
LAGRANGEAN HEURISTICS FOR THE CAPACITATED MULTI-FACILITY

LOCATION ALLOCATION PROBLEM

by

Buket Avcı

B.S., Industrial Engineering, Boğaziçi University, 2005

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Industrial Engineering

Boğaziçi University

2007

ii

LAGRANGEAN HEURISTICS FOR THE CAPACITATED MULTI-FACILITY

LOCATION ALLOCATION PROBLEM

APPROVED BY:

Prof. İ. Kuban Altınel

(Thesis Supervisor)

Assist. Prof. Deniz Aksen

Assoc. Prof. Necati Aras

DATE OF APPROVAL: 12.06.2007

iii

ACKNOWLEDGEMENTS

I would like to thank to my thesis supervisor Prof. İ. Kuban Altınel for his

guidance throughout this research. He did not only serve as my supervisor but also

challenged, encouraged and motivated me throughout my thesis period. I feel myself

so lucky for having the opportunity to work with him.

I would like to express my gratitude to Assoc. Prof. Necati Aras and Assist.

Prof. Deniz Aksen for taking part in my thesis jury.

I am also grateful to my mother for her continuous support and understanding

throughout my hard times during the thesis period.

I am deeply grateful to all of my friends without whom I would not be able to

finish this study. I would like to thank especially Özlem, Evrim, Hande, Güven and

Osman.

Finally, I want to thank to Bulut for his never ending support at the hardest, but

the best times of my life. Without him, it would be very hard for me to advance in

this study.

I thankfully acknowledge the support of TÜBİTAK - Turkish Technological and

Scientific Research Institute during my thesis period.

This research has been partially supported by the Boğaziçi University Research

Fund Grant No: 06HA304D.

iv

ABSTRACT

LAGRANGEAN HEURISTICS FOR THE CAPACITATED

MULTI-FACILITY LOCATION ALLOCATION PROBLEM

In this study, we consider the capacitated multi-facility location-allocation prob-

lem, also called multi-facility Weber problem. It is concerned with the determination

of the location of m new facilities having known capacities, as well as the allocation of

their supplies, to satisfy the demand of customers, such that the total transportation

cost proportional to the distance between customers and facilities is minimized. The

demand and location of each customer are given. This problem has a nonconvex ob-

jective function and is very difficult and sometimes even impossible to solve exactly.

Therefore, using a discrete approximation becomes a promising strategy to obtain good

approximate solutions. We first present a mixed integer linear programming approxi-

mation of the capacitated multi-facility Weber problem. We apply Lagrangean relax-

ation and subgradient optimization-based heuristics on this approximation and then

propose new heuristics for the continuous version of the problem which also make use

of these Lagrangean heuristics. Computational results on the test instances indicate

that these heuristics are efficient and accurate.

We also study on exact solution procedures. We make use of the fact that the ca-

pacitated multi-facility Weber problem has a special transportation network structure

and the optimal solution occurs at an extreme point of the feasible region. The pro-

cedures we work on range from branch-and-bound methods to affine scaling methods,

to collapsing polytopes, and to send-and-split methods. Although we could not find

an exact solution methodology by using these procedures, we were able to gain more

insight about the problem and this can help us in the development of other heuristic

methods in the future.

v

ÖZET

SIĞA KISITLI YER SEÇİMİ - TAŞIMA

PROBLEMLERİNİN ÇÖZÜMÜ İÇİN LAGRANGE

GEVŞETMESİ TABANLI SEZGİSEL YÖNTEMLER

Bu çalışmada, sığa kısıtlı çok tesisli yer seçimi-taşıma problemi üzerinde çalışıl-

mıştır. Bu problem, sonlu sığaya sahip m adet tesisin, n adet müşterinin istemlerini

karşılarken toplam taşıma giderlerini enküçükleyecek biçimde, düzlemde yerleştirilmesi

ile ilgilenir. Bu bir dışbükey olmayan eniyileme problemidir ve eniyi çözümünü hesapla-

mak çok zor, bazı durumlarda ise olanaksızdır. Bu yüzden, bu çalışmada ilk olarak

bu problemin tesis yerlerinin iki boyutlu Öklid düzlemi yerine, verilmiş sonlu boyutlu

bir aday yer kümesinden seçildiği, kesikli uyarlaması göz önüne alınmakta ve karışık

tam sayılı doğrusal bir programlama modeli geliştirilmektedir. Daha sonra bu model

üzerine Lagrange gevşetmesi ve altgradyan algoritması temelli sezgisel yöntemler uygu-

lanmakta ve problemin sürekli bütünleşik sürümü için bu sezgisellerden faydalanan yeni

yöntemler önerilmektedir. Yapılan bilgisayısal deneyler bu sezgisel yöntemlerin etkili

çalıştığını ve eniyi çözümlere çok yakın sonuçlar bulduğunu göstermektedir.

Bu çalışmada, sığa kısıtlı çok tesisli yer seçimi-taşıma problemi için kesin çözüm

yöntemleri üzerinde de durulmuştur. Bu yöntemlerin geliştirilmesinde, problemin kısıt-

larının özel bir iki parçalı ağ yapısına sahip olması ve eniyi çözümünün olurlu çözüm

kümesinin bir köşe noktasında gerçeklenmesinden yararlanma düşünülmüştür. Denedi-

ğimiz yaklaşımlar dal sınır yöntemlerinden afin ölçekleme yöntemlerine, çöken çokyüz-

lüler yönteminden gönder ve böl yöntemine kadar uzanan geniş yelpazeyi oluşturmak-

tadır. Bu yöntemleri kullanarak, kesin çözüm veren bir yöntem bulamasak da, problem

hakkında daha fazla öngörü kazanmamız, ileride daha etkili sezgisel yöntemlerin gelişti-

rilmesinde yararlı olacaktır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS/ABBREVIATIONS . xi

1. INTRODUCTION . 1

2. PROBLEM FORMULATION . 3

3. LITERATURE SURVEY . 8

4. RELAXATIONS FOR DISCRETE LOCATION-ALLOCATION PROBLEM 13

4.1. Lagrangean Relaxation . 13

4.2. Linear Programming Relaxation . 14

5. LAGRANGEAN HEURISTICS . 20

5.1. Methods to Solve RDCMLAPi Efficiently 20

5.2. Lagrangean Heuristics for Discrete Location-Allocation Problem 25

5.2.1. Lagrangean Relaxation and Subgradient Optimization (LRSO) . 25

5.2.2. Lagrangean Relaxation and Subgradient Optimization with a

Single 2-Phase Method(LRSOSP) 26

5.2.3. Lagrangean Relaxation and Subgradient Optimization with 2-

Phase Method(LRSO2P) . 27

5.2.4. Adaptation of Beasley’s Lagrangean Heuristic (ABLH) 28

5.3. Lagrangean Heuristics for Continuous Location-Allocation Problem . . 32

5.3.1. Discrete Approximation with Customer Locations Heuristic . . 32

5.3.2. Cellular Heuristic . 34

6. THOUGHTS ON THE APPLICABILITY OF SOME KNOWN OPTIMIZA-

TION METHODS . 38

6.1. Branch-and-Bound Methods . 38

6.2. Collapsing Polytopes Method . 43

6.3. Send-and-Split Method . 50

vii

6.4. Affine Scaling Methods . 56

7. COMPUTATIONAL RESULTS . 63

7.1. Lagrangean Heuristics for Discrete Location-Allocation Problem 63

7.2. Lagrangean Heuristics for Continuous Location-Allocation Problem . . 67

8. CONCLUSIONS . 76

REFERENCES . 79

viii

LIST OF FIGURES

Figure 4.1. Change in the objective function value with respect to |J1| 18

Figure 5.1. Illustration of the cellular heuristic 37

Figure 6.1. An example of a concave cost function and its linear underestima-

tion function . 40

Figure 6.2. An instance of CMFWP illustrated on a network structure 52

Figure 6.3. Convergence behavior of the affine scaling algorithm applied on

linear transportation problem . 59

Figure 6.4. Expected convergence behavior of the affine scaling algorithm when

applied on CMFWP . 59

ix

LIST OF TABLES

Table 2.1. Most frequently used distance functions in location theory 6

Table 5.2. Overlap rate of the facility locations with customer locations . . . 33

Table 6.1. An instance of CMFWP for collapsing polytopes method 48

Table 6.2. Initial point of the example for collapsing polytopes method . . . 48

Table 6.3. The point in the first step of the example for collapsing polytopes

method . 49

Table 6.4. The point in the second step of the example for collapsing polytopes

method . 49

Table 6.5. Optimal solutions for subproblems where |I| = 1 53

Table 6.6. Optimal solutions for subproblems where |I| = 2 55

Table 6.7. An instance of CMFWP for affine scaling algorithm 58

Table 6.8. Optimal solution of the instance for affine scaling algorithm 58

Table 6.9. Results of some trials for affine scaling algorithm 60

Table 7.1. Instances in the test set . 64

Table 7.2. Per cent deviations from the optimal values for Lagrangean heuris-

tics (%) . 65

x

Table 7.3. Duality gap between lower and upper bounds for Lagrangean heuris-

tics . 66

Table 7.5. CPU times of Lagrangean heuristics for the instances without opti-

mal solutions . 67

Table 7.6. Instances in the test set . 69

Table 7.7. Per cent deviations from the best known/optimal values for DACL

heuristic . 70

Table 7.8. CPU times for DACL heuristic . 71

Table 7.9. Per cent deviations from the best known/optimal values for the

cellular heuristic . 73

Table 7.10. Per cent deviations from the best known/optimal values for the

cellular heuristic of Aras, Altınel and Orbay 74

Table 7.11. CPU times for the cellular heuristic 75

xi

LIST OF SYMBOLS/ABBREVIATIONS

aj = (aj1, aj2)
T Coordinates of customer j

cij Unit shipment cost per unit distance between facility i and

customer j

ckj Unit shipment cost per unit distance between point k and

customer j

cikj Unit shipment cost per unit distance between facility i located

at point k and customer j

c′ik Unit shipment cost per unit distance from facility i located at

point k

dj Demand of customer j

drem
j Unsatisfied demand of customer j in LP-relaxation algorithm

d(xi, aj) Distance between points xi and aj

i Index of facilities

I Subset of demand nodes in send-and-split method

j Index of customers

J1 Set of customer locations within the candidate location set

J2 Set of customer locations which are not within the candidate

location set

k Index of candidate locations

K Number of candidate locations

lij Lower bound on the allocation variable wij

m Number of facilities to be located

mj Cluster centroids in the cellular heuristic

n Number of customers

(nx, ny) Grid resolutions for x and y axis in the cellular heuristic

Pik Maximum lower bound found when facility i is forced to be

open at location k in Beasley’s method

R Radius where updates are performed within in the cellular

heuristic

xii

Rmax Maximum radius where updates are performed within in the

cellular heuristic

Rik Maximum lower bound found when facility i is forced not to

be open at location k in Beasley’s method

S Feasible region in collapsing polytopes method

si Capacity of facility i

Sk Containing polytope at iteration k in collapsing polytopes

method

T Number of two phase runs performed in the cellular heuristic

uij Upper bound on the allocation variable wij

ukj Amount of goods to be shipped from point k to customer j

uikj Amount of goods to be shipped from facility i located at point

k to customer j

Uij Dual variables in dual formulation of the location-allocation

problem

xi = (xi1, xi2)
T Coordinates of facility i

wij Amount of goods to be shipped from facility i to customer j

zik Binary variable which denote whether facility i is located at

candidate point k

Zmax Maximum lower bound found by Beasley’s method

ZUB Upper bound to the objective function value

ZLR Lower bound to the objective function value found by La-

grangean relaxation

λj Lagrange multiplier for customer j

δ Reference value in knapsack method

δi Dual variables in the dual formulation of linearly relaxed ver-

sion of DCMLAP2

π Coefficient that scales step size in subgradient algorithm

πj Dual variables in the dual formulation of linearly relaxed ver-

sion of DCMLAP2

µt Step size in subgradient algorithm

η Learning rate in the cellular heuristic

xiii

ρk Dual variables in the dual formulation of linearly relaxed ver-

sion of DCMLAP2

LAP Location-allocation problem

CLAP Continuous location-allocation problem

DLAP Discrete location-allocation problem

CMLAP Capacitated multi-facility location-allocation problem

DCMLAP Discrete capacitated multi-facility location-allocation prob-

lem

DCMLAP2 The version of DCMLAP which the unit shipment cost does

not depend on the facility

CMFWP Capacitated multi-facility Weber problem

RDLAP Rectilinear discrete location-allocation problem

MILP Mixed integer linear program

RDCMLAP Relaxed version of the discrete capacitated multi-facility

location-allocation problem

RDCMLAPi Subproblem associated with each facility i for RDCMLAP

ABLH Adaptation of Beasley’s Lagrangean heuristic

LRSO Lagrangean relaxation and subgradient optimization

LRSOSP Lagrangean relaxation and subgradient optimization with a

single 2-phase method

LRSO2P Lagrangean relaxation and subgradient optimization with 2-

phase method

DACL Discrete approximation with customer locations heuristic

LP Linear programming

LR Lagrangean Relaxation

MCNFP Minimum concave cost network flow problems

RLT Reformulation-Linearization Technique

SOM Self-organizing map

TP Transportation Polytope

1

1. INTRODUCTION

Deterministic location-allocation problems are concerned with the simultaneous

determination of the best locations and capacity allocations of facilities in order to sat-

isfy given demands of a set of customers with known locations such that the total trans-

portation cost is minimized. There are a number of categorizations of these problems

in the literature based on the characterization of the facilities. When the facility can

be located anywhere in the Euclidean plane, we have a continuous location-allocation

problem (CLAP). Otherwise, facility locations have to be selected from a given set of

candidate locations, and the problem becomes a discrete location-allocation problem

(DLAP). If there exist capacity constraints associated with the facilities, the resulting

problem is capacitated. If the facilities are assumed to have infinite capacities, then we

have the uncapacitated version. A final categorization is with respect to the number

of facilities to be opened: The problem is a single-facility problem if the objective is

to determine an optimal location for a single facility. It becomes the multi-facility

problem when more than one facility have to be located optimally.

We study the capacitated multi-facility location-allocation problem (CMLAP) in

this thesis. When there is just a single facility to be located, the problem is a pure

location problem and there is no allocation decision to be made. However, if there is

more than one facility, both the locations and capacity allocations of the facilities must

be determined. Therefore, we have a more difficult problem than the single facility

case. Each customer is served from the nearest facility for the uncapacitated problems,

while this is not necessarily true for the capacitated multi-facility location-allocation

problems. Moreover, the objective function of the problem is nondifferentiable at points

where a facility location coincides with a customer location, and this makes a direct

application of gradient-based algorithms impossible. As a result of these facts, the

number of solution methods proposed in the literature for the capacitated multi-facility

location-allocation problems is low as opposed to the uncapacitated and single facility

versions.

2

In CMLAP, if the locations of facilities are known, the problem reduces to the

ordinary transportation problem. On the other hand, if the allocations of facilities

are given, the problem becomes a pure location problem. Although transportation and

pure location problems are easy to solve, CMLAP belongs to a difficult class of problems

because of the fact that locations and allocations should be determined simultaneously.

It has been shown that the CMLAP with the Euclidean distance is NP-hard even if all

the customers are located on a straight line (Sherali and Nordai, 1988).

We consider both the continuous and discrete versions of CMLAP in this study.

It is very difficult and sometimes even impossible to solve the continuous version of

CMLAP, also known as the capacitated multi-facility Weber problem (CMFWP), by

using a commercial solver, since it has a nonconvex objective function. Therefore,

using a discrete approximation for continuous problems becomes essential to find at

least an approximate solution. What we mean by “discrete approximation” is that we

solve the problem by using some candidate locations for facilities rather than allowing

all the points in the plane to be a candidate for an optimal solution. This approximate

solution gets better when the number of candidate facility locations increases, but

then the problem size increases up to a point where it becomes impossible to solve the

problem due to computational restrictions. In this case, using efficient heuristics for the

discrete approximation of CMFWP becomes important to obtain favorable solutions.

Therefore, our main objective in this study is to develop efficient and effective heuristics

for the discrete version of CMLAP (DCMLAP) in order to solve both the discrete and

continuous problems.

In Chapter 2, we give a mathematical programming formulation of CMFWP,

which is followed in Chapter 3 by a literature review of the problem. Chapter 4

explains the relaxations that can be applied on a DLAP and Chapter 5 gives the

description of proposed solution methods based on these relaxations. In Chapter 6, we

explain exact solution procedures for CMFWP and illustrate the computational results

of the proposed methods in Chapter 7. Finally, we conclude the thesis by making our

comments and giving directions for the future research.

3

2. PROBLEM FORMULATION

In CMFWP, we are interested in finding the location of m facilities in the Eu-

clidean plane in order to serve customers at n fixed points as well as the allocation of

each customer to the facilities so that total transportation cost is minimized. There

is also a capacity restriction for each facility. This location-allocation problem can be

formulated as follows:

CMFWP:

min z =
m∑

i=1

n∑
j=1

cijwijd(xi, aj) (2.1)

s.t.

m∑
i=1

wij = dj j = 1, . . . , n (2.2)

n∑
j=1

wij = si i = 1, . . . ,m (2.3)

wij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n (2.4)

Here n is the number of customers and m is the number of facilities to be lo-

cated. dj and aj = (aj1, aj2)
T represent the demand and coordinates of customer j,

respectively. si is the capacity of facility i and xi = (xi1, xi2)
T is its unknown coor-

dinates. wij represents the amount to be shipped from facility i to customer j with

the unit shipment cost per unit distance being cij. d(xi, aj) is the distance function

between facility i and customer j. In the formulation above, Equation (2.2) assures

that demand of each customer must be satisfied and Equation (2.3) guarantees that

each facility cannot serve more than its capacity.

In the discrete version of the capacitated multi-facility location-allocation prob-

lem (DCMLAP), the facilities cannot be located anywhere in the plane, but only on

the candidate locations. DCMLAP can be formulated as follows:

4

DCMLAP:

min z =
m∑

i=1

K∑
k=1

n∑
j=1

cikjuikj (2.5)

s.t.

m∑
i=1

K∑
k=1

uikj = dj j = 1, . . . , n (2.6)

K∑
k=1

zik = 1 i = 1, . . . ,m (2.7)

n∑
j=1

uikj = sizik i = 1, . . . ,m; k = 1, . . . , K (2.8)

uikj ≥ 0, zik ∈ (0, 1) i = 1, . . . ,m; k = 1, . . . , K; j = 1, . . . , n (2.9)

Here K is the number of candidate locations. uikj represents the amount to be

shipped from facility i located at point k to customer j with the unit shipment cost

being cikj. cikj is obtained by the multiplication of the unit shipment cost per unit

distance from facility i located at point k, c′ik, by the distance between point k and

customer j, namely cikj = c′ikd(xk, aj). Variables zik are binary variables which denote

whether facility i is located at point k.

