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ABSTRACT 

 

ESTIMATION OF BASIN DETECTION AND REPRESENTATION 

FROM NON-LINEAR SYSTEM DATA 

 

In this thesis, we are interested in a good qualititive representation of a nonlinear 

autonomous flow. It is assumed that the equations governing a given nonchaotic nonlinear 

autonomous flow are unknown. The only prior knowledge about the system is its 

dimension, that is to say the number of state variables. As a realistic assumption this 

analysis will be confined to a part of the state space where the initial conditions are 

gathered. On the basis of a set of trajectory recordings gathered for a sufficiently large set 

of initial conditions our task is to identify the possible long term behaviour alternatives and 

to determine the set of initial conditions starting from which the system trajectories exhibit 

a specified long term behaviour.  

We will use different mathematical tools such as kernel estimation algorithms or 

image processing filters to visualize the long term behaviour of the given system. After the 

geometrical identification of important characteristic behaviours in our nonlinear system, 

we will define the basin of attractions and basins of some other phenomena with the help 

of algorithms which are originally developed. Proposed algorithms will be used first on 

two dimensional non-linear phase portraits and then will be extended to the third 

dimension with restrictions and limitations. Chaotic systems will be omitted due to their 

complicated strange attractor phenomena.   

Multivariate kernel estimators will be used among many places in the thesis. We 

will restrict ourself to diagonal bandwidth matrices since the optimal multivariate kernel 

estimators, especially if the system bandwidth varies according to the data position, are too 

complicated to find a place in this study.  

These estimation techniques and our algorithmic contribution will give a better 

insight about the long term behaviour of non-linear systems and will help us accomplish 

the aim of the thesis which is to identify the attractors of a continuous time, autonomous, 

non-chaotic system and to provide an approximate description of the basins of attractions 

to be used later for control purposes.  
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ÖZET 

 

DOĞRUSAL OLMAYAN SİSTEM VERİSİNDEN HAVZA SEZİMİ VE 

TEMSİLİNİN KESTİRİMİ 

 

 

Bu tezde, doğrusal olmayan özerk akışların nitel bir temsilini çıkarmaya çalıştık. 

Kaotik ve doğrusal olmayan özerk akışları yöneten denklemlerin bilinmediği ve sistem 

hakkında önceden bilinen tek bilginin sistemin boyutu olduğu varsayıldı. İncelememizi 

yalnızca durum uzayında başlangıç koşullarının toplandığı bölgelerden yaptık. Görevimiz, 

yeterince çok sayıda başlangıç koşulundan kaydolunmuş bir grup gezingeyi temel alarak, 

sistemin mümkün olan tüm uzun dönem davranış biçimlerini tanımlamak ve sistem 

gezingelerinin hangi başlangıç koşullarından başladığında hangi davranış biçimini 

sergileyeceğini belirlemektir.  

Tez boyunca “çekirdek kestirimi” veya “imge işleme filtreleri” gibi farklı 

matematiksel araçlar kullanıldı. Doğrusal olmayan sistemlerdeki önemli karakteristik 

davranışlar geometrik olarak tanımlandıktan sonra, çekim havzaları ve diğer bazı havza 

türleri kendi geliştirdiğimiz algoritmaların yardımlarıyla tanımlandı. Önerilen algoritmalar 

önce iki boyutlu faz portrelerinde kullanıldı, daha sonra da bazı kısıtlarla üç boyutlu 

sistemlere genişletildi. Kaotik sistemler, komplike garip çekici fenomenleri yüzünden teze 

dahil edilmedi. 

Çok değişkenli çekirdek kestiricileri tez boyunca bir çok yerde kullanıldı. Ancak 

yalnızca bant genişliği köşegen matrislerden oluşan kestiriciler kullanıldı. Bunun nedeni en 

iyi çok değişkenli çekirdek kestiricilerin bulunmasının, özellikle de bant genişliği verinin 

yerine göre değişiyorsa, bu tezde araştırmak için çok komplike olmasıdır. 

Bu kestirim teknikleri ve algoritmik katkı, sürekli, otomatik, kaotik olmayan ve 

doğrusal olmayan sistemlerin uzun dönem davranışları hakkında bize hem daha iyi bir 

anlayış sağladı, hem de bu sistemlerin çekicilerini belirleme konusunda ve daha sonra 

kontrol amaçlı kullanılabilecek bu çekicilerin havzaları üzerine yaklaşık bir tanımlama 

verme konusunda yardımcı oldu. 
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1. INTRODUCTION 

 

 

1.1.  Dynamical  Systems 

 

Dynamical systems consist of a set of states, together with a rule that determines the 

present state in term of past states and possibly an input. In other words, dynamical 

systems are systems which have memories, they determine the present state according to 

their past states. So, they are deterministic instead of being random or stochastic.  

 

Dynamical systems can be represented in two forms dependent on their nature: 

• differential equations, which define systems in continous time and  

• difference equations, which evolve systems in discrete time.  

 

In our thesis, we will research the continous time dynamical system which can be 

represented as: 

 

))(()( txftx =&      (1.1) 

 

where, 

)(tx& :  n-dimensional vector. we will use x&  instead of )(tx&  to simplify the notation. 

))(( txf : n-dimensional vector field which is a realistic assumption for any real 

system.  Furthermore ))(( txf  has no explicit dependence on time, that is to say it is 

an autonomous system. In our thesis, we will refer to such dynamics as nonlinear 

autonamous flows. 

 

1.2.  Nonlinear Systems 

 

Systems whose behaviour can not be represented as linear sum of the behaviours of 

their parts are called nonlinear systems. Their behaviour is not subject to the principles of 

superposition theory. That is why nonlinear systems show considerably richer and more 

complex behaviours than linear systems. Their behaviours can be categorized as follows: 
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1- Equilibrium Points: An equilibrium point is a point where the system can 

stay forever without moving. Nonlinear systems generally have more than one 

equilibrium point. They can be classified as: 

a- Stable Equilibrium Points: An equilibirum is defined to be stable if 

all sufficiently small disturbances away from it damp out in time.  

b- Unstable Equilibrium Points: An equilibirum is defined to be 

unstable if all sufficiently small disturbances away from it grow in time.  

c- Saddle Points: An equilibirum is defined to be saddle if it owns 

both the stable and unstable manifold. 

2- Stable Limit Cycle: A stable limit cycle is a closed trajectory in phase 

space into which at least one another trajectory spirals as time approaches infinity. 

3- Marginally Closed Trajectories: Trajectories swirls around a linear and 

nonlinear center and form a periodic motion. 

4- Chaos: Chaotic behaviour which is characterized by the sensitivity to 

initial conditions can be observed mostly in strong nonlinear systems. As a result of 

this sensitivity chaotic systems exhibit random-like behaviour even though they are 

'deterministic' in the sense that their future states are causally determined by their 

present states. Chaos can be experienced only in three or higher dimensional 

systems. 

 

In this thesis, we will identify the invariant sets, which are formed during the 

behaviours mentioned above, from a sufficiently large set of system data.  

 

Definition: Invariant Sets 

In a time-invariant nonlinear system )(xfx =&  , a set n
RG ⊆ is invariant if every 

trajectory x(t) satisfies: 

 

GrxGtx ∈⇒∈ )()(    tr ≥∀      (1.2) 

 

Definition: Attractors 

An attractor can be defined as a set to which all neighboring trajectories converge. 

The following condition must be satisfied to name a set “A” an attractor: 
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1- A must be close. 

2- A is an invariant set. Any trajectory x(t) that enters A or starts in A , 

stays in A for all time. 

