiced in many industries, including photocopiers, computers, telecommunication

equipment, automotive parts, office furniture and tires. The problems faced by firms

involved in remanufacturing are to take back used products before the end of their

useful life to generate some revenue by remanufacturing or reusing and to forecast the

time of used products returns. At this point, leasing strategy versus selling brand new

products can help to manage the return process better.

Leasing is a widely used business strategy in United States, with 80 per cent of

all US companies leasing some or all of their equipment and a estimated 226 billion

worth of equipment leased in the US according to the research done by Equipment

Leasing Association (ELA) in 1999. There are two main categories of leases: capital

and operating. Only operating leases, not capital leases, increase the likelihood that

the manufacturer will retain ownership of the product at the end of the lease and

have responsibility for managing it. Furthermore, the company is more likely to get

a consistent flow of feedstock for remanufacturing when used equipment is returned

to the manufacturer. Also, leasing may help the manufacturer to forecast the quality

of returned products and schedule the product line according to their return time.

Besides the benefits of leasing for the manufacturer, consumers have also advantages

from leasing versus buying. When you buy, you pay for the entire price of a equipment,

but when you lease, you pay for only a portion of the equipment’s price, which is the

part that you “use up” during the lease period. Moreover, leases for products like

computers make it easier for customers to upgrade to the newest technology.
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Product characteristics affect the viability of leases. Some products are not suit-

able for leases like nondurable products consumed during ownership, so that little value

remains at the end of a lease. This characteristic is important for both remanufacturing

and leasing a product, since if it is consumed during leasing, it becomes impossible to

remanufacture and generate revenue from a used product. So far, we can say that leas-

ing allows firms to control the quality, quantity and timing of product returns, which

are the primary concern of many remanufacturing initiatives.

On the other hand, determining leasing payments of new products and selling

price of remanufactured products is an important tool since even small changes in

price have a high impact on the profitability of the firm. Since the target market

has heterogeneous customers who typically differ in their willingness-to-pay for new

product and value remanufactured products less than new products, determining the

price is a complex task for the firm.

The main objective of this thesis is to determine in a multi-period setting the

optimal pricing strategy for a profit-maximizing firm leasing new, durable, and reman-

ufacturable goods as well as selling remanufactured products in a market where con-

sumers are heterogeneous in their willingness-to-pay and value remanufactured prod-

ucts less than new products. We consider a dynamic pricing policy where prices are

time-dependent. Moreover, we do not only determine the selling price of a remanufac-

tured product, but also we need lease payments of a new product since a new product

can only be leased. In this setting, two types of lease payments are proposed: The

first one is based on monthly payments and determined as a function of selling price

of the new product taking into account the depreciation rate of the product in age

and money factor. The second one is based on yearly payments and calculated as a

function of selling price and life-cycle of the new product. In our analysis, we use

monthly lease payment model since lease payments are generally arranged in terms of

months in the real world. We initially assume that there is a remanufacturable product

inventory at the beginning of the first period. We determine then optimal prices in

each period to which corresponds to optimal path of demands for new and remanufac-

tured products. There are two types of demand models proposed in our work: In the
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base model, the customer preferences are explained through a maximum utility type

approach. In this setting, customers are segmented into sub-groups according to their

lease expectations such that customers who wish to lease a new product for m periods

are distributed with a known fraction in the potential market. In a given period, con-

sumers in each segment determine which product to choose based on the utility that

they derive in that period from this decision. If a consumer in a segment has utility

neither from leasing a new product nor from buying a remanufactured product, he/she

prefers nothing. This is a more realistic approach than forcing the total demand of a

segment to be divided among products, i.e., new and remanufactured. Therefore, in

this choice model, we obtain three regions in each segment: new product leased for m

periods, remanufactured product and no product. In the second demand model, we

consider a linear price-demand relation such that demand is a function of price of new

and remanufactured products. In this setting, the potential market consists of a known

segmentation of customers such that the fraction of customers in the population who

lease the new product for m periods is known. Therefore, after generating the total

demand for new products in a generic period, the volume of customers who lease a new

product for m periods can be derived from the total demand for new products. We

assume that leased products will return at the end of leasing agreement certainly, thus

in each period we know how many cores (used product) will be returned. Therefore, the

supply of used products depends on past lease volumes of new products. During the

time, preceding inventory is added to the current inventory in each period. If returned

products in stock are not enough to meet demand for remanufactured products in any

period, we assume that the manufacturer buys the remaining from the third-party core

supplier and sells these products to the customer after remanufacturing them in his

facility. The overall profit function of the firm is obtained by aggregating the decisions

of customers over the segments. Some of the questions that we address are:

• What are the optimal prices in each period?

• How do key product characteristics such as deterioration in age, cost of supplying

used remanufacturable products from the third-party core supplier and initial

inventory level influence the optimal price in each period?

• How do key market characteristics such as consumer acceptance of the remanufac-
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tured product and consumer acceptance of the leased product play in determining

the optimal pricing strategy?

• What is the effect of pricing strategy on the supply of used products?

• What is the effect of supplying used remanufacturable products from the third-

party core supplier on the profitability of the firm?

• What is the effect of change in the duration of the lease agreement on the pricing

and trend of optimal demands?

The study is organized as follows: The first chapter includes the literature review

about pricing, leasing and remanufacturing. In the second chapter the problem descrip-

tion is presented and model formulations are explained in detail with corresponding

assumptions. In the third chapter, solution procedure and its modifications are given.

The experimental results which are grouped into two main categories such as single

period and multi-period setting for the base model are presented in the fourth chapter.

The final chapter includes the conclusion and suggestions for future research.
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2. LITERATURE REVIEW

In this chapter, a brief review of published literature related to the various aspects

of the research problem in this thesis is presented. Section 2.1 discusses literature on

pricing, a popular research area for marketing science. Section 2.2 discusses literature

on leasing which plays an increasingly important role in marketing durable goods. The

main topics discussed are leasing versus selling, pricing lease contracts and reverse

logistics in equipment leasing. Remanufacturing is an integral part of this research as

well, and therefore, the growing literature on remanufacturing and pricing of new and

remanufactured products are discussed in Section 2.3.

2.1. Pricing

The primary goal of most businesses is to make profit. Although there are many

factors that affect the profitability of a business, such as management, location, cost

of labor, quality of product or service, market demand and competition (U.S. Small

Business Administration), the price is the only part of the marketing mix that generates

revenue. Setting the right price is an important part of effective marketing. Price is

also the marketing variable that can be changed most quickly, even in response to a

competitor price change. Moreover, even small changes in price have a high impact on

the profitability of the firm. It is reported that on average, a 5 per cent price increase

leads to a 22 per cent improvement in operating profits which is far more than other

tools of operational management (Hinterhuber, 2004).

By employing dynamic pricing, the act of changing prices over time in a market-

place, firms have the potential to increase their revenue by selling products to buyers

“at the right time, at the right price”. Dynamic pricing can be implemented in several

different ways. Price discrimination, or personalized pricing, is an intriguing area of dy-

namic pricing in which sellers charge different segments of customers different prices.

While this area is rich, it also has greater risks of customer rejection. In contrast

to dynamic pricing, Morris (2001) focuses on changing prices over time in a market.
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This perspective on dynamic pricing focuses on how a seller can take advantage of the

fluctuations in cumulative buyer demand over time taking into account a finite time

horizon. He refers to this type of changing of prices over time as dynamic pricing

and proposes that sellers should analyze dynamic pricing algorithms using a market

simulator that is capable of simulating many different market scenarios with realistic

models of buyer behavior. The author presents a tool, the Learning Curve Simulator,

for modeling finite markets-a market with a finite time horizon, seller inventory and

buyer population-and for testing dynamic pricing strategies. Using a market simulator,

a seller could model its market’s characteristics and the behavior of its customers to

develop a pricing strategy that could capture more profit than fixed-price policies.

Any treatment of dynamic pricing must recognize that there may be a strong

dependency of demand across periods. A promotion today that generates a spike in

demand will typically be followed by a demand trough. Likewise, selling an airline seat

today at a given price means that it will not be available later. Ideally, a pricing decision

made today should optimally account for all future effects of the decision. Fleischmann

et al. (2005) contributes to the literature on dynamic pricing by developing a determin-

istic, finite-horizon dynamic programming model that captures a price/demand effect

as well as a stockpiling/consumption effect. The decision variable is the unit sales

price in each period. They model full dynamic pricing in which the pricing decision in

a given period affects demand, which in turn affects consumption. Hence, decisions in

a given period explicitly depend on decisions in prior periods.

In terms of applications, dynamic pricing practices are particularly useful for

those industries having high start-up costs, perishable capacity, short selling horizons,

and a demand that is both stochastic and price sensitive. Therefore, sellers have an

incentive to dynamically change the price to control the demand in order to maxi-

mize their total revenue, which is known as revenue management. Elmaghraby and

Keskinocak (2003) provide a survey of the applications and theory of dynamic pricing

with different set of angles such as pricing policies for short and long life cycle prod-

ucts, or combined inventory and pricing decisions, or pricing in markets with rational

(strategic) customers. Bitran and Caldentey (2002) also examined the research and
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results of dynamic pricing policies, but they preferred to narrow the scope of their

work to dynamic pricing models in revenue management context. Therefore, the sur-

vey is based on revenue management problem in which a perishable and non-renewable

set of resources satisfy stochastic price-sensitive demand processes over a finite time

horizon. In this framework where capacity is fixed, the seller is mainly interested in

finding an optimal pricing strategy that maximizes the revenue collected over the sell-

ing horizon. One can refer to Adida and Perakis (2005) and Maglaras and Meissner

(2006) for further information regarding dynamic pricing strategies. Although dynamic

pricing has a wide application area for perishable and non-renewable products, studies

for durable products are limited. There are three barriers to change prices of durables:

one of them is the cost of implementing instantaneous price changes. The other one

is challenge of developing an appropriate pricing strategy and the last one, which is

the most important, is buyer acceptance of unpredictable price changes (Morris, 2001).

The purchasing behavior of customers affects seller’s pricing decisions over time. A

myopic customer is one who makes a purchase immediately if the price is below his

valuation, without considering future prices. Myopic (or non-strategic) customer be-

havior allows the seller to ignore any detrimental effect of future price cuts on current

customer purchases. Nevertheless, a strategic (or rational) customer takes into account

the future path of prices when making purchasing decisions. Generally, consumers con-

sider durable goods such as cars as capital investments and wish to assess the asset’s

future value. Therefore, future value is affected by future price decreases and the pos-

sible introduction of a new version of a product. Dynamic pricing decisions of a seller

facing strategic customers is more complex since the seller has to take into considera-

tion the effects of future as well as current prices on customers’ purchasing decisions

(Elmaghraby and Keskinocak, 2003).

Theoretically, consumer reservation price (also called willingness-to-pay) has been

instrumental in studying consumer purchase decisions and competitive pricing strate-

gies. Managerially, knowledge of consumer reservation prices is critical for implement-

ing many pricing tactics such as bundling, target promotions, nonlinear pricing, and

one-to-one pricing, and for assessing the impact of marketing strategy on demand.
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The reservation price refers to the maximum amount of money a consumer is

willing to pay for a certain product. The consumer decision on whether or not to buy a

product depends on the reservation price of the customer and product’s price. He buys

the product only if his reservation price is higher than or equal to the product’s price.

Another related concept with reservation price is the consumer surplus. Consumer

surplus is the difference between the consumer’s reservation price of the product and

the price of the product. Consumer surplus measures the welfare that consumers

derive from their consumption of goods and services, or the benefits they derive from

the exchange of goods. The customer has benefit from the purchase if his surplus is

greater than or equal to zero.

In many papers related to pricing (e.g., Ferguson and Toktay, 2004; Debo et

al., 2005; Ray et al., 2005), the population of potential customers is characterized by

distribution of reservation prices. In general, reservation prices have a continuous dis-

tribution over the population of potential customers. When making pricing decisions,

the seller knows only the probability distribution of reservation prices. Therefore, he

faces the trade-off of losing sales due to high prices and losing the customer surplus

due to low price. The variance of the distribution of reservation prices depends on the

heterogeneity of the market and the availability of information about customers’ tastes

and needs.

2.2. Leasing

Leasing as a means of transaction is playing an increasingly important role in

marketing durable goods. On the other hand, leasing is also becoming a pervasive phe-

nomenon in our ordinary life. For instance, many durable goods that are traditionally

sold to consumers can now be leased too. The spectrum of leased durable goods is

rapidly expanding. Examples of these include such daily necessities as cars, furniture,

computers, and other electronic appliances (Huang and Yang, 2002).

There are two main categories of leases: capital and operating. Capital leases

are basically finance arrangements and are treated as loans for accounting purposes.



9

Under such leases, ownership passes to the lessee automatically by the end of the lease

term. End-of-life ownership of the product is no different under a capital lease than

if the product were sold directly to the customer. Under operating leases (also called

“true leases”), on the other hand, ownership is typically retained by the lessor to the

end of the lease term (although the lessee is able to purchase the product at the end

of the lease for its fair market value) (Fishbein et al., 2000). Fishbein et al. (2000)

have examined the practice of leasing products, rather than selling them, as a strategy

for increasing resource productivity, particularly by preventing waste generation and

moving to a pattern of closed-loop materials use. A closed-loop mimics natural systems,

in which materials are continually reused so that waste from one application becomes

the source of materials for another. In the case of products, this can be accomplished

through reuse, remanufacturing and recycling. In this report, they mention about the

extended producer responsibility (EPR) which requires that producers take back their

products when consumers discard them, manage them at their own expense, and meet

specified recycling targets.

Unless otherwise specified, the term “lease” will refer to an operating lease.

Therefore, a lease can be defined as a contract in which the owner of property grants to

a customer the right to use the property for a specified period of time in exchange for an

agreed upon periodic payment. Fishbein et al. (2000) present many key findings about

leasing: leasing increases the likelihood that the manufacturer will retain ownership of

the product at end-of-life and have responsibility for managing it. It is important since

products have to return to be recovered. Moreover, product characteristics affect the

viability of leasing. Some products are not suitable for leasing since they may be con-

sumed during the use so heavily that little value remains at end-of-lease period. Thus,

we can say that leasing may provide an incentive for a company to make its products

more durable. Furthermore, leasing is for the benefit of a company in terms of remanu-

facturing the used products. For instance, leasing can provide the manufacturer with a

continual, predictable flow of post-consumer feed-stock for its remanufacturing activi-

ties. Also, it may help the manufacturer to forecast the quality of the returned product

and schedule the product line according to their return time. Greater involvement with

leasing also provides manufacturers with greater control over the resale market, because
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secondary market prices and equipment availability can impact new product sales and

pricing. There are many companies that successfully acquire products through leasing

and remanufacture returned products. One of the well known examples is Xerox, whose

goal is to be the “leader in the global document market” with its document-processing

products, systems and services. There are similar examples from industry sectors such

as carpet (e.g., Interface Inc.), computers (e.g., Compaq, Dell, Gateaway, and IBM)

(Fishbein et al., 2000).

In the following, we discuss the papers that study the leasing, leasing versus

selling, pricing lease contracts, and reverse logistics in equipment leasing.

Desai and Purohit (1998) analyze the problems associated with marketing a

durable through leases and sales. This general choice between leases and sales is crucial

because of three issues that affect the firm’s marketing strategy over the long term.

First, leases and sales lead to different forms of competition in the future. That is,

once a firm sells a durable, the product exists in a competitive secondhand market

that competes with the firm’s sales of new products. However, if the product is leased,

it is returned to the firm at end-of-lease; hence, the firm has more control over the

secondhand market. Second, given the long life of a durable, consumers may per-

ceive the depreciation of a durable to depend on whether it was originally leased or

purchased, which then affects market prices. And the last one, in choosing durables,

consumers try to forecast their long-term needs which have different implications for

their willingness-to-pay for leases and purchases. Academic research in this area has

argued that in a monopolistic environment, leasing dominates selling. Hence, the firm

should not concentrate on both leasing and selling under this decision. In contrast

to academic research in this area, Desai and Purohit (1998) show that the relative

profitability of leasing and selling depends on the rates at which leases and sold units

depreciate. The goals of this paper are to understand the strategic issues associated

with concurrently leasing and selling a product and determine the conditions under

which this concurrent strategy is optimal. They model a market in which both leases

and sales are allowed, and a durable product is marketed in a two-period structure.

Any product sold or leased in the first period, enter the market in the second period
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as either a used product or an ex-leased product. Either of these compete with any

new products that the firm tries to sell or lease in the second period. The product in

the problem is a car; therefore, they assume that there can potentially be three types

of cars available in the market: new cars, ex-leased cars, and used cars. The difference

between ex-leased and used cars is the form of prior “ownership,” i.e., whether the

car was leased or bought. This difference leads to leased and sold cars depreciating

at different rates. In terms of the consumer side of the market, there are three com-

monly observed consumer usage patterns: a group of consumers who buy new cars and

frequently replace them; another group of consumers who buy new cars and hold on

to them as long as they last; and a third group of consumers who buy only not-new

(i.e., used or ex-leased) cars. Consumers are heterogeneous in their willingness-to-pay.

Based on this structure, they find that the firm’s strategy to either lease or sell to any

group of consumers depends on the relative depreciation rates of sold and leased cars.

If leased cars are likely to depreciate more than sold cars, the firm should direct leases

to the high willingness-to-pay consumers who tend to replace their car each period. On

the other hand, if a leased car depreciates less, the firm should direct its leases to the

lower willingness-to-pay consumers who are more inclined to purchase their ex-leased

cars at the end of the lease period. Hence, if the depreciation rates are different for

sold and leased cars, combination of leasing and selling is better for the manufacturer.

Desai and Purohit (1999) also examine competition in a duopoly; they are interested in

investigating firms’ incentives to lease or sell its products. Moreover, their objective is

to investigate a firm’s rationale in choosing an optimal mix of leasing and selling and to

understand how it is affected by the nature of competition in the market and the em-

bedded quality in the product. They develop a two-period model in which consumers

are indifferent between buying and leasing a durable product. Therefore, they can

control for differential consumer preferences and focus on the effect of market compet-

itiveness and product characteristics. They find that a competitive environment forces

firms to adopt strategies where they only sell their products or use a combination of

leasing and selling. In addition to this, the degree of competitive intensity between the

competitors affects the extent of leasing that occurs in a market. As the competitive

intensity increases, the competitors decrease their level of leasing. They find that the

competitors choose the pure leasing strategy in extreme cases of competition. The
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extent of leasing also depends on the perceived rate of deterioration of the product.

As product’s rate of deterioration decreases, the firm chooses to increase its level of

leasing.

While the effect of durability (or deterioration) on the profitability of firms has

been studied by Desai and Purohit (1998, 1999), the interactions between durable

goods and complementary products have been examined by Bhaskaran and Gilbert

(2005). This aspect is important since the availability of such complements can stim-

ulate demand for the durable good, increasing the manufacturer’s profits. In many

instances the lack of sufficient availability of complementary products can prevent the

success of a durable good. For instance, in the automotive industry, complementarities

affect the adoption of alternative fuel technologies such as hybrid and fuel cell vehicles,

both of which depend on the availability of complements. For hybrids, batteries need

to be replaced every couple of years, and greater availability of batteries decreases the

overall cost of operating the vehicle. Fuel cell vehicles have an even stronger comple-

mentary dependence on the availability of hydrogen fuel since they cannot be operated

without near-daily access to fuel. When a durable monopolist sells a product, it has

an incentive to produce at a rate that will drive down the market price of the product

over time. In anticipation of this opportunistic behavior, consumers are less willing

to invest in ownership. This issue has been referred to as time inconsistency. One

well-known way for a manufacturer to eliminate the problem of time inconsistency is

to lease the product to the consumer instead of selling. Therefore, they investigate

how a durable goods manufacturer’s choice between leasing and selling is affected by

complementary product that is produced by an independent firm. In conclusion, they

show that in the case that the complementary product is produced by another firm

and the extent of complementary is sufficiently strong, the manufacturer’s preference

for leasing will shift to selling. When complementary effects are weak, due to either a

small individual marginal utility for the complementary product or to a low interaction

between the two products, the firm should shift toward leasing.

A leasing company tries to maximize operating profits through key decisions

associated with length of leases, efficient utilization of logistics facilities for material
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flow to and from customer sites, and equipment reuse, refurbishment and disposal

actions (Sharma, 2004). The model proposed by Sharma (2004) allows decision-makers

for electronic equipment leasing companies to simultaneously make optimal decisions

about lease lengths, product flows and end-of-life product disposal. Pricing has not

taken into account in this model since pricing is a strategic decision that is affected by

many other factors like market competition, sales and marketing strategies, economic

and political conditions, etc. Taking all these additional factors into account would not

only make the model mathematically intractable, but would also detract from the main

research focus of integrating reverse logistics and environmental issues with equipment

replacement decisions. The model is deterministic, but the examination of uncertainty

in problem parameters has been made by solving multiple scenarios (with different

parameter values) using this model. It is shown that for asset purchase decisions

and forward product flows, there exists a tradeoff between asset purchase costs and

transportation costs. On the other hand, environmental legislation and transportation

costs affect the reverse product flows. An increase in asset disposal costs due to a

landfill ban in one location can lead to a significant increase in the disposal of assets

at other locations. In addition, it is observed that rebuilding is a profitable activity,

especially for high-end assets. Therefore, a leasing or asset manager for a large leasing

company could apply the model and the insights to gain a competitive advantage by

managing the business more efficiently.

In general, lease contracts consist of options that allow lessees the right but not the

obligation to purchase the product at end-of-lease. This form of lease is very popular

in automobile industry. Hence, Chen and Huang (2003) developed an experimental

model adapted from the setting in Huang and Yang (2002) to examine the interaction

between lease contracts that embed an option to purchase and an underlying used-

goods market. This research is the first stage of collaboration between HP Labs and

the Ford Motor company to create a general framework to address some of the unique

issues in automobile marketing. One can refer to Chen and Huang (2003) for further

information about experimental design and results.

In writing an operating lease, lessors must estimate what the equipment will be
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worth at the end of the lease term, but the estimation of residual values (RV ) is one of

the crucial determinants of profitability of equipment lessors. This value is often highly

unpredictable, due to uncertainty about future market conditions, more specifically

general economic conditions, competition, customer preferences, and innovation and

new product development. Since manufacturers possess this often highly confidential

knowledge, they will have an advantage over independent lessors in estimating the

residual values for their equipment (Pierce, 2001).

The wholesale worth of a product at the end of its lease term, after it has depreci-

ated, is called its residual value (http://www.leaseguide.com/lease07.htm). Residuals

are usually stated as a percentage of manufacturer suggested retail price. Residual

percentages decrease as the length of a lease, called the lease term usually expressed

in months, increases. This is because the older a product gets, the less it’s worth. For

instance, a typical vehicle will lose 30 per cent of its value in the first year, far more

than any other year, leaving 70 per cent of its original value, 17 per cent more in the

second year, leaving 53 per cent, 8 per cent more in the third year, leaving 45 per cent,

6 per cent more in the fourth year, leaving 39 per cent, and 5 per cent more in the

fifth year, leaving 34 per cent of its original value. As seen, residuals fall rapidly in

the first 24 months, then more slowly in later months. This is why shorter term leases

are more expensive than longer leases. Sharma (2004) also determined residual value

of the electronic products used by the business enterprises. The most common lease

periods offered by the company are 24, 30, 36 months where six months is considered as

a one-period. Therefore, the minimum and maximum lease durations are respectively

assumed to be four periods (24 months) and eight periods (48 months) for all orders.