DCMLAP is a mixed-integer linear programming model. So there is no need for

any transformation to linearize the model. It has three sets of constraints. Constraints

(2.6) state that all customers’ demand should be satisfied. Constraints (2.7) require

that each facility can be located at only one point; but more than one facility may be

located at a point. Constraints (2.8) ensure that total amount supplied from a facility

cannot exceed its capacity. Both CMFWP and DCMLAP assume that the problem is

balanced, i.e., total supply is equal to total demand. If total supply is less than total

demand, there exists no feasible solution. If total supply is larger than total demand,

the problem can be solved by adding a dummy customer.

In DCMLAP, when allocations uikj’s are given, then the problem reduces to a

pure location problem which is separable into m single-facility location problems. The

5

solution can be found by inspection. On the other hand, when zik’s are given, the

problem becomes an ordinary transportation problem which is quite easy to solve.

In DCMLAP, the unit shipment cost depends both on the location of the facility

and the facility itself. This means that sending the same amount of goods from two

different facilities located at the same point may have different costs. The assumption

that the cost does not depend on the facility seems realistic, therefore we can have a

more compact formulation with two indices as the following one:

DCMLAP2:

min z =
K∑

k=1

n∑
j=1

ckjukj (2.10)

s.t.

K∑
k=1

ukj = dj j = 1, . . . , n (2.11)

K∑
k=1

zik = 1 i = 1, . . . ,m (2.12)

n∑
j=1

ukj =
m∑

i=1

si zik k = 1, . . . , K (2.13)

ukj ≥ 0, zik ∈ (0, 1) i = 1, . . . ,m; k = 1, . . . , K; j = 1, . . . , n (2.14)

There are different distance functions proposed in the literature to model the

distance mathematically. The ones which are frequently used are Euclidean, rectilinear,

squared Euclidean and lp distances. The mathematical formulas of these distance

functions can be seen in Table 2.1.

It is known that the optimal locations of facilities lie in the convex hull of the

set of customer locations for the continuous multi-facility location-allocation problem

with rectilinear, Euclidean, squared Euclidean and lp distance metrics (Hansen et al.,

1972). Moreover, Wendell and Hurter (1973) have shown that rectilinear discrete facil-

ity location-allocation problem (RDLAP) has always an optimal solution with facilities

6

Table 2.1. Most frequently used distance functions in location theory

Distance Formula

Euclidean d(x1, x2) = (|x11 − x21|2 + |x12 − x22|2)1/2

Rectilinear d(x1, x2) = |x11 − x21|+ |x12 − x22|

Squared Euclidean d(x1, x2) = |x11 − x21|2 + |x12 − x22|2

lp distance d(x1, x2) = (|x11 − x21|p + |x12 − x22|p)1/p p ≥ 1

located at the intersection points of vertical and horizontal lines drawn through the

customer locations. Sherali et al. (1994) used this property to formulate a mixed integer

nonlinear programming model for RDLAP. Aras et al. (2006) also used this property

to formulate a mixed integer, but linear programming model for RDLAP with the in-

tersection points as the candidate locations. This property is not valid for the other

distance metrics, but an approximate solution can still be found by solving an approx-

imating MILP, which uses the points of an arbitrary grid lying in the convex hull of

the customer locations. This MILP has exactly the same formulation with DCMLAP

with the points on the grids as the candidate locations. This is proposed by Aras et

al. (2007) in their work where they study different approaches for the determination of

most accurate and efficient discrete approximations to CMFWP.

DCMLAP can be solved by using a commercial solver which can solve integer

programming problems, but the required computation time may increase exponentially

with the problem size. For example, in the case where candidate locations are chosen

at the intersection points of customer locations, the maximum number of candidate

locations is n2. Then with a problem with n customers and m facilities, mn2 binary

variables zik and mn3 continuous variables uikj are generated. As we stated earlier,

the approximation gets better when the number of grid points, therefore the number

of candidate locations, increases, which in effect increases the size of the problem and

hence the required computation time.

It is clear that DCMLAP does not guarantee to find the optimal solution for

CMFWP if the points on the grid does not include the optimal facility sites. In the

limit, when the number of candidate points selected goes to infinity, we would obtain

7

an optimal solution to CMFWP. Therefore, there is a trade-off between the solution

quality and the computation time.

8

3. LITERATURE SURVEY

Cooper was the first who addressed the capacitated versions of location-allocation

problems. He proposed an exact total enumeration algorithm for the Euclidean dis-

tance location-allocation problem and provided two heuristic methods (Cooper, 1972).

In the exact solution, enumeration of all basic feasible transportation flows is performed

based on the fact that optimal solution lies at an extreme point of the feasible region.

Since the number of extreme points can be very large, this method performs well for

small sized problems. The first heuristic procedure, has the basic idea of alternatively

solving the location and allocation problems. When started with an initial location of

the facilities, the problem reduces to the ordinary transportation problem and optimal

allocations are found by using the transportation algorithm. With these new alloca-

tions found, the problem becomes a pure location problem and the optimal location of

facilities are determined. This two-phase process continues until no further improve-

ment can be obtained. The second approach uses a heuristic method that ignores the

capacity constraints and solves the uncapacitated problem. When the capacity con-

straints are violated, the sources having capacity which is not used are selected to serve

the destinations that have uncovered demand. This allocation process is achieved in

such a way that the resulting change in the objective function is relatively small. With

this new set of allocations, the algorithm uses an alternating procedure.

Apart from Cooper’s complete enumeration algorithm, there are two more ex-

act methods to solve the CLAP to the best of our knowledge. The first one is a

biconvex cutting plane procedure and can be found in Selim’s unpublished dissertation

(Selim, 1979). Although this procedure is more tractable than total enumeration, it

was found to be effective only for very small instances. The second one is a global

optimization procedure proposed by Sherali et al. (2002) for the capacitated Euclidean

and lp distance location-allocation problems. This is a branch-and-bound algorithm

that implicitly enumerates the vertices of the feasible region of the transportation con-

straints to obtain a global minimum. The algorithm is based on a partitioning of the

allocation space according to the fact that a variable is either zero or positive at an

9

optimal solution and finitely converges to a global minimum within a specified percent-

age tolerance. It incorporates some kind of specialized logical tests and cut-set based

inequalities to exploit the special structures of the underlying transportation constraint

set. Two different lower bounding schemes are used, one based on solving a projected

location space subproblem, and the other based on using a Reformulation-Linearization

Technique (RLT) to transform an equivalent representation of the original nonconvex

problem into a higher dimensional linear programming relaxation. RLT is used in

the solution of CLAP before by Sherali and Tuncbilek (1992) where they study the

squared-Euclidean distance location-allocation problem. The main difference in these

approaches stands from the fact that in the squared-Euclidean distance case, there exist

a closed form expression for the allocation variables if the location of the facilities are

known. As a result, this problem was shown to be transformable to a quadratic convex

maximization problem and it becomes possible to use a linear programming represen-

tation to compute upper bounds (due to maximization) via a Lagrangean relaxation

scheme since the problem can be represented in only allocation variables.

Beasley (1993a) presented a framework for developing Lagrangean heuristics

(heuristics based upon Lagrangean relaxation and subgradient optimization) with re-

spect to facility location problems. Lagrangean Relaxation (LR) is a technique used to

find lower (upper) bounds for minimization (maximization) problems (Fisher, 1981).

LR attaches Lagrange multipliers to some constraints in the problem and relax them

into the objective function. Then, the resulting program is solved to optimality and

this solution with given Lagrange multipliers is a lower bound on the optimal solution

of the minimization problem. The next step is updating the Lagrange multipliers corre-

sponding to this optimal solution. There are some basic approaches such as subgradient

optimization and multiplier adjustment to calculate the values of the multipliers. Sub-

gradient optimization is an iterative procedure that generates new multipliers from a

given set of Lagrange multipliers in a systematic fashion. It tries to maximize the lower

bound of the relaxed problem by suitable choice of multipliers. Beasley incorporates

Lagrangean relaxation and subgradient optimization in the heuristics he presented.

The basic idea behind a Lagrangean heuristic is that the information collected while

calculating the Lagrangean lower bound (which may produce infeasible solutions for the

10

original problem due to relaxation) can be used in an attempt to construct a feasible

solution to the original problem. In the Lagrangean heuristic, a sequence of Lagrange

multipliers (defining lower bounds) and a sequence of feasible solutions (defining upper

bounds) can be generated. At the end of the Lagrangean heuristic, the best feasible

solution found is a heuristic solution to the original problem.

It is known that the optimal solution of CMFWP is attained at an extreme

point of the feasible region (Cooper, 1972). This property is also shared by concave

minimization (convex maximization) problems where a concave function is minimized

over a constraint set of any form. This observation can help us to develop some

methods by inspiring from the ones designed to solve concave minimization problems.

The literature on the exact solution procedures for concave minimization problems is

immense (Horst and Tuy, 1990). Therefore we briefly summarize benchmark works on

concave cost network flow problems only.

An early branch-and-bound algorithm for the minimum concave cost network

flow problems (MCNFP) is developed by Florian and Robillard (1971). This approach

assumes that there are capacity restrictions and general concave costs on the arcs.

The original network is transformed to an uncapacitated bipartite network by using

the transformation of Wagner (1959). When this transformation is applied, some slack

flows are created with zero cost. Branching corresponds to forcing flow on an arc in the

original network or on a slack arc. The nodes of the branch-and-bound tree corresponds

to trials with various arcs forced to having extremal flows. The structure of the extreme

flows is exploited by constructing them in a way that prevents the formation of positive

loops. Bounding is performed by using a linear underestimation function to generate

a lower bound for this node of the tree. It is not necessary to explore all branches in

the tree since upper and lower bounds are used to control enumeration.

A dynamic programming approach to MCNFP is the send-and-split method found

by Erickson et al. (1987). The main work of the method relies on solving set-splitting

and minimum-cost-chain problems repeatedly. This approach is implemented for un-

capacitated networks, but capacitated arcs can be converted to an uncapacitated form

11

with Wagner’s transformation. Since the optimal flow is extreme and the graph in-

duced by this flow is a forest, the flow in an arc incident to any node i is the sum of

the demands at nodes in some subset I of demand nodes. To determine how the flow

should be sent from i to satisfy the demand at I, it is necessary to solve the subprob-

lem i→ I in which the demands at nodes not in I are first replaced by zero and then

the demand at i is replaced by the total demand at I. The idea of the algorithm is

to solve these subproblems inductively on the cardinality of I. Once subproblems are

solved for all subsets of I, two decisions have to be made at each node i. The first

one is to solve the set-splitting problem of finding a minimum-cost split of I into two

nonempty subsets J and I\J , and the cost of split is the sum of the minimum costs

for the subproblems i → J and i → I\J . The second decision is to find a minimum

cost chain along which to ship the demand at I from each node i to a node at which

it is optimal to incur the cost of splitting I into subsets.

Falk and Hoffman (1986) propose a procedure to minimize globally a concave

function over a bounded polytope. The procedure successively minimize the function

over polytopes containing the feasible region and at the end, collapsing to the feasible

region. Feasible region S is viewed as a face of a polytope C with dimension one

greater than the dimension of S. At some iteration, a partial list of extreme points

of C and edges emanating from these extreme points are found and those edges that

intersect the hyperplane containing S define another set of vertices whose convex hull

is a polytope Sk which S is a subset of. The procedure selects the most promising

vertex of the current containing polytope Sk to refine the approximation. The method

builds a tree whose terminal nodes coincide with the vertices of the feasible region and

optimal solution of the original problem is found when the most promising vertex of

Sk is also a vertex of the feasible region S.

The dual formulation of the facility location problem represents interesting prop-

erties. The dual formulation of the multi-facility location-allocation problem with lp

distance is given by Love (1974). The dual in this work is formulated by using quasi-

linearization. Since the dual is valid only if any pair of facilities to be located or pair

of facilities and customers are not located at the same location at optimum, a hyper-

12

bolic approximation is utilized which is uniformly convergent to the objective function

of the primal problem. Love and Juel (1982) used the dual formulation proposed in

(Love, 1974) to develop some solution methods for large scale uncapacitated location

allocation problems. They show that the location-allocation problem can be stated as

a concave minimization problem using the dual formulation. As stated previously, the

optimal solution of a concave minimization problem must lie at an extreme point of

the feasible region, and they use this property to formulate five new heuristics based

on the new dual formulation. These heuristics differ from each other in the manner in

which they perturb a given local optimal solution.

Several methods exist in the literature to calculate lower bounds on the objective

function of facility location problems. The contribution of these papers is mostly

relevant for iterative solution methods, such as Weiszfeld procedure (Weiszfeld, 1937),

since it allows these solution methods to terminate when the objective function comes

within a fraction of the optimal solution. The first attempt to develop lower bounds is

due to Love and Yeong (1981). They discussed two methods to compute a lower bound

on the objective function of the facilities location problem which is applicable to both

single and multi facility cases. Later, Love and Dowling (1989) develop a bounding

method for the multi-facility case with lp distance which gives better bounds than these

two methods. Drezner (1984) also proposes a lower bound for the single facility case

with Euclidean distance which gives lower bounds at least as good as the methods

proposed by Love and Yeong. Wendell and Peterson (1984) uses the dual formulation

of the location problem in order to develop a lower bound.

13

4. RELAXATIONS FOR DISCRETE

LOCATION-ALLOCATION PROBLEM

As stated previously, when the problem size is large, finding the optimal solution

to DCMLAP is quite difficult due to high computational cost. Finding a good solu-

tion to such difficult problems deals with the consideration of two issues. These are

calculation of upper and lower bounds which is as close as possible to optimal solution.

Upper bounds are found by heuristic methods and lower bounds are found by solving

a relaxed version of the original problem. Two of the most commonly used relaxation

methods are Linear Programming relaxation and Lagrangean relaxation. In this chap-

ter, we apply these two relaxation methods to DCMLAP in order to develop efficient

and effective heuristics based on these relaxations.

4.1. Lagrangean Relaxation

Lagrangean Relaxation (LR) is a technique which is successfully used in integer

and mixed integer linear programming problems with a minimization (maximization)

objective function to find lower (upper) bounds (Fisher, 1981). There may exist some

constraints which make a problem difficult to solve and the problem can be solved

easily if these constraints are removed from the constraint set. Motivated by this

fact, LR attaches Lagrange multipliers to those constraints which make the problem

difficult and relax by adding their weighted sum to the objective function. Then, the

resulting program is solved to optimality and this solution gives a lower bound on the

optimal solution of the minimization problem. We apply Lagrangean Relaxation to

find lower bounds for DCMLAP by relaxing the demand satisfaction constraints (2.6).

This results in the following relaxed problem RDCMLAP.

14

RDCMLAP:

min ZLR =
m∑

i=1

K∑
k=1

n∑
j=1

cikj uikj +
n∑

j=1

λj(dj −
m∑

i=1

K∑
k=1

uikj)

=
m∑

i=1

K∑
k=1

n∑
j=1

(cikj − λj)uikj +
n∑

j=1

λj dj (4.1)

s.t.

(2.7)− (2.9)

uikj ≤ dj i = 1, . . . ,m; k = 1, . . . , K; j = 1, . . . , n (4.2)

The λj’s represent the Lagrange multipliers for each customer j. As there are

n customers, there are n demand constraints which are relaxed. The constraints,

uikj ≤ dj, which are redundant in the original problem, should be added in order to

improve the objective function of each subproblem, since it does not allow to send

items from a facility to a customer more than the demand of this customer.

Lagrangean Relaxation may not seem to be an effective approach since the relaxed

problem is also an integer or mixed-integer program as the original one. However, most

of the integer or mixed-integer programs are complicated by some set of constraints and

when we relax them, we come up with an easy problem to solve. Besides that, practical

experience shows that LR gives good lower bounds with reasonable computational cost

(Beasley, 1993b).

4.2. Linear Programming Relaxation

One well-known technique to calculate lower bounds for a minimization problem

is Linear Programming (LP) relaxation. In LP relaxation, the integrality requirement

on the variables is relaxed and the resulting linear program is solved to optimality

by a standard method or solved heuristically. In our problem, zik = 0 or 1 can be

replaced by the two continuous constraints zik ≥ 0 and zik ≤ 1. For the version of

DCMLAP which the unit shipment cost does not depend on the facility (DCMLAP2),

(i.e. cikj = ckj, i = 1, ...,m), we have found a very simple solution method which solves

15

this relaxed problem to optimality. For each customer j, we find the closest candidate

location k and locate an arbitrary facility i to that location. If the demand of customer

j is larger than the supply of facility i, we set zik = 1. Otherwise, we set zik = dj/si.

This is possible since we relax the requirement that zik ∈ (0, 1). Then we update dj

with dj − si and continue this process (locating another facility i′ to location k) until

the demand of customer j is satisfied. Below, we present the method formally and

prove that it finds the optimal solution for the relaxed problem.

Algorithm 1 LP-relaxation algorithm

1. Let the facilities be in the arbitrary order i(1), i(2),...,i(m) and l=1.

2. For each customer j, do steps 3, 4 and 5.

3. Find the candidate location k with the minimum ckj value.

4. Let drem
j = dj and ukj = 0.

5. Repeat

ukj ← ukj + min(si(l), d
rem
j)

zik = min(si(l), d
rem
j)/si(l)

If si(l) > drem
j

si(l) = si(l) − drem
j and drem

j = 0

Else drem
j ← drem

j − si(l) and si(l) = 0

l← l + 1

until drem
j = 0.

6. ZLP =
K∑

k=1

n∑
j=1

ckj ukj.

Proposition: Algorithm 1 computes an optimal solution of the LP relaxation of

DCMLAP for cikj = ckj, i = 1, ...,m.

16

Proof: The relaxed problem P for DCMLAP2 is below.

P: min z =
∑
k∈K

∑
j∈J1

ckjukj +
∑
k∈K

∑
j∈J2

ckjukj (4.3)

s.t.∑
k∈K

ukj = dj j ∈ J1 ∪ J2 (4.4)

∑
k∈K

zik = 1 i ∈ I (4.5)

∑
j∈J1

ukj +
∑
j∈J2

ukj =
∑
i∈I

si zik k ∈ K (4.6)

ukj ≥ 0, 0 ≤ zik ≤ 1 i ∈ I, j ∈ J1 ∪ J2, k ∈ K (4.7)

where I is the set of facilities, K is the set of candidate locations, J1 is the set of

customers within the candidate location set and J2 is the set of customers which are

not in the candidate location set. In order to show that algorithm 1 works correctly,

we write the dual of this LP and use the complementary slackness conditions. The

dual of this LP is:

D: max zD =
∑
j∈J1

πjdj +
∑
j∈J2

πjdj +
∑
i∈I

δi (4.8)

s.t.