3- A attracts an open set of initial condiitons. There is an open set U 

containing A such that if   Ux ∈)0( , then the distance from x(t) to A tends to zero 

as ∞→t  . This means that A attracts all trajectories that start sufficiently close to 

it. The largest such U is called the basin of attraction of A. In other words, basin of 

attraction is the set of points in the space of system variables such that initial 

conditions chosen in this set dynamically evolve to a particular attractor .  

4- A is minimal. There is no proper subset of A that satisfies conditions 1, 2 

and 3. 

 

Invariant sets sometimes behave like boundaries in phase space and they restrict 

trajectories inside it to a subset of phase space. 

 

The state space regions corresponding to the same long term behaviour will be 

referred to as basin. The long term behaviours of interest in this thesis will consist of 

attractors, exit basins and marginal basins. For attractors, these basins will be the basin of 

the stable equlibrium point or stable limit cycle.  Note that all these basins will be searched 

in a region of interest (ROI) of state space which is chosen prior to analysis. 

 

During this thesis we will focus on basin of attraction of stable equilibirum points, 

limit cycles, centers, asymptotes and exit boundary segments. We will use mainly kernel 

estimators, parametric regressions and our novel algorithms to detect and identify these 

invariant sets. The detection and identification of the behaviour types of different regions 

in phase space can be used in future for control purposes of nonlinear dynamical systems. 

 

1.3.  Regression Types 

 

Given a set of random variables X1 ,  X2 ...... Xn   with a continuous joint probability 

density f (X1 ,  X2 ...... Xn )  and without knowledge of real f, we are looking for a specific 

structure in our data. This unknown joint probability density can be estimated from a set of 

observations using parametric or nonparametric regressions.  
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Assume that X is the predictor of Y, which is called as the response variable. In this case, 

 

Y = m(X) + e     (1.3) 

 

where, 

m(X) : the best mean squared predictor of Y and is called the regression of Y on X.  

e : the observational error which is a symmetric random variable having zero mean.

       E (e) = 0. 

 

In parametric regression, parametric family of functions are used to estimate the 

original function. It is assumed that the regression function, m(X),  is known except for the 

values of the parameters.  Typical example functions used in parametric regression are: 

 

Yi = α0 + α1Xi + α2Xi 
2
 + ei      (1.4) 

 

Yi = α1 sin(α2Xi )+ ei       (1.5) 

 

Yi = α1 / (α2  + Xi  )+ ei      (1.6) 

 

where, 

Xi : the i'th sample of the data 

Yi : the corresponding response, the value that is estimated.  

 

The  drawback of this method is the restriction of regression function belonging to a 

parametric family. In some situations this choice may be too rigid. For example, the model 

requires that m(X) to be sinusoidal which can be very restrictive for a proper estimation of 

the original function. There is a high possibility to reach incorrect results in the estimation 

process. This rigidity can be overcome by the second method where the restriction of m(X) 

belonging to a specific family of functions is removed. 

 

In nonparametric regression, the model structure is not specified a priori. Instead of a 

specific parametric function, it is determined from data. In this regression type, it is not 
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meant to mention that they completely lack parameters. They rather are flexible at the 

nature and number of parameters. In some cases, parametric models may also be estimated 

by the nonparametric regression.  
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2.  MATHEMATICAL BACKGROUND 

 

 

2.1.  Analysis of Non-Linear Dynamical Systems 

 

Definition: Nonlinear Systems 

Systems whose behaviour can not be represented as linear sum of the behaviours of 

their parts are called nonlinear systems. Their behaviour is not subject to the principles of 

superposition theory. 

 

A general model used for nonlinear systems is: 

 

))(),(,()( tutxtftx =&   mn
RtuRtxt ∈∈≥∀ )(,)(,0    (2.1) 

 

where,              

t: time 

)(tx : n-dimensional vector which denotes the value of the function )(tx& at time t, that 

is  to say it is the state vector of the system. 

)(tu : m-dimensional input vector of the system. Systems which have an input vector 

are said to be forced.  

 

Definition: Autonomous Systems 

Any nonlinear system is said to be autonomous if the function f does not depend 

explicitly on time. Time invariant systems systems can be represented as ))(()( txftx =& . 

 

Note that this is an unforced system since it does not have any external input vector. 

In this thesis, we will concentrate on the analysis and estimation of two dimensional 

unforced, autonomous nonlinear systems.  
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2.1.1.  Two Dimensional Systems 

 

Two dimensional autonomous systems have a significant importance in nonlinear 

analysis. The solution trajectories can be drawn by using curves in the plane and this 

allows us to visualize the system behaviour easier.  

 

The general representation of second order autonomous systems are: 

 

),(

),(

2

1

yxfy

yxfx

=

=

&

&
      (2.2) 

 

),(1 yxf  and ),(2 yxf  will be thought as vector fields on the phase plane. On each 

point x in the plane, a vector ),( yxf  will be assigned, a directed line segment from x  to 

),( yxfx + . After repeating this process at every single state, we obtain a vector field 

diagram of our nonlinear system. The vector field is tangent to the trajectory through that 

point. If this construction is made with a family of different initial conditions, the phase 

portrait of the system is drawn. 

 

We will try to determine the qualitative behaviour of the system from the phase 

portrait but first we need to define analytically the fundamental features of a phase portrait 

of linear dynamical systems to have a better understanding of nonlinear systems. 

 

2.1.2.  Phase Plane Analysis in Linear Systems 

 

The general form of a linear scond-order system: 

 

yaxay

yaxax

43

21

+=

+=

&

&
       (2.3) 

 

From the equation 2.3, y&  can be expressed as: 

 

xaaxaxaaya 414322 −+= &&       (2.4) 
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Differentiation of the equation 2.3 gives 

 

yaxax &&&&
21 +=       (2.5) 

 

and a substutition of equation 2.4 into equation 2.5 gives 

 

xaaaaxaax )()( 413241 −++= &&&    (2.6) 

 

Hence, a general form of second order linear systems is reached: 

 

0=++ bxxax &&&      (2.7) 

 

The analytical solution of this linear system is: 

 

21
21)( υυ λλ tt

eetx +=   if  21 λλ ≠     (2.8) 

 

21
21)( υυ λλ tt

teetx +=   if 21 λλ =      (2.9) 

 

where, 

 1υ  and 2υ  are the eigenvectors  

1λ  and 2λ  are the eigenvalues of the charasteristic equation: 

 

0))(( 21

2 =−−=++ λλ ssbass      (2.10) 

 

1λ  and 2λ  can be solved for: 

 

2

42

1

baa −+−
=λ   and 

2

42

2

baa −−−
=λ     (2.11) 
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As long as 1λ  and 2λ  are distinct, the corresponding eigenvectors are linearly 

independent too and can span the entire phase plane. 

 

Definition: Equilibrium Points  

A vector n

o Rx ∈ is said to be an equilibrium if  

 

0),( =oxtf  0≥∀t       (2.12) 

 

If a system starts in an equilibrium, it remains in that state for ever. We can find the 

equilibrium of a system by finding where the flow zero is. So, solving 0=x&  and 0=y&  for 

linear systems always give the solution 0=x  and 0=y , that is to say the origin. However 

depending on the values of a  and b , the eigenvalues take different signs or own an 

imaginary part which results in different behaviour charesteristics around the origin. The 

fundamental behaviour types are summarized below:  

 

Stable / Unstable Node : If both eigenvalues are negative and real, then both )(tx  

and )(tx&  converge to zero exponentially, that is to say the equilibrium point is stable. If 

both eigenvalues are positive and real, then )(tx  and )(tx& diverge exponentially and states 

of the system blow up. Hence, the equilibrium point is said to be unstable.  