The residual value of an asset of age i periods is defined as the current value of an

asset as a fraction of the original value (purchase price). Based on the information

provided by the company, a residual value curve of the form exp (-0.2624 * i) is used

to approximate residual values.

After this discussion on residual value, another issue is to determine lease pay-

ments. Lease payments are made up of two parts: a depreciation charge and finance

(rent) charge (leaseguide.com/lease03.htm). The depreciation part of each monthly
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payment compensates the manufacturer for the portion of product’s value that is lost

during the lease. The finance part is interest on the money the manufacturer (lessor)

has tied up in the product while the lessee is using it. In effect, the lessee borrows the

money from the lessor and repays part of the money in monthly payments. At the end

of the lease term, the lessee repays the remainder when she either buys or returns the

product.

To understand how leasing works, we need to look at other components of leas-

ing except from residual value. Manufacturer Suggested Retail Price (MSRP) is the

full price for a product including optional packages and destination charges. Gross

Capitalized Cost is the sum of selling price of the product, dealer acquisition fee, out-

standing prior loan and lease balances which are lessee pays for over the lease term.

Capitalized Cost Reduction is the amount of any net trade-in allowance, rebate, non-

cash credit, cash down payment that the lessee pays to reduce the gross capitalized

cost. When capitalized cost reductions are subtracted from gross capitalized cost, we

obtain net capitalized cost (NCC), sometimes called adjusted capitalized cost (ACC).

This amount is used so as to calculate depreciation part (DP ) and finance part (FP )

of leasing payments (http://carbuyingtips.com/regm.xls) given as follows.

DP = NCC −RV, (2.1)

FP = (NCC + RV )MF12m, (2.2)

where m denotes the year.

Money factor (MF) is a number often used by lessors to calculate the average

monthly rent charge portion of the lease payment (Hyundai Motor Finance Company).

Money factors can be converted to annual interest rate (AIR) by multiplying by 2400.

It is always 2400 and is not related to the length of the loan in months. The lower

the money factor, the lower your monthly lease payments. Lease term is the length

of time the product is leased, usually expressed in months. Typical leases are 24, 36,
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48 months, although “oddball” terms, such as 30, 39, 42 months are frequently seen

in lease promotional ads. So far, lease terms have been given to understand how lease

payments are calculated. Therefore, base monthly payments (BMP ) can be stated

mathematically as follows.

BMP =
DP + FP

12m
. (2.3)

Sharma (2004) determines the prices for each different length of lease based on the

residual value of assets. For a lease of t periods, the lease cost in each period equals:

Price =

(

residual(start)− residual(end)

t

)

. (2.4)

One can refer to (http://carprices.com, leaseguide.com, hmfcusa.com) for different pay-

ment calculators on the web.

2.3. Remanufacturing

Reverse logistics is the process of planning, implementing, and controlling the ef-

ficient, effective inbound flow and storage of secondary goods and related information

opposite to the traditional supply chain direction for the purpose of recovering value or

proper disposal (Fleischmann, 2001). Economic, marketing and legislative motives are

commonly cited as reasons for companies to engage in reverse logistics. In the literature

of reverse logistics, many authors have also pointed out that environmental conscious-

ness of consumers is one of the driving factors of reverse logistics. Moreover, one can

characterize a number of different categories of reverse logistics flows. Products are

returned or discarded because they do not function properly or because they or their

function are no longer needed. Within this scope it is differentiated between manufac-

turing returns, distribution returns, and customer returns. For detailed information

about return reasons for reverse logistics, one can refer to Dekker et al. (2004).

Recovery is actually only one of the activities involved in the whole reverse lo-

gistics process. First there is collection, next there is combined inspection/selection
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/sorting process, thirdly there is recovery (which may be direct or may involve a form

of reprocessing), and finally there is redistribution. Collection refers to bringing the

products from customer to a point of recovery. At this point the products are inspected

and a decision is made on the recovery that follows. If the quality is as-good-as-new,

products can be fed into the market almost immediately through reuse, resale, and re-

distribution. If not, another type of recovery may be involved that needs more action,

i.e. a form of reprocessing. Reprocessing can occur at different levels: product level

(repair), module level (refurbishing), component level (remanufacturing), selective part

level (retrieval), material level (recycling), and energy level (incineration). If none of

these recovery processes occur, products are likely to go to landfill. This section does

not particularly address repair and refurbishing systems, which are a body of litera-

ture on their own. At component level (remanufacturing), products are dismantled,

and used and/or new parts can be used either in the manufacturing of the same prod-

ucts or of different products (Dekker et al., 2004). After performing these activities,

the product can be sold as a remanufactured product. In material recovery, there is a

series of activities by which discarded materials are collected, sorted, processed, con-

verted to raw materials and used in the production of new products. Remanufacturing

makes a much greater economic contribution per unit of product than recycling because

it recaptures the value added to raw materials by the manufacturer: specifically, the

costs of labor, energy, and manufacturing operations, which are typically greater than

the value of the raw material constituents of the product. Because remanufacturing

preserves the entire equipment components instead of returning them to raw materials

(as recycling does), it allows processors to preserve the original value added by the

manufacturer (Fishbein et al., 2000). Finally, in energy level, products are burnt and

the released energy is captured.

According to the Remanufacturing Institute, a product is remanufactured if its

primary components come from used products. First, the used product is dismantled

to determine the condition of its components. Second, the used products components

are thoroughly cleaned and free of rust and corrosion. Then, all missing, defective,

broken and worn parts are either restored to functionally good condition or replaced

with new, remanufactured, or functionally good used parts. Finally, the product is
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reassembled after ensuring that it will operate like a similar new product (Fishbein et

al., 2000). The cost of remanufactured items should be determined according to the

reverse logistics, inventory control and production planning policies. Collection, test-

ing, sorting, transportation and processing of the items may require cost, and the cost

of remanufacturing increases as the quality of the remanufactured product increases

(Çelebi, 2005). Product design is a key to improving the efficiency of resource use.

Many companies are mandating take-back programs to encourage companies to make

such design changes. Leasing, which allows manufacturers to retain ownership of their

equipment at end of life, combined with recovery of valuable materials through reuse,

remanufacturing, and recycling, can encourage manufacturers to reduce their use of

virgin materials and can reduce post-consumer waste. However, the value obtainable

from materials recovery programs is limited unless products are specifically designed

with end-of-life processing in mind. Design for end of life maximizes the residual value

of equipment returned to the manufacturer. Therefore, by incorporating end-of-life

considerations into the product design phase, manufacturers can both reduce the envi-

ronmental impacts of product disposal and increase the value of products taken back at

end of life which results in decreasing remanufacturing cost of manufacturer (Fishbein

et al., 2000). The companies have also difficulties to gather the sufficient amount of

used products of satisfactory quality to be overhauled. Furthermore, they have little

control on the return flow in terms of quality and timing. Even though the collection of

the used products is a difficult task, a successful remanufacturing firm must carefully

manage its product acquisition process, i.e. buy the right quantities of the right quali-

ties for the right prices, so as to maximize profits (Guide et al., 2003). It is possible for

a firm to manage the quality of product returns by offering financial incentives (Guide

and Wassenhove, 2001). As can be seen from the cellular phone example by Guide and

Wassenhove (2001), the remanufacturer may choose not to buy cellular phone of a lower

quality. The seller may respond by offering the lower quality cellular phones for a lower

price, or finding a buyer that will accept the lower levels of quality. Therefore, a seller

of used products may grade the returned products and price the product accordingly

(Guide and Wassenhove, 2001). Guide et al. (2003) have examined that the profitabil-

ity of remanufacturing depends on the quantity and quality of product returns which

can be influenced by varying quality-dependent acquisition prices and on the demand
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for remanufactured products which can be influenced by varying the selling price. Of-

fering price incentives such as trade-in rebates can serve as a significant tool in order

to influence quality, quantity, and timing of the product returns that are the primary

concerns of remanufacturing initiatives (Çelebi, 2005). Trade-in rebate strategy has-

tens purchase decisions of customers who are willing to replace their existing product

with a new one or purchase a second one (Ray et al., 2005). In addition to trade-in

rebate strategy, leasing can also provide the manufacturer with a continual, predictable

flow of post-consumer feed-stock for its remanufacturing activities. Moreover, it may

help the manufacturer to forecast the quality of the returned product and schedule

the product line according to their return time. Greater involvement with leasing also

provides manufacturers with greater control over the resale market, because secondary

market prices and equipment availability can impact new product sales and pricing.

There are many types of incentive systems used in U.S. remanufacturing sector, in-

cluding deposits, credit toward a remanufactured or new unit, and cash for product

returns except motives mentioned above.

The literature on remanufacturing focused on operational issues that arise in

inventory management and production control as a result of the return flows of used

products. Fleischmann et al. (1997) focus on three main areas, namely distribution

planning, inventory control and production planning. For each of these, they discuss

the implications of the emerging reuse efforts and review the mathematical models

in the literature. Reverse logistics was a very young field at that time, and they

conclude that many reuse or recycling activities required new planning methods and

more comprehensive approaches than those that had been used up to that time.

There is a growing literature, which combines remanufacturing, pricing of new

and remanufactured products, competition and marketing. These studies roughly seek

optimal selling prices of remanufactured and new products that maximizes the profit

of the company where remanufacturing is possible. Groenevelt and Majumder (2001)

developed a two-period model to examine the effect of competition in remanufacturing

considering one OEM and a local remanufacturer. When remanufacturable products

are returned by the consumers, local remanufacturers can access used items before
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original equipment manufacturer (OEM). Therefore, the manufacturer can consider

either to restrict the local remanufacturer’s access to used items, or increase their cost

of remanufacturing (or both). Groenevelt and Majumder (2001) consider one OEM

and a local remanufacturer. In the first period, only the OEM manufactures and sells

items. In the second period, a fraction of these items are returned for remanufactur-

ing. However, some returned items are used up by the local remanufacturer. Thus,

competition exists in the second period for remanufacturing returned items and sell-

ing them. The reverse logistics process is based on the “shell allocation mechanism”

observed in the respective market. Four of these mechanisms are considered: whether

each of the players (the OEM and the independent operator) can or cannot use the

cores that are not utilized by the other company. The state of the world is determined

by a single parameter- quantity of returns from the first period. This model captures

the essential features of remanufacturing, a finite product lifetime, and competition in

selling the product. The critical trade-offs for the OEM are between the lower cost of

remanufacturing in the second period against the presence of increasing competition

from the local remanufacturers. Results show that the presence of competition results

in the OEM to manufacture less in the first period, and attempt to increase the local

remanufacturer’s cost of remanufacturing which reduces the competition in the second

period. However, while the local remanufacturer competes with the OEM in selling

the items, she also helps the OEM reduce his remanufacturing cost because any action

which makes remanufacturing attractive to OEM induces him to manufacture more in

the first period, and hence makes it possible for the local remanufacturer to produce

more in the second period.

The effect of competition on recovery strategies has also examined by Ferguson

and Toktay (2004) with some differences. Manufacturers often face a choice whether

to recover the value in their end-of-life products through remanufacturing or not to

recover driven by two concerns: cost and internal cannibalization. On the cost side,

the cost to remanufacture plus the fixed cost needed to establish a remanufacturing

operation may be too high to enter remanufacturing. However, even if the remanufac-

tured product is independently profitable, firms may ignore this option due to concerns

about cannibalization: if the remanufactured product is sold in the same market as the
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new product, it attracts the same customer population. In addition, if it is priced lower

than the new product, customers may choose the remanufactured product instead. If

the manufacturer chooses not to remanufacture due to concerns about internal canni-

balization even though it is independently profitable, third-party remanufacturers may

enter the market, resulting in external competition rather than internal cannibaliza-

tion. To respond this threat, two-entry deterrent strategies are developed by Ferguson

and Toktay (2004): remanufacturing and preemptive collection. Preemptive collection

is a strategy to discourage competition so that manufacturer collects part or all of the

items and does not recover the residual value of the used product, instead discards

them. They find that a firm may prefer to remanufacture or preemptive collection to

deter entry, even when the firm would not have chosen to do so under a pure monopoly

environment. There are also cases where it is more beneficial for the firm to collect the

used products but not remanufacture them. In this case, collection is used as a deter-

rent strategy to avoid competition from third-party remanufacturers. They conclude

that the choice to remanufacture should be considered as part of an OEM’s competitive

strategy. They find that if collection is a major portion of the total remanufacturing

fixed and/or variable cost, the manufacturer is better off remanufacturing. As the unit

cost increases, the relative advantage of the remanufacturing strategy increases. In ad-

dition, as market acceptance (relative willingness-to-pay for remanufactured product)

increases, the relative profitability of the remanufacturing strategy increases.

The study of Debo et al. (2005) has important insights since it is the first study

that addresses the integrated market segmentation and production technology choice

problem in a remanufacturing setting where the supply of used products that can be

remanufactured depends on the past sales volumes of new products and the level of re-

manufacturability. Previous papers in the literature take the remanufacturability level

as exogenously determined while this paper introduces the level of remanufacturability

as a key variable. They solve the joint pricing and production technology selection prob-

lem faced by a manufacturer that considers introducing a remanufacturable product

in a market that consists of heterogeneous customers. In the model, production tech-

nology selection determines the remanufacturability level. The customer preferences

are explained through a maximum utility approach. Moreover, they try to answer
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the question how competition with independent remanufacturers should be taken into

account when determining the remanufacturability level, because manufacturer can

control the remanufacturability level, and therefore control the supply of remanufac-

tured products to independent remanufacturers. In the decision making framework, the

manufacturer’s goal is to maximize the net present value of introducing a remanufac-

turable product, by determining level of remanufacturability and a sequence of prices

for new and remanufactured products where the manufacturer is a monopolist in the

market or there is a competition in the remanufactured product market. To model

these, they develop a discrete-time, infinite-horizon, discounted-optimization problem.

They demonstrate that the consumer profile plays a role in the determination of the

profitability of remanufacturing. Therefore, it would be very useful in practice to invest

in understanding the market well before launching a remanufacturable product. They

characterize a specific role of the new product: New products may be sold below unit

cost to generate a supply of remanufactured products. Furthermore, a decrease in the

unit remanufacturing cost may lead to an increase in the new product sales volume,

to supply remanufactured products in response to increased demand for them. When

there is a competition on the remanufactured product market, the optimal level of re-

manufacturability offered by the manufacturer is lower than the monopoly model and

decreases as the number of competing remanufacturers increases.

The work of Debo et al. (2005) resembles to the one of Esenduran (2004) because

of the fact that Esenduran (2004) models the product line selection and pricing problem

of an original equipment manufacturer with remanufacturing capability. She formulates

a single constrained mixed-integer nonlinear programming model with the objective of

maximizing profit using the probabilistic choice framework. The model assumes that

the probability a customer selects a product is proportional to its utility and inversely

proportional to its price. There exists a pool of predetermined candidate (manufactured

and remanufactured and competitor’s) products discriminated by their unit production

costs and utilities and the population consists of a certain number of market segments

of various sizes which are differentiated through the preferences of their customers.

Each customer segment is homogenous within itself, namely the individuals within a

segment have the same utility for a particular product in a product line and customers
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in each segment have the option of not buying any one of the products. This is a

more realistic approach than forcing the total demand of a segment to be divided into

among the products of the OEM and competitor. The problem has two sub-problems

as pricing and product line selection. Therefore, she divides the problem into sub-

problems and then solves them sequentially. The product line selection problem is

solved via complete enumeration and genetic algorithm, whereas the pricing problem

is solved a modified simplex search.

Most of the pricing models in the literature assume that the potential buyers buy

the product for the first time. Although it is almost true for totally new products and

consumable, most buyer make replacement purchases for durable goods. Replacement

customers are influenced by the price as first-time buyers and what they perceive to

be the “residual values” of their existing product. Therefore, firms usually adopt a

price discrimination policy by offering a special discount referred to as a trade-in re-

bate only to replacement customers to hasten their purchase decisions. In addition

to this, any return flow of products induced trade-in rebate may generate revenues

through remanufacturing operations (Ray et al., 2005). The optimal pricing /trade-in

strategies for such durable and remanufacturable products were studied by Ray et al.

(2005). Their framework integrates pricing decisions with the defining characteristics

of such a durable good. These characteristics include the age profile of the current

products in use, the durability of the product, the revenues associated with returns

and relative size of the two customer segments which include replacement and first-

time buyers. They study three pricing schemes: uniform prices referred to as a single

price for all customers, age independent price differentiation between new and replace-

ment customers offering a fixed trade-in rebate to all replacement customers and a

fixed price for new customers, and age dependent price differentiation. When the firm

has the option of charging age dependent prices, it would determine a unique optimal

price for any given product age and therefore age dependent trade-in rebate for this

product. In conclusion, there are some implications on the life-cycle pricing of durable,

remanufacturable products. During the incubation phase, a product is likely to have

large proportion of new customers and a very new age profile for existing products.

Moreover, the design may be less stable for such a product. Therefore, customer seg-
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mentation and price differentiation are not critical under such conditions and uniform

pricing to all customers is reasonable. One step further, during the growth phase,

volume of replacement buyers increases and the firm also has more experience on the

product technology, enabling it to improve durability as well as the efficiency of reman-

ufacturing operations. Under such conditions, age-independent price discrimination is

reasonable. When the product is in maturity phase, the firm is likely to have improved

its design and operational efficiency, and it is appropriate to offer age-dependent price

differentiation. Therefore, pricing strategy of the firm depends on the nature of the

product/market as well as the characteristics of a durable good.

Çelebi (2005) has developed the single-period model of Ray et al. (2005) by consid-

ering a dynamic pricing policy where prices are determined periodically in multi-period

setting. Hence, she has investigated the impact of past trade-in rebates on the future

decisions of the firm. The potential market consists of a known population of first-time

and replacement customers. In the first period, there are no replacement customers

since the product is newly introduced one. In a certain period, the market size of the

replacement customers depends on the purchase decisions of the first-time buyers up

to that period. For insights obtained from experimental results, one can refer to Çelebi

(2005).

The study of Mitra (2005) is really different from related literature so far. In all

recent models, it was implicit that remanufactured products were sold along with new

products in the primary markets at a price equal to or less than that of new products

to satisfy customer demand. Mitra (2005) note that because of skepticism about the

quality of remanufactured products, not all remanufactured products would be sold,

and also there could be different quality levels of recovered products, which would draw

different prices in the secondary market. They have discussed two pricing models in

the context of recycled cellular phones in India to maximize the expected revenue from

the recovered products. They have taken two quality levels, namely remanufactured

which are “as good as new” and refurbished products which are of lower quality. The

objective of this paper is to determine prices of the remanufactured and refurbished

products such that the total revenue is maximized.
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Ferrer and Swaminathan (2006) analyze a model where the remanufactured and

the original products are not distinguishable to the customer. They analyze two-period

and multi-period scenarios where the manufacturer only produces the new product in

the first period, but has the option of making new and remanufactured products in

subsequent periods. Next, they focus on the duopoly environment where an indepen-

dent remanufacturer may intercept cores produced by the original manufacturer to sell

remanufactured products in future periods. Their research differs from Groenevelt and

Majumder (2001) in that they also consider a multi-period setting where the inde-

pendent remanufacturer competes in the second and subsequent periods. In addition

to this, in their core collection process, neither company can use the cores that are

not used by its competitor (a situation similar to the third shell allocation mechanism

introduced by Groenevelt and Majumder (2001)). They observe that as the marginal

cost of remanufacturing decreases, the value of making new products in the first period

increases, and the value of making new products in future periods decreases. In other

words, if remanufacturing is very profitable, the firm tries to increase the available

cores for remanufacturing later. This behavior does not change, whether the OEM is

a monopolist or not, operating with any planning horizon. In addition to the two-

period model, the optimal policy in the last period is similar in multi-period planning

horizons.

The remanufactured product, which is cheaper substitute for the new product, is

often put on the market during the life cycle of the new product and affects its sales

dynamics. Debo et al. (2006) study the integrated dynamic management of a portfolio

of new and remanufactured products that enter a potential market over the product

life cycle. In order to study the joint diffusion of new and remanufactured products,

they allow the product to have a finite residence time (duration of one use of the

product by a customer) that is shorter in expectation than the life cycle (time horizon

over which the product stays on the market) of the product. This cause a remanu-

facturing opportunity and possible repeat purchases of either new or remanufactured

products by customers. The joint pricing of new and remanufactured products has

been studied in Debo et al. (2005) in an infinite-horizon setting with instant diffusion.

Groenevelt and Majumder (2001), Ferrer and Swaminathan (2006) and Ferguson and
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Toktay (2004) develop models considering price competition between a manufacturer

and an independent remanufacturer in a two-period setting, but these papers do not

incorporate life-cycle dynamics. Debo et al. (2006) analyze life-cycle dynamics of new

and remanufactured products and investigate the impact of various managerial levers

(remanufacturability level, capacity structure and reverse channel responsiveness) on

profitability.



27

3. PROBLEM DESCRIPTION AND MODEL

FORMULATION

In this chapter two different models are described in detail. First, we explain the

basic setup of our main model considering consumer’s purchase decisions through a

maximum utility type approach and then present the second model considering linear

relation between price and demand.

3.1. Base Model

We study the optimal pricing strategy in a multi-period setting for a profit-

maximizing firm leasing new, durable and remanufacturable products and selling re-

manufactured products. We state our assumptions about product, consumer, lease

contract, decision criteria, remanufacturable product supply and cost structure.

3.1.1. Product

The product that we consider is durable and the manufacturer offers only one

type of new durable product rather than a diversified product line. The assumption

is reasonable since the competition between the new products in a product line is not

our interest. The product is remanufacturable and must undergo a remanufacturing

operation before being sold as a remanufactured product. Moreover, we assume that

a remanufacturable product can be remanufactured only once.

A new product can only be leased by the original manufacturer, and when it is

returned by the lessee, it becomes a used product. When a used product is remanu-

factured by the manufacturer, it can only be sold. In other words, a remanufactured

product cannot be leased. We assume that the duration of lease agreements, L, cannot

exceed the life cycle of the product. Here, we allow the product to have a shorter

residence time (duration of one use of the product by a lessee) than the life cycle, M ,
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(time horizon over which the product stays on the market) of the product in order to

study remanufacturing of used products.

The durability of the product also suggests that second-hand markets may play

an important role, because secondary market prices and equipment availability can

impact new product sales and pricing, but leasing also provides manufacturers with

greater control over the resale market. Therefore, we do not take into account the

availability of the second-hand market. This assumption is appropriate since customers

have to return their used products to the manufacturer at the end of the lease term and

remanufactured products can only be produced by the original manufacturer under the

assumption that the manufacturer has a proprietary remanufacturing technology that

would limit the formation of a market for used remanufacturable products.