πj + ρk ≤ ckj i ∈ I, j ∈ J1 ∪ J2, k ∈ K (4.9)

δi − siρk ≤ 0 i ∈ I, k ∈ K (4.10)

πj, δi, ρk unrestricted i ∈ I, j ∈ J1 ∪ J2, k ∈ K (4.11)

For each customer j, let k∗ be the candidate location with the minimum unit

shipment cost, i.e., ck∗j = mink∈K ckj. Obviously ck∗j = 0 for j ∈ J1 and ck∗j > 0 for

j ∈ J2. Let the facilities be in the arbitrary order i(1), i(2), ..., i(m). Now determine

the values of the decision variables as is done in algorithm 1. That is,

• uk∗j = dj

• ukj = 0 k ∈ K and k 6= k∗

17

• zi(l′)k∗ = min(si(l′), d
rem
j)/si(l′) where drem

j = dj −
∑l′

l=1 si(l) and l′ = 1, ..., L and

L is the index of the facility which makes drem
j = 0

• zi(l′)k = 0 l′ = L + 1, ...,m, k = k∗ and l′ = 1, ...,m, k ∈ K

We can find a dual feasible solution corresponding to this primal feasible solution

by using the complementary slackness conditions.

• uk∗j = dj > 0 ⇒ πj + ρk∗ = ck∗j ⇒ πj = ck∗j and ρk∗ = 0

• ukj = 0 ⇒ πj + ρk ≤ ckj ⇒ 0 ≤ πj ≤ ckj and ρk = 0 k ∈ K and k 6= k∗

• zi(l′)k∗ = min(si(l′), d
rem
j)/si(l′) ⇒ δi(l′) − si(l′)ρk∗ = 0 ⇒ δi(l′) = 0 l′ = 1, ..., L

• zi(l′)k = 0 ⇒ δi(l′) − si(l′)ρk∗ ≤ 0 ⇒ δi(l′) = 0 l′ = L + 1, ...,m, k = k∗ and

l′ = 1, ...,m, k ∈ K

This solution is feasible as we set the values of the dual variables such that the

constraints of the dual problem are satisfied. We can show this as follows:

• πj + ρk∗ ≤ ck∗j is satisfied with equality for all j ∈ (J1 ∪ J2) since πj = ck∗j and

ρk∗ = 0. However, πj + ρk ≤ ckj is satisfied with strict inequality for all k 6= k∗

and j ∈ (J1 ∪ J2) since ρk’s corresponding to all k 6= k∗ are set to 0, πj = ck∗j

for all j ∈ (J1 ∪ J2) and ck∗j = mink∈Kckj. This means that constraints (4.9)

are satisfied.

• δi − siρk ≤ 0 is satisfied with equality for all i ∈ I and k ∈ K since ρk = 0 for all

k ∈ K and δi = 0 for all i ∈ I. This says that constraints (4.10) are also satisfied.

• Constraints (4.11) are trivially satisfied.

The last thing we have to do to complete the proof is to show that the objective

function values of these primal and dual solutions are the same. The objective value

of the primal problem is:

• ZP =
∑

k∈K

∑
j∈J1∪J2

ckjukj =
∑

k∈K

∑
j∈J2

ckjukj =
∑

j∈J2

ck∗juk∗j =
∑

j∈J2

ck∗jdj since ckj = 0

for j ∈ J1 and k 6= k∗

18

and the objective value of the dual problem is:

• ZD =
∑

j∈J1

πjdj +
∑

j∈J2

πjdj +
∑
i∈I

δi =
∑

j∈J2

πjdj =
∑

j∈J2

ck∗jdj since πj = ck∗j = 0 for

j ∈ J1 and δi = 0 for i ∈ I

Therefore, the objective values of the primal and dual solutions are the same.

This completes the proof.

Q.E.D.

One interesting observation about the LP relaxation is the fact that the objec-

tive function value increases as the cardinality of the set J1, i.e., the set of customers

within the candidate location set, decreases. We will illustrate this fact with an ex-

ample. Figure 4.1 shows the change in the objective function value with respect to

the cardinality of J1 where |J | = 20. When |J1| = |J | = 20, i.e., all customers are

within the candidate location set, objective function value becomes zero. This fact

is also intuitive, because the closest candidate location with minimum ckj value for

each customer becomes the customer itself with ckj = 0. Then, when all customers

whose locations are in the candidate location set, the objective function value becomes

zero; and when the number of customers whose locations are in the candidate location

set decreases, objective function value also increases since the minimum ckj value is

positive for each customer.

0
20
40
60
80

100
120
140
160
180
200

12 13 14 15 16 17 18 19 20

|J1|

O
bj

ec
tiv

e
va

lu
e

Figure 4.1. Change in the objective function value with respect to |J1|

19

The usefulness of any relaxation is determined by the closeness of its optimal

value to the optimal value of the original problem. It is known that the optimal value

provided by Lagrangean relaxation is at least as good as the optimal value provided by

LP relaxation (Geoffrion, 1974). It is also known that they provide the same optimal

value if and only if the polyhedron representing the feasible region of the problem where

Lagrangean relaxation is applied has the integrality property, that is, the optimal value

of the problem is not altered by dropping the integrality conditions on its variables.

DCMLAP does not satisfy the integrality property due to constraints (2.8) as it is

stated by Geoffrion (1974). Therefore, Lagrangean relaxation provides better bounds

than LP relaxation for DCMLAP. This is the main reason for us to focus on Lagrangean

relaxation to design accurate heuristics.

20

5. LAGRANGEAN HEURISTICS

In section 4.1, we applied Lagrangean relaxation for DCMLAP by relaxing the

demand satisfaction constraint and presented the resulting relaxed problem RDCM-

LAP. When we analyze this problem, we see that it becomes separable over the facilities

and the subproblem associated with each facility i (RDCMLAPi) becomes quite easy

to solve. By using this observation, we propose new heuristics based on Lagrangean

relaxation in this section. We first apply Lagrangean Relaxation for all the methods

we propose and then add new techniques to form new heuristics for making the gaps

between lower and upper bounds as small as possible. In the first heuristic, the demand

constraint is relaxed and a lower bound is attained by solving the resulting problem.

Then this lower bound is maximized using the subgradient optimization. The second

heuristic makes use of the same idea; the only difference is that starting with the best

facility locations found by the first heuristic, a two phase heuristic is applied to find a

better solution. In the third heuristic, two phase heuristic is applied to find a feasible

solution at every iteration of the subgradient optimization, starting with the facility

locations chosen in that iteration. The last heuristic adapts Beasley’s Lagrangean

heuristic for location problems. This heuristic tries to reduce the problem size and

attain better lower bounds by forcing some facilities to be opened or closed at some

locations.

5.1. Methods to Solve RDCMLAPi Efficiently

When we apply Lagrangean relaxation on DCMLAP, the subproblem associated

with each facility i is given as:

21

RDCMLAPi :

min ZLRi =
K∑

k=1

n∑
j=1

(cikj − λj)uikj (5.1)

s.t.

K∑
k=1

zik = 1 (5.2)

n∑
j=1

uikj = sizik k = 1, . . . , K (5.3)

uikj ≤ dj k = 1, . . . , K; j = 1, . . . , n (5.4)

uikj ≥ 0, zik ∈ (0, 1) k = 1, . . . , K; j = 1, . . . , n (5.5)

The best location for facility i is determined by placing the facility to each can-

didate location and finding the location with the minimum transportation cost Z∗
LRi .

Assume that the Lagrangean multipliers are fixed. The best solution for each location-

facility combination is easily found by a greedy inspection procedure where we de-

termine those customers that are supplied from facility i when located at candidate

location k so that the total shipment cost ZLRik =
∑K

k=1

∑n
j=1 (cikj − λj)uikj is min-

imized. We sort coefficients (cikj − λj) in nondecreasing order and starting with the

customer with the smallest coefficient (cikj − λj), we allocate the quantities to the

customers in this order without violating the constraints (5.3) until the supply of that

facility is used completely. By this way, we can calculate a cost for each candidate

location for each facility and the optimal location for this facility is the one with the

minimum cost. The steps of the method used to solve the relaxed problem are formally

given below.

There are other methods to solve the subproblems other than the greedy in-

spection procedure above. These methods differ in how they allocate quantities to

customers. The method above sorts the customers with respect to their coefficients

(cikj − λj) in nondecreasing order and allocate the quantities to the customers in this

order. The complexity of Algorithm 2 is dominated by the complexity of sorting done

in step 3. For example, when “quicksort” is used, it has O(n2) worst case complexity

22

Algorithm 2 Solution of the RDCMLAP for fixed values of λj

1. For each facility i, do step 2 to compute Z∗
LRi = mink Z∗

LRik

2. For each point k, do steps 3 through 5 to compute Z∗
LRik

3. Sort the customers in nondecreasing order with respect to (cikj − λj). Let the

customers in this order be given as j(1), j(2), ..., j(n).

4. Let srem
i = si and l = 1.

5. Repeat

uikj = min(srem
i , dj(l))

srem
i ← srem

i − dj(l)

l← l + 1

until srem
i = 0

6. Z∗
LRi = mink Z∗

LRik

7. Report Z∗
LR =

∑m
i=1 Z∗

LRi +
∑n

j=1 λjdj

since the complexity of quicksort is O(n2) in the worst case (Hoare, 1962). This value

becomes O(nlogn) for heapsort (Williams, 1964).

Observe that RDCMLAPi is a continuous knapsack problem for zik = 1 and

generic formulation of the continuous knapsack problem is:

min(cTx : aTx ≥ a0,0 ≤ x ≤ e)

where c and a are positive vectors, a0 is a positive scalar and e is the unit vector. In

our solution procedure for the subproblem RDCMLAPi, we locate facility i at point

k, therefore constraint (5.2) is satisfied for this facility-location combination. The

constraint (5.3) for a fixed point k can be seen as the constraint aTx ≥ a0 in the

knapsack problem with inequality replaced by an equality. Constraints (5.4) and (5.5)

together form the constraint 0 ≤ x ≤ e in the knapsack problem. (cikj − λj), uikj

and si can be seen as c,x and a0 in the knapsack problem. It is shown that the

continuous knapsack problem can be solved in O(n) time (Balas and Zemel, 1980).

This solution procedure requires to find the median of n numbers and checks recursively

if the knapsack is filled or not by comparing the objective coefficient of the elements

23

with the one in the median.

We apply the following solution procedure for each facility-location pair (i, k):

Let N0, N1, NF denote the index set of allocation variables fixed at zero, fixed at

positive, and free. All allocation variables are free and S̄i = si initially. We find the

median of c̄ikj = cikj −λj values of the variables in NF and partition NF into 3 subsets

with respect to the median. The first subset (N<) includes the variables whose c̄ikj

values are less than the median while the second subset (N>) includes the variables

whose c̄ikj values are larger than the median. And the third one (N=) includes the

variables whose c̄ikj values are equal to the median. Then we find the total demand of

the variables in N< (denoted by S1) and the total demand of the variables in N<∪N=

(denoted by S2). If S̄i is between S1 and S2, we stop since we could be able to find

those uikj’s with the smallest c̄ikj to use S̄i completely. We set uikj = dj in N< ∪ N0,

uikj = 0 in N> ∪ N1, uikj = dj in N= until S̄i is used up (any, possibly including one

with uikj < dj). If S̄i is smaller than S1 (i.e., the median is too small), we add the

variables in N> and N= to N1 and replace NF with N<. If S̄i is greater than S2 (i.e.,

the median is too large), we add the variables in N< and N= to N0 and replace NF

with N>. Then we update S̄i by S̄i − S2 and apply the same procedures above on the

variables in NF . The steps of the method are formally given in Algorithm 3.

The complexity of this procedure is dominated by median computations. There-

fore, as a third approach, we decided to select the reference value δ randomly as an

attempt to reduce the computation time for the subproblems on the average. These

approaches can perform better than the worst case behavior on the average. Motivated

by this fact, we performed some experiments on some test instances to determine which

method solves the subproblems with minimum computational effort. Table 5.1 shows

the results of this experiment. Table 5.1 includes the number of facilities and cus-

tomers for each instance and the CPU times in seconds, first one being the CPU times

of greedy inspection procedure with quicksort, the second one being the CPU times of

knapsack method which uses median as the reference value δ and the third one being

the CPU times of the knapsack method which selects reference value randomly.

24

Algorithm 3 Solution of the RDCMLAP as a Continuous Knapsack Problem

1. For each facility i, do step 2 to compute Z∗
LRi = mink Z∗

LRik

2. For each point k, do steps 3 through 5 to compute Z∗
LRik

3. Initialize set N0 = ∅, N1 = ∅, NF = {1, 2, ..., n} and S̄i = si.

4. Determine the median δ of the values (cikj − λj)j∈NF
, partition NF into N> =

{j ∈ NF |(cikj − λj) > δ}

N< = {j ∈ NF |(cikj − λj) < δ}

N= = {j ∈ NF |(cikj − λj) = δ}

and calculate S1(δ) =
∑

j∈N<

dj

S2(δ) = S1(δ) +
∑

j∈N=

dj

5. If S1(δ) < S̄i ≤ S2(δ), stop: δ∗ = δ. An optimal solution to subproblem is

obtained by setting uikj = dj, j ∈ N0 ∪ N<; uikj = 0, j ∈ N1 ∪ N> and then

setting the variables uikj = dj, j ∈ N= until S̄i is used up (any, possibly including

one with uikj < dj). If S1(δ) ≥ S̄i, set N1 ← N1 ∪ N> ∪ N= and NF ← N<. If

S2(δ) ≤ S̄i, set N0 ← N0 ∪N< ∪N=, NF ← N> and S̄i ← S̄i − S2(δ). Then go

to step 4.

Table 5.1. CPU times for different subproblem solution methods

Greedy procedure Knapsack method Knapsack method

Instance m n with quicksort with median selection with random selection

101 5 20 2.35 7.38 5.65

102 8 20 4.00 10.67 6.66

103 10 25 9.52 22.91 15.50

104 5 30 11.17 19.25 12.25

105 6 25 18.39 35.34 24.55

106 7 30 13.76 19.28 12.02

107 6 20 10.40 23.06 16.58

108 8 15 3.67 10.69 7.22

109 6 30 15.30 27.92 18.09

110 8 25 10.98 26.95 18.02

121 10 50 348.62 586.16 317.89

122 5 50 287.59 337.64 217.34

123 5 75 1318.22 836.25 557.08

124 10 75 1377.72 1708.06 984.72

Continued on Next Page. . .

25

Greedy procedure Knapsack method Knapsack method

Instance m n with quicksort with median selection with random selection

125 10 100 4917.69 4093.42 2339.47

126 20 75 2056.80 4497.44 2501.53

Average CPU time 650.39 766.40 440.91

The worst CPU times are reported for the knapsack method which uses median

as the reference value. The greedy inspection procedure gives better results on the

average than this one although its complexity is higher than the complexity of knap-

sack method. The best CPU times are observed for knapsack method which selects δ

randomly. Therefore, we decided to use it in our heuristics for solving RDCMLAPi.

5.2. Lagrangean Heuristics for Discrete Location-Allocation Problem

5.2.1. Lagrangean Relaxation and Subgradient Optimization (LRSO)

Z∗
LR provides a lower bound on the optimal solution of RDCMLAP for Lagrange

multipliers λj. To find the best lower bound, Lagrange multipliers that yield the

highest objective function value are to be found. We consider the Lagrangean dual:

maxλ Z∗
LR(λ) and apply subgradient optimization algorithm for this purpose. The

subgradient algorithm is formally described below.

Algorithm 4 Subgradient Algorithm

1. Set λ
(0)
j = 0, t = 0.

2. Repeat steps 3 and 4 for a predetermined number of iterations.

3. With the current values of λj, solve relaxed problems RDCMLAP and obtain

Z∗
LR =

m∑
i=1

Z∗
LRi +

n∑
j=1

λ
(t)
j dj.

4. Update the multipliers λj by setting λ
(t+1)
j = λ

(t)
j + µ(t)(dj −

m∑
i=1

K∑
k=1

uikj) where

the step size, µ(t) is determined by:

µ(t) =
π(ZUB−Z∗

LR)
n∑

j=1
(dj−

m∑
i=1

K∑
k=1

uikj)2

26

Here, ZUB represents the upper bound to the original problem, which can be the

objective value of any feasible solution, Z∗
LR represents lower bound to the original

problem, found by solving the Lagrangean subproblem and π represents an arbitrary

coefficient that scales the step size. The step size µ(t) depends on the gap between ZUB

and Z∗
LR and the parameter π defined by the user with

∑n
j=1(dj −

∑m
i=1

∑K
k=1 uikj)

2

being the scaling factor.

After each iteration, a solution is found which is feasible with respect to the

locations but infeasible with respect to the allocations since it could be shipped to a

customer more or less than its demand. Therefore, a transportation problem is solved to

find a feasible solution corresponding to these infeasible solutions by using the locations

found. A solution method which incorporates the transportation simplex algorithm can

solve the transportation problem, however it is known that transportation problem

is a special case of the minimum cost flow problem and this network problem has

quite efficient solution methods due to its network structure. Therefore, an algorithm

which can solve minimum cost flow problem efficiently can also solve the transportation

problem efficiently. Therefore, we used an open source minimum cost flow algorithm

to solve the transportation problem (Pisa, 2006) and get a feasible solution at the end

of the iterations of the subgradient algorithm.

5.2.2. Lagrangean Relaxation and Subgradient Optimization with a Single

2-Phase Method(LRSOSP)

Our second heuristic is an extended version of LRSO with a two phase method.

In this method, starting with the best facility locations found by LRSO, the two phase

method which is described in Algorithm 5 is applied to find a better solution. It is

expected that the solution found by LRSO can be improved by using this method

without sacrificing a significant amount of computation time. However, we do not

expect an improvement in the lower bounds. The two phase heuristic for DCMLAP is

given below.

27

Algorithm 5 Two Phase Heuristic

1. Locate the facilities at arbitrary selected candidate points xi = (xi1, xi2)
T , i =

1, ...,m

2. Calculate the distances between the customers and facilities according to the

distance metric used.