 

Saddle Point : If one eigenvalue is positive and other one is negative, then a 

phenomena called “saddle point” is observed. Due to the stable node two trajectories form 

the stable manifold of  the saddle point. All the other trajectories diverge from the saddle 

point.  

 

Stable / Unstable Focus : If the eigenvalues have an imaginary part and if their real 

part are negative, then trajectories form a stable spiral around the equilibrium point. If the 

real parts of the eigenvalues are positive, then the trajectories near the equilibrioum point 

diverge from it to infinity by forming an outwards spiral.  

 

Center Point : If the trajectories around the equilibrium point swirl and circulate, then 

it is said that the trajectories are closed orbits and the equilibrium point is a center. The 
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behaviour of the state can be expressed as a periodic motion or as an oscillation between 

two points.  

 

2.1.3.  Phase Plane Analysis in Non-Linear Systems 

 

The phase portrait analysis of nonlinear systems can be interpreted by linear system 

phase plane analysis because the local behaviour of a nonlinear system can be 

approximated most of the time by the behaviour of linear system. Nonlinear systems can 

exhibit more complicated phenomena than linear systems like limit cycles, multiple 

equilibrium points and even chaos.  

 

Consider the system  

 

),(

),(

2

1

yxfy

yxfx

=

=

&

&
      (2.13) 

 

Suppose that )ˆ,ˆ( yx  is the equilibrium point so that  

 

0)ˆ,ˆ(1 == yxfx&  and 0)ˆ,ˆ(2 == yxfy&     (2.14) 

 

Let the small disturbances around the equilibrium point to be: 

 

xxu ˆ−=   and  yyv ˆ−=       (2.15) 

 

Differentiation of u  and v  , substitution to equation 20 and at last expansion by 

Taylor series give us: 

 

),,(

),,()ˆ,ˆ(

)ˆ,ˆ(

2211

2211
1

1

uvvuO
y

f
v

x

f
uu

uvvuO
y

f
v

x

f
uyxfu

vyuxfu

xu

+
∂

∂
+

∂

∂
=

+
∂

∂
+

∂

∂
+=

++=

=

&

&

&

&&

   (2.16) 
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),,(

),,()ˆ,ˆ(

)ˆ,ˆ(

2222

2222
2

2

uvvuO
y

f
v

x

f
uv

uvvuO
y

f
v

x

f
uyxfv

vyuxfv

xv

+
∂

∂
+

∂

∂
=

+
∂

∂
+

∂

∂
+=

++=

=

&

&

&

&&

   (2.17) 

 

where,  

x

f

∂

∂
and 

y

f

∂

∂
 are evaluated at the equilibirum points )ˆ,ˆ( yx   

),,( 22
uvvuO  is the quadratic terms in u  and v  after Taylor series expansion 

)ˆ,ˆ(1 yxf  and )ˆ,ˆ(2 yxf  are equal to zero since )ˆ,ˆ( yx  are numbers. 

 

Assuming that quadratic terms do not have a significant effect in a small area around 

the equilibrium point, they can be neglected and the rest can be expressed in a matrix form 

to reach the familiar form of linear systems: 
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     (2.18) 

 

The dynamics of this system can be analyzed by the linear methods explained in the 

previous section. 

 

Example: Consider the second order nonlinear dynamical system as desribed below: 
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To find the equilibrium of the system where there is no flow  0),(1 =yxf and 

0),(2 =yxf  should be solved. The necessary calculations show that the above system has 

two equilibrium points, one at 0=x  , 0=y  and the other at 3−=x  , 0=y . 

 

023)6.0(
6.023
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=+++⇒




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






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



−−−
=








xss

v

u

xv

u

&

&
 

 

issss 7.13.036.03)6.0()0,0( 1

2 −−≈⇒++=++⇒ λ  and i7.13.02 +−≈λ  

46.136.03)6.0()0,3( 1

2 ≈⇒−+=−+⇒− λssss  and 06.22 −≈λ  

Hence, we have a stable focus at )0,0( and a saddle point at )0,3(− . 

 

Although in most cases, higher order nonlinear terms can be neglected without 

causing qualitative approximation errors, in some cases avoiding these terms may give us 

incorrect pictures. However the marginal cases like centers, or non-isolated equilibrium 

points (equlibrium lines) can easily be disturbed by small perturbations, that is to say the 

quadratic terms in the Taylor series play a critical role in the nature of the system. So, if 

these marginal cases are encountered after linearization, the result will not be trustable and 

other analytical tools should be used to identify the real characteristic nature of the 

dynamical system. 

 

Since we investigate the dynamical systems totally from a geometric point of view, 

(rather than being analytical), we will never be in the danger zone mentioned above. 

 

2.1.4.  Limit Cycle 

 

In nonlinear dynamics, the system nature is not limited to have only equilibrium 

points and a continuum of periodic orbits. More complicated behaviours like limit cyles 

can be observed too. 

 

 If a trajectory in a nonlinear system is closed and isolated, that is to say have a 

periodic nature of the motion, and all nearby trajectories converges to it or diverges from 

it, then it is called a limit cycle. 
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Figure 2.1.  Limit Cycle 

 

Limit cycles can be classifed according to their stability. 

 

1- Stable Limit Cycle: All trajectories in the vicinity of the limit cycle converge to 

the limit cycle as ∞→t . 

 

2- Unstable Limit Cycle: All trajectories in the vicinity of the limit cycle diverge 

from the limit cycle  as ∞→t  

 

3- Semi-Stable Limit Cycle: In the vicinity of either inside or outside of the limit 

cycle, some trajectories converge to the limit cycle and the others diverge from the limit 

cycle as ∞→t  

 

2.2.  Regression Models and Kernel Estimators 

 

2.2.1.  Histograms and Univariate Kernel Estimator 

 

In many parts of the thesis regression methods will be used to provide analytical 

description of attractors, asymptotes and basin of attractors. Therefore they are important 

tools and deserve to be introduced in detail.  
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Definition : Frequency distribution 

The tabulation of raw data obtained by dividing it into classes of some size and 

computing the number of data elements (or their fraction out of the total) falling within 

each pair of class boundaries is called frequency distribution. 

If we examine the frequency of which states fall into a given region of the state space 

at a specific time, we observe the state probability density.  

Definition :  Density function 

A function f0 (x) is the density function for the initial states o

N

oo
xxx ,...,, 21  if for every 

(not too small) interval [ ]1,00 ⊂∆   

 

∑∫
=∆

∆≅
N

j

jo x
N

duuf
1

0

0 )(
1

)(

0

    (2.19) 

 

where 

∆ (x) = 1   if   ∆∈x  

∆ (x) = 0   if   ∆∉x  

 

 

The oldest, simplest and most frequently encountered nonparametric regression 

estimator for probability density function is the histogram. To construct a histogram, the 

interval covered by the data is divided into equal bins, i.e. equally sized intervals. The 

width of the bin and starting position of the histogram have great effects on the overall 

shape of the histogram. A generalized formula can be stated as: 

 

nb

m
bxf =),(      (2.20) 
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where, 

b : the width of the bins 

n: number of random variables, samples 

m: number of observations in bin containing x 

The effects of these factors are explained with an example.  

Consider 40 random numbers that are generated in the range [0,1]  

 

Figure 2.2.  40 Random Numbers between 0-1 

 

Two histograms are shown for this data (Figure 2.3.). Although they only differ at 

their starting point by 0.05 they look quite different. 
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Figure 2.3.  Histograms with Different Starting Points 

 

In figure 2.4, two histograms for the same data set are drawn. With the difference of 

the bandwidth of the second histogram some details, like the bimodality structure around 

0.85 are missed in the first histogram. 