During lease agreements, products deteriorate by a factor dm where m is the

index for lease periods expressed in year. It should be pointed out that deterioration

and depreciation are used interchangeably in this thesis. We only need depreciation

rates while determining leasing payments. For a customer who leases a new product,

the perceived residual value of the product at the end of m periods is assumed to be a

function of selling price pn of the new product and the depreciation rate of the product

given by the term pn(1− dm). Note that if dm increases, residual value decreases and

since the returned product will have less value, payments will increase. In other words,

a higher level of depreciation requires higher leasing payments. In this setting, it is

important to note that these rates are exogenous to the system.

In a multi-period setting, we allow product prices to be time-dependent.

3.1.2. Consumer

We assume that consumers typically differ in their willingness-to-pay (valuations).

For this reason, we associate with each consumer his or her willingness-to-pay θ for

having a new product. We assume that θ is distributed uniformly in the interval [0, 1]

and that in any period, each consumer uses at most one unit. The uniform assumption
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represents a large degree of variability within customer market and has become a

standard assumption in the marketing literature (e.g., Debo et al., 2005; Debo et al.,

2006). Let f (θ) and F (θ) be the density and cumulative distribution function of θ,

respectively.

Typically, consumers value remanufactured products less than new products.

Therefore, we assume that each consumer’s willingness-to-pay for a remanufactured

product is a fraction δ of their willingness-to-pay for the new product. Note that if

δ = 0, consumers are not willing to pay anything for the remanufactured product;

this eliminates the option of remanufacturing and selling remanufactured products. If

δ = 1, consumers view the new and remanufactured units as being identical and are

willing to pay the same amount for either product. Most products fall between the two

extremes. Therefore, we assume 0 < δ < 1.

The relative willingness-to-pay for remanufactured product is either due to cus-

tomer concerns about quality or because of a “fair price” perspective – if it costs less for

the manufacturer to remanufacture the product than to make it, the customer wants

that reflected in the price (Ferguson and Toktay, 2004). In our model, we assume that

new and remanufactured products are of equal quality; the lower willingness-to-pay

is only due to consumer perception. Therefore, a consumer of type θ ∈ [0, 1] has a

valuation of θ for a new product and δθ for a remanufactured product.

The potential market size is normalized to one in each period so that the volume

of consumers who prefer new and remanufactured products is less than or equal to one.

In other words, a consumer of type θ can choose either to lease a new product, or to buy

a remanufactured product, or nothing. In our model, the potential market consists of

a known segment of customers such that customers who desire to lease a new product

for m periods are distributed with a known fraction denoted by α = (α1, α2, ..., αL)

with
L

∑

m=1

αm = 1 in the population. Then, in our demand model, each consumer in each

segment decides whether to lease a new product or to buy a remanufactured product

or to prefer nothing based on their net utility. In other words, in a given period,
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consumers determine which product to choose based on the utility that they derive in

that period from this decision. So, in this choice model, we obtain three regions in each

segment: new product leased for m periods, remanufactured product and no product.

We obtain the quantity of new products by aggregating the quantity of leased products

in each segment. Since there can be consumers who prefer nothing because of their

negative utility in each segment, the demand may not reach the target market size in

the aggregate.

So far, we explained that we associate with each consumer his or her willingness-

to-pay for buying a new product, θ, and divide the set of potential customers into

segments each one having its own set of attributes including different reservation prices.

In this setting, it is important to note that each consumer’s willingness-to-pay for

leasing a new product for m periods will be a fraction lm of their willingness-to-pay for

buying it. Note that if a consumer has a valuation θ for buying a new product, then

he/she has a valuation lmθ for leasing this product for m periods. Therefore, we assume

that if a product is leased throughout its life cycle, lm = 1. Here, it is important to

emphasize that these rates are exogenous to the system.

We also assume that customers are myopic, that is they do not take into account

the future path of prices when making leasing or purchasing decisions. They have no

knowledge about future price offers; so, they cannot anticipate future. Hence, myopic

(or non-strategic) customer behavior allows us to ignore any detrimental effect of future

price cuts on current customer preferences.

3.1.3. Leasing Contract

A lease can be defined as a contract in which the owner of property grants to a

customer the right to use the property for a specified period of time in exchange for an

agreed upon periodic payment. Recall that the duration of lease agreements, L, cannot

exceed the life cycle of the product, M . In this setting, for instance, if M = 5, L can be

at most five and the manufacturer offers lease contracts for m = 1, ..., L periods. At the

end of the lease term, customers have to return products to the owner. Hence, leasing
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provides the manufacturer a continual, predictable flow of post-consumer feed-stock

for its remanufacturing activities.

3.1.3.1. Monthly Lease Payment Model. One way to calculate lease payments is to as-

sume that they are paid monthly in each period (http://carbuyingtips.com/regm.xls).

First of all, in writing a lease, manufacturer must estimate what the equipment will be

worth at the end of the lease term, but the estimation of residual values is one of the

crucial determinants of profitability of manufacturer.

Residual value, RV , is the wholesale worth of a product at the end of its lease

term after it has depreciated and would be given by

RV = pn(1− dm). (3.1)

Lease payments are made up of two parts: a depreciation charge and finance (rent)

charge. The depreciation part of each periodical payment compensates the manufac-

turer for the portion of product’s value that is lost during the lease. The finance part

is interest on the money the manufacturer (lessor) has tied up in the product while the

lessee is using it. In effect, the lessee borrows the money from the lessor and repays part

of the money in monthly payments. At the end of the lease term, the lessee repays the

remainder when she either buys or returns the product, but, in our model, the lessee

has to return the product.

With some modifications on the calculation method of monthly lease payments

(carbuyingtips.com/regm.xls), the net capitalized cost used for calculating depreciation

and finance part of leasing payments equals to the selling price pn of the new product

ignoring other charges, fees, rebates, credits, cash down payments etc. to simplify the

calculation of leasing payments.

Therefore, depreciation part, DP , and finance part, FP , of leasing payments
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given in Equations (2.1) and (2.2) can be written as

DP = pndm, (3.2)

FP = (pn + RV )MF12m. (3.3)

As mentioned before, MF is a number often used to calculate the average monthly

rent charge portion of the lease payment. It is important to note that the lower the

money factor, the lower the monthly lease payments. If annual interest rate is i, then

money factor can be written as

MF =
i

2400
. (3.4)

Lease term m is the length of the time the product is leased and expressed in year.

Since payments are usually calculated monthly, we multiply m by 12. In other words,

one-period leasing offered by the manufacturer is 12 months.

As a result, we model lease payments as a function of selling price pn taking into

account depreciation rate dm and money factor MF and obtain base monthly payments

pm for m periods as given in Equation (2.3).

The base monthly payments are mathematically given by

pm = pn

(

dm

12m
+ (2− dm) MF

)

m = 1, ..., L. (3.5)

Here, pm refers to monthly payments of a customer who leases a new product for m

periods. For instance, if he/she leases a product for one or two years, he/she pays,

respectively, p1 12 times or p2 24 times.
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Present value PV (pm) of lease payments is given by

PV (pm) =
βm (1− β12m

m )

1− βm

pn

(

dm

12m
+ (2− dm) MF

)

m = 1, ..., L. (3.6)

The term
βm(1−β12m

m )
1−βm

is the coefficient of present value of equal payments and βm is the

monthly discount factor in the interval [0, 1] given by

βm =
1

1 + i
12

m = 1, ..., L. (3.7)

3.1.3.2. Yearly Lease Payment Model. Another way to calculate lease payments is to

assume that they are paid yearly at the end of each lease period and to write pm as

pm = pn
1

M
m = 1, ..., L, (3.8)

where M is the life cycle of the product, namely, time horizon over which the product

stays on the market. As can be seen easily, the same amount is paid for each period.

This equation states that if a product is leased for M periods, lease payments, in total,

will be equal to the selling price pn of the product, but due to the discount factor,

present value PV (pm) of lease payments is less than pn and given by

PV (pm) =
β(1− βm)

1− β
pn

1

M
m = 1, ..., L, (3.9)

where β denotes the discount factor over this time period in the interval [0, 1] given by

β =
1

1 + i
. (3.10)

Unless otherwise stated, we use monthly lease payment model in our analysis.
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3.1.4. Decision Criteria

We model the consumer’s purchase decisions through a maximum utility type

approach. Recall that we assume that each customer has an inherent maximum price

in his mind that he would be willing to pay for the product, which we denote as

willingness-to-pay, θ. θ differs from individual to individual, but does not change from

one period to another since the product is a durable one. By letting pn and pr denote

the prices of new and remanufactured products, respectively, we define p = (pn, pr),

where 0 ≤ pn and 0 ≤ pr ≤ δpn. This is because if pr were larger than δpn, no

remanufactured products would be sold and the price could be reduced to the level δpn

without affecting the demand for either product.

Our demand model is inspired by Debo et al. (2005). They model the net util-

ity that a customer of type θ derives from buying a new product, a remanufactured

product, and no product by θ − pN , η(θ)− pR, and 0, respectively.

In our model, consumers do not have the option of buying a new product. They

can only lease a new product for m periods or buy a remanufactured product. Hence,

the set of consumers who lease a new product for m periods is given by

Ωn,m(p) = {θ ∈ [0, 1] : lmθ − PV (pm) ≥ δθ − pr} m = 1, ..., L. (3.11)

In this setting, any customer will make a lease agreement only if both his/her willingness-

to-pay for leasing a new product lmθ is higher than or equal to the present value PV (pm)

of lease payments, and also the net utility from leasing a new product for m periods

is higher than that from buying a remanufactured product. Ωr,m(p) is defined analo-

gously as the set of consumer types who purchase a remanufactured product instead

of leasing a new product for m periods.

Let qn and qr denote the volume of consumers who lease new products and pur-

chase remanufactured products, respectively, and define q = (qn, qr). Recall that αm

denotes the size of the customer segment in the population who desires to lease a new
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product for m periods or buy a remanufactured product. Then,

qn =
L

∑

m=1

αm

∫

Ωn,m(p)

dF (θ), (3.12)

and

qr =
L

∑

m=1

αm

∫

Ωr,m(p)

dF (θ). (3.13)

By construction, q ∈ D =
{

(qn, qr) ∈ R
2
+ : qn + qr ≤ 1

}

.

The volume of consumers who lease a new product for m periods is given by

qm = αm

∫

Ωn,m(p)

dF (θ) m = 1, ..., L. (3.14)

Recall that if a consumer in a segment has positive utility neither from leasing a new

product nor from buying a remanufactured product, he/she prefers nothing and the

volume of consumers who prefer no product in each segment is denoted by q0m. In

other words, q0m is the volume of customers in each segment not preferring any one

of the new or remanufactured products. This is a more realistic approach than forcing

the total demand of a segment, αm, to be divided among products.

If (lm − δ) is positive, we investigate the volume of customers who lease a new

product for m periods according to θ ≥ A1 where

A1 =
pnSm − pr

lm − δ
, (3.15)

and

Sm =
βm (1− β12m

m )

1− βm

(

dm

12m
+ (2− dm) MF

)

m = 1, ..., L. (3.16)
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If we use yearly lease payment model, Sm can be written as

Sm =
β(1− βm)

1− β

1

M
m = 1, ..., L. (3.17)

The volume of customers who prefer leasing a new product for m periods or none

of the products is given in Table 3.1 provided that lm− δ > 0. In this setting, there are

customers who are indifferent between buying nothing and a remanufactured product

(having θl(p)) and indifferent between preferring a remanufactured product and new

product (having θh(p)) for each lease period. Therefore, Ωr,m(p) = [θl(p), θh(p)] and

Ωn,m(p) = [θh(p), 1].

If (lm − δ) is negative, we investigate the volume of customers who lease a new

product for m periods according to θ ≤ A2 where

A2 =
pr − pnSm

δ − lm
. (3.18)

The volume of customers who prefer leasing a new product for m periods or

none of the products is given in Table 3.2 provided that lm − δ < 0. In this setting,

there are customers who are indifferent between buying nothing and a new product

(having θl(p)) and indifferent between preferring a new product and remanufactured

product (having θh(p)) for each lease period. Therefore, Ωn,m(p) = [θl(p), θh(p)] and

Ωr,m(p) = [θh(p), 1].

If lm − δ = 0, we analyze the set where

(lm − δ) θ ≥ pnSm − pr. (3.19)

Thus, the volume of customers who prefer leasing a new product or none of the products

is given in Table 3.3 provided that lm − δ = 0.



Table 3.1. The volume of customers leasing a new product or no product under lm − δ > 0

Case qm q0m

lm − δ > 0 0 ≤ A1 ≤ 1 0 ≤ pnSm

lm
≤ 1 αm(1−max

{

A1,
pnSm

lm

}

) αm(min
{

max
{

A1,
pnSm

lm

}

, pr

δ

}

)

lm − δ > 0 0 ≤ A1 ≤ 1 pnSm

lm
> 1 pr

δ
> 1 0 αm

lm − δ > 0 0 ≤ A1 ≤ 1 pnSm

lm
> 1 pr

δ
≤ 1 0 αm

pr

δ

lm − δ > 0 A1 < 0 pnSm

lm
≤ 1 αm(1− pnSm

lm
) αm

pnSm

lm

lm − δ > 0 A1 < 0 pnSm

lm
> 1 0 αm

lm − δ > 0 A1 > 1 - pr

δ
> 1 0 αm

lm − δ > 0 A1 > 1 - pr

δ
≤ 1 0 αm

pr

δ

Table 3.2. The volume of customers leasing a new product or no product under lm − δ < 0

Case qm q0m

lm − δ < 0 0 ≤ A2 ≤ 1 A2 < pnSm

lm

pr

δ
> 1 0 αm

lm − δ < 0 0 ≤ A2 ≤ 1 A2 < pnSm

lm

pr

δ
≤ 1 0 αm

pr

δ

lm − δ < 0 0 ≤ A2 ≤ 1 A2 ≥ pnSm

lm

pr

δ
≤ A2 αm(A2 − pnSm

lm
) αm

pnSm

lm

lm − δ < 0 0 ≤ A2 ≤ 1 A2 ≥ pnSm

lm

pr

δ
> A2

pr

δ
> 1 αm(A2 − pnSm

lm
) αm(pnSm

lm
+ 1− A2)

lm − δ < 0 0 ≤ A2 ≤ 1 A2 ≥ pnSm

lm

pr

δ
> A2

pr

δ
≤ 1 αm(A2 − pnSm

lm
) αm(pnSm

lm
+ (pr

δ
− A2))

lm − δ < 0 A2 < 0 - pr

δ
> 1 0 αm

lm − δ < 0 A2 < 0 - pr

δ
≤ 1 0 αm

pr

δ

lm − δ < 0 A2 > 1 pnSm

lm
> 1 0 αm

lm − δ < 0 A2 > 1 pnSm

lm
≤ 1 αm(1− pnSm

lm
) αm

pnSm

lm
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Table 3.3. The volume of customers leasing a new product or no product under

lm − δ = 0

Case qm q0m

lm − δ = 0 pnSm − pr ≤ 0 αm(1− pnSm

lm
) αm

pnSm

lm

lm − δ = 0 pnSm − pr > 0 pr

δ
> 1 0 αm

lm − δ = 0 pnSm − pr > 0 pr

δ
≤ 1 0 αm

pr

δ

3.1.5. Remanufacturable Product Supply

We model the remanufacturable product supply in the same way as Debo et al.

(2006). In order to study the joint diffusion of new and remanufactured products,

they assume that the product has a finite residence time (duration of one use of the

product by a consumer) that is shorter in expectation than the product’s life cycle (time

horizon over which the product stays on the market). They allow the residence time to

be variable and assume that it has a distribution characterized by h = (h1, h2, ..., hL)

with
∑L

τ=1hτ = 1. After τ periods of use, a fraction hτ of new or remanufactured

products are returned by the customer. They consider the residence time distribution

as a given characteristic of the product.

In each period, remanufactured product sales are constrained by the availability

of returning remanufacturable products. They consider that (previously) new and

remanufactured products return from the market at the beginning of period t. Since

they assume that remanufactured products cannot be remanufactured a second time,

they need to be disposed of when they return. Moreover, all (previously) new products

that return are not remanufacturable, therefore, a fraction 1 − q of those also need

to be disposed of. Moreover, they assume that used product enters a reverse channel

before it becomes available for remanufacturing. With this model, a used product

becomes available in period t + τ + ∆ where ∆ denotes the time that the product

spends in reverse channel. In each period, the total volume of remanufactured products

and disposed remanufacturable products cannot exceed the available remanufacturable

product inventory It.
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In our model, remanufactured product sales also depend on the availability of

returning used products in each period, but we allow the manufacturer to obtain used

products from the third-party core supplier when the resulting demand is greater than

the available inventory. Therefore, there is no condition in our model as given in Debo

et al. (2006). As remanufactured products are sold and cannot be remanufactured a

second time, we assume that they do not return to the manufacturer, and, perhaps,

they are disposed of by the user at the end of the usage. Only, the leased new products

return at the end of the lease term. Let Rt denote the volume of used remanufacturable

products that return from the market at the beginning of period t and given by

Rt =

min(L,t)
∑

m=1

qm,t−m, (3.20)

where R1 = 0. The indices m and t−m denote the lease duration and the beginning

of the lease period of a new product, respectively. The product leased in time t −m

becomes available in period t.

Recall that all leased products have to return at the end of the lease term which

results in a known stock of used remanufacturable products available (on hand) in

period t. In contrast to the assumption given by Debo et al. (2006), we assume that

used products are available for remanufacturing as soon as they return.

Let It−1 be the volume of used products that remain in stock at the beginning of

period t. Then,

It = max(It−1 + Rt − qr,t, 0). (3.21)

The inventory of remanufacturable products at the end of the current period is equal

to the inventory at the beginning of the current period, plus the supply of remanufac-

turable products that become available at the beginning of period t, minus the amount

remanufactured. If the prices in period t are chosen such that the resulting demand

qr,t for remanufactured products is greater than the available inventory (It−1 +Rt), the
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shortage ∆r,t in used products is obtained from the third-party core supplier. ∆r,t is

given by

∆r,t = max(qr,t − It−1 −Rt, 0). (3.22)

In our model, the manufacturer holds a monopoly in the markets for new and

remanufactured products, but recall that we allow the manufacturer to meet the short-

age in used products from the third-party core supplier. This assumption is reasonable

if the manufacturer has a proprietary remanufacturing technology that would limit

the formation of a market for used remanufacturable products. We assume that the

manufacturer buys only used products, and then remanufactures them in his facility.

3.1.6. Cost Structure

We assume that the average cost of remanufacturing increases in the quantity

of the products remanufactured. This assumption is reasonable since used products

arrive in different quality levels, so an increase in qr forces to firm to remanufacture

cores of decreasing quality levels (Ferguson and Toktay, 2004). The case of remanu-

facturing cost being convex increasing in the quantity has been identified in several

studies (e.g., Guide and Wassenhove, 2001). To model this phenomenon, we assume

that the total cost to remanufacture qr units is crq
2
r such that an average cost of re-

manufacturing qr units becomes crqr. In our model, as qr increases, the manufacturer

has to remanufacture cores of decreasing quality levels and therefore, average cost of

remanufacturing increases. One of the reasons why average cost increases is that we

allow the manufacturer to buy used products from third-party core supplier, so these

products may be of much lower quality than those returned by lessee at the end of the

lease term. The other reason is that there are different lease options. If products are

used for a longer time, they depreciate more and hence residual value decreases. When

qr increases, the manufacturer has to use these low-quality products to remanufacture,

which causes an increase in remanufacturing cost. The manufacturer can produce new

units at a price of cn each.
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The cost of acquiring a used product from the third-party core supplier is given by

c′r. All returned and purchased remanufacturable products are remanufactured at an

average cost of crqr. In this setting, we assume that the unit cost of manufacturing, cn,

the unit cost of remanufacturing, crqr, and the unit purchasing cost of used products,

c′r, are constant over the life cycle of the product.

We allow the manufacturer to carry inventory of used products, but we do not

consider associated holding costs to keep the focus on returns from lease agreements.

3.1.7. The Decision Making Framework

Our main analysis is for an industry in which the manufacturer holds a monopoly

in the markets for new and remanufactured products. Our goal is to maximize the

net present value of leasing a new product and selling a remanufactured product by

determining a sequence of prices for these products. To this end we develop a discrete-

time, multi-period, discounted profit optimization model. Each period corresponds to

a period of lease agreement where lease period m expressed in year is the length of the

time the product is used by the lessee. We assume that one-period leasing offered by

the manufacturer is 12 months (one year) and lease agreements can differ from one to

L periods, after which product needs to be remanufactured for further use.

The model consists of continuous variables, pt = (pn,t, pr,t) and qt = (qn,t, qr,t).

Product prices are allowed to be time-dependent. The manufacturer chooses pt =

(pn,t, pr,t) in period t ≥ 0. Let β denote the discount factor over this time period.

Thus, the longer the time on the market, the lower the discount factor should be

(Debo et al., 2005).

It is important to note that we omit t in our revenue and profit functions for the

sake of convenience in understanding.
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3.1.7.1. Formulation of the Manufacturer’s Optimization Problem. If we use monthly

lease payment model, the per-period revenue is given by

rβm
(p) =

[

L
∑

m=1

βm (1− β12m
m )

1− βm

qm(p)pm

]

+ qr(p)pr. (3.23)

The profit obtained in a generic period under the decision p = (pn, pr) is given

by

Πβm
(p) = rβm

(p)− cnqn(p)− crq
2
r(p)− c′r∆r. (3.24)

Let Vβ(I) denote the optimal β-discounted multi-period profit of the manufacturer

under the initial condition I0 = I.

Vβ(I) = max
T

∑

t=1

βt−1Πβm
(pt). (3.25)

The above model is our main model; however, recall that we have another lease

payment model formulated according to yearly payments. If we use this model type

for lease payments, the per-period revenue is formulated as

rβ(p) =

[

L
∑

m=1

β (1− βm)

1− β
qm(p)pm

]

+ qr(p)pr, (3.26)

and the profit obtained in a period under the decision p = (pn, pr) is written as

Πβ(p) = rβ(p)− cnqn(p)− crq
2
r(p)− c′r∆r, (3.27)

and the optimal β-discounted multi-period profit of the manufacturer with the initial
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condition I0 = I becomes as below

Vβ(I) = max
T

∑

t=1

βt−1Πβ(pt). (3.28)

The optimal solution to these maximization problems is the price path for new

and remanufactured products, p∗
t , to which corresponds to an optimal path of demands,

q∗
t .

3.2. The Model Considering Linear Price-Demand Relation

The difference of this model from the previous model is due to the demand model.

The assumptions stated in Sections 3.1.1, 3.1.3, and 3.1.6 are valid for this model as

well.

3.2.1. Consumer

As mentioned before, we assume that customers are myopic. Each consumer’s

willingness-to-pay for a remanufactured product is a fraction δ of their willingness-to-

pay for the new product. Consumer willingness-to-pay is heterogeneous and uniformly

distributed in the interval [0, 1]. In any period, each consumer prefers at most one unit.

The market size is normalized to 1.