3. Solve the transportation problem to determine allocations uikj.

4. Using allocations uikj, solve m 1-median problems.

5. Repeat steps (2), (3) and (4) until either the facility locations xi = (xi1, xi2)
T or

the allocations uikj remain unchanged.

In step 4 of Algorithm 5, we search for the best location within the candidate

location set for each facility i. We ignore the index k in uikj and assume that uikj

represents the quantity allocated from facility i to customer j. Then we place each

facility i to each location k and find the location with the minimum transportation

cost (with given uikj’s).

5.2.3. Lagrangean Relaxation and Subgradient Optimization with 2-Phase

Method(LRSO2P)

In this method, two phase heuristic is applied to find a feasible solution at every

iteration of the Subgradient Optimization, starting with the facility locations chosen

in that iteration. Each iteration of LRSO gives a solution in terms of the facility

locations. Then, we apply the two phase method to obtain a good feasible solution at

each iteration. At the end, the solution with the minimum cost is selected as the best

solution.

This heuristic is not used to improve the lower bound. Our aim is to obtain a

better upper bound, i.e., a better objective function value. There is obviously a trade

off between resource usage and the quality of the solution obtained. We expect better

upper bounds but also more resource usage as we increase the number of operations

per iteration.

28

5.2.4. Adaptation of Beasley’s Lagrangean Heuristic (ABLH)

This heuristic is an adaptation of the procedure proposed in Beasley (1993a).

Beasley presented a framework in this paper for developing Lagrangean heuristics for

facility location problems. The main idea behind this framework is to reduce the prob-

lem size by eliminating some candidate locations and by forcing some facilities to be

opened at some candidate locations after comparing the objective function values cor-

responding to these candidate locations. We adapt Beasley’s method in this heuristic

by making some changes in DCMLAP.

As stated before, RDCMLAP becomes separable over facilities and locations, and

the subproblem (SP) associated with each facility i and location k can be given as:

SP: min Zik(λ) =
n∑

j=1

c̄ikjuikj (5.6)

s.t.

n∑
j=1

uikj = si (5.7)

uikj ≤ dj j = 1, . . . , n (5.8)

uikj ≥ 0 j = 1, . . . , n (5.9)

where c̄ikj = cikj − λj.

There are some definitions to be used in the description of the heuristic below.

• Zmax: the maximum lower bound

• ZUB: the best feasible solution

• z(λ): the optimal objective function value of RDCMLAP

• N : the number of subgradient iterations

• Pik: the maximum lower bound found when facility i is forced to be open at

location k

• Rik: the maximum lower bound found when facility i is forced not to be open at

29

location k

• Q: set of facility-location pairs (i, k) where zik’s are fixed to 1 (i.e., we decided

to open facility i to location k in the optimal solution)

• π: step size parameter

The formal description of this heuristic is presented in Algorithm 6.

In step 1 of Algorithm 6, we initialize both Pik and Rik to zero for i = 1, ...,m; k =

1, ..., K since we do not have any information about the lower bounds to be found when

a facility is forced to be open or close. After necessary initializations are performed,

we have to find a starting feasible solution to the relaxed problem RDCMLAP. In step

2, we solve RDCMLAP with the current set of Lagrange multipliers and update the

maximum lower bound found (Zmax) if the optimal objective value of RDCMLAP is

greater than Zmax. Otherwise, we increase the value of N by 1 since we performed an

iteration without an increase in the value of Zmax. In step 3, we try to obtain a feasible

solution to DCMLAP by solving a transportation problem with optimal locations zik’s

found in step 2. If the optimal objective value of this transportation problem is smaller

than ZUB, we update ZUB with this value. Step 4 checks whether the maximum lower

bound (Zmax) is updated or not in the last 30 iterations. If Zmax is not updated in the

last 30 iterations, we halve the step length parameter π to make a finer search possible

and then return to the the solution of RDCMLAP where Zmax is last updated and

solve a transportation problem with zik’s of this solution. If necessary, we update ZUB

accordingly as in step 3.

Step 5 checks if the maximum lower bound and the best feasible solution found

are equal to each other. If they are equal, the feasible solution giving ZUB is optimal

and the algorithm stops. If they are not equal, we continue to step 6 to update the

maximum lower bounds found (Pik) when facility i is forced to be open at location k.

It is clear that imposing the additional constraint that a particular facility i must be

opened at location k in the optimal solution (zik = 1) results in a corresponding lower

bound of z(λ) + Z ′
ik(λ)−max(Z ′

pq(λ) : zpq = 1, (p, q) /∈ Q p = 1, ...,m; q = 1, ..., K) if

zik = 0 (z(λ) otherwise(zik = 1)). Here Z ′
pq(λ) must be computed by solving problem

30

Algorithm 6 Adaptation of Beasley’s Lagrangean Heuristic (ABLH)

1. Set Zmax = −∞, ZUB = ∞, N = 0, Pik = 0 and Rik = 0 for i = 1, ...,m; k =

1, ..., K, λj = min{cikj : cikj > 0 for i = 1, ...,m; k = 1, ..., K}, Q = ∅ .

2. Solve RDCMLAP with the current set of multipliers to obtain z(λ), zik and uikj.

If z(λ) > Zmax, set N = 0 and Zmax = z(λ). Otherwise set N = N + 1.

3. Solve the transportation problem with zik’s (optimal locations found by solving

RDCMLAP) to obtain a feasible solution to DCMLAP. If the cost associated

with this solution is lower than the current value of ZUB, update ZUB with this

value.

4. If N = 30, then 30 iterations of the subgradient procedure have been performed

without an increase in the maximum lower bound Zmax found so far, halve the step

length parameter π = (π/2), set N = 0 and solve a transportation problem with

the current zik’s (obtained by solving current RDCMLAP) to obtain a feasible

solution to DCMLAP. Update ZUB with the current cost if it is lower.

5. If Zmax = ZUB, then STOP , the feasible solution giving ZUB is optimal.

6. For any facility i and location k, we can update Pik using Pik = max{Pik, z(λ)}

if zik = 1 and Pik = max{Pik, z(λ) + Z ′
ik(λ) − max(Z ′

pq(λ) : zpq = 1, (p, q) /∈

Q, p = 1, ...,m; q = 1, ..., K)} if zik = 0 where Z ′
pq(λ) must be computed by

solving problem SP. We can therefore remove facility-location pair (i, k) from the

problem if Pik > ZUB and (i, k) /∈ Q, since any facility-location pair (i, k) with

Pik greater than ZUB cannot be in an improved feasible solution.

7. For any facility i and location k, we can update Rik using Rik = max{Rik, z(λ)}

if zik = 0 and Rik = max{Rik, z(λ) − Z ′
ik(λ) + min(Z ′

pq(λ) : zpq = 0, p =

1, ...,m; q = 1, ..., K)} if zik = 1 for(i, k) /∈ Q where Z ′
pq(λ) must be computed by

solving SP. We can therefore open facility i at location k by setting Q = Q∪(i, k)

if Rik > ZUB and (i, k) /∈ Q, since any facility i and location k with Rik greater

than ZUB must be open in any improved feasible solution.

8. Calculate the subgradient Gj = dj −
∑m

i=1

∑K
k=1 uikj for j = 1, ..., n

9. If
∑n

j=1 G2
j = 0 or π < 0.0005, go to step 11.

10. Define step size µ(t) by µ(t) = π(1.05ZUB−Zmax)∑n
j=1 G2

j
and update Lagrange multipliers

λj = λj + µ(t)Gj j = 1, ..., n and go to step 2.

11. Report the best feasible solution which gives ZUB calculated so far.

31

SP for the facility-location pairs which are not in Q and which are open in the solution

giving current z(λ). Hence, we can update Pik by comparing the value of the previous

Pik with the final lower bound found and choosing the maximum one. One interesting

feature of the algorithm is that it is possible to remove some facility-location pairs from

the problem if they are proved not to be in the optimal solution. If Pik > ZUB, we

remove pair (i, k) from the problem since Pik is a lower bound on the optimal solution

of DCMLAP when facility i is opened at location k, and it cannot be greater than the

best feasible solution found.

In step 7, we update the maximum lower bounds found (Rik) when facility i is

forced not to be open at location k. Similarly, it is clear that imposing the additional

constraint that a particular facility i cannot be opened at location k in the optimal

solution (zik = 0) results in a corresponding lower bound of z(λ)−Z ′
ik(λ)+min(Z ′

pq(λ) :

zpq = 0, p = 1, ...,m; q = 1, ..., K) if zik = 1 and (i, k) /∈ Q (z(λ) otherwise(zik = 0)).

Here Z ′
pq(λ) must be computed by solving problem SP for the facility-location pairs

which are not open in the solution giving current z(λ). Hence, we can update Rik by

comparing the value of the previous Rik with the final lower bound found and choosing

the maximum one. In this case, it is possible to decide to open facility i at location k

in the optimal solution if Rik > ZUB. If Rik (a lower bound on the optimal solution

of DCMLAP when facility i is not opened at location k) is greater than than the best

feasible solution found, facility-location pair (i, k) must be open in the optimal solution

and we add this pair to set Q.

Remaining steps of the algorithm (steps 8-11) are very similar to the subgradient

algorithm (Algorithm 4) in section 5.2.1.

We made some modifications for step 3 and 4 on Beasley’s heuristic. Beasley

proposed to use an interchange heuristic for that step, but we applied the transportation

algorithm instead.

In contrast to the LRSOSP and LRSO2P, the aim of this heuristic is to obtain

better lower bounds. Since there are some location fixing and elimination operations,

32

ABLH implementation is expected to increase the resource usage with respect to LRSO.

5.3. Lagrangean Heuristics for Continuous Location-Allocation Problem

All the methods proposed above can be used to solve DCMLAP. In this section,

we develop some heuristics for CMFWP by using DCMLAP as an approximation.

These heurictics are described in detail in the following sections.

5.3.1. Discrete Approximation with Customer Locations Heuristic

As stated before, we can use DCMLAP as an approximating problem to solve

CMFWP and approximation becomes more accurate when the number of candidate

location increases. The required computation time also increases with increasing num-

ber of candidate locations. However, if we use some “good” candidate locations instead

of giving all points in the grid the same chance of being a candidate location, we can

obtain a high quality solution with less number of candidate locations. Therefore, we

can prevent the required computation time to increase without sacrificing from solu-

tion quality. It is observed that the facility locations are usually close to the customer

locations in an optimal solution to Euclidean distance uncapacitated multi-facility lo-

cation problem (Hansen et al., 1998). We decided to perform some experiments to

check if this observation is also valid for the capacitated problem. The results of these

experiments can be seen in Table 5.2. The columns of Table 5.2 show the number of

facilities and customers for each test instance and the rate obtained by dividing the

number of facilities located on the customer locations to the total number of facilities.

First eight instances on Table 5.2 are rectilinear distance problems and taken from

literature (Sherali et al., 2002; Sherali et al., 1994). The remaining ones are Euclidean

distance problems and created randomly.

The first eight instances in Table 5.2 are continuous problems while the remaining

ones are discrete problems. As stated before, rectilinear distance facility location prob-

lem has always an optimal solution with facilities located at the intersection points of

vertical and horizontal lines drawn through the customer locations Wendell and Hurter

33

Table 5.2. Overlap rate of the facility locations with customer locations

Instance m n Overlap

rate (%)

8 4 8 100

9 5 15 80

15 5 10 100

16 4 10 75

23 5 8 100

26 5 12 80

29 5 15 60

30 5 20 40

101 5 20 100

102 8 20 100

103 10 25 100

104 5 30 80

105 6 25 100

106 7 30 100

107 6 20 100

108 8 15 100

109 6 30 100

110 8 25 100

Average 89.72

34

(1973). As a result, we can solve the continuous version of this problem optimally by

using these intersection points as the candidate locations in a discrete approximation

heuristic. However, this property is not shared by the other distance metrics and there

are only a small number of instances whose optimal solutions are known in the liter-

ature. Therefore, we treat the remaining ten problems as discrete problems and solve

them by using a discrete approximation. The solutions found are not the optimal so-

lutions of the continuous version of these instances. This difference shows itself in the

overlap rate, since the overlap rate is higher for the discrete problems than the continu-

ous ones. However, this may also be due to the distance metric, i.e., Euclidean distance

problems may have a higher overlap rate than rectilinear distance problems since the

intersections points of vertical and horizontal lines drawn through the customer loca-

tions may be sometimes more favorable than customer locations for rectilinear distance

problems. Nevertheless, the results on Table 5.2 say that it is highly probable for the

optimal facility locations to coincide with the customer locations. Therefore, we are

convinced by this observation to use only customer locations as candidate sites for

facilities.

In the first step of the discrete approximation with customer locations heuristic

(DACL), customer locations are used as candidate locations for facilities and DCMLAP

is solved to find the best locations. Then a single facility Weber problem is solved by

using Weiszfeld’s algorithm for each facility using the set of customers it serves. There

are two approaches to solve the first step of this heuristic. We can either solve it

to optimality by using a commercial solver or we can use our Lagrangean heuristics

explained in Section 5.2 which may not solve DCMLAP to optimality. We have done

experiments for both approaches to assess the performance of our heuristics. The

results of these experiments can be found in Chapter 7.

5.3.2. Cellular Heuristic

Cellular heuristic also tries to obtain a high quality discrete approximation for

CMFWP like DACL heuristic. The difference is that this heuristic generates promising

candidate locations by means of the two-phase heuristic rather than using just customer

35

locations as candidate sites for facilities.

Gamal and Salhi (2003) propose a cellular heuristic to solve Euclidean distance

uncapacitated multi-facility CLAP. In this heuristic, a rectangle is drawn to cover all

the locally optimal facility locations and the rectangle is divided into cells according to

a predefined resolution. Then, facility locations reside within a cell are used to compute

a representative point for that cell. This is also used by Aras et al. (2007) to determine

candidate locations for the solution of the CMFWP using a discrete approximation.

We adopt this idea in our cellular heuristic, but other than dividing the rectangle into

cells according to a predefined solution, we let a clustering algorithm to cluster facility

locations into different classes. In that sense, our method make use of the information

given in terms of facility locations and put clusters to locations where facilities are

grouped with a high density.

First, we run two phase heuristic for a large number of times starting with ran-

domly chosen initial facility locations within the convex hull of customer locations.

Then, we cluster these locally optimal facility locations into classes by using self-

organizing maps (SOM) clustering algorithm. SOM is proposed by Kohonen as an

unsupervised neural network algorithm (Kohonen, 1990). SOM organizes items into

clusters that are situated in some topology that is usually chosen as a rectangular

topology. SOM generate these clusters such that neighboring clusters in the topology

are more similar to each other than clusters far from each other in the topology. We

use the SOM algorithm used to cluster genes at the Human Genome Center, University

of Tokyo (2006). We now describe the steps of our cellular heuristic more formally.

Let x
(t)
i = (x

(t)
i1 , x

(t)
i2)T i = 1, ...,m; t = 1, ..., T be the coordinates of facility i

obtained in the tth two phase run where T is the number of two phase runs performed.

We run self-organizing map algorithm on these locally optimal facility locations. The

first step in this procedure is to form an nx×ny grid over the customer locations. Here

nx is the resolution for x axis and ny is the resolution for y axis. A cluster centroid

is assigned for each rectangle formed by the grids on this topology. Let these cluster

centroids be m1, m2, ..., mnx×ny . These points represent initial class centroids. The

36

algorithm proceeds by taking facility locations one at a time, and finding which cluster

in the topology has the closest centroid. The centroid of that cluster, as well as those of

the neighboring clusters, are adjusted using the data vector of the facility location under

consideration. The adjustment is given by ∆mj = η(x
(t)
i −mj)

T i = 1, ...,m; t = 1, ..., T

where j is the closest centroid and η is the learning rate that decreases at each iteration

step. While changes are made rapidly in the beginning of the algorithm, only small

changes are made at the end. All clusters within a radius R are also adjusted to this

facility location under consideration. This radius decreases as the calculation progresses

as R = Rmax(1−i/N) where i is the number of the current iteration step, N is the total

number of iteration steps to be performed and Rmax is defined as Rmax =
√

n2
x + n2

y.

This procedure is repeated for a fixed number of iterations. At the end, all facility

locations are assigned to classes and some cluster centroids become inactive since no

facility is assigned to them. Therefore, at the end, we have k cluster centroids which

are active, i.e., m1, m2, ..., mk to be used as candidate locations in the formulation of

DCMLAP. Then, we use our Lagrangean heuristics to solve the resulting DCMLAP and

find an approximate solution for CMFWP. In this procedure, we do not differentiate

between the facilities when we are clustering facility locations. An alternative approach

could be to make the clusters for each facility separately.

We illustrate our cellular heuristic in Figure 5.1. The customer locations are

shown by “•”, locally optimal facility locations obtained by two phase runs are shown by

“×” and the cluster centroids are depicted by “�”. nx and ny are 5 and 4 respectively.

There were 5 × 4 = 20 cluster centroids corresponding to each cell in the grid at the

beginning of the algorithm. Figure 5.1 represents an intermediate step of the clustering

algorithm. In this step, there are 6 cluster centroids that are active, and the remaining

20−6 = 14 cluster centroids are inactive. The facility location depicted by bold “×” is

the current location used to update cluster centroids. The large dashed circle around

this facility location determines which cluster centroids will be updated. All clusters

within the radius of this circle are adjusted to this facility location under consideration.

At the end, we use active cluster centroids as candidate facility locations for DCMLAP.

There are three parameters to be set for this new cellular heuristic. These are the

37

Figure 5.1. Illustration of the cellular heuristic

number of initial two-phase runs and grid resolutions, nx and ny. A large number of

runs would certainly increase the chance of obtaining good results, but would increase

the computational effort. On the other hand, a small number of runs would produce

a small number of locally optimal facility locations, therefore inaccurate results. If

the generated facility locations in two phase runs do not have a clustering tendency,

additional two phase runs are needed. Determination of grid resolutions is even harder

than the determination of the number of two phase runs. The selection of nx and ny

effects the number of clusters obtained at the end of the algorithm, therefore the quality

of the solution to DCMLAP. However, we have observed that the number of clusters

found is not affected by grid resolution when this resolution becomes large enough.

Therefore, we make some trials by increasing nx and ny until the number of clusters

becomes constant and then solve the cellular heuristic with these clusters found at the

end.

One more issue for this heuristic is how to determine initial facility locations for

the two phase runs. It should be avoided to start with similar or same initial locations,

otherwise the same solutions are produced for a large number of times. Therefore, we

should give the same chance to all points to be selected as the initial locations.