 

Figure 2.4.  Histograms with Different Bandwidths 
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As conclusion, histograms are not smooth and depend highly on the start points and 

widths of the bins. The dependence on the start points and the smoothness problems can be 

alleviated by another nonparametric estimator: Kernel estimators. 

If we use a smooth kernel function instead of a box shaped function for our building 

block, then we will have a smooth density estimate. To remove the dependence on the start 

position of the bins, we center each kernel function at each data point instead of fixing 

their start points. This way two important problems associated with histograms are 

eliminated.  

The generalized formula for kernel density estimators is: 

∑ 






 −
=

h

Xx
K

nh
hxf i1

),(     (2.21) 

where, 

K :  the kernel function  

Xi : random sample taken from a continuous univariate density function, i.e. 

observations 

h : bandwidth of the kernel function  

For one dimensional case the performance of the kernel density estimator is 

measured by the appropriate error criteria over the whole line, MISE or AMISE. 

Definition :  Mean Squared Error , Mean Integrated Square Error and Asymptotically 

MISE. 

2)()( pmEmMSE −=       (2.22) 

where, 

p: the original, estimated density. 

m: the estimator. 

To interpret data in the entire line instead of a single point we use MISE : 



 

 

18 

∫ −= dxxghxfEhxfMISE
2))(),(()),((    (2.23) 

where, 

)(xg : the original estimated density function. 

),( hxf : the estimator function. 

h: the bandwidth of the estimator function 

Due to the high complexity of the open form of MISE, the AMISE ( is introduced: 

)(
4

1
)(

1
)),(( 2

2

4
fRKhKR

nh
hxfAMISE &&µ+=    (2.24) 

where, 

n: number of samples 

K : Kernel function 

∫= dxxmmR
2)()(  

∫= dzzKzK )()( 2

2µ  

 

AMISE is a useful sample approximation to the MISE and it is a much simpler 

expression compared the open expression of MISE. 

 

When AMISE is used to to measure the efficiency of several kernel functions, we 

can see that the shape of the kernel function does not have much effect on the estimation. 

However, the bandwidth can greatly change the overall appearance of the estimated 

density.  

 

To take a deeper look into the concepts mentioned above, the well known Logistic 

Map will be represented as an example. The logistic map is a well known example of 

chaotic behavior that arises from a very simple nonlinear equation. The map is given by: 

 

)1(1 nnn xrxx −=+       (2.25) 
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The trajectory for the first 100 iterations of the logistic map where r is taken as 4 and 

the initial point is 0.22, is drawn below. 

 

Figure 2.5.  Trajectory for Logistic Map 

 

If  the state density is estimated by Parzen's estimator given by 

 

∑ 






 −
=

h

Xx
g

nh
hxf i1

),(      (2.26) 

 

where the Gaussian Kernel function defined by 

 

( )
2

5.05.0
2)( xexg −−

= π      (2.27) 

 

is used. Different results for different bandwidths can be obtained. 
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Figure 2.6.  Oversmoothed Estimate 

 

The shape is too smooth and the characteristic details associated with the states 

disappeared. Such an estimate is called oversmoothed. 

 

 

Figure 2.7.  Undersmoothed Estimate 
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Letting h = 0.05, the estimate pays too much attention to specific data and it is not 

smoothed enough. The estimate is then called to be undersmoothed. 

 

 

Figure 2.8.  Optimum Estimate 

 

The case where the bandwidth is very close to the optimum bandwidth which is 

calculated by minimizing AMISE (BW=0.00997), is shown in Figure 2.8. Around this 

bandwidth, the kernel estimate is not too noisy and the essential structure can be recovered. 

 

2.2.2.  Multivariate Kernel Estimation 

 

The main reason that relatively less research has been done about the kernel 

estimation for multivariate data is that they are far more complicated than the univariate 

case both in computational and mathematical aspects. One of important difference is the 

selection of bandwidth matrix that may induce an orientation of the kernel function. The 

determination of the bandwidth matrix and the variation of the parameters have no 

univariate analogue.  
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The kernel density estimation for univariate data has received significant attention in 

the literature, however the multivariate density estimation has been given less importance. 

This is partly due to the visualization difficulties of high dimensional data. Although some 

visualization techniques has been proposed, interpretation of the resulting plots are not 

easy and needs experience. 

A simple extension of the univariate kernel estimation is not enough in most 

situations due to the more complicated bandwidth settings. Furthermore, the sparseness of 

data in higher-dimensional space make kernel smoothing more difficult if the sample size 

is not very large. This results in the lack of proper estimation for the systems with practical 

sample sizes that have more than five dimensions. This difficulty is called the curse of 

dimensionality. That is why especially in diagrams and plots, bivariate kernel density 

estimation will be used as an example. The bivariate kernel estimator is a bridge between 

the univariate and high-dimensional kernel density estimation. Furthermore the bivariate 

kernel extensions can be visualized by simple contours. This forms the first step for 

understanding different aspects of the multivariate kernel smoothing. To investigate the 

multivariate kernel estimation, first its definition will be given.  

Definition: Multivariate kernel estimator 

Let X = (X1, X2, . . . , Xd)
T
 denote a d-dimensional random vector with density f (x) 

defined on R
d
. The general form of the multivariate kernel estimator is: 

 

)(),(
1

1

i

n

i

H XxKnHxf −= ∑
=

−      (2.28) 

 

where,  

)()( 5.05.0
xHKHxK H

−−
=      (2.29) 

 

and H is a symmetric positive definite dxd matrix known as the bandwidth matrix, K(.) is a 

multivariate kernel function satisfying : 

 

1)( =dxxK       (2.30) 

 



 

 

23 

The roots of the multivariate kernel density estimators were based on the second half of 

1960's. The bandwidth selection forms the basis of the multivariate kernel estimation 

problem. The parameters of the bandwidth matrix control the orientation of the kernel 

function. There are 3 main classes and 3 hybrid classes for bivariate data case: 

 

1- class of all symmetric, positive definite matrices :  


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2- class of all diagonal, positive definite matrices: 
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3- class of all positive constants multiplied by the identity matrix: 
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4- class of all positive constants multiplied by the sample variance S: 
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5- class of all positive constants multiplied by the sample variance: 












=

2

2

2

2

1

2

0

0

Sh

Sh
H      (2.35) 

6- class of matrices formed by correlation coefficient ρ: 
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The second class of bandwidth matrices are the most commonly used in literature so 

far. Each bandwidth type can be inappropriate for specific cases. For example, the target 

density shown in Figure 2.9. can not be estimated properly by the kernel function shown in 

Figure 2.9. 

 

 

Figure 2.9.  Density Example and 2D Kernel Function 

 

The probability mass of the target density function is oriented along y=x line, 

however the kernel used for the estimation is perfectly symmetric around the x-y axis. 

Since the distribution of the mass probabilities of both functions are not matched, it is 
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impossible to estimate the original function in Figure 2.9. with the kernel in Figure 2.9. 

properly. 

 

In this thesis, we will mostly select the bandwidth of Kernel functions in the form of 

equation 38 which is a diagonal positive constant matrix. In the additional work and 

different approaches section of the thesis, we will select bandwidth according to the 

location of the estimated data on the phase plane: 
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2.2.3.  Parametric Regression 

 

The nonparametric regression is used to identify the attractors on the phase plane. 

However for the representation of basins of attraction analytically, parametric regression 

models are used. 