In the previous model, we discussed that the potential market consists of a known

segmentation of customers. In this setting, customers who wish to lease a new product

for m periods are distributed with a known fraction denoted by α = (α1, α2, ..., αL)

with
L

∑

m=1

αm = 1 in the population. Therefore, αm denotes the potential customers in

a segment. In this framework, if a customer in a segment derives higher utility from

buying a remanufactured product than from leasing a new product or negative utility

from leasing, he/she does not prefer leasing. For instance, if we assume that 20 per

cent of potential market desires to lease a new product for one period and 40 per cent
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for two periods, we can obtain that only 50 per cent of customers in the first segment

and 20 per cent of customers in the second segment decide to lease a new product and

others choose remanufactured product or nothing. From this example, we can see that

10 per cent of the population leases a new product for one period, 8 per cent leases for

two periods.

In this linear model there is not any segmentation of consumers. We assume

that customers use the product for a lease period and return at end-of-lease period.

Return fractions are exogenous to the system and have a distribution characterized

by α′
m = (α′

1, α
′
2, ..., α

′
L) with

L
∑

m=1

α′
m = 1. In this setting, α′

m denotes the fraction of

customers who lease a new product for m periods, and therefore return the product

after m periods.

3.2.2. Decision Criteria

Linear demand model was used in previous studies (e.g., Tsay and Agrawal, 2000;

Gallego et al., 2006). Gallego et al. (2006) illustrate commonly used linear demand

model in Equation (3.29).

di(p) = (ai − bi + ci

∑

j 6=i

pj)
+, (3.29)

where ai > 0, bi > 0, ci ≥ 0. They let n be the number of firms, which are indexed

by i = 1, ..., n. The demand for each firm is specified as a function of prices. They

assume that firm i’s demand is strictly decreasing in its price and that products are

gross substitutes.

Tsay and Agrawal (2000) consider a system of one manufacturer and two retailers

selling the same product and propose a demand model for the retailers. It is assumed

that each retailer i chooses its price pi, and service level si and each retailer’s demand

is a function of it’s price and service level as well as the difference of prices and the

service levels of the two retailers.
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We also propose a linear demand function as follows

qn = an − αnpn + θrpr, (3.30)

and

qr = ar − αrpr + θnpn, (3.31)

where an and ar are the potential size of new and remanufactured product’s mar-

ket, respectively. αn and θr are the sensitivity of new product’s demand to its price

and remanufactured product’s price, respectively, and αr and θn are the sensitivity of

remanufactured product’s demand to its price and new product’s price, respectively.

an + ar is the total demand if the price for both products is zero.

The demand functions given in Equations (3.30) and (3.31) are not related to the

relative willingness-to-pay for remanufactured product, δ. Ferguson and Toktay (2004)

assume that if a consumer of type φ ∈ [0, 1] has a valuation of φ for a new product, his

valuation for a remanufactured product is δφ. They propose a linear inverse demand

function which is derived from consumers’ utility functions. This construction leads to

the following formulation:

pn = 1− qn − δqr, (3.32)

pr = δ (1− qn − qr) . (3.33)

These functions capture the competition between the new product and the re-

manufactured product. As relative willingness-to-pay for remanufactured products

increases, the price of the remanufactured product increases, but the price of the new

product decreases as the two products become closer substitutes.
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First, by using Equations (3.32) and (3.33), we can observe if the condition pr ≤
δpn is provided. For this reason, we replace pn and pr with price functions proposed

by Ferguson and Toktay (2004).

δ (1− qn − qr) ≤ δ(1− qn − δqr). (3.34)

If this inequality is satisfied, pr ≤ δpn. After some simplifications, the inequality can

be written equivalently as follows:

qr ≥ δqr. (3.35)

Since we assume 0 < δ < 1, it is obvious that the condition is provided. Therefore, we

conclude that the linear inverse demand functions include the price constraint in their

model.

Second, in order to relate to the relative willingness-to-pay for remanufactured

product in our demand models, we obtain linear demand functions from Equations

(3.32) and (3.33).

qn + δqr = 1− pn, (3.36)

δqn + δqr = δ − pr. (3.37)

After solving these two equations with respect to qn and qr, we obtain

qn =
1− δ − pn + pr

(1− δ)
, (3.38)

and

qr =
δpn − pr

δ(1− δ)
. (3.39)
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After some algebraic manipulations, we obtain linear demand functions as

qn = 1− 1

1− δ
pn +

1

1− δ
pr, (3.40)

and

qr = − 1

δ(1− δ)
pr +

1

1− δ
pn. (3.41)

Note that if we compare our initial demand functions given in Equations (3.30)

and (3.31) with their new versions, an + ar corresponds to 1,

αn =
1

1− δ
, (3.42)

αr =
1

δ(1− δ)
, (3.43)

θn =
1

1− δ
, (3.44)

θr =
1

1− δ
. (3.45)

It is seen from Equations (3.40) and (3.41) that if the prices for both products

are zero, the market size equals to 1, and qn = 1, qr = 0. This is because if new and

remanufactured products were sold free of charge, then all consumers would prefer new

product instead of remanufactured one.

Since qn + qr is the total demand, the exact formulation of total demand can be
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written as

qn + qr = 1− 1

δ
pr. (3.46)

Note that if pr = 0, each consumer surely chooses a product in the population. If the

price of the remanufactured product increases, total demand decreases, and the volume

of consumers who prefer nothing increases.

In this demand model type, we obtain the total demand for new products in a

generic period. Using the new products’ quantity, the volume of customers who lease

the product for m periods is calculated as follows:

qm = α′
mqn m = 1, ..., L. (3.47)

3.2.3. Remanufacturable Product Supply

In the model which is set by considering price-demand relation, Rt at the begin-

ning of period t is given by

Rt =

min(L,t)
∑

m=1

α′
mqn,t−m, (3.48)

or

Rt =

min(L,t)
∑

m=1

qm,t−m, (3.49)

where R1 = 0.

As discussed before, we assume that after m periods of use, a fraction α′
m of new

products are returned by the lessee. Moreover, there is no difference in the formulation

of It which is given in Equation (3.21). Recall that if the price pt in period t is chosen
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such that the resulting demand qr,t for remanufactured products is greater than the

available inventory (It−1 +Rt), the shortage ∆r,t in used products is obtained from the

third-party core supplier. ∆r,t is given by Equation (3.22).

3.2.4. The Decision Making Framework

The main difference occurs due to the type of demand model in the revenue part

generated through leasing new products. Except this, all settings are the same as the

previous formulation of the manufacturer’s optimization problem.

3.2.4.1. Formulation of the Manufacturer’s Optimization Problem. If we use monthly

lease payment model, the per-period revenue is given by

rβm
(p) =

[

L
∑

m=1

βm (1− β12m
m )

1− βm

α′
mqn(p)pm

]

+ qr(p)pr. (3.50)

The profit obtained in a generic period under the decision p = (pn, pr) is given

by

Πβm
(p) = rβm

(p)− cnqn(p)− crq
2
r(p)− c′r∆r. (3.51)

Let Vβ(I) denote the optimal β-discounted multi-period profit of the manufacturer

with the initial condition I0 = I.

Vβ(I) = max
T

∑

t=1

βt−1Πβm
(pt). (3.52)
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If we use yearly lease payment model, the per-period revenue becomes

rβ(p) =

[

L
∑

m=1

β (1− βm)

1− β
α′

mqn(p)pm

]

+ qr(p)pr, (3.53)

and the profit obtained in a period under the decision p = (pn, pr) is written as

Πβ(p) = rβ(p)− cnqn(p)− crq
2
r(p)− c′r∆r, (3.54)

and the optimal β-discounted multi-period profit of the manufacturer with the initial

condition I0 = I becomes as below

Vβ(I) = max
T

∑

t=1

βt−1Πβ(pt). (3.55)

The optimal solution to these maximization problems is the price path for new

and remanufactured products, p∗
t , to which corresponds to an optimal path of demands,

q∗
t .

3.2.4.2. Exploiting Properties of the Objective Function. The profit in a generic pe-

riod is given in Equation (3.51). If we write the function with respect to pn and pr, it

becomes as follows:

Πβm
(p) =

[

L
∑

m=1

βm (1− β12m
m )

1− βm

α′
m(an − αnpn + θrpr)pn

(

dm

12m
+ (2− dm) MF

)

]

+ (ar − αrpr + θnpn)pr − cn(an − αnpn + θrpr)− cr(ar − αrpr + θnpn)2

− c′r max(0, (ar − αrpr + θnpn − I)). (3.56)

For simplification, we use

Um =
βm (1− β12m

m )

1− βm

α′
m

(

dm

12m
+ (2− dm) MF

)

m = 1, ..., L. (3.57)
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Therefore,

Πβm
(p) =

[

L
∑

m=1

Um(anpn − αnp2
n + θrpnpr)

]

+ (arpr − αrp
2
r + θnpnpr)

− cn(an − αnpn + θrpr)− cr(ar − αrpr + θnpn)2

− c′r max(0, (ar − αrpr + θnpn − I)). (3.58)

∂Πβm

∂pn

=

[

L
∑

m=1

Um(an − 2αnpn + θrpr)

]

+ θnpr + cnαn − 2crθn(ar − αrpr + θnpn)− c′rθn.

(3.59)

∂Πβm

∂pr

=

[

L
∑

m=1

Umθrpn

]

+ (ar − 2αrpr + θnpn)− cnθr + 2crαr(ar −αrpr + θnpn). (3.60)

∂2Πβm

∂p2
n

=

[

L
∑

m=1

Um(−2αn)

]

− 2crθ
2
n. (3.61)

∂2Πβm

∂p2
r

= −2αr − 2crα
2
r . (3.62)

∂2Πβm

∂pn∂pr

=

[

L
∑

m=1

Umθr

]

+ θn + 2crθnαr. (3.63)

The Hessian is













[

L
∑

m=1

Um(−2αn)

]

− 2crθ
2
n

[

L
∑

m=1

Umθr

]

+ θn + 2crθnαr

[

L
∑

m=1

Umθr

]

+ θn + 2crθnαr −2αr − 2crα
2
r













, whose

leading coefficient is negative due to the negative sign. Since all parameters are posi-

tive, diagonal entries are positive, and the last element of Hessian is negative. When

we assign numerical values to parameters, determinant is positive. Thus, the Hessian

is negative definite and the profit function is concave in (pn, pr).
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The Lagrangean is

L(pn, pr) =

[

L
∑

m=1

Um(anpn − αnp
2
n + θrpnpr)

]

+ arpr − αrp
2
r + θnpnpr

− cn(an − αnpn + θrpr)− cr(ar − αrpr + θnpn)2

− c′r max(0, (ar − αrpr + θnpn − I))

+ µ1(an − αnpn + θrpr) + µ2(ar − αrpr + θnpn). (3.64)

∂L

∂pn

=

[

L
∑

m=1

Um(an − 2αnpn + θrpr)

]

+ θnpr + cnαn

− 2crθn(ar − αrpr + θnpn)− c′rθn − µ1αn + µ2θn. (3.65)

∂L

∂pr

=

[

L
∑

m=1

Umθrpn

]

+(ar−2αrpr +θnpn)−cnθr +2crαr(ar−αrpr +θnpn)+µ1θr−µ2αr.

(3.66)

Since the profit function is concave, necessary conditions and sufficient conditions

for optimality are zero as well as

µ1(an − αnpn + θrpr) = 0, (3.67)

µ2(ar − αrpr + θnpn) = 0, (3.68)

µ1 ≥ 0, (3.69)

µ2 ≥ 0. (3.70)
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4. SOLUTION PROCEDURE

Since the resulting problem is a nonlinear constrained optimization problem

(NLP), the optimal solution cannot be obtained easily. Moreover, due to the complex

structure of the problem, we are not able to analytically determine the unique optimal

prices and payments and it is not practical to work with the derivatives during the so-

lution step. In general, when the objective function is nonlinear and non-differentiable,

or it is not convenient to use the information obtained from differentiation, some direct

search methods are preferred. One of them is the Nelder-Mead Simplex Search Method

(Nelder and Mead, 1965). In summary, this method starts with a set of solutions and

at each iteration a new candidate is generated, which is to be accepted or not. Most

of the time a greedy decision is utilized so that the candidate is accepted if and only if

it results in an improvement in the objective function, which brings the risk of being

trapped into a local optimum. One common strategy to avoid this risk is to restart

with different initial points.

4.1. Simplex Search

Since the simplex search is originally developed to solve unconstrained problems,

we modify it in order to handle price constraint. We first give the steps of the simplex

search algorithm and we will then explain the details of our implementation in the

solution of the resulting problem.

1. Construction of the initial simplex: Choose points p1,p2, ...,pn+1 to form a sim-

plex. Choose a reflection coefficient α > 0, an expansion coefficient γ > 1, a

contraction coefficient 0 < λ < 1, and a shrinkage coefficient χ > 0. Go to Step

2.

2. Initilization: Let pmin,pmax ∈ {p1, ...,pn+1} such that Π(pmax) = max
1≤h≤n+1

Π(ph),

Π(pmin) = min
1≤h≤n+1

Π(ph). Let p̄ = 1
n

n+1
∑

h=1|ph 6=pmin

ph. Go to Step 3.

3. Reflection: Let pr = p̄+α(p̄− pmin).
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If Π(pr) ≥ Π(pmax), go to Step 4.

If Π(pr) < Π(pmax), but Π(pr) ≥ min
h|ph 6=pmin

Π(ph), then replace pmin by pr to form

a new set of n + 1 points and go to Step 6.

4. Expansion: Let pe = p̄+γ(pr − p̄).

Replace pmin by pe if Π(pr) < Π(pe) and by pr if Π(pr) ≥ Π(pe) to yield a new

set of n + 1 points and go to Step 6.

5. Contraction: Let pc = p̄+λ(p̂min−p̄),

where p̂min is defined as Π(p̂min) = max
{

Π(pmin), Π(pr)
}

. If Π(pc) ≥ Π(p̂min),

replace pmin with pc. If Π(pc) < Π(p̂min), replace ph with ph + χ(pmax − ph) for

h = 1, ..., n + 1. Go to Step 6.

6. Termination: If

{

1
n+1

n
∑

h=0

[

Π(ph)− Π(p̄)
]2

}1/2

< ε, then stop and set pbest ←
pmax, else go to Step 2.

Simplex search uses a polyhedron with n + 1 vertices for a problem with n vari-

ables to define the current simplex. Each vertex is represented by an n-dimensional

vector. New candidate vectors are generated by reflections of some of the vectors and

contractions around the vectors which correspond to a higher objective function value.

The decision for the candidate vectors are made according to their objective value.

By following this procedure, the simplex expands and contracts during the solution

step and finally contracts to a single vector, which is a local optimum. We modify the

simplex search so that after any update of the vertices of the simplex, the constraints

are not violated. Therefore, the feasibility is preserved throughout the search.

4.1.1. Construction of the Initial Simplex

Construction of the initial simplex is done by defining a price vector ph for each

vertex of the simplex. Since we have two variables in our problem as pn and pr, we

have to obtain 2T + 1 points p1,p2, ...,p2T+1 to form a simplex. For instance, if we

solve a 5-period problem, we have 10 variables, therefore we will use 11 vertices to form

the initial simplex. Moreover, each point consists of pn,t and pr,t for t = 1, ..., T where

the first T component of the price vector is constructed by pn,t’s, and the rest of the

vector by pr,t’s. Therefore, we have 2T components at each vertex.
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The first price vector is selected by generating prices arbitrarily in interval [0, 1]

considering also the price constraint which requires that pr,t ≤ δpn,t for t = 1, ..., T .

The rest of the simplex is constructed by using Bazaraa et al. (1993)’s suggestion with

some modifications since we have to also satisfy the price constraint for the rest of the

vertices. Bazaraa et al. (1993) suggest that

ph+1 = ph + dh h = 1, ..., n. (4.1)

where n denotes the number of variables. Here dh is a vector with hth component is

equal to a and all other components equal to b with

a =
s

n
√

2

(√
n + 1 + n− 1

)

, (4.2)

b =
s

n
√

2

(√
n + 1− 1

)

, (4.3)

where s is a scalar.

Thus, after our modification, the first part of the vertices is constructed as follows

ph+1 = ph + dh h = 1, ..., T, (4.4)

where dh is a vector with hth component is equal to a and all other components equal

to b and

ph+1 = ph + dh h = T + 1, ..., 2T, (4.5)

where dh is a vector with hth − T component is equal to a and all other components

equal to b with

a =
s

T
√

2

(√
T + 1 + T − 1

)

, (4.6)
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b =
s

T
√

2

(√
T + 1− 1

)

. (4.7)

Although we have 2T variables in our model, we set n to T while constructing

components of dh since we need only T components for the first part of each vertex.

After we obtain the first part of each vertex, we construct the second part by

multiplying each pn,t with a number generated randomly in interval [0, δ] to satisfy the

price constraint.

To avoid the risk of being trapped into a local optimum, we restart the simplex

run 100 times with different step sizes, s. The values of s = {0.4, 0.5, 0.6, 0.7, 0.8} works

well. Here, we use s = 0.4 for initial 20 runs, and s = 0.5 for the following 20 runs, and

etc. We select the best solution among the results of these 100 runs. The frequency of

the local optima obtained during the search can be observed from standard deviation

of the solution.

4.1.2. Reflection Step

After calculating the reflected point pr (p̄+α(p̄− pmin)), the feasibility of pr

should be checked. p̄ is already a feasible point since it is the centroid of a feasible

simplex. However, while reflecting the worst point of the simplex through the feasible

centroid, it is possible to fall out of the feasible region. If this occurs, we modify the

reflected point moving the pr,t to δ times pn,t. Thus, the infeasible remanufacturing

price pr of the reflected vector pr is adjusted so that it becomes equal to δpn. Here,

the reflection coefficient α is set to one as suggested by Nelder and Mead (1965).

4.1.3. Expansion Step

After calculating the expansion point pe (p̄+γ(pr − p̄)), the feasibility of pe

should be checked. If pe causes infeasibility with respect to price constraint, pr,t ≤ δpn,t,

we set pr,t = δpn,t. In this setting, the expansion coefficient γ is set to two as suggested
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by Nelder and Mead (1965).

4.1.4. Contraction Step

After calculating the contraction point pc (p̄+λ(p̂min−p̄)), the feasibility of pc

should be checked. If pc causes infeasibility with respect to price constraint, pr,t ≤ δpn,t,

we set pr,t = δpn,t. Here, the contraction coefficient λ is set to 0.5 as suggested by Nelder

and Mead (1965).

As mentioned before in the contraction step, if the contracted point is not replaced

with pmin, then every point is shrank by using ph = ph + χ(pmax − ph). Here, χ is the

shrinkage coefficient and is chosen to be 0.5 as suggested by Nelder and Mead (1965).

Finally, note that in our experiments ε = 10−14 is chosen to stop the algorithm.
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5. EXPERIMENTAL RESULTS

In our experiments we will focus on the base model which is formulated according

to the maximum utility type approach because of the fact that it is more realistic in the

marketing environment. The experiments can be grouped into two main categories. In

the first group, we solve single period problems where there is only 1-period option of

leasing a new product in addition to buying a remanufactured product. Moreover, the

examination of uncertainty in problem parameters is possible by solving multiple sce-

narios (with different parameter values). We perform sensitivity analysis with respect

to the following parameters: consumers’ relative willingness-to-pay for a remanufac-

tured product, relative willingness-to-pay for leasing a new product, deterioration of

the product in age, initial inventory level, and cost of supplying used products from the

third-party core supplier. In the second group, we solve multi-period problems in order

to analyze the effects of returns of previously leased products on the manufacturer’s

decision and profit. The effect of problem parameters mentioned above is also pre-

sented. In addition, multi-period problem will also be considered with the two-period

lease option in order to investigate the trends on demands and prices.

Since we are not able to analytically determine the unique optimal prices and

quantities, the problems are solved by the simplex search method explained in detail

in the previous chapter. Small sized problems such as the single period problems can

be solved by exhaustive search in terms of pn and pr. We note that simplex search

algorithm produces the same results as the exhaustive search does. However, when the

problem size increases, exhaustive search fails to find the optimum since even small

changes in prices have an impact on the optimum profitability, and requires very long

run times. Since we solve a maximization problem, we generate Hessian matrix in single

period problem to examine the concavity of the objective function. The examination

of jointly concavity of the objective function for single period problem is performed by

using the first and second derivatives given in Appendix A.
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The simplex algorithm is coded in Visual C++ 6.0 environment and the experi-

ments are run on a Pentium M, 1.7 MHz machine with 512 MB of RAM. As the run

times are considerably short, no result is given for the CPU times.

5.1. Single Period Problem

Single period optimization gives us general information about the problem pa-

rameters which affect the manufacturer’s decision. Moreover, we can observe whether

the objective function is jointly concave or not with respect to pn and pr. Due to

the problem structure, it is not possible to determine the concavity of the objective

function taking derivatives directly. Thus, we generate Hessian matrix H using sec-

ond order derivatives and evaluate H numerically with the values obtained from the

simplex search.

In this case, if determinant is positive and leading element is negative, then the

Hessian is negative definite and the profit function is jointly concave in (pn, pr).

Since we are not able to equalize first derivatives of profit function to zero due

to the model structure, we do not analytically determine the unique optimal prices

and quantities. Therefore, we prove that we obtain the optimal prices solving the same

problem by exhaustive search which produces the same solution as simplex search does.

In some cases, only one of the remanufactured or new products exists. In such

cases, since Hessian is meaningless, we consider the first and second derivative of the

profit function with respect to the price of the resulting product, i.e. remanufactured or

new, such that if the second derivative of the profit function is negative, it is concave.

Therefore, when we equalized the first derivative to zero, we would obtain optimal

price which corresponds to optimal demand. However, as mentioned before, since we

are not able to analytically determine the unique optimal price, we find it by numerical

search. When we analyze the first derivative of the objective function with respect to

this optimal price, it is almost zero in all cases.
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Since we design our experiments considering only 1-period leasing option, the

potential market consists of a segment of customers who desire to lease a new product

for only one period, or buy a remanufactured product, or nothing, thus α1 = 1. Unless

otherwise stated, some parameter values shown in Table 5.1 have been fixed for the

analysis.

Table 5.1. Fixed parameter values common for all experiments

cn cr i

0.1 0.05 0.08

5.1.1. The Effect of Changes in the Relative Willingness-to-pay for Reman-

ufactured Product

In this section, we keep all parameters fixed except δ to analyze the effect of its

changes. Some parameter values have already been given in Table 5.1, and d1, l1, c′r

and I0 are given in Table 5.2.

Table 5.2. Fixed parameter values to analyze the effect of changes in δ

d1 l1 c′r I0

0.1 0.5 0.08 0

These values implies that a product loses 10 percent of its value in the first year

(d1 = 0.1), and a customer’s valuation for leasing a new product for one period is half

of his valuation for buying a new product (l1 = 0.5). If the inventory of used products

is not adequate to meet the demand for remanufactured products, the manufacturer

purchases the necessary cores from the third-party supplier with cost c′r = 0.08. We

assume that there exists no inventory at the beginning of time horizon, I0 = 0. We

conduct our experiments in this section for different δ values ranging from 0.2 to 0.9.

Figure 5.1 illustrates the change in the optimal profit as δ increases. If δ is high,

customers view the new and remanufactured products almost as being identical and are

willing to pay almost the same amount for either product which results in an increase in
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the profit. When l1 > δ, the increase in this parameter does not affect the profit since

there is no demand for remanufactured products. In this case profit does not change

because qn and qr remain the same. When l1 ≤ δ, the profit of the manufacturer

increases at an increasing rate due to the increase of qr and pr. Optimal prices and

demands are given in Table 5.3.

