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ABSTRACT 

 

 

ANALOG CMOS IMPLEMENTATION OF NEURO-FUZZY 

SYSTEMS 

 

 

In this thesis, a novel neuro-fuzzy system presented and implemented in analog 

CMOS. The system is based on the fact that a rule in a zero order TSK fuzzy system can be 

represented as an area on an input space which is created by a neural network. If the rule 

output values of the fuzzy system are assigned to the corresponding areas and additionally, 

if the neuron threshold values and the weights of the neural network are selected suitably, 

the fuzzy system can be mapped on the neural network. 

 

Implemented system consists of five main blocks; threshold block, area selection 

block, normalization block, weight assigning block and summing block. The blocks and 

their designs are introduced and additionally digital control units, which are used for 

determination of desired areas and values, are presented. 

 

Implemented chip works in current mode, while the inputs are taken as voltages and 

the output is taken as a current. SPICE and theoretical MATLAB simulations and example 

fuzzy rule mappings show that implemented chip architecture works accurately and it is 

able to evaluate eight million fuzzy rules per second. The maximum power dissipation of 

the chip is equal to 37 mW.   
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ÖZET 

 

 

BULANIK-SİNİR AĞLARININ ANALOG CMOS 

GERÇEKLEŞTİRİMİ 

 

 

Bu çalışmada, geliştirilmiş olan yeni bir bulanık-sinir ağ mimarisi açıklanmış ve 

analog CMOS devre gerçekleştirimi yapılmıştır. Gerçekleştirilen sistem, bir sıfırıncı 

dereceden TSK bulanık mantık yapısındaki kuralların, bir yapay sinir ağı mimarisindeki 

sinir hücrelerinin belirlediği alanlar ile ifade edilebilmesi esasına dayanmaktadır. Eğer 

bulanık mantık yapısındaki kuralların çıkış değerleri ilgili alanlara atanır ve yapay sinir ağı 

mimarisindeki sinir hücrelerinin eşik değerleri ile ağırlık değerleri gerektiği gibi 

seçilebilirse, bulanık mantık yapısı, bir yapay sinir ağı mimarisi kullanılarak 

gerçekleştirilebilmektedir.  

 

Gerçekleştirilmiş olan analog CMOS devre mimarisinin beş ana bölümü; eşik 

devresi, alan seçimi devresi, normalleştirme devresi, ağırlık atama devresi ve son olarak ta 

toplama devresi açıklanmıştır. Bu devrelerin yanında istenilen değerlerin istenilen alanlara 

ve ağırlıklara atanılmasında kullanılan sayısal denetim devreleri de tasarlanmış ve 

açıklanmıştır.  

 

Gerçekleştirilen devre gerilim girişleri kabul ederken, çıkışı akım olarak vermekte ve 

iç yapı olarak akım bazlı çalışmaktadır. Benzetimler gerçekleştirilen yapının kuramsal 

yapıya uygun olarak çalıştığını ve saniyede sekiz milyon bulanık kuralı 

değerlendirebildiğini göstermektedir. Toplam güç tüketimi ise 37 mW olarak ölçülmüştür. 
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1.  INTRODUCTION 

 

 

Neural networks and fuzzy systems are both very popular techniques in soft 

computing. The term soft computing was invented by Lotfi A. Zadeh, the founder of fuzzy 

logic [1]. Soft computing covers approaches to human reasoning that try to make use of the 

human tolerance for incompleteness, uncertainty, imprecision and fuzziness in decision 

making processes. Evolutionary computation and probabilistic reasoning are also included 

in soft computing in addition to neural networks and fuzzy systems. Soft computing is in 

particular concerned with combinations of these methodologies. Currently, neuro-fuzzy 

systems are the most visible approach to such combinations [27]. 

 

In this thesis a novel neuro-fuzzy system developed by Wilamovski [34] is examined 

and implemented in analog CMOS. 

  

1.1.  Neuro-Fuzzy Architecture 

 

 

Figure 1.1.  Block diagram of classical Mamdani type fuzzy controller 

 

The block diagram of a typical Mamdani type fuzzy control system is shown in 

Figure 1.1 [2]. The system is composed of three main parts; fuzzifiers, a main processing 

unit with MIN and MAX operators and a defuzzifier. 

 

Fuzzifiers convert crisp values into grades of membership for linguistic terms. This 

process is designated as fuzzification. The membership function is used to associate a 
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grade to each linguistic term. Various shapes of membership functions are shown in Figure 

1.2. 

 

 

Figure 1.2.  Various membership functions 

 

In the center of the Mamdani controller, fuzzified inputs are processed by fuzzy logic 

blocks with MIN and MAX fuzzy logic operators. Fuzzy logic is a super set of 

conventional (or Boolean) logic and contains similarities and differences with Boolean 

logic. For instance, MIN operators are used instead of AND operators and in place of OR 

operators, MAX operators are implemented. As a matter of fact MIN and MAX operators 

represent intersection and union operations of membership functions. Intersection and 

union operations are generalized as t-norm and t-conorm (or s-norm) operators, 

respectively [3]. Several t-norm and t-conorm operators can also be used instead of MIN or 

MAX operators [4][5][6]. 

 

The last block of the controller is the defuzzification block, where the output analog 

variable is retrieved from a set of fuzzy variables. The centroid method, in which the 

"center of mass" of the result is provided as the crisp output value, is the most common 

type of defuzzification technique implemented in fuzzy systems today [28]. 
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Figure 1.3.  TSK (Takagi-Sugeno-Kang) fuzzy architecture 

 

As an alternative to the Mamdani architecture, TSK (Takagi-Sugeno-Kang) 

architecture was introduced recently. In Mamdani model, fuzzy sets are used for 

conclusions, while conclusions are represented as functions in the TSK model. Therefore, 

TSK type fuzzy controller embodies a different type of defuzzification block, which is 

mostly composed of normalization and weighted sum blocks [7]. Rule configuration in 

(1.1) is Mamdani type where (1.2) shows TSK type rule representation.  

 

Ri: If x1 is Ar1 AND x2 is Ar2 … OR xn is Arn then u=Bi  (1.1) 

 

Ri: If x1 is Ar1 AND x2 is Ar2 … AND xn is Arn then u=fr(x1, x2, … , xn)  (1.2) 

 

The TSK structure, as shown in Figure 1.3, also does not require MAX operators. 

Weighted average operation is applied directly to regions selected by MIN operators. What 

makes the TSK system really simple is that the output weights are proportional to the 

average function values at the selected regions by MIN operators. 

 

A rule can be illustrated as a region on an input space. Since a single neuron in a 

neural network architecture can divide input space by a line, a plane, or a hyper plane, the 

rule selection implementation is possible in a neural network architecture. In order to select 

just one region in n-dimensional input space, more than n+1 neurons should be used. For 

example, to separate a rectangular pattern in two dimensions, four neurons are required, as 

is shown in Figure 1.4. The number of regions is proportional to number of first layer 
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neurons. Additionally number of selectable regions is proportional to number of hidden 

layer neurons. Therefore if more selectable input clusters are needed, then the number of 

neurons in the hidden layer should be properly multiplied. If there is no limitation for the 

number of neurons in the hidden layer, then all classification problems can be solved using 

a three layer neural network architecture. 

  

 

(a)                                               (b) 

Figure 1.4.  (a) Separation of the rectangular area on a two dimensional space and (b) 

desired neural network to fulfill this task 

 

 

Figure 1.5.  Two dimensional input plane separated vertically and horizontally by five 

neurons in each direction 

 

As a result, with concept shown on Figure 1.4, fuzzifiers and MIN operators used for 

region selection of a TSK fuzzy system can be replaced by a simple neural network 
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architecture. Let us analyze Figure 1.5 where a two-dimensional input space was divided 

by five neurons horizontally and by five neurons vertically. The corresponding neural 

network architecture is shown in Figure 1.6. Each neuron is connected only one input. For 

each neuron input, weight is equal to +1 and threshold is equal to the value of the crossing 

point on the x or y axis. Neurons in the second layer have two connections to lower 

boundary neurons with weights of +1 and two connections to upper boundary neurons with 

weights of -1. Thresholds for all neurons in the second layer are set to +1. Only two of 

them are drawn on Figure 1.6. One of them selecting region A, which is bordered by x0, x2, 

y1 and y4 neurons and the second is selecting region B, which is bordered by x3, x4, y1 and 

y2 neurons. 

 

 

Figure 1.6.  Neural network performing the function of TSK fuzzy system 

 

Weights in the last layer have values in proportion to the expected function in 

selected areas. All neurons in Figure 1.6 have unipolar activation functions and if the 

system is properly designed, then for any input vector in certain areas only the neuron of 

this area produces +1, while all remaining neurons produce no output values. In the case 

when the input vector is close to a boundary between two or more regions, then all 

participating neurons are producing fractional values and the system output is generated as 

a weighted sum. For proper operation it is important that the sum of all outputs of the 



 

 

6 

second layer must be equal to +1. In order to assure above condition, an additional 

normalization block can be introduced, in a similar way as it is done in TSK fuzzy systems 

where mostly weighted average operation (1.3), where w is weight and x is fuzzified input 

value, is applied in defuzzification block [7]. The normalization block can be placed on 

some different positions on the system architecture. One example placement is shown in 

Figure 1.7. Some additional placement strategies are reviewed in section 2.5.  

 

 

Figure 1.7.  Neural network architecture with additional normalizer 

 

w x
Out

w

⋅
=
∑
∑

 (1.3) 

 

The Neuro-Fuzzy architecture in Figure 1.7 is the final architecture which is 

implemented in this thesis.  

 

1.1.1.  Membership Functions 

 

In fuzzy systems region selection is implemented by using fuzzification of inputs 

using membership functions [27]. Since the system is basically a fuzzy system on a neural 

network architecture, the fuzzification operation is basically the same. On the other hand, it 
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may be relatively hard to see how the membership functions are implemented in the 

architecture shown in Figure 1.7. The meaning of the membership functions and their 

implementation is in this architecture is discussed below.  

 

 

Figure 1.8.  Basic artificial neuron 

 

In Figure 1.8 a basic artificial neuron (or TLU) is shown [29]. The threshold relation 

for the basic neuron is written as 

 

 
1     if    

0     if    

a
z

a

θ

θ

≥
= 

<
 (1.4) 

 

where 

 1 1 2 2 n n
a w x w x w x= + + +�  (1.5) 

  

As stated before rule neurons are connected to four boundary neurons. Upper 

boundary neurons have -1 weight values while lower boundary neurons have +1 weight 

values. Let us assume that X and Y are the inputs of the system and that for a rule R the 

upper boundary neurons have xu for X input and yu for Y input. Lower boundary neurons 

are xl for X and yl for Y input. By implementing relation (1.4), relation (1.6) is obtained for 

lower boundary neurons. 

 

 
1     if    X

0     if    Xl

l

x

l

x
z

x

≥
= 

<
 (1.6) 
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Additionally, for the upper boundary neuron, the relation obtained is (1.7) 

 

 
1     if    X

0     if    Xu

u

x

u

x
z

x

− ≥
= 

<
 (1.7) 

 

    

(a)                                        (b) 

Figure 1.9.  Weighted (a) lower and (b) upper neuron output characteristics 

 

If the upper and lower boundary relations are summed, relation (1.8), which is shown 

in Figure 1.10, can be obtained   

 

 

0     if    X

1      if    X

0     if    X

l

x l u

u

x

z x x

x

≤


= ≤ ≤
 <

 (1.8) 

 

 

Figure 1.10.  Membership function obtained in expression (1.8) 

 

Obtained membership function is in a basic crisp form due to the simple activation 

function used in neurons. If another type of unipolar activation function is used then the 

obtained membership function will be shaped accordingly. If the same activation function 

is used for all first layer neurons then the obtained membership functions will mostly be in 
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a symmetrical form. Some example activation functions and their corresponding 

membership functions are shown in Figure 1.11. 

 
Figure 1.11.  Example activation function to membership function conversions 

 

1.1.2.  T-norm Operator 

 

A rule neuron (second layer neuron) in the network generates output according to its 

activation function. For example, the basic neuron in Figure 1.8 generates output while the 

sum of all inputs is greater than the threshold value. This condition prevents us from 

implementing the basic MIN operation, in which the minimum valued input is selected, 

because MIN operation requires a comparison, however no comparison operation takes 

place in neurons. Nevertheless instead of a basic MIN operation a t-norm operation could 

be defined for implementing the intersection operation. 

 

Threshold block provides fuzzified inputs x1, x2, …, xn and y1, y2, …, yn where the 

weight values of corresponding synapses to second layer can be -1,+1 or 0. Let us assume a 

rule neuron having a configuration as basic neuron configuration shown in Figure 1.8, and 

lower boundary neurons are x1, y1 and the upper boundary neurons are x2 and y2; and 

moreover their activation functions are ( ),  ( ),  ( ) and ( )
l u l ux x y y

A X A X A X A X , respectively. 

Since the membership functions are basically the sum of the upper and lower boundary 

neuron activation functions in corresponding input dimension, X or Y, the fuzzified X and 

Y inputs can also be written as 
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( ) ( )

( ) ( )
l u

l u

fuzzified x x

fuzzified y y

X A X A X

Y A Y A Y

= +

= +
 (1.9) 

 

Since the rule neuron will produce +1 when only sum of the input values are greater 

than its threshold value, which is +1 in this case, the threshold relation or activation 

function for rule neurons can be written as (1.10). 

 

1     if    1

0     if    1

fuzzified fuzzified

fuzzified fuzzified

X Y
z

X Y

+ ≥
= 

+ <
 (1.10) 

 

The relation (1.10) leads us to a t-norm operator instead of a basic MIN operator. 

Since the sum of fuzzified inputs can only be maximum +2 due to unipolar characteristic 

of activation functions, this t-norm operator can be written as 

 

minT ( , ) max(0, -1)
fuzzified fuzzified fuzzified fuzzified

X Y X Y= +  (1.11) 

 

The obtained t-norm in (1.11) is identical to the t-norm operator so called 

Lukasiewicz’s t-norm which is shown as LukaT ( , ) max(0, -1)a b a b= +  [8]. The graphical 

example is shown in Figure 1.12. In Figure 1.12 membership function, which is obtained in 

(1.8), is used for a linguistic term. As it can be seen there is output, which is also equal to 

the intersection of two membership functions, while only the sum of two membership 

functions is greater than the threshold value +1. 

 

 

Figure 1.12.  T-norm operation 
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1.1.3.  Example Fuzzy Rule Mapping 

 

In order to understand system properties further, an example fuzzy mapping 

operation is carried out in this section. 