 

To estimate the function of the basins of attraction, the following models are 

proposed: 

 

Second order polynomial: cbxaxy ++= 2                     (2.38) 

Third order polynomial:    dcxbxaxy +++= 23                    (2.39) 

General ellipse:        022 =+++++ feydxcybxyax                   (2.40) 

Nonlinear hyper surface:   0222222 =++++++++ ihygxfxyexydxcybxyyax         (2.41) 

 

The user is free to choose any of these models to fit the data in any of the basins of 

attraction.  

 

The unknown coefficients in equation 43 and 44 are computed by minimizing the 

sum of the squares of the deviations of the data from the proposed  polynomials.  For the 

nonlinear models, Gauss-Newton method is used for least square-data fitting.  
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If the model does not fit good enough, the regression should be repeated with another 

model. 

 

Example: Suppose we have the data points distributed as shown in figure 2.10. 

 

 

Figure 2.10.  Sample of Data Points 

 

Parametric estimation using the model in equation 45 gives a result which roughly 

covers the region of interest 
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Figure 2.11.  Estimation of the Boundary with 3. Model 

 

However 4. model gives a superiour estimate than the third model: 

 

 

Figure 2.12.  Estimation of the Boundary with 4. Model 
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3.  METHODOLOGY 

 

 

During our thesis, it is assumed that  

1- Equations governing the dynamical system are not known. 

2- The system dimension is not known. 

3- There is a sufficient number of trajectory observations starting from different 

initial conditions.  

 

Moreover this thesis is focused on systems which 

• do not exhibit chaotic behaviour. 

• have only stable/unstable nodes, stable/unstable focuses, saddle points, periodic 

orbits or limit cycles. 

• do not have more than one limit cycle or continuum of periodic orbits. 

 

Under these assumptions, in order to identify and extract the characteristic regions of 

basins of the nonlinear system the following methods are used: 

•   Kernel Regression 

• Parametric Regression 

• Poincare Maps 

• Basic image processing technics 

• “Flame Expansion” algorithm to identify the basin boundaries 

 

3.1.  Identification of Stable Equilibrium Points 

 

Trajectories which converge to a stable equilibrium point must have a higher state 

density near the equilibrium point.  

 

So, it is checked if the last n-points of each trajectory are in a small circle around the 

last point of each trajectory. The radius is determined by the user. Note that an optimum 

selection of radius of this circle is assumed to have a correlation with the the average 

distance of each data point in each trajectory.  
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After finding the equilibrium point candidates, Kernel Regression is used to estimate 

the exact location of the equilibrium points. 

 

Example: 

Consider the system below. 

32 3)8( xxyxy

yx
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The phase portrait of this system with initial conditions  
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is shown below. 
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Figure 3.1.  Phase Portrait of the 2D-Example 
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After checking each trajectory if it satisfies the criteria mentioned above, the last 

point of the trajectories that shows a sign of an equilibrium point is marked. 

 

In figure 3.2,  there are two main groups of equilibrium point candidates.  

 

 

Figure 3.2.  Equilibrium Point Candidates 

 

Now, a kernel function is placed on each candidate. After each kernel function is  

added, the local peaks are determined. 
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Figure 3.3.  Kernel Regression of Equilibrium Point Candidates 
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The local peaks of the Kernel functions are found to be on  

 

[ ]0402.07286.1, *

1

*

1 −=yx  and [ ]0402.07286.1, *

2

*

2 =yx  

 

This result corresponds with the analytical solution of the attractive equilibrium 

points.  
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The linearized analysis of the Jacobian Matrix give us that (0,0) is a saddle point and 

other two equilibrium points are stable nodes.  

 

3.2.  Identification of Periodic Orbits and Limit Cycles 

 

To identify periodic orbit and limit cycle phenomena, Poincare maps are used. One 

horizontal and one vertical Poincare line are placed at the bottom left of the phase portrait. 

Then it is checked if there are at least 3 three points in each Poincare line and if the 

difference between the first and third point is small enough. Theoretically, this difference 

should be zero since a periodic orbit intersects a Poincare Line exactly at the same point 

and forms a fixed equilibrium point in the Poincare map which corresponds to a periodic 

orbit in the nonlinear system. However due to the sampled data structure, interpolations to 

find the intersection point of the Poincare line and the trajectories have been made. One of 

the drawbacks of this interpolation is that the intersection points may be separated from 

each other within a small distance. It is assumed that if this distance is small enough, then 

an quilibrium point in the Poincare line is found and hence the nonlinear system exhibits 

periodic behaviour. 

 

If we can not catch at least 3 points on none of the Poincare lines, then both lines are 

slided and the iterations are repeated until all the phase plane is covered. 

 

Below, a horizontal Poincare line near a nonlinear closed orbist is shown. 
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Figure 3.4.  Poincare Line 

 

The algorithm can not find overlapped intersection points and slides the line. 

 

-2 -1.5 -1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

X-Axis

Y
-A

x
is

Phase Portrait of our 2D Nonlinear System

 

Figure 3.5.  Poincare Line on Periodic Orbit 
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Here, the algorithm catches a periodic behaviour since the intersection points on the 

Poincare line are close enough.  
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Figure 3.6.  Intersection Points of Poincare Line  

 

After all trajectories are checked, there are 3 possibilites we can find out: 

1- There is no periodic behaviour in the system. 

2- There is a continuum of closed orbits in the system. 

3- There is only one closed orbit that is to say there is a limit cycle in the  

  system. 

 

If we find more than one closed orbits, the algorithm begins to search if any other 

data point which does not belong to a closed orbit stays between these orbits. 
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Figure 3.7.  Sampled Continuum of Periodic Orbits 

 

Note that if there is not any data point inside the innermost closed orbit, the 

characteristic behaviour of the system in this area can not be identified. However if the 

initial conditions are selected dense enough it is assumed that the continuum covers the 

whole area bounded by the outermost orbit. 

 

If the algorithm fails to detect the existence of continuum of periodic orbits or if the 

algorithm has already found only one closed trajectory then it is concluded that here exists 

a limit cycle.  

 

Example:  

Consider the phase portrait in Figure 3.8. 
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Figure 3.8.  Phase Portrait of a System with a Limit Cycle 

 

Only one closed orbit is detected as shown below. 
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Figure 3.9.  Limit Cycle in the Phase Portrait 
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Now, the stability of the limit cycle is asked. Any one point in the limit cycle (in our 

thesis the most right one) is found and the vicinity of that point is investigated. The closest 

points both in the outwards direction and inwards direction are found. The distance 

between these points and the reference point is compared with the distance between the last 

points in their trajectories and the reference point. If these distances become smaller, then 

the neighbour trajectories in the corresponding area converge to the limit cycle and hence 

form the basin of attraction of the limit cycle. If both distances become bigger, then the 

identified limit cycle is unstable. The limit cycle is said to be semi-stable if one distance 

gets bigger while other gets smaller. 

 

 

Figure 3.10.  Limit Cycle Stability Analysis 

 

In this example, the last point of the trajectory comes so close to the neighbour point 

that it nearly is on the limit cycle itself. Hence, it is stable in the outer region of the limit 

cycle. 

 

Note that there always is a risk that due to the excess of data points the algorithm 

may identify a continuum of closed orbits instead of a limit cycle.  
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3.3.  Identification of Exit Boundary Segments 

 

To identify the basin of infinity for the researched dynamical system, we first need to 

find from where our system leaves the phase portrait. Afterwards we need to distinguish 

which trajectories tend to reach infinity from which side of the region of interest.  

 

First a rectangular shaped frame is set onto the phase portrait.  
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Figure 3.11.  Phase Portrait Example for Exit Boundary Identification 

 

Then, the intersection points of the trajectories and this frame are found.  
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Figure 3.12.  Exit Boundary Points 

 

In this example, there are two main exit boundary segments. To assign each 

trajectory to one of these segments, we first need to find the “eye” of these segments, 

which represents where the trajectories are most dense.  