Figure 5.1. The effect of δ on the profit

Table 5.3. Optimal prices and demands for different δ values

δ pn pr qn qr qNo

0.2 1.7793 0.1468 0.4000 0.0000 0.6000

0.3 1.7793 0.3159 0.4000 0.0000 0.6000

0.4 1.7793 0.6624 0.4000 0.0000 0.6000

0.5 2.1676 0.3091 0.0000 0.3818 0.6182

0.6 1.9000 0.3600 0.0000 0.4000 0.6000

0.7 2.3063 0.4107 0.0000 0.4133 0.5867

0.8 1.8197 0.4612 0.0000 0.4235 0.5765

0.9 1.9095 0.5116 0.0000 0.4316 0.5684

As long as δ < l1, there is no demand for remanufactured products as seen in

Figure 5.2 since customers value remanufactured products less than new products which

prevents the manufacturer from having profit from the remanufactured product. Thus,

for low δ values, it is more profitable to encourage consumers to lease new products than

to buy remanufactured products. When δ = l1, there is no demand for new products



62

Figure 5.2. The effect of δ on the demands

and most of the consumers shift towards the remanufactured products. Thus, at this

point, the volume of consumers who prefer nothing increases. From this point on, it

is seen that as δ increases, the amount of remanufactured products increases and the

volume of consumers who prefer nothing decreases.

If δ < l1, the price of new products does not change and price of remanufactured

products is charged higher with respect to δ in order to create demand for only new

products. However, if δ ≥ l1, the price of remanufactured products increases to take

advantage of the increased willingness-to-pay. In this case we observe that the profit

of the manufacturer increases due to the increase of qr and pr as illustrated in Figure

5.3.

Finally, our experiments show that the manufacturer obtains higher profit from

customer segments with higher relative willingness-to-pay for remanufactured products

since higher prices are charged to take advantage of the increased willingness-to-pay.

Moreover, the volume of customers who prefer nothing decreases.



63

Figure 5.3. The effect of δ on qr, pr and profit if δ ≥ l1

5.1.2. The Effect of Changes in the Relative Willingness-to-pay for Leasing

a New Product

Each consumer’s willingness-to-pay for leasing a new product for m periods is a

fraction lm of their willingness-to-pay for buying it. Since we only consider 1-period

leasing in this section, m = 1 in our experiments. We keep all parameters fixed except

l1 to analyze the effect of its changes. We can observe the effect of l1 in those cases

when there is demand for new products. For instance, if δ = 0.8, the volume of new

products is zero for all values of l1 from 0.1 to 0.5. Therefore, we set δ to 0.2 to be able

to see the effects of l1. Moreover, l1 is at most set to 0.5, because if l1 is greater than

0.5, consumers value 1-period leasing much more than it’s worth which is not possible

in real cases. The fixed parameter values to analyze the effect of consumer acceptance

of leased product are given in Table 5.4.

Table 5.4. Fixed parameter values to analyze the effect of changes in l1

d1 δ c′r I0

0.1 0.2 0.08 0

When the effect of changes in l1 is analyzed for δ = 0.2, similar results are

found to the cases while analyzing the effect of δ with l1 = 0.5. This is because each

consumer’s willingness-to-pay for leasing a new product for one period and for buying a

remanufactured product are fractions l1 and δ, respectively, of their willingness-to-pay
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for buying a new product. Similar to the effect of δ, the price of the new product

increases as l1 increases to take advantage of increased willingness-to-pay for leasing.

Therefore, the higher the l1 value, the higher is the profit as illustrated in Figure 5.4.

However, if l1 ≤ δ, the increase in l1 does not affect the profit since there is no demand

for new products. Optimal prices and demands are given in Table 5.5.

Figure 5.4. The effect of l1 on the profit

Table 5.5. Optimal prices and demands for different l1 values

l1 pn pr qn qr qNo

0.1 1.5200 0.1520 0.0000 0.2400 0.7600

0.2 1.2400 0.1520 0.0000 0.2400 0.7600

0.3 1.1862 0.2372 0.3333 0.0000 0.6667

0.4 1.4828 0.2040 0.3750 0.0000 0.6250

0.5 1.7793 0.1926 0.4000 0.0000 0.6000

For l1 ≤ δ, there is no demand for the new product since consumers have more

utility from buying remanufactured product than leasing a new product due to the

low perception on leasing. However, when l1 > δ, namely a customer’s valuation for

leasing a new product for one period is at 30 per cent of his valuation for buying a new

product and thus greater than his valuation for buying a remanufactured product, new

product is preferred by customers. From this point on, it is seen that as l1 increases,

the amount of new products increases and the volume of consumers who prefer nothing

decreases. Figure 5.5 exhibits the trends on demands as l1 increases.
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Figure 5.5. The effect of l1 on the demands

In this phenomenon, it is important to note that if both l1 and δ decrease, the

volume of customers who prefer nothing increases which results in a decrease in the

manufacturer’s profit since both demands and prices decrease.

If we only analyze l1 values where l1 > δ, we can see that as l1 increases, the

volume and the price of the new product increase to grow the profit which increases at

an increasing rate as presented in Figure 5.6.

Figure 5.6. The effect of l1 on qn, pn and profit

Combined with the relative willingness-to-pay δ for remanufactured product, we

plot the optimal profit against l1 for different values of δ (ranging from 0.2 to 0.5) in

Figure 5.7.

When the joint effect of l1 and δ is analyzed, it is seen that the profit increases
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Figure 5.7. The effect of l1 on the profit for different δ values

only if l1 is greater than δ as l1 increases. This is because the volume of the new

products increases as l1 increases only if l1 > δ. If l1 is still less than or equal to δ

when it increases, consumers do not change their preferences because of the fact that

they derive more utility from buying a remanufactured product than from leasing a

new product. For instance, in Figure 5.7, when δ=0.5, the profit does not change

as l1 increases since all of the l1 values are less than or equal to δ. In this case,

consumers prefer to buy remanufactured product. Therefore, it can be said that if

l1 ≤ δ, consumers are willing to pay for the remanufactured product, whereas they

choose new product if l1 > δ in the single period problem.

5.1.3. The Effect of Changes in the Deterioration of the Product

Residual value of the product decreases as the length of a lease increases. This

is because the older a product gets, the less its remaining value. Therefore, residual

value is the wholesale worth of a product at the end of its lease term.

Products deteriorate by a factor dm where m is the index for lease periods. As

mentioned before, since we only consider 1-period lease in this section, products are

used one year and return at the end of the year. For a customer who leases a new

product, the perceived residual value at the end of the year is given by Equation
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(3.1). In other words, the depreciation part of the product is given by Equation (3.2).

Note that if dm increases, residual value decreases and since the returned product will

have less value, payments will increase. In other words, a higher level of depreciation

requires higher leasing payments. In the light of this information, we analyze the effect

of changes in dm for m = 1.

We conduct the experiments for the set of d1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} consid-

ering all other parameters fixed as given in Table 5.6.

Table 5.6. Fixed parameter values to analyze the effect of changes in d1

l1 δ c′r I0

0.5 0.2 0.08 0

We suggested that a higher level of depreciation requires higher level of leasing

payments. Leasing payments given in Equation (3.5) can be simplified as

pm = pnKm m = 1, ..., L, (5.1)

where

Km =

(

dm

12m
+ (2− dm) MF

)

. (5.2)

In our numerical experiments, we observe that the increasing part is Km where m = 1.

Table 5.7 illustrates K1 values for different d1 values.

Table 5.7. K1 values for different d1 values

d1 0.1 0.2 0.3 0.4 0.5 0.6

K1 0.014667 0.022667 0.030667 0.038667 0.046667 0.054667

Table 5.8 illustrates the optimal prices and demands for different d1 values. As d1

increases, pn decreases whereas K1 increases for d1 values from 0.1 to 0.4. Therefore, p1

values do not change which results in no change in demands and profit. As pn decreases,
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pr also decreases, but since δ is low, namely consumers see remanufactured products

almost worthless, qr does not change. Therefore, it is obvious that there is a threshold

for depreciation rate such that for values less than this threshold, there is no change

in the demands even though d1 increases. On the other hand, when the threshold is

exceeded, qn decreases and qr increases as d1 increases. This is because the decrease

in pn forces pr to decrease due to the constraint pr ≤ δpn. Although consumers with

high willingness-to-pay for leasing a new product still prefer leasing, consumers with

low willingnes-to-pay shift towards the remanufactured product due to the decrease

in the price of the remanufactured product. This decrease of prices affects the profit

negatively. In Figure 5.8, we exhibit the effect of d1 on the prices and demands.

Table 5.8. Optimal prices and demands for different d1 values - l1 = 0.5, δ = 0.2

d1 pn pr qn qr qNo PV (p1) p1

0.1 1.7793 0.2411 0.4000 0.0000 0.6000 0.3000 0.0261

0.2 1.1513 0.2231 0.4000 0.0000 0.6000 0.3000 0.0261

0.3 0.8510 0.1702 0.4000 0.0000 0.6000 0.3000 0.0261

0.4 0.6749 0.1350 0.4000 0.0000 0.6000 0.3000 0.0261

0.5 0.5526 0.1105 0.3803 0.0672 0.5526 0.2964 0.0258

0.6 0.4488 0.0898 0.3590 0.1922 0.4488 0.2821 0.0245

Figure 5.8. The effect of d1 on prices and demands - l1 = 0.5, δ = 0.2

Combined with the relative willingness-to-pay δ for remanufactured product, we

plot the optimal profit against the depreciation rate for different values of δ (ranging
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from 0.2 to 0.5) considering δ ≤ l1 in Figure 5.9. This is because if δ > l1, no demand

exists for new products.

Figure 5.9. The effect of d1 on the profit for different δ values

Note that when d1 exceeds its threshold value, the profit curves are downward

sloping for δ < l1. Moreover, when d1 is higher than its threshold value (e.g., d1 = 0.5),

the profit decreases as δ increases. This is because even though the volume of consumers

who prefer buying a remanufactured product increases as δ increases, the price and the

amount of new products leased decreases. On the other hand, when δ = l1, from this

point on, there is no effect of depreciation rate on the profit since there is no demand for

new products. Table 5.9 illustrates the optimal demands, prices and profit for δ = l1.

Table 5.9. Optimal prices and demands for different d1 values - l1 = 0.5, δ = 0.5

d1 Profit pn pr qn qr qNo PV (p1) p1

0.1 0.0802 3.3839 0.3091 0.0000 0.3818 0.6182 0.5705 0.0496

0.2 0.0802 1.4117 0.3091 0.0000 0.3818 0.6182 0.3678 0.0320

0.3 0.0802 1.8480 0.3091 0.0000 0.3818 0.6182 0.6515 0.0567

0.4 0.0802 0.7861 0.3091 0.0000 0.3818 0.6182 0.3494 0.0304

0.5 0.0802 3.3532 0.3091 0.0000 0.3818 0.6182 1.7989 0.1565

0.6 0.0802 1.2947 0.3091 0.0000 0.3818 0.6182 0.8136 0.0708

Finally, we find the relationship between δ, l1 and d1 such that if d1 is less than
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threshold value and δ < l1, consumers prefer leasing a new product. As long as δ < l1,

an increase in d1 has no effect on decisions and profit. This is because consumers still

prefer leasing a new product due to the constant payments provided by decreasing

prices as d1 increases. When d1 is greater than threshold value while δ < l1, consumers

shift towards buying a remanufactured product. In this case, if d1 increases, the vol-

ume of remanufactured products increases and the volume of new products decreases

which results in the decrease of profit. Moreover, if δ ≥ l1, consumers prefer buying

remanufactured products, therefore the change in d1 has no impact on decisions and

profit.

5.1.4. The Effect of Changes in the Initial Inventory Level

Until now, we assumed that no used products exist initially. In this section, we

will analyze the case that the period begins with an initial inventory of used remanufac-

turable products. This is important because of the fact that remanufactured products’

sales depend on the availability of returned used products in each period. We allow the

manufacturer to meet the shortage in used products from the third-party core supplier.

Note that average cost to produce a remanufactured product is crqr when supplied from

our returns, but the unit cost becomes c′r + crqr when we purchase used cores from the

third-party supplier. This is because the cost of acquiring a used product from the

third-party core supplier is c′r and to produce a remanufactured product in manufac-

turer’s facility costs crqr on the average. Therefore, if initial inventory of used cores

decreases, manufacturer’s profit decreases due to the higher costs.

First, we conduct the experiments for the values of I0 ∈ [0, 1] with increments of

0.1 considering all other parameters fixed as given in Table 5.10.

Table 5.10. Fixed parameter values to analyze the effect of changes in I0

l1 d1 c′r

0.5 0.1 0.08

Recall that if l1 ≤ δ, consumers prefer remanufactured products, whereas they
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choose new products if l1 > δ for one-period problem. It is important to note that if

there is no available stock of used products when δ < l1, demand for remanufactured

products does not exist. This is because when δ is low, the price of the remanufactured

product is low due to the low willingness-to-pay of consumer and, in that case, if the

used cores are supplied from the third-party core supplier with cost c′r, the manufac-

turer’s profit obtained from each unit decreases. When we look from the consumer’s

side, they see remanufactured product worthless if δ is low and thus, they are not

willing to pay high prices for it. When their net utility obtained from buying a reman-

ufactured product is less than leasing a new product, they choose the new product.

Therefore, we obtain different insights under the cases where l1 ≤ δ and l1 > δ.

If there were no dependence between stock of used products and remanufactured

products’ sales, namely all demand for remanufactured products were provided, there

would be an optimum q∗r for each δ value when all parameters are held constant. In our

experiments, I0 = 1, in fact, represents this assumption in single period setting. Thus,

for all δ values, when I0 increases, qr increases up to q∗r , but there are some differences

between the cases where l1 ≤ δ and l1 > δ.

Table 5.11 exhibits optimal prices and demands for different I0 values when l1 =

0.5 and δ = 0.2. If l1 > δ, the increase of qr depends on I0 such that qr does not exceed

the available inventory of used products. If q∗r ≥ I0 for a δ value, then, as I0 increases,

qr increases as illustrated in Figure 5.10. The price of the remanufactured product

decreases such that the demand for remanufactured products increases which results

in the decrease of the amount of new products. However, the increase in the amount

of remanufactured products makes the profit increase as seen in Figure 5.11. When qr

reaches the optimum q∗r , it does not change even if I0 increases. Therefore, the profit

remains the same since both prices and demands for new and remanufactured products

do not change as illustrated in Figure 5.11.
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Table 5.11. Optimal prices and demands for different I0 values - l1 = 0.5, δ = 0.2

I0 pn pr qn qr qNo

0 1.7793 0.1395 0.4000 0.0000 0.6000

0.1 1.7793 0.1080 0.3600 0.1000 0.5400

0.2 1.7793 0.1059 0.3529 0.1176 0.5294

0.3 1.7793 0.1059 0.3529 0.1176 0.5294

0.4 1.7793 0.1059 0.3529 0.1176 0.5294

0.5 1.7793 0.1059 0.3529 0.1176 0.5294

0.6 1.7793 0.1059 0.3529 0.1176 0.5294

0.7 1.7793 0.1059 0.3529 0.1176 0.5294

0.8 1.7793 0.1059 0.3529 0.1176 0.5294

0.9 1.7793 0.1059 0.3529 0.1176 0.5294

1 1.7793 0.1059 0.3529 0.1176 0.5294

Figure 5.10. The effect of I0 on the demands - l1 = 0.5, δ = 0.2

When δ ≥ l1, qr is positive although there is no stock of used products. This is

because the company earns more from customers who prefer buying a remanufactured

product even though used cores are supplied at a cost of c′r. In such cases, even though

pr and qr do not change, profit continually increases as I0 increases, because the part of

used cores supplied from manufacturer’s returned products is remanufactured with less

cost compared to the case where all used cores are bought from the third-party core

supplier. In other words, as I0 increases, the cores supplied with an extra cost decrease.
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Figure 5.11. The effect of I0 on the profit - l1 = 0.5, δ = 0.2

When I0 becomes equal to qr, there is no need to purchase from the third-party core

supplier. From this point on, if q∗r ≥ I0, qr continues to increase as I0 increases. The

profit increases due to the increase of qr. When I0 > q∗r , the increase of I0 does not

affect the volume and price of remanufactured products and profit does not change.

Table 5.12 illustrates optimal prices and demands for different I0 values when l1 = 0.5

and δ = 0.5. Figure 5.12 exhibits the trend of optimal demands with respect to I0.

Table 5.12. Optimal prices and demands for different I0 values - l1 = 0.5, δ = 0.5

I0 pn pr qn qr qNo

0 2.2569 0.3091 0.0000 0.3818 0.6182

0.1 2.9626 0.3091 0.0000 0.3818 0.6182

0.2 1.9237 0.3091 0.0000 0.3818 0.6182

0.3 2.0985 0.3091 0.0000 0.3818 0.6182

0.4 2.9214 0.3000 0.0000 0.4000 0.6000

0.5 2.3456 0.2727 0.0000 0.4545 0.5455

0.6 1.6411 0.2727 0.0000 0.4545 0.5455

0.7 3.1878 0.2727 0.0000 0.4545 0.5455

0.8 2.1641 0.2727 0.0000 0.4545 0.5455

0.9 1.7303 0.2727 0.0000 0.4545 0.5455

1 1.8665 0.2727 0.0000 0.4545 0.5455
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Figure 5.12. The effect of I0 on the demands - l1 = 0.5, δ = 0.5

Combined with the relative willingness-to-pay δ for remanufactured product we

plot the optimal profit against the initial inventory level for different values of δ (ranging

from 0.2 to 0.5) in Figure 5.13.

Figure 5.13. The effect of I0 on the profit for different δ values

When I0 is held fixed at some value greater than zero, the profit increases as

δ increases because of the fact that pr increases to take advantage of the increased

willingness-to-pay for δ < l1, but qr does not always increase as δ increases. Recall

that when I0 = 0, the increase in δ does not affect qr. Moreover, when I0 > 0, this is

also seen in some experiments. As mentioned before, this is because qr does not exceed

I0 due to the extra cost c′r. Therefore, when δ < l1, qr increases only if I0 is enough

to meet the increase in qr. However, if δ ≥ l1, the profit increases as δ increases when

I0 is held fixed due to the increase in both price and amount of the remanufactured

product.
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In conclusion, there are two reasons of the increase in the profit as I0 increases:

The first one is the increase in qr; the second is the decrease in the amount supplied from

the third-party core supplier. For all δ values, if q∗r < I0, there is no effect of I0 neither

on the volume of remanufactured product nor on the price of the remanufactured

product.

5.1.5. The Effect of Changes in the Cost of Supplying Used Products from

Third-party Core Supplier

The cost c′r of acquiring a used product includes unit transportation cost from

the third-party core supplier to manufacturer’s facility. In this section, we keep all

parameters fixed except c′r to analyze its effect. Table 5.13 gives the fixed parameter

values used in the analysis of the effect of c′r.

Table 5.13. Fixed parameter values to analyze the effect of changes in c′r

l1 d1 δ I0

0.5 0.1 0.2 0

c′r = 0 looks like the case where there is no constraint with respect to remanufac-

tured products’ sales, namely I0 = 1. Thus, the average cost of remanufacturing used

cores is only crqr. On the other hand, an increase in c′r makes a remanufactured prod-

uct less attractive with respect to a new product. Thus, the volume of remanufactured

products sold decreases as c′r increases and optimal pricing becomes such that the de-

mand for remanufactured products decreases so as to reduce the detrimental effect of

the increase in c′r on the profit. The increase in the price of the remanufactured prod-

uct in such a way that demand for remanufactured products decreases and demand for

new products increases makes the profit decrease as illustrated in Figure 5.14. This

is because the profit gain obtained from the increase in the amount of new products

leased is less than the profit loss which occurs due to the decrease in the amount of

remanufactured products sold and the increase in the volume of consumers who prefer

nothing.
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Figure 5.14. The effect of c′r on the profit

When the demand for remanufactured products does not exist due to the high

c′r, from this point on, the increase of this parameter does not affect decisions on the

demands and profit. This is because the optimal pricing is such a way that demand

for remanufactured products is zero while demand for new products remains the same

as given in Table 5.14.

Table 5.14. Optimal prices and demands for different c′r values - l1 = 0.5, δ = 0.2

c′r pn pr qn qr qNo

0.00 1.7793 0.1059 0.3529 0.1176 0.5294

0.02 1.7793 0.1129 0.3765 0.0588 0.5647

0.04 1.7793 0.2567 0.4000 0.0000 0.6000

0.06 1.7793 0.2038 0.4000 0.0000 0.6000

0.08 1.7793 0.1705 0.4000 0.0000 0.6000

When the effect of changes in c′r is analyzed for different δ values , similar results

are obtained. Figure 5.15 presents the behavior of the optimal profit as c′r increases

for different δ values.

Finally, if c′r increases, the manufacturer makes the price of the remanufactured

product increase to decrease the demand for remanufactured products. Thus, the

amount of used products supplied from the third-party core supplier decreases. An

increase in pr makes a new product more attractive, but the profit decreases. This is

because the profit loss which occurs due to the increase in the volume of consumers who
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Figure 5.15. The effect of c′r on the profit for different δ values

prefer nothing and the decrease in the amount of remanufactured products is relatively

higher with respect to the profit gain obtained from the increase in the amount of new

products leased.

5.2. Multi-Period Problem

Due to the interdependence of new and remanufactured products, a decrease in

demand for new products results in a decrease in the availability of used products

that are remanufactured. In the previous section, we observed the effect of changes

in initial inventory level, but since there is no supply of used products that become

available at the beginning of the current time, we could not investigate the impact of

past lease decisions on the future decisions of the firm. In the multi-period setting,

it is possible to investigate the interdependence of new and remanufactured products

since all previously leased products have to return at the end of the lease term, which

are further used for remanufacturing.

In this section, we also investigate the implications of this dependency on the

pricing strategy. For instance, the manufacturer may choose to produce some new

products only for the future value that they generate through their sale as remanufac-

tured products, although these products are sold at a loss currently.
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The analysis is considered up to 5 periods, and in each period consumers decide

whether to lease a new product or to buy a remanufactured product based on their net

utility that they derive in that period. As mentioned before, we offer only one-period

lease option in each period and present the effect of different problem parameters in

this setting. However, we also analyze the trend on demands and prices if two-period

lease is offered by the manufacturer. In the single period setting we did not analyze this

option, because decisions are the same in the first and second periods due to returns

of used products at the beginning of the third period.

5.2.1. The Effect of Changes in the Relative Willingness-to-pay for Reman-

ufactured Product

In this section, we keep all parameters fixed except δ to analyze the effect of its

changes on the marketing strategy of the manufacturer in the multi-period setting.

Some parameter values have already been given in Table 5.1, and d1, l1, c′r and I0 are

given in Table 5.2.

Before the effect of changes in δ, we investigate the distribution of volume of

new and remanufactured products among periods due to the interdependence between

them. For the one-period lease option, new products return at the end of their lease

period. As mentioned before, the supply of used products that become available at

the beginning of time t is Rt. The volume of used products that remain in stock from

returns in previous periods at the beginning of period t is It−1. It−1 + Rt gives us the

available inventory at the beginning of the current period.

As mentioned in the single period problem, if there is inventory of used products

when δ < l1, demand for remanufactured products may be positive such that qr does

not exceed the available inventory of used products. If the maximum qr value q∗r for a

given δ is greater than I0, then, as I0 increases, qr increases as well. Thus, in a multi-

period problem, if returns are adequate for remanufacturing, qr becomes positive in the

second period as illustrated in Table 5.15 for two-period problem when l1 = 0.5 and

δ = 0.2. Since no used products exist initially, the demand for remanufactured products
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is zero. However, in the second period since used products return, the manufacturer

produces remanufactured products. The left of the used products remains in stock.

Table 5.15. Optimal prices and demands - 2 periods, l1 = 0.5, δ = 0.2

Periods pn pr qn qr qNo It PV (p1) p1

1 1.7793 0.2982 0.4000 0.0000 0.6000 0.0000 0.3000 0.0261

2 1.7793 0.1059 0.3529 0.1176 0.5294 0.2824 0.3000 0.0261

In the single period model, when l1 = δ, there is demand only for remanufactured

products, but in the multi-period setting, there is not due to the threat of supply of re-

manufacturable products in the next period. Thus, in the first period, the demand for

new products exists, and the manufacturer starts the second period with the available

qn,1 cores to recover from the products that were leased in the previous period. If the

problem were solved period by period without considering the interdependence of new

and remanufactured products, selling more remanufactured products would seem to

be more profitable without considering the next period. However, if the manufacturer

chooses to produce some new products only for the future value that they generate

through their sale as remanufactured products, he makes more profit. In this frame-

work, the optimal pricing is such that the demand for new products is positive in the

first period, while the demand for remanufactured products is positive in the second

period. This comparison is given in Table 5.16.

Table 5.16. Profit comparison for two-period problem - l1 = 0.5, δ = 0.5

Demands

Simultaneous Decision Step by Step

qn,t qr,t qn,t qr,t

1. Period 0.4275 0 0 0.3818

2. Period 0 0.4275 0 0.3818

Profit 0.184468 0.154424

Table 5.17 illustrates the optimal prices and demands if l1 = 0.5 and δ = 0.6.

Recall that in the single period problem if l1 < δ, there is demand only for remanufac-
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tured products. However, in the multi-period setting, the demand for both new and

remanufactured products is positive in the first period so as to decrease the amount

supplied from the third-party core supplier in the next period. The volume of remanu-

factured products in the second period is the same as the results obtained from step by

step optimization. But since the volume of used products supplied from the third-party

core supplier is less, the profit is higher.

Table 5.17. Optimal prices and demands - 2 periods, l1 = 0.5, δ = 0.6

Periods pn pr qn qr qNo It PV (p1) p1

1 1.5596 0.3477 0.3210 0.1531 0.5259 0.0000 0.2630 0.0229

2 1.7794 0.3600 0.0000 0.4000 0.6000 0.0000 0.3000 0.0261

In Figures from 5.16 to 5.23, we exhibit the effect of δ on the demands for new

and remanufactured products in the first and last period of the two-period, three-

period, four-period and five-period problems, respectively. The effect of δ in the first

period becomes different from the effect of it in the rest of the time horizon due to

the availability of used products. In the first period, when δ < l1 and I0 = 0, qr does

not increase as δ increases because of the fact that qr does not exceed I0 due to the

extra cost c′r. We also see from Figure 5.16 that there is no demand for remanufactured

products since customers value remanufactured products less than new products. This

causes the manufacturer not to charge high pr values and, therefore not to obtain profit

by selling the remanufactured product. To create demand for new products in the first

period is beneficial from the perspective of both manufacturer’s profit and the supply

of used products in the next period. When l1 = δ, consumers are undecided between

leasing a new product and buying a remanufactured product because of the fact that

they value both of them equal. Therefore, they prefer the one which has less price.

In this case, manufacturer charges higher prices for remanufactured product to shift

consumers towards new products in the first period considering the supply of used

products in the future. qr is positive for the first time when δ > l1 and, from this point

on, qn decreases (qr increases) as δ increases.

The manufacturer starts the last period with the opportunity to remanufacture
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used products that were leased in previous periods and become available at the begin-

ning of the last period. qr increases (qn decreases) in δ such that qr does not exceed

the volume of returns when δ < l1. For δ ≥ l1, qr may exceed the stock of used prod-

ucts since there are consumers who are willing to pay high prices for remanufactured

products which creates profit although the shortage in used products is supplied from

the third-party core supplier with an extra cost c′r.

Figure 5.16. The effect of δ on the demands in the first period - 2 periods

Figure 5.17. The effect of δ on the demands in the last period - 2 periods
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Figure 5.18. The effect of δ on the demands in the first period - 3 periods

Figure 5.19. The effect of δ on the demands in the last period - 3 periods

Figure 5.20. The effect of δ on the demands in the first period - 4 periods
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Figure 5.21. The effect of δ on the demands in the last period - 4 periods

Figure 5.22. The effect of δ on the demands in the first period - 5 periods

Figure 5.23. The effect of δ on the demands in the last period - 5 periods
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Until now, we present the effect of changes in δ on demands for the first and last

period of the multi-period problems for different T values. In periods stated between

first and last period of the time horizon, when δ < l1 and δ > l1, qr also increases as

δ increases. But when δ = l1, this trend changes such that qr increases too much due

to the returns. However, when δ > l1, since the demand for remanufactured products

exists in each period, the volume of new products decreases and also causes the volume

of the remanufactured products to decrease in the next period. From this point on, qr

continues to increase with respect to δ. Figure 5.24 illustrates this phenomenon.

Figure 5.24. The effect of δ on the demands in the second period - 4 periods

As δ increases, pr also increases to take advantage of increased willingness-to-

pay which makes the profit increase. In Figure 5.25, we present the optimal profit

against the relative willingness-to-pay δ for remanufactured products for different time

horizons up to 5 periods. Note that profit curves are upward sloping: When consumers

shift towards the remanufactured product, the price and the volume of remanufactured

products increase.

The another issue in the multi-period setting is the inventory of used products

that remains in stock. As δ increases, It decreases because of the fact that qn decreases

and qr increases. Moreover, if δ is high, there is no stock of used cores at the beginning

of any period due to the excess demand for remanufactured products. In Tables from

5.18 to 5.20, the changes in It for 5-period problem are illustrated for δ values 0.2, 0.6

and 0.8, respectively.
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Figure 5.25. Change in the optimal profit as δ increases for different multi-period

problems

Table 5.18. Inventory of used cores at the beginning of each period - 5 periods,

l1 = 0.5, δ = 0.2

Periods qn qr qNo It

1 0.4000 0.0000 0.6000 0.0000

2 0.3529 0.1176 0.5294 0.2824

3 0.3529 0.1176 0.5294 0.5176

4 0.3529 0.1176 0.5294 0.7529

5 0.3529 0.1176 0.5294 0.9882

Table 5.19. Inventory of used cores at the beginning of each period - 5 periods,

l1 = 0.5, δ = 0.6

Periods qn qr qNo It

1 0.2535 0.2051 0.5414 0.0000

2 0.2184 0.2447 0.5369 0.0088

3 0.2581 0.2107 0.5312 0.0164

4 0.3000 0.1744 0.5256 0.1001

5 0.0000 0.4001 0.5999 0.0000
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Table 5.20. Inventory of used cores at the beginning of each period - 5 periods,

l1 = 0.5, δ = 0.8

Periods qn qr qNo It

1 0.1228 0.3513 0.5259 0.0000

2 0.1228 0.3513 0.5259 0.0000

3 0.1228 0.3513 0.5259 0.0000

4 0.1228 0.3513 0.5259 0.0000

5 0.0000 0.4235 0.5765 0.0000

Figures from 5.26 to 5.45 exhibit the trend of new and remanufactured products

in the multi-period setting analyzed up to 5 periods for different δ values.

When δ < l1, there is no demand for remanufactured products whereas the de-

mand for new products is positive in the first period as presented in Figures from

5.26 to 5.33. With respect to the returns of used products at the beginning of the

second period, qr becomes positive and qn decreases. Compared with the first period,

the volume of consumers who do not prefer any one of the products decreases in the

second period. The way of creating demand for remanufactured products in the second

period is to decrease its price even though this affects the demand for new products

in a negative way. We note that the volume of new and remanufactured products do

not change in the following periods. In other words, the experiments present that from

second period on, the behavior of consumers does not change in the rest of the time

horizon.

For δ < l1, the amount of remanufactured products increases in the second period,

but if δ is too low, the volume of new products may be still higher than the volume

of remanufactured products. As seen in Figures from 5.30 to 5.33, when δ comes close

to l1, the volume of remanufactured products becomes higher than the volume of new

products in the second period, and in the following periods as well.
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Figure 5.26. The trend of optimal demands - 2 periods, δ = 0.2

Figure 5.27. The trend of optimal demands - 3 periods, δ = 0.2

Figure 5.28. The trend of optimal demands - 4 periods, δ = 0.2

Figure 5.29. The trend of optimal demands - 5 periods, δ = 0.2
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Figure 5.30. The trend of optimal demands - 2 periods, δ = 0.4

Figure 5.31. The trend of optimal demands - 3 periods, δ = 0.4

Figure 5.32. The trend of optimal demands - 4 periods, δ = 0.4

Figure 5.33. The trend of optimal demands - 5 periods, δ = 0.4
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If δ = l1, an interesting phenomenon occurs. In each period the demand exists

for only one type of the products as seen in Tables from 5.34 to 5.37, and the pricing

is such that the demand for new products exists in the first period and it is zero

in the last period. As mentioned before, consumers are indifferent between leasing

a new and buying a remanufactured product in this case. Therefore, this type of

strategy states that these two products present the characteristics of complementary

products even though they are substitutes. This is because producing remanufactured

products depends on the used products obtained through leasing new products in

previous periods.

Figure 5.34. The trend of optimal demands - 2 periods, δ = 0.5

Figure 5.35. The trend of optimal demands - 3 periods, δ = 0.5

Figure 5.36. The trend of optimal demands - 4 periods, δ = 0.5
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Figure 5.37. The trend of optimal demands - 5 periods, δ = 0.5

If δ > l1, the demand exists for both new and remanufactured products in the

first period as illustrated in Figures from 5.38 to 5.45. Up to the last period, the

volume of new and remanufactured products do not change, but in the last period qr

increases whereas qn becomes zero. This decrease in leasing new products states that,

in fact, new products are leased for the future value that they generate through their

sale as remanufactured products. This implies that marginal profit for new products

leased in the last period is less than that for remanufactured products sold. Therefore,

only remanufactured products are sold at the end of the time horizon. It is interesting

to note that even though the price of the remanufactured product increases in the last

period, a higher demand occurs for it. This is because the prices of both new and

remanufactured products increase in such a way that the demand for only remanu-

factured products increases. If the increase in pr due to an increase in pn is relatively

low, both consumers choose a remanufactured product and also the manufacturer takes

advantage of increased price of remanufactured product. This is illustrated in Table

5.21 for δ = 0.8.

Figure 5.38. The trend of optimal demands - 2 periods, δ = 0.6
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Figure 5.39. The trend of optimal demands - 3 periods, δ = 0.6

Figure 5.40. The trend of optimal demands - 4 periods, δ = 0.6

Figure 5.41. The trend of optimal demands - 5 periods, δ = 0.6

Figure 5.42. The trend of optimal demands - 2 periods, δ = 0.8
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Figure 5.43. The trend of optimal demands - 3 periods, δ = 0.8

Figure 5.44. The trend of optimal demands - 4 periods, δ = 0.8

Figure 5.45. The trend of optimal demands - 5 periods, δ = 0.8

Table 5.21. Optimal prices and demands - 5 periods, l1 = 0.5, δ = 0.8

Periods pn pr qn qr qNo

1 1.5596 0.4576 0.1228 0.3513 0.5259

2 1.5596 0.4576 0.1228 0.3513 0.5259

3 1.5596 0.4576 0.1228 0.3513 0.5259

4 1.5596 0.4576 0.1228 0.3513 0.5259

5 2.8159 0.4612 0.0000 0.4235 0.5765
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5.2.2. The Effect of Changes in the Relative Willingness-to-pay for Leasing

a New Product

In this section, we will first investigate the differences that occur in the multi-

period setting compared with the single period problem. Then, we will present the

effect of changes in l1. In fact, when the effect of changes in l1 is analyzed for fixed

δ, similar results are found to the cases while analyzing the effect of δ for fixed l1. As

mentioned before, this is because each consumer’s willingness-to-pay for leasing a new

product for one period and for buying a remanufactured product are fractions l1 and

δ, respectively, of their willingness-to-pay for buying a new product. Some parameter

values have already been given in Table 5.1, and d1, δ, c′r and I0 are given in Table 5.4.

We know from the analysis done for the single period problem that if l1 ≤ δ,

consumers are willing to pay for the remanufactured product, whereas they choose a

new product if δ < l1. Moreover, when the joint effect of l1 and δ is analyzed, it is

seen that the profit increases only if l1 > δ when l1 increases. In the multi-period

setting, Table 5.22 exhibits the optimal prices and demands for two-period problem

when l1 = 0.1 and δ = 0.2.

Table 5.22. Optimal prices and demands - 2 periods, l1 = 0.1, δ = 0.2

Periods pn pr qn qr qNo It PV (p1) p1

1 1.2878 0.1520 0.00 0.24 0.76 0.00 0.2171 0.0189

2 0.9687 0.1520 0.00 0.24 0.76 0.00 0.1633 0.0142

As seen in Table 5.22, the demand for new products is zero either in the first or

in the last period of the time horizon. While we analyzed the effect of changes in δ, qn

was positive in the first period when δ > l1, but in this example, the demand for new

products is zero. This phenomenon brings the matter into the open such that when we

choose low values of δ and l1 while investigating their effects or comparing the results,

the volume of customers who prefer nothing becomes larger. Therefore, the demand

for one of the two products turns out to be zero. However, when these values are taken

high, the volume of consumers who prefer nothing decreases and others make their
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decisions with respect to their net utility. In the single period problem, the product

which makes more profit is marketed, but in the multi-period setting, the pricing is such

that the demand for new products is positive only for the future profit they generate

by their sales as remanufactured products. Finally, if both δ and l1 are low, only qr

is positive in the first period and qn is zero in the rest of the time horizon, either.

However, if δ is high, qn is positive in the first period due to the threat of supply of

remanufactured products in the rest of the time horizon.

In the single period problem, if δ = l1, qr is positive. But, in the multi-period

setting, qn is positive due to the threat of supply of used products in the next period

as mentioned before. This situation is presented in Table 5.23.

Table 5.23. Optimal prices and demands - 2 periods, l1 = 0.2, δ = 0.2

Periods pn pr qn qr qNo It PV (p1) p1

1 0.7942 0.1588 0.3305 0.0000 0.6695 0.0000 0.1339 0.0116

2 1.3511 0.1339 0.0000 0.3305 0.6695 2.84E-14 0.2278 0.0198

If l1 > δ, qn is positive due to the high consumer acceptance of leasing compared

with δ in the first period. Since used items return at the beginning of the next period,

qr increases in the second period. From this point on, as l1 increases, qn increases and

qr decreases. Therefore, the amount of used products that remains at the end of the

period increases as illustrated in Tables 5.24 and 5.25.

Table 5.24. Optimal prices and demands - 2 periods, l1 = 0.3, δ = 0.2

Periods pn pr qn qr qNo It PV (p1) p1

1 1.1862 0.1584 0.3333 0.0000 0.6667 0.0000 0.2000 0.0174

2 1.1862 0.1143 0.1429 0.2857 0.5714 0.0476 0.2000 0.0174

The effect of changes in l1 is analyzed for T = 5. Figures 5.46 and 5.47 give

the effects of l1 on demands at the beginning and at the end of the time horizon,

respectively. If l1 < δ, qn increases in l1 in the first period, but qr decreases. Recall

that qn did not increase in the single period problem. But, since new products are the
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Table 5.25. Optimal prices and demands - 2 periods, l1 = 0.4, δ = 0.2

Periods pn pr qn qr qNo It PV (p1) p1

1 1.4828 0.1865 0.3750 0.0000 0.6250 0.0000 0.2500 0.0217

2 1.4828 0.1083 0.2917 0.1667 0.5417 0.2083 0.2500 0.0217

source of remanufactured products in the future, this increase in l1 results in an increase

of qn in the multi-period setting. pn increases in l1 since the manufacturer takes the

advantage of the increased willingness-to-pay for leasing a new product. However, pr

decreases not to lose consumers due to the increased willingness-to-pay for leasing a

new product. We conclude that if δ > l1, qn increases and qr decreases in the first

period as l1 increases , because leasing more new products provides more profit, and

more used products in the future. When δ = l1, the manufacturer charges higher

price for remanufactured products to shift consumers towards new products in the first

period considering again the supply of used products in the future. If l1 > δ, qr is zero

whereas qn increases in l1. While pn increases, pr also increases so as to prevent the

demand for remanufactured products.

Figure 5.46. The effect of l1 on the demands in the first period - 5 periods, δ = 0.3

In the last period, if l1 ≤ δ, qn is zero since the manufacturer leases new products

in order to provide used cores for remanufacturing in the future. In this case, as l1

increases, pn increases to hold qn at zero, and pr decreases to create qr. If l1 > δ, qn

becomes positive, and it increases in l1 whereas qr decreases. Like in the case where

l1 < δ in the first period, pn increases in l1, and pr decreases.
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Figure 5.47. The effect of l1 on the demands in the last period - 5 periods, δ = 0.3

We discussed that the price of the new product increases as l1 increases to take

advantage of increased willingness-to-pay for leasing a new product. Therefore, the

higher the l1 value, the higher the profit is obtained. We present the optimal profit

against l1 for different time horizons up to 5 periods in Figure 5.48.

Figure 5.48. The effect of l1 on the profit for different multi-period problems

Since we present the trend of new and remanufactured products in the previ-

ous section in detail, we will only illustrate the trend in five periods for different l1

values. This is because when time horizon grows, the trend for demands does not

change. Figures from 5.49 to 5.53 exhibit demands for l1 values ranging from 0.1 to

0.5, respectively.
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Figure 5.49. The trend of optimal demands - 5 periods, l1 = 0.1

Figure 5.50. The trend of optimal demands - 5 periods, l1 = 0.2

Figure 5.51. The trend of optimal demands - 5 periods, l1 = 0.3

As seen in Figure 5.49, when δ > l1, qr is positive, and remains constant in the

rest of the time horizon. In fact, we have observed before that qn exists up to the last

period so as to supply used cores in the next period, but in this case l1 is significantly

low to create the demand for new products. If it were higher, qn would be positive in

the first period up to the last period, and it would be zero whereas qr would increase

in the last period. If δ = l1, consumers are indifferent between leasing a new product

and buying a remanufactured product as presented in Figure 5.50. When l1 > δ, qn

exists in the first period. With returns in the second period, qr becomes positive, and

qn decreases. Demands do not change in the following periods as given in Figures from

5.51 to 5.53.
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Figure 5.52. The trend of optimal demands - 5 periods, l1 = 0.4

Figure 5.53. The trend of optimal demands - 5 periods, l1 = 0.5

In conclusion, the effects of l1 and δ are similar on the results. In other words, a

decrease in δ for fixed l1 generates similar trends on demands and prices as an increase

in l1 for fixed δ.

5.2.3. The Effect of Changes in the Deterioration of the Product

In the single period problem, the effect of changes in d1 is different for δ < l1 and

δ ≥ l1. As mentioned before, when δ < l1, an increase in d1 makes the new product

less attractive, but with some price modifications, the demand for new products exists

as d1 increases. If δ ≥ l1, qn is zero even if d1 is low. Therefore, there is no effect

of increase in d1 on the demands and prices of the remanufactured product. In the

multi-period setting, we investigate the effect of changes in d1 for δ < l1, δ = l1, and

δ > l1, respectively. Fixed parameter values are given in Table 5.26.

Table 5.26. Fixed parameter values to analyze the effect of changes in d1

l1 c′r I0

0.5 0.08 0
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We observed that when δ < l1 and d1 is low, qr is zero whereas qn is positive in

the first period. With respect to the returns of used products at the beginning of the

second period, qr becomes positive and qn decreases. Compared with the first period,

the volume of consumers who do not prefer any one of the products decreases in the

second period. We note that the volume of new and remanufactured products do not

change in the following periods. Figures from 5.54 to 5.59 illustrates the increase in

d1 if δ = 0.2 and l1 = 0.5 so as to analyze the effects of it in the five-period problem.

We choose only a five-period problem because of the fact that the increase in d1 affects

the first and second periods, and the rest of the time horizon is the repetition of the

second period.

Figure 5.54. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, d1 = 0.1

Figure 5.55. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, d1 = 0.2

Figure 5.56. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, d1 = 0.3
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Figure 5.57. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, d1 = 0.4

Figure 5.58. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, d1 = 0.5

Figure 5.59. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, d1 = 0.6

As mentioned before, as d1 increases, there is not always a decrease in the volume

of new products. This is because the optimal pricing is such a way that the demand

for new products does not change. Therefore, it is obvious that there is a threshold for

depreciation rate such that for values less than the threshold, there is no change in the

demand even though d1 increases as seen in Figures from 5.54 to 5.57. This is because

pn decreases to keep the present value of payments the same whereas pr does not change.

However, when the threshold is exceeded, the volume of new products decreases and

the volume of remanufactured products increases as d1 increases as shown in Figures

5.58 and 5.59. Since the prices of new and remanufactured products decrease, the profit

decreases from this point on. Figure 5.60 illustrates the effect of d1 on the profit.
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Figure 5.60. Behavior of the optimal profit as d1 increases - 5 periods, l1 = 0.5,

δ = 0.2

If δ = l1 and d1 is low, we found that the demand exists for only one type of

products in each period, and the pricing is such that qn is positive in the first period

and zero in the last period. This trend is valid for d1 values less than the threshold value

as shown in Figure 5.61. In this setting, when the threshold is exceeded, qn becomes

zero and qr becomes positive in the first period. This phenomenon is illustrated in

Figure 5.62. Since qn is zero in the first period, the amount of the remanufactured

products is less in the second period when compared with the case where d1 is lower.

Moreover, the volume of remanufactured products does not change in the rest of the

time horizon. From the threshold value on, the profit decreases because of the fact that

the volume of total demand decreases, and the volume of consumers who prefer nothing

increases. In this setting, the effect of change in the price of the remanufactured product

is not significant on the profit. However, the most important effect on the profit is the

decrease in the volume of consumers in each period, and the increase in the amount of

used products supplied from the third-party core supplier.

Figure 5.61. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.5, d1 = 0.1
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Figure 5.62. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.5, d1 = 0.5

Figure 5.63. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.5, d1 = 0.6

It is important to note that when the volume of new products becomes zero, from

this point on, the increase in d1 has no impact on the results. This can be seen when

Figure 5.63 is compared with Figure 5.62. Therefore, from this point on, the profit

remains the same as illustrated in Figure 5.64.

Figure 5.64. Behavior of the optimal profit as d1 increases - 5 periods, l1 = 0.5,

δ = 0.5

When δ > l1, the way of generating demand for new products is to provide d1 to
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be low. Figure 5.65 presents the optimal demands in the five-period problem if δ = 0.7,

l1 = 0.5 and d1 = 0.1. In this case, we observe that both qn and qr are positive in

the first period, and also in the following periods up to the last period. Recall that

new products are produced for the future profit they generate through their sales as

remanufactured products, therefore they are not produced in the last period. If d1

increases, pn decreases to keep the present value of payments the same whereas pr does

not change. But, when it exceeds the threshold, qn becomes zero and qr increases as

shown in Figure 5.66. This is because, from this point on, the manufacturer makes

consumers shift towards remanufactured product by charging higher price for the new

product, and increases pr to take advantage of remanufactured products. Even though

pr and qr increase, the profit decreases because of the fact that all used cores are

supplied from the third-party supplier at a cost of c′r, and the volume of consumers

who prefer nothing increases. From this point on, the profit remains the same since

the increase in d1 has no impact on the results. Figure 5.67 exhibits the effect of the

increase in depreciation rate on the profit.

Figure 5.65. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.7, d1 = 0.1

Figure 5.66. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.7, d1 = 0.5
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Figure 5.67. Change in the optimal profit as d1 increases - 5 periods, l1 = 0.5, δ = 0.7

5.2.4. The Effect of Changes in the Initial Inventory Level

We will analyze the effect of initial inventory level I0 for δ < l1, δ = l1 and δ > l1,

respectively, in this section. Since the trend of optimal demands does not change in

the two, three, four, and five-period problems, we only exhibit the five-period setting.

Fixed parameter values are given in Table 5.27.

Table 5.27. Fixed parameter values to analyze the effect of changes in I0

l1 d1 c′r

0.5 0.1 0.08

Figures from 5.68 to 5.70 exhibit the optimal demands in the five-period problem

as I0 increases if l1 = 0.5, and δ = 0.2. We find that if δ < l1 and I0 = 0, qr is

zero in the first period, but it becomes positive due to the returns of used products in

the following periods. Therefore, we expect the demand for remanufactured products

to be positive if I0 increases. The expected increase in qr occurs, but the volume of

remanufactured products does not exceed the available inventory as discussed in the

single period problem. The increase in qr occurs due to the decrease in the price of the

remanufactured product which causes the decrease in qn in the first period. Moreover,

the profit increases due to the increase in qr. However, if I0 > q∗r , the increase in I0 has

no impact on qr and pr. Therefore, the profit does not change as illustrated in Figure

5.71.
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Figure 5.68. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, I0 = 0

Figure 5.69. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, I0 = 0.1

Figure 5.70. The trend of optimal demands - 5 periods, l1 = 0.5, δ = 0.2, I0 = 0.2

Figure 5.71. Behavior of the optimal profit as I0 increases - 5 periods, l1 = 0.5, δ = 0.2
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If δ = l1 and I0 = 0, we find that the demand for one type of the products is

positive in each period as presented in Table 5.28. If I0 increases, there is not always

an increase in the volume of remanufactured products as illustrated in Table 5.29. This

is because the optimal pricing is such a way that qn is positive unless I0 is adequate

for qr in the first period. Therefore, it is clear that I0 should be enough to create the

demand for remanufactured products in the first period. Even though there is not an

increase in qr in the first period as I0 increases, the profit can increase. This is because

the amount of used cores supplied from the third-party core supplier decreases over

time horizon.

Table 5.28. Optimal prices and demands - 5 periods, δ = 0.5, I0 = 0

Period pn pr qn qr qNo It PV (p1) p1

1 1.6049 0.7206 0.4588 0.0000 0.5412 0.0000 0.2706 0.0235

2 1.8453 0.3016 0.0000 0.3968 0.6032 0.0620 0.3111 0.0271

3 1.5759 0.7144 0.4686 0.0000 0.5314 0.0620 0.2657 0.0231

4 2.5567 0.3064 0.0000 0.3872 0.6128 0.1434 0.4311 0.0375

5 2.9037 0.3091 0.0000 0.3818 0.6182 0.0000 0.4896 0.0426

Table 5.29. Optimal prices and demands - 5 periods, δ = 0.5, I0 = 0.1

Period pn pr qn qr qNo It PV (p1) p1

1 1.6049 0.5376 0.4588 0.0000 0.5412 0.1000 0.2706 0.0235

2 1.9572 0.3016 0.0000 0.3968 0.6032 0.1620 0.3300 0.0287

3 1.5759 0.6613 0.4686 0.0000 0.5314 0.1620 0.2657 0.0231

4 1.9053 0.3064 0.0000 0.3872 0.6128 0.2434 0.3212 0.0279

5 2.5229 0.3091 0.0000 0.3818 0.6182 0.0000 0.4254 0.0370

When I0 is enough to meet the demand for remanufactured products in the first

period, the firm produces remanufactured products. Table 5.30 illustrates this phe-

nomenon. In the second period, the manufacturer has to produce some new products

in order to provide available inventory of used products in the future. This is because

remanufactured products cannot be produced without supplying used cores. Recall
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that in the two-period problem, the second period represents the last period, therefore

qr becomes positive in the second period. This is because the manufacturer does not

worry about the supply of used products in the future. However, the manufacturer

produces new products in the second period of the three, four and five-period settings.

Moreover, from the second period on, new and remanufactured products are produced

in sequence. But, only qr is positive in the last period.

Table 5.30. Optimal prices and demands - 5 periods, δ = 0.5, I0 = 0.4

Period pn pr qn qr qNo It PV (p1) p1

1 2.5806 0.3000 0.0000 0.4000 0.6000 0.0000 0.4351 0.0378

2 1.6977 0.7335 0.4275 0.0000 0.5725 0.0000 0.2862 0.0249

3 2.8719 0.2862 0.0000 0.4275 0.5725 0.0000 0.4842 0.0421

4 1.6977 0.7425 0.4275 0.0000 0.5725 0.0000 0.2862 0.0249

5 1.7538 0.2862 0.0000 0.4275 0.5725 0.0000 0.2957 0.0257

When I0 is enough to meet the demand for remanufactured products in the

first and also in the second period as seen in Table 5.31, the manufacturer produces

remanufactured products in both two periods. However, for instance, the demand

for remanufactured products does not exist in the second period in the three-period

problem as shown in Figure 5.72. This is because if used products required for two

periods are supplied from the available inventory, the manufacturer has to provide used

products from the third-party core supplier in the last period.

Table 5.31. Optimal prices and demands - 5 periods, δ = 0.5, I0 = 0.8

Period pn pr qn qr qNo It PV (p1) p1

1 1.8532 0.2995 0.0000 0.4011 0.5989 0.3989 0.3125 0.0272

2 2.3252 0.3016 0.0000 0.3968 0.6032 0.0021 0.3920 0.0341

3 1.5759 0.2813 0.4686 0.0000 0.5314 0.0021 0.2657 0.0231

4 2.3894 0.3064 0.0000 0.3872 0.6128 0.0835 0.4029 0.0350

5 2.1161 0.3091 0.0000 0.3818 0.6182 0.0000 0.3568 0.0310
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Figure 5.72. The trend of optimal demands - 3 periods, l1 = 0.5, δ = 0.5, I0 = 0.8

As a result, if δ = l1, qr can be positive in the initial periods of the time horizon

if the stock of used products is enough. Moreover, if the next period is not the last

period of the time horizon, qn becomes positive in order to supply the used products

in the future. In the most of the cases, the profit increases in I0 because of the fact

that either qr increases or the amount of used cores supplied from the third-party core

supplier decreases. The increase in I0 sometimes does not affect the profit since the

volume of demands, and prices do not change. Figure 5.73 illustrates the effect of I0

on the profit for the five-period problem when δ and l1 are fixed at 0.5.

Figure 5.73. The effect of I0 on the profit - 5 periods, l1 = 0.5, δ = 0.5

When δ > l1, the manufacturer produces remanufactured products even if I0 = 0.

The effect of the increase in I0 is presented in Tables from 5.32 to 5.36. The increase

in I0 sometimes has no impact on the demands and prices, but it affects the profit

in a positive way. This is because the amount of used products supplied from the

third-party core supplier decreases. In the first period, qr,1 increases only if I0 is

enough to meet the demand for remanufactured products, or higher than the resulting

demand for remanufactured products. When qr,1 increases, qn,1 decreases such that the
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manufacturer charges less price for remanufactured products and higher price for new

products. In the following, if It−1 +Rt exceeds the volume of remanufactured products

created in the case where I0 is lower, qr,t also increases and qn,t decreases. In the last

period, the volume of remanufactured products does not depend on the stock of used

products, and qn is zero.

As mentioned before, if the initial inventory of used products is enough to meet

the demand for remanufactured products over the time horizon, the new product does

not exist in any period. For instance, if I0 = 1, the manufacturer produces only the

remanufactured product both in the first and last periods of the two-period setting.

In the five-period problem, it is also enough to meet the demand for remanufactured

products in the first and second periods, but the manufacturer takes into consideration

the future demand of remanufactured products, and therefore, produces new products.

In Tables from 5.32 to 5.36, it is obvious that the volume of new products decreases in

such periods where qr increases in I0, but does not become zero. Moreover, as It−1 de-

creases due to the remanufacturing used cores, the manufacturer increases qn,t in period

t considering the future value that they generate through their sales as remanufactured

products.

Table 5.32. Optimal prices and demands - 5 periods, δ = 0.7, I0 = 0

Period pn pr qn qr qNo It PV (p1) p1

1 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

2 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

3 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

4 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

5 5.3231 0.4107 0.0000 0.4133 0.5867 0.0000 0.8975 0.0781
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Table 5.33. Optimal prices and demands - 5 periods, δ = 0.7, I0 = 0.3

Period pn pr qn qr qNo It PV (p1) p1

1 1.5596 0.4030 0.1741 0.3000 0.5259 0.0000 0.2630 0.0229

2 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

3 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

4 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

5 2.1343 0.4107 0.0000 0.4133 0.5867 0.0000 0.3599 0.0313

Table 5.34. Optimal prices and demands - 5 periods, δ = 0.7, I0 = 0.5

Period pn pr qn qr qNo It PV (p1) p1

1 1.5759 0.4006 0.1429 0.3257 0.5314 0.1743 0.2657 0.0231

2 1.5596 0.4022 0.1704 0.3037 0.5259 0.0136 0.2630 0.0229

3 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

4 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

5 9.7437 0.4107 0.0000 0.4133 0.5867 0.0000 1.6428 0.1429

Table 5.35. Optimal prices and demands - 5 periods, δ = 0.7, I0 = 0.7

Period pn pr qn qr qNo It PV (p1) p1

1 1.5889 0.3993 0.1211 0.3432 0.5358 0.3569 0.2679 0.0233

2 1.5737 0.4008 0.1467 0.3226 0.5307 0.1553 0.2653 0.0231

3 1.5596 0.4026 0.1720 0.3021 0.5259 0.0000 0.2630 0.0229

4 1.5596 0.4046 0.1822 0.2919 0.5259 0.0000 0.2630 0.0229

5 2.4393 0.4107 0.0000 0.4133 0.5867 0.0000 2.0973 0.1824

Table 5.36. Optimal prices and demands - 5 periods, δ = 0.7, I0 = 0.9

Period pn pr qn qr qNo It PV (p1) p1

1 1.5969 0.3985 0.1075 0.3540 0.5385 0.5460 0.2693 0.0234

2 1.5823 0.3999 0.1321 0.3343 0.5336 0.3192 0.2668 0.0232

3 1.5666 0.4015 0.1587 0.3131 0.5283 0.1382 0.2641 0.0230

4 1.5596 0.4036 0.1772 0.2969 0.5259 0.0000 0.2630 0.0229

5 1.7715 0.4107 0.0000 0.4133 0.5867 0.0000 0.2987 0.0260
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As seen in Figure 5.74, the profit increases in I0 because of the fact that either

qr increases or the amount of used items supplied from the third-party core supplier

decreases.

Figure 5.74. The effect of I0 on the profit - 5 periods, l1 = 0.5, δ = 0.7

5.2.5. The Effect of Changes in the Cost of Supplying Used Products from

Third-party Core Supplier

We conduct the experiments for the set of c′r = {0, 0.02, 0.04, 0.06, 0.08} for δ < l1,

δ = l1 and δ > l1, respectively, considering all other parameters fixed as given in Table

5.37. Since the trends do not change in the multi-period settings from two to five

periods, we present results only for the five-period problem.

Table 5.37. Fixed parameter values to analyze the effect of changes in c′r

l1 d1 I0

0.5 0.1 0

Tables 5.38 and 5.39 give the optimal prices and demands for l1 = 0.5, and

δ = 0.2 if c′r = 0 and c′r = 0.02, respectively. When δ < l1, the results obtained in the

multi-period setting show that the volume of demands for new and remanufactured

products in the first period are the same as in the single period problem. If c′r = 0,

the manufacturer acquires used cores without any extra cost. In other words, this

assumption reveals that the inventory of used products is enough to meet the demand

in each period, and the average cost of remanufacturing used products is only crqr.
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For this reason, the remanufactured products exist although δ is low. However, as

discussed in the single period setting, an increase in c′r makes a remanufactured product

less attractive with respect to a new product, therefore qr decreases gradually as c′r

increases and becomes zero for some c′r value. In the multi-period setting, when c′r

is too high, since the company earns more from customers who lease a new product

than those who buy a remanufactured product, he charges initially higher prices for

remanufactured products to shift customers towards new products, and then reduces

the price because of the fact that used products return. From this point on, there is

no impact of c′r on the demands.

Table 5.38. Optimal prices and demands - 5 periods, δ = 0.2, c′r = 0

Period pn pr qn qr qNo It PV (p1) p1

1 1.7793 0.1059 0.3529 0.1176 0.5294 0.0000 0.3000 0.0261

2 1.7793 0.1059 0.3529 0.1176 0.5294 0.2353 0.3000 0.0261

3 1.7793 0.1059 0.3529 0.1176 0.5294 0.4706 0.3000 0.0261

4 1.7793 0.1059 0.3529 0.1176 0.5294 0.7059 0.3000 0.0261

5 1.7793 0.1059 0.3529 0.1176 0.5294 0.9412 0.3000 0.0261

Table 5.39. Optimal prices and demands - 5 periods, δ = 0.2, c′r = 0.02

Period pn pr qn qr qNo It PV (p1) p1

1 1.7793 0.1129 0.3765 0.0588 0.5647 0.0000 0.3000 0.0261

2 1.7793 0.1059 0.3529 0.1176 0.5294 0.2588 0.3000 0.0261

3 1.7793 0.1059 0.3529 0.1176 0.5294 0.4941 0.3000 0.0261

4 1.7793 0.1059 0.3529 0.1176 0.5294 0.7294 0.3000 0.0261

5 1.7793 0.1059 0.3529 0.1176 0.5294 0.9647 0.3000 0.0261

When c′r is too high, qr becomes zero in the first period and the increase in c′r

does not affect decisions as well as the optimal profit as seen in Figure 5.75. This is

because there is no need for used cores supplied from the third-party supplier in the

second period due to the returns.
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Figure 5.75. The effect of c′r on the profit - 5 periods, l1 = 0.5, δ = 0.2

We conclude that when δ < l1, remanufactured products exist in the first period

only if c′r is low or initial inventory is enough since otherwise selling of remanufactured

products is not profitable for the firm. In the next period, returns of new products

leased in the first period make the remanufactured product attractive.

When δ = l1, as discussed before, if c′r is high and there is no inventory in the first

period, the remanufactured product does not exist in the first period. In Table 5.40,

we present optimal prices and demands in the five-period problem for c′r = 0. In that

situation, qr becomes positive in all periods. Therefore, it is important to note that, if

consumers view leasing a new product and buying a remanufactured products as being

identical, and c′r = 0, or It is enough in each period, the manufacturer never leases

new products. This is because remanufactured products’ sales are more profitable

than leasing new products due to the less recovery cost. As c′r increases, qr decreases

in each period as illustrated in Table 5.41. When the manufacturer has less profit

from selling a remanufactured product over the time horizon for some c′r value, he

charges higher price for remanufactured products in the first period in order to shift all

consumers towards the new products. In the second period, he creates the demand for

remanufactured products by reducing price for remanufactured products and increasing

for new products as presented in Table 5.42. In this phenomenon, it is obvious that new

products are produced only for generating used products in the next period, therefore

qn becomes zero in the last period. Figure 5.76 exhibits the behavior of the optimal

profit as c′r increases for δ = l1.
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Table 5.40. Optimal prices and demands - 5 periods, δ = 0.5, c′r = 0

Period pn pr qn qr qNo It PV (p1) p1

1 1.7915 0.2727 0.0000 0.4545 0.5455 0.0000 0.3021 0.0263

2 2.1522 0.2727 0.0000 0.4545 0.5455 0.0000 0.3629 0.0316

3 2.0542 0.2727 0.0000 0.4545 0.5455 0.0000 0.3464 0.0301

4 2.2522 0.2727 0.0000 0.4545 0.5455 0.0000 0.3797 0.0330

5 1.8687 0.2727 0.0000 0.4545 0.5455 0.0000 0.3151 0.0274

Table 5.41. Optimal prices and demands - 5 periods, δ = 0.5, c′r = 0.02

Period pn pr qn qr qNo It PV (p1) p1

1 2.1868 0.2818 0.0000 0.4364 0.5636 0.0000 0.3687 0.0321

2 1.6734 0.2818 0.0000 0.4364 0.5636 0.0000 0.2821 0.0245

3 2.9649 0.2818 0.0000 0.4364 0.5636 0.0000 0.4999 0.0435

4 1.7487 0.2818 0.0000 0.4364 0.5636 0.0000 0.2948 0.0256

5 2.6008 0.2818 0.0000 0.4364 0.5636 0.0000 0.4385 0.0381

Table 5.42. Optimal prices and demands - 5 periods, δ = 0.5, c′r = 0.06

Period pn pr qn qr qNo It PV (p1) p1

1 1.6485 0.8243 0.4441 0.0000 0.5559 0.0000 0.2779 0.0242

2 3.0922 0.2944 0.0000 0.4112 0.5888 0.0329 0.5214 0.0454

3 1.6268 0.8090 0.4514 0.0000 0.5486 0.0329 0.2743 0.0239

4 1.8826 0.2980 0.0000 0.4040 0.5960 0.0803 0.3174 0.0276

5 2.8996 0.3000 0.0000 0.4000 0.6000 0.0000 0.4889 0.0425
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Figure 5.76. Change in the optimal profit as c′r increases - 5 periods, l1 = 0.5, δ = 0.5

When δ > l1, as mentioned before, although c′r is high and I0 = 0, demands for

both new and remanufactured products exist. Up to the last period, the volume of new

and remanufactured products do not change, but qr increases and qn becomes zero in

the last period. However, we observe that if c′r = 0, or it is very low, the manufacturer

creates demand for only remanufactured products. Table 5.43 illustrates the optimal

prices and demands if c′r = 0. As c′r increases, qr decreases in each period as illustrated

in Table 5.44. Therefore, the volume of consumers who do not prefer nothing increases.

When the manufacturer has less profit from selling only remanufactured products over

the time horizon for some c′r value, he charges higher price for remanufactured products

and less price for new products up to the last period in order to shift some consumers

who buy a remanufactured product and none of the products towards the new product

as presented in Table 5.45. This behavior of the manufacturer to maximize the profit

over the time horizon also states that new products are leased for the future value

that they generate through their sales as remanufactured products. From this point

on, if c′r continues to increase, the optimal pricing will be such a way that qn increases

whereas qr decreases, and only qr is positive in the last period. Figure 5.77 exhibits

the behavior of the optimal profit as c′r increases for δ > l1.
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Table 5.43. Optimal prices and demands - 5 periods, δ = 0.7, c′r = 0

Period pn pr qn qr qNo It PV (p1) p1

1 2.1172 0.3733 0.0000 0.4667 0.5333 0.0000 0.3570 0.0311

2 1.6067 0.3733 0.0000 0.4667 0.5333 0.0000 0.2709 0.0236

3 1.5913 0.3733 0.0000 0.4667 0.5333 0.0000 0.2683 0.0233

4 2.7685 0.3733 0.0000 0.4667 0.5333 0.0000 0.4668 0.0406

5 3.3420 0.3733 0.0000 0.4667 0.5333 0.0000 0.5635 0.0490

Table 5.44. Optimal prices and demands - 5 periods, δ = 0.7, c′r = 0.02

Period pn pr qn qr qNo It PV (p1) p1

1 2.6393 0.3827 0.0000 0.4533 0.5467 0.0000 0.4450 0.0387

2 2.1007 0.3827 0.0000 0.4533 0.5467 0.0000 0.3542 0.0308

3 1.6398 0.3827 0.0000 0.4533 0.5467 0.0000 0.2765 0.0240

4 1.6260 0.3827 0.0000 0.4533 0.5467 0.0000 0.2741 0.0238

5 7.6453 0.3827 0.0000 0.4533 0.5467 0.0000 1.2890 0.1121

Table 5.45. Optimal prices and demands - 5 periods, δ = 0.7, c′r = 0.06

Period pn pr qn qr qNo It PV (p1) p1

1 1.6146 0.3984 0.0867 0.3689 0.5444 0.0000 0.2722 0.0237

2 1.6146 0.3984 0.0867 0.3689 0.5444 0.0000 0.2722 0.0237

3 1.6146 0.3984 0.0867 0.3689 0.5444 0.0000 0.2722 0.0237

4 1.6146 0.3984 0.0867 0.3689 0.5444 0.0000 0.2722 0.0237

5 3.6296 0.4013 0.0000 0.4267 0.5733 0.0000 0.6120 0.0532
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Figure 5.77. Behavior of the optimal profit as c′r increases - 5 periods, l1 = 0.5, δ = 0.7

5.2.6. The Effect of Change in the Duration of Lease Agreement

In this section, we will analyze the effect of change in the duration of the lease

agreement offered by the manufacturer. Until now, we observed the trend on demands

and prices of new and remanufactured products and behavior of the optimal profit

by solving different scenarios for 1-period option of leasing a new product. When the

manufacturer offers 2-period leasing, new products leased currently return two periods

later. In this setting, consumers prefer either leasing a new product for two periods or

buying a remanufactured product or nothing in each period. Therefore, there is only

one customer segment, and α2 = 1. We set l2 > l1 since a customer’s valuation for

leasing a new product for two periods is greater than his valuation for one period. In

addition, if a product loses 10 per cent of its value in the first year, we assume that it

loses 20 per cent more in the second year, leaving 70 per cent of its original value. As

discussed before, this is because the older a product gets, the less it’s remaining value.

We keep all parameters fixed except δ to compare with the results obtained in Section

5.2.1. The parameter values given in Table 5.1 are also valid in this section, and others

are presented in Table 5.46.

Table 5.46. Fixed parameter values to analyze the effect of changes in δ

l2 d2 c′r I0

0.7 0.3 0.08 0
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Figures from 5.78 to 5.85 exhibit the trend of new and remanufactured products in

the multi-period setting analyzed up to 5 periods for δ < l2. When δ < l2, in the initial

two periods, there is no demand for remanufactured products whereas qn is positive.