 

Let us have four neurons for each dimension  

 

Let us have two fuzzy sets X and Y and four linguistic terms A, B, C and D, which 

have triangular membership functions as shown in Figure 1.13  

 

 

Figure 1.13.  Example membership functions 

 

Let us have following rules: 

 

If X=A and Y=B then Z=v1    (1.12) 

 

If X=C and Y=D then Z=v2    (1.13) 

 

First of all we should try to find out the boundary values of two rules (or two areas), 

which will be called as V1 and V2, for the architecture. These boundary values depend on 

the activation functions of the first layer of neurons in the architecture. In this example we 

consider the activation functions set up same functions as membership functions shown in 

Figure 1.13.  
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Since the activation functions set up a function same as the membership functions, 

the lower boundary values of area V1 are the minimum values of membership functions A 

and B. In other words V1 area is bordered by two lower boundary neurons which are x0 on 

X axis and y0 on Y axis. By performing same logic the upper boundary neurons are 

achieved as x2 and y2. We obtain for area V1, the boundary neurons are x0, x2, y0 and y2 , 

and for area V2, they are x1, x3, y1 and y3.  

 

After finding the boundary neurons, V1 and V2 areas can be shown as in Figure 1.14 

on the input space. 

 

 

Figure 1.14.  Obtained input space 

 

The last operation we have to perform is assigning the weight values to the synapses 

between second and normalizer block as discussed before. Since we have v1 for V1 area 

and v2 for V2 area the weight values are v1 and v2, respectively. 

 

Now we can map the values onto the neural network structure shown in Figure 1.7. 

The obtained mapping is shown in Figure 1.15, where x0=0, x1=0.25, x2=0.5, x3=0.75, 

y0=0, y1=0.25, y2=0.5, y3=0.75, v1=10 and v2=21. Control surfaces of the example fuzzy 

inference are shown in Figure 1.16 and 1.17. Figure 1.16 shows the resulting control 

surface of a Sugeno fuzzy system where the MIN operators are used. This simulation is 

done via MATLAB Fuzzy Logic ToolBox. Additionally, Figure 1.17 shows the resulting 

theoretical control surface of designed neuro-fuzzy architecture. Latter simulation is done 

via theoretical TSK type theoretical MATLAB model coded in the scope of this thesis. 
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One may notice that the input space actually represents the top view of the control surface 

without membership grades, which are shown by different colors. Latter feature may 

become beneficial to use for verification of results. 

 

 

 

Figure 1.15.  Obtained network structure 

 

The general mapping procedure can be summarized as: 

 

• Modify membership functions of the problem sets if needed. 

• Find upper and lower boundary neurons for each membership function. 

• Set (+1) connections for lower boundary neurons and set (-1) connections for upper 

boundary neurons to the corresponding second layer neuron. The other neurons 

remain disconnected. 

• Assign consequence values of the rules to the corresponding connections of the 

second layer neurons as weight values. 
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Figure 1.16.  Control surface obtained via MATLAB Fuzzy Logic ToolBox 

 

 

Figure 1.17.  Control surface obtained via theoretical MATLAB model 
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2.  MAIN BLOCKS OF THE NEURO-FUZZY SYSTEM 

IMPLEMENTATION 

 

 

 

Figure 2.1 Block diagram of neuro-fuzzy system without normalization block 

 

For actual circuit implementation of the introduced system, initially all main building 

blocks must be determined The block diagram of the neuro fuzzy architecture presented 

without the normalization block can be shown as in Figure 2.1. The architecture will be 

implemented for two dimensional input spaces, therefore it supports two inputs, labeled as 

X and Y and the output is called Z. The architecture is constituted of the following blocks; 

threshold blocks which correspond to the first layer in the neural network architecture, area 

selection blocks which correspond to the second layer neurons, weight assigning block 

which performs assignment of weight values to last layer synapses and summing block for 

summing the weighted values and obtaining the defuzzified crisp output. Later, the 

normalization block will be added to this diagram. Prior to adding the normalization block, 

some possible locations should be analyzed. Subsequent to this analysis the normalization 

block will be added to the architecture and the final block diagram will be shown. 

 

2.1.  Threshold Block 

 

Threshold block corresponds to the first layer of the neural network architecture and 

the purpose of this block is to act as a fuzzifier and to determine boundary values of the 

desired areas on the input plane. There is one main block for each input. The block is 

composed of neuron blocks which contain activation functions used in fuzzification 

process.  
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A threshold block also has to have the ability of processing some user data, because 

of boundary neuron selection operations. The user should be able to change or determine 

the boundary neurons for desired regions on the input space. 

 

2.2.  Area Selection Block 

 

Area selection block corresponds to the second layer neurons which determine if the 

area is selected. Area selection block can also be called rule neuron block since there is one 

block for one rule neuron. If there are n neurons for each dimension of a two dimensional 

input space, there can be maximum n2 selectable region on the input plane. Therefore, the 

possible maximum number of area selection blocks in the system is equal to n2.  

 

Area selection block must generate a signal if each input is inside the boundaries of 

the area that is represented by the block. In other words it must generate a signal while the 

area is selected. This block is also responsible for implementation of the t-norm operation 

(1.9). Area selection block can be seen as processing unit of the controller. 

 

2.3.  Weight Assigning Block 

 

Weight assigning block corresponds to the synapses between second and third layer. 

These blocks must have the ability to take user data as weight value and multiply them 

with the block inputs. Since area selection blocks can be seen as second layer neurons and 

weight assigning blocks as synapses, each area selection block has to be connected to only 

one weight assigning block as in the neural architecture neuron-synapse connection in 

Figure 1.7. Therefore, the number of weight assigning block is equal to the number of area 

selection blocks in the system. One may see this block as a multiplier where the user can 

only alter the value of the multiplier. 

 

2.4.  Summing Block 

 

Summing Block sums the block inputs and generates the result as a signal which is 

the output of the whole system. This block acts as an adder. 
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2.5.  Normalization Block 

 

Normalization and summing block together form a defuzzification block which 

performs weighted average operation (2.1), where xi(i=1,2,..,n) values are the desired 

output values or in other words rule outputs, which are assigned in the weight assigning 

block by user, and wi(i=1,2,..,n) values are input values which are fuzzified in the threshold 

block.  

 

 ( , ) i i

i

x w
f x w

w
=
∑
∑

 (2.1) 

 

 

Figure  2.2.  The first block diagram of system with normalization block 

 

It is important to note that the weighted sum approach is also possible. Various fuzzy 

controllers reported in the literature implement weighted sum operation instead of 

weighted average [19][33]. However weighted average operation will be implemented in 

this thesis. 

 

It is stated earlier that the additional normalization block can be placed on some 

different locations on the block diagram. The first possible location of the normalization 

block is after the weight assigning block as shown in Figure 2.2. It can be noted that this 

type of normalization block also needs an extra summing block for the summing operation 

of fuzzified inputs. For this realization it is needed to have a normalization block that 

provides a simple division function as shown in expression (2.2).  

 

 
A

O
B

=  (2.2) 
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If i iA x w=∑ , the sum of weighted inputs (xw), and iB w=∑ , the sum of weights 

(w), then the desired normalization operation (2.1) is achieved.  

 

In analog MOS circuit implementations, division has always been a difficult 

operation to be implemented in terms of time and area. Many of the reported fuzzy 

controllers impose the condition that the denominator in expression (2.1) assumes the 

value 1 to avoid the division, or recur to the use of global normalization loops [30] [31], 

but this approach can lead to limited accuracy and stability problems. 

 

 

Figure 2.3.  The second block diagram of system with normalization block 

 

Another possible location for normalization block is between the area selection block 

and the weight assigning block as shown in Figure 2.3. For this sort of placement it is 

needed to have a multiple output normalization block which provides following relation for 

each input: 

 

 1 2
1 2   n

n

i i i

xx x
O O O

x x x
= = =
∑ ∑ ∑

��  (2.3) 

 

As shown above, this type of normalization block generates normalized outputs for 

each corresponding input; and these outputs are later introduced to the weight assigning 

block for performing the weight value multiplication. Later, multiplied input values are 

summed by the summing block and the desired function is obtained. This kind of 

normalization block can be constructed as a ‘Gilbert Normalizer’ [13], which is simple to 

be implemented and has been used in various proposed neural network and fuzzy system 

implementations [9][10][11][12]. This configuration is implemented in this thesis. 
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3.  CIRCUIT REALIZATION 

 

 

 

Figure 3.1.  Chip architecture 

 

The architecture designed for the chip implementation is shown in Figure 3.1. The 

chip architecture contains all the blocks previously discussed, switches and some control 

blocks for mapping boundary values and desired outputs. Main blocks, threshold, area 

selection, normalization and weight assigning blocks are analog CMOS implementations, 

while control blocks are digital implementations. It has decided that the first layer has 64 

neurons. Additionally eight area selection block is present on the chip. Therefore eight 

weight assigning blocks are implemented.  

 

Connections between first and second layer and weights are determined via the 

control unit. Therefore, the user is able to manipulate desired regions.  

 

There are no non volatile memory elements in the chip. Additional external ROM 

may be needed for storing weight values or boundary neuron indexes permanently. For 
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correct operation it is important to set boundary neurons and weight values first. Until this 

setting is done, no correct value is observed. However once those values are set, internal 

memory holds them until user resets the chip or user changes them via the digital control 

block.  

 

It should be noted that the chip is designed for realization of two dimensional input 

planes where the inputs are labeled as X and Y, respectively. The inputs are voltage while 

the output is current, but internal structure is working in current mode for the most part.  

 

AMS 0.35 µ m process is used in the design of circuits. SPICE codes, VHDL codes 

and layouts of all blocks can be found in appendix.  

 

3.1.  Threshold Block  

 

 

Figure 3.2.  Threshold block 

 

Threshold Block represents the first layer of network. For one input there is one 

threshold block in the architecture. The threshold block architecture is shown in Figure 3.2. 

The block consists of neuron blocks called NT Block, reference generation block and a 

digital control block for processing user data. Each NT Block represents a neuron in the 

first layer. Reference generation block generates the threshold values for all NT blocks.  
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Figure 3.3.  Neuron block (NT) circuitry 
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3.1.1. Neuron Circuitry  

 

The neuron circuitry based on a MOS differential pair, where one input of 

differential pair is one of the system inputs and the other input is the threshold value (also 

called reference voltage). The MOS differential pair circuit has been widely used as a 

fundamental building block in most of the analogue implementations of neuron circuits and 

fuzzifier circuits [9][14][15][16][19]. In general, input signals to the pair are applied 

differentially to ensure that the nonlinearities of the circuits are absolutely symmetrical 

with respect to zero and also to minimize the impact of noise. Output signals, however, are 

taken either as voltages or currents, using the appropriate circuit technique, depending on 

the particular application. In the neuron realization in this thesis, the outputs are taken as 

currents and the threshold values of these neurons are determined by the reference voltage 

applied to one input of the differential pair. Connections to the second layer are provided 

by current mirrors, which simply copy the drain currents that are denoted as (+1), lower 

boundary and (-1), upper boundary node currents, respectively. Additionally user can 

control those connections by simply setting switches, which are placed on the outputs, on 

and off. Switches are basic transmission gates. Switch setting operation is controlled by a 

digital control block, which will be discussed later. Since the number of area selection 

block is eight, each threshold block has eight (-1) and eight (+1) output ports; and the 

inputs are eight (-1) switch control, eight (+1) switch control inputs and a reference voltage 

input. 

 

Example simulations of (+1) node (M1 drain current) and (-1) (M2 drain current) 

node are shown in Figure 3.4 and Figure 3.5, respectively. Bias current which represents 

maximum output value (+1 in theory) is selected as 10 µ A.  

 

Previously in section 1.1.1, it was discussed how the membership functions were 

generated in the structure. It was stated that the membership function is bounded to the 

activation function. Figure 3.4 shows a typical hyperbolic characteristic which could be 

used to construct membership function by performing same computations in section 1.1.1. 

Therefore M1 drain current could be called as (+1) output or lower boundary output. (+1) 

output is multiplied by -1 for obtaining negative activation function. However the (-1) 

output, or lower boundary output, is not obtained by simply multiplying the output by -1. 
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M2 drain current, which has characteristic shown in Figure 3.5, will be considered as (-1) 

output. Expected (-1) output has inverted characteristics of (+1) output, which would have 

a maximum value 0 A and minimum value -10 µ A. Since (+1) characteristic is not 

multiplied by -1, it is not possible to obtain expected output. On the other hand one may 

notice the general form of (-1) node output is exactly the same as expected (-1) output. 

This characteristic will be used as negative output. In this situation, the characteristics 

could be represented as 10 µ A up shifted version of expected function. This change in the 

characteristic has no major effect on the system and calculations. It only causes the 

threshold value of area selection neuron to increase by 30 µ A  

. 

 

Figure 3.4.  Lower boundary output, reference voltage is 0.5 V 

 

 

Figure 3.5.  Upper boundary output, reference voltage is 1V 
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Figure 3.6.  Obtained membership function in neuron circuitry 

 

The membership function in the system is the sum of (+1) and (-1) outputs. If the 

two output currents are summed, the membership function shown in Figure 3.6 is obtained. 

As expected, the membership function is in the [10 µ A, 20 µ A] range. The shape of the 

membership function is related to reference input and the size of differential pair 

transistors. It is very important to calculate the expression of this membership function, 

since user is going to use this membership function with his/her fuzzy mapping process. 

This function is basically the sum of dc transfer characteristics of the MOSFET differential 

pair transistors. 

 

 

Figure 3.7.  PMOS Differential pair 

 

The dc transfer characteristics of the MOSFET differential pair shown in Figure 3.7 

can be obtained using the circuit equations. We will first assume M1, M2 transistors are in 

saturation region. If two transistors are matched, we can write (3.1) and (3.2). 
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Taking the square roots of Equation (3.1) (3.2) and subtracting two equations, we 

obtain 

 

 1 2 1 2' ( ) 'p SG SG p D

W W
I I k V V k V

L L
− = − =  (3.3) 

 

, where VD = VSG1 – VSG2 is the differential-mode input voltage. If VD > 0, then VG1 > VG2 

and VSG1 > VSG2, which implies that I1 > I2 .Since 

 

 1 2    
B

I I I+ =  (3.4) 

 

Then equation (3.3) becomes 

 

 2 2 2
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L L
− − = ⋅ =  (3.5) 

 

If we square both sides of this equation, we develop the quadratic equation 
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Applying the quadratic formula, rearranging terms, and noting that I1 > IQ/2 for 

VD>0, we obtain 
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Using equation (3.4), we find that 

 

 2
2
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B
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Normalized drain currents are 
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p
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'
B

D

p

I L
V
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M2 turns off and I1 becomes equal to IB . 

 

As it can be seen in Figure 3.8 some hyperbolic characteristic is achieved. 