 

This is done by kernel regression and then by finding the local peaks as the main exit 

boundary points.  
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Figure 3.13.  Kernel Regression of Exit Boundary Points 

 

Then all trajectories are divided and assigned into two groups according to the 

distances to the eyes. 

 

3.4.  Flame Expansion Algorithm 

 

This algorithm plays a central role in identification of basins in this thesis. After 

finding the equilibrium points, exit boundary segments and closed orbits, we have to 

estimate how the effects of those phenomena are spread along the phase space. We 

developed a flame expansion algorithm. The main logic behind this algorithm is similar to 

the skeletal transformation, a technique used in image processing to extract the skeletal 

information of the subject by its body image. 
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Consider the whole phase space as an untouched area and the cores of invariant sets 

as flames. Assign each different set a different type of flame. At each iteration, expand the 

flame in each set by making each neighbour point an active flame of the same type. 

Afterwards, make the already expanded flames “burnt”. Burnt areas do not transmit the 

flame to their neighbourhood and just stand still. If any active flames of the same type 

meet each other, they become “burnt” and stops burning. If any two active flames of 

different types meet each other, they immediately form a boundary flame segment which is 

immobile too. Iterations are processed until all the untouched areas become burnt points 

and the whole phase space is covered by boundaries of basin of attractions. 

 

Example: 

Below, 3 different type of invariant sets are shown. Each iteration makes the flames 

wider and when they meet each other, they create a boundary and flames stop expanding in 

that direction. 
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Figure 3.14.  Three Different Kind of Flames 
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Figure 3.15.  Expansion of the Flames after 1 Iteration 
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Figure 3.16.  Expansion of the Flames after 2 Iterations 
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Figure 3.17.  Expansion of the Flames after 6 Iterations 
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Figure 3.18.  Expansion of the Flames after 10 Iterations 



 

 

43 

  

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-4

-3

-2

-1

0

1

2

x

y

burning after 22 iterations

 

 

Figure 3.19.  Expansion of the Flames after 22 Iterations 
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4.  COMPLEMENTARY WORK AND DIFFERENT APPROACHES 

 

 

4.1. Image Processing Filters 

 

Although we are mainly focused in this thesis on the basin description and 

representation, the next step in this research area would be controlling the dynamics inside 

the basins. As a contribution and as a preliminary work, we used image processing 

techniques on the given system data to obtain a more regularized picture. 

 

Idea: Since both the differential equations and the colored picture data can be seen as 

vector fields, apply the image processing techniques and filters to the dynamical equations. 

 

We consider the whole phase portrait as an noised image and if we use specific 

image processing techniques, like sharpening or deblurring filters, we can obtain a 

“smoother” or “better”  picture that shows us the long term behaviours clearer. Although 

the idea is original, selecting the right filter or even designing an appropriate one is beyond 

the duty of this thesis and that is why this work is limited to one filter only. 

 

We used the unsharp filter created as  

 

















−−−

−+−

−−−

+
ααα

ααα

ααα

α
1

151

1

1

1
     (4.1) 

 

where α is chosen as 0.2 . 

 

The sharpening effect of the filter on the photography can be seen below: 
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Figure 4.1.  Effect of the Sharpening Filter 

 

To use this filter, the phase portrait has to be defined as a image data. The flow 

vector at each data point is treated as an “RedGreenBlue” true color image pixel. Each 

independent component of the vector assigned for the red, green or blue intensity of the 

pixel. Since in this thesis this technique is apllied only on 2D systems, we added an 

artificial constant to each data point as a third dimension which represent the blue 

intensity. The data range for image processing is between 0 and 1. After rescaling the new 

3D-vectors so that all the components are in the range (0-1), the phase portrait was ready to 

be processed by a filter. 

 

Example: 

Assume that,  

• there is a flow vector, 






−
=
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4.0
F  on one of the data points  

• the phase space has the biggest flow in the negative direction on 
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Since we want to rescale the whole phase space to 0-1 range, we assigned the most 

negative flow to “0” and the most positive flow to “1” at each direction. The other flows 

are adjusted acording to this rescaling, that is to say 

 









=









++

++−
=

89.0

2.0

)7.11.0/()1.05.1(

2.18.0/()8.04.0(
scaledF  

 

After adding an artificial 0.5 as a third dimension we have a true-color image pixel of 

















5.0

89.0

2.0

at the data point in the example. This pixel is sharpened by the filter desribed by 

equation 4.1. 

 

One of the harder tasks was to decode the pixel data to flow vector data after the 

filtering process. The new pixel was transformed to a new vector by rescaling again and 

removing the third dimension. However, at the end of this vector there may be no data 

point so that a new trajectory can be constructed. An algorithm is developed which 

generates a rectangular so that the end of our new vector stands on the center. Then, the 

number of neighboor data points which are also inside the rectangular are checked. If there 

is sufficient amount of data points, their weight on our new data point is computed and the 

new flow vector is found. The sufficiency rule is chosen in such a way so that there is at 

least one data point in each quadrant around the new data point. 

 

Example: 

The red data point in figure 33 is where the new vector flow will be computed. The 

selection  of the neighbour points is determined by the red rectangular. In this example, 

there is at least one data point in each quadrant around the red point. So, the rectangular is 

not expanded anymore to catch new neighbours. 
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Figure 4.2. Choosing the Neighbour Points 

 

The new flow vector is computed according to: 
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=

−

−

=
k

i

i

i

k

j

j
k

k 1

*

*

1

*

* )

1

(
1

ζ
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ζ &&     (4.2) 

 

where, 

*ζ  : our new data point after filtering (the red point above) 

ζ : the neighbour data points (the blue points above) 

ζ& : the flow vector at the neighbour data points : ζζ &=)(F  

*ζ& : the estimated flow vector at our new data point : **)( ζζ &=F  

 

According to equation 4.2, the effect of the neighbours weakens as its distance 

increases. So, close neighbour vectors have a stronger role in determining the new flow 

vector. 
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After the new flow vector is computed, another new data point is found at the end of 

this vector and the processes above are reiterated until the the trajectory completed. 

 

In figure 4.3., the result of the whole algorithm is shown. The green lines indicate the 

original trajectories and the red lines indicate the filtered trajectories. Note that in some 

cases, especially in the closed orbits, the algorithm changes the trajectory so much that it 

loses its characteristic behaviour.  
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Figure 4.3.  Phase Portrait after Filtering 

 

However, it is also observed that the transformed trajectories now have a rougher 

shape and the path of the trajectory, that is to say where it will converge, is seen clearer. 

 

By choosing other filters, the dynamics of the system can be simplified without 

changing the characteristic basins and invariant sets. Designing such a filter and 

researching if it can be improved by making it to dependent to some statistical information 

obtained from the dynamical system, is left as an open problem. 
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4.2. The Backbone Extraction 

 

Idea: Once the exit boundary segments are found, if the trajectories tend to form an 

asymptote towards the exit boundary, then this main stream can be extracted by using 

variable kernel regression.  

 

First, a kernel function is placed on each data point to find the local peaks which 

should show the trace of the backbone. However this approach obviously enclosed 

unwanted peaks which are formed when data points in a trajectory are very close each 

other that is to say the trajectory flows slowly enough.  

 

After many trials, two modifications to our regular kernel function, which we used 

through the whole thesis, are made: 

• Each kernel function’s bandwidth varies according to the average 

distance of the data point to neighbours in its trajectory. 

