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ABSTRACT 
 

 

INFINITE ELEMENTS IN FINITE ELEMENT METHOD 
 

It is natural and common to idealize stress or field problems into finite element 

models with rigid boundaries remote from the area of interest. However, the degree of 

accuracy of solutions may be significantly increased, if infinite elements extending to 

infinity are used all along the rigid boundaries. 

 

Infinite elements are introduced and also the history and development of these 

elements are discussed in detail. The classification of the infinite elements is made as, a) 

Mapped infinite elements, and b) Decay function infinite elements. Firstly, uni-

dimensional infinite elements are described and after the geometric and field variable 

interpolation of these elements are expressed; the strain matrix and the stiffness matrix are 

explicitly obtained. In this presentation, a total of 23 different types of 1-D (5), 2-D (13), 

and 3-D (5) infinite elements have been investigated. Their geometrical configurations, 

coordinate mapping and field variable mapping functions are presented explicitly in a 

systematic fashion.  

 

In order to emphasize the high performance and accuracy of the infinite elements, 

four distinct case studies have been presented. Firstly, the deflection and stress analyses of 

a point load and a circular uniform distributed load acting on a semi-infinite axi-

symmetrical medium have been presented with and without infinite elements. The results 

have been compared with the exact solution by Boussinesq. Secondly, a square plate 

loading on the axi-symmetric half space has been analyzed by using solid finite and 3-D 

dynamic infinite elements. Thirdly, the calculation of the vertical vibration of a square 

rigid plate resting on a semi-infinite half-space has been given. Finally, for the Boussinesq 

problem, a sensitivity analysis is performed using not only various mesh sizes but also 

springs all along the truncated boundaries and the results are compared. It is amply 

demonstrated that the use of infinite elements provides unprecedented high degree of 

accuracy. 
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ÖZET 
 

 

SONLU ELEMANLAR YÖNTEMİNDE SONSUZ ELEMANLAR 
 

Sonlu elemanlar yönteminde, gerilme problemlerinin ya da tabiatta karşılaştığımız 

bazı problemlerin modellenmesinde; ilgilenilen bölgeden uzakta, sonsuza uzanan sınırların 

sabitlenmesi çok sık olarak kullanılmaