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ABSTRACT

FORMAL SECURITY ANALYSIS OF A SECURE

ON-DEMAND ROUTING PROTOCOL FOR AD HOC

NETWORKS USING MODEL CHECKING

An ad hoc network is a self-configuring network of mobile terminals, connected

by wireless links and exhibiting nomadic behavior by freely moving within an area.

Computing the routes between the terminals in the ad hoc environment and delivering

a guarantee of communication have never been achieved by any protocol in its entirety.

In this work, we model an ad hoc network to model-check ARIADNE in order to verify

one of its powerful security properties. By a similar approach to Buttyán’s Active-1-2

attack on ARIADNE, we have used SPIN to flag a sequence of possible events in the

protocol leading to a new Active-2-2 attack, where two compromised nodes collaborate

to remove all intermediate nodes from the route-discovery process.
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ÖZET

KABLOSUZ TASARSIZ AĞLAR İÇİN GÜVENLİ BİR

YÖNLENDİRME PROTOKOLÜNÜN MODEL KONTROL

TEKNİĞİ İLE FORMAL GÜVENLİK İNCELEMESİ

Kablosuz tasarsız ağ dediğimiz kavram, belli bir alanda serbestçe hareket ederek

gezgin bir davranış tarzı sergileyen, kablosuz olarak birbirine bağlı hareketli termi-

nallerden oluşan bir bilgisayar ağıdır. Kablosuz tasarsız ağlardaki terminaller arasında

yönlerin hesaplanması ve iletişim garantisinin sağlanabilmesi şu ana dek hiçbir protokol

tarafından tam manasıyla sağlanamamıştır. Bu çalışma, bir tasarsız ağ yönlendirme

protokolü olan ARIADNE’nin güçlü bir güvenlik özelliğinin doğrulanması amacıyla for-

mal olarak modellenmesi ve model-kontrolünün yapılmasını içermektedir. Buttyán’in

ARIADNE üzerinde sergilenebileceğini gösterdiği Active-1-2 tipi saldırıya benzer bir

yaklaşımla, SPIN yazılımı ARIADNE protokolünde Active-2-2 tipinde yeni bir saldırıya

yol açan olası bir haberleşme serisi bulması için kullanıldı. Bu saldırıda paketin gittiği

yol üzerindeki iki anlaşmalı terminal, yol keşfetme işlemi sırasında aralarındaki tüm

diğer terminalleri yokmuş gibi gösterebilmektedir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. OVERVIEW OF ROUTING IN MOBILE AD HOC NETWORKS AND FOR-

MAL METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1. Overview of Routing in Mobile Ad Hoc Networks . . . . . . . . . . . . 3

2.1.1. What is a MANET? . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.2. Routing in MANETs . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.3. Attacks on Routing Protocols for MANETs . . . . . . . . . . . 4

2.1.4. Secure Routing in MANETs . . . . . . . . . . . . . . . . . . . . 7

2.2. Overview of Formal Methods for System Specification and Verification 13

2.2.1. What are Formal Methods? . . . . . . . . . . . . . . . . . . . . 13

2.2.2. Formal Specification . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3. Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4. SPIN Model Checker . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5. Modeling and Analysis of Protocols Using Formal Methods . . . 21

2.3. Overview of ARIADNE Protocol . . . . . . . . . . . . . . . . . . . . . 27

2.3.1. What is ARIADNE? . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2. Assumptions and Design Goals . . . . . . . . . . . . . . . . . . 27

2.3.3. Route-Request in ARIADNE . . . . . . . . . . . . . . . . . . . 28

2.3.4. Route-Reply in ARIADNE . . . . . . . . . . . . . . . . . . . . . 30

2.3.5. Route-Error in ARIADNE . . . . . . . . . . . . . . . . . . . . . 32

2.3.6. Security Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 32

3. MODEL CHECKING ARIADNE USING SPIN . . . . . . . . . . . . . . . . 34

3.1. Main Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



viii

3.2. On Effective Model Checking Using SPIN . . . . . . . . . . . . . . . . 35

3.3. Assumptions for Our Model . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Modeling Approach for the Ad Hoc Network . . . . . . . . . . . . . . 36

3.4.1. Necessary Constructions . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2. Modeling Cryptographic Structures . . . . . . . . . . . . . . . . 38

3.4.3. Modeling Messages in the Network . . . . . . . . . . . . . . . . 39

3.4.4. Modeling Communication Between Nodes . . . . . . . . . . . . 40

3.4.5. Modeling Legitimate Nodes . . . . . . . . . . . . . . . . . . . . 41

3.4.6. Modeling the Compromised Nodes . . . . . . . . . . . . . . . . 45

3.5. Simulation Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6. Specifying the Security Property for Verification . . . . . . . . . . . . . 50

3.7. Verification Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.7.1. Dealing with Complexity . . . . . . . . . . . . . . . . . . . . . . 53

3.7.2. Verification Results . . . . . . . . . . . . . . . . . . . . . . . . . 57

4. CONCLUSIONS AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . 61

APPENDIX A: FINITE STATE AUTOMATA OF NETWORK NODES IN OUR

MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1. Legitimate Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.2. First Compromised Node . . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.3. Second Compromised Node . . . . . . . . . . . . . . . . . . . . . . . . 65

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



ix

LIST OF FIGURES

Figure 2.1. Verification methodology of model checking. . . . . . . . . . . . . 17

Figure 2.2. The Structure of SPIN simulation and verification. . . . . . . . . 22

Figure 2.3. Normal operation in ARIADNE; propagating the RREQ. . . . . . 30

Figure 2.4. Normal operation in ARIADNE; forwarding the RREP. . . . . . . 31

Figure 3.1. Topology assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.2. Operations of a legitimate terminal in our model. . . . . . . . . . 44

Figure 3.3. Buttyán’s Active-1-2 attack on ARIADNE; propagating the RREQ. 46

Figure 3.4. Buttyán’s Active-1-2 attack on ARIADNE; forwarding the RREP. 47

Figure 3.5. XSPIN graphical interface. . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.6. Part of a random simulation for our model performed in SPIN’s

simulation mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.7. SPIN’s error trail showing how a violation may occur. . . . . . . . 58

Figure 3.8. RREQ propagation phase representation of the error trail generated

by SPIN, demonstrating a new attack on ARIADNE, which is of

type Active-2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



x

Figure 3.9. RREP forwarding phase representation of the error trail generated

by SPIN, demonstrating a new attack on ARIADNE, which is of

type Active-2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure A.1. SPIN automaton of a legitimate node in our model. . . . . . . . . 63

Figure A.2. SPIN automaton of the first compromised node in our model. . . . 64

Figure A.3. SPIN automaton of the second compromised node in our model. . 65



xi

LIST OF ABBREVIATIONS

ABR Associativity Based Routing Protocol

AODV Ad hoc On-demand Distance Vector

ARA Ant-Colony Based Routing Algorithm for MANETs

AtSe Attack Searcher

AVISPA Automated Validation of Internet Security Protocols and Ap-

plications

BCY Beller-Chang-Yacobi Protocol

BGP Border Gateway Protocol

CBRP Cluster-Based Routing Protocol

CGSR Cluster-head Gateway Switch Routing

CL Computational-Logic

CPAL-ES Cryptographic Protocol Analysis Language Evaluation Sys-

tem

CSP Communicating Sequential Processes

CTL Computation Tree Logic

DDR Distributed Dynamic Routing

DoS Denial-of-Service

DPLL DPLL/Davis-Putnam-Logemann-Loveland algorithm

DSDV Destination-Sequenced Distance Vector

DSR Dynamic Source Routing

DST Delay Sensitive Transport

ECFSM Extended Communicating Finite State Machine

FDR Failures Divergence Refinement

FDT Formal Description Techniques

FORP Flow-Oriented Routing Protocol

FSR Fish-eye State Routing

GPSAL GPS Ant-Like routing algorithm

GSR Global State Routing

HLPSL High Level Protocol Specification Language



xii

HOL Higher Order Logic Theorem Prover

HSR Hierarchical State Routing

ITU-T International Telecommunication Union-Telecommunication

Stardardization Sector

KDC Key Distribution Center

LAR Location-Aided Routing

LMR Lightweight Mobile Routing

LOTOS Language Of Temporal Ordering Specifications

LTL Linear Temporal Logic

MAC Message Authentication Code

MANET Mobile Ad hoc Network

MMWN Mobile Multimedia Wireless Networks

MSC Message Sequence Chart

NIST National Institute of Standards and Technology

NRL Naval Research Laboratory

OFMC On-the-Fly Model-Checker

OLSR Optimized Link State Routing

OSRP On-demand Secure Routing Protocol

PAN Protocol Analyzer

PROMELA Process Meta Language

RDMAR Relative Distance Microdiscovery Ad hoc Routing

RERR Route-Error

ROAM Routing On-demand Acyclic Multi-path

RREP Route-Reply

RREQ Route-Request

S-AODV Secure Ad hoc On-demand Distance Vector

SAR Security-aware Ad hoc Routing

SATMC SAT-based Model-Checker

SDL Specification and Description Language

S-DSDV Secure Destination-Sequenced Distance Vector

SEAD Secure Efficient Ad hoc Distance vector

SLSP Secure Link-State Protocol



xiii

SLURP Scalable Location Update-based Routing Protocol

SMT Secure Message Transmission

SMV Symbolic Model Verifier

SPIN Simple Promela Interpreter

SRP Secure Routing Protocol

SSA Signal Stability-based Adaptive routing

STAR Source Tree Adaptive Routing

SUCV Statistically Unique and Cryptographically Verifiable

TBRPF Topology dissemination Based on Reverse-Path Forwarding

TLA Temporal Logic of Actions

TLS Transport Layer Security

TORA Temporally Ordered Routing Algorithm

WRP Wireless Routing Protocol

DREAM Distance Routing Effect Algorithm for Mobility

ZHLS Zone-Based Hierarchical Link State Routing Protocol

ZRP Zone Routing Protocol



1

1. INTRODUCTION

An ad hoc network is a self-configuring network of mobile terminals, connected

by wireless links and exhibiting nomadic behavior by freely moving within an area;

the union of which form an arbitrary topology. Such networks are distinguished by

their rapidly and unpredictably changing presence or absence of links. Following the

widespread use of PDA’s, laptops and 802.11/WiFi technologies, concerns on secure

communication in mobile ad hoc networks have gained significance in the research area.

Computing the routes between the terminals in mobile ad hoc networks and

delivering a guarantee of communication success have never been achieved in its en-

tirety. The proposed secure routing protocols mostly come with an informal security

analysis performed by their designers, which makes it doubtful to trust the protocol.

It is now widely accepted that secure protocols need a proof of security before being

accepted as secure. Here comes the main flavor of formal methods, which are defined

to be mathematical techniques for specification and verification of complex systems.

Through the use of proper formal methods, it is possible to achieve provable correct-

ness and reliability in any system design and to analyze a system for desired properties.

The main objective of this thesis is to apply a famous formal verification ap-

proach, model checking, on the secure routing protocol ARIADNE, which aims for

resilience against multiple compromised nodes and arbitrary attackers in a mobile ad

hoc network. With this work, model checking approach is used for the first time in

the literature for the purpose of verifying a security property of an ad hoc routing

protocol. Using a similar approach proposed by Buttyán et al. [1], our aim is to use

model checking to find a sequence of possible events in ARIADNE leading to a new

Active-2-2 attack, where two compromised nodes collaborate to remove all intermedi-

ate nodes from the route-discovery process. The reason we have chosen ARIADNE is

not only for the fact that it has very powerful security properties, but also its authors

have introduced a new attacker classification with the term Active-y-x; where y stands

for the number of terminals that the attacker has compromised and x stands for the
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total number of terminals that the attacker owns within the network.

In the second chapter, firstly, we give an overview of routing in mobile net-

works with both general routing issues and secure routing issues. A broad overview of

current secure routing protocols is presented as possible prevention mechanisms; with

some other approaches as possible detection mechanisms. Secondly, we discuss formal

methods for system specification and verification. We mention various specification

methodologies and verification tools, along with a shallow introduction to our tool of

choice: SPIN. We also present a comprehensive slice of the related work history on

modeling and analysis of protocols using formal methods. Thirdly, we discuss a par-

ticular version of ARIADNE: ARIADNE with MACs. We describe the main protocol

operations very briefly and give a security discussion about the protocol.

In the third chapter, we discuss our own work: model checking of ARIADNE.

Firstly we give discussions about effective use of SPIN and our assumptions. Secondly,

we present our modeling approach for various network primitives, communication, legit-

imate network nodes, and compromised network nodes. Then, our simulation phase,

security property specification phase, and verification phase with its results are dis-

cussed.

Lastly in the fourth chapter, conclusions and future directions are presented re-

spectively.
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2. OVERVIEW OF ROUTING IN MOBILE AD HOC

NETWORKS AND FORMAL METHODS

2.1. Overview of Routing in Mobile Ad Hoc Networks

2.1.1. What is a MANET?

A mobile ad hoc network (MANET) can be described as a set of mobile termi-

nals that are connected by wireless links and exhibiting nomadic behavior by freely

moving within an area, dynamically and frequently establishing and breaking up as-

sociations with other terminals, possibly without disruption of node-to-node commu-

nication. The terminals have the capability to dynamically discover routes to other

nodes, along with the ability to maintain these routes. The network may rapidly and

unpredictably change its topology, thus rapidly and unpredictably changing the pres-

ence or absence of links. Such a network can be rapidly deployed without relying on

some pre-existing fixed network infrastructure, may operate in a standalone fashion or

may also be connected to some larger network such as Internet [2].

2.1.2. Routing in MANETs

MANET routing protocols are commonly classified in three categories, namely,

proactive, reactive and hybrid protocols [3].

In proactive protocols, the routing information is exchanged between the neighbor

terminals and is kept in local tables to use later while making routing decisions. Such

behavior may provide a minimum routing delay as a result of its readiness; but as the

rate of change in topology increases, it becomes harder and harder for a terminal to be

up-to-date so the performance degrades dramatically. Destination-Sequenced Distance

Vector (DSDV) [4] can be said to be a representative proactive protocol for MANETs

since most others are derivatives of DSDV. WRP [5], GSR [6], FSR [7], STAR [8],
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DREAM [9], MMWN [10], CGSR [11], HSR [12], OLSR [13] and TBRPF [14] are also

proactive routing protocols proposed for MANETs.

In reactive protocols, any routing information is queried only when a terminal

needs it. This behavior may react later than proactive protocols while acquiring a route

to some destination but greatly decreases the control-information exchange within the

network which is unnecessary unless used by a terminal. For this class of protocols,

Dynamic Source Routing (DSR) [15] is the representative one. AODV [16], LMR [17],

ROAM [18], TORA [19], ABR [20], SSA [21], RDMAR [22], LAR [23], ARA [24], FORP

[25] and CBRP [26] are some other reactive routing protocols proposed for MANETs.

In hybrid approaches, advantages of both classes of protocols above are subject

to be used in specific cases. Using proactive routing for near terminals and reactive

routing for distant ones may be an example for the hybrid approaches. ZRP [27], ZHLS

[28], SLURP [29], DST [30] and DDR [31] are hybrid protocols proposed for MANETs.

Within the rapidly changing characteristics of a MANET topology, the reac-

tive protocols are known to outperform the proactive ones with the exception of some

certain cases [32, 33].

2.1.3. Attacks on Routing Protocols for MANETs

Attacks on MANET routing protocols are classified as passive and active attacks.

A passive attacker which is only a threat for privacy, is an eavesdropper on the network

who may perform [34];

• Sniffing, where the attacker listens and records the traffic in the network.

• Traffic analysis, where the attacker intercepts and examines messages to deduce

information from communication patterns [35]. Typically, the information that

can be inferred from the traffic increases directly proportional to the number of

messages observed. By traffic analysis, various advantages may be obtained, such

as location disclosure, in which the attacker may discover the location of a node,



5

or even the entire structure of the network.