Expression (3.9) and (3.10) show how this characteristic changes proportional to size of 

transistors and reference voltage. Size increase causes wider membership functions while 

smaller sizes result tighter membership functions. 

 

The subthreshold characteristics of differential pair should also be investigated. Let 

us assume M1 and M2 working in subthreshold region this time. By using subthreshold 

drain current equation of PMOS transistor, we can write 
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And from (3.4), we can write I2 as 
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−

=  (3.13) 

 

If we write V2-V1 as VD, we can obtain 
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If further calculations are done, we obtain I2 as 
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and I1 as 
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Figure 3.8.  Saturation characteristic of MOS differential pair W/L=15 µ  /0.35 µ  
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Comparison of HSPICE simulation versus MATLAB simulation is shown in Figure 

3.9.  

 

 

Figure 3.9.  Subthreshold characteristic of differential pair, W/L=40 µ /0.35 µ  

 

If we take some further calculations we can obtain also following results for drain 

currents of M1 and M2 transistors 

 

1 1 tanh
2
B D

T

I KV
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= −   

  
 (3.17) 

 

2 1 tanh
2
B D

T

I KV
I

V
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 (3.18) 

 

After these calculations, we can obtain following definition for membership 

functions in the first layer of the system. 

 

For a linguistic term Lφ  where its membership function is generated by a lower 

boundary neuron 
l

φ  and an upper boundary neuron 
u

φ , following relations can be written  

for the system: 

I1(A) 

VD(V) 
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If differential pair transistors are in subthreshold region 
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If the transistors are in saturation region: 
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Example MATLAB simulation where 
l

φ =1 V and 
u

φ =2 V is shown in Figure 3.9 

and 3.10. 

 

When suitable W/L ratio is selected, saturation region characteristic is very close to 

the subthreshold region characteristic. Figure 3.10 and 3.11 shows this situation. The aim 

was implementing separate region selection and due to limited voltage interval (0-2.5 V), 

membership functions should have higher slope value. Considering there is no significant 

difference between subthreshold characteristic and saturation characteristic if suitable 

sizing is selected, the saturation region characteristic, where the width of transistors are 15 

µ m and lengths are 0.35 µ m, is chosen. Since the saturation current characteristic is also 

hyperbolic, an approximate equation might be found. Equation (3.23) may also represent 
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the obtained membership function. Figure 3.12 shows the approximate characteristic where 

it is almost identical to the simulated response. 

 

( ) ( )( )5 2 tanh 10( ) tanh 10( )fuzzified l uφ µ φ φ φ φ= + − − −  (3.23) 

 

 
Figure 3.10.  Comparison of simulated and theoretical subthreshold membership functions 

 

 

Figure 3.11.  Comparison of simulated and theoretical saturation membership functions 
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Figure 3.12.  Comparison of simulated and approximate membership functions 

 

Expression (3.21) will be assumed as membership function in further calculations for 

clarity. 

 

3.1.2.  Boundary Synapse Connecting 

 

 

Figure 3.13.  Block diagram for the control of the output current 

 

In order to obtain correct area selection operation, only the correct four boundary 

neurons, which define the boundary of the area, must be connected to corresponding area 

fuzzified
φ (A) 

φ (V) 
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neuron. This operation is done by closing appropriate switches between boundary and area 

neuron blocks. The circuitry for such operation could easily be done by using digital 

design tools instead of designing RTL level analog counterparts. Designed digital control 

block diagram for synapse connecting operation is shown in Figure 3.13.  

 

 

 

Figure 3.14.  Connections between first and second layer neurons 

 

First of all some memory elements should be in the design, since every synapse, 

which is represented by a switch in Figure 3.14, has to have some value to show if it is ON 

or OFF. Furthermore these memory elements prevent the user from selecting, setting or 

connecting the synapses every time whenever chip is restarted. The value that shows if 

synapse is connecting is logic ‘1’, which is later converted to 3.3 V and sent to the gates of 

transmission gate switches. When 3.3V applied to the gate, a connection between NT block 

and area neuron block is obtained. Conversely ‘0’ shows there is no connection. 

 

Assigning ‘1’ and ‘0’ values to the memory is performed by using following block 

inputs; WR, SW_I, DT, XY, PN, AR and RST.  

 

WR is the write input and if only WR is ‘1’, block accepts and stores inputs, 

otherwise stored values do not change and additionally user is not able to add new data 

and/or manipulate stored data. SW_I input determines the neuron which user want to 

connect. The block takes the SW_I value and converts it to the corresponding decimal 

index value which will be the neuron index number. Additionally user has to give the input 
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dimension which this neuron belongs to. This operation is performed via XY input. If XY 

input is equal to ‘0’, then X dimension neurons will be selectable, otherwise Y dimension 

neurons become selectable. Also user must set if he/she wants to connect lower (+1) or 

upper (-1) boundary synapse or in other words user must set if the synapse has +1 or -1 

weight value. This operation is done via PN input. If PN is equal to ‘0’ then the lower 

boundary switch is selected, otherwise upper boundary neuron is selected. Last operation 

which user must do is the selecting the area selection block or area neuron to which the 

synapse will connect. User does this operation by setting AR input to desired area’s 

number. Block converts binary AR input to a decimal index value and connects the 

corresponding synapse to desired area. When area, dimension and upper/lower boundary is 

determined the corresponding area is set to DT input value. 

 

Block also contains a RST input which breaks all synapse connections, if it is ‘1’. In 

other words RST input sets all memory elements to ‘0’. 

 

Block outputs have names according to dimension and neuron order information. X 

dimension neuron outputs have suffix _X where Y dimension counterparts have _Y in their 

names. The name formation can be formulated as T(TNO)_(D) where (TNO) is neuron 

number and (D) input dimension. For example sixth neuron in X dimension is denoted as 

T6_X. All outputs are 16 bit long. The first eight bit section is the upper boundary 

connections while last eight bits represent lower boundary connections. The order is MSB 

to LSB where MSB is the first area LSB is eighth area connection. Here, the outputs can be 

simply formulated as:  

 

T(TNO)_(D)=“U1 U2 U3 U4 U5 U6 U7 U8 L1 L2 L3 L4 L5 L6 L7 L8”      (3.24) 

 

As an example, in order to connect seventh neuron of X input dimension to fourth 

area selection block as an upper boundary (-1) neuron, the procedure is as follows. First of 

all WR must not be set to ‘1’ until area, dimension and upper/lower boundary information 

is introduced to the system. Please note that the introduction order of area, dimension or 

upper/lower boundary information is not important. AR is set to “011” (three in decimal), 

SW_I is “0110” (six in decimal), XY is ‘0’ and lastly PN is ‘0’. Then if WR is set to ‘1’ 

and DT to ‘1’, T7_X output should be observed as “0001000000000000”. Example 
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simulation of this process is shown in Figure 3.15. Additionally the VHDL simulation of 

various synapse connection control operations is shown in Figure 3.16. 

 

 

Figure 3.15.  Example boundary synapse connection control process (I) 

 

 

Figure 3.16.  Example boundary synapse connection control process (II) 
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3.2.  Reference Voltage Generation 

 

Threshold value of first layer neuron is determined by a reference voltage applied to 

one input of the neuron circuit’s differential pair. Every neuron must have a unique 

reference voltage between 0 and 2.5 V value range. The voltages may be arranged in a 

sequence or arbitrarily, however reference voltages will be assigned to every neuron by 

using following relation: 

 

2.5
   1,2,...,64

64iNT
T i i= ⋅ =  (3.25) 

where i is the index number  and 
iNT

T  is the reference voltage of the corresponding 

neuron.  

 

The reference voltages can be provided in two ways; in a serial manner or in a 

parallel manner. 

 

3.2.1.  Serial Reference Voltage Generation 

 

 

Figure 3.17.  Block diagram of serial reference voltage generation  

 

In serial reference generation method, reference voltages are generated serially. It 

should not be confused with a serial output generation. The general block diagram of serial 

reference voltage generation is shown in Figure 3.17. The digital control unit controls the 



 

 

36 

switches and sets the switches on or off in some order. Digital unit also provides a 6 bit 

digital input to a DAC to generate the corresponding reference inputs to the threshold 

block neuron circuits. The output voltage of the DAC is charged on a capacitor for storing 

the reference value until the end of reference generation cycle. 

 

This kind of reference generation needs a clock input and a DAC. Since the system 

consists of 64 neurons for each dimension and besides two dimension threshold blocks 

working in parallel, the system output frequency equals to 1/64 of clock frequency. 

Maximum clock frequency depends on the performance of threshold block.  

 

 

Figure 3.18.  Circuit diagram of the transistor based switched capacitor charge 

redistribution 6-bit DAC 

 

Since the references are simply voltages, DAC which generates those references 

should be designed in voltage mode. For this manner a switched capacitor charge 

redistribution 6-bit DAC was designed in a complementary BS project by B. Yelten [17].  

 

Figure 3.18 shows the complete schematic diagram for the two-stage switched 

capacitor charge-redistribution DAC. At the end, 14 transmission gates, 6 2:1 multiplexers, 

an operational amplifier and a single PMOS transistor are employed.  

 

The multiplexer, shown in Figure 3.19, is built up on 3 NAND gates and 1 inverter. 

All transistors except pull down transistor of the inverter possess the same width, namely 
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10µm, whereas the other transistor has a width of 1 µm. The lengths of the transistors are 

minimum sized, i.e. it is 0.35 µm.  

 

 

Figure 3.19.  Circuit diagram for the 2:1 multiplexer 

 

 

 

Figure 3.20.  Folded cascode amplifier 

 

A folded cascode amplifier, which is shown in Figure 3.20, is used in the output 

stage of DAC [18]. 
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Figure 3.21.  Maximum analog output voltage 

 

 

Figure 3.22.  Simulation of DAC, VREF= 2V 

 
Example simulations of DAC circuit are shown in Figure 3.21 and Figure 3.22. 

Figure 3.21 shows maximum output voltage when the input is “111111” and reference 

voltage is 2.5 V. The second figure shows us when the input is “110011” and reference 

voltage is 2 V. Therefore the output must be equal to 51/63 of the reference voltage. That’s 

equal to 1.6 V.  Latter simulation output value is almost same as the expected value. 

 

The reader is referred to B. Yelten’s project report [17] for further detailed analysis 

of the DAC. 
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Figure 3.23.  Control mechanism to apply reference voltages in serial manner 

 

The block diagram of serial reference voltage control mechanism is shown in Figure 

3.23. The block contains a 6 bit counter and a decoder. As the counter moves forward, the 

corresponding reference voltage produced by the DAC must be applied. This is the basic 

reason for the switches placed in front of the reference voltage. Whenever the counter is at 

a certain number the signal is passed through a decoder and the corresponding switch level 

is selected. At the gate of that switch, a positive pulse is given to activate the transmission 

gate in order to transmit the reference voltage to the gate of the differential pair reference 

input transistor.  

 

As soon as the counter starts to operate the output of the counter is taken by the 

decoder. There are 64 transmission gates. Each of them can be activated if they are 

selected by the result of the counter. In the first cycle, counter shows “000000”, thus the 0th 

transmission gate must be activated. This means that the digitally produced 64 bit ‘count’ 

array should have logic ‘1’ as its first element at that moment in order to let the 

transmission gate work. As soon as the transmission gate is on, the analog voltage output 

of the DAC is applied via the transmission gate to the differential pair. This process must 

be applied repeatedly for other numbers that the counter goes over. One of the biggest 

problems, that the series transmission has, is that the outputs of 64 threshold circuits arrive 

at different times since the comparison is conducted serially. This situation may cause 

intermediate result which could be undesirable. A remedy for that may be the increase in 

clock frequency. Nonetheless, this may have also its own consequences like the rise of the 

power consumption. 

 

This procedure was applied via VHDL and the following figures from Modelsim 

were acquired. Figure 3.24 and 3.25 depict the operation methodology of the VHDL code. 

As can be seen, the counter goes on throughout the simulation beginning from zero. The 

variable ‘result’ in the simulation below is the output of the 6: 64 decoder. As the counter 

6- BIT 

COUNTER 
6: 64 DECODER 

TRANSMISSION 

GATE 
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points to one of the values in the range between 0 and 63, that transmission gate will 

become logic ‘1’ as can be seen from the result of the 6:64 decoder output array.  

 

 

Figure 3.24.  Simulation results for the serial reference control unit (I) 

 

 

Figure 3.25.  Simulation results for the serial reference control unit (II) 

 

Figure 3.26 shows the basic schematic diagram for the synthesized VHDL code. 
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Figure 3.26.  Synthesized VHDL code for the serial reference control unit 

 

Since boundary neurons are known, the switches which must be closed are also 

known. Seeing this fact, alternatively a special counter which counts only the necessary 

switch numbers can be designed. Since the design has maximum eight possible active areas 

at the same time and each area has four connections to first layer, 8x4=32 memory 

elements, where each one is 6 bits, are needed. These memory elements hold the counter 

inputs. Please note that since capacitors hold the reference values until the end of cycle, 

closing order of switches is not important. Counter can only pass corresponding 6 bit 

memory element values to the DAC and the decoder. This idea was not pursued further in 

this work due to the increasing complexity of the digital circuit. 

 

3.2.2.  Parallel Reference Voltage Generation 

 

 

Figure 3.27.  Block diagram of parallel reference voltage generation. 

 

In parallel reference generation method, reference voltages are generated in parallel 

manner at the same instance of time via a stack of resistors. The general block diagram of 
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parallel reference voltage generation is shown in Figure 3.27. References are generated by 

a simple voltage divider, which divides VRT voltage into 64 levels. Therefore ith neuron in 

the transfer block is provided 
2.5

  
64

i ⋅ V threshold voltage. 

 

Matching is very important for parallel reference generation, since 64 resistors have 

to be equal. Resistor value is calculated by using AMS 0.35 micron technology mismatch 

and CMOS resistor model, (3.26) and (3.27) respectively. Power dissipation of resistor 

must be equal to 1 mW. Obtained resistor, width and length results for Poly 2 layer for 

different reference voltages are shown in Table 3.1. For 2.5 V reference voltage 24 Ohm is 

the optimal solution. This type of reference generation method is realized for the system, 

due to its simplicity. 

 

_
( )

.