38

6. THOUGHTS ON THE APPLICABILITY OF SOME

KNOWN OPTIMIZATION METHODS

As mentioned before, the constraint set of CMFWP represents a transportation

polytope (TP), which encourages the usage of network algorithms. It is known that

the optimal solution of CMFWP is attained at an extreme point of this TP. This prop-

erty is also shared by concave minimization (convex maximization) problems where a

concave function is minimized over convex sets. Besides that, there is a huge literature

on network problems where the cost on each arc in the network is a concave function

of the flow on that arc. These problems are called minimum concave cost network flow

problems (MCNFP). These observations lead us to develop some methods which can

exploit the structure of the transportation polytope by using the methods designed

to solve minimum concave cost network flow problems. The literature on the exact

solution procedures for MCNFP ranges from branch-and-bound techniques, dynamic

programming to extreme point ranking methods. Among these methods, we focus

on branch-and-bound techniques, collapsing polytopes method and dynamic program-

ming methods. We also study affine scaling algorithm which is proposed for linear

programming problems and try to adapt it for CMFWP by making some changes on

the structure of the algorithm. In the following sections, we summarize our approaches

which aim at elaborating how these methods can be modified for CMFWP.

6.1. Branch-and-Bound Methods

For a concave minimization problem, there may be many local minima and a

local minimum does not have to be a global minimum. Therefore, a solution procedure

must search all over these local minima to locate the global minimum. Such a search

requirement presents a significant computational burden. This problem is one of the

class of problems identified as NP-complete (Jensen, 1980).

A branch-and-bound approach to MCNFP is developed by Florian and Robillard

39

(1971). This approach assumes that there are capacity restrictions and general concave

costs for the arcs. The method is based on the equivalence of this general network flow

problem to an uncapacitated network flow problem in a bipartite network of a special

form. Since the optimal solution of a concave minimization problem occurs at an

extreme point of the feasible region, the counterpart of an extreme point for a network

structure is an extremal flow. The purpose of the study is to exploit the structure

of these extremal flows in order to construct an implicit enumeration algorithm. The

nodes of the branch-and-bound tree corresponds to trials with various arcs forced to

having extremal flows. The structure of the extreme flows is exploited by constructing

them in a way that prevents the formation of positive loops. It is not necessary to

explore all branches in the tree of extremal flows to find the optimal solution. Lower

and upper bounds can be used to control the enumeration tree. Lower bounds are

found by using a linear underestimation function to the cost of the flow on each arc.

Since this cost is a concave function of the flow, the approximating function can be

obtained by the straight line that connects the origin with the point corresponding to

the maximum flow which can pass over this arc. Figure 6.1 illustrates an example of

the concave cost function and the linear underestimation function. When all the cost

functions are approximated in this way, lower bounds are found by solving a linear cost

transportation problem.

There are many different implementations of the branch-and-bound method for

MCNFP (Gallo et al., 1980; Guisewite and Pardalos, 1991; Zangwill, 1968). We ob-

serve the same approach for the most of these methods to calculate lower bounds on

the optimal objective function value: Lower bounds are found by using a linear un-

derestimation function to the cost of the flow on each arc. Existence of such a linear

underestimation function is the advantage of concave cost problems, however we can-

not find a closed form underestimation or approximation function for the objective

funtion of CMFWP since it is neither concave nor convex. As a result, we have to

propose another method to find lower bounds. Sherali and Tuncbilek (1992) were

successful to develop a method to calculate lower bounds for the CMFWP with the

squared-Euclidean distance. In this method, a linear programming representation of

40

Cost

Flowc

Figure 6.1. An example of a concave cost function and its linear underestimation

function

the original problem is utilized to compute lower bounds via a Lagrangean relaxation

scheme. The special formulation specific to the squared-Euclidean CMFWP makes

such a representation and scheme possible, since there exists a closed form expression

for allocation variables as a function of facility coordinates. However, there is not such

a specific formulation for other lp distance problems, therefore the scheme proposed

for the squared-Euclidean CMFWP is not applicable to other problems. Nevertheless,

Sherali et al. (1994) propose another approach to calculate lower bounds for lp distance

problems in general. This method is not based on a special formulation of the original

problem, but on designing some bounding intervals for the allocation variables. Some

logical tests are developed to determine tighter bounds on the allocation variables wij

based on the structure of the transportation constraints. These bounds are represented

by lij and uij for lower and upper bounds respectively. Since wij ≥ lij for all (i, j), the

lower bound ZLB on the problem can be calculated via the following location problem:

ZLB = min
m∑

i=1

n∑
j=1

cijlijd(xi, aj).

This problem can be solved separably for each facility i for i = 1, ...,m using any

procedure for the single facility location problem such as Weiszfeld procedure.

41

Our main purpose at this step is to develop another method to calculate lower

bounds for CMFWP more effective and more efficient than the ones in the literature.

We decided to focus on dual formulation of our problem. Dual formulation can be

helpful since the dual of a minimization problem is a maximization type, therefore

the objective value of any dual feasible solution can be a lower bound for the original

problem.

The dual formulation of the multi-facility location-allocation problem with lp

distance is given by Love (1974). The dual in this work is formulated for a set of

given allocations. In other words, the dual corresponding to each feasible allocation

is different. It is clear that when feasible allocation variables are given for CMFWP,

the constraints of the problem are satisfied. Then, the dual in fact is written for the

objective function of CMFWP with given feasible allocations. The objective function

whose dual is formulated is z =
∑m

i=1

∑n
j=1 cijwijd(xi, aj) where d(xi, aj) can be any

lp distance function with p > 1. By using quasilinearization, the dual of this problem

can be formulated as the following:

DF:

max g(U) = −
m∑

i=1

n∑
j=1

ajU
T
ij (6.1)

s.t.

n∑
j=1

UT
ij = 0 i = 1, . . . ,m (6.2)

∥∥UT
ij

∥∥
q
≤ wij i = 1, . . . ,m; j = 1, . . . , n (6.3)

where q = p/(p− 1) and Uij = (uij1, uij2). Uij’s are dual variables.

The problem above is a nonlinear programming problem with a linear objective

function. Since (6.2) is linear and (6.3) is convex (
∥∥UT

ij

∥∥
q

is convex in U (Love and

Juel, 1982)), the constraint set is also a convex set. With the help of these properties

and by using a theorem for nonlinear programming problems due to Hillier and Lieber-

42

man (1967), (Love and Juel, 1982) state the location-allocation problem as a concave

minimization problem. Using the dual formulation above, CMFWP can be formulated

as:

min G∗(w) (6.4)

s.t.

m∑
i=1

wij = dj j = 1, . . . , n (6.5)

n∑
j=1

wij = si i = 1, . . . ,m (6.6)

wij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n (6.7)

where G∗(w) is the optimal objective function value of the problem DF solved for given

allocations w.

Here G∗(w) is concave and the problem becomes a concave minimization prob-

lem. It tries to find those wij’s which minimize G∗(w). We tried to make use of this

formulation to calculate lower bounds within a branch-and-bound algorithm. At some

step of this algorithm, we are at a node where some partial information about wij’s are

known, such as some allocations are fixed, or there are some lower or upper bounds

on wij’s and so on. We try to solve a problem in undetermined allocation variables

in the existence of some partial information available for some of them. In DF given

above, the dual is formulated for given wij’s. However, we do not have fixed and given

allocations in any node of the tree except the leaf nodes. Therefore, we must come

up with a method to solve the dual problem with unknown wij’s. We worked on this

a little bit further by investigating other lower bound calculating methods (Love and

Yeong, 1981; Love and Dowling, 1989; Drezner, 1984; Wendell and Peterson, 1984)

on the objective function of facilities location problems. Among these methods, the

one proposed by Love and Dowling (1989) is more relevant for our problem since it is

43

developed for multi-facility location problems. The problem is given by:

min WMp =
m∑

i=1

n∑
j=1

wijlp(xi, aj) (6.8)

where lp(xi, aj) denotes lp distance between facility i and customer j and wij is the

quantity allocated from facility i to customer j. Then the following inequality always

holds:

m∑
i=1

n∑
j=1

wijlp(xi, aj) ≥
m∑

i=1

n∑
j=1

w′
ij|xi1 − aj1|+

m∑
i=1

n∑
j=1

w′′
ij|xi2 − aj2| (6.9)

where w′
ij = wij|xk

i1 − aj1|p−1/l(xk
i , aj, p, q), w′′

ij = wij|xk
i2 − aj2|p−1/l(xk

i , aj, p, q) and

l(xk
i , aj, p, q) = [|xk

i1 − aj1|p + |xk
i2 − aj2|p]1/q and q = p/(p − 1). Here xk

i is any given

location for facilities. The right hand side of the inequality (6.9) is a rectangular

distance multi-facility location problem. An optimal solution to this problem can be

used to yield a lower bound for WMp.

The drawback of this method (and also the other methods mentioned above) is

the same with the dual formulation: It finds lower bounds when wij’s are given. This

is reasonable for these methods, because they are used to find a stopping criterion for

iterative solution methods on single-facility location problems. As a result, we could not

find a method to calculate lower bounds by using the dual formulation. That makes

the implementation of a branch-and-bound method based on the dual formulation

impossible. Therefore, we change direction towards to other solution techniques, such

as concave minimization via collapsing polytopes which is described in detail in the

following section.

6.2. Collapsing Polytopes Method

Falk and Hoffman (1986) propose a procedure to minimize globally a concave

function over a bounded polytope. It is known that transportation polytope is a

bounded convex polytope (Bolker, 1972), but the objective function of CMFWP is not

44

a concave function. However, this fact does not restrict us to apply this method on our

problem, since concavity of the objective function is required only to guarantee a vertex

solution and we know that the optimal solution of CMFWP is attained at an extreme

point of the feasible region. Therefore, we can try to apply the method of collapsing

polytopes on CMFWP. The general problem which Falk and Hoffman address has the

following form:

min f(x) (6.10)

s.t. Ax ≤ b (6.11)

where f is a concave function defined over Rn, and A is an m× n matrix with m > n.

Ai denotes the ith row of A, and ‖Ai‖ denotes its Euclidean norm. The proposed

method has the following assumptions:

1. The set S = {x : Ax ≤ b} is bounded.

2. S has a nonempty interior.

3. There are no degenerate basic solutions of S.

4. Any basic solution of the system C = {v = (x, y) : Ax + ay ≤ b, y ≥ 0} is

nondegenerate where a = (‖A1‖ , ..., ‖Am‖)T and y is a scalar variable.

5. The solution of the linear program

max y (6.12)

s.t. Ax + ay ≤ b (6.13)

is unique.

6. The constraints x ≥ 0 are among those defining S.

Our first attempt is to check if these assumptions are satisfied by CMFWP. The

first and last assumptions are trivially satisfied, but the second one is not fulfilled if the

problem is balanced, i.e., total supply is equal to total demand. We assume that the

problem is balanced when we give the mathematical formulation in Chapter 2, but this

45

assumption is not necessary for the heuristic methods we propose, therefore we can relax

it and add a dummy facility with a positive supply to satisfy the second assumption.

When this dummy facility is added with a high unit transportation cost per unit

distance, CMFWP becomes unbalanced, i.e., total supply exceeds total demand, but

this makes the assumption that S has a nonempty interior satisfied. The addition of

the dummy facility does not create a change for the optimal solution, since this facility

is not used in the optimal solution due to its high transportation cost anyway, and we

can remove it from the solution at the end. Besides the addition of the dummy facility,

we also change equalities in the problem to “≤” type to obtain the same problem

structure given by Falk and Hoffman. Then the problem on which we will apply the

method of collapsing polytopes becomes as the following:

min z =
m∑

i=1

n∑
j=1

cijwijd(xi, aj) +
n∑

j=1

Mw(m+1)jd(xm+1, aj) (6.14)

s.t.

−
m+1∑
i=1

wij ≤ −dj j = 1, . . . , n (6.15)

n∑
j=1

wij ≤ si i = 1, . . . ,m (6.16)

n∑
j=1

w(m+1)j ≤ sm+1 (6.17)

− wij ≤ 0 i = 1, . . . ,m + 1; j = 1, . . . , n (6.18)

where m+1 and sm+1 > 0 is the index and the supply of the dummy facility respectively

and M is an arbitrarily large positive number. We denote the feasible region of this

problem by S.

We cannot give a certain conclusion about the other assumptions, especially for

assumptions 3 and 4, since whether they are satisfied or not depends on problem pa-

rameters and cannot be checked a priori. However, transportation polytopes are mostly

and highly degenerate, therefore we should expect problems during the implementation

of the algorithm to solve the CMFWP. On the other hand, Falk and Hoffman say that

46

problems that do not satisfy these assumptions could still be solved successfully if such

degenerate vertices do not require attention during the execution of the method.

Let problem CP be

max y (6.19)

s.t.

−
m+1∑
i=1

wij +
√

m + 1y ≤ −dj j = 1, . . . , n (6.20)

n∑
j=1

wij +
√

ny ≤ si i = 1, . . . ,m + 1 (6.21)

− wij + y ≤ 0 i = 1, . . . ,m + 1; j = 1, . . . , n (6.22)

Let r denote the vector of slack variables for CP. The optimal solution of CP

yields a point w0 ∈ S that is the center of the largest sphere contained in S. The

value y0 is the radius of this sphere. First step in the algorithm is to identify neighbors

(w0,i, y0,i, r0,i) of (w0, y0, r0). In order to generate the first enclosing polytope S0 of S,

we need to extend the rays beginning at (w0, y0) and passing through the neighbors

(wi, yi) until these rays intersect the hyperplane y = 0. At stage k, we will have a tree

Tk whose terminal nodes v = (wt, yt) will correspond with vertices of C. There will be a

value zt corresponding to the objective function z evaluated at a point associated with

vt associated with each of these nodes. We chose the vertex vt that has the minimum

associated zt value over all such terminal vertices. If the point associated with vt is in

S, then it is optimal. If this point is not in S, we identify neighbors of vt satisfying

yt,i < yt and is not a member of the tree associated with stage k. As before, we extend

the rays emanating from vt through these neighbors until they intersect the hyperplane

y = 0. This process continues in this manner until the stopping condition is satisfied.

The method can be summarized formally in Algorithm 7.

We decided to implement the method of collapsing polytopes on CMFWP and

apply it on a small instance in order to observe if the unsatisfied assumptions are prob-

lematic or not. An important issue to be resolved is the calculation of objective function

47

Algorithm 7 The method of collapsing polytopes for CMFWP

1. Solve CP and obtain solution v0 = (w0, y0, r0). Set z0 =∞. This solution builds

up and initializes the tree of vertex solutions T0 = {(v0, z0)}. Set k = 0.

2. With the current Tk at stage k, select a terminal node vt whose associated value

zt is minimum of all terminal nodes. If the associated yt = 0, stop with global

optimal solution w∗ = wt and z∗ = zt.

3. Identify the neighbors vt,i of vt satisfying

a) yt,i < yt

b) vt,i /∈ Tk

4. For each such vt,i, compute the point ft,i, i.e., the extension of the ray from

vt through vt,i where it pierces the plane y = 0. Compute zt,i, the objective

function value of the point ft,i. The tree Tk+1 is the tree Tk with the new nodes

vt,i satisfying a) and b), and with the links joining vt to those new vt,i. Set

k ← k + 1 and go to step 2.

value when we implement this method on CMFWP. The method first determines which

vertices to take into consideration at some step and then finds objective values corre-

sponding to those vertices. This means that we can calculate objective function value

for a vertex by first finding the optimal facility locations corresponding to this vertex,

and then calculating distance matrix between facilities and customers. When distance

matrix is found, the resulting objective function becomes linear in allocation variables

and its value can be calculated with given allocations and cost multipliers. Now, we

can illustrate the algorithm on a small instance of CMFWP. However, in order to keep

necessary calculations at the minimum, we decided to implement the algorithm on the

transportation problem. This can also help us to concantrate on those issues related

to degeneracy of transportation polytope, if they exist. In the instance, there are 4

facilities (one of which is dummy) and 4 customers whose supplies and demands are

given in Table 6.1 where F denotes facilities and C denotes customers. Unit shipment

costs between each facility and customer are also given. The distance metric is the

Euclidean distance.

The first step in the algorithm finds an initial point to start which solves the

48

Table 6.1. An instance of CMFWP for collapsing polytopes method

Demand 58 46 42 14

Supply cij C1 C2 C3 C4

61 F1 1 5 1 2

69 F2 4 2 4 2

30 F3 3 2 4 1

40 F4 1000 1000 1000 1000

problem

max y (6.23)

s.t.

−
4∑

i=1

wij + 2y ≤ −dj j = 1, ..., 4 (6.24)

4∑
j=1

wij + 2y ≤ si i = 1, ..., 4 (6.25)

− wij + y ≤ 0 i = 1, ..., 4; j = 1, ..., 4 (6.26)

When we solve this problem, we find the initial point w(0) given in Table 6.2 with

y(0) = 2.5.

Table 6.2. Initial point of the example for collapsing polytopes method

wij C1 C2 C3 C4

F1 2.5 43.5 7.5 2.5

F2 30.5 2.5 19.5 11.5

F3 2.5 2.5 17.5 2.5

F4 27.5 2.5 2.5 2.5

Next step is finding m × n + 1 = 17 neighbors of the initial point by pivoting

in those 17 components of r(0) that are zero using the minimum ratio rule. However,

we focus the ones satisfying conditions a) and b) given in step 3 of Algorithm 7. All

17 neighbors satisfy these conditions. Now, we have to generate the first enclosing

49

polytope S0 by extending the rays beginning at (w(0), y(0)) and passing through the

neighbors until these rays intersect the hyperplane y = 0. These points on y = 0

may or may not be feasible to S. Then, we calculate objective function values of these

points and choose the neighbor of (w(0), y(0)) corresponding to the point with minimum

objective value. The minimum objective value becomes z(0) = 613 for the point w(1)

given in Table 6.3 with y(1) = 0.375.

Table 6.3. The point in the first step of the example for collapsing polytopes method

wij C1 C2 C3 C4

F1 0.375 45.625 13.875 0.375

F2 53.875 0.375 0.375 13.625

F3 0.375 0.375 28.125 0.375

F4 4.125 0.375 0.375 0.375

Since y(1) > 0, we cannot stop. We perform the same operations described above

on this point and at the end of step 2, we find the point in Table 6.4 as the one with

minimum corresponding objective value z(1) = 610 and y(2) = 0.

Table 6.4. The point in the second step of the example for collapsing polytopes

method

wij C1 C2 C3 C4

F1 0 46 15 0

F2 58 0 0 11

F3 0 0 27 3

F4 0 0 3 0

Since y(2) = 0, we have to stop, however the point in Table 6.4 is not the optimal

solution. When we investigate the reasons, we have seen that this point is a degenerate

point. This means that assumption 3 is violated as we expect. Besides that, the method

collapses the face of the polyhedron C where y = 0 before it finds optimal solution.