• Deliberate exposure, where the attacker disclosures the traffic information he/she

recorded to the other terminals who do not have permission to see it.

Classification of active attacks are done in various ways in the literature, consider-

ing various different point of views. We prefer to classify them in two categories

both of which may be said to be instances of a denial-of-service (DoS) attack from

an application-layer perspective [36, 37, 38, 39]:

• Routing-disruption attacks, where the attacker tries to disrupt the legitimate

routes that packets in the network will follow and make them travel through

unintended routes. By distributing forged false information in the network, vari-

ous attacks can be realized:

– Route detours may be created where the legitimate terminals are deceived

to use suboptimal routes.

– Partitions can be created where one set of nodes within the network can be

prevented from reaching another set.

– Gratuitous detours, where the attacker makes a route seem longer than it

actually is, by adding non-existent terminals to the route-reply.

– Blackmailing, where the attacker might cause a selected terminal to be added

to the blacklists of other terminals and make that terminal not appear in

any route.

– Rushing attack may be performed in protocols using duplicate route-request

suppression; where the attacker broadcasts route-requests in account of other

terminals thereby causing the legitimate route-requests in the future to be

ignored.

Additionally,

– Wormholes can be established where a pair of attackers have a private phys-

ical connection and use this connection to disrupt routing, such as, one
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recording route-requests may forward them to the other to be rebroadcast

thereby causing routes longer than one or two hops to be undiscovered.

– Tunneling attack may be performed where two remote terminals collaborate

to exchange legitimate messages of other terminals in an encapsulated form

through existing message channels in order to show themselves as adjacent

nodes. In this way they may achieve having certain traffic through them.

• Resource-consumption attacks, where the attacker tries to acquire access to any

resource in the network for which he/she does not have enough privilege. This

type of attack may target bandwidth, memory or computation power of termi-

nals. Some examples are;

– Spoofing or Masquerading, where the attacker attempts to identify itself as

some other terminal, which in turn will open the gate to perform further

attacks such as creating routing loops.

– Hijacking, where the attacker takes control of an on-going communication

and masquerades as one of the communicating node.

– Misclaiming, where the attacker advertises its authorized control of some

network resources in a way that is not intended by the authoritative network

administrator [40]. Compromised, unauthorized or masquerading nodes may

misclaim network resources.

– Sleep deprivation torture attack may be performed in which the attacker

attempts to drain batteries of some other node by constantly keeping it

busy in various ways.

Also, there are more attacks which must be classified under both of the above at-

tack types, since they may target both routing-disruption and resource-consumption.

– Blackholes can be created by attacker terminals who attract packets and

then drop all of them.

– Grayholes are the derivatives of blackholes where not all but some packets

are selectively dropped.
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– Routing loops may be created by an attacker thereby causing the packets to

travel in cycles without reaching their intended destinations.

– False route-errors may be forged and disseminated in order to damage valid

routes and initiate new route-discoveries within the network.

2.1.4. Secure Routing in MANETs

From the routing protocol point of view, there are two types of messages in an

ad hoc network [41]: routing messages and data messages ; both of which need totally

different mechanisms to be secured. While any point-to-point security solution can pro-

vide confidentiality for data messages; a means of differentiating between the legitimate

nodes and per-hop authentication are needed by intermediate terminals for securing

the routing messages, and such a point-to-point mechanism alone cannot provide such

a means. Thus, the active focus on securing routing in MANETs is generally on secur-

ing the routing messages. Besides, it should be strongly underlined that a prevention

mechanism is destined to be flawed if it is not perfect, i.e., if there is a way to abuse it;

thus for security in a wider sense, a proper detection mechanism is essential to react.

One can find a very detailed survey in [42] about prevention and detection schemes at

each distinct layer; but we will mostly focus on network-layer prevention and detection

schemes.

Prevention Mechanisms : These mechanisms include key-management and secure rout-

ing protocols:

• Key-Management : One of the most fundamental problems of a secure routing en-

vironment is the key-setup phase, which means disseminating the authentic key

information to the mobile terminals. While in the case of simultaneous deploy-

ment, sharing the private keys before deployment is the most generic solution;

in cases requiring incremental deployment, such as a MANET, establishing trust

and keys between each two terminals becomes hard. F. Stajano and R. Anderson

have proposed the resurrecting duckling model [43] and D. Balfanz et al. have

given a more general shape to this approach by offering the use of privileged side
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channels [44]. S. Zhu et al. [45] described a secure protocol against a collusive at-

tack by up to a certain number of compromised nodes, enabling any two nodes in

the ad hoc network to establish a pairwise shared key on the fly, without requiring

the use of an on-line key distribution center. Z. Haas and L. Zhu [46] described

a distributed service in which the trust is divided into some number of shares

using threshold cryptography and these shares are assigned to some predefined

number of arbitrarily chosen nodes, called servers. Their mechanism can tolerate

a certain number of compromised servers if a certain number of partial signatures

are provided to compute a correct signature. G. Montenegro and C. Castelluccia

have proposed statistically unique cryptographically verifiable (SUCV) addresses

[47], that reduce the problem of distributing a list of (node, public-key) pairs to

distributing a list of legitimate nodes. S. Capkun and J. P. Hubaux, assuming

a source routing protocol, have proposed a mechanism to provide secure routing

even with an incomplete set of security associations, provided that the percentage

of security associations is sufficiently high [48]. Some other approaches can be

examined in [49, 50, 51].

• Secure Routing Protocols : In order to cure the flaws of the general routing proto-

cols defined in Section 2.1.3, different secure routing protocols are proposed each

with the ability of resisting some classes of attackers. Yih-Chun Hu et al. [52]

introduced an attacker classification with the term Active-y-x, where y stands for

the number of terminals that the attacker has compromised and x stands for the

total number of terminals that the attacker owns within the network. In order

to examine the current state-of-the-art in routing protocols and their resistance-

levels to known flaws, one should at least consider:

– Secure AODV (S-AODV): Two mechanisms are used to secure the AODV

messages; digital signatures to authenticate the non-mutable fields of the

messages, and hash chains to secure the hop count information. For the non-

mutable information, authentication is performed in an end-to-end manner

[41]. Attacks that have been prevented successfully are: ”impersonating

some other terminal by forging a RREQ or a RREP”, ”creating a black-
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hole for the subnet” and ”forging a falsified RERR with a high destination

sequence number in order to fail the future route discoveries of other ter-

minals”. But nothing prevents the attacker from passing on the received

authenticator and hop-count without changing them. Tunneling and worm-

hole attacks may still be launched. Location disclosure is also possible.

– Secure Efficient Ad hoc Distance vector (SEAD): Based on DSDV and uses

one-way hash chains to prevent multiple uncoordinated attackers from cre-

ating incorrect routing state in any other terminal [53, 36]. A node uses a

specific single next element from its hash chain in each routing update that

it sends about itself. By the use of this initial element, the hash chain can

provide authentication for the lower bound of the metric in other routing

updates for this destination. Any routing update can be authenticated us-

ing one of the previous authentic hash values from the same hash chain.

However, SEAD cannot prevent the attack where a terminal re-advertises

the same advertisement for a particular sequence number (freshness) and

metric (the node’s shortest known distance). This is because SEAD only

secures the lower bound on the metric ensuring that the terminal does not

reduce it [54]. Blackhole, location disclosure and wormhole attacks can still

be performed.

– Authenticated Routing for Ad hoc Networks (ARAN): Provides authentica-

tion and integrity through the use of cryptographic certificates [55]. Also

provides non-repudiation. It consists of two stages of which the second is

optional for a trade-off between power-saving and security. ARAN is able

to detect the attackers in the ad hoc environment; but as much as any

mechanism using public key cryptography, it is vulnerable to DoS attacks

launched by flooding the network with forged control messages for which

signature verifications are required. Using this vulnerability, an attacker

can force a terminal to discard a certain fraction of the control messages it

receives [36]. Blackhole, location disclosure and wormhole attacks can still

be performed.

– Secure Routing Protocol (SRP): An extension to apply to the existing routing

protocols so as to secure the route discovery phase [56], i.e., in order to



10

accept only the legitimate RREP for a RREQ through the use of message

authentication codes. Only an end-to-end shared-key is required for the

communicating pair of terminals. Flooding is limited since the neighbors

are ranked inversely proportional to their send-rates and served accordingly.

Since RERRs cannot be authenticated, a node on any route may forge a

falsified RERR for that route. A node can freely modify the node-list of a

RREQ packet that it forwards. SRP is also vulnerable to wormhole attack

and attackers can at worst hide the routes they belong to [57]. An attacker

may broadcast forged RREQs in the name of a legitimate terminal in order

to reduce the effectiveness of the future legitimate RREQs of that terminal.

A selfish node may not forward RREQs so that its own future RREQs will

have higher priority. An attacker may also launch a masquerading attack

using the security associations of the compromised terminal. Blackhole and

location disclosure attacks can also be performed.

– Secure Message Transmission (SMT): Different in the sense that it tries to

ensure successful delivery of data packets forming an end-to-end security

association, but not ever considering the security of route discovery and

route maintenance phases [58]. Thus SMT should be deployed with some

other protocol which can realize the route discovery phase and uses multiple

routes each with a rating assigned by using feedback from the destination

nodes. Messages are sent in a partial manner using secret sharing techniques

so that if a certain number of the total packets are received, the message

can be reconstructed at the destination. SMT handles link breakages and

compromised routes by assigning them lower ratings.

– Security-aware Ad hoc Routing (SAR): Introduces the notion of a trust hi-

erarchy by distributing keys for each trust-level [59]. Each terminal has a

certain immutable trust-level and while initiating a route discovery it de-

clares the minimum value of a security metric (e.g. trust-level) of the ter-

minals that will participate on the route; hence no node with questionable

trust-level becomes a part of that route. The discovered route may not be

optimal; but in terms of trust-levels, it is the most secure [54]. Scalability

is a problem since it means distributing keys, but the protocol can prevent
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the malicious nodes from being in the discovered route. Blackhole, location

disclosure and wormhole attacks may still be performed.

– Secure Link-State Protocol (SLSP): Uses digital signatures and one-way hash

chains to secure the link-state updates which are signed and propagated

a limited number of hops [60]. Terminals are assigned priorities inversely

proportional to the number of link-state updates they generate or forward.

So, the flooding attack described in SRP is also valid for SLSP. Blackhole,

location disclosure and wormhole attacks may still be performed.

– On-demand Secure Routing Protocol (OSRP): This protocol attempts to

provide a fault-free path under situations where a group of nodes are pos-

sibly malicious, through assigning certain weights to each link between two

adjacent nodes [61]. When a faulty link is found, its weight is multiplica-

tively increased so that the initiator of the route-request can avoid that link

in the future by selecting from multiple routes the route whose sum of link-

weights is the least, i.e., the route which has the least likelihood of having a

faulty link inside. If there is one fault-free path to the desired destination,

even in a highly adversarial environment, the protocol ensures the successful

discovery after a bounded number of faults. Blackholes are prevented but

grayholes are possible. Location disclosure and wormhole attacks may still

be performed.

– S-DSDV : Relying on existing pair-wise secret-keys between each two termi-

nals in the network, entity and message authentication is provided [62]. Data

integrity protection and data origin authentication are realized. Besides,

routes with falsified destination, advertised routes with falsified sequence

numbers, advertised routes with falsified cost metrics, routing updates with

falsified information, and advertised routes with falsified next hops are de-

tected provided there is at most one bad node in the network. Blackhole,

location disclosure and wormhole attacks may still be performed.

– ARIADNE : Yih-Chun Hu et al. [52] design this protocol to provide secu-

rity against one compromised node and arbitrary active attackers. We will

explain this protocol in detail in 2.3.
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Some other secure routing approaches can be examined in [63, 64, 65, 66, 67, 68]. A

much more detailed comparison between key-management schemes and secure routing

protocols considering different metrics is provided in [69].

Detection Mechanisms : These mechanisms include watchdog and pathrater approaches

[70], which target protection of the network from the misbehaving terminals by mon-

itoring the neighbors for a future routing decision. Simulations show that, when used

in combination, these two approaches provide considerable improvement in network

throughput in an adversarial environment.

• Watchdog : Every terminal maintains a watchdog process monitoring their neigh-

bors by listening promiscuously on the transmissions and checking whether the

neighbor participates in forwarding process as expected. The misbehaviors are

rated for each neighbor and after having exceeded a certain rating value the

monitoring terminal notifies other nodes of the situation. The watchdog might

not detect misbehaving nodes in presence of ambiguous collisions, receiver col-

lisions, limited transmission power, false misbehavior, collusion between neigh-

boring nodes and partial dropping [54]. Also the memory and computational

resources are wasted for the actions performed while monitoring the neighbors,

such as verifying the integrity of the sent packets.

• Pathrater : This approach enhances the knowledge of misbehaving nodes by con-

sidering also the link reliability data so as to pick the most reliable route. Termi-

nals maintain a database storing link ratings of every other node. The optimal

route is chosen considering an average link rating over the possible routes. If the

watchdog reports a misbehaving terminal, its rating is set to a negative value;

however, the recovery is possible for the malicious nodes since they can increment

their rating after a period of healthy participation in routing.

• Packet Leashes : This approach targets the detection of a wormhole which may

severely disrupt routing if remains uncovered. A leash is the information in-

cluded in a packet to limit the maximum distance that the packet is allowed to

be transmitted. Two different types of leashes are defined [71] both requiring

different mechanisms; but both with the same purpose: to determine the max-
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imum distance a packet may travel so that if a wormhole exists then it can be

detected since the packets through the wormhole travel more distance than fea-

sible. Geographical leashes need geographical location information to send with

each packet, for the packet to be verified at the receiving terminal. This type

requires the nodes to be aware of the maximum speed of a terminal and also

requires loosely-synchronized clocks. Temporal leashes require the nodes to have

tightly synchronized clocks so that each packet has a timestamp showing the time

when it was sent. The receiving node can thereby conclude if the packet has trav-

eled too far, by using the fact that the upper bound on the distance the packet

can travel is determined by the speed of light. Both leashes suffer from either

exact positioning information or accurate time synchronization both of which are

difficult to achieve.

Some other detection approaches can be examined in [72, 73].

2.2. Overview of Formal Methods for System Specification and

Verification

2.2.1. What are Formal Methods?

The term ’formal methods’ is defined to be mathematical techniques for the spec-

ification, development and verification of software and hardware systems [74]. Formal

methods specially focus on requirements and specification phases of development. The

main flavor of formal methods is that it is possible to achieve provable correctness and

reliability in any system design and to analyze a system for desired properties. Here,

’system’ refers to any application whose behavior can be described in a formal language.

It is common for any informal system specification to lead to ambiguous defi-

nitions of the desired features; furthermore, there stand no reliable way to prove the

completeness and consistency of the design. In such systems, informal inspection is

prosecuted with error-checking test suites of which the coverage gets weaker directly

proportional to the system complexity. Instead, for the system not to be totally re-
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vised in case of any fault, mathematical techniques providing reliability and provability

should be located. Formal methods have already demonstrated success in specifying

commercial and safety-critical software, and in verifying protocol standards and hard-

ware designs [75].

Formal methods may be used for some distinct purposes [76] such as formal spec-

ification, formal verification, rapid prototyping, functional testing and performance

testing; of which only the first two are in our interest.