• The heights of the kernel function are held constant while the volumes 

vary according to their bandwidth. 

 

After these modified kernels are processed on a periodically sampled group of data 

points, the local peaks are found. 

 

Now, some of those local peaks are standing on the backbone of the exit boundary 

segments. To find which, we first determined the closest trajectory to the core of the exit 

boundary segment. Then this trajectory is back-traced and all the peaks which are close 

enough to the trajectory is activated. In other words, it is checked if this trajectory passes 

through the inside of the projection of cross section that is cut from the 1/e of the peak. If it 

does, then that peak is marked.  

 

At last, all the marked peaks are used to estimate a second order polynomial which is 

chosen to represent the backbone of the exit boundary segments. 
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Figure 4.4.  Backbones 

 

The activated peaks are marked red. Blue crosses are other local peaks which does 

not have any role on determining the backbone. 
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Figure 4.5.  Backbone Estimation from the Activated Peaks 

 

The backbone algorithm may be used with the other basin of attraction estimation 

algorithms we introduced to make a more detailed interpretation for the long-term 

behaviour of our nonlinear system. 
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4.3. Preliminary Work for 3-Dimensional Systems 
 

Due to time limitations and more problematic situations, we will not be able to 

extend all the algorithms comprehensively to three dimensional systems. In addition of 

more complicated behaviour types and invariant sets, we also lose our visualization 

advantege of Kernel functions in 2-dimensional systems. However an introduction has 

been made with modified versions of the algorithms which are proposed in the thesis. 

 

Our results will be presented over the following system and initial conditions. 
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The phase portrait of this system is shown below. 

-10
-5

0
5

10

-4

-2

0

2

4

-5

0

5

x

y

z

-10 0 10
-5

0

5
x-y

-10 0 10
-5

0

5
x-z

-5 0 5
-5

0

5
y-z

 

Figure 4.6.  Phase Portrait of a 3D-System 
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The region of interest is a cube whose center is the origin and has length of edges of 4.  

 

1- First the enter and exit regions are computed by tracing each trajectory 

and finding the intersection points on the surfaces. 
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Figure 4.7.  Trajectories Entering and Flowing Out  
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Figure 4.8.  Exit and Entrance Points on ROI 

 

2- The flame expansion algorithm is applied to a sampled data on each 

surface to determine the main exit- and enter- regions.  
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Figure 4.9.  Flame Expansion on Surfaces of ROI 

 

 

 

Figure 4.10.  Boundaries on the Surface 
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3- The stable equilibrium points are computed with the help of a direct 

extension of the algorithm for 2-dimensional systems. 3-dimensional Kernel 

functions are used to estimate the location of equilibrium point candidates. 

However, in this example the saddle points at x
*
1 = [1 0 0] and at x

*
2 = [-1 0 0] have 

planary stable manifolds and the trajectories that start in this manifold cause the 

algorithm to recognize saddles as attractive equilibrium points. 

 

4- At last the flame extension algorithm is extended to 3 dimensional data. 

Expanding cubes are used instead squares. As in 2-dimensional version, the 

boundaries are formed when 2 different type flames encounter.  

 

However we did not use parametric regression to represent the basins of 

attraction due to the complexity of the nonlinear models and left the question open. 

 

 

 

 

Figure 4.11.  Flame Expansion inside the ROI 
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Figure 4.12.  Boundary of Basin of Equilibrium Points 
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5.  SIMULATION RESULTS 
 

 

The common parameters 

• Simulation time: 10 seconds 

• Sampling time : 0.02 seconds 

• Ordinary differential equations solver algorithm: Bogacki-Shanpine  

algorithm 

• Kernel Regression are computed at 200x200 grid with a bandwidth  

matrix 







=

h

h
H

0

0
 where h is taken from researcher 

Models used for nonparametric regression: 

1- cbxaxy ++= 2   

2- dcxbxaxy +++= 23  

3- 022 =+++++ feydxcybxyax  

4- 0222222 =++++++++ ihygxfxyexydxcybxyyax  

 

Unless mentioned otherwise, all the parameters asked to the user is selected as default: 

 

• The bandwidth constant for kernel estimation on the boundaries = 1 

• The number of final points that will be checked on each trajectory in order to detect 

stable equilibrium point = 70 

• The bandwidth constant for kernel estimation on attractive points = 0.1 

• The tolerance to be used in the detection of stable equilibrium points = average 

distance of data points in their trajectories 

• The tolerance value to be used in the detection of periodic orbits = 0.0009 

• The step size used in the search of useful poincare line = 0.1 

• The grid size for the flame estimation algorithm = 100x100 

• The maximum number of iterations of flame expansion to be used for basin 

boundary detection = 100 
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5.1.  System I 

 

yxy

yyx

−−=

−=

&

&
3

 
[ ]
[ ]85.7...5.78

85.7...5.78

0

0

−−=

−−=

y

x
 

 

The frame constant n=7.8 
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Figure 5.1.  Phase Portrait of System I 
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Figure 5.2.  Kernel Regression of Exit Points of System I 
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Figure 5.3.  Periodic Orbits of System I 
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Figure 5.4.  System I after Totally Burnt 

 

Parametric regression of each invariant set with 4. model 
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Figure 5.5.  1. Exit Basin Estimation of System I 
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1. parameter is 6.43738e-033 

2. parameter is -1.34674e-031 

3. parameter is 6.70099e-031 

4. parameter is 1.06628e-031 

5. parameter is 4.91137e-031 

6. parameter is -1.43236e-030 

7. parameter is -3.22365e-030 

8. parameter is 4.75018e-030 

9. parameter is -4.1137e-030 
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Figure 5.6.  2. Exit Boundary Estimation of System I 

 

 

 

1. parameter is 1.89429e-028 

2. parameter is 3.3381e-027 
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3. parameter is 1.72767e-026 

4. parameter is -3.69711e-027 

5. parameter is 1.77003e-026 

6. parameter is -4.6145e-026 

7. parameter is 1.5972e-025 

8. parameter is -1.58487e-025 

9. parameter is 2.01516e-025 
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Figure 5.7.  Periodic Orbit Estimation of System I 

 

a perfect match! 

1. parameter is 1.22402e-021 

2. parameter is 1.98209e-020 

3. parameter is 8.02646e-020 

4. parameter is 1.94761e-020 

5. parameter is 7.75091e-020 
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6. parameter is 3.15381e-019 

7. parameter is 1.25512e-018 

8. parameter is 1.27713e-018 

9. parameter is 5.08255e-018 

 

5.2.  System II 
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The frame constant n=3.8 
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Figure 5.8.  Phase Portrait of System II 
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Figure 5.9.  Kernel Regression of Exit Boundary Points 
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Figure 5.10.  Kernel Regression of Attractive Equilibrium Points of System II 
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Figure 5.11.  System II after Totally Burnt 

 

Border of one of the exit basins: 
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Figure 5.12.  Border of one of the Exit Basins of System II 
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Parametric estimation using 4. model: 
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Figure 5.13.  Estimation of the Exit Basin of System II 

 

5.3.  System III 
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The frame constant n: 4 
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Figure 5.14.  Phase Portrait of System III 
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Figure 5.15.  Existence of Exit Points of System III 
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Figure 5.16.  Kernel Regression of Attractive Equilibrium Points of System III 
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Figure 5.17.  Existence of Periodic Orbits of System III 
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Parametric estimation using 4. model: 
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Figure 5.18.  Estimation of 1. Basin of Attraction of System III 

 