R A R

R W L
σ

∆
=  (3.26) 

 

L
R R

W
=

�
 (3.27) 

 

Table 3.1.  Possible resistor values according to the AMS mismatch model 

RPOLY2 

VRT(V) R( Ω ) L( µ m) W( µ m) 

2 15.62 17.171 54.95 

2.1 17.22 18.03 52.33 

2.3 20.66 19.74 47.78 

2.5 24.41 21.46 43.96 

2.7 28.47 23.18 40.70 

2.9 32.85 24.90 37.89 

3.1 37.53 26.61 35.45 

3.3 42.53 28.33 33.30 
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3.3.  Area Selection Block 

 

 

Figure 3.28.  Current subtractor, basic area selection block 

 

Area selection block corresponds to the second layer neurons, and it has connections 

to all NT blocks of two threshold blocks in the system; however by definition only four NT 

blocks output switches are set ON. This means only four NT blocks must obtain 

connections to an area selection block. Currents from these four connections are summed 

and taken as input to the block. The simplest area selection block form is a subtractor, 

where inputs are sum of block inputs and threshold current. The output of the block is 

simply the difference between the sum of inputs and the threshold. Since maximum output 

for NT block is 10 µ A, there is 40 µ A input current flows to the block if an area is fully 

selected. Therefore threshold current must be equal to 30 µ A. This operation represents the 

t-norm examined in section 1.1.2. Figure 3.28 shows this configuration. Simulation is 

shown in Figure 3.30.  

 

Figure 3.29.  Area selection circuitry 
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However an activation function implementation where the user can alter the 

threshold value is more suitable for learning algorithms. Such a configuration is shown in 

Figure 3.29. It basically works as follows; the constant current source C2 operates as a 

threshold value which is equal to 30 µ A. Threshold current is subtracted from the input 

current and the result current generates voltage VM5 by help of M5 transistor. This 

generated voltage is one input of M6-M7 differential pair. The other input of differential 

pair is a reference voltage Vref of which user can change for different applications. The 

drain current of M6, which is biased by C1 current source, is taken as output via current 

mirrors. This type of configuration is also based on differential pair characteristics. 

Therefore the computations, which are taken in section 3.1.1, are also valid for this 

configuration. As a consequence the characteristic of latter area selection block 

configuration can be derived as following: 

 

For a rule 
i

ξ , where fuzzified inputs are 
fuzzified

X and
fuzzified

Y , respectively, following 

approximate relation for an area selection block output 
i

Aξ  can be written. 

 

( )( )( )55 1 tanh 10
i M refA V Vξ µ= + −  (3.28) 

 

VM5 is actually gate to source voltage of M5 transistor. Its value depends on if M5 is 

in saturation or subthreshold region. If M5 is in saturation region  

 

5

5
5

5

2

'M fuzzified fuzzified

M
M Th X Y Th

n M

L
V V I I I

k W
= + ⋅ + −  (3.29) 

 

If M5 is subthreshold region then 

 

55 6ln( ) ln( )
M fuzzified fuzzifiedM Th T M X Y Th

V V V I I I I= + ⋅ ⋅ + −  (3.30) 

 

Simulation of block is shown in Figure 3.31. Figure shows fuzzified inputs, their sum 

which is the input of the area selection block, and output curves. 
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Figure 3.30.  Simulation of basic area selection block 

 

 

Figure 3.31.  Simulation of second type area selection block 
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3.4.  Normalization Block 

 

 

Figure 3.32.  Normalization circuitry 

 

Normalization operation is needed for correct defuzzification. A normalizer circuit 

for TSK type fuzzy system should perform the following computation, where w is weight 

value and x is the input: 

 

i i

i

w x
OUT

w
=
∑
∑

 (3.31) 

 

 

 

Figure 3.33.  8-output Gilbert normalizer 

 

The required division is very difficult to implement in VLSI. Nevertheless there are 

some possible solutions to carry out this division. One is called ‘Gilbert normalizer’ [13], 

which is shown Figure 3.33. Designed normalization block, shown in Figure 3.32 is based 

on 8-output ‘Gilbert normalizer’. For better accuracy purposes it is designed as cascoded.  
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Gilbert Normalizer circuit in Figure 3.33 has eight input currents Ij and provides 

eight output currents INj. All transistors are matched and they are working in subthreshold 

region. For input drain currents we can write 

 

1

1 0
T

KV

V
I I e=

2

2 0
T

KV

V
I I e= … 

8

8 0
T

KV

V
I I e=  . (3.32) 

 

and the output drain currents are 

 

1

1 0
T

KV V

V

N
I I e

−

=    
2

2 0
T

KV V

V

N
I I e

−

=  … 
8

8 0
T

KV V

V

N
I I e

−

=         (3.33) 

 

Since the outputs are connected, we can write 

 

0 0

0

j

T T T

KV V V

jV V V

Nj B

I
I I I e e I e

I

− −   
 = = =      

∑ ∑ ∑  (3.34) 

 

We obtain 

( ) T T

V V

V V B
B j

j

I
I I e e

I

− −

= ⇔ =∑
∑

 (3.35) 

 

Now we should try to write output current INj (j=1,2,..,8) equations depending on the 

input currents Ij (j=1,2,..,8).  

1
1

X
N B

Xj

I
I I

I
=

∑
  2

2
X

N B

Xj

I
I I

I
=

∑
… 8

8
X

N B

Xj

I
I I

I
=

∑
  (3.36) 

 

If we want to write a generalized formula, we can write 

 

Xi
Ni B

Xj

I
I I

I
=

∑
 (3.37) 

 

As it can be seen on expression (3.37) that each element in the output array is equal 

to the corresponding element in the input array, divided by the sum of all inputs and scaled 
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by current IB. IB is selected as 31 µ A . There fore all input currents are normalized to 

[0,31 µ A] interval. 

 

Figure 3.34 shows the simulation results. Note that sum of normalized currents is 

always constant and that the same current ratios are preserved after normalization. The 

latter feature is very difficult to accomplish in other solutions of normalizer circuits. 

 

 

Figure 3.34.  Problematic simulation result of the normalizer 

 

Nonzero output while no area is selected is an undesirable situation. Since area 

selection blocks generate no output current while no area is selected, normalizer block 

inputs Ij are become 0 A. That causes the transistors, which is connected to input nodes, 

turn off and each output current becomes 1/8 of IB current. Another issue is that normalizer 

tries to normalize every possible input current value. Area selection block generates some 

small currents that have order of magnitude in nano-amperes, even if no area is selected. In 

spite of this, normalized outputs are in micro ampere range. This situation is shown in 

Figure 3.34. 

 

One possible solution to the problem is turning off the current source IB while there 

is no input or there is a small input to the normalizer. For instance a current source which 

is controlled by the total output current of the area selection blocks is a simple solution.  

 

 

  Non zero current output  when no area is selected 
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Figure 3.35.  Current source controlling circuit 

 

Implemented current source controller is shown in Figure 3.35. The differential pair 

principle applied in area selection block is also implemented for current source controlling, 

due to its simplicity and no need for high precision control. If one or more area is active, an 

output current from the area selection blocks is observed. Total output current of area 

selection blocks can be used for generating a voltage by the help of M3, additionally this 

voltage is compared with reference voltage via differential pair and the output current 

copied to the IB node of normalizer. Since IB should rise to its peak value as quickly as 

possible, differential pair transistors should work in subthreshold region. The widths of the 

differential pair transistors M1 and M2 are 40 µ m and the lengths are 0.35 µ m.  

 

 

Figure 3.36.  Simulation of normalizer with current control circuit 

 

Zero current 

output when no 

area is selected 
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Simulation for new normalizer architecture with designed current source controller is 

shown in Figure 3.36. While there is no input current to normalizer, the output current is 

zero, which means no area is selected. This type of normalization block also supports 

resolving an undesired situation which occurs when some small values are normalized. It 

was commented that small values were normalized to a value between 0 and 31 µ A. Even 

if the value normalization is correct, due to hyperbolic characteristic of membership 

functions normalization of very small values results a rotated version of rectangular pattern 

desired. This undesired situation is shown in Figure 3.37. It should be also mentioned that 

changing of activation function of threshold neurons may resolve the problem. However 

the reference value in the current source controller in Figure 3.35 could be used as a 

threshold value of which the sum of area selection block outputs must pass to trigger the 

normalizer. Since the reference value of current source is controllable user can change the 

resulting surface for the needs. Simulation of corrected version is shown in Figure 3.38. 

The figures show top views of a control surface of a singe rule fuzzy problem. 

 

 

Figure 3.37.  Top view of erroneous output surface, Rule(16,16,48,48) 

 

 

Figure 3.38.  Top view of corrected output surface, Rule(16,16,48,48) 
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3.5.  Weight Assigning Block 

 

 

Figure 3.39.  Weight assigning circuitry 

 

Fuzzified values are normalized in normalization block. In order to obtain 

defuzzified output value, normalized values must be multiplied by corresponding weight 

values. Weight assigning block provides this multiplication. 

 

Basically weight assigning block is a multiplier where one value could be determined 

by user. The main issue for the system is how to appropriately store the weights on chip in 

a non-volatile manner. If the weights are stored as charge on a capacitor [24][25], they will 

decay due to parasitic conductance. One method would use analog memory cell [20][21]. 

However this technique requires using large voltages. Another possible method is 

representing weights digitally [22][23]. Digital weight values are converted to analog 

values and used in analog multipliers. In digital weight approach the accuracy is a problem 

for certain learning algorithms. Therefore the size of digital word which represents weights 

should be selected carefully. Digital weights with current multiplying M2M DAC 

configuration showed in Figure 3.39 are employed. In this configuration weight values are 

determined by digital inputs of DAC. The reference or bias current is the normalized input 

current value that is taken from the normalization block.  
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3.5.1.  Weight Representation 

 

It was decided to represent the weights by 5 bit words. Therefore, the DAC which 

processes the weight data must be 5 bit. A 5 bit DAC has a resolution equals to 25 or 32, 

which means DAC is able to multiply the reference current by a maximum value of 1/31. 

This is the real reason why normalizer has a 31 µ A bias current. Therefore user will be 

able to compute and see the exact result, corresponding to the fully selected area.  

 

Let us have a rule R like following: 

 

:    5R If X A then Z= =  (3.38) 

 

For the rule R, an output value 5 is wanted to be observed if R is fully selected. 

Remembering the rule output values are the weight values of the last layer of synapses, R 

area weight will be set to 5 or “00101”. Please note that this setting procedure is done by a 

digital control. 5 also means fuzzified and normalized input, which can be maximum 31 

µ A while R area is fully selected, will be multiplied by 5/31;  

 

5
31 5

31
µ µ× =  (3.39) 

 

5 µ A corresponds the value which user set. User will see the exact result of R rule 

output value which implies the area is fully selected. Additionally user may want to set a 

value between 0 and 1. For such weight values user has 32 levels between 0 and 1, where 

31 depicts 1 while 0 represents 0. In other words step size for such weight values is 1/31 = 

0,03226. On the other hand user may want to set the weight value to a higher value than 

31. So user must decide a way to represent this value between 0 and 31. One way for 

assigning a higher range values to a value between 0 and 31 is normalization. Please note 

that by using normalization you can also change the range to [0,1]. For example, if the 

maximum and minimum values of weights are known, following normalization 

transformation, which will change the range to [0,31], can be used. 
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min

max min
31 j

j

w w

w w
δ

 −
=   − 

 (3.40) 

 

Additionally if all weights are known, the sum of weight values can also be used for 

obtaining normalized weights as shown in equation (3.41). 

 

31 j
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i

w

w
δ

 
=   

 ∑
 (3.41) 

 

3.5.2.  5 bit Current Multiplying DAC 

 

 

Figure 3.40.  Basic R2R ladder 

 

 

Figure 3.41.  M2M ladder 

 

Any network of linear resistors can be implemented by means of MOS transistors, 

with the additional possibility of electrically controlling value of each equivalent resistor if 

the transistor is operating in subthreshold region. This concept can be applied to the R2R 

ladder shown in Figure 3.40, resulting MOS only ladder (or in other words M2M ladder) 

[32] shown in Figure 3.41. In order to split the current equally at each node, the aspect 

ratios of the even numbered transistors need to be twice that of the odd numbered 

transistors, which can be simply realized either by connecting two unit transistors in 

parallel for the series branch and one for the shunt branch (or inversely one for the series 
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branch and two in series for the shunt branch). It is interesting to note that the current 

division is independent of the current and therefore it is also independent of the region 

where MOS transistors operate.  

 

The performance of the circuit is limited by a number of second order effects. 

Mismatch of device geometry and oxide thickness will only affect the accuracy of the 

division. 

 

The current output could be taken in various ways. In this implementation shown in 

Figure 3.39 current outputs are taken from drains of odd numbered transistors via current 

mirrors. Outputs are controlled by switches. MSB represented by M3 while LSB is M11 

and M12. Simulation output is shown in Figure 3.42. As it can bee seen the precision of the 

circuit is very high. Every step form 0 to 31 µ A is achieved accurately.  

 

 

Figure 3.42.  Simulation of DAC circuit, levels between 0 and 31 µ A 
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3.5.3.  Weight Control Unit 

 

 

Figure 3.43.  Block diagram of weight control unit 

 

Since DAC inputs are indicating the weight values, these inputs must be assigned in 

some way. As in setting boundary neuron synapse connections, weight setting operation is 

done by a digital control block. 

 

Designed weight controlling (or setting) block is shown in Figure 3.43. The block 

simply takes 5 bit input and writes it to memory and applies it to the switch inputs of 

corresponding weight assigning block.   

 

Block has following inputs DATA, RST, WR and AR. DATA is 5 bit user input 

which represents the switch value of the weight assigning block. That means DATA must 

be equal to the value which user wants to set. Desired weight assigning block is assigned 

by AR input. Block converts binary AR data to a decimal value which denotes the index 

number of weight assigning block. DATA binding can only be done while WR input is ‘1’. 

RST input resets the switch values to ‘0’. In other words it resets the memory to ‘0’ 

entirely.  

 

Block outputs are named according to the order of weight assigning blocks. For 

example W1 represents the synapse between the first area selection block and the output 

node. Output configuration matches the configuration of the DAC in the weight assigning 
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blocks. For example MSB of W1 stands for MSB of the DAC input and LSB corresponds 

to the LSB input of the DAC. 

 

 

Figure 3.44.  VHDL simulation of weight control unit 

 

3.6.  Summing Block 

 

 

Figure 3.45.  Summing node 

 

It was noted that for correct defuzzification expression (3.28) is needed. Normalized 

and weighted currents are obtained in previous blocks of the design and the summing block 

completes the system and sums all normalized and weighted currents. This block is 

basically a node which all current outputs of weight assigning blocks, Wi i=1, 2, … , 8, are 

connected to. Figure 3.45 shows this simple configuration.  
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4.  CHIP DESIGN & EXAMPLES 

 

 

4.1.  Chip Design 

 

The complete circuit was designed and tested via various tools. A MATLAB model 

was also programmed for comparing the theoretical results with simulated ones. VHDL-

AMS and H-SPICE simulations were carried out. Figure 4.3 shows the schematic of 

designed analog circuitry of the architecture. The digital circuitry is shown in appendix due 

to its size. Figure 4.4 shows the completed circuitry where analog and digital blocks are 

connected. While digital block generates the corresponding switch control voltages which 

is used in the process of the input data in analog circuitry. Due to limited chip area 16 

neuron blocks were designed for each threshold block. Also eight area blocks, normalizer 

and eight weight assigning block are shown in Figure 4.3.  