2.2.2. Formal Specification

Unambiguous determination of the system’s main features and behaviors in a

mathematical manner. The specification is meant to describe the ’what’, not the

’how’. This formal description is generally used to guide further investigations, such

as validation or verification. Recent advances have brought around the definition of

formal description techniques (FDT), which can be classified according to their op-

erational model as [76] finite state machine, process algebra, Petri Nets and timed

automata. Since one of our main objectives is specifying a secure routing protocol, we

will introduce some of the FDTs which are used in this field:

• SDL (Specification and Description Language): A high-level description language

supporting non-determinism. It is defined by ITU-T [77] and its focus is espe-

cially on telecommunication systems, process control and real-time applications

[78]. SDL specifies systems as a set of interconnected abstract machines, which

are actually extensions of finite state machines communicating on asynchronous

channels by exchanging control messages. Processes have finite control states

and change state with transitions triggered by message reception. SDL’s nature,

keeping structure and behavior apart, is very useful in describing protocol archi-

tectures. Verification of a complex system by SDL tools is performed by partial

model checking the equivalent finite-state machine produced by the combination

of control states and data values.JADE [79] and SITE [80] are public domain

tools and Telelogic Tau SDL Suite and Object-Geode are commercial tools sup-
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porting system development with SDL.

• ESTELLE : An international ISO standard that can model event-driven behavior

and whose focus is especially on communication protocols [81]. It is based on

an extended state-transition model supporting nondeterministic communication

enhanced by the addition of Pascal language. ESTELLE can model a specified

system as a hierarchical structure of communicating automata running in par-

allel and communicating by exchanging messages. An executable model can be

generated from the formal specification. Pascal-support for data definitions and

calculations makes Estelle suitable for implementation and testing issues rather

than model checking.Pet Dingo is developed by NIST as a public domain Es-

telle tool, and Estelle Development Toolset is a commercial package by Institut

National des Telecommunications.

• LOTOS (Language Of Temporal Ordering Specifications): Standardized by ISO

for specifying concurrent and communicating systems [82]. It is a language based

on temporal ordering and uses process algebra as the modeling approach, which

is an abstract language for formal specification and model concurrent communi-

cating processes effectively through the use of logical operators. LOTOS specifies

a system with a declaration, characterizing system behavior as composition of

subsystems; and a definition, describing the behavior of each component within

the system. Though its modeling and validation capabilities are very high thanks

to its strong abstraction and support of model reduction, LOTOS friendliness is

low due to its textual format. Caesar/Aldebaran Development Package provides

efficient model checking, verification of logical temporal formulas and compilation

of abstract data type libraries.

• UPPAAL: An instance of timed-automata operational model, which is a tool-

box capable of specifying simulating and verifying systems that can be modeled

as networks of timed automata extended with integer variables, structured data

types, and channel synchronisation [83]. Its specification language is an extension

of finite-state machines with clock variables. The query language used to spec-

ify properties to be checked is a subset of computation tree logic (CTL). Also,

watchdog processes may be attached to the system, which are synchronized to

detect undesired behaviors. The tool supports graphical display of specification,
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simulation and validation phases.

• AVISPA (Automated Validation of Internet Security Protocols and Applications):

Aims at developing a push-button, industrial-strength technology for the analysis

of large-scale Internet security-sensitive protocols and applications [84]. its High

Level Protocol Specification Language (HLPSL) is based on Temporal Logic of

Actions (TLA), which is itself a powerful language for specifying concurrent sys-

tems. Specification of a security protocol and its properties written in HLPSL

are automatically translated to an Intermediate Format (IF) specification, which

is an infinite-state transition system with an initial state, transition rules, and

a state-based safety property defining whether a given state is an attack state

or not. The IF specification is then sent to the back-ends, i.e., four different

verification tools that can analyze IF specifications: an on-the-fly model-checker

OFMC, a CL-based attack searcher AtSe, a SAT-based model-checker SATMC,

and a tree automata-based protocol analyzer TA4SP. The tool’s user-friendliness

is at maximum since the validation process consists of a push-button action.

• SPIN (Simple Promela INterpreter): This widely used tool will be explained in

detail in Section 2.2.4.

A detailed comparison between FDTs considering various metrics, such as pertinence

to protocols, modeling capabilities, validation capabilities, simulation capabilities, per-

formance analysis, rapid-prototyping, tools availability, friendliness, main application

domain and industrial applications, is given in [76].

2.2.3. Formal Verification

The act of proving or disproving the correctness of a system with respect to a

certain formal specification or property [85], i.e., the possible behavior of the system is

checked against the desired behavior. Two well-studied approaches are model checking

and theorem proving.

• Model Checking: A technique that relies on building a finite model of a system

and checking that a desired property holds in that model [86]. Temporal model
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Figure 2.1. Verification methodology of model checking.

checking, in which the specifications are stated in a temporal logic and systems

are modeled as finite state transition systems, is firstly developed by Clarke and

Emerson [87] and by Queille and Sifakis [88] independently in the 80s. In a

typical case, the user creates a high level representation for the system, i.e., the

model, and the specification to be checked. The model-checker either terminates

positively, meaning that the model satisfies the specification; or give an execu-

tion trace showing how the property in question might not hold (See Figure 2.1).

The check is generally an exhaustive state space search, exploring all states and

transitions in the model to see whether the required properties are valid in all the

reachable states and the execution sequences of the model. Since the model is

finite, this process is guaranteed to terminate. The size of the state space for such

a model depends on the number of concurrent processes, the number and range
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of the internal variables, the type of the exchanged messages, and the nature of

the communication [76]. A model being more abstract means having less of the

parameters above; so, it is usually much simpler to verify properties at a more

abstract level. Main flavors of model checking are:

– It is fully automated and fast; in the sense that it takes as input a formally

specified description of the system and a temporal logic formula to check

the system against, and then automatically produce the answer without any

user interaction.

– It is not needed to specify the whole system; model checking can also pro-

duce handy results on a partially defined system and accommodates making

decisions about functionality in the early stages of development.

– It comes up with counter-examples i.e., error traces, which demonstrate the

deficiency clearly, greatly helping to cure the error.

– Various case studies have shown that the use of model checking has led to

shorter development times [89].

Main problems are:

– The state-explosion problem, which arises due to high complexity of the

described system. To defeat this common problem, techniques like ordered

binary decision diagrams (BDDs) [90] to represent state transition systems

efficiently; partial order reduction [91] to reduce the number of independent

interleavings of concurrent processes; localization reduction [92] to automat-

ically abstract a model relative to the property being checked; equivalence

reduction of identifiers [93] to collapse two distinct identifiers that are se-

mantically equivalent; and semantic minimization [94] to eliminate unnec-

essary states from a system model, are developed. Even in the light of these

approaches, the state-explosion problem may persist, for which the best so-

lution is to find a more proper abstraction for the system under verification

[95].

– In the cases where the system cannot be specified as a closed finite model,
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model checking loses its suitability.

– In communications protocol verification, model checking is generally run on

a few concurrent processes (to the best of our knowledge, at most 5), due

to state-explosion problem. Although it is possible to show under certain

assumptions that this approach suffices to capture all possible behaviors of

a protocol [96]; it may not be sufficient to generalize the verification results

in some cases.

– It is hard to choose what in the real world to model and to decide on the

right level of abstraction. Models only ’model’ some aspects of the system in

question. The correspondence between the formal description and the real

world is limited since the real world is not a formal system. So, a positive

verification run for a system does not necessarily show that the system does

not have deficiencies in the real world. But this is a very general modeling

problem [75].

• Theorem Proving : A technique where both the system and its desired properties

are expressed as formulas in some mathematical formalism, which defines a set of

axioms and a set of inference rules for deduction of further facts from the given

axioms. Theorem proving is the process of finding a proof of a property from

the axioms of the system [86]. Depending on the formalism used, the hardness

of proving a theorem may be in some spectrum from trivial to impossible. The

theorem provers can be categorized depending on the degree of how automated

they are; from highly automated general-purpose provers to interactive provers

dedicated to some special purpose. Interactive provers are generally more suitable

to prove some property of a system since they require user-guidance at certain

phases of the operation; meaning that in order to use these provers efficiently,

the user must have a degree of proficiency in the field. The distinctive feature

of theorem provers is that they can naturally handle infinite state spaces, using

numerous proof procedures (e.g. mathematical induction, model elimination,

tableaux method, superposition, higher-order unification and DPLL) in order to

generate proofs about infinite sets.
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2.2.4. SPIN Model Checker

SPIN (Simple Promela INterpreter) is a widely accepted tool-box used for spec-

ification, simulation, validation and verification of asynchronous concurrent processes,

such as the terminals in a communication protocol. It is used to extensively check

high-level models of complex systems and to detect flaws in these system designs. The

tool supports validation of logical consistency requirements, invariant assertions, and

temporal properties expressed in Linear Temporal Logic (LTL) [97].

SPIN is based on Extending Communicating Finite State Machine (ECFSM)

theory due to its structure consisting of a set of concurrent processes, extended with

variables and data space, and communicate by exchanging structured messages through

finite-length asynchronous channels [76]. SPIN’s specification language is called Promela

(PROcess MEta LAnguage). The processes have deterministic and non-deterministic

transition capabilities. Data objects are either global or process-local, and customized

data structures can be defined. Channels are able to store messages containing any

finite number of fields, and support several operations like polling, sorted send, random

receive and synchronous rendez-vous communication. Atomic sequences, deterministic

steps, selections, repetitions and escape sequences are the compound statements of

PROMELA.

One can use SPIN in either one of two tightly-coupled operational modes: simu-

lation mode, or verification mode. Simulation mode can be used to get an impression of

the model and shape the further modeling; but not to prove any fact about the system.

SPIN can generate optimized verifiers from the user-defined PROMELA model and

then verification mode is used for checking any violations to the specified properties.

In the case of a found counter-example, SPIN simulator displays an error-trace using

guided simulation (See Figure 2.2).

SPIN relies on the fact that the combined execution of a system of asynchronous

processes can be shown to be a product of automata, where each process is itself a finite-

state automaton. A Büchi automaton is also built using the system’s never claim. The
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global system automaton is the synchronous product of this Büchi automaton with the

asynchronous product of finite-state automata of the processes.

In distributed systems design, it is standard to make a distinction between two

types of correctness requirements [95]: safety and liveness ; where safety means the set

of properties that the system may not violate and liveness means the set of properties

that the system must satisfy. From verifier’s angle, claims are also about either reach-

able or unreachable states, or feasible or infeasible execution sequences. Correctness

claims in PROMELA can be expressed as basic assertions, never claims, or trace asser-

tions ; possibly through the use of end-state labels, progress-state labels and accept-state

labels. Basic assertions constitute the only class of correctness claims that is allowed to

be checked during simulation. All other classes need verification to be checked. Never

claims, which can be automatically generated from LTL formulas using SPIN’s built-

in translator, provide a solid expressive power to specify the properties in inquisition.

They define behavior which should never occur in any execution sequence of the system.

SPIN has various compile-time options to support different platforms and dif-

ferent types of use; simulation options to support customizing of the simulation runs

of PROMELA models; syntax checking options to perform a syntactic correctness check

of PROMELA models; LTL conversion options to support conversion from LTL formu-

lae to never claims; and model-checker generation options to support fine-tuning of the

verifier-code to a specific type of verification. The protocol analyzer (PAN) generated

by SPIN has also options for applying partial order reduction, for increasing speed,

and for reducing memory use.

2.2.5. Modeling and Analysis of Protocols Using Formal Methods

Several works have been done in the literature where formal methods are used

for modeling and analysis of communication protocols. Mostly, the effort is on cryp-

tographic security protocols; and any work on verification of security properties of

MANET routing protocols can rarely be found.
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Figure 2.2. The Structure of SPIN simulation and verification.

Some of the security protocol verifications in the literature are:

• In [98], Lowe used a general-purpose model checking tool, FDR, to model security

protocols, coming up with a previously unknown attack on the famous Needham-

Schroeder Public Key protocol.

• In [99] and [100], Murϕ is used by Mitchell et al. in the first place for analyzing

some cryptographic protocols for identification of previously-known deficiencies;

and then for identification of a previously-unknown flaw on Secure Sockets Layer

(SSL) protocol.

• In [101], BAN logic that specifically targets formal analysis of authentication
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protocols is introduced which is used later on to identify the flaws in the X.509

authentication protocol.

• In [102], the author demonstrated type-confusion attacks on the Group Domain

of Interpretation Protocol with NRL protocol-analyzer.

• In [103], the authors proposed a fully-automatic verification tool, Athena, com-

bining techniques from both model checking and theorem proving, tailored for

security protocol analysis, with the capabilities of proving correctness with arbi-

trary number of concurrent runs.

• In [104, 105], the authors use Isabelle [106] to prove properties of the Kerberos

authentication system and TLS protocol, respectively. In [107], the verification

of Secure Electronic Transaction (SET), an e-commerce protocol by VISA and

MasterCard, using the theorem prover Isabelle, is described. The results are

important in the sense that enormous protocols such as SET are amenable to

formal analysis. In [108], the authors specified a certified e-mail protocol, and by

formalizing its correctness assertions, they verified the main guarantees of this

protocol.

• In [109], Lowe et al. used Casper/FDR2 to successfully discover flaws in the

Clark/Jacob library; it found previously known attacks on 20 protocols, and

some previously unknown attacks on 10 other protocols.

• In [110], Chevalier and Vigneron present a new model for automated verification

of security protocols, permitting the use of an unbounded number of protocol

runs. The authors prove its correctness, completeness and give a termination

guarantee. They demonstrate the implemented approach by rediscovering some

known flaws and one previously unreported attack on Denning-Sacco symmetric

key protocol.

• In [111], the authors examine Needham-Schroeder public-key authentication pro-
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tocol, 1KP electronic commerce protocol [112], and Wide Mouthed Frog proto-

col; demonstrating some known flaws about these protocols using special-purpose

model-checker Brutus.

• In [113], the process of formal verification using modal logics is discussed. The

verification process is demonstrated by way of case studies on some security proto-

cols: original BCY [114], and published modifications of BCY. An unknown flaw

is identified; and a new proposal by the authors, resistant to this attack is verified.

• In [115], the authors model a signature system implemented on top of a secure op-

erating system and validate access control and integrity properties using SPIN, by

modeling a generic attacker who cannot only function as a legitimate user of the

system, but can also call functions in unintended ways, with arbitrary parameters.

• In [116], Basin et al. present the on-the-fly model-checker OFMC, which is state-

of-the-art both in terms of coverage and performance. Their demonstrations are

impressive in the sense that the tool finds all known attacks and discovers a new

one in a test-suite of 38 protocols from the Clark/Jacob library in a few seconds

of CPU time for the entire suite.

• In [117], the authors describe the modelling of a two multicast group key manage-

ment protocols in a first-order inductive model, and the discovery of previously

unknown attacks on them by the automated inductive counter-example finder

CORAL.

• In [118], the authors introduce a version of distributed temporal logic and thereby

define a protocol-independent distributed communication model, on top of which

protocols and security goals can be formalized and analyzed. They illustrate their

approach by using a standard example: Needham-Schroeder Public Key Authen-

tication Protocol.

• An instance of verification of a security protocol using SPIN is in [119], where
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Maggi and Sisto analyzed Needham-Schroeder Public Key Authentication Pro-

tocol and discovered Lowe’s attack [98]. They also verified the fixed version

proposed in [98]. The authors compared their results in terms of the number

of reachable states in the model, with the other approaches analyzing the same

protocol using other model-checkers, Murϕ and the CSP-based tools Casper and

FDR. They described a procedure for the automatic generation of the intruder

definition, using preliminary data-flow analysis to provide complexity reduction

while building the model.

• For purposes of generic verification of security protocols, the authors in [120]

formulate a ”loss of secrecy” property and formalize a simplified attacker in

PROMELA; then they prove that it is of equal power compared to Dolev-Yao

intruder, in terms of analyzing secrecy properties.

Some work on protocol verification for ad hoc networks are:

• In [121], the authors applied formal verification on the GPSAL routing protocol

and proved loop-freedom in a high frequency moving hops scenario. They also

verified that the time of a message on the network is directly related to this mov-

ing.