1. parameter is 0.127264 

2. parameter is 0.519236 

3. parameter is 0.0407244 

4. parameter is 0.0101811 

5. parameter is -1.99549 

6. parameter is 0.0415389 

7. parameter is -8.14162 

8. parameter is 0.00325795 

9. parameter is -0.638558 
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Parametric estimation using 3. model: 
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Figure 5.19.  Estimation of 2. Basin of Attraction of System III 

 

1. parameter is 7.36636e-028 

2. parameter is 4.70662e-027 

3. parameter is 1.12749e-029 

4. parameter is -1.87487e-026 

5. parameter is 2.2103e-029 

6. parameter is -1.79463e-027 
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5.4  System IV 
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Figure 5.20.  Phase Portrait of System IV 
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Figure 5.21.  Existence of Exit Points of System IV 
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Figure 5.22.  Kernel Regression of Attractive Equilibrium Points of System IV 
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Figure 5.23.  Existence of Periodic Orbits of System IV 
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Figure 5.24.  System IV after Totally Burnt 
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Parametric estimation using 4. model 
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Figure 5.25.  Estimation of 1. Basin of Attraction of System IV 

 

 

1. parameter is 1.07661e-023 

2. parameter is -3.98197e-023 

3. parameter is 2.89016e-023 

4. parameter is 4.38177e-023 

5. parameter is 3.35477e-023 

6. parameter is -7.55624e-023 

7. parameter is -3.60437e-023 

8. parameter is 3.20924e-023 

9. parameter is 3.12081e-024 
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Parametric estimation using 2. model 
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Figure 5.26.  Estimation of 1. Basin of Attraction of System IV via Third Order 

Polynomial 

 

1. parameter is -0.35864 

2. parameter is 0.796753 

3. parameter is -0.133175 

4. parameter is -0.329404 
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5.5  System V 
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The frame constant n=3 
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Figure 5.27.  Phase Portrait of System V 
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Figure 5.28.  Kernel Regression of Exit Boundary Points of System V 
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Figure 5.29.  Existence of Attractive Equilibrium Points of System V 
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Figure 5.30.  Limit Cycle of System V 
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Figure 5.31.  System V after Totally Burnt 
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Parametric regression of the biggest invariant set with 4. model 
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Figure 5.32.  Estimation of Basin of Attraction of System V 

 

1. parameter is 9.53908e-027 

2. parameter is 6.63345e-027 

3. parameter is 1.65787e-026 

4. parameter is -4.34399e-027 

5. parameter is 7.39194e-027 

6. parameter is -8.71795e-026 

7. parameter is 8.44966e-028 

8. parameter is -1.17913e-026 

9. parameter is -1.94238e-026 

 

Note: For a better fit, a more complicated model should be used.  
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5.6.  Data Point Test 

 

The user is able to test his data point if it is inside the estimated basin boundary. 

 

Example:  

 For the data point [2 ; 1] , the algorithm checks if  

0222222 <++++++++ ihygxfxyexydxcybxyyax  

where , 

a = 9.53908e-027 

b = 6.63345e-027 

c = 1.65787e-026 

d = -4.34399e-027 

e = 7.39194e-027 

f = -8.71795e-026 

g =  8.44966e-028 

h = -1.17913e-026 

i = -1.94238e-026 

 

The result is: 

-1.2369e-025 < 0 

 

as expected. Hence the data point is in the basin of the limit cycle.  
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6.  DISCUSSION AND CONCLUSION 

 

 

Our main aim in this thesis was to find, estimate and represent the basin of invariant 

sets in a nonlinear system data by using different tools and algorithms. What we have done 

so far to achieve this aim is summarized below. 

 

Assuming that our sampled nonlinear data satisfies the minimum requirements for 

our analysis, we searched for 4 types of invariant sets: 

  

1- Basin of attraction of stable equilibrium points 

2- Continuum of periodic orbits 

3- Basin of attraction of stable limit cycles 

4- Exit basins, i.e. phase space regions starting from which trajectories leave  

  the region of interest through a connected portion of the boundary  

  hypersurface (in 2d systems this corresponds to boundary line segments) 

 

Multivariable Kernel Regression used almost everywhere in the thesis was the most 

useful tool in the identification of these invariant sets. After these sets are determined , we 

introduced our flame expansion algorithm which finds the basin of the invariant sets 

successfully. 

 

At last we tried to represent the boundaries of the basin of invariant sets via 

parametric regression. 

 

6.1.  Limitations 

 

Most of the limitations of the algorithms developed within realm of the thesis are due 

to the estimation on basis of finite sampled data. The estimates of steady state behaviour 

and related basins are limited by the density of initial conditions and sampling frequency of 

the system trajectories.  
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Moreover when using Kernel functions and flame expansion algorithm the phase 

space is covered by a grid. The following type of estimation errors can occur when this 

grid is not dense enough to reflect the similarities of the underline dynamics: 

 

• Equilibrium Points and small neutral basins may not be distinguished.  

• The limit cycles and marginally stable periodic orbits may not be distinguishable. 

• The boundaries formed by the flame expansion algorithm may be inaccurate since a  

small grid size may cause different margins to merge, i.e. in a sparse grid the 

different equilibrium points can overlap or stay very close to each other so that 

false boundaries are constructed. 

 

All the estimations along the thesis are highly dependant on the parameters which are 

chosen by the user. An improper selection of the following parameters may give 

unexpected results : 

 

• bandwidth matrix for kernel regression 

• tolerance value to be used in the detection of periodic orbits 

• the step size used in the search of an useful Poincare Line 

• more suitable nonlinear models for nonlinear parametric regression 

 

The algorithms in the thesis as shown in examples provide succesful results in 2D 

systems, they need further development for extension in 3 and higher dimensional systems. 

 

In closed orbit detection, the user should be very careful since the limit cycles and 

continuum of closed orbits are in most cases very hard to distinguish for the algorithm. 

When analyizing the closed orbits the user may need to run the program many times with 

different parameters for the minimum errors.  

 

An additional limitation is for the systems which have more than one continuum of 

periodic orbits.  The algorithm assumes that there is only one continuum of periodic orbits 

and discards other group of periodic orbits it there is any. 
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In addition to the limitations mentioned above, the following tasks are open 

questions to be researched: 

• The flame expansion algorithm may be developed so that thinner boundaries are 

formed. 

• The flame expansion algorithm may be changed to circular shaped expansions to 

prevent the fast expansion in diagonals 

• The noise in the data can be removed by using different image processing filters. 

• Different shapes for the Kernel Function 

• The code can be optimizedfor a faster execution. 

 

6.2.  Future Work 

 

All the parameters in the thesis chosen by the user for the execution of the algorithm 

can be obtained by a statistical anaylsis over the system data. If the parameters are selected 

systematically, they can be more “system-spesific” and give more accurate results. 

 

Except improving the overall performance of the program with the suggestions made 

above, we can focus on 3-dimensional systems with a deeper insight and try to recognize 

marginal cases, that is to say the continuum of periodic orbits and more complicated 

behaviours like chaos in these systems. Extensions of devised methods to 3 and higher 

dimensions. 

 

Development of method for detecting chaotic attrctors and their basins of attraction 

The basic approach of segmenting of phase space into basins is actually a preliminary work 

for simplified system desription of dynamics of each basin. A natural continuation of this 

thesis should be the estimation of dynamics within each basin. Preliminary step in this 

direction have been provided in the additional work.  

 

Actually the work completed in this thesis is meant to be used in an intelligent 

control algorithm making efficient use of flow dyanmics of the system. 
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A superiour final-version of the the program should tell the researcher all the basin of 

attractions and all the possible invariant sets within their simplified dynamics in any n-

dimensional system.  

The researcher would ultimately know what will be the fate of his data in future. 
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