We made other experiments on this instance by putting an extra rule to the algorithm

in order to make it advance: we keep iterating although the stopping condition y = 0

50

is satisfied. However, new solutions are always on the hyperplane where y = 0 and

the algorithm continues to give the same objective function value as the last iteration,

i.e., z = 610. This is because of the fact that neighbors which the method finds for

the degenerate point is again the same point which has a different basis structure, but

with the same objective function value due to degeneracy. As a result, we could not

come up with a solution procedure to solve this degeneracy issue. So, we have decided

to discard collapsing polytopes method and concentrate on another method.

6.3. Send-and-Split Method

Send-and-split method is a dynamic programming approach to find a minimum

cost flow in a network where the flow cost is additive and concave in the flow in each

arc (Erickson et al., 1987). This method makes use of the property that a minimum

cost flow is an extreme flow and searches these extreme flows to find one with minimum

cost.

Let G = (N, A) be a directed graph of a set N of n nodes and a set A of a arcs.

D denotes the set of demand nodes (sources and sinks) that have nonzero demands

within the set N and cij is the cost on arc (i, j). Subproblem i→ I is constructed by

setting dj = 0, j ∈ N\I and replacing di by di = di −
∑

j∈I dj where I is a subset

of D. We can view this subproblem as satisfying only the demands of nodes in set I

when we changed the demand of node i to some type of preflow which can be positive

or negative depending on I. Let CiI denote the minimum cost solution to subproblem

i→ I and Ij denote I\j. Then we find:

• If
∑

k∈I dk = 0 then CiI = CjIj
, j ∈ I.

• If dI =
∑

k∈I dk 6= 0 then CiI = min{min(i,j)∈AI
[cij(dI) + CjI], BiI} where AI

is A if dI > 0 or A with the arc directions reversed if dI < 0 and for |I| > 1,

BiI = min∅⊂J⊂I [CiJ + Ci,I\J] and for |I| = 1, BiI = 0 if I = {i} and BiI = +∞

otherwise.

The procedure described above is called send-and-split method due to the fact

51

that the minimum solution of a subproblem results from performing either sending or

splitting operations. Sending operation is to send all flow from node i to node j with

a cost of cij(dI), then solving the subproblem j → I which results in a total cost of

cij(dI) + CjI . This can occur for any node j. Splitting operation is to split the flow at

node i to satisfy the requirements in sets J and I\J , for any subset ∅ ⊂ J ⊂ I. Once

the subproblems are solved for all subsets of I, two decisions have to be made at each

node i based on these operations. The first one is to solve the set-splitting problem of

finding a minimum-cost split of I into two nonempty subsets J and I\J , and the cost

of split is the sum of the minimum costs for the subproblems i→ J and i→ I\J . The

second decision is to find a minimum cost chain along which to ship the demand at I

from each node i to a node at which it is optimal to incur the cost of splitting I into

subsets. Then the optimal solution for subproblem i → I becomes the minimum of

these operations. The desired minimum cost over all flows for the original problem is

CiD for all i ∈ N and the idea of the algorithm is to solve the subproblems inductively

on the cardinality of I and to find the minimum cost flow when I = D.

The algorithm described above is not applicable to our problem with the form

given above. The objective function of our problem is z =
∑m

i=1

∑n
j=1 cijwijd(xi, aj),

this means that we do not have additive costs for each arc due to the existence of the

term d(xi, aj). If the locations of the facilities were known, then the distance between a

facility and a customer (d(xi, aj)) would also be known and our problem would reduce

to a linear cost (which is both convex and concave) transportation problem. However,

the locations of the facilities are unknown in our problem, this means that d(xi, aj)’s

are also decision variables whose values have to be set. Therefore, CMFWP does not

satisfy the assumption that total flow cost is additive in the flow on each arc. In order to

restore this assumption back, we decided to apply a different procedure. While solving

a subproblem i→ I, we can locate a facility in I (or i if it is a facility) with respect to

the customers in I. In this case, we are solving a single facility location problem whose

solution is quite easy with respect to multi-facility case. The location of a facility can

be determined by using an iterative solution approach such as Weiszfeld’s procedure.

When the location of facility i is found, then d(xi, aj) terms in the objective function

becomes known and the cost becomes additive on each arc. It is useful to illustrate

52

send-and-split algorithm with this procedure on a small instance of CMFWP.

There are 2 facilities (nodes 1 and 2) and 3 customers (nodes 3, 4 and 5) whose

supplies (negative) and demands (positive) are given in the network in Figure 6.2 be-

low. Customer locations are also given next to each customer. The distance metric

used is the squared Euclidean distance.

1

4

3

2
5

-4

-10

5 (2, 2)

7 (3, 1)

2 (4, 3)

CustomersFacilities

Figure 6.2. An instance of CMFWP illustrated on a network structure

We have to solve all subproblems i→ I beginning with subsets I whose cardinal-

ities are equal to 1. Since there are 5 demand nodes (both facilities and customers),

there are 25−1−1 = 30 subsets of those demand nodes and therefore we have to solve

5× 30 = 150 subproblems.

Before performing iterations for this example, it is quite useful to mention a point:

It is clear that set I may consist of both customers and facilities. When i is a facility

and set I also includes another (or the same) facility, say j, existence of the solution to

this subproblem depends on the sign of dI\{i}. There are two possible cases : dI\{i} > 0

or dI\{i} < 0. When dI\{i} > 0, then di = −dI\{i} becomes negative, therefore i behaves

like a supply node for this subproblem. Since i was originally a supply node and arcs

are directed such that their tails are incident to facility i, there exists a solution to

this subproblem. In the other case where dI\{i} < 0, di becomes positive and i begins

to behave like a demand node. Then we cannot find a solution to this problem since

53

it is not possible to satisfy the requirement of facility i with given network structure

(arcs are not directed toward i to make a shipment to i possible). The optimal solution

of such subproblems are denoted by ∞ which means that a solution does not exists

for this subproblem. The same thing is also relevant for the subproblems where i is a

customer and set I consists of another (or the same) customer. In this case, a solution

exists if dI\{i} < 0 and optimal solution is ∞ if dI\{i} > 0.

Initial step in the solution of each subproblem is locate facilities with respect to

customers in I. For subproblems where |I| = 1, this is quite easy since we locate a

facility on top of the customer in I (or locate the facility in I on top of customer i). In

this case, the distance between facility i and customer in I becomes zero, therefore the

cost of sending for these problems becomes zero since we try to satisfy the requirement

of the customer in I from facility i whose distance to this customer is zero. Then the

optimal solution becomes also zero although the cost of splitting may be∞ when |I| = 1

and I 6= {i}. However, if i and the node in I are both facilities or both customers, the

optimal solution becomes∞ based on the argument given in the preceding paragraph.

Table 6.5 summarizes CiI values for all |I| = 1 and subsets {i}.

Table 6.5. Optimal solutions for subproblems where |I| = 1

I dI C1I C2I C3I C4I C5I

{1} -4 0 ∞ 0 0 0

{2} -10 ∞ 0 0 0 0

{3} 5 0 0 0 ∞ ∞

{4} 7 0 0 ∞ 0 ∞

{5} 2 0 0 ∞ ∞ 0

Since the results obtained for |I| = 1 seems realistic up to now, we can continue

with |I| = 2. There are 10 subsets with cardinality 2. There are different subproblem

formations at this step depending on the content of i and I. We elaborate each case

below.

• For a subproblem where I consists of just facilities and i is a customer, for example

54

3 → {1, 2}, we can locate facilities in I on top of customer i to satisfy the

requirement of i, therefore the cost of sending becomes zero for such subproblems,

since the distance between facilities and the customer becomes zero. In order to

find the optimal solution, we should also find the cost of splitting, i.e., BiI . Since

I just consists of two facilities, when we split I, we obtain two subproblems, i.e.,

3 → {1} and 3 → {2}. Total cost of this split is also zero since C3{1} and C3{2}

are both zero from Table 6.5. As a result, optimal solution of this subproblem

(C3{1,2}) becomes zero.

• For a subproblem where I consists of a facility and a customer and i is a facility,

for example 2 → {1, 3}, the cost of sending is found as in the previous case and

therefore becomes zero. However, the cost of split becomes ∞ in this case since

the cost of the subproblem 2→ {1} is∞. Nevertheless, optimal solution becomes

zero due to min{0,∞} = 0.

• In a subproblem where I consists of a facility and a customer and i is a customer,

for example 4→ {2, 3}, there are two customers and a single facility. Therefore,

we should find the location of facility 2 using Weiszfeld’s procedure. Since the

requirements of both customer 3 and 4 is 5 for this subproblem, facility 2 is located

in the middle of the line segment joining 3 and 4 and the distance to both 3 and

4 becomes 0.5. In order to find the cost of sending, we should find a minimum

cost chain, and solve min(4,j)∈AI
[c4j(dI) + CjI]. The minimum is attained for

j = 2 and the cost of sending becomes c42(5) + C2{2,3} = 0.5 × 5 + 0 = 2.5.

However, this solution is not correct, because the real cost of sending for this

subproblem must be the sum of the costs of sending from facility 2 to customer

3 and facility 2 to customer 4, i.e., 5 × 0.5 + 5 × 0.5 = 5. This difference is due

to our solution procedure used to overcome the problem of nonadditive arc costs.

When we locate facility 2 between customers 3 and 4, total flow cost found by the

algorithm becomes just the cost of sending from facility 2 to customer 3 since the

cost of sending from facility 2 to customer 4 is zero. It is zero because while we

are solving subproblem 2→ {2, 4}, we locate facility 2 on top of customer 4 and

therefore the distance and the cost becomes zero for this subproblem. Although

this observation lead us to conclude that our solution procedure does not work

as we expected, we continue to solve subproblems in accordance with send-and-

55

split method. In other words, we took 2.5, not 5 as the cost of sending of the

previous subproblem which is found by send-and-split method. Table 6.6 shows

the optimal solutions of the other subproblems where |I| = 2.

Table 6.6. Optimal solutions for subproblems where |I| = 2

I dI C1I C2I C3I C4I C5I

{1,2} -14 ∞ ∞ 0 0 0

{1,3} 1 0 0 0 ∞ ∞

{1,4} 3 0 0 ∞ 0 ∞

{1,5} -2 0 0 ∞ ∞ 0

{2,3} -5 ∞ 0 0 2.5 6.25

{2,4} -3 ∞ 0 1.5 0 3.75

{2,5} -8 ∞ 0 10 10 0

{3,4} 12 0 0 ∞ ∞ ∞

{3,5} 7 0 0 ∞ ∞ ∞

{4,5} 9 0 0 ∞ ∞ ∞

Since the optimal solutions of all subproblems with |I| = 2 are found, we can

continue with |I| = 3. There are 10 subsets with cardinality 3. There are again

different subproblem formations at this step depending on the content of i and I, but

it is better to give attention to the ones where I and i together consist of more than one

facility, for example 1→ {2, 3, 4}. This subproblem has two facilities to be located. We

can locate each facility separately with respect to the requirements of customers 3 and

4, however this approach disregards the fact that these facilities does not satisfy those

requirements used to find locations in the optimal solution of this 2-facility, 2-customer

subproblem. Therefore, the locations found become nonoptimal, and we have to solve

a 2-facility, 2-customer location problem to find the location of these facilities. This

means that we cannot obtain any benefit from the dynamic programming approach if

we have to solve a multi-facility location problem optimally. As a result, we decided

not to implement send-and-split method for CMFWP since all these results make the

operation of our solution procedure impossible. Therefore we conclude that send-and-

split method cannot be adapted to solve CMFWP.

56

6.4. Affine Scaling Methods

Affine scaling is an interior point algorithm proposed by Dikin (1967) for solv-

ing linear programming problems. It solves problems by following a pathway toward

optimality through the interior of the feasible region. It is a variant of Karmarkar’s

well-known interior point algorithm and has different forms depending on whether it

is applied on primal or dual form of the problem. These methods are generally applied

on linear programs in the standard form as the following:

P: Min cTx

s.t. Ax = b

x ≥ 0

where P denotes the primal and

D: Max yTb (6.27)

s.t. yT A + s = c

s ≥ 0

where D denotes the dual form of the standard formulation.

Affine scaling algorithms have taken the attention of many researchers in the solu-

tion of linear transportation problems (Resende and Veiga, 1993; Portugal et al., 1993).

As stated earlier, feasible region of the CMFWP is a transportation polytope, how-

ever CMFWP is not a transportation problem, nor it is a linear programming problem

since it has a nonlinear objective function. Therefore, we cannot apply affine scaling

algorithm in its original form. However, we could design a procedure which incorpo-

rates affine scaling algorithm in itself and has some extra update rules to overcome

the assumption that the objective function is linear. Our main purpose to apply affine

scaling method on CMFWP is to see whether the method converges to the optimal

extreme point at the end. We now describe this method in more detail.

57

Transportation problem can be represented in the form of standard linear pro-

grams P and D given above. In order to make A full rank, we have to drop a constraint

from TP since it has one redundant constraint if the problem is balanced, i.e., total

supply is equal to total demand. Therefore, at the end, we come with a TP where

b ∈ Rm+n−1, x, c ∈ Rm×n and A ∈ R(m+n−1)×(m×n) with full rank in primal form and

y ∈ Rm+n−1 and s ∈ Rm×n in dual form. The following algorithm summarizes the steps

of affine scaling method applied on the primal form of CMFWP.

Algorithm 8 Primal affine scaling algorithm

1. Pick an interior point x(0) such that Ax(0) = b and x(0) > 0. Set k = 0.

2. Calculate affine transformation vector y as y = (D(k))−1x(k) where

D(k) = diag{x(k)
1 , ..., x

(k)
(m×n)}.

3. Find optimal facility locations corresponding to allocation vector x(k) and calcu-

late the distance from each facility to each customer.

4. Define the gradient of the objective function c̄ = cdD(k) where d ∈ Rm×n is the

distance vector.

5. Find Cp = [I − (AD(k))T [A(D(k))2AT]−1(AD(k))]c̄T .

6. If Cp=0, then STOP. The current solution x(k) is optimal for P. Otherwise,

find a direction vector r(k) and a step size λ to update x(k) by using x(k+1) =

x(k) + λr(k) where r(k) = −D(k)Cp. λ takes values in the interval (0, λmax) where

λmax = minimum

{
x
(k)
j

−(r
(k)
j)

: r
(k)
j < 0

}
. Generally λ is updated as λ = αλmax

where 0 < α < 1, but in practice 0.95 < α < 0.99.

Affine scaling algorithm, in its original form, generates a sequence of vectors

{x(k)}∞k=0 converging to x∗, the optimal solution of P. However, we are not sure if the

method described above can expose such behavior since we do not have constant cost

multiplier vector c, but we update c in each iteration due to the change in the loca-

tion of facilities in that iteration. This may cause the direction vector r(k) to show

an unstable pattern. Figure 6.3 and Figure 6.4 show the behavior of original affine

scaling algorithm applied to a linear transportation problem and expected behavior of

our method applied to CMFWP, respectively. First one shows a smoother convergence

behavior toward the optimal extreme point x∗, while we expect the second one to show

58

an unstable behavior as in Figure 6.4 due to change in c in each iteration.

We are not able prove that our procedure converges to the optimal extreme point

as in Figure 6.4. We will see if this occurs by performing some experiments. In the

experiment, we use a test problem with 2 facilities and 4 customers whose supplies and

demands are given in Table 6.7 where F denotes facilities and C denotes customers.

Coordinates of each customer are also given. The distance metric used is the Euclidean

distance.

Table 6.7. An instance of CMFWP for affine scaling algorithm

Supply/Demand Coordinates

F1 5 -

F2 21 -

C1 5 (1,4)

C2 7 (1,1)

C3 8 (2,2)

C4 6 (3,1)

Optimal solution of the problem in terms of wij’s is given in Table 6.8.

Table 6.8. Optimal solution of the instance for affine scaling algorithm

wij C1 C2 C3 C4

F1 5 0 0 0

F2 0 7 8 6

In the first step, we have to choose an initial interior point. After that, we apply

the algorithm until it converges. Table 6.9 summarizes the results of some experiments

which we report both the initial interior point and the final extreme point where the

algorithm converges at the end.

When we look at the results in Table 6.9, we see that the final solution depends

very much on the initial point. The method converges to an extreme point where the

initial point is closer to. Therefore, we can conclude that the proposed procedure cannot

find the global minimum. Nevertheless, we can use this procedure as a heuristic if the

59

Figure 6.3. Convergence behavior of the affine scaling algorithm applied on linear

transportation problem

Figure 6.4. Expected convergence behavior of the affine scaling algorithm when

applied on CMFWP

60

Table 6.9. Results of some trials for affine scaling algorithm

Trial 1

Initial point Final solution

wij C1 C2 C3 C4 wij C1 C2 C3 C4

F1 1 1 1 2 F1 0 0 0 5

F2 4 6 7 4 F2 5 7 8 1

Trial 2

Initial point Final solution

wij C1 C2 C3 C4 wij C1 C2 C3 C4

F1 2 1 1 1 F1 5 0 0 0

F2 3 6 7 5 F2 0 7 8 6

Trial 3

Initial point Final solution

wij C1 C2 C3 C4 wij C1 C2 C3 C4

F1 1.25 1.25 1.25 1.25 F1 5 0 0 0

F2 3.75 5.75 6.75 4.75 F2 0 7 8 6

Trial 4

Initial point Final solution

wij C1 C2 C3 C4 wij C1 C2 C3 C4

F1 1 3 0.5 0.5 F1 0 5 0 0

F2 4 4 7.5 5.5 F2 5 2 8 6

Trial 5

Initial point Final solution

wij C1 C2 C3 C4 wij C1 C2 C3 C4

F1 1 0.5 3 0.5 F1 0 0 5 0

F2 4 6.5 5 5.5 F2 5 7 3 6

61

final solutions found have good quality on the average. After we generate initial feasible

interior points randomly, we can apply the algorithm and find the average deviation

of the objective values of the final solutions from the optimal solution. However, the

generation of feasible interior points is not an easy task since we have to both satisfy

supply and demand constraints and also make all wij’s positive. We could achieve this

for an instance which has 2 facilities and 4 customers, but could not generate random

initial points for a larger instance with 4 facilities and 8 customers. As a result of

these observations, we conclude that it can be better to apply affine scaling algorithm

on dual form of the problem since we do not have such a problem in the generation

of initial point in the dual form. We know that the CMFWP does not have a closed

form dual if d(xi, aj)’s are unknown. However, if we locate facilities somewhere in the

plane, d(xi, aj)’s become known and the objective function becomes linear in terms of

cij’s and we can write the dual of the problem. The following algorithm is based on

this fact.