• Another instance using SPIN is [122], where the authors performed an assisted

verification on AODV using an interactive theorem prover, HOL, with the model-

checker SPIN, in order to discover conditions causing the formation of routing

loops.

• The most related work in the literature to ours is in [89], where the author verified

Wireless Adaptive Routing Protocol (WARP) using SPIN against loop-freedom

in any five nodes ad hoc network configuration.

• In [123], the author proved the convergence of the RIP protocol, provided a sharp

real time bound for it; and proved that the protocol finds optimal routes. Further-
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more, he identified flaws in earlier versions of AODV causing loops to be formed

and suggested modifications, with which he proved the protocol to be loop-free.

In addition, by proving a general theorem about an upper bound on convergence

time, he derived important convergence properties for different classes of config-

urations in BGP.

• In [124], SRP is analyzed using both the canonical BAN logic analysis for cryp-

tographic protocols and the CPAL-ES formal methods suite.

• In [125], a methodology based on CSP/FDR to validate critical properties of ad

hoc networks is presented. Furthermore, they demonstrated the applicability of

their methodology in a case study on Cluster-Based Routing Protocol.

• In [126], Liu demonstrated an appropriate approach to use SMV for verifying

AODV protocol by describing models separately for each role and for each possi-

ble network topology.

• In [127], the authors considered the effect of the protocol parameters on the

timing behaviour of AODV, through the use of UPPAAL. They highlighted a

dependency of the lifetime of routes on network size, which can be alleviated by

allowing the route timeouts to adapt to network growth.

• In [128, 129], Nanz and Hankin presented a broadcast process calculus with local

storage operations to model the core of a distance vector protocol for ad hoc net-

works. They illustrated their approach by showing that under certain conditions

a routing loop attack may be performed.

• In [130], the authors give a formal framework for the security analysis of on-

demand source routing protocols for wireless ad hoc networks. The novelty of

their approach is the application of the simulation-based approach, which has

been proposed to prove the security of cryptographic protocols, in the context of

ad hoc routing.
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2.3. Overview of ARIADNE Protocol

2.3.1. What is ARIADNE?

ARIADNE [52] is an ad hoc network routing protocol that aims for resilience

against Active-y-x attackers, relying only on efficient symmetric cryptography. The

protocol operates in an on-demand fashion, based on the well-known DSR protocol;

meaning that the terminals dynamically discover routes to the related destination only

when needed. Other than the generic approach of enhancing an existing insecure pro-

tocol by equipping it with cryptography, the authors redesigned each routing primitive

and its processing from scratch. The protocol offers three different modes of operation;

in the sense that authentication of routing messages can be realized by one of three

proposed schemes: shared secrets between each pair of nodes (ARIADNE with MACs),

shared secrets between communicating nodes combined with broadcast authentication

(ARIADNE with TESLA), or digital signatures. Our focus is on ARIADNE with

MACs; and when we mention about ’ARIADNE’, what we refer to is ’ARIADNE with

MACs’ from here on.

2.3.2. Assumptions and Design Goals

The authors’ assumptions about the environment are:

• Physical layer and MAC layer attacks are disregarded, since these problems have

various other standalone solutions that must be kept separate from the designer’s

point of view.

• The network may reorder, replay, corrupt, or even lose packets while transmitting.

• The protocol assumes bidirectional links.

• The needed assumptions for the operation mode of the protocol are inherited.

For instance, a key distribution center (KDC), or some other means of setting up

n(n + 1)/2 shared secrets in a network with n nodes is assumed for ARIADNE.

Authors offer some alternative mechanisms to achieve this.

• A terminal trusts the terminal with which it communicates.
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The authors’ design goals are:

• preventing attackers or compromised nodes from tampering with uncompromised

routes consisting of uncompromised nodes;

• resilience against Active-y-x attackers through simple and efficient mechanisms;

• preventing various types of DoS attacks;

• a means of verifying the origin and integrity of routing information data with low

computation overhead;

• a terminal should trust no one other than itself, so as to avoid blackmailing;

• delivering services in a more secure, more efficient and more general manner

relative to previous work in the field, such as not relying on a trusted hardware

and requiring low processing power.

2.3.3. Route-Request in ARIADNE

A route-request (RREQ) in ARIADNE is in the form:

(RREQ, S, D, id, hash-chain, node-list, MAC-list),

and at the time a RREQ packet is first created these fields have the values:

• S is the address of the source/initiator;

• D is the address of the destination/target;

• id is a unique identifier for the current route-discovery;

• hash-chain is initialized to MACKSD
(RREQ,S, D, id), a message authentication

code computed over the tuple (RREQ,S, D, id) using KSD, the secret-key be-

tween the initiator and the target;

• node-list and MAC-list are empty lists.

Propagating a RREQ: Upon receiving a previously not seen RREQ packet, a terminal,

say A, if it is not the target for that RREQ, appends itself to the hash-chain value and
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hashes the result; thereby computing the new hash-chain value:

h1 = H[A, h0].

Then, it appends itself to the node-list and also computes the new MAC value as:

MA = MACKAD
(RREQ,S, D, id, h1, (A), ()).

Now A appends this new MAC value to the end of the MAC-list, and broadcasts the

RREQ as:

(RREQ,S, D, id, h1, (A), (MA)).

Note that we mark the changed fields by underlining them.

Each intermediate node acts the same: computes a new hash-chain value by

firstly appending itself to the old one; appends itself to the node-list ; computes the

new MAC value over this new version of the RREQ, and appends this new MAC value

to the end of the MAC-list ; and then rebroadcasts the resulting packet.

Validating a RREQ: Upon receiving a RREQ packet, a terminal, say D, if it is the

target for that RREQ, validates the hash-chain using KSD. If this check turns out to

be valid, D subsequently validates the MAC-list using its pairwise secret-keys for each

intermediate node. If MAC-list is also validated then a route-reply (RREP) is created.

If not valid, the packet is simply dropped.

See Figure 2.3 to examine RREQ mechanism in ARIADNE schematically.
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Figure 2.3. Normal operation in ARIADNE; propagating the RREQ.

2.3.4. Route-Reply in ARIADNE

The destination terminal D, upon receiving a valid RREQ of the form:

(RREQ, S,D, id, h3, (A,B,C), (MA,MB,MC)),

creates a RREP in the form:

(RREP, D, S, (A,B,C),MD),
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where MD is calculated by:

MD = MACKDS
(RREP,D, S, (A,B, C)).

Then the destination unicast this RREP by following the node-list in the RREQ re-

versely.

Forwarding a RREP : An intermediate terminal upon receiving a RREP packet, if

it is not the target for that RREP, simply forwards the packet to the next hop by

following the node-list in the RREP reversely.

Validating a RREP : Upon receiving a RREP packet, a terminal, say S, if it is the

target for that RREP, validates the MAC-list field using KDS: the secret-key between

the target and the initiator. If validation is ok, the route is received; if not, the packet

is simply dropped.

See Figure 2.4 to examine RREP mechanism in ARIADNE schematically.

Figure 2.4. Normal operation in ARIADNE; forwarding the RREP.
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2.3.5. Route-Error in ARIADNE

A route-error (RERR) packet in ARIADNE is of the form:

(RERR, sending-address, receiving-address, error MAC),

where the sending-address is the address of the intermediate terminal which encoun-

tered the error, receiving-address is the address of the intended next hop, and the error

MAC is the MAC computed over the preceding fields of the RERR, using the secret-

key between the sender of the RERR and the source address of the original packet.

Forwarding a RERR: An intermediate terminal upon receiving a RERR packet, if

it is not the target for that RERR, simply forwards the packet to the next hop by

following the node-list in the original packet reversely.

Validating a RERR: A terminal, say S, upon receiving a RERR packet sent by a

terminal, say B; if it is the target for that RERR, validates the error MAC field using

KSB. If validation is ok, all the routes using the indicated link are removed from the

route cache of S; if not, the packet is simply dropped.

2.3.6. Security Discussion

ARIADNE uses hash-chains and MAC-lists to provide security. A hash-chain

is a list of hash values, linked together cryptographically. It is created by taking an

initial seed and incrementally hashing it n times; where n is said to be the length of

the chain. The usability of this hash-chain comes from the fact that given any element

from the hash-chain, it is infeasible to calculate any previous elements from the chain.

The target can check the authenticity of any RREQ through the use of hash-chains.

The initiator initializes the first element of the hash-chain to a MAC computed over

(RREQ, S,D, id), using KSD. Any intermediate node takes the current hash-chain

value, append itself, and re-hashes before rebroadcasting the packet. In this way, the

target can make sure that the node-list in the RREQ is valid; by reconstructing the
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MAC computed over (RREQ, S,D, id) using KSD, and then reconstructing the hash-

chain from scratch by using the node-list, and finally checking whether it is equal to

the hash-chain in the packet. The security here relies on the fact that no node can

hear a RREQ without itself listed1.

A MAC-list is a list of MAC values that are stored separately. MAC values

are used for both authentication and integrity purposes. Each terminal computing a

MAC value in ARIADNE, does so over the previous fields of the packet by using the

shared-key between itself and the target node. During a RREQ propagation, these

MAC values are appended to the existing MAC-list; thereby increasing the packet-

length while traversing the route. In this way, the target can make sure that the

packet is not modified along the route; by recalculating MACs for each hop over the

route and comparing each calculated value with the value in the RREQ packet. Fur-

thermore, if someone over the route modifies the RREQ, the target knows which node

it is2. Also, the initiator of the route-discovery can make sure that the RREP received

is valid; by recalculating the MAC over the RREP using KDS, and then comparing it

with the value in the received RREP packet.

By these two mechanisms described, ARIADNE provides authentication of the

initiator and the target of the route-discovery; and makes sure that any modifications

on a route-discovery packet will be detected at the target or at the initiator; and fur-

thermore, no node over the route can remove previous nodes from the node-list in a

RREQ.

1However, Buttyán demonstrated a way of making the attacker ”hear” such a RREQ, by transmit-

ting a previous hash-chain value hidden in the RREQ packet [1]. Our approach also uses Buttyán’s

approach, but with two compromised nodes instead of one; so that a repeating identifier in the node-list

can be avoided.
2This information can later be used for detection and reaction purposes.
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3. MODEL CHECKING ARIADNE USING SPIN

3.1. Main Objective

Our main objective in this thesis is to apply model checking approach on the

secure routing protocol ARIADNE for ad hoc networks, in order to flag a sequence of

possible events in the protocol leading to a new attack of type Active-2-2. The au-

thors in [52] state that by using secure hash chains and message authentication codes,

ARIADNE ensures the fact that no node can remove other nodes from the node-list

of a RREQ packet without being noticed by the destination. This statement is our

security property of interest. So, our property to check is that; no intermediate node

in a route-discovery process is able to remove nodes from the RREQ.

In fact, Buttyán et al. described an Active-1-2 attack on ARIADNE such that

if there is a compromised node and an attacker node over the route to the destina-

tion, these nodes are able to remove the nodes between them from the RREQ [1]. By

a similar approach, but with a network configuration consisting of two compromised

nodes instead of one; our aim is to use SPIN to find a sequence of possible events in

ARIADNE leading to a new attack, which is of type Active-2-2, where the two compro-

mised nodes collaborate to remove all the intermediate nodes from the RREQ. This is

realized through modeling a legitimate node in ARIADNE, and two distinctly behaving

compromised nodes with own legitimate keys; so that SPIN will find a counter-example

in the protocol which shows how the claim, ”if a node receives a valid RREP then the

route in the RREP does really exist”, can be violated in a five-node linear network

topology. Buttyán et al. also stated that if each node checks the node-list for a repeat-

ing identifier then their attack can be prevented. But the attack we describe here can

not be prevented in this manner.
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3.2. On Effective Model Checking Using SPIN

Describing a formal specification of any system for model checking purposes re-

quires an abstraction process as the most important part of the work, since the most

compelling drawback of model checking is the computational complexity; and a model

checking tool, e.g., SPIN, already has very efficient inner mechanisms to combat this

problem (For details, see Section 2.2.3). State-of-the-art model-checkers only require

that the user gives a specification of the model, so the rest is only a push-button action.

All remaining to the user is making abstractions of the system in such a way that the

system eludes unnecessary details, but still captures the essence of the solution, and no

more. What we are looking for is the smallest sufficient model sufficient to verify the

properties that we are interested in. Holzmann discusses that [95], for effective model

checking one should first decide which aspects of the design are important and require

verification. In this light, in the formal specification phase, we have not considered

some of the main aspects of ARIADNE; such as the route-maintenance mechanism,

since it is irrelevant to the flaw we are trying to show. In addition, T. Ruys discusses

some SPIN optimizations one should consider while building a verification model [131].

He makes very helpful comments and recommendations to reduce the complexity of

the model under construction. We have tried to stay strictly attached to his advices

throughout the modeling process.

3.3. Assumptions for Our Model

We inherit all the assumptions of the protocol (See Section 2.3.2). As explained

in Section 3.2, we have not considered the route-maintenance mechanism to strengthen

the focus on our issue of interest, namely, the route-discovery phase of the protocol.

We have not considered mobility in our model since we aim at showing an exe-

cution of events in the protocol leading to a possible attack in a special configuration,

namely, when there is one sender and one receiver with the two of the three inter-

mediate nodes compromised and furthermore, there is one legitimate node between

the two compromised terminals. This special configuration leads to a linear topology
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in the most simple case. There are more complicated network topologies where it is

still possible to have this configuration inside. We will discuss this issue in Section 4.

But for the sake of simplicity and verification performance, we assume a linear topology.

We have not considered timers either, since the authentication mode of the pro-

tocol is through MAC functions. If we had considered ARIADNE with TESLA, we

would have probably needed timers in the model.

The ad hoc network protocol verification approaches so far generally use at most

five nodes in the model, since five nodes may represent such different network configu-

rations that a verification done provides a great probability of good behavior for larger

networks1[131]. We also use five nodes in our model.

We assume that any terminal may non-deterministically initiate a route-discovery

for a non-deterministically chosen destination. The RREQ packets sent may also be

non-deterministically timed-out.

3.4. Modeling Approach for the Ad Hoc Network

While specifying a Promela model to verify a system, the general approach is to

deal with two distinct modelings [119]:

• the modeling of the protocol rules and functions, and

• the modeling of the intruder behavior.

The modeling of the protocol rules and functions involves the network primitives such

as communication channels, route-discovery messages, and cryptographic structures;

along with legitimate ARIADNE participants. Modeling approaches for route-discovery

and cryptographic structures are often performed in the literature; and we will discuss

the alternative modelings and our preference in Section 3.4.2, Section 3.4.3, and Section

1However, this is not an issue for our approach since we target demonstrating an attack on the

protocol for a special network configuration, not verifying the protocol for all possible configurations.
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3.4.4. However, modeling of the second part constitutes more challenge; which we

will discuss in Section 3.4.5 and Section 3.4.6. First of all, we build some necessary

constructions for the model.

3.4.1. Necessary Constructions

Our model consists of five nodes, which can be defined in PROMELA as:

]define N 5

Each node will have a table keeping (initiator, id) pairs of the recently broadcast

RREQs:

]define MaxTableSize 30

typedef RouteReqTableType {
byte id[MaxTableSize];

}

The number of slots in the terminals’ tables keeping track of (initiator, id) pairs

of the recently broadcast RREQs is assumed to be 30. If this buffer gets full then the

node begins writing from the first slot again. This is safe since it is not much probable

that a previously seen RREQ will be seen again after 30 other unseen RREQs. Note

that only id is enough for keeping track of the (initiator, id) pairs since we generate id’s

globally, i.e., any id identifying the current route-discovery appears only once globally.