 

Total number of inputs is equal to 29, where two of them are the dimension inputs 

and the other ones are digital block inputs. 

 

Complete circuit has an ability to process maximum eight million fuzzy rule 

evaluations per second. An example is shown in Figure 3.49, where X input is 1 MHz 

pulse signal and Y input is constant. Another example is shown in Figure 3.50, where this 

time X input is sinusoidal wave. Please note that while maximum input frequency is 1 

MHz, maximum number of possible fuzzy rule evaluations per second is equal to eight 

million due to parallel evaluation of eight fuzzy rules. 

 

Estimated power dissipation for analog circuitry is 37 mW, where power 

consumption of digital circuitry can be neglected. Total number of transistors is equal to 

1862, while total number of digital gates is equal to 4018. 
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Figure 4.1.  Maximum frequency, pulse input 

 

 

Figure 4.2.  Maximum frequency, sinusoidal input 
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Figure 4.3.  Complete analog circuit

NT Block 

Area selection block 

Weight assigning block 

Output 

Normalization block 
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Figure 4.4.  Analog and digital blocks connected 

Digital block 

Analog block 
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4.2.  Examples  

 

4.2.1. Implementation Of One Dimensional Rules 

 

 

Figure 4.5.  Simulation of example one dimensional fuzzy system 

 

It is stated that design is implemented for two dimensional input spaces. However 

most of two dimensional fuzzy systems include some one dimensional fuzzy rules as 

shown below.  

 

If X=A then Z=c    (4.1) 

 

Such one dimensional rules can also be implemented in proposed design. For the 

example rule, lower boundary neuron for Y dimension is set to the first neuron and upper 

boundary neuron is set to the last neuron (16 in implementation) of the system. Therefore, 

Y input will always be in the boundaries of the rule area. 

 

A simulation example is shown in Figure 4.5. Figure 4.5 shows a DC simulation 

output of the chip where X input sweeps form 0V to 2.5 V and Y input is 1.25 V. System 

consists of five rules that are independent of Y dimension. Therefore, the output represents 

the control surface of the one dimensional fuzzy system.  

 

Output 
Membership functions 
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4.2.2. Area Selection 

 

 

Figure 4.6.  Example input space 

 

A desired input space is shown in Figure 4.6. Desired areas and their corresponding 

boundary neurons are listed in Table 4.1: 

 

Table 4.1.  Example input space values 

Area NT_X NT_Y Output 

A1 1 32 1 32 10 

A2 16 48 16 48 21 

A3 48 64 1 32 6 

A4 48 64 48 64 31 

A5 1 32 32 64 7 

A6 32 48 32 64 26 

 

Obtained control surface via theoretical MATLAB simulation is shown in Figure 4.7. 

Additionally obtained control surface via SPICE simulation is shown in Figure 4.8. T-norm 

operation is used in the theoretical model, while the second type of area selection block is 

used in the chip. The small differences in the edges of the simulated surface are based on 

second type of area selection block which does not perfectly utilize desired T-min 

operation.  
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Figure 4.7.  Theoretical control surface for the example 

 

 

Figure 4.8.  Simulated control surface for the example 
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4.2.3.  Robotic Pool System 

 

The decision of the difficulty of a shot on the pool table for a robotic pool system 

was chosen as another example control problem for the system. A theoretical example 

zero-order TSK type fuzzy control approach is carried out in [26]. Same approach will be 

followed and same fuzzy problem will be mapped onto the chip and the simulated SPICE 

results are compared with theoretical ones.   

 

 

Figure 4.9.  Geometry of a shot 

 

In order to estimate the difficulty of a shot, there are three main parameters, which 

are shown in Figure 4.9, to be considered. 

 

• The distance traveled by the cue ball before the collision with object ball, denoted as 

co
d . 

• The distance from the object ball to pocket, denoted as 
op

d . 

• The angle between the line joining both the distances 
co

d  and 
op

d , denoted as α . 

 

co
d , 

op
d  and α  is considered as inputs of the system in [26]. But since the chip has 

two inputs, the effect of 
op

d  will be neglected in the system and 
op

d  will be considered as 

an average distance value. Membership functions for 
co

d  and 
op

d  sets are shown in Figure 

4.10. Membership functions for α  are shown in Figure 4.11. 
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Figure 4.10.  Membership functions of 
co

d  and 
op

d  

 

 

Figure 4.11.  Membership functions of α  

 

And the membership values of the output, which is denoted as ∆ , are 

 

(0.0) 1.0

(0.5) 1.0

(1.0) 1.0

simple

mediate

high

µ

µ

µ

∆

∆

∆

=

=

=

 (4.2) 

 

The rules are defined as 

 

Ri: IF 
co

d is LV
co

d
(i) AND α  is LVα (i) THEN ∆  is LV ∆

 (i)    (4.3) 

 

where LV terms are linguistic values. The rule base is shown in Table 4.2. 
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Table 4.2.  Rule base for the example 

Rules Inputs Outputs 

 co
d  α  ∆  

1 Near Easy Intermediate 

2 Near Medium Intermediate 

3 Near Hard Tough 

4 Average Easy Intermediate 

5 Average Medium Intermediate 

6 Average Hard Tough 

7 Far Easy Intermediate 

8 Far Medium Tough 

9 Far Hard Tough 

 

One can notice there are nine rules in the system. However the chip is restricted to 

eight rules for experimental purposes. One rule might be neglected or an extra area 

selection block can be added to the chip for just reviewing simulation results. Since adding 

extra components will change the architecture, the ninth rule will be neglected. Resulting 

theoretical control surface is shown in Figure 4.12. Simulated control surface is shown in 

Figure 4.13. 

 

Theoretical response includes nine rules while simulated one consists of eight rule 

outputs. Absence of ninth area is clearly seen in Figure 4.13.  
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Figure 4.12.  Theoretical control surface for the example 

 

 

Figure 4.13.  Simulated control surface for the example 
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5.  CONCLUSION AND FUTURE WORK 

 

 

5.1.  Conclusion 

 

A novel neuro-fuzzy architecture, which realizes zero order TSK type fuzzy system, 

is defined, tested, modeled and additionally analog CMOS implementation for two 

dimensional input spaces is realized. This implementation consists of the following blocks; 

threshold block, area selection block, normalization block, weight assigning, and summing 

block. 

  

Threshold block is simply the first layer of the neuro-fuzzy architecture and includes 

neuron circuits. The analog implementation of this block mostly based on the differential 

pair characteristic. This characteristic is playing an important role in construction of 

membership functions. The saturation region is selected, but where it is similar to the 

subthreshold counterpart. If it is needed, another membership function is possible if sizes 

of transistors are selected suitably. Additionally neuron circuit may be replaced with 

another analog circuit if membership function is not obtainable via differential pair. Also 

serial and parallel reference voltage generation methods and their digital control blocks are 

presented, where parallel reference generation method is selected for implementation. 

Second layer connections are set by a digital control blocks which simply sets ‘ON’ or 

‘OFF’ desired connection switches. 

  

Area selection blocks represent rule neurons which are in the second layer of the 

system. The purpose of this block is to show if the rule is obtained. Two different possible 

implementations are introduced. First one is simply a current subtractor where a threshold 

current is subtracted from the sum of input currents. The other implementation is based on 

differential pair characteristic as threshold block. When inputs are inside the area of 

corresponding rule, then the block generates a current output which flows through the 

normalization block input nodes. 

 

Normalization block normalizes each fuzzified input in order to obtain correct 

defuzzification operation. Additionally, some control problems, which result from the 
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incorrect operation of normalization circuit, are reviewed. A current source controller 

which generates reference current for normalization circuit is realized for correct operation. 

Controller is also based on differential pair characteristic. It simply sets a threshold value 

for normalization operation. If the voltage generated by total area selection output current 

is greater than this reference, then controller generates bias current for normalization in 

order to normalize the area selection outputs. 

 

Weight assigning block represents the connections between second layer and third 

layer. This block can be seen as a multiplier where user can determine the multiplication 

value which stands for weight of a synapse. 5 bit current multiplying DAC is implemented 

and weights are decided to be represented digitally. The reference current of this DAC is 

normalized and fuzzified inputs. Therefore, outputs correspond to weighted inputs. For 

correct defuzzification additional summing operation is required. 

 

Summing block sums all weighted inputs and finishes the fuzzy rule evaluation 

process. Since the values are represented by currents, the summing block is simply a node 

where all weight assigning block outputs are connected to.  

 

Examples show us implemented chip works accurately and the control surface, 

which is constructed by simulations, are very close to the theoretically created control 

surfaces. Implemented chip is also able to evaluate eight million fuzzy rules per second. 

Estimated power dissipation is equal to 37 mW. 

 

5.2.  Future Work 

 

5.2.1. Additional Circuit Implementations 

 

Hyperbolic type activation function and membership function implementations are 

possible in proposed design. Additional neuron circuit implementations for the other type 

of activation functions should also be determined. 

 

Normalization block is the bottleneck of the system. Due to operating in subthreshold 

region, it causes a major drop in the maximum possible bandwidth value. New 
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normalization block realization should be tested and additionally new normalization block 

strategies should be introduced. 

 

5.2.2.  Learning Algorithm 

 

Realization of a learning algorithm has not been achieved. This thesis actually 

focuses on the hardware implementation, however some attempts to realize a learning 

procedure was made. Nevertheless some key points, which may help realizing a learning 

procedure, are detected: 

 

• There are four synapse connections from first layer to a second layer neuron. Two of 

them are (+1) while the other two are (-1) connections. That means, if there are n 

second layer neurons, there must be 4n number of connections between first and 

second layer, where 2n of them are (+1) connections and the other 2n are (-1) 

connections. 

• If there is a (+1) connection in the first layer there must be at least another 

connection which has (-1) value for corresponding dimension. Additionally there 

must be at least two connections for other dimension, (+1) and (-1), respectively. 

 

The most characteristic feature of the architecture is that there are equal number of 

(+1) an (-1) weight valued synapses between first and second layer. Due to not all of the 

first layer neurons have connections to second layer, learning algorithm must also consider 

0 value, which represents no connection. 

 



 

 

71 

APPENDIX A:  SPICE, VHDL AND MATLAB CODES 

 

 

A.1.  Spice Codes 

 

A.1.1.  NT Block 

 

.subckt thresh  in ref1 ref2 oA1 oA2 oA3 oA4 oA5 oA6 oA7 oA8 oA1n oA2n oA3n oA4n 

oA5n oA6n oA7n oA8n sA1 sA2 sA3 sA4 sA5 sA6 sA7 sA8 sA1n sA2n sA3n sA4n sA5n 

sA6n sA7n sA8n 

vdd dd 0 3.3 

x1 s cascode7 

m1 s in o1 dd pfet W= 15u L=0.35u 

m2 s  ref1 o2 dd pfet W= 15u L=0.35u 

mncm1 o1 o1 0 0 nfet w=1u l=1u 

mncm2 o1b o1 0 0 nfet w=1u l=1u 

mnpm1 o1b o1b dd dd pfet w=1u l=1u 

mnpm_A1 oA1b o1b dd dd pfet w=1u l=1u 

mnpm_A2 oA2b o1b dd dd pfet w=1u l=1u 

mnpm_A3 oA3b o1b dd dd pfet w=1u l=1u 

mnpm_A4 oA4b o1b dd dd pfet w=1u l=1u 

mnpm_A5 oA5b o1b dd dd pfet w=1u l=1u 

mnpm_A6 oA6b o1b dd dd pfet w=1u l=1u 

mnpm_A7 oA7b o1b dd dd pfet w=1u l=1u 

mnpm_A8 oA8b o1b dd dd pfet w=1u l=1u 

mncm3 o2 o2 0 0 nfet w=1u l=1u 

mncm4 o2b o2 0 0 nfet w=1u l=1u 

mnpm2 o2b o2b dd dd pfet w=1u l=1u 

mnpm_A1n oA1bn o2b dd dd pfet w=1u l=1u 

mnpm_A2n oA2bn o2b dd dd pfet w=1u l=1u 

mnpm_A3n oA3bn o2b dd dd pfet w=1u l=1u 

mnpm_A4n oA4bn o2b dd dd pfet w=1u l=1u 

mnpm_A5n oA5bn o2b dd dd pfet w=1u l=1u 
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mnpm_A6n oA6bn o2b dd dd pfet w=1u l=1u 

mnpm_A7n oA7bn o2b dd dd pfet w=1u l=1u 

mnpm_A8n oA8bn o2b dd dd pfet w=1u l=1u 

xsA1 oA1 oA1b sA1 dd switch2 

xsA2 oA2 oA2b sA2 dd switch2 

xsA3 oA3 oA3b sA3 dd switch2 

xsA4 oA4 oA4b sA4 dd switch2 

xsA5 oA5 oA5b sA5 dd switch2 

xsA6 oA6 oA6b sA6 dd switch2 

xsA7 oA7 oA7b sA7 dd switch2 

xsA8 oA8 oA8b sA8 dd switch2 

xsA1n oA1n oA1bn sA1n dd switch2 

xsA2n oA2n oA2bn sA2n dd switch2 

xsA3n oA3n oA3bn sA3n dd switch2 

xsA4n oA4n oA4bn sA4n dd switch2 

xsA5n oA5n oA5bn sA5n dd switch2 

xsA6n oA6n oA6bn sA6n dd switch2 

xsA7n oA7n oA7bn sA7n dd switch2 

xsA8n oA8n oA8bn sA8n dd switch2 

R ref1 ref2 20 

.subckt switch2 in out sw dd 

X1 sw swn dd inverter2 

ms1a in swn out dd pfet w=5.25u l=0.35u 

ms1b in sw out 0 nfet w=1.75u l=0.35u 

.ends 

.subckt inverter2 inn outn dd 

m1 dd inn outn dd pfet w=3.15u l=0.35u 

m2 outn inn 0 0 nfet w=1.05u l=0.35u 

.ends 

.subckt cascode7 5 

vdd 1 0 3.3 

m1 2 2 1 1 pfet W=10u L=1u 

m3 5 2 1 1 pfet W=10u L=1u 
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m4 20 20 0 0 nfet w=1u l=29.5u 

m5 30 20 0 0 nfet w=1u l=29.5u 

Rref 1 50 10k 

Vin 50 20 0 

Vo 2 30 0 

.ends cascode7 

.ends  thresh 

 

A.1.2.  Area Selection Block 

 