Algorithm 9 Dual affine scaling algorithm

1. Locate facilities randomly within the convex hull of the customer locations and

calculate distance vector d corresponding to these locations. Then find new cost

multipliers by c′ = cd.

2. Pick an interior point y(0) such that y(0)A < c and s(0) > 0 where s(0) = c′ −

ATy(0). Set k = 0 and repeat steps 3-6 until y converges.

3. Calculate ∆y = (A(S(k))−2AT)−1b and ∆s = −AT ∆y where

S(k) = diag{s(k)
1 , ..., s

(k)
m×n}.

4. Calculate x(k+1) = −(S(k))−2∆s.

5. If x(k+1) > 0, then find new locations corresponding to the new allocations x(k+1)

and find new distance vector d′. Calculate new cost multipliers by c′′ = cd′.

Otherwise, set c′′ = c′.

6. Find a step size λ to update y(k) by using y(k+1) = y(k) +λ∆y . λ takes values in

the interval (0, λmax) where λmax = minimum

{
c′′j−c′j+s

(k)
j

−∆sj
: ∆sj < 0

}
. Generally

λ is updated as λ = αλmax where 0 < α < 1, but in practice 0.95 < α < 0.99.

In the original formulation of the affine scaling algorithm, λmax is calculated as

λmax = minimum

{
s
(k)
j

−∆sj
: ∆sj < 0

}
. However, in our case, cost multipliers change,

62

therefore the right-hand side of the constraints yA = c also changes. If we find λmax

by using this rule, we can come up with an infeasible y. Therefore we change the

update rule of λmax in step 6 by adding c′′j − c′j to the nominator. The most important

problem of the dual method is the fact that x(k)’s may become infeasible and negative

during iterations. Since these variables represent allocations and are used to find new

locations at each step, it is meaningless to use them to calculate locations when they

take negative values. Therefore, we put a check as x(k+1) > 0 in step 5 before finding

locations and if the check is not satisfied, we continue to work with the previous

locations until x(k+1) become nonnegative.

When we implement this algorithm and apply on the instance given above, we

observe so many x(k)’s with negative entries. As a result, the algorithm performs poorly

since we cannot see the advantage of updating cost coefficients. Therefore, we conclude

that affine scaling methods are not helping us to find a global minimum to CMFWP,

but can be used as heuristic procedures when designed suitably; this definitely requires

serious attention.

63

7. COMPUTATIONAL RESULTS

7.1. Lagrangean Heuristics for Discrete Location-Allocation Problem

In this section we first assess the performance of the new Lagrangean heuristics

both in terms of the solution quality and computation time on twenty three DCMLAP

instances. Eight of these twenty three instances are rectilinear-distance problems and

taken from literature (Sherali et al., 2002; Sherali et al., 1994). The remaining fifteen

instances are Euclidean-distance problems and created randomly. For each test prob-

lem, we give in Table 7.1 the number of facilities to be located (m), the number of

customers (n) and the number of candidate locations (K) within the convex hull of the

customer locations. The optimal solutions for the rectilinear distance problems and

the first ten of the Euclidean distance problems are available, but the optimal solu-

tions for the remaining five of the Euclidean distance problems are not available. The

optimal solutions of these problems could not be found due to memory restrictions.

The instances for which we could find the optimal solutions form the first group of

instances, and the remaining ones form the second group. The optimal solutions for

the first group of instances are found by using Cplex 9.0.2 with default options. The

experiments are performed on a Pentium 4 3.2 GHz machine with 2 GB RAM working

in Windows environment. We solve the transportation problem by using the minimum

cost flow problem freeware obtained from The Operation Research Group in University

of Pisa (2006). To find the convex hull of the customer locations we used Graham’s

scan (Graham, 1972).

Table 7.2 displays the percentage deviations from the optimal objective value

for all the methods we proposed for DCMLAP. These deviations are calculated as

100 × (Z∗ − ZLR)/Z∗ for lower bounds and 100 × (ZUB − Z∗)/Z∗ for upper bounds

where Z∗ denotes the optimal objective value. They cannot be calculated for those

instances whose optimal solution is not known. Therefore, we decided to calculate the

deviations for those instances as 100× (ZUB−ZLR)/ZLR and we report them on Table

7.3. LRSO, LRSOSP and LRSO2P give the same lower bound values, therefore the

64

Table 7.1. Instances in the test set

Instance m n K

8 4 8 22

9 5 15 71

15 5 10 29

16 4 10 33

23 5 8 30

26 5 12 63

29 5 15 116

30 5 20 190

101 5 20 94

102 8 20 57

103 10 25 79

104 5 30 114

105 6 25 222

106 7 30 78

107 6 20 185

108 8 15 81

109 6 30 137

110 8 25 126

121 10 50 1088

122 5 50 1251

123 5 75 1905

124 10 75 1957

125 10 100 3450

65

deviations for the lower bounds for these methods are shown on a single column in

Table 7.2. Table 7.2 also includes the optimal objective values.

Table 7.2. Per cent deviations from the optimal values for Lagrangean heuristics (%)

LRSO,

LRSOSP, LRSO LRSOSP LRSO2P ABLH ABLH

LRSO2P

Instance (m,n) Optimal LB UB UB UB LB UB

value

8 (4,8) 793.00 6.63 0.00 0.00 0.00 6.70 0.00

9 (5,15) 9619.00 0.71 0.31 0.31 0.16 0.72 0.31

15 (5,10) 3427.00 2.31 2.16 2.16 2.16 2.26 2.16

16 (4,10) 259.00 6.73 57.14 40.15 0.00 6.98 57.14

23 (5,8) 238.00 5.56 0.00 0.00 0.00 4.87 0.00

26 (5,12) 284.00 3.73 53.52 10.56 3.52 3.56 53.52

29 (5,15) 729.00 1.62 0.00 0.00 0.00 1.45 0.00

30 (5,20) 745.00 1.50 1.88 0.00 0.00 1.66 1.88

101 (5,20) 109.18 31.93 0.00 0.00 0.00 30.30 11.52

102 (8,20) 405.17 4.95 0.71 0.71 0.00 4.50 0.71

103 (10,25) 457.38 5.31 13.12 7.98 2.17 5.51 13.09

104 (5,30) 1228.88 1.52 1.76 1.76 0.00 1.38 1.76

105 (6,25) 1839.78 1.73 0.00 0.00 0.00 1.82 0.00

106 (7,30) 934.26 8.92 2.42 0.00 0.00 8.82 1.66

107 (6,20) 3175.92 3.21 0.39 0.39 0.00 3.26 0.39

108 (8,15) 1674.40 9.94 0.40 0.40 0.19 9.95 2.62

109 (6,30) 1727.73 4.69 1.53 1.53 0.00 4.81 1.53

110 (8,25) 379.45 8.03 8.19 8.19 6.74 8.38 8.07

Average deviation 6.06 7.97 4.12 0.83 5.94 8.69

Table 7.4 includes the CPU times in seconds, first column being the CPU times

of optimal solutions found using CPLEX for the instances we could find the optimal

solutions and the other columns being the CPU times of LRSO, LRSOSP, LRSO2P

and ABLH, respectively. Table 7.5 displays the CPU times of the proposed methods

for the second group of instances.

66

Table 7.3. Duality gap between lower and upper bounds for Lagrangean heuristics

Instance (m, n) LRSO LRSOSP LRSO2P ABLH

121 (10,50) 2.28 1.86 1.86 2.27

122 (5,50) 2.76 2.69 2.62 2.77

123 (5,75) 2.88 2.79 2.79 2.88

124 (10,75) 6.67 5.66 1.74 6.68

125 (10,100) 1.56 1.29 0.38 1.54

Average duality gap (%) 3.23 2.86 1.88 3.23

Table 7.4. CPU times of Lagrangean heuristics for the instances with known optimal

solutions

Instance (m, n) Cplex LRSO LRSOSP LRSO2P ABLH

8 (4,8) 0.23 0.69 0.67 1.48 0.89

9 (5,15) 3.34 2.92 2.88 4.55 4.59

15 (5,10) 0.36 1.16 1.14 2.09 1.50

16 (4,10) 1.59 1.02 1.00 2.08 1.31

23 (5,8) 0.59 0.89 0.88 1.58 1.28

26 (5,12) 11.02 2.27 2.25 4.03 3.59

29 (5,15) 66.83 4.50 4.44 7.25 8.66

30 (5,20) 927.11 9.27 9.03 13.94 19.63

101 (5,20) 20.09 5.00 4.92 7.25 7.75

102 (8,20) 5.72 4.92 4.84 8.33 7.70

103 (10,25) 96.39 9.98 9.98 17.50 17.66

104 (5,30) 12.56 8.03 8.02 10.98 12.06

105 (6,25) 840.09 15.61 15.36 21.06 36.13

106 (7,30) 116.83 8.38 8.38 14.03 12.17

107 (6,20) 215.89 10.63 10.42 15.11 24.25

108 (8,15) 51.27 5.11 5.05 8.55 10.33

109 (6,30) 625.28 11.83 11.78 17.17 20.05

110 (8,25) 518.42 12.03 11.86 19.09 23.66

Average CPU time 195.20 6.35 6.27 9.78 11.84

The percentage deviations from the lower bounds for the mere Lagrangean relax-

ation based methods (LRSO, LRSOSP and LRSO2P) and the adaptation of Beasley’s

heuristics (ABLH) are nearly the same. What we expect from ABLH is an improve-

ment on the lower bounds, but it could not achieve such an improvement. When we

observe the upper bounds, which are more important since upper bounds give feasible

solutions to the problems, it is seen that the best upper bounds are given by LRSO2P

as expected. Application of the two phase heuristic at each iteration is the main reason

for this method to be the best one.

67

Table 7.5. CPU times of Lagrangean heuristics for the instances without optimal

solutions

Instance (m, n) LRSO LRSOSP LRSO2P ABLH

121 (10,50) 190.31 189.25 316.11 1433.77

122 (5,50) 130.63 129.48 203.59 550.58

123 (5,75) 333.00 330.52 545.85 1240.28

124 (10,75) 586.49 584.63 1042.54 4577.28

125 (10,100) 1391.69 1388.48 2436.69 13557.78

Average

CPU time 526.42 524.47 908.96 4271.94

The worst CPU times are reported for ABLH, although it could not bring any im-

provement on the lower or upper bounds. The CPU time required is even worse for the

large sized problems in Table 7.5. The CPU time required by LRSO2P is higher than

LRSO and LRSOSP although it gives the best results on the upper bounds. However,

LRSO2P is twenty times faster on the average than the exact solution procedure for the

first group of instances. Therefore, we decided to use LRSO, LRSOSP and LRSO2P for

the other heuristics we designed for CMFWP since ABLH seems inadequate in terms

of both the solution quality and CPU time.

To summarize, we could achieve to eliminate most of the optimality gap within a

reasonable CPU time for most of the problems by using the Lagrangean heuristics for

DCMLAP. Therefore, these methods can be used in other heuristics to solve CMFWP

by using an approximating DCMLAP.

7.2. Lagrangean Heuristics for Continuous Location-Allocation Problem

In this section we present the performance of the DACL heuristic and the cellular

heuristics both in terms of the solution quality and computation time on twenty three

test instances of CMFWP. Eighteen of these twenty three instances are Euclidean-

distance problems (E1-E12, E15-E20) and taken from literature (Al-Loughani, 1997;

Sherali and Tuncbilek, 1992). Two test instances for the squared Euclidean distance

68

case (SE9 and SE21) have been obtained from (Al-Loughani, 1997) and three test in-

stances with lp distance (Lp8, Lp9 and Lp15) have been taken from (Sherali et al.,

2002) with p values equal to 1.25, 1.50 and 1.75. The size of these test instances and

their best known/optimal objective values (BK/Opt. value) are provided in Table 7.6.

Table 7.7 displays the percentage deviations from the best known/optimal objec-

tive value for the DACL heuristic. The first step of this heuristic is solved to optimal-

ity by using Cplex 9.0.2 solver as well as by the heuristics we proposed for DCMLAP

(i.e.,LRSO, LSROSP and LRSO2P). Then the results found in first step are improved

via two phase heuristic. The final results found after applying two phase heuristic is

reported here. The percentage deviations are calculated as 100 × (Z∗ − Z)/Z∗ where

Z∗ denotes the best known/optimal objective value. The last row shows the average

percent deviation for those test instances.

Table 7.8 includes the CPU times in seconds, first column being the CPU times

of the solutions found using Cplex 9.0.2 and the other columns being the CPU times

of LRSO, LRSOSP and LRSO2P, respectively. Listed CPU times are the totals of the

times spent for solving DCMLAP optimally and two phase runs.

When we compare the performances of these two approaches, we see that the

solutions found using Cplex is better than the solutions found by the proposed methods

on the average. But this difference is mostly due to the instances E19 and SE9 since the

proposed methods perform worse for those instances. If we discard these instances, we

see that Cplex and the proposed methods perform nearly the same. Besides that, Cplex

could achieve to find the optimal solution for 23 out of 29 instances. This observation

supports also the claim that it is highly probable for best facility locations to coincide

with customer locations. The results on Table 7.8 says that the CPU time required by

Cplex is higher than other methods on the average.

Table 7.9 displays the percentage deviations from the best known/optimal ob-

jective value for the cellular heuristic. For each instance, T = 50 initial two phase

runs are carried out. The grids for the rectangular topology are set as 5 for both x

69

Table 7.6. Instances in the test set

Instance m n BK/Opt.value

E1 2 2 0

E2 2 4 247.28

E3 2 4 214.34

E4 3 5 24

E5 3 5 73.96

E6 3 9 221.4

E7 3 9 871.62

E8 4 8 609.23

E9 5 15 8169.79

E10 5 20 12846.87

E11 5 20 1107.18

E12 5 30 23990.04

E15 5 10 2595.47

E16 6 10 7797.21

E17 7 10 6967.9

E18 8 10 1564.46

E19 9 10 3250.68

E20 10 10 7719

SE9 4 8 875.34

SE21 4 24 6805.43

Lp8, p=1.25 4 8 710.2

Lp8, p=1.5 4 8 661.9

Lp8, p=1.75 4 8 630.72

Lp9, p=1.25 5 15 8998.93

Lp9, p=1.5 5 15 8646.61

Lp9, p=1.75 5 15 8350.95

Lp15, p=1.25 5 10 3046.07

Lp15, p=1.5 5 10 2827.55

Lp15, p=1.75 5 10 2689.12

70

Table 7.7. Per cent deviations from the best known/optimal values for DACL

heuristic

Problem (m, n) Cplex LRSO LRSOSP LRSO2P

E1 (2,2) 0.00 0.00 0.00 0.00

E2 (2,4) 0.00 0.00 0.00 0.00

E3 (2,4) 0.01 0.01 0.01 0.01

E4 (3,5) 0.00 0.00 0.00 0.00

E5 (3,5) 0.00 0.00 0.00 0.00

E6 (3,9) 0.00 0.00 0.00 0.00

E7 (3,9) 0.00 0.00 0.00 0.00

E8 (4,8) 0.00 0.00 0.00 0.00

E9 (5,15) 0.00 0.56 0.56 0.56

E10 (5,20) 0.00 0.52 0.52 0.52

E11 (5,20) 0.00 0.00 0.00 0.00

E12 (5,30) 0.00 1.20 1.20 0.00

E15 (5,10) 0.00 2.32 2.32 2.32

E16 (6,10) 0.00 1.64 1.64 1.56

E17 (7,10) 0.10 2.51 2.51 0.77

E18 (8,10) 0.00 0.00 0.00 0.00

E19 (9,10) 0.00 32.22 32.22 20.32

E20 (10,10) 0.01 6.08 6.08 3.77

SE9 (4,8) 33.78 137.62 106.21 68.62

SE21 (4,24) 20.23 24.82 20.90 20.90

Lp8, p=1.25 (4,8) 0.00 0.00 0.00 0.00

Lp8, p=1.5 (4,8) 0.00 0.00 0.00 0.00

Lp8, p=1.75 (4,8) 0.00 0.00 0.00 0.00

Lp9, p=1.25 (5,15) 0.00 0.33 0.33 0.33

Lp9, p=1.5 (5,15) 0.00 0.02 0.02 0.02

Lp9, p=1.75 (5,15) 0.10 0.53 0.53 0.53

Lp15, p=1.25 (5,10) 0.00 2.20 2.20 2.20

Lp15, p=1.5 (5,10) 0.00 2.25 2.25 2.25

Lp15, p=1.75 (5,10) 0.00 2.29 2.29 2.29

Average gap 1.87 7.49 6.27 4.38

71

Table 7.8. CPU times for DACL heuristic

Problem (m,n) Cplex LRSO LRSOSP LRSO2P

E1 (2,2) 0.20 0.02 0.02 0.03

E2 (2,4) 0.16 0.03 0.03 0.05

E3 (2,4) 0.22 0.03 0.03 0.06

E4 (3,5) 0.08 0.03 0.05 0.11

E5 (3,5) 0.23 0.03 0.05 0.08

E6 (3,9) 0.17 0.08 0.11 0.19

E7 (3,9) 0.08 0.06 0.09 0.14

E8 (4,8) 0.25 0.09 0.13 0.22

E9 (5,15) 0.41 0.19 0.25 0.48

E10 (5,20) 0.75 0.27 0.38 0.69

E11 (5,20) 1.50 0.27 0.38 0.69

E12 (5,30) 11.02 0.45 0.67 1.36

E15 (5,10) 0.33 0.13 0.17 0.33

E16 (6,10) 0.28 0.14 0.19 0.44

E17 (7,10) 0.41 0.17 0.23 0.52

E18 (8,10) 0.55 0.19 0.27 0.61

E19 (9,10) 0.64 0.20 0.30 0.59

E20 (10,10) 0.42 0.22 0.30 0.66

SE9 (4,8) 0.80 0.43 0.48 0.75

SE21 (4,24) 3.22 1.90 1.95 2.89

Lp8, p=1.25 (4,8) 0.09 0.13 0.14 0.33

Lp8, p=1.5 (4,8) 0.16 0.16 0.14 0.30

Lp8, p=1.75 (4,8) 0.12 0.15 0.13 0.29

Lp9, p=1.25 (5,15) 0.41 0.30 0.33 0.68

Lp9, p=1.5 (5,15) 0.36 0.37 0.39 0.66

Lp9, p=1.75 (5,15) 0.35 0.37 0.37 0.66

Lp15, p=1.25 (5,10) 0.24 0.19 0.23 0.41

Lp15, p=1.5 (5,10) 0.27 0.24 0.21 0.42

Lp15, p=1.75 (5,10) 0.31 0.24 0.25 0.41

Average

CPU time 0.83 0.24 0.28 0.52

72

and y axis. Facility locations found by initial two phase runs are clustered into groups

and these groups are represented by their centroids. The number of cluster centroids

found at the end is reported on the third column of the table. These centroids and the

customer locations are used in the formulation of DCMLAP and LRSO, LSROSP and

LRSO2P are applied to solve DCMLAP. The relative percent deviations are calculated

as 100× (Z∗ − Z)/Z∗ where Z∗ denotes the best known/optimal objective value.