The terminals in the network also have some common characteristics. They have

unique identifiers, tables to remember (initiator, id) pairs of the recently broadcast

RREQs, their own private-keys for each other node in the network; and they know

who their neighbors are. We describe this information in PROMELA as:
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typedef NodeDataType {
byte myID;

RouteReqTableType RecentRouteReqTable;

byte myNeighbors[N];

int myPrivateKeys[N]

}

There are totally five nodes in the network so the variable myID of type byte is

sufficient for identifying the terminals. Each node has the knowledge of its neighbors

stored in the byte array myNeighbors, for purposes of modeling the broadcast system

through the native unicast communication system in PROMELA2. Since we will not

be interested in real cryptographic functions, myPrivateKeys field is a symbolic field

which will never be used.

3.4.2. Modeling Cryptographic Structures

The concept of protocol verification targets possible security flaws in the proto-

cols, not flaws in the cryptosystems used by the protocols. Therefore, cryptography is

typically modeled in an abstracted form with the assumption that it works perfectly

as intended, meaning [119]:

• an encrypted message can only be decrypted with the corresponding key;

• by examining the encrypted message, one can not have an idea of what the key

can be;

• there is sufficient redundancy in messages so that the decryption algorithm can

detect whether a ciphertext was encrypted with the expected key.

Although these are generally not true for real cryptosystems, they are useful in the

sense that the flaws of the protocol itself can be isolated well, and also the verification

gets simpler by eluding the burden of identifying cryptographic flaws.

2This communication issue will be discussed in Section 3.4.4.
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As we have discussed before, the main cryptographic structures used in ARI-

ADNE are hash-chains and MAC-lists. Since each new hash-chain value is constructed

by each node appending itself to the end of the previous value and re-hashing, it is

convenient to represent this hash-chain as a simple list in our model. So, we can model

the process of computing a new hash-chain value as simply adding the node’s identifier

to the existing list. This hash-chain can have at most the length equal to one less than

the number of terminals in the network, i.e., N − 1.

typedef HashListType {
byte chain[N]

}

A MAC-list is expanded by adding the new MAC value to the end the previous

list in a per-hop basis. So, we can also represent this structure as a simple list:

typedef MacListType {
byte secret[N];

byte secretHopCount;

byte chain[N]

}

Here, the variable chain is the list we have mentioned; and the other fields are

used for the purposes of modeling the approach in Buttyán’s attack. We will use these

fields to hide a hash-chain value in the corresponding MAC field of a MAC-list3.

3.4.3. Modeling Messages in the Network

Since our issue of interest is the route-discovery process, our model has only

messages of type RREQ and RREP:

mtype = { RREQ, RREP }
3Buttyán’s attack is explained in detail in Section 3.4.6.
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Typically, there are two different approaches while modeling multiple types of

messages. The first is that each packet type is modeled distinctly, so the communication

channel through which these messages will pass should also be modeled distinctly.

The second approach involves redundancy but eases the modeling; since both types of

messages are modeled using the same structure and therefore we need no more than

one communication channel for both types. We follow the second approach:

typedef RoutingPacketType {
mtype flag;

byte sourceID;

byte destID;

byte id;

HashListType hashList;

byte nodeList[N];

MacListType macList;

byte hopCount;

byte macRoute[N]

}

Here, flag denotes the type of the packet; id is a globally unique route-discovery

identifier of the packet; hopCount is the number of hops the packet is forwarded; and

macRoute is for storing the route on which the MAC of the RREP is computed.

3.4.4. Modeling Communication Between Nodes

Communication in PROMELA is provided by message channels. These channels

have a unicast nature connecting two communicating nodes, and have the ability of

buffering a number of M messages. We define M to be 1:

]define M 1

It is necessary to choose this number small enough to let the communication pro-
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ceed, but not larger than that; since choosing it large directly increases the verification

complexity.

For our five-node network, we need five communication channels so that each

node has a one-way channel to communicate with the others:

chan channel[N] = [M] of { RoutingPacketType }

Here, we have an array of channels whose i’th element belongs to the node with

id equal to i+1 in the network. However, in order to model the neighbor-sensing phase

of the terminals, one more channel is needed:

chan topologyChannel[N] = [0] of { NodeDataType }

This channel tells each terminal who its neighbors are, at the beginning of the

protocol run. So the broadcasting function can be realized by the terminals through

simulating it by unicasting to each of the neighbors throughout the protocol run. Note

that this channel is only used once and is never needed again. If we had considered

mobility, it could have been possible that we distribute new topology information using

this channel each time a topology change occurs.

3.4.5. Modeling Legitimate Nodes

Each node has its characteristic node-data and immediately sets his network

identifier to the value that init process sends to it in variable ID:

NodeDataType myData;

myData.myID = ID;

It should be noted that init is the first process to run in a SPIN model and it

creates all the other processes by optionally sending them parameters. After initializing

the processes, init sets the topology (See Figure 3.1) and the terminals learn this
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topology information through the function learnNeighbors.

Figure 3.1. Topology assumed.

In the first place, a node with node id equal to i + 1 gets topology information

using the topologyChannel[i]. This happens for all i; and only then the processes may

begin executing the protocol.

In our model, there is a main loop, which the terminals execute ad infinitum,

and is defined with the label MAIN L. A legitimate node first checks his channel for

any received packets. If there are no received packets in the channel, the terminal

randomly assigns a destination for initiating a route-discovery. But if the terminal

has already initiated a route-discovery for that destination before, it checks whether

a timeout for that RREQ occured. If he has not initiated a route-discovery for that

destination before, or the previously initiated RREQ is timed out then he generates a

RREQ for that destination and broadcasts. If there is a received packet in its channel,

the terminal takes a course of actions according to the type of the message. If it is a

RREQ then it first checks whether the packet has been seen before. If seen, it is simply

dropped. If not, the terminal checks whether the packet is destined to himself. If not,

it is rebroadcast after the modifications of hashList, nodeList, macList and hopCount

fields. If the terminal is the destination for that RREQ then it checks validity of the

hashList and the macList fields. If valid, the terminal creates a RREP and forwards; if

not, the packet is simply dropped. If the received packet is a RREP then the terminal

checks whether the packet is destined to himself. If not, it is forwarded to the next

hop with no modifications. If so, the validity check of the macList field along with
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the macRoute field is performed. If valid, the route in the RREP, i.e., nodeList field is

accepted as a valid route. If not valid, the packet is simply dropped. These operations

can be examined schematically in Figure 3.2.

Note that in the real execution of the protocol, RREP for any RREQ may not

return in time so a RREQ-timeout may occur. In our model, this concept is not mod-

eled using real timers; instead, a RREQ-timeout may take place non-deterministically;

which is enough to capture the essence of operation.
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Figure 3.2. Operations of a legitimate terminal in our model.
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3.4.6. Modeling the Compromised Nodes

The Dolev-Yao model [132] represents an attacker that can eavesdrop, intercept,

and inject any message into the system and is only limited by the constraints of the

cryptographic methods used in the system. The intruder has complete control over the

network and he is able to compose new messages using his initial knowledge and the

messages collected from the network traffic during the protocol run. The modeling of a

pure Dolev-Yao intruder for model checking purposes is hard to realize and most threat

models in the literature simplify it; since a Dolev-Yao intruder may behave in a highly

non-deterministic manner, resulting in a very complex verification model. Paolo Maggi

and Riccardo Sisto [119] offer complexity reduction techniques based on a preliminary

data-flow analysis to build a simplified model for the attackers. By this method, one

can achieve an intruder model which does not flood the network with nonsense mes-

sages; instead, performs potentially beneficial actions. The idea of a simplified intruder

model may exclude some possible attacks from the model for most of the cases, but

otherwise it is very hard to deal with the resulting complexity.

A popular research approach to model an intruder involves the fact that princi-

pals in the network do not communicate with each other directly but all the messages

they send are intercepted by the attacker which eventually will forward them to the

right addresses [119]. We do not follow that approach; instead, in our model the com-

promised nodes do not hear any other information than they are naturally supposed to

hear. Furthermore, they act almost the same as a legitimate node. What they do more

is that the first compromised node tries to hide the hash-chain value in the place where

it should have normally appended a MAC-value. This concept is realized in our model

by assigning the value of the hashList field to the macList.secret field and placing a

special mark in the proper macList.chain element, into which we should have normally

placed our MAC-value. By this way, some other adversary using the same identity

which is over the route and is aware of this possible attack will understand that a hid-

den hash-chain element was sent when it saw the special mark in the MAC-value field;

thereby being able to remove the nodes between the two adversaries using this hidden

hash-chain value. The target will then verify the RREQ since there is nothing wrong in



46

it and then in the second phase of the attack the second adversary will add the nodes it

has removed to the node-list again, in order to provide a harmless forwarding process

towards the initiator, using this added source route. Then the first adversary removes

those added nodes from the node-list and renders the packet to the state on which the

MAC was calculated. The result is that the initiator accepts this route as if it is real,

where actually it is not. The RREQ propagation phase and RREP forwarding phase

of this attack can be examined in Figure 3.3 and Figure 3.4, respectively.

Figure 3.3. Buttyán’s Active-1-2 attack on ARIADNE; propagating the RREQ.



47

Figure 3.4. Buttyán’s Active-1-2 attack on ARIADNE; forwarding the RREP.

This attack was first described by Buttán et al., and they proposed that the ter-

minals in the protocol can prevent this attack if they check for a repeating identifier in

the RREP forwarding phase. What we intend to add is that if there are two compro-

mised nodes instead of one, this attack is still possible to perform and furthermore it

is not possible to prevent this attack by checking for a repeating identifier, since there

is none. What we have done is to model the possible behaviors of this approach using

a modeling and verification tool, such that the tool itself will show us an execution

sequence in the protocol which leads to the realization of this attack.
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3.5. Simulation Phase

As we have discussed before, SPIN’s simulation mode can be used to get an

impression of the model and shape the further modeling. For simulation purposes, one

can use XSPIN graphical interface which operates independently from SPIN itself (See

Figure 3.5).

Figure 3.5. XSPIN graphical interface.

This tool can greatly ease the modeling and verification phases by providing

graphical displays of message flows, time sequence diagrams, and a parse tree of the

model. A message sequence chart (MSC) shows the simulation steps with each line

representing a process in the model. When a process sends a message to another pro-

cess, a new box appears on the process line with an arrow pointing to the process

which receives that message. Each box has a state number which is uniquely assigned

by SPIN, and SPIN also writes the message contents on each arrow. The first line in

an MSC always represents the process init, and the other lines are lined up in order
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of unique process identifiers given to them by SPIN according to their creation times.

A part of the MSC of our model taken from a simulation run can be examined in

Figure 3.6. In the figure, it can be observed that init process is sending the topology

information to each of the five node in the network before any further message traffic

begins. Only then, the processes begin executing the protocol by sending RREQs non-

deterministically and randomly to each other. Here it should be noted that the concept

of randomness is granted by non-determinism in SPIN. The process of choosing a ran-

dom destination involves non-deterministically sending a message to one of the other

processes. It can be observed that the first process initiates a route-discovery at state-

number 305, and the third process initiates another route-discovery at state-number

410. The second process performs the required operations on the RREQ packet it has

heard from the first process and then rebroadcasts. Simulation run goes on like this.

At any time the user can stop the simulation and check which part of the PROMELA

code is being executed at that instance.

XSPIN has three types of simulation styles:

• Random simulation can be performed where every non-deterministic action in

the model is taken in a random manner.

• Guided simulation can be performed where the simulation steps are read from a

trail file that SPIN has generated upon finding any violation of a property in the

model. This type of simulation shows a complete sequence of events leading to

the violation condition found.

• Interactive simulation can be performed where the user is asked to determine

every non-determinism throughout the simulation run.

The purpose of random simulation is that the user can observe different examples of

asynchronous execution sequences of the protocol in a graphical environment and can

notice any anomaly in the behavior of the processes in an easy and quick manner.

Simulation phase can be rerun each time with a different seed of randomness until the

user is persuaded that the modeling of the behavior is successful. We have done several

random simulations for our model before defining our security property and trying to
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verify it. After the verification run when SPIN has found a violation to our claim, we

have used the guided simulation mode to examine the events leading to the violation

condition.

3.6. Specifying the Security Property for Verification

Our issue of interest to check the protocol against is that if it can really prevent

the intermediate nodes from removing other terminals from the node-list, in an Active-

2-2 adversary environment. But we should rephrase this property so that SPIN will

be able to understand what it means.

At the end of a route-discovery process, if the returned route is an inexistent

route, then that means either an intermediate node has removed some nodes from the

node-list, or an intermediate node has added some nodes into the node-list, or someone

has done both4. But no possible behavior of adding nodes into a node-list is present

in our model. Hence it must be true for our model that if the returned route is an

inexistent route, then this means an intermediate node has removed some nodes from

the node-list.

By this discussion, now we can be sure that if we find an inexisting route re-

turned from a route-discovery, then an intermediate node has removed some nodes

from the node-list. So, the property that ”if some route is accepted by a legitimate

node, then that route does really exist” will be our security claim to be verified.

4Note that we exclude the possibility that the target of the route-discovery generates a false RREP

since the protocol trusts communicating node pairs.
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Figure 3.6. Part of a random simulation for our model performed in SPIN’s

simulation mode.
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In our topology, this property is logically equivalent to the statement:

”(If node 1 accepts a route from node 5 then the route must be (2,3,4) OR

if node 1 accepts a route from node 4 then the route must be (2,3) OR

if node 1 accepts a route from node 3 then the route must be (2))

AND

(if node 3 accepts a route from node 5 then the route must be (4))

AND

(if node 5 accepts a route from node 1 then the route must be (4,3,2) OR

if node 5 accepts a route from node 2 then the route must be (4,3) OR

if node 5 accepts a route from node 3 then the route must be (4))”.

We can either manually code this property in PROMELA, or automatically gen-

erate from LTL formulas using SPIN’s built-in translator.

3.7. Verification Phase

Once having built the formal model and specified the property to check, the next

thing is to compile a verifier for our model by using SPIN. There are a few compile-time

directives but they can properly modify the default behavior of the verifier to achieve

specific effects. Some of which we have used while searching the best one to suit our

needs are:

• -DBFS : This is used for a breadth-first search but uses more memory and lets

only the safety properties be verified. But it is the easiest way to find a short

error path.

• -DMEMLIM=N : Lets the verifier use memory bounded by N Megabytes.

• -DNOBOUNDCHECK : Disables the check on array indices to improve perfor-

mance.

• -DSAFETY : No cycle detection is targeted, thereby improving performance.

• -DBITSTATE : Makes use of the bitstate storage algorithm instead of exhaustive

storage. This option greatly reduces the run-time of the verifier, but only has a
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partial coverage of the state space. The coverage quality is expressed in the form

of a hash-factor after the verification run.

• -DCOLLAPSE : By state descriptor compression, this method increases run-time

but significantly reduces the memory requirements.

• -DMA=N : Uses the minimized automaton storage method for the state descrip-

tors. Leads to a very significant reduction in memory requirements at the cost of

a very significant increase in the run-time requirements.

• -DVECTORSZ=N : Tells the verifier that size of the state descriptor is N bytes

at maximum.

• -DREACH : Changes the search algorithm to make sure that there is no safety

errors within the run-time depth limit set by the run-time directive -m.

After the compilation of the verifier, one can make use of some proper run-time direc-

tives of SPIN such as:

• -i : Enables an iterative search method to look for the shortest path to an er-

ror. For identifying the shortest possible error path, the compile-time directive

-DREACH must be used. For safety properties, this option is guaranteed to

work.

• -mN : For a depth-first search verification, this option sets the maximum search

depth to N .

• -n: Suppresses the listing of unreached states at the end of a verification run.

• -wN : The default size of the hash table can be changed to 2N slots, up to a

maximum value of -w32.

3.7.1. Dealing with Complexity

SPIN can generate automata for the modeled processes. So, by examining these

automata one can have an idea of how large the state space is. In Appendix A, Figure

A.1, Figure A.2, and Figure A.3 show the automaton of a legitimate node which has

more than 650 states, the automaton of the first compromised node which has more

than 850 states, and the automaton of the second compromised node which has more
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than 950 states, respectively. This analysis tells us that our state space is around

6503 ∗ 850 ∗ 950 = 221, 759, 687, 500, 000 ' 2, 22× 1014 states.