With respect to the returns of used products in the beginning of the third period, qr

becomes positive and qn decreases. Compared with the initial two periods, consumers

who do not prefer any one of the products decrease in the third period. The optimal

pricing is such a way that the price of the remanufactured products decreases even

though this affects the demand for new products in a negative way. We note that the

volume of new and remanufactured products do not change in the following periods.

In other words, the experiments present that from third period on, the behavior of

consumers does not change. For one and two-period problems, we can not analyze the

effects of returns since used products return at the beginning of the third period for

the first time. As seen in Figures 5.78 and 5.82, only new products exist in the initial

two periods.

For δ < l2, the volume of remanufactured products increases in the third period,

but the volume of new products may be still higher than the volume of remanufactured

products if δ is too low as illustrated in Figures from 5.79 to 5.81. When δ comes close

to l2, the volume of remanufactured products becomes higher than the volume of new

products in the third period as shown in Figures from 5.83 to 5.85.

In fact, the behavior of the optimal demands in the 2-period lease scenario is

similar in the 1-period lease scenario. As we discussed before, if δ < l1 and there is no

inventory of used products initially, then qr is zero in the first period. In the 2-period

leasing setting, we also see that qr is zero in the first period. Moreover, since used cores

return two periods later, the demand for remanufactured products does not exist in the

second period, either. After used cores arrive to the facility, remanufactured products

can be produced. Since the manufacturer decreases the remanufactured product’s

price, qr becomes positive which results in the decrease in qn. From this point on, the

behavior of demands does not change in the rest of the planning horizon. Therefore,

we conclude that the behavior of the optimal demands for δ < l2 is consistent with the

results obtained in the 1-period lease scenario for δ < l1.
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Figure 5.78. Behavior of the optimal demands - 2 periods, l2 = 0.7, δ = 0.2

Figure 5.79. Behavior of the optimal demands - 3 periods, l2 = 0.7, δ = 0.2

Figure 5.80. Behavior of the optimal demands - 4 periods, l2 = 0.7, δ = 0.2

Figure 5.81. Behavior of the optimal demands - 5 periods, l2 = 0.7, δ = 0.2

Figure 5.82. Behavior of the optimal demands - 2 periods, l2 = 0.7, δ = 0.6
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Figure 5.83. Behavior of the optimal demands - 3 periods, l2 = 0.7, δ = 0.6

Figure 5.84. Behavior of the optimal demands - 4 periods, l2 = 0.7, δ = 0.6

Figure 5.85. Behavior of the optimal demands - 5 periods, l2 = 0.7, δ = 0.6

Figure 5.86. Change in the optimal demands - 2 periods, l2 = 0.7, δ = 0.9

Figure 5.87. Change in the optimal demands - 3 periods, l2 = 0.7, δ = 0.9
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Recall that if δ > l1, demands for both new and remanufactured products exist

up to the last period in the scenario where 1-period lease is offered. However, we

observed that the demand for only remanufactured products exists in the last period.

When the manufacturer offers 2-period lease, qn and qr are positive to the last two

periods, but only remanufactured products exist in the last two periods. This reveals

that new products are marketed for the threat of supply of used cores in the future, and

in this scenario, since products return two periods later, the new products produced

just before the last period cannot come in handy throughout the planning horizon. For

this reason, new products are not produced in the last two periods as seen in Figures

from 5.86 to 5.89.

Figure 5.88. Change in the optimal demands - 4 periods, l2 = 0.7, δ = 0.9

Figure 5.89. Change in the optimal demands - 5 periods, l2 = 0.7, δ = 0.9

If δ = l1, only new products are produced in the initial two periods. Since returns

occur for the first time in the third period, remanufactured products are not sold in the

initial two periods. With respect to the length of the time horizon, demands are created

in the following periods considering the threat of supply of used products. However, in

the last period, the manufacturer sells remanufactured products whatever the length

of the time horizon is. These statements are illustrated in Figures from 5.90 to 5.93.
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Figure 5.90. Change in the optimal demands - 2 periods, l2 = 0.7, δ = 0.7

Figure 5.91. Change in the optimal demands - 3 periods, l2 = 0.7, δ = 0.7

Figure 5.92. Change in the optimal demands - 4 periods, l2 = 0.7, δ = 0.7

Figure 5.93. Change in the optimal demands - 5 periods, l2 = 0.7, δ = 0.7
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6. CONCLUSIONS

The aim of this thesis was to determine the optimal pricing strategy in a multi-

period setting for a profit-maximizing firm leasing new, durable, and remanufacturable

products as well as selling remanufactured products to a customer base that has a

lower willingness-to-pay for the remanufactured product. We allow the manufacturer

to lease new products and sell remanufactured products. In this setting, if available

used products are not enough to meet the demand for remanufactured products, the

manufacturer acquires the remaining from the third-party core supplier with an extra

cost. We formulate demand functions based on the consumer preferences and linear

price relation. In the base model, consumer preferences are explained through maxi-

mum utility type approach. In the model formulated according to linear price-demand

relation, we assume that the demand is a linear function of prices of new and remanu-

factured products. The resulting problem is solved by a variant of Nelder-Mead simplex

search method which can also handle the constraints. In our experiments we focus on

the base model since it is more realistic in practice.

Experimental results are performed for both single period and multi-period prob-

lems with respect to the different problem parameters such as relative willingness-

to-pay δ for remanufactured products, relative willingness-to-pay lm for leasing new

products for m periods, depreciation rate dm of the product over lease period m, initial

inventory level I0, and cost c′r of supplying used products from the third-party core

supplier .

In the single period problem, first we focus on the market characteristics such

as consumer acceptance of a remanufactured product and a leased product. We ob-

serve that if there are customers with higher relative willingness-to-pay for remanu-

factured products with respect to leasing new products for one period in a customer

segment, the manufacturer produces remanufactured products by charging high prices

to take advantage of high willingness-to-pay. Moreover, since the increase in relative

willingness-to-pay for remanufactured products implies that consumers’ valuation for
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the remanufactured product increases, the manufacturer increases the remanufactured

product’s price to earn from customers with higher willingness-to-pay. The effect of

relative willingness-to-pay for leasing a new product is the same as a remanufactured

product. Therefore, similar results are found to the changes in this parameter such

that if there are customers with higher relative willingness-to-pay for leasing a new

product for one period with respect to buying a remanufactured product in a customer

segment, the manufacturer produces new products charging high prices to take ad-

vantage of high willingness-to-pay. Moreover, as this parameter increases, since the

relative advantage of leasing strategy increases, the profit that the manufacturer can

make from leasing also increases. If consumers are indifferent between new and reman-

ufactured products, the manufacturer sells remanufactured products which provides

relatively more profit. It is important to note that the decrease in the both relative

willingness-to-pays makes the volume of consumers who prefer nothing increase and

the optimal profit decrease. Second, we find that the effect of deterioration rate of the

new product depends on the threshold value, above which the manufacturer decreases

the quantity of leased products and increases the quantity of remanufactured prod-

ucts. It also depends on relative willingness-to-pays such that if depreciation rate is

less than threshold value and the customers have higher willingness-to-pay for leasing

a new product with respect to buying a remanufactured product, the manufacturer

produces new products. Moreover, the increase in this parameter up to the threshold

value has impact on the new product’s price such that manufacturer try to attract the

lessees by lowering prices in order to keep lease payments constant. However, from

threshold value on, the decrease in the new product’s price results in the decrease in

the remanufactured product’s price due to the price costraint which induces customers

to switch from the new product to the remanufactured product. In the scenario where

consumers view buying a remanufactured product and leasing a new product as being

identical or value a remanufactured product more than leasing a new product, there

is no effect of the increase in the depreciation rate on the decisions since the manufac-

turer does not produce new products even if depreciation rate of the product is low

in such cases. Finally, we find that there are two reasons of the increase in the profit

as initial inventory of used products increases: The first one is because of the increase

in the volume of remanufactured products; the second one is due to the decrease in
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the volume of used cores supplied from the third-party core supplier. If there is no

available stock of used cores initially, the decrease in the cost of acquiring used cores

from the third-party core supplier makes the remanufactured product more attractive.

In the multi-period setting, we investigate the interdependence of new and re-

manufactured products such that a decrease in the demand for new products in prior

periods results in a decrease in the availability of used products. This is because de-

cisions in a given period explicitly depend on decisions in previous periods in such a

scenario where the manufacturer acquires used cores through leasing new products.

In this framework, we find that the manufacturer may choose to produce some new

products only for the future value that they generate through their sales as remanufac-

tured products. If there is no available stock of used cores at the beginning of the time

horizon, and consumers have higher willingness-to-pay for leasing a new product with

respect to buying a remanufactured product, the manufacturer does not produce re-

manufactured products in the first period due to the extra cost of supplying used items

from the third-party core supplier. This is because of the fact that remanufacturing

results in a significant drop in the profit in the scenario where consumers are willing

to pay low prices for remanufactured products. However, in the subsequent periods,

the manufacturer starts the period with the opportunity to recover used cores that

become available at the beginning of the period and remain in stock from returns in

previous periods. Therefore, it favors remanufacturing in the rest of the time horizon.

Moreover, as relative willingness-to-pay for remanufactured products increases, reman-

ufacturing becomes more attractive option with respect to producing new products on

the manufacturer’s side. This observation also provides the marketing strategy of the

manufacturer over periods. We conclude that the manufacturer chooses to produce new

products in the first period, and returns of used cores make remanufacturing attractive

in the subsequent periods such that the volume of new and remanufactured products

do not change up to the last period. If consumers have higher willingness-to-pay for

buying a remanufactured product with respect to leasing a new product, we observe

that the manufacturer produces only remanufactured products to take advantage of

increased willingness-to-pay for remanufactured product in the single period setting,

but in the multi-period setting he chooses to produce some new products due to the
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threat of supply of used items in the following periods up to the last period. In the

last period, the manufacturer sells only remanufactured products without any concern

about the future demand for remanufactured products. If consumers are indifferent

between leasing a new product and buying a remanufactured product, we find that

two products present the characteristics of complementary products even though they

are substitutes. This is because producing remanufactured products depends on the

used products obtained through leasing new products in previous periods.

We conclude that if consumers have higher willingness-to-pay for leasing a new

product with respect to buying a remanufactured product, leasing becomes more valu-

able both in its own right and as source of used cores. However, if consumers have higher

willingness-to-pay for remanufactured products with respect to leasing new products,

leasing becomes a strategy only to generate available used products in the future. The

another issue is the effect of the depreciation rate on decisions. The deterioration rate

above the threshold value makes the relative advantage of the remanufacturing strategy

increases. However, the profit of the firm decreases because of three reasons: The first

one is the decrease in the new product’s price, and thus the decrease in the price of

the remanufactured product due to the price constraint. The other one is the increase

in the amount of used products supplied from the third-party core supplier. This is

because less new product is produced in previous periods due to the high depreciation

rate. The last one is the increase in the volume of consumers who prefer nothing, and

so the decrease in the total demand. We find that if the initial inventory of used cores

is enough to meet the demand for remanufactured products over the time horizon,

the relative advantage of the remanufacturing also increases due to the less recovery

cost of a used product with respect to producing a new product. In other words, if

the manufacturer acquired used items without any extra cost, he would be better off

remanufacturing since remanufacturing is cheaper than manufacturing a new product.

The change in the duration of lease agreements illustrated by two-period lease

option shows that the trend on demands and prices of new and remanufactured prod-

ucts, and behavior of the optimal profit are the same as one-period lease option. The

only difference in this scenario is the return time of the new products. Therefore, the
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manufacturer manage remanufacturing activities according to the time of the returning

items. In this case, we find that if consumers have higher willingness-to-pay for leasing

a new product with respect to buying a remanufactured product, the manufacturer

produces only new products in the initial two periods under the condition that there

is no inventory of used cores initially and the cost of supplying used cores from the

third-party core supplier is high. With respect to the returns of used items at the be-

ginning of the third period, remanufacturing becomes attractive for the manufacturer.

If consumers have higher willingness-to-pay for buying a remanufactured product with

respect to leasing a new product, the relative advantage of remanufacturing increases,

but still manufacturer chooses to produce some new products for the future value that

they generate through their sale as remanufactured product in the following periods

up to the last two periods. In the last two periods, the manufacturer produces only

remanufactured products since there is no threat of supply of used cores in the future,

and remanufacturing makes more profit with respect to producing a new product.

As a future work, it can be interesting to extend this model by considering vari-

able costs which depend on the technological development. We assume that the costs of

manufacturing and remanufacturing are constant over the time horizon, but in practice,

they can be reduced by a new technology. Moreover, we allow the manufacturer to carry

inventory of used products, but we do not consider associated holding costs. There-

fore, it can be an extension of our model. Finally, we assume that the manufacturer

holds a monopoly in the markets for new and remanufactured products. To capture

the impact of competition in the remanufactured product market, the model can be

extended by considering an industry in which the manufacturer holds a monopoly in

the new product market and independent remanufacturers compete on the remanufac-

tured product market. Since we assume new products are only leased, and return at

the end of the lease period, the selling option of new products can be added to our

scenario by considering that they can be collected by independent remanufacturers.
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APPENDIX A: HESSIAN FOR THE BASE MODEL

In this section, the Hessian H will be given for the base model. Our aim is to

show that one-period model is jointly concave with respect to pn and pr. Recall that

the profit obtained in a generic period under the decision p = (pn, pr) is given by

Πβm
(p) =

[

L
∑

m=1

βm (1− β12m
m )

1− βm

qm(p)pm

]

+ qr(p)pr − cnqn(p)− crq
2
r(p)− c′r max(0, ∆r)

Taking the derivative of this objective function with respect to p = (pn, pr) gives

∂Πβm

∂pn

=

[

L
∑

m=1

βm (1− β12m
m )

1− βm

(

∂qm

∂pn

pm +
∂pm

∂pn

qm

)

]

+

(

∂qr

∂pn

pr +
∂pr

∂pn

qr

)

− cn
∂qn

∂pn

− 2crqr
∂qr

∂pn

− c′r max(0,
∂qr

∂pn

) (A.1)

∂Πβm

∂pr

=

[

L
∑

m=1

βm (1− β12m
m )

1− βm

(

∂qm

∂pr

pm +
∂pm

∂pr

qm

)

]

+

(

∂qr

∂pr

pr +
∂pr

∂pr

qr

)

− cn
∂qn

∂pr

− 2crqr
∂qr

∂pr

− c′r max(0,
∂qr

∂pr

) (A.2)

Here, ∂pm

∂pn
= dm

12m
+ (2 − dm)MF , ∂pm

∂pr
= 0, ∂pr

∂pn
= 0 and partial derivatives of

qm and q0m with respect to pn and pr are presented under the conditions lm − δ > 0,

lm − δ < 0 and lm − δ = 0 in Tables from A.1 to A.3, respectively.

Recall that

qn =
L

∑

m=1

qm



Table A.1. Partial derivatives of qm and q0m with respect to pn and pr under lm − δ > 0

Case ∂qm

∂pn

∂qm

∂pr

∂q0m

∂pn

∂q0m

∂pr

lm − δ > 0 0 ≤ A1 ≤ 1 A1 ≥ pnSm

lm
A1 ≤ pr

δ
αm

−Sm

lm−δ
αm

1
lm−δ

αm
Sm

lm−δ
αm

−1
lm−δ

lm − δ > 0 0 ≤ A1 ≤ 1 A1 ≥ pnSm

lm
A1 > pr

δ
αm

−Sm

lm−δ
αm

1
lm−δ

0 αm
1
δ

lm − δ > 0 0 ≤ A1 ≤ 1 pnSm

lm
> 1 pr

δ
> 1 0 0 0 0

lm − δ > 0 0 ≤ A1 ≤ 1 pnSm

lm
> 1 pr

δ
≤ 1 0 0 0 αm

1
δ

lm − δ > 0 0 ≤ A1 ≤ 1 A1 ≤ pnSm

lm
≤ 1 pnSm

lm
≤ pr

δ
αm

−Sm

lm
0 αm

Sm

lm
0

lm − δ > 0 0 ≤ A1 ≤ 1 A1 ≤ pnSm

lm
≤ 1 pnSm

lm
> pr

δ
αm

−Sm

lm
0 0 αm

1
δ

lm − δ > 0 A1 < 0 pnSm

lm
≤ 1 αm

−Sm

lm
0 αm

Sm

lm
0

lm − δ > 0 A1 < 0 pnSm

lm
> 1 0 0 0 0

lm − δ > 0 A1 > 1 - pr

δ
> 1 0 0 0 0

lm − δ > 0 A1 > 1 - pr

δ
≤ 1 0 0 0 αm

1
δ

Table A.2. Partial derivatives of qm and q0m with respect to pn and pr under lm − δ < 0

Case ∂qm

∂pn

∂qm

∂pr

∂q0m

∂pn

∂q0m

∂pr

lm − δ < 0 0 ≤ A2 ≤ 1 A2 < pnSm

lm

pr

δ
> 1 0 0 0 0

lm − δ < 0 0 ≤ A2 ≤ 1 A2 < pnSm

lm

pr

δ
≤ 1 0 0 0 αm

1
δ

lm − δ < 0 0 ≤ A2 ≤ 1 A2 ≥ pnSm

lm

pr

δ
≤ A2 αm

−δSm

lm(δ−lm)
αm

1
δ−lm

αm
Sm

lm
0

lm − δ < 0 0 ≤ A2 ≤ 1 A2 ≥ pnSm

lm

pr

δ
> A2

pr

δ
> 1 αm

−δSm

lm(δ−lm)
αm

1
δ−lm

αm
δSm

lm(δ−lm)
αm

−1
(δ−lm)

lm − δ < 0 0 ≤ A2 ≤ 1 A2 ≥ pnSm

lm

pr

δ
> A2

pr

δ
≤ 1 αm

−δSm

lm(δ−lm)
αm

1
δ−lm

αm
δSm

lm(δ−lm)
αm

−lm
δ(δ−lm)

lm − δ < 0 A2 < 0 - pr

δ
> 1 0 0 0 0

lm − δ < 0 A2 < 0 - pr

δ
≤ 1 0 0 0 αm

1
δ

lm − δ < 0 A2 > 1 pnSm

lm
> 1 0 0 0 0

lm − δ < 0 A2 > 1 pnSm

lm
≤ 1 αm

−Sm

lm
0 αm

Sm

lm
0



130

Table A.3. Partial derivatives of qm and q0m with respect to pn and pr under

lm − δ = 0

Case ∂qm

∂pn

∂qm

∂pr

∂q0m

∂pn

∂q0m

∂pr

lm − δ = 0 pnSm − pr ≤ 0 αm
−Sm

lm
0 αm

Sm

lm
0

lm − δ = 0 pnSm − pr > 0 pr

δ
> 1 0 0 0 0

lm − δ = 0 pnSm − pr > 0 pr

δ
≤ 1 0 0 0 αm

1
δ

qNo =
L

∑

m=1

q0m

qr = 1− qn − qNo

Therefore, ∂qn

∂pn
=

L
∑

m=1

∂qm

∂pn
, ∂qn

∂pr
=

L
∑

m=1

∂qm

∂pr
, ∂qr

∂pn
= −

L
∑

m=1

∂qm

∂pn
−

L
∑

m=1

∂q0m

∂pn
, ∂qr

∂pr
= −

L
∑

m=1

∂qm

∂pr
−

L
∑

m=1

∂q0m

∂pr
.

Taking the derivative of
∂Πβm

∂pn
and

∂Πβm

∂pr
with respect to pn and pr, we obtain the

elements of the Hessian H:

∂2Πβm

∂p2
n

=

[

L
∑

m=1

βm (1− β12m
m )

1− βm

(

∂2qm

∂p2
n

pm +
∂qm

∂pn

∂pm

∂pn

+
∂2pm

∂p2
n

qm +
∂pm

∂pn

∂qm

∂pn

)

]

+

(

∂2qr

∂p2
n

pr +
∂qr

∂pn

∂pr

∂pn

)

− cn
∂2qn

∂p2
n

− 2cr(
∂2qr

∂p2
n

qr

+
∂qr

∂pn

∂qr

∂pn

)− c′r max(0,
∂2qr

∂p2
n

)

Here, ∂2qm

∂p2
n

= 0, ∂2pm

∂p2
n

= 0, ∂2qr

∂p2
n

= 0, ∂2qn

∂p2
n

= 0, ∂pr

∂pn
= 0. Therefore, the second derivative

of profit function with respect to pn is

∂2Πβm

∂p2
n

=

[

L
∑

m=1

βm (1− β12m
m )

1− βm

(2
∂pm

∂pn

∂qm

∂pn

)

]

− 2cr(
∂qr

∂pn

)2 (A.3)
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∂2Πβm

∂p2
r

=

[

L
∑

m=1

βm (1− β12m
m )

1− βm

(

∂2qm

∂p2
r

pm +
∂qm

∂pr

∂pm

∂pr

)

]

+

(

∂2qr

∂p2
r

pr +
∂qr

∂pr

∂pr

∂pr

+
∂qr

∂pr

)

− cn
∂2qn

∂p2
r

− 2cr(
∂2qr

∂p2
r

qr +
∂qr

∂pr

∂qr

∂pr

)− c′r max(0,
∂2qr

∂p2
r

)

Here, ∂2qm

∂p2
r

= 0, ∂pm

∂pr
= 0, ∂2qr

∂p2
r

= 0, ∂2qn

∂p2
r

= 0. Thus, the second derivative of profit

function with respect to pr is

∂2Πβm

∂p2
r

= 2
∂qr

∂pr

(1− cr
∂qr

∂pr

) (A.4)

∂2Πβm

∂pn∂pr

=

[

L
∑

m=1

βm (1− β12m
m )

1− βm

(

∂2qm

∂pn∂pr

pm +
∂qm

∂pn

∂pm

∂pr

+
∂2pm

∂Pn∂pr

qm +
∂pm

∂Pn

∂qm

∂pr

)

]

+

(

∂2qr

∂pn∂pr

pr +
∂qr

∂pn

∂pr

∂pr

)

− cn
∂2qn

∂pn∂pr

− 2cr(
∂2qr

∂pn∂pr

qr +
∂qr

∂pn

∂qr

∂pr

)

− c′r max(0,
∂2qr

∂pn∂pr

)

Here, ∂2qm

∂pn∂pr
= 0, ∂pm

∂pr
= 0, ∂2pm

∂Pn∂pr
= 0, ∂2qr

∂pn∂pr
= 0, ∂2qn

∂pn∂pr
= 0. Therefore, diagonal

entries of the Hessian are as below:

∂2Πβm

∂pn∂pr

=

[

L
∑

m=1

βm (1− β12m
m )

1− βm

∂pm

∂Pn

∂qm

∂pr

]

+
∂qr

∂pn

− 2cr
∂qr

∂pn

∂qr

∂pr

(A.5)

In this case, if |H| > 0 and
∂2Πβm

∂p2
n

< 0, then Πβm
is jointly concave. If we use

yearly lease payment model,
βm(1−β12m

m )
1−βm

will be replaced with β(1−βm)
1−β

and ∂pm

∂pn
will be

equal to 1
M

.
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