.subckt areasel 30 40 10 34 

xc2 32 cascode2  

xc 16 cascode1 

mt1 32 32 35 0 nfet w=10u l=1u 

mt2 30 32 36 0 nfet w=10u l=1u 

mt3 35 35 0 0 nfet w=10u l=1u 

mt4 36 35 0 0 nfet w=10u l=1u 

mo1 16 34 0 10 pfet W=15u L=0.35u  

mo2 16 20 40 10 pfet W=15u L=0.35u  

mres1 34 34 0 0 nfet W=0.5u L=0.5u 

vref 20 0 0.625 

.subckt cascode1 5 

vdd 1 0 3.3 

m1 2 2 1 1 pfet W=10u L=1u 

m3 5 2 1 1 pfet W=10u L=1u 

m4 20 20 0 0 nfet w=1u l=21u 

m5 30 20 0 0 nfet w=1u l=21u 

Rref 1 50 10k 

Vin 50 20 0 

Vo 2 30 0 

.ends cascode1 

 

.subckt cascode2 5 
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vdd 1 0 3.3 

m1 2 2 1 1 pfet W=10u L=1u 

m3 5 2 1 1 pfet W=10u L=1u 

m4 20 20 0 0 nfet w=5u l=42u 

m5 30 20 0 0 nfet w=5u l=42u 

Rref 1 50 10k 

Vin 50 20 0 

Vo 2 30 0 

.ends cascode2 

.ends 

 

A.1.3.  Normalization Block 

 

.subckt normalizer i1 i2 i3 i4 i5 i6 i7 i8 i1o i2o i3o i4o i5o i6o i7o i8o isw 

vdd dd 0 3.3 

m11 i1 i1 i1a 0 nfet w=150.0u l=0.35u  

m12 i1o i1 i1b 0 nfet w=150.0u l=0.35u  

m13 i1a i1a 12 0 nfet w=150.0u l=0.35u  

m14 i1b i1a 442 0 nfet w=150.0u l=0.35u  

m21 i2 i2 i2a 0 nfet w=150.0u l=0.35u  

m22 i2o i2 i2b 0 nfet w=150.0u l=0.35u 

m23 i2a i2a 12 0 nfet w=150.0u l=0.35u  

m24 i2b i2a 442 0 nfet w=150.0u l=0.35u  

m31 i3 i3 i3a 0 nfet w=150.0u l=0.35u  

m32 i3o i3 i3b 0 nfet w=150.0u l=0.35u 

m33 i3a i3a 12 0 nfet w=150.0u l=0.35u  

m34 i3b i3a 442 0 nfet w=150.0u l=0.35u  

m41 i4 i4 i4a 0 nfet w=150.0u l=0.35u  

m42 i4o i4 i4b 0 nfet w=150.0u l=0.35u 

m43 i4a i4a 12 0 nfet w=150.0u l=0.35u  

m44 i4b i4a 442 0 nfet w=150.0u l=0.35u  

m51 i5 i5 i5a 0 nfet w=150.0u l=0.35u  

m52 i5o i5 i5b 0 nfet w=150.0u l=0.35u 
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m53 i5a i5a 12 0 nfet w=150.0u l=0.35u  

m54 i5b i5a 442 0 nfet w=150.0u l=0.35u  

m61 i6 i6 i6a 0 nfet w=150.0u l=0.35u  

m62 i6o i6 i6b 0 nfet w=150.0u l=0.35u 

m63 i6a i6a 12 0 nfet w=150.0u l=0.35u  

m64 i6b i6a 442 0 nfet w=150.0u l=0.35u  

m71 i7 i7 i7a 0 nfet w=150.0u l=0.35u  

m72 i7o i7 i7b 0 nfet w=150.0u l=0.35u 

m73 i7a i7a 12 0 nfet w=150.0u l=0.35u  

m74 i7b i7a 442 0 nfet w=150.0u l=0.35u  

m81 i8 i8 i8a 0 nfet w=150.0u l=0.35u  

m82 i8o i8 i8b 0 nfet w=150.0u l=0.35u 

m83 i8a i8a 12 0 nfet w=150.0u l=0.35u  

m84 i8b i8a 442 0 nfet w=150.0u l=0.35u  

mr 12 12 0 0 nfet w=1u l=0.35u 

xcas 443 cascode3 

mr1 0 isw 443 dd pfet w=10.0u l=0.35u  

mr2 444 ir2 443 dd pfet w=10.0u l=0.35u  

mhcm11 444 444 0 0 nfet w=2u l=2u 

mhcm21 442 444 0 0 nfet w=2u l=2u 

VR2 ir2 0 1.1 

ms isw isw 0 0 nfet w=0.5u l=6u 

.subckt cascode3 5 

vdd 1 0 3.3 

m1 2 2 1 1 pfet W=40u L=1u 

m3 5 2 1 1 pfet W=40u L=1u 

m4 20 20 0 0 nfet w=5u l=57.75u 

m5 30 20 0 0 nfet w=5u l=57.75u 

Rref 1 50 10k 

Vin 50 20 0 

Vo 2 30 0 

.ends cascode3.ends 
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A.1.4.  Weight Assigning Block 

 

.subckt dac ss in1 in2 in3 in4 in5 m_out dd 

*****************CURRENT DIVIDING************ 

m1 ss ss 0 0 nfet w=4u l=2u 

m2 d1 ss out 0 nfet w=2u l=2u 

m3 10 ss out 0 nfet w=4u l=2u 

m4 d2 ss 10 0 nfet w=2u l=2u 

m5 20 ss 10 0 nfet w=4u l=2u 

m6 d3 ss 20 0 nfet w=2u l=2u 

m7 30 ss 20 0 nfet w=4u l=2u 

m8 d4  ss 30 0 nfet w=2u l=2u 

m9 40 ss 30 0 nfet w=4u l=2u 

m10 d5 ss 40 0 nfet w=2u l=2u 

m11 40 ss 30 0 nfet w=4u l=2u 

m12 dd ss 40 0 nfet w=2u l=2u 

*******SWITCHES FOR DIGITAL INPUT*************** 

Xs1 o1 d1 in1 dd switch 

Xs2 o2 d2 in2 dd switch 

Xs3 o3 d3 in3 dd switch 

Xs4 o4 d4 in4 dd switch 

Xs5 o5 d5 in5 dd switch 

**************************** 

Vt 55 50 0 

**********CURRENT MIRRORS********************** 

mcm11 dd o1 o1 dd pfet w=1u l=1u 

mcm12 dd o1 m_out dd pfet w=1.05u l=1.05u 

mcm21 dd o2 o2 dd pfet w=2.65u l=2.65u 

mcm22 dd o2 m_out dd pfet w=2.5u l=2.5u 

mcm31 dd o3 o3 dd pfet w=2.65u l=2.65u 

mcm32 dd o3 m_out dd pfet w=2.5u l=2.5u 

mcm41 dd o4 o4 dd pfet w=1u l=1u 

mcm42 dd o4 m_out dd pfet w=1u l=1u 
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mcm51 dd o5 o5 dd pfet w=3u l=3u 

mcm52 dd o5 m_out dd pfet w=1.9u l=1.9u 

************SWITCH SUB************* 

.subckt switch in out sw dd 

ms1a dd sw out dd pfet w=5.25u l=0.35u 

ms1b in sw out 0 nfet w=1.75u l=0.35u 

.ends 

*****INVERTER SUB****** 

.subckt inverter inn outn dd 

m1 dd inn outn dd pfet w=3.15u l=0.35u 

m2 outn inn 0 0 nfet w=1.05u l=0.35u 

.ends 

*************************** 

vo out 0 0 

.ends 

 

A.1.5.  Complete Analog Circuit  

 

** TSK NeuroFuzzy Model 

** by Baykal Sarioglu 

vdd 100000 0 3.3 

vtezt 100000 10 0 

vref 20 0 1 

********** REFERENCE VOLTAGES ********** 

vrxn ref_x1 0 2.5 

vryn ref_y1 0 2.5 

********** INPUT VOLTAGES ********** 

vinp1 in 0  sin(.618 1.25 1000k) 

vinp2 in2 0 2.0 

********** THRESHOLD BLOCK INSTANCES ********** 

** x axis 

xth_x1 in ref_x1 ref_x2  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 10 10 0 0 0 0    0 0 0 0 0 0 0 0  thresh 
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xth_x2 in ref_x2 ref_x3  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x3 in ref_x3 ref_x4  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n    

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x4 in ref_x4 ref_x5  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x5 in ref_x5 ref_x6  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x6 in ref_x6 ref_x7  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x7 in ref_x7 ref_x8  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x8 in ref_x8 ref_x9  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x9 in ref_x9 ref_x10  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x10 in ref_x10 ref_x11  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x11 in ref_x11 ref_x12  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x12 in ref_x12 ref_x13  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x13 in ref_x13 ref_x14  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x14 in ref_x14 ref_x15  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x15 in ref_x15 ref_x16  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x16 in ref_x16 ref_x17  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x17 in ref_x17 ref_x18  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n    

0 10 0 0 0 10 0 0   0 0 10 10 0 0 0 0  thresh 

xth_x18 in ref_x18 ref_x19  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      
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0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x19 in ref_x19 ref_x20  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x20 in ref_x20 ref_x21  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x21 in ref_x21 ref_x22  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x22 in ref_x22 ref_x23  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x23 in ref_x23 ref_x24  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x24 in ref_x24 ref_x25  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x25 in ref_x25 ref_x26  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x26 in ref_x26 ref_x27  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x27 in ref_x27 ref_x28  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x28 in ref_x28 ref_x29  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x29 in ref_x29 ref_x30  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x30 in ref_x30 ref_x31  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x31 in ref_x31 ref_x32  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x32 in ref_x32 ref_x33  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x33 in ref_x33 ref_x34  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

10 0 0 0 10 0 0 0    0 0 0 0 0 10 0 0  thresh 

xth_x34 in ref_x34 ref_x35  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 
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xth_x35 in ref_x35 ref_x36  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x36 in ref_x36 ref_x37  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x37 in ref_x37 ref_x38  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x38 in ref_x38 ref_x39  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x39 in ref_x39 ref_x40  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x40 in ref_x40 ref_x41  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x41 in ref_x41 ref_x42  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x42 in ref_x42 ref_x43  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x43 in ref_x43 ref_x44  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x44 in ref_x44 ref_x45  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x45 in ref_x45 ref_x46  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x46 in ref_x46 ref_x47  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x47 in ref_x47 ref_x48  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x48 in ref_x48 ref_x49  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x49 in ref_x49 ref_x50  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 10 0 0 0 0 0 0  thresh 

xth_x50 in ref_x50 ref_x51  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x51 in ref_x51 ref_x52  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      
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0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x52 in ref_x52 ref_x53  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x53 in ref_x53 ref_x54  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x54 in ref_x54 ref_x55  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x55 in ref_x55 ref_x56  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x56 in ref_x56 ref_x57  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x57 in ref_x57 ref_x58  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x58 in ref_x58 ref_x59  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x59 in ref_x59 ref_x60  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x60 in ref_x60 ref_x61  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x61 in ref_x61 ref_x62  a1 a2 a3 a4 a5 a6 a7 a8     a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x62 in ref_x62 ref_x63  a1 a2 a3 a4 a5 a6 a7 a8   a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x63 in ref_x63 0  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      0 0 0 

0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_x64 in 0 0   a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    10 0 0 0 10 0 0 0  thresh 

**y axis********************** 

xth_y1 in2 ref_y1 ref_y2  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n    

0 0 0 10 10 10 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y2 in2 ref_y2 ref_y3  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y3 in2 ref_y3 ref_y4  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      
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0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y4 in2 ref_y4 ref_y5  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y5 in2 ref_y5 ref_y6  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n    

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y6 in2 ref_y6 ref_y7  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y7 in2 ref_y7 ref_y8  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y8 in2 ref_y8 ref_y9  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y9 in2 ref_y9 ref_y10  a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y10 in2 ref_y10 ref_y11 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y11 in2 ref_y11 ref_y12 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y12 in2 ref_y12 ref_y13 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y13 in2 ref_y13 ref_y14 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y14 in2 ref_y14 ref_y15 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y15 in2 ref_y15 ref_y16 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y16 in2 ref_y16 ref_y17 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y17 in2 ref_y17 ref_y18 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 10 0 0 0 0 0 0    0 0 0 10 0 0 0 0  thresh 

xth_y18 in2 ref_y18 ref_y19 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y19 in2 ref_y19 ref_y20 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 
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xth_y20 in2 ref_y20 ref_y21 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y21 in2 ref_y21 ref_y22 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y22 in2 ref_y22 ref_y23 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y23 in2 ref_y23 ref_y24 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y24 in2 ref_y24 ref_y25 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y25 in2 ref_y25 ref_y26 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y26 in2 ref_y26 ref_y27 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y27 in2 ref_y27 ref_y28 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y28 in2 ref_y28 ref_y29 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0   0 0 0 0 0 0 0 0  thresh 

xth_y29 in2 ref_y29 ref_y30 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y30 in2 ref_y30 ref_y31 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y31 in2 ref_y31 ref_y32 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n 

 0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y32 in2 ref_y32 ref_y33 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y33 in2 ref_y33 ref_y34 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

10 0 10 0 0 0 0 0    0 0 0 0 10 10 0 0  thresh 

xth_y34 in2 ref_y34 ref_y35 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y35 in2 ref_y35 ref_y36 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y36 in2 ref_y36 ref_y37 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      
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0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y37 in2 ref_y37 ref_y38 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y38 in2 ref_y38 ref_y39 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y39 in2 ref_y39 ref_y40 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y40 in2 ref_y40 ref_y41 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y41 in2 ref_y41 ref_y42 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y42 in2 ref_y42 ref_y43 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y43 in2 ref_y43 ref_y44 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y44 in2 ref_y44 ref_y45 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y45 in2 ref_y45 ref_y46 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y46 in2 ref_y46 ref_y47 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y47 in2 ref_y47 ref_y48 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y48 in2 ref_y48 ref_y49 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y49 in2 ref_y49 ref_y50 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y50 in2 ref_y50 ref_y51 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 10 0 0 0 0 0 0  thresh 

xth_y51 in2 ref_y51 ref_y52 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y52 in2 ref_y52 ref_y53 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 
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xth_y53 in2 ref_y53 ref_y54 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y54 in2 ref_y54 ref_y55 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y55 in2 ref_y55 ref_y56 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y56 in2 ref_y56 ref_y57 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y57 in2 ref_y57 ref_y58 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y58 in2 ref_y58 ref_y59 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y59 in2 ref_y59 ref_y60 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y60 in2 ref_y60 ref_y61 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y61 in2 ref_y61 ref_y62 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y62 in2 ref_y62 ref_y63 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y63 in2 ref_y63 ref_y64 a1 a2 a3 a4 a5 a6 a7 a8    a1n a2n a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    0 0 0 0 0 0 0 0  thresh 

xth_y64 in2 0 0   a1 a2 a3 a4 a5 a6 a7 a8    a1n a2yl a3n a4n a5n a6n a7n a8n      

0 0 0 0 0 0 0 0    10 0 10 0 0 0 0 0  thresh  

vin1 a1 a1_in 0 

vin2 a2 a2_in 0 

vin3 a3 a3_in 0 

vin4 a4 a4_in 0 

vin5 a5 a5_in 0 

vin6 a6 a6_in 0 

vin7 a7 a7_in 0 

vin8 a8 a8_in 0 

vin1n a1n a1_in 0 
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vin2n a2n a2_in 0 

vin3n a3n a3_in 0 

vin4n a4n a4_in 0 

vin5n a5n a5_in 0 

vin6n a6n a6_in 0 

vin7n a7n a7_in 0 

vin8n a8n a8_in 0 

xarea1 a1_in a1_out 10 a1_outt  areasel 

xarea2 a2_in a2_out 10 a2_outt  areasel 

xarea3 a3_in a3_out 10 a3_outt  areasel 

xarea4 a4_in a4_out 10 a4_outt  areasel 

xarea5 a5_in a5_out 10 a5_outt  areasel 

xarea6 a6_in a6_out 10 a6_outt  areasel 

xarea7 a7_in a7_out 10 a7_outt  areasel 

xarea8 a8_in a8_out 10 a8_outt  areasel 

vtat1 a1_in a1_outt 0 

vtat2 a2_in a2_outt 0 

vtat3 a3_in a3_outt 0 

vtat4 a4_in a4_outt 0 

vtat5 a5_in a5_outt 0 

vtat6 a6_in a6_outt 0 

vtat7 a7_in a7_outt 0 

vtat8 a8_in a8_outt 0 

vo1 a1_out a1_outb 0 

vo2 a2_out a2_outb 0 

vo3 a3_out a3_outb 0 

vo4 a4_out a4_outb 0 

vo5 a5_out a5_outb 0 

vo6 a6_out a6_outb 0 

vo7 a7_out a7_outb 0 

vo8 a8_out a8_outb 0 

*CURRENT MIRRORS 

mcma1_1 a1_outb a1_outb 0 0 nfet w=2u l=2u 
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mcma1_2 a1_im1 a1_outb 0 0 nfet w=2u l=2u 

mcma1_3 a1_im1 a1_im1 10 10 pfet w=2u l=2u 

mcma1_4 a1_copy1 a1_im1 10 10 pfet w=2u l=2u 

mcma1_5 a_t1 a1_im1 10 10 pfet w=2u l=2u 

mcma2_1 a2_outb a2_outb 0 0 nfet w=2u l=2u 

mcma2_2 a2_im1 a2_outb 0 0 nfet w=2u l=2u 

mcma2_3 a2_im1 a2_im1 10 10 pfet w=2u l=2u 

mcma2_4 a2_copy1 a2_im1 10 10 pfet w=2u l=2u 

mcma2_5 a_t1 a2_im1 10 10 pfet w=2u l=2u 

mcma3_1 a3_outb a3_outb 0 0 nfet w=2u l=2u 

mcma3_2 a3_im1 a3_outb 0 0 nfet w=2u l=2u 

mcma3_3 a3_im1 a3_im1 10 10 pfet w=2u l=2u 

mcma3_4 a3_copy1 a3_im1 10 10 pfet w=2u l=2u 

mcma3_5 a_t1 a3_im1 10 10 pfet w=2u l=2u 

mcma4_1 a4_outb a4_outb 0 0 nfet w=2u l=2u 

mcma4_2 a4_im1 a4_outb 0 0 nfet w=2u l=2u 

mcma4_3 a4_im1 a4_im1 10 10 pfet w=2u l=2u 

mcma4_4 a4_copy1 a4_im1 10 10 pfet w=2u l=2u 

mcma4_5 a_t1 a4_im1 10 10 pfet w=2u l=2u 

mcma5_1 a5_outb a5_outb 0 0 nfet w=2u l=2u 

mcma5_2 a5_im1 a5_outb 0 0 nfet w=2u l=2u 

mcma5_3 a5_im1 a5_im1 10 10 pfet w=2u l=2u 

mcma5_4 a5_copy1 a5_im1 10 10 pfet w=2u l=2u 

mcma5_5 a_t1 a5_im1 10 10 pfet w=2u l=2u 

mcma6_1 a6_outb a6_outb 0 0 nfet w=2u l=2u 

mcma6_2 a6_im1 a6_outb 0 0 nfet w=2u l=2u 

mcma6_3 a6_im1 a6_im1 10 10 pfet w=2u l=2u 

mcma6_4 a6_copy1 a6_im1 10 10 pfet w=2u l=2u 

mcma6_5 a_t1 a6_im1 10 10 pfet w=2u l=2u 

mcma7_1 a7_outb a7_outb 0 0 nfet w=2u l=2u 

mcma7_2 a7_im1 a7_outb 0 0 nfet w=2u l=2u 

mcma7_3 a7_im1 a7_im1 10 10 pfet w=2u l=2u 

mcma7_4 a7_copy1 a7_im1 10 10 pfet w=2u l=2u 
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mcma7_5 a_t1 a7_im1 10 10 pfet w=2u l=2u 

mcma8_1 a8_outb a8_outb 0 0 nfet w=2u l=2u 

mcma8_2 a8_im1 a8_outb 0 0 nfet w=2u l=2u 

mcma8_3 a8_im1 a8_im1 10 10 pfet w=2u l=2u 

mcma8_4 a8_copy1 a8_im1 10 10 pfet w=2u l=2u 

mcma8_5 a_t1 a8_im1 10 10 pfet w=2u l=2u 

vgreat a_t1 a_t1b 0 

xnorm a1_copy1 a2_copy1 a3_copy1 a4_copy1 a5_copy1 a6_copy1 a7_copy1 a8_copy1 

a1_norm a2_norm a3_norm a4_norm a5_norm a6_norm a7_norm a8_norm a_t1b 

normalizer 

mcp1a a1_norm a1_norm 10 10 pfet w=2u l=2u 

mcp1b a1_normb a1_norm 10 10 pfet w=2u l=2u 

mcp2a a2_norm a2_norm 10 10 pfet w=2u l=2u 

mcp2b a2_normb a2_norm 10 10 pfet w=2u l=2u 

mcp3a a3_norm a3_norm 10 10 pfet w=2u l=2u 

mcp3b a3_normb a3_norm 10 10 pfet w=2u l=2u 

mcp4a a4_norm a4_norm 10 10 pfet w=2u l=2u 

mcp4b a4_normb a4_norm 10 10 pfet w=2u l=2u 

mcp5a a5_norm a5_norm 10 10 pfet w=2u l=2u 

mcp5b a5_normb a5_norm 10 10 pfet w=2u l=2u 

mcp6a a6_norm a6_norm 10 10 pfet w=2u l=2u 

mcp6b a6_normb a6_norm 10 10 pfet w=2u l=2u 

mcp7a a7_norm a7_norm 10 10 pfet w=2u l=2u 

mcp7b a7_normb a7_norm 10 10 pfet w=2u l=2u 

mcp8a a8_norm a8_norm 10 10 pfet w=2u l=2u 

mcp8b a8_normb a8_norm 10 10 pfet w=2u l=2u 

vnorm1 a1_normb a1_normc 0 

vnorm2 a2_normb a2_normc 0 

vnorm3 a3_normb a3_normc 0 

vnorm4 a4_normb a4_normc 0 

vnorm5 a5_normb a5_normc 0 

vnorm6 a6_normb a6_normc 0 

vnorm7 a7_normb a7_normc 0 



 

 

89 

vnorm8 a8_normb a8_normc 0 

**WEIGHT ASSIGNING*** 

*****W1 OUT****** 

Va1_d1 ina1_1 0 0 

Va1_d2 ina1_2 0 3.3 

Va1_d3 ina1_3 0 0 

Va1_d4 ina1_4 0 3.3 

Va1_d5 ina1_5 0 0 

XD1 a1_normc ina1_1 ina1_2 ina1_3 ina1_4 ina1_5 m_out1 10 dac 

*****W2 OUT****** 

Va2_d1 ina2_1 0 3.3 

Va2_d2 ina2_2 0 0 

Va2_d3 ina2_3 0 3.3 

Va2_d4 ina2_4 0 0 

Va2_d5 ina2_5 0 3.3 

XD2 a2_normc ina2_1 ina2_2 ina2_3 ina2_4  ina2_5 m_out2 10 dac 

*****W3 OUT****** 

Va3_d1 ina3_1 0 0 

Va3_d2 ina3_2 0 0 

Va3_d3 ina3_3 0 3.3 

Va3_d4 ina3_4 0 3.3 

Va3_d5 ina3_5 0 0 

XD3 a3_normc ina3_1 ina3_2 ina3_3 ina3_4 ina3_5 m_out3 10 dac 

*****W4 OUT****** 

Va4_d1 ina4_1 0 3.3 

Va4_d2 ina4_2 0 3.3 

Va4_d3 ina4_3 0 3.3 

Va4_d4 ina4_4 0 3.3 

Va4_d5 ina4_5 0 3.3 

XD4 a4_normc ina4_1 ina4_2 ina4_3 ina4_4 ina4_5 m_out4 10 dac 

*****W5 OUT****** 

Va5_d1 ina5_1 0 0 

Va5_d2 ina5_2 0 0 
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Va5_d3 ina5_3 0 3.3 

Va5_d4 ina5_4 0 3.3 

Va5_d5 ina5_5 0 3.3 

XD5 a5_normc ina5_1 ina5_2 ina5_3 ina5_4 ina5_5 m_out5 10 dac 

*****W6 OUT****** 

Va6_d1 ina6_1 0 3.3 

Va6_d2 ina6_2 0 3.3 

Va6_d3 ina6_3 0 0 

Va6_d4 ina6_4 0 3.3 

Va6_d5 ina6_5 0 0 

XD6 a6_normc ina6_1 ina6_2 ina6_3 ina6_4 ina6_5 m_out6 10 dac 

*****W7 OUT****** 

Va7_d1 ina7_1 0 0 

Va7_d2 ina7_2 0 0 

Va7_d3 ina7_3 0 0 

Va7_d4 ina7_4 0 0 

Va7_d5 ina7_5 0 0 

XD7 a7_normc ina7_1 ina7_2 ina7_3 ina7_4 ina7_5 m_out7 10 dac 

*****W8 OUT****** 

Va8_d1 ina8_1 0 0 

Va8_d2 ina8_2 0 0 

Va8_d3 ina8_3 0 0 

Va8_d4 ina8_4 0 0 

Va8_d5 ina8_5 0 0 

XD8 a8_normc ina8_1 ina8_2 ina8_3 ina8_4 ina8_5 m_out8 10 dac 

***************************************** 

vout1 m_out1 tet 0 

vout2 m_out2 tet 0 

vout3 m_out3 tet 0 

vout4 m_out4 tet 0 

vout5 m_out5 tet 0 

vout6 m_out6 tet 0 

vout7 m_out7 tet 0 
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vout8 m_out8 tet 0 

VHOLY_OUT tet 0 0 

 

A.2.  VHDL Codes 

 

A.2.1. Boundary Synapse Connectting 

 

USE WORK.basic_utilities.ALL; 

entity Threshold_Set is 

   port( WR,DT,PN,RST,XY:in bit; 

    SW_I: in bit_vector( 5 downto 0 ); 

    AR: in bit_vector( 2 downto 0); 

  SW_X_P,SW_X_N,SW_Y_P,SW_Y_N :out bit_2d_64); 

end; 

architecture behavioral of Threshold_Set is 

begin 

    process 

        variable ar_no,sw_no:integer:=0; 

    begin 

       if( WR = '1' ) then 

           if( RST = '1') then 

             SW_X_P<= (OTHERS => (OTHERS => '0'));   

             SW_X_N<= (OTHERS => (OTHERS => '0'));   

             SW_Y_P<= (OTHERS => (OTHERS => '0'));   

             SW_Y_N<= (OTHERS => (OTHERS => '0'));                

           else 

              binary_to_integer( SW_I,sw_no); 

              binary_to_integer( AR,ar_no); 

              if( XY = '0') then 

                 if( PN = '1') then 

                    SW_X_P(ar_no)( sw_no) <= DT; 

                 else 

                    SW_X_N(ar_no)( sw_no) <= DT;           
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                 end if;  

              else 

                  if( PN = '1') then 

                    SW_Y_P(ar_no)( sw_no) <= DT; 

                 else 

                    SW_Y_N(ar_no)( sw_no) <= DT;           

                 end if;  

              end if;                

            end if; 

       end if;        

       wait for 1 ns; 

    end process; 

end; 

 

A.2.2.  Weght Setting and Controlling 

 

USE WORK.basic_utilities.ALL; 

entity Weight_Set is 

   port( WR,RST:in bit; 

    DATA: in bit_vector( 4 downto 0 ); 

    AR: in bit_vector( 2 downto 0); 

  D_O :out bit_2d_5 

 ); 

end; 

architecture behavioral of Weight_Set is 

begin 

    process 

        variable ar_no:integer:=0; 

    begin 

       if( WR = '1' ) then 

           if( RST = '1') then 

             D_O <= (OTHERS => (OTHERS => '0'));   

           else               



 

 

93 

              binary_to_integer( AR,ar_no);           

              D_O(ar_no) <= DATA;               

            end if; 

       end if;        

       wait for 1 ns; 

    end process; 

end; 

 

A.2.3.  Complete Digital Circuit 

 

LIBRARY WORK; 

use WORK.ALL; 

entity final is 

   port(  

    WR_T,DT_T,PN_T,RST_T,XY_T:in bit; 

    SW_I_T: in bit_vector( 3 downto 0 ); 

    AR_T: in bit_vector( 2 downto 0);  

    WR_W,RST_W:in bit; 

    DT_W: in bit_vector( 4 downto 0 ); 

    AR_W: in bit_vector( 2 downto 0);  

 T1_X,T2_X,T3_X,T4_X,T5_X,T6_X,T7_X,T8_X,T9_X,T10_X,T11_X,T12_X,T1

3_X,T14_X,T15_X,T16_X, 

 T1_Y,T2_Y,T3_Y,T4_Y,T5_Y,T6_Y,T7_Y,T8_Y,T9_Y,T10_Y,T11_Y,T12_Y,T1

3_Y,T14_Y,T15_Y,T16_Y: OUT bit_vector( 15 downto 0);  

 W1,W2,W3,W4,W5,W6,W7,W8:out bit_vector( 4 downto 0)); 

end; 

 

architecture structural of final is 

begin 

x1: ENTITY work.Threshold_Set(behavioral) 