Since our model has a very large size, we have decided to try some directives to

help reduce the memory requirements. We have tried to verify our model using vector

size of 2048 bytes, memory limit of 1.5 GB and the options ’COLLAPSE’, ’NOBOUND-

CHECK’, ’SAFETY’. The corresponding compilation command is as follows:

gcc -o pan -DVECTORSZ=2048 -DCOLLAPSE -DNOBOUNDCHECK

-DMEMLIM=1500 -DSAFETY pan.c

./pan -n

Here, the run-time directive ’n’ is used to supress the listing of unreached states at

the end of the verification run. This trial has led to an out of memory error after visiting

44 million states. This experience showed us that we really have a huge state space.

After that, we have continued trying memory reduction techniques, again by using the

same vector size, the same memory limit and the options ’DMA’, ’NOBOUNDCHECK’,

’SAFETY’. The corresponding compilation command is:

gcc -o pan -DVECTORSZ=2048 -DMA=4756 -DNOBOUNDCHECK

-DMEMLIM=1500 -DSAFETY pan.c

./pan -m15000 -n

The additional run-time directive ’m15000 ’ is used to conduct a depth-first search

verification with the maximum search depth 15000. We have also tried the compile-

time options ’DREACH’, ’NOBOUNDCHECK’, ’SAFETY’ with the run-time option

’i ’ which initiates an iterative search method to look for the shortest path to an error:



55

gcc -o pan -DVECTORSZ=2048 -DREACH -DNOBOUNDCHECK

-DMEMLIM=1500 \-DSAFETY pan.c

./pan -n -i

However, none of them could give us a result as good as 44 million states. Only

then we have tried our best weapon at the expense of a partial coverage of the state

space: the bitstate storage algorithm. It should be noted that we do not aim a verifi-

cation but an error trail of a possible violation; so the trouble of partially covering the

state space is not an issue for us as far as we can find an error trail. For using bitstate

hashing with a 231 slotted hash table, we have used the following commands:

gcc -o pan -DVECTORSZ=2048 -DBITSTATE -DNOBOUNDCHECK

-DMEMLIM=1500 -DSAFETY pan.c

./pan -n -w31

The result is that the verifier has visited 673 million states and flagged a violation

of the claim at depth 2212. The output of SPIN’s verifier is:

pan: claim violated! (at depth 2212)

pan: wrote evren_ariadne_30_06_06_M=1.pml.trail

(Spin Version 4.2.6 -- 27 October 2005)

Warning: Search not completed

+ Partial Order Reduction

Bit statespace search for:

never claim +

assertion violations + (if within scope of claim)

cycle checks - (disabled by -DSAFETY)

invalid end states - (disabled by never claim)

State-vector 1816 byte, depth reached 9999, errors: 1
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6.73038e+08 states, stored

2.63112e+08 states, matched

9.3615e+08 transitions (= stored+matched)

1.66947e+09 atomic steps

hash factor: 3.19073 (best if > 100.)

bits set per state: 3 (-k3)

Stats on memory usage (in Megabytes):

1224928.912 equivalent memory usage

for states (stored*(State-vector + overhead))

536.871 memory used for hash array (-w31)

0.360 memory used for DFS stack (-m10000)

0.803 other (proc and chan stacks)

0.172 memory lost to fragmentation

537.845 total actual memory usage
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3.7.2. Verification Results

SPIN has generated an error trail which contains a sequence of events leading to

a violation condition for our claim. Here, we use again XSPIN to perform a guided

simulation using the generated error trail. This guided simulation provides us an MSC

which makes the attack visible (See Figure 3.75). The logical representation of this

attack can also be examined in Figure 3.8 and Figure 3.9 for RREQ propagation, and

RREP forwarding, respectively.

In [52], the authors state that with an Active-y-x attacker configuration, length-

ening the route in the RREQ by adding other compromised nodes to the route is

possible. In this attack, if there is a shorter route, the source terminal will prefer

that one; thereby rendering the attacker powerless6. However, the attack that SPIN

flagged is much more general and powerful; since it shows that the actual existing route

can be shortened by the compromised nodes, which forces the initiator to prefer this

route. This result shows that one of the targeted security properties of ARIADNE, the

property that no intermediate node is able to remove any other nodes from the route-

discovery process may not hold in an Active-2-2 adversary environment. This might

possibly be used for routing-disruption or some other purposes like traffic analysis etc.

5Please note that we have redrawn the MSC outputs that SPIN generated since the original ones

have a low readability.
6However, it should be noted that if the aim of the attacker is to make the source terminal choose

any other route than the route over which the attacker lies, this attack could also be useful.
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Figure 3.7. SPIN’s error trail showing how a violation may occur.
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Figure 3.8. RREQ propagation phase representation of the error trail generated by

SPIN, demonstrating a new attack on ARIADNE, which is of type Active-2-2.
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Figure 3.9. RREP forwarding phase representation of the error trail generated by

SPIN, demonstrating a new attack on ARIADNE, which is of type Active-2-2.
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4. CONCLUSIONS AND FUTURE DIRECTIONS

It is widely accepted that secure protocols need a proof of security before being

acceptable. The main flavor of formal methods, which are defined to be mathematical

techniques for the specification, development and verification of complex systems, is

that it is possible to achieve provable correctness and reliability in any system design

and to analyze a system for desired properties.

We used model checking as our formal verification technique that relies on build-

ing a finite model of a system and checking that a desired property holds in that

model. We specified and executed a model checking approach for the secure ad hoc

routing protocol ARIADNE using SPIN; which is a widely accepted public domain

general-purpose model checking tool used for specification, simulation, validation and

verification of asynchronous concurrent processes. Our work is the first model check-

ing approach in the literature on security property verification of an ad hoc network

routing protocol. The reason we have chosen ARIADNE is not only for the fact that

it has very powerful security properties, but also its authors have introduced a new

attacker classification scheme with the term Active-y-x; where y stands for the number

of terminals that the attacker has compromised and x stands for the total number of

terminals that the attacker owns within the network.

We built an ad hoc network model, along with the model of a legitimate node and

two distinct compromised nodes; whose behaviors are similar to the ones that Buttyán

et al. described in order to perform an Active-1-2 attack on ARIADNE [1]. The au-

thors in [1] also stated that checking for repeating identifiers in the RREP packet may

cure this flaw. Our approach is distinct from theirs in the sense that our compromised

nodes try to perform an Active-2-2 attack; in which the subverted terminals can use

two distinct identifiers legitimately. Therefore, this attack can not be cured by the

same approach.

SPIN generated automata for our modeled processes, making the state space anal-
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ysis possible. Our state space is around 2, 22×1014 states, which is huge. Therefore we

used some of SPIN’s compile-time directives to reduce the memory requirements. At

last, we could find a violation to our claim after the verifier visited 673 million states

in the state space.

The verification run gave us an error trail, i.e., a sequence of possible events

in the protocol which leads to a violation of the property we are trying to verify. This

result shows that one of the targeted security properties of ARIADNE, the property

that no intermediate node is able to remove any other nodes from the route-discovery

process may not hold in an Active-2-2 adversary environment.

It should be noted that both of these attacks are not limited to a logically lin-

ear five-node ad hoc network; instead, having the adversaries placed anywhere in the

network topology, the nodes between them can easily be removed from the node-list

of any RREQ traversing that route. These types of attacks are very powerful since

the actual existing route can be shortened by the compromised nodes, which forces

the initiator to prefer this route. After that, the compromised nodes can manage the

communication between the initiator and the destination.

This work is an extension of Buttyán’s attack on ARIADNE, which uses the

model-checker SPIN to flag the attack. We extended his attack from an Active-1-2

environment to an Active-2-2 environment. We did not target to perform a full ver-

ification of the protocol but to find a sequence of events leading to a violation of a

security property. Therefore, for the sake of simplicity, we did not include some core

characteristics of the ad hoc environment and the protocol in our model; such as mobil-

ity, and route-error type messages. For a full verification of the protocol, these aspects

should also be included in the model; but with the right level of abstraction which does

not sacrifice the functionality while keeping the model simple.

Furthermore, our attacker model consists of nodes which know how to behave in

order to launch the specified attack. Instead, a generic attacker model whose sequence

of behaviors are unpredictable even by the modeler of the attacker may have the chance

of revealing yet undiscovered attacks on ARIADNE.
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APPENDIX A: FINITE STATE AUTOMATA OF

NETWORK NODES IN OUR MODEL

A.1. Legitimate Nodes

line 532 

line 156 

line 150 

line 150 

line 154 

line 549 

line 580 line 490 

line 518 line 582 line 659 line 626 

line 582 line 660 line 626 line 509 

line 627 

line 555 line 583 line 510 

line 573 line 585 

line 328 

line 630 

line 601 line 556 

line 324 

line 175 line 255 line 241 

line 277 

line 306 

line 314 

line 325 

line 247 line 239 

line 271 

line 604 

line 588 

line 308 

line 299 

line 319 

line 248 

line 662 

line 664 line 604 

line 588 

line 283 

line 310 

line 633 

line 316 

line 320 

line 299 

line 666 

line 284 line 286 

line 266 

line 288 line 290 line 292 line 295 

line 634 

line 317 

line 394 

line 284 line 286 line 288 

line 260 

line 290 line 292 

line 394 line 394 

line 283 

line 283 

line 372 line 372 

line 607 

line 372 

line 284 line 286 line 288 line 290 line 292 line 295 

line 297 

line 381 

line 668 line 607 

line 284 

line 381 

line 286 

line 381 

line 288 line 290 line 292 

line 394 

line 389 line 389 line 389 

line 657 

line 372 

line 381 

line 389 

line 394 

line 372 

line 381 

line 389 

line 618 

line 618 line 619 

line 620 

 ((receivedPacket.destID!=myData.myID))

 else

 break

 (1)

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.nodeList[(_i-1)]) [(1,2)]

 channel[(receivedPacket.nodeList[(_i-1)]-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 _i = 0

 _x2 = 0

 ((!(waiting_for_rep[(dest-1)])||(waiting_for_rep[(dest-1)]&&req_timeout[(dest-1)]))) else

 ((receivedPacket.flag==R_REQ)) ((receivedPacket.flag==R_REP)) else

 (((_i==0)||(_i==5))) [(1,2)] else

 seen = 0

 _i = 0

 ((_i<=(5-1))) [(1,2)]
 ((_i==5))

 (!(channel[(myData.myID-1)]?[receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4]]))
 channel[(myData.myID-1)]?receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4]

 ((_z2<=(5-1)))
 ((_z2>(5-1)))

 ((_z3<=(5-1)))
 ((_z3>(5-1)))

 channel[(receivedPacket.destID-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 (1)

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.destID) [(1,2)]

 printf('\nWe are cloning list2=[ ') [(1,2)]

 ((receivedPacket.sourceID==myData.myID)) else

 printf('\nMAC of the received route-reply is verified by nodeID: %d, route-reply is valid.\n',myData.myID)

 _i = 0 [(1,2)]

 ((receivedPacket.nodeList[0]!=0)) [(1,2)] else

 myData.myID = _ID

 printf('\nMalformed packet received by nodeID: %d, dropping the packet.\n',myData.myID)

 r_rep_mac_ok = 1

 ((_i<=(5-1)))
 ((_i==5))

 (((_i<(5-1))&&(receivedPacket.hashList.chain[(_i+1)]==receivedPacket.nodeList[_i]))) [(1,2)]
 ((_i>=(5-1)))

 globRand = (((globRand*3)+19)%256)

 printf('\nOwn packet received back by nodeID: %d, dropping the packet.\n',myData.myID)

 printf('\nMAC of the received route-reply couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)

 ((_z2<=(5-1))) [(1,2)]
 ((_z2>(5-1)))

 printf('\nWe are cloning list2=[ ')

 printf('\nPacket seen before seen again by nodeID: %d, dropping the packet.\n',myData.myID)

 ((_j<5)) [(2,3)]
 ((_j>=5))

 printf('\nMAC of the received route-request couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)

 ((receivedPacket.hashList.chain[0]!=receivedPacket.sourceID)) [(1,2)]
 else

 seen = 0

 (((_c<=(5-1))&&(receivedPacket.nodeList[_c]==receivedPacket.macRoute[_c])))
 ((_c>=5))

 printf('\nHashChain couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)
 ((myData.RecentRouteReqTable.id[29]==receivedPacket.id))

 else

 channel[0]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 (1) [(1,2)]

 _i = (_i+1)

 _c = 0

 ((hashChainOk==0)) [(1,2)] else (1)

 ((_z3<=(5-1))) [(1,2)]
 ((_z3>(5-1)))

 channel[1]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 ((seen==1)) else

 ((_z2<=(5-1)))
 ((_z2>(5-1)))

 _i = (_i+1)

 _i = 0 [(1,2)]

 channel[2]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 (1) [(1,2)]

 _i = (_i+1)

 ((macChainOk==0)) [(1,2)] else

 ((_z2<=(5-1)))
 ((_z2>(5-1)))

 (((_i<5)&&(receivedPacket.macList.chain[_i]==receivedPacket.nodeList[_i]))) [(1,2)]
 ((_i>=5))

 ((_i<=(5-1))) [(1,2)]
 ((_i==5))

 break [(2,3)]

 channel[3]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 channel[0]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 _i = (_i+1)

 _j = 0 [(2,3)]

 _i = (_i+1)

 ((_z3<=(5-1)))
 ((_z3>(5-1)))

 printf('\nWe are cloning list2=[ ') [(1,2)]

 topologyChannel[(myData.myID-1)]?_neighborsData.myID,_neighborsData.RecentRouteReqTable.id[0],_neighborsData.RecentRouteReqTable.id[1],_neighborsData.RecentRouteReqTable.id[2],_neighborsData.RecentRouteReqTable.id[3],_neighborsData.RecentRouteReqTable.id[4],_neighborsData.RecentRouteReqTable.id[5],_neighborsData.RecentRouteReqTable.id[6],_neighborsData.RecentRouteReqTable.id[7],_neighborsData.RecentRouteReqTable.id[8],_neighborsData.RecentRouteReqTable.id[9],_neighborsData.RecentRouteReqTable.id[10],_neighborsData.RecentRouteReqTable.id[11],_neighborsData.RecentRouteReqTable.id[12],_neighborsData.RecentRouteReqTable.id[13],_neighborsData.RecentRouteReqTable.id[14],_neighborsData.RecentRouteReqTable.id[15],_neighborsData.RecentRouteReqTable.id[16],_neighborsData.RecentRouteReqTable.id[17],_neighborsData.RecentRouteReqTable.id[18],_neighborsData.RecentRouteReqTable.id[19],_neighborsData.RecentRouteReqTable.id[20],_neighborsData.RecentRouteReqTable.id[21],_neighborsData.RecentRouteReqTable.id[22],_neighborsData.RecentRouteReqTable.id[23],_neighborsData.RecentRouteReqTable.id[24],_neighborsData.RecentRouteReqTable.id[25],_neighborsData.RecentRouteReqTable.id[26],_neighborsData.RecentRouteReqTable.id[27],_neighborsData.RecentRouteReqTable.id[28],_neighborsData.RecentRouteReqTable.id[29],_neighborsData.RecentRouteReqTable.index,_neighborsData.myNeighbors[0],_neighborsData.myNeighbors[1],_neighborsData.myNeighbors[2],_neighborsData.myNeighbors[3],_neighborsData.myNeighbors[4],_neighborsData.myPrivateKeys[0],_neighborsData.myPrivateKeys[1],_neighborsData.myPrivateKeys[2],_neighborsData.myPrivateKeys[3],_neighborsData.myPrivateKeys[4] [(2,3)]

 channel[1]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 channel[(receivedPacket.sourceID-1)]!routeReply.flag,routeReply.sourceID,routeReply.destID,routeReply.id,routeReply.hashList.chain[0],routeReply.hashList.chain[1],routeReply.hashList.chain[2],routeReply.hashList.chain[3],routeReply.hashList.chain[4],routeReply.nodeList[0],routeReply.nodeList[1],routeReply.nodeList[2],routeReply.nodeList[3],routeReply.nodeList[4],routeReply.macList.secret[0],routeReply.macList.secret[1],routeReply.macList.secret[2],routeReply.macList.secret[3],routeReply.macList.secret[4],routeReply.macList.secretHopCount,routeReply.macList.chain[0],routeReply.macList.chain[1],routeReply.macList.chain[2],routeReply.macList.chain[3],routeReply.macList.chain[4],routeReply.hopCount,routeReply.macRoute[0],routeReply.macRoute[1],routeReply.macRoute[2],routeReply.macRoute[3],routeReply.macRoute[4] [(1,2)]