Table 7.10 shows the results obtained by the cellular heuristics of Aras et al.

(2007) for the same test instances. We present it here in order to compare two different

cellular heuristic approaches. The method proposed by Aras et al. (2007) is based on

determining candidate locations by dividing the rectangle covering all locally optimal

facility locations into cells according to a predefined solution, while our method is based

on clustering those locally optimal locations into different classes by using a clustering

algorithm. They divide the rectangle into 5 equal intervals, which makes a total of 25

cells and perform T = 25 initial two phase runs. Then, they solve the resulting problem

optimally by using the candidate facility locations found by the cellular heuristic. The

details of the heuristic and the results in Table 7.10 can be seen in Aras et al. (2007).

Table 7.11 includes the total CPU times in seconds required to find initial two

phase locations, construct the cells and solve the cellular heuristic,where the fourth,

fifth and sixth columns being the CPU times of LRSO, LRSOSP and LRSO2P, respec-

tively.

The results say that the cellular heuristic improves the solutions found by DACL

heuristic for the instances E19 ans SE9. However, that improvement causes an increase

in the CPU times as can be seen from the Table 7.11. The average CPU time required

to solve these instances by the cellular heuristic is three times higher than by the DACL

heuristic. The percentage deviations over other instances are close for the DACL and

the cellular heuristic.

73

Table 7.9. Per cent deviations from the best known/optimal values for the cellular

heuristic

Problem (m,n) No. of LRSO LRSOSP LRSO2P

Centroids

E1 (2,2) 0 0.00 0.00 0.00

E2 (2,4) 2 0.00 0.00 0.00

E3 (2,4) 4 0.01 0.01 0.01

E4 (3,5) 2 0.00 0.00 0.00

E5 (3,5) 3 0.00 0.00 0.00

E6 (3,9) 4 0.00 0.00 0.00

E7 (3,9) 4 0.00 0.00 0.00

E8 (4,8) 4 0.00 0.00 0.00

E9 (5,15) 8 0.56 0.56 0.56

E10 (5,20) 10 0.52 0.52 0.52

E11 (5,20) 5 0.00 0.00 0.00

E12 (5,30) 17 0.00 0.00 0.00

E15 (5,10) 11 2.32 2.32 2.32

E16 (6,10) 10 1.64 1.64 1.56

E17 (7,10) 6 2.51 2.51 0.77

E18 (8,10) 11 0.00 0.00 0.00

E19 (9,10) 6 24.09 24.09 20.32

E20 (10,10) 8 6.08 6.08 3.77

SE9 (4,8) 5 126.09 103.71 68.62

SE21 (4,24) 13 25.17 20.90 20.49

Lp8, p=1.25 (4,8) 4 0.00 0.00 0.00

Lp8, p=1.5 (4,8) 4 0.00 0.00 0.00

Lp8, p=1.75 (4,8) 4 0.00 0.00 0.00

Lp9, p=1.25 (5,15) 13 0.33 0.33 0.33

Lp9, p=1.5 (5,15) 11 0.02 0.02 0.02

Lp9, p=1.75 (5,15) 11 0.53 0.53 0.53

Lp15, p=1.25 (5,10) 10 2.20 2.20 2.20

Lp15, p=1.5 (5,10) 10 2.25 2.25 2.25

Lp15, p=1.75 (5,10) 12 2.29 2.29 2.29

Average gap 6.78 5.86 4.36

74

Table 7.10. Per cent deviations from the best known/optimal values for the cellular

heuristic of Aras, Altınel and Orbay

Problem (m,n) No. of Cellular

Centroids Heuristic

E1 (2,2) 2 0.00

E2 (2,4) 2 0.00

E3 (2,4) 4 0.00

E4 (3,5) 4 0.00

E5 (3,5) 4 0.00

E6 (3,9) 5 0.1

E7 (3,9) 4 0.00

E8 (4,8) 6 12.70

E9 (5,15) 12 1.60

E10 (5,20) 11 0.10

E11 (5,20) 8 0.50

E12 (5,30) 12 3.70

E15 (5,10) 9 20.10

E16 (6,10) 5 16.90

E17 (7,10) 7 12.70

E18 (8,10) 8 48.90

E19 (9,10) 6 24.80

E20 (10,10) 10 3.30

SE9 (4,8) 17 18.30

SE21 (4,24) 21 3.40

Lp8, p=1.25 (4,8) 6 14.40

Lp8, p=1.5 (4,8) 5 14.90

Lp8, p=1.75 (4,8) 6 17.00

Lp9, p=1.25 (5,15) 12 1.80

Lp9, p=1.5 (5,15) 12 1.20

Lp9, p=1.75 (5,15) 10 1.60

Lp15, p=1.25 (5,10) 7 17.50

Lp15, p=1.5 (5,10) 6 13.70

Lp15, p=1.75 (5,10) 5 28.40

Average gap 9.57

75

Table 7.11. CPU times for the cellular heuristic

Problem (m,n) No. of LRSO LRSOSP LRSO2P

Centroids

E1 (2,2) 0 0.03 0.03 0.03

E2 (2,4) 2 0.08 0.08 0.09

E3 (2,4) 4 0.10 0.09 0.13

E4 (3,5) 2 0.07 0.07 0.10

E5 (3,5) 3 0.10 0.10 0.11

E6 (3,9) 4 0.24 0.23 0.28

E7 (3,9) 4 0.20 0.21 0.21

E8 (4,8) 4 0.59 0.57 0.65

E9 (5,15) 8 0.98 0.96 1.07

E10 (5,20) 10 1.35 1.89 2.23

E11 (5,20) 5 0.94 0.95 1.08

E12 (5,30) 17 1.11 1.11 1.47

E15 (5,10) 11 0.50 0.50 0.61

E16 (6,10) 10 1.93 1.93 2.06

E17 (7,10) 6 0.86 0.85 1.01

E18 (8,10) 11 1.71 1.80 2.17

E19 (9,10) 6 0.99 0.96 1.20

E20 (10,10) 8 1.06 1.07 1.20

SE9 (4,8) 5 0.19 0.19 0.24

SE21 (4,24) 13 0.46 0.52 0.76

Lp8, p=1.25 (4,8) 4 0.54 0.55 0.62

Lp8, p=1.5 (4,8) 4 0.58 0.60 0.68

Lp8, p=1.75 (4,8) 4 0.64 0.66 0.72

Lp9, p=1.25 (5,15) 13 0.87 0.93 1.03

Lp9, p=1.5 (5,15) 11 1.02 1.06 1.17

Lp9, p=1.75 (5,15) 11 1.15 1.20 1.31

Lp15, p=1.25 (5,10) 10 0.71 0.73 0.85

Lp15, p=1.5 (5,10) 10 0.55 0.58 0.70

Lp15, p=1.75 (5,10) 12 0.69 0.70 0.85

Average

CPU time 0.70 0.73 0.85

76

8. CONCLUSIONS

In this thesis we have considered the capacitated multi-facility location-allocation

problem with the Euclidean, squared Euclidean, rectilinear and lp distance. We have

studied both the discrete and continuous versions of this problem. The continuous

location-allocation problem has a nonconvex objective function and is very difficult

and sometimes impossible to solve with a commercial solver. Therefore, using a dis-

crete approximation for continuous problems becomes essential to find at least an

approximate solution. First, we have proposed new heuristic methods for the discrete

location-allocation problem and based on these methods, we designed new heuristics

for the continuous location-allocation problem.

Four heuristic methods have been proposed for the discrete location-allocation

problem. Their accuracy and efficiency are evaluated on 23 test instances. All these

heuristics are based on Lagrangean relaxation. The percentage deviations from the

lower bounds for all the methods are nearly the same. When we observe the upper

bounds, it is seen that the best upper bounds are given by the method where we apply

two phase method at every iteration. The computational requirement of this method

is larger than the method at which we apply Lagrangean relaxation with subgradient

optimization (LRSO) and just a single two phase on LRSO at the end. However, this

method is twenty times faster on the average than the exact solution procedure for

the first group of instances. The worst CPU times are reported for the adaptation of

Beasley’s Lagrangean heuristic (ABLH), although it could not bring any improvement

on the lower or upper bounds. We decided to discard this heuristic from the other

methods we proposed for the continuous location-allocation problem since ABLH seems

inadequate in terms of both the solution quality and CPU time.

We have proposed two heuristic methods for the continuous location-allocation

problem, and tested them on 23 test instances available in the literature. Discrete ap-

proximation using customer locations (DACL) and cellular heuristics perform nearly

the same except for a few instances. The cellular heuristic was able to improve the

77

solutions found by the DACL heuristic for those instances. The cost of such an im-

provement was additional CPU time required to solve cellular heuristics.

It is clear that the effective solution of the discrete version of the capacitated

multi-facility location-allocation problem (DCMLAP) is very important for all heuris-

tics proposed in our study. Therefore, the development of more efficient and accurate

heuristics for DCMLAP improves the performance of the proposed heuristics. One

more issue is the selection of promising candidate locations for facilities. Different

strategies can be used to detect promising candidate locations. For example, in the

cellular heuristic, we do not differentiate between the facilities when we are clustering

the facility locations. An alternative approach could be to form the clusters for each

facility separately.

We could not make use of the dual formulations of the continuous version of

capacitated multi-facility location-allocation problem (CMFWP) to find an exact so-

lution procedure, since the dual can be formulated only for a given allocation vector.

These allocations form the right-hand side of the constraints in the dual formulation.

Therefore, some parametric analysis, if possible, can be employed after the dual prob-

lem is solved for a given set of allocations (corresponding to a spanning tree on the

graph induced by the problem). Then, we can move to a better spanning tree so-

lution based on the results of parametric analysis. This procedure performs like an

implicit enumeration method, however we can reach the optimal extreme point in a

more efficient way due to the usage of parametric analysis.

Although we could not find an exact solution method by using affine scaling

algorithm, a heuristic procedure can be designed on primal form of CMFWP. The

problem here is to find random initial interior points, because it is quite difficult to

find a feasible interior point satisfying both supply and demand constraints and also

being positive. If a procedure can be designed to find initial interior points randomly,

we can judge the effectiveness of such a heuristic method employing affine scaling.

78

Problem structure of CMFWP is not suitable for applying network algorithms

where the total cost is additive in the flow in each arc, such as send-and-split method.

Objective function of CMFWP is not additive in the flow in each arc due to the exis-

tence of distance terms. However, this structure allows for the application of extreme

point enumeration or vertex ranking methods since it is possible to find an objective

function value corresponding to extreme points. Therefore, more attention can be paid

to these methods in the future to solve CMFWP efficiently.

79

REFERENCES

AL-Loughani, L., 1997. “Algorithmic approaches for solving the Euclidean distance

location-allocation problems”, Ph. D. dissertation, Industrial and Systems Engi-

neering, Virginia Polytechnic Institute and State University, Blacksburgh, Vir-

ginia.

Aras, N., M. Orbay and İ. K. Altınel, 2006. “Efficient heuristics for the rectilinear

distance capacitated multi-facility Weber problem”, Journal of the Operational

Research Society, advance online publication, October 18, 2006.

Aras, N., İ. K. Altınel and M. Orbay, 2007. “New Heuristic Methods for the Capacitated

Multi-Facility Weber Problem”, Naval Research Logistics, 54, 21-32.

Balas, E. and E. Zemel, 1980. “An algorithm for large zero-one knapsack problems”,

Operations Research, 28, 1130-1153.

Beasley, J. E., 1988. “An algorithm for solving large capacitated warehouse location

problems”, European Journal of Operational Research, 33, 314-325.

Beasley, J. E., 1993a. “Lagrangean heuristics for location problems”, European Journal

of Operational Research, 65, 383-399.

Beasley, J. E., 1993b. “Lagrangean relaxation”, Modern heuristic techniques for com-

binatorial problems (C.R.Reeves, ed), 243-303, Blackwell Scientific Publications.

Bolker, E. D., 1972. “Transportation polytopes”, Journal of Combinatorial Theory (B),

13, 251-262.

Cooper, L., 1964. “Heuristic methods for location-allocation problems”, SIAM Rev., 6,

37-53.

Cooper, L., 1972. “The transportation-location problem”, Operations Research, 20,

80

94-108.

Dikin, I. I., 1967. “Iterative solution of problems of linear and quadratic programming”,

Soviet Mathematics Doklady, 8, 674-675.

Dowling, P. D. and R. F. Love, 1987. “An evaluation of the dual as a lower bound in

facilities location problems”, IIE Transactions, 19, 160-166.

Drezner, Z., 1984. “The planar two-center and two-median problems”, Transportation

Science, 18, 351-361.

Erickson, R. E., C. L. Monma and A. F. Veinott, Jr., 1987. “Send-and-split method

for minimum-concave-cost network flow”, Mathematics of Operations Research, 12,

634-664.

Falk, J. E. and K. L. Hoffman, 1986. “Concave minimization via collapsing polytopes”,

Operations Research, 34, 919-929.

Fisher, M., 1981. “The lagrangean relaxation method for solving integer programming

problems”, Management Sciences, 27, 1-18.

Florian, M. and P. Robillard, 1971. “An Implicit Enumeration Algorithm for the Con-

cave Cost Network Flow Problem”, Management Science, 18, 184-193.

Gallo, G., C. Sandi and C. Sodini, 1980. “An algorithm for the min concave cost flow

problem”, European Journal of Operations Research 4, 248-255.

Gamal, M. D. H. and S. Salhi, 2003. “A cellular heuristic for the multisource Weber

problem”, Computers and Operations Research, 30, 1609-1624.

Geoffrion, A. M., 1974. “Lagrangean relaxation for integer programming”, Mathemat-

ical Programming Study, 2, 82-114.

Graham, R. L., 1972. “An efficient algorithm for determining the convex hull of a finite

81

planar set”, Information Processing Letters, 7, 175-180.

Guisewite, G. M. and P. M. Pardalos, 1991. “Global search algorithms for minimum

concave-cost network flow problems”, Journal of Global Optimization, 1, 309-330.

Hansen, P., J. Perreur and F. Thisse, 1972. “Location theory, dominance and convexity:

Some further results”, Operations Research, 28, 1241-1250.

Hansen, P., N. Mladenović and É. Tiallard, 1998. “Heuristic solution of the multisource

Weber problem as a p-median problem”, Operations Research Letters, 22, 55-62.

Hillier, F. S. and G. J. Lieberman, 1967. Introduction to Operations Research, 1st ed.

Holden-Day, San-Francisco.

Hoare, C. A. R., 1962. “Quicksort”, Computer Journal, 5, 10-15.

Horst, R. and H. Tuy, 1990. Global optimization : deterministic approaches, Springer,

Berlin.

Jensen, P. A., 1980. Network Flow Programming, John Wiley&Sons Inc.

Kohonen, T., 1990. “The Self-Organizing Map”, Proceedings of the IEEE, 78, 1464-

1480.

Love, R. F., 1974. “The Dual of a Hyperbolic Approximation to the Generalized Con-

strained Multi-Facility Location Problem with lp Distance”, Management Science,

21, 22-33.

Love, R. F. and W. Y. Yeong, 1981. “A stopping rule for facilities location algorithms”,

AIIE Transactions, 13, 357-362.

Love, R. F. and H. Juel, 1982. “Properties and solution methods for large location-

allocation problems”, Operations Research Society, 33, 443-452.

82

Love, R. F. and P. D. Dowling, 1989. “A generalized bounding method for multifacility

location models”, Operations Research, 37, 653-657.

University of Pisa, OR Group, http://www.di.unipi.it/di/ groups/optimize (Last access

in March 2006).

Portugal L., F. Bastos, J. Judice, J. Paixao and T. Terlaky, 1993. “An investigation of

interior point algorithms for the linear transportation problems”, Technical Report

No. 93-100, Faculty of Technical Mathematics and Informatics, Delft University

of Technology, Delft, The Netherlands.

Resende, M. G. C and G. Veiga, 1993. “An implementation of the dual affine scaling

algorithm for minimum cost flow on bipartite uncapacitated networks”, SIAM

Journal on Optimization, 516-537.

Selim, S., 1979. “Biconvex programming and deterministic and stochastic location

allocation problems”, Ph. D. dissertation, School of Industrial and Systems Engi-

neering, Georgia Institute of Technology, Atlanta, Georgia.

Sherali, H. D. and F. L. Nordai, 1988. “NP-hard, capacitated, balanced p-median

problems on a chain graph with a continuum of link demands”, Mathematics of

Operations Research, 13, 32-49.

Sherali, H.D. and C. H. Tunçbilek, 1992. “A squared-Euclidean distance location-

allocation problem”, Naval Research Logistics, 39, 447-469.

Sherali, H. D., S. Ramachandran and S. Kim, 1994. “A localization and reformula-

tion discrete programming approach for the rectilinear distance location-allocation

problem”, Discrete Appl. Math, 49, 357-378.

Sherali H. D., I. Al-Loughani and S. Subramanian, 2002. “Global optimization pro-

cedures for the capacitated Euclidean and lp distance multi-facility location-

allocation problems”, Operations Research, 50, 433-448.

83

The University of Tokyo, Institute of Medical Science, Human Genome Center,

http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster/ (Last access at Au-

gust 2006).

Wagner, H. M., 1959. “On a class of capacitated transportation problems”, Manage-

ment Science, 5, 304-318.

Weiszfeld, E., 1937. “Sur le point lequel la somme des distances de n points donn est

minimum”, Thoku Mathematics Journal, 43, 355-386.

Wendell, R. E. and A. P. Hurter, 1973. “Location theory, dominance and convexity”,

Operations Research, 21, 314-320.

Wendell, R. E. and E. L. Peterson, 1984. “A dual approach for obtaining lower bounds

to the Weber problem”, Journal of Regional Science, 24, 219-228.

Williams, J. W. J., 1964. “Algorithm 232-Heapsort”, Communications of the ACM, 7,

347-348.

Zangwill, W. I., 1968. “Minimum concave cost flows in certain networks”, Management

Science, 14, 429-450.