    PORT MAP ( WR_T, DT_T, PN_T, RST_T, XY_T, SW_I_T, AR_T, T1_X, 

T2_X,T3_X,T4_X,T5_X,T6_X,T7_X,T8_X,T9_X,T10_X,T11_X,T12_X,T13_X,T14_X,

T15_X,T16_X,T1_Y,T2_Y,T3_Y,T4_Y,T5_Y,T6_Y,T7_Y,T8_Y,T9_Y,T10_Y,T11_Y,T
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12_Y,T13_Y,T14_Y,T15_Y,T16_Y); 

x2: ENTITY work.Weight_Set(behavioral) 

    PORT MAP(WR_W,RST_W,DT_W,AR_W,W1,W2,W3,W4,W5,W6,W7,W8); 

end; 

 

A.3 Matlab Codes 

 

A.3.1.  Theoretical Model 

 

count=1; 

val=0; 

TotalOut=zeros(30,30); 

TotalWeighted=zeros(65,65);           

TotalAR=zeros(65,65); 

while val <= 2.5 

    layer1_X(count)=val; 

    layer1_Y(count)=val; 

    connect1_X(count)=0; 

    connect1_Y(count)=0;     

    connectA1_X(count)=0; 

    connectA1_Y(count)=0; 

    connectA2_X(count)=0; 

    connectA2_Y(count)=0; 

    connectA3_X(count)=0; 

    connectA3_Y(count)=0; 

    connectA4_X(count)=0; 

    connectA4_Y(count)=0; 

    connectA5_X(count)=0; 

    connectA5_Y(count)=0; 

    connectA6_X(count)=0; 

    connectA6_Y(count)=0; 

    connectA7_X(count)=0; 

    connectA7_Y(count)=0; 
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    connectA8_X(count)=0; 

    connectA8_Y(count)=0; 

    connectA9_X(count)=0; 

    connectA9_Y(count)=0; 

    count=count+1; 

    val=val+0.0390625; 

end 

count=1; 

while count<=9     

    AR(count)=0; 

    weight(count)=0; 

     weight_con(count)=0; 

    count=count+1; 

end 

%%%%%%%%%%1st area 

connectA1_X(1)=1; 

connectA1_X(10)=-1; 

connectA1_Y(1)=1; 

connectA1_Y(10)=-1; 

%%%%%%%%%%2nd area 

connectA2_X(1)=1; 

connectA2_X(10)=-1; 

connectA2_Y(10)=1; 

connectA2_Y(29)=-1; 

%%%%%%%%%%2nd area 

connectA3_X(1)=1; 

connectA3_X(10)=-1; 

connectA3_Y(29)=1; 

connectA3_Y(64)=-1; 

%%%%%%%%%%1st area 

connectA4_X(10)=1; 

connectA4_X(29)=-1; 

connectA4_Y(1)=1; 
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connectA4_Y(10)=-1; 

%%%%%%%%%%2nd area 

connectA5_X(10)=1; 

connectA5_X(29)=-1; 

connectA5_Y(10)=1; 

connectA5_Y(29)=-1; 

%%%%%%%%%%2nd area 

connectA6_X(10)=1; 

connectA6_X(29)=-1; 

connectA6_Y(29)=1; 

connectA6_Y(64)=-1; 

%%%%%%%%%%1st area 

connectA7_X(29)=1; 

connectA7_X(64)=-1; 

connectA7_Y(1)=1; 

connectA7_Y(10)=-1; 

%%%%%%%%%%2nd area 

connectA8_X(29)=1; 

connectA8_X(64)=-1; 

connectA8_Y(10)=1; 

connectA8_Y(29)=-1; 

%%%%%%%%%%2nd area 

connectA9_X(29)=1; 

connectA9_X(64)=-1; 

connectA9_Y(29)=1; 

connectA9_Y(64)=-1; 

%%%%%%%%%%%%%%%%%%%%%%%%%% 

weight(1)=0.5*31; 

weight(2)=0.5*31; 

weight(3)=1*31; 

weight(4)=0.5*31; 

weight(5)=0.5*31; 

weight(6)=1*31; 
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weight(7)=0.5*31; 

weight(8)=1*31; 

weight(9)=1*31; 

count=1; 

val=0;  

countx=1; 

county=1; 

X=0; 

FL_weightX =0; 

FL_weightY =0; 

while X<=1.55 

   ax(countx)=countx; 

   Y=0; 

   county=1; 

   while Y<=1.55  

       ay(county)=county;  

       ar=1; 

       %%%%1st LAyer to 2nd LAyer 

       while ar<=9            

           AR(ar)=0; 

           count=1;        

           while(count<=65)          

               if( ar==1)   

                  FL_weightX = connectA1_X(count); 

                  FL_weightY = connectA1_Y(count); 

               end 

               if(ar==2)   

                  FL_weightX = connectA2_X(count); 

                  FL_weightY = connectA2_Y(count); 

               end 

               if(ar==3)   

                  FL_weightX = connectA3_X(count); 

                  FL_weightY = connectA3_Y(count); 
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               end 

               if(ar==4)   

                  FL_weightX = connectA4_X(count); 

                  FL_weightY = connectA4_Y(count); 

               end 

               if(ar==5)   

                  FL_weightX = connectA5_X(count); 

                  FL_weightY = connectA5_Y(count); 

               end 

               if(ar==6)   

                  FL_weightX = connectA6_X(count); 

                  FL_weightY = connectA6_Y(count); 

               end 

               if(ar==7)   

                  FL_weightX = connectA7_X(count); 

                  FL_weightY = connectA7_Y(count); 

               end 

               if(ar==8)   

                  FL_weightX = connectA8_X(count); 

                  FL_weightY = connectA8_Y(count); 

               end 

               if(ar==9)   

                  FL_weightX = connectA9_X(count); 

                  FL_weightY = connectA9_Y(count); 

               end 

               AR(ar)=AR(ar)+(10e-6+10e-6*tanh(10*(X-layer1_X(count))))*0.5* 

FL_weightX;            

               AR(ar)=AR(ar)+(10e-6+10e-6*tanh(10*(Y-layer1_Y(count))))*0.5* 

FL_weightY;                 

               count=count+1;              

           end           

            ar=ar+1; 

       end       
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       %%% 2ndLayer to 3rdLAyer 

       ar=1; 

       while ar<=9 

         if(AR(ar)-10e-6 > 0) 

            TotalWeighted(countx,county)= 

TotalWeighted(countx,county)+weight(ar)*(AR(ar)-10e-6);                

            TotalAR(countx,county)=TotalAR(countx,county)+AR(ar)-10e-6; 

        end           

         ar=ar+1; 

       end        

       if(TotalAR(countx,county)>0) 

            if(TotalWeighted(countx,county)>0.0e-4) 

                TotalOut(countx,county)=10e-6*TotalWeighted(countx,county)/ 

TotalAR(countx,county); 

            end; 

       end;        

       Y=Y+0.05; 

       county=county+1; 

   end 

   X=X+0.05; 

   countx=countx+1; 

end 

[X,Y]=meshgrid(1:1:countx-1,1:1:county-1); 

Z=TotalOut; 

colormap(white) 

surf(Y,X,Z) 

 



 

 

100 

REFERENCES 

 

 

1. Zadeh, L. A., “Fuzzy Sets, Information and Control”, New York Academic, Vol. 8, pp. 

338–353, 1965. 

 

2. Mamdani, E.H. and S. Assilian, “An Experiment in Linguistic Synthesis with A Fuzzy 

Logic Controller”, International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1–

13, 1975. 

 

3. Menger, K., “Statistical Metrics”, Proceedings of National Academy of Sciences, pp. 

535–537, 1942. 

 

4. Hohle, U., “Probabilistic Uniformization of Fuzzy Topologies”, Fuzzy Sets and Systems, 

Vol. 1, Issue 4, 1978. 

 

5. Klement, E.P., “A Theory of Fuzzy Measures: A Survey”, in Gupta, M. and Sanchez, 

E., North Holland (eds.), Fuzzy Information and Decision Processes, pp. 59–66, 

Amsterdam, 1982. 

 

6. Dubois, D. and H. Prade, “Triangular Norms for Fuzzy Sets”, Proceedings to 

International Symposium of Fuzzy Sets, pp. 39–68, Linz, 1981. 

 

7. Takagi, T. and M. Sugeno, “Derivation of Fuzzy Control Rules from Human Operator’s 

Control Action”, Proceedings of IFAC Symposium Fuzzy Information Knowledge 

Representation and Decision Analysis, pp. 55–60, July 1989. 

 

8. Detyniecki, M., R. R. Yager, and Bouchon-Meunier, “Reducing T-norms and 

Augmenting T-conorms”, International Journal of General Systems, Vol. 31, pp. 265–

276, 2002. 

 

9. Wilamovski, B. M., “Analog VLSI Hardware for Fuzzy Systems”, IEEE Industrial 

Elec. Society IECON '98 Proc. of the 24th Annual Conference 1, pp. 52–55, 1998. 



 

 

101 

10. Izhizuka, O., K. Tanno, Z. Tang and H. Matsumoto, “Design of A Fuzzy Controller 

with Normalization Circuits”, IEEE International Conference on Fuzzy Systems, 8-12 

March 1992, pp. 1303–1308, 1992. 

 

11. Vidal-Verdu, F., R. Navas and A. Rodriguez-Vazquez, “A Modular CMOS Analog 

Fuzzy Controller”, Proceedings of the Sixth IEEE International Conference on Fuzzy 

Systems, 1-5 July 1997, Vol. 2, pp. 647–652, 1997. 

 

12. Baturone, I.., S. Sanchez-Solano, A. Barriga and J.L Huertas, “Implementation of 

CMOS Fuzzy Controllers as Mixed-Signal Integrated Circuits”, IEEE Transactions on 

Fuzzy Systems, Vol. 5, Issue 1, pp. 1–19, 1997. 

 

13. Gilbert, B., “A Monolithic 16-channel Analog Array Normalizer”, IEEE Journal of 

Solid-State Circuits, Vol. 19, pp. 956–963, 1984. 

 

14. Maher, M.C., S.P. Deweerth, M.A. Mahowald and C.A. Mead, “Implementing Neural 

Architectures Using Analog VLSI Circuits”, IEEE Transactions on Circuits and 

Systems, Vol. 36, pp. 643–652, 1989. 

 

15. Harrer, H., J.A. Nossek, and R. Stelzl, “An Analog Implementation of Discrete-Time 

Cellular Neural Networks”, IEEE Transactions on Neural Networks, Vol. 3, Issue 3, 

pp. 466–476, 1992. 

 

16. Vittoz, W.A., “Analog VLSI Implementation of Neural Networks”, Proceedings of 

IEEE international symposium on Circuits and Systems, Vol. 4, pp. 2524–2527, New 

Orleans, 1990. 

 

17. Yelten, B., Hardware Design and Simulation of Artificial Neural Networks Blocks, 

B.S. Project, Boğaziçi University, 2006. 

 

18. Sedra, A.S. and K.C. Smith, Microelectronic Circuits, Oxford University Press, New 

York, 2004. 

 



 

 

102 

19. Wilamovski, B. M., R.C. Jaeger and M. O. Kaynak,, “Neuro-Fuzzy Architecture for 

CMOS Implementation”, IEEE Transactions on Industrial Electronics, Vol. 46, Issue 

6, pp. 1132–1136, 1999. 

 

20. Diorio, C., P. Hasler, A. Minch and C.A. Mead, “A Single-Transistor Silicon 

Synapse”, IEEE Transactions on Electron Devices, Vol. 43, Issue 11, pp. 1972–1980, 

1996. 

 

21. Diorio, C., P. Hasler, B. A. Minch and C. A. Mead, “A Complementary Pair of Four-

Terminal Silicon Synapses”, Analog Integrated Circuits and Signal Processing, Vol. 

13, No. 1–2, pp. 153–166, 1997. 

 

22. Koosh, V. F. and R. Goodman, “VLSI Neural Network with Digital Weights and 

Analog Multipliers”, IEEE International Symposium on Circuits and Systems, 6-9 May 

2001, Vol. 3, pp. 233–236, 2001. 

 

23. Hollis, P. W. and J. J. Paulos, “Artificial Neural Networks Using MOS Analog 

Multipliers”, IEEE Journal of Solid-State Circuits, Vol. 25, Issue 3, pp. 849–855, 

1990. 

 

24. Eberhardt, S., T. Duong, and A. Thakoor , “Design of Parallel Hardware Neural 

Network Systems from Custom VLSI Building Block Chips”, Proceedings of 

International Joint Conference on Neural Networks, , Vol. 11, pp. 183, 12-22 June 

1989. 

 

25. Kub, F., K. Moon and I. Mack, “Cascadable 32 X 32 Vector-Matrix Multiplier for 

Artificial Neural Networks”, International Joint Conference on Neural Networks 

Presentation, 12-22 June 1989. 

 

26. Chua, S. C., E. K. Wong and V. C. Koo, “Intelligent Pool Decision System Using 

Zero-Order Sugeno Fuzzy System”, Journal of Intelligent and Robotic Systems, 

Vol.44, No. 2, October 2005. 

 



 

 

103 

27. Nauck. D., F. Klawonn and R. Kruse, Foundations of Neuro-Fuzzy Systems, John 

Wiley & Sons, New York, 1997. 

 

28. Malki, H. A. and C. G. Umeh, “Design of A Fuzzy Logic Based Level Controller”, 

Journal of Engineering Technology, pp. 32–38, Spring 2000. 

 

29. Gurney K., An Introduction to Neural Networks, Routledge, London, 1997. 

 

30. Yamakawa, T., “A Fuzzy Inference Engine in Nonlinear Analog Mode and Its 

Application to a Fuzzy Logic Control”, IEEE Transaction on Neural Networks, Vol. 4, 

No. 3, pp. 496–522, May 1993. 

 

31. Sasaki, M., N. Ishikawa, F. Ueno, and T. Inoue, “Current Mode Analog Fuzzy 

Hardware with Voltage Input Interface and Normalization Locked Loop”, Second 

IEEE International Conference on Fuzzy Systems, Vol. E57-A (6), pp. 451–457, June 

1992. 

 

32. Enz, C. and E. Vittoz, “CMOS Low-Power Analog Circuit Design”, Designing Low 

Power Digital Systems, Emerging Technologies, pp. 79–133, 1996. 

 

33. Sasaki, M. and F. Ueno, “A VLSI Implementation of Fuzzy Logic Controller Using 

Current Mode CMOS Circuits”, Third International Conference on Industrial Fuzzy 

Control and Intelligent Systems, pp. 215 – 220, 1-3 December 1993. 

 

34. Wilamovski, B., Private Correspondence, Auburn University, Alabama, 2006. 

 

 