 _i = (_i+1)

 channel[4]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]
 _i = (_i+1)

 channel[(routeReply.nodeList[(routeReply.hopCount-1)]-1)]!routeReply.flag,routeReply.sourceID,routeReply.destID,routeReply.id,routeReply.hashList.chain[0],routeReply.hashList.chain[1],routeReply.hashList.chain[2],routeReply.hashList.chain[3],routeReply.hashList.chain[4],routeReply.nodeList[0],routeReply.nodeList[1],routeReply.nodeList[2],routeReply.nodeList[3],routeReply.nodeList[4],routeReply.macList.secret[0],routeReply.macList.secret[1],routeReply.macList.secret[2],routeReply.macList.secret[3],routeReply.macList.secret[4],routeReply.macList.secretHopCount,routeReply.macList.chain[0],routeReply.macList.chain[1],routeReply.macList.chain[2],routeReply.macList.chain[3],routeReply.macList.chain[4],routeReply.hopCount,routeReply.macRoute[0],routeReply.macRoute[1],routeReply.macRoute[2],routeReply.macRoute[3],routeReply.macRoute[4] [(1,2)]

 ((routeReply.hopCount==0)) [(1,2)] else

 ((_z3<=(5-1)))
 ((_z3>(5-1)))

 .(goto) [(1,2)]

 channel[2]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]
 _i = (_i+1)

 ((receivedPacket.destID!=myData.myID)) else

 hashChainOk = 1 [(1,2)]

 ((_z2<=(5-1))) [(1,2)]
 ((_z2>(5-1)))

 _i = (_i+1)

 ((_i<=(5-1)))
 ((_i==5))

 (((_i<5)&&(myData.myNeighbors[_i]==1)))
 (((_i<5)&&(myData.myNeighbors[_i]==2)))

 (((_i<5)&&(myData.myNeighbors[_i]==3)))
 (((_i<5)&&(myData.myNeighbors[_i]==4))) (((_i<5)&&(myData.myNeighbors[_i]==5)))

 ((_i>=5))

 else

 channel[3]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]
 _i = (_i+1)

 printf('\nWe are cloning list2=[ ')
 _i = (_i+1) [(1,2)]

 (1)

 ((myData.myID!=1))

 ((receivedPacket.nodeList[_i]==myData.myID)) [(1,2)] else

 ((receivedPacket.sourceID==myData.myID)) else

 ((_i<=(5-1)))
 ((_i==5))

 channel[4]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)] _i = (_i+1)

 ((_i<=(5-1))) [(1,2)]
 ((_i==5))

 (1)

 ((myData.myID==1)) ((myData.myID==3)) ((myData.myID==5))

 printf('\nWe are cloning list2=[ ')

 ((_z3<=(5-1))) [(1,2)]
 ((_z3>(5-1)))

 _i = 0

 (((receivedPacket.macList.chain[0]==receivedPacket.sourceID)&&(r_rep_mac_ok==1))) else

 channel[(receivedPacket.destID-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 _i = (_i+1)

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.destID) [(1,2)]

 ((_x2<=(5-1))) ((_x2>=5))

 packet.flag = R_REQ

 (((_i<5)&&(myData.myNeighbors[_i]==1)))
 (((_i<5)&&(myData.myNeighbors[_i]==2))) (((_i<5)&&(myData.myNeighbors[_i]==3)))

 (((_i<5)&&(myData.myNeighbors[_i]==4))) (((_i<5)&&(myData.myNeighbors[_i]==5)))
 ((_i>=5))

 else

Figure A.1. SPIN automaton of a legitimate node in our model.
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A.2. First Compromised Node
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 ((compromisedIndex<=(5-1))) ((compromisedIndex>=5))

 (((_i<(5-1))&&(receivedPacket.hashList.chain[(_i+1)]==receivedPacket.nodeList[_i]))) [(1,2)] ((_i>=(5-1)))

 printf('\nWe are cloning list2=[ ') [(1,2)]

 (((_c<=(5-1))&&(receivedPacket.nodeList[_c]==receivedPacket.macRoute[_c]))) ((_c>=5))
 printf('\nWe are looking for the compromised id=%d in the node-list=[ ',2)

 ((_t7<=(5-1))) ((_t7>(5-1)))

 ((receivedPacket.hashList.chain[0]!=receivedPacket.sourceID)) [(1,2)]
 else

 channel[0]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 _c = 0

 ((_z3<=(5-1))) ((_z3>(5-1)))

 _i = (_i+1)

 (1) [(1,2)]
 channel[1]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)] waiting_for_rep[(receivedPacket.sourceID-1)] = 0

 ((receivedPacket.nodeList[index2]!=4))
 else

 ((_z2<=(5-1))) [(1,2)] ((_z2>(5-1)))

 ((hashChainOk==0)) [(1,2)] else  _i = (_i+1)
 (((receivedPacket.macList.chain[0]==receivedPacket.sourceID)&&(r_rep_mac_ok==1))) else

 ((_z3<=(5-1))) [(1,2)] ((_z3>(5-1)))

 ((index2<=(5-1))) ((index2==5))

 ((receivedPacket.destID!=myData.myID)) else

 channel[2]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 ((g<=(5-1))) ((g==5))

 ((_i<=(5-1))) ((_i==5))

 _i = (_i+1)

 _i = 0

 myData.myID = _ID

 printf('\nWe are cloning list2=[ ')

 channel[3]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 packet.flag = R_REQ

 ((receivedPacket.flag==R_REQ)) ((receivedPacket.flag==R_REP)) else

 break [(2,3)]

 printf('\nWe are partially cloning (starting from index=%d) into list1=[ ',g)

 _i = (_i+1)

 (!(channel[(myData.myID-1)]?[receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4]])) channel[(myData.myID-1)]?receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4]
 _j = 0 [(2,3)]

 (((_i<5)&&(receivedPacket.macList.chain[_i]==receivedPacket.nodeList[_i]))) [(1,2)] ((_i>=5))

 (1)

 ((_i<=(5-1))) [(1,2)] ((_i==5))

 receivedPacket.hashList.chain[(receivedPacket.hopCount+1)] = myData.myID

 ((!(waiting_for_rep[(dest-1)])||(waiting_for_rep[(dest-1)]&&req_timeout[(dest-1)]))) else

 topologyChannel[(myData.myID-1)]?_neighborsData.myID,_neighborsData.RecentRouteReqTable.id[0],_neighborsData.RecentRouteReqTable.id[1],_neighborsData.RecentRouteReqTable.id[2],_neighborsData.RecentRouteReqTable.id[3],_neighborsData.RecentRouteReqTable.id[4],_neighborsData.RecentRouteReqTable.id[5],_neighborsData.RecentRouteReqTable.id[6],_neighborsData.RecentRouteReqTable.id[7],_neighborsData.RecentRouteReqTable.id[8],_neighborsData.RecentRouteReqTable.id[9],_neighborsData.RecentRouteReqTable.id[10],_neighborsData.RecentRouteReqTable.id[11],_neighborsData.RecentRouteReqTable.id[12],_neighborsData.RecentRouteReqTable.id[13],_neighborsData.RecentRouteReqTable.id[14],_neighborsData.RecentRouteReqTable.id[15],_neighborsData.RecentRouteReqTable.id[16],_neighborsData.RecentRouteReqTable.id[17],_neighborsData.RecentRouteReqTable.id[18],_neighborsData.RecentRouteReqTable.id[19],_neighborsData.RecentRouteReqTable.id[20],_neighborsData.RecentRouteReqTable.id[21],_neighborsData.RecentRouteReqTable.id[22],_neighborsData.RecentRouteReqTable.id[23],_neighborsData.RecentRouteReqTable.id[24],_neighborsData.RecentRouteReqTable.id[25],_neighborsData.RecentRouteReqTable.id[26],_neighborsData.RecentRouteReqTable.id[27],_neighborsData.RecentRouteReqTable.id[28],_neighborsData.RecentRouteReqTable.id[29],_neighborsData.RecentRouteReqTable.index,_neighborsData.myNeighbors[0],_neighborsData.myNeighbors[1],_neighborsData.myNeighbors[2],_neighborsData.myNeighbors[3],_neighborsData.myNeighbors[4],_neighborsData.myPrivateKeys[0],_neighborsData.myPrivateKeys[1],_neighborsData.myPrivateKeys[2],_neighborsData.myPrivateKeys[3],_neighborsData.myPrivateKeys[4] [(2,3)]

 _i = 0 [(1,2)]
 (((receivedPacket.sourceID==1)&&(receivedPacket.destID==5))) else

 channel[4]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 printf('\nWe are cloning list2=[ ') [(1,2)]

 _i = (_i+1)

 printf('\nMAC of the received route-reply is verified by nodeID: %d, route-reply is valid.\n',myData.myID)

 ((_t4<=(5-1))) ((_t4>(5-1)))

 ((_j<5)) [(2,3)] ((_j>=5))

 channel[(receivedPacket.sourceID-1)]!routeReply.flag,routeReply.sourceID,routeReply.destID,routeReply.id,routeReply.hashList.chain[0],routeReply.hashList.chain[1],routeReply.hashList.chain[2],routeReply.hashList.chain[3],routeReply.hashList.chain[4],routeReply.nodeList[0],routeReply.nodeList[1],routeReply.nodeList[2],routeReply.nodeList[3],routeReply.nodeList[4],routeReply.macList.secret[0],routeReply.macList.secret[1],routeReply.macList.secret[2],routeReply.macList.secret[3],routeReply.macList.secret[4],routeReply.macList.secretHopCount,routeReply.macList.chain[0],routeReply.macList.chain[1],routeReply.macList.chain[2],routeReply.macList.chain[3],routeReply.macList.chain[4],routeReply.hopCount,routeReply.macRoute[0],routeReply.macRoute[1],routeReply.macRoute[2],routeReply.macRoute[3],routeReply.macRoute[4] [(1,2)]

 ((_t5<=(5-1))) ((_t5>(5-1)))

 (1) [(1,2)]

 (1)

 channel[(routeReply.nodeList[(routeReply.hopCount-1)]-1)]!routeReply.flag,routeReply.sourceID,routeReply.destID,routeReply.id,routeReply.hashList.chain[0],routeReply.hashList.chain[1],routeReply.hashList.chain[2],routeReply.hashList.chain[3],routeReply.hashList.chain[4],routeReply.nodeList[0],routeReply.nodeList[1],routeReply.nodeList[2],routeReply.nodeList[3],routeReply.nodeList[4],routeReply.macList.secret[0],routeReply.macList.secret[1],routeReply.macList.secret[2],routeReply.macList.secret[3],routeReply.macList.secret[4],routeReply.macList.secretHopCount,routeReply.macList.chain[0],routeReply.macList.chain[1],routeReply.macList.chain[2],routeReply.macList.chain[3],routeReply.macList.chain[4],routeReply.hopCount,routeReply.macRoute[0],routeReply.macRoute[1],routeReply.macRoute[2],routeReply.macRoute[3],routeReply.macRoute[4] [(1,2)]

 ((macChainOk==0)) [(1,2)] else

 printf('\nMalformed packet received by nodeID: %d, dropping the packet.\n',myData.myID)

 ((receivedPacket.sourceID==myData.myID)) else

 (1)

 ((routeReply.hopCount==0)) [(1,2)] else

 _i = (_i+1)

 ((index2!=5)) else

 .(goto) [(1,2)]

 channel[0]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 (((_i<5)&&(myData.myNeighbors[_i]==1))) (((_i<5)&&(myData.myNeighbors[_i]==2))) (((_i<5)&&(myData.myNeighbors[_i]==3))) (((_i<5)&&(myData.myNeighbors[_i]==4))) (((_i<5)&&(myData.myNeighbors[_i]==5))) ((_i>=5)) else

 _i = (_i+1)

 hashChainOk = 1 [(1,2)]
 ((receivedPacket.destID!=myData.myID)) else

 printf('\nOwn packet received back by nodeID: %d, dropping the packet.\n',myData.myID)

 break

 (1)

 _i = 0

 ((found==1)) else

 channel[1]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 ((myData.myID!=1))

 _i = (_i+1)

 printf('\nPacket seen before seen again by nodeID: %d, dropping the packet.\n',myData.myID)

 compromisedIndex = 0

 ((h<=(5-1))) ((h==5))

 (1)

 printf('\nHashChain couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)

 ((receivedPacket.sourceID==myData.myID)) else

 (1)

 channel[2]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 printf('\nWe are partially cloning (from the 0'th index) into list1=[ ')

 _i = (_i+1)

 channel[(receivedPacket.destID-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 ((_z2<=(5-1))) [(1,2)] ((_z2>(5-1)))

 seen = 0

 printf('\nMAC of the received route-reply couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.destID) [(1,2)]

 _i = (_i+1) [(1,2)]
 ((receivedPacket.nodeList[_i]==myData.myID)) [(1,2)] else

 channel[3]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 ((myData.RecentRouteReqTable.id[29]==receivedPacket.id)) else

 ((_x2<=(5-1))) ((_x2>=5))

 _i = (_i+1)

 channel[(receivedPacket.nodeList[(_i-1)]-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]
 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.nodeList[(_i-1)]) [(1,2)]

 printf('\nMAC of the received route-request couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)
 _x2 = 0

 (((_i==0)||(_i==5))) [(1,2)] else

 ((_i<=(5-1))) [(1,2)] ((_i==5))

 ((q<=(5-1))) ((q==5))

 (1)

 channel[4]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 ((seen==1)) else

 ((_z<=(5-1)))

 ((_z>(5-1)))

 _i = (_i+1)

 channel[(receivedPacket.destID-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 seen = 0

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.destID) [(1,2)]

 ((_z3<=(5-1))) [(1,2)] ((_z3>(5-1)))
 _i = (_i+1) (((_i<5)&&(myData.myNeighbors[_i]==1))) (((_i<5)&&(myData.myNeighbors[_i]==2))) (((_i<5)&&(myData.myNeighbors[_i]==3))) (((_i<5)&&(myData.myNeighbors[_i]==4))) (((_i<5)&&(myData.myNeighbors[_i]==5))) ((_i>=5)) else

 ((receivedPacket.nodeList[0]!=0)) [(1,2)] else

 _i = 0 [(1,2)]

 break

 ((_t6<=(5-1))) ((_t6>(5-1)))

 compromisedIndex = (compromisedIndex+1)

 r_rep_mac_ok = 1

 _i = 0

 ((receivedPacket.nodeList[compromisedIndex]==2)) else

 ((_z2<=(5-1))) ((_z2>(5-1)))

 _i = 0

 ((_i<=(5-1))) [(1,2)] ((_i==5))

 globRand = (((globRand*3)+19)%256)

Figure A.2. SPIN automaton of the first compromised node in our model.
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A.3. Second Compromised Node

line 898 

line 156 

line 150 

line 150 

line 154 

line 921 

line 950 line 490 

line 518 line 952 line 1036 line 1114 

line 509 line 952 line 1036 line 1115 

line 927 line 953 line 1037 line 510 

line 1093 line 928 line 943 line 955 line 1010 line 1038 

line 255 line 175 line 277 line 241 line 1044 

line 247 

line 1013 

line 299 line 271 line 239 

line 958 

line 1046 

line 1054 line 248 

line 1013 

line 451 

line 1096 

line 958 

line 1049 line 283 

line 1084 

line 1117 

line 1119 line 428 line 346 

line 328 

line 266 

line 284 line 1097 line 286 line 288 line 290 line 292 line 295 line 283 line 1121 

line 437 

line 260 

line 284 line 286 line 288 line 290 line 1112 line 292 line 297 

line 334 

line 340 line 445 

line 1016 

line 1123 

line 341 

line 968 line 1016 

line 422 

line 394 

line 342 

line 994 

line 400 

line 394 

line 372 

line 409 

line 372 

line 299 

line 381 

line 417 

line 381 

line 389 

line 421 

line 389 

line 422 

line 366 

line 394 

line 372 

line 400 

line 353 

line 359 

line 381 

line 409 line 360 

line 417 

line 389 

line 480 line 421 

line 1073 

line 457 

line 1028 

line 986 

line 1028 line 1029 

line 466 line 990 

line 1030 

line 474 

line 324 

line 283 

line 306 

line 314 

line 325 

line 284 line 286 line 288 line 290 line 292 

line 308 

line 295 line 283 

line 319 

line 284 line 286 line 288 line 290 line 292 

line 310 

line 297 

line 316 

line 320 line 317 

 printf('\nWe are cloning list2=[ ') [(1,2)]

 channel[(receivedPacket.nodeList[(_i-1)]-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 _i = 0 [(1,2)]

 ((_x2<=(5-1))) ((_x2>=5))

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.nodeList[(_i-1)]) [(1,2)]

 ((_t4<=(5-1))) ((_t4>(5-1)))

 printf('\nMAC of the received route-request couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)

 index = (index+1)

 ((intermediateList[k]!=0))
 else

 ((receivedPacket.nodeList[index]==2)) else

 (((_i==0)||(_i==5))) [(1,2)] else

 ((receivedPacket.hashList.chain[0]!=receivedPacket.sourceID)) [(1,2)]

 else

 ((_l<=(5-1))) else

 _x2 = 0

 channel[(receivedPacket.destID-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 ((k<=(5-1))) ((k==5))

 _l = 0

 ((index<=(5-1))) ((index>=5))

 ((_j<5)) [(2,3)] ((_j>=5))

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.destID) [(1,2)]

 (((_i<(5-1))&&(receivedPacket.hashList.chain[(_i+1)]==receivedPacket.nodeList[_i]))) [(1,2)] ((_i>=(5-1)))

 (1) [(1,2)]

 printf('\nWe are partially cloning into list1=[ ')

 printf('\nWe are looking for the first zero index in the list=[ ')

 ((_z2<=(5-1))) [(1,2)] ((_z2>(5-1)))

 ((hashChainOk==0)) [(1,2)] else

 receivedPacket.nodeList[k] = myData.myID

 printf('\nWe are looking for the compromised id=%d in the node-list=[ ',2)

 ((receivedPacket.nodeList[0]!=0)) [(1,2)] else

 ((_t5<=(5-1))) ((_t5>(5-1)))

 r_rep_mac_ok = 1

 ((k<=(5-1))) else

 _i = 0

 packet.flag = R_REQ

 k = 0

 (1)

 ((_t6<=(5-1))) ((_t6>(5-1)))

 ((_i<=(5-1))) [(1,2)] ((_i==5))

 ((_z3<=(5-1))) [(1,2)] ((_z3>(5-1)))

 (((_i<5)&&(receivedPacket.macList.chain[_i]==receivedPacket.nodeList[_i]))) [(1,2)] ((_i>=5))

 ((_z2<=(5-1))) ((_z2>(5-1)))

 globRand = (((globRand*3)+19)%256)

 ((!(waiting_for_rep[(dest-1)])||(waiting_for_rep[(dest-1)]&&req_timeout[(dest-1)]))) else

 receivedPacket.hashList.chain[(receivedPacket.hopCount+1)] = myData.myID

 _i = 0 [(1,2)]

 (((_c<=(5-1))&&(receivedPacket.nodeList[_c]==receivedPacket.macRoute[_c]))) ((_c>=5))

 ((k<=(5-1))) ((k==5))

 printf('\nWe are cloning list2=[ ') [(1,2)]

 channel[(receivedPacket.sourceID-1)]!routeReply.flag,routeReply.sourceID,routeReply.destID,routeReply.id,routeReply.hashList.chain[0],routeReply.hashList.chain[1],routeReply.hashList.chain[2],routeReply.hashList.chain[3],routeReply.hashList.chain[4],routeReply.nodeList[0],routeReply.nodeList[1],routeReply.nodeList[2],routeReply.nodeList[3],routeReply.nodeList[4],routeReply.macList.secret[0],routeReply.macList.secret[1],routeReply.macList.secret[2],routeReply.macList.secret[3],routeReply.macList.secret[4],routeReply.macList.secretHopCount,routeReply.macList.chain[0],routeReply.macList.chain[1],routeReply.macList.chain[2],routeReply.macList.chain[3],routeReply.macList.chain[4],routeReply.hopCount,routeReply.macRoute[0],routeReply.macRoute[1],routeReply.macRoute[2],routeReply.macRoute[3],routeReply.macRoute[4] [(1,2)]

 ((found==1)) else

 (1)

 _c = 0

 (1) [(1,2)]

 ((receivedPacket.sourceID==myData.myID)) else

 printf('\nWe are partially cloning (from the 0'th index) into list1=[ ')

 channel[(routeReply.nodeList[(routeReply.hopCount-1)]-1)]!routeReply.flag,routeReply.sourceID,routeReply.destID,routeReply.id,routeReply.hashList.chain[0],routeReply.hashList.chain[1],routeReply.hashList.chain[2],routeReply.hashList.chain[3],routeReply.hashList.chain[4],routeReply.nodeList[0],routeReply.nodeList[1],routeReply.nodeList[2],routeReply.nodeList[3],routeReply.nodeList[4],routeReply.macList.secret[0],routeReply.macList.secret[1],routeReply.macList.secret[2],routeReply.macList.secret[3],routeReply.macList.secret[4],routeReply.macList.secretHopCount,routeReply.macList.chain[0],routeReply.macList.chain[1],routeReply.macList.chain[2],routeReply.macList.chain[3],routeReply.macList.chain[4],routeReply.hopCount,routeReply.macRoute[0],routeReply.macRoute[1],routeReply.macRoute[2],routeReply.macRoute[3],routeReply.macRoute[4] [(1,2)]

 ((macChainOk==0)) [(1,2)] else

 seen = 0

 channel[0]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 .(goto) [(1,2)]

 ((routeReply.hopCount==0)) [(1,2)] else

 _i = (_i+1)

 hashChainOk = 1 [(1,2)]

 waiting_for_rep[(receivedPacket.sourceID-1)] = 0

 ((_t7<=(5-1))) ((_t7>(5-1)))

 _i = (_i+1) [(1,2)]
 channel[0]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 ((_z3<=(5-1))) ((_z3>(5-1)))

 ((receivedPacket.destID!=myData.myID)) else

 channel[1]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]
 _i = (_i+1) (((receivedPacket.macList.chain[0]==receivedPacket.sourceID)&&(r_rep_mac_ok==1))) else

 ((receivedPacket.destID!=myData.myID)) else

 channel[1]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]
 _i = (_i+1) [(1,2)]

 ((_t2<=(5-1))) ((_t2>(5-1)))

 (1)

 channel[2]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 ((_t3<=(5-1))) ((_t3>(5-1)))

 ((receivedPacket.sourceID==myData.myID)) else

 _i = (_i+1)

 ((receivedPacket.flag==R_REQ)) ((receivedPacket.flag==R_REP)) else

 _i = (_i+1) [(1,2)]
 channel[2]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 ((_i<=(5-1))) ((_i==5))

 seen = 0

 ((k<=(5-1))) ((k==5))

 ((_z2<=(5-1))) [(1,2)] ((_z2>(5-1)))

 channel[3]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 (!(channel[(myData.myID-1)]?[receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4]])) channel[(myData.myID-1)]?receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4]

 break [(2,3)]

 ((myData.RecentRouteReqTable.id[29]==receivedPacket.id))
 else

 _i = (_i+1)

 _j = 0 [(2,3)]

 printf('\nWe are cloning list2=[ ')

 channel[3]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 topologyChannel[(myData.myID-1)]?_neighborsData.myID,_neighborsData.RecentRouteReqTable.id[0],_neighborsData.RecentRouteReqTable.id[1],_neighborsData.RecentRouteReqTable.id[2],_neighborsData.RecentRouteReqTable.id[3],_neighborsData.RecentRouteReqTable.id[4],_neighborsData.RecentRouteReqTable.id[5],_neighborsData.RecentRouteReqTable.id[6],_neighborsData.RecentRouteReqTable.id[7],_neighborsData.RecentRouteReqTable.id[8],_neighborsData.RecentRouteReqTable.id[9],_neighborsData.RecentRouteReqTable.id[10],_neighborsData.RecentRouteReqTable.id[11],_neighborsData.RecentRouteReqTable.id[12],_neighborsData.RecentRouteReqTable.id[13],_neighborsData.RecentRouteReqTable.id[14],_neighborsData.RecentRouteReqTable.id[15],_neighborsData.RecentRouteReqTable.id[16],_neighborsData.RecentRouteReqTable.id[17],_neighborsData.RecentRouteReqTable.id[18],_neighborsData.RecentRouteReqTable.id[19],_neighborsData.RecentRouteReqTable.id[20],_neighborsData.RecentRouteReqTable.id[21],_neighborsData.RecentRouteReqTable.id[22],_neighborsData.RecentRouteReqTable.id[23],_neighborsData.RecentRouteReqTable.id[24],_neighborsData.RecentRouteReqTable.id[25],_neighborsData.RecentRouteReqTable.id[26],_neighborsData.RecentRouteReqTable.id[27],_neighborsData.RecentRouteReqTable.id[28],_neighborsData.RecentRouteReqTable.id[29],_neighborsData.RecentRouteReqTable.index,_neighborsData.myNeighbors[0],_neighborsData.myNeighbors[1],_neighborsData.myNeighbors[2],_neighborsData.myNeighbors[3],_neighborsData.myNeighbors[4],_neighborsData.myPrivateKeys[0],_neighborsData.myPrivateKeys[1],_neighborsData.myPrivateKeys[2],_neighborsData.myPrivateKeys[3],_neighborsData.myPrivateKeys[4] [(2,3)]

 printf('\nWe are partially cloning (starting from index=%d) into list1=[ ',k)

 _i = (_i+1) [(1,2)]

 printf('\nMAC of the received route-reply is verified by nodeID: %d, route-reply is valid.\n',myData.myID)

 (1) channel[4]!packet.flag,packet.sourceID,packet.destID,packet.id,packet.hashList.chain[0],packet.hashList.chain[1],packet.hashList.chain[2],packet.hashList.chain[3],packet.hashList.chain[4],packet.nodeList[0],packet.nodeList[1],packet.nodeList[2],packet.nodeList[3],packet.nodeList[4],packet.macList.secret[0],packet.macList.secret[1],packet.macList.secret[2],packet.macList.secret[3],packet.macList.secret[4],packet.macList.secretHopCount,packet.macList.chain[0],packet.macList.chain[1],packet.macList.chain[2],packet.macList.chain[3],packet.macList.chain[4],packet.hopCount,packet.macRoute[0],packet.macRoute[1],packet.macRoute[2],packet.macRoute[3],packet.macRoute[4] [(1,2)]

 ((_l<=(5-1))) else

 attackerIndex = (attackerIndex+1)

 ((seen==1)) else
 _i = (_i+1)

 ((receivedPacket.nodeList[attackerIndex]==myData.myID)) else

 _i = (_i+1) [(1,2)]
 channel[4]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 printf('\nMalformed packet received by nodeID: %d, dropping the packet.\n',myData.myID)

 _l = 0

 printf('\nWe are partially cloning into list1=[ ')

 ((_z3<=(5-1))) [(1,2)] ((_z3>(5-1)))

 _i = (_i+1)

 printf('\nOwn packet received back by nodeID: %d, dropping the packet.\n',myData.myID)

 (((_i<5)&&(myData.myNeighbors[_i]==1)))
 (((_i<5)&&(myData.myNeighbors[_i]==2)))

 (((_i<5)&&(myData.myNeighbors[_i]==3)))
 (((_i<5)&&(myData.myNeighbors[_i]==4))) (((_i<5)&&(myData.myNeighbors[_i]==5))) ((_i>=5)) else

 _i = (_i+1) [(1,2)]

 (1)

 ((attackerIndex<=(5-1)))
 ((attackerIndex>=5))

 ((receivedPacket.nodeList[_i]==myData.myID)) [(1,2)] else

 ((found==1))

 else

 _i = (_i+1) [(1,2)]

 break

 (((_i<5)&&(myData.myNeighbors[_i]==1))) [(1,2)] (((_i<5)&&(myData.myNeighbors[_i]==2)))
 (((_i<5)&&(myData.myNeighbors[_i]==3))) (((_i<5)&&(myData.myNeighbors[_i]==4))) (((_i<5)&&(myData.myNeighbors[_i]==5)))

 ((_i>=5)) else

 printf('\nPacket seen before seen again by nodeID: %d, dropping the packet.\n',myData.myID)

 _i = 0

 attackerIndex = 0

 ((myData.myID!=1))
 _i = 0 [(1,2)]

 break [(1,2)]

 ((_z<=(5-1))) ((_z>(5-1)))

 ((_i<=(5-1))) [(1,2)]
 ((_i==5))

 ((_t2<=(5-1))) ((_t2>(5-1)))

 ((_y<=(5-1))) ((_y>(5-1)))

 printf('\nHashChain couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)

 _i = 0 [(1,2)]

 ((_t3<=(5-1))) ((_t3>(5-1)))

 ((_i<=(5-1))) [(1,2)] ((_i==5))

 (1)

 printf('\nMAC of the received route-reply couldnot be verified by nodeID: %d, dropping the packet.\n',myData.myID)

 printf('\nNodeID:%d is unicasting a message to NodeID:%d.\n',myData.myID,receivedPacket.destID) [(1,2)]

 channel[(receivedPacket.destID-1)]!receivedPacket.flag,receivedPacket.sourceID,receivedPacket.destID,receivedPacket.id,receivedPacket.hashList.chain[0],receivedPacket.hashList.chain[1],receivedPacket.hashList.chain[2],receivedPacket.hashList.chain[3],receivedPacket.hashList.chain[4],receivedPacket.nodeList[0],receivedPacket.nodeList[1],receivedPacket.nodeList[2],receivedPacket.nodeList[3],receivedPacket.nodeList[4],receivedPacket.macList.secret[0],receivedPacket.macList.secret[1],receivedPacket.macList.secret[2],receivedPacket.macList.secret[3],receivedPacket.macList.secret[4],receivedPacket.macList.secretHopCount,receivedPacket.macList.chain[0],receivedPacket.macList.chain[1],receivedPacket.macList.chain[2],receivedPacket.macList.chain[3],receivedPacket.macList.chain[4],receivedPacket.hopCount,receivedPacket.macRoute[0],receivedPacket.macRoute[1],receivedPacket.macRoute[2],receivedPacket.macRoute[3],receivedPacket.macRoute[4] [(1,2)]

 myData.myID = _ID

Figure A.3. SPIN automaton of the second compromised node in our model.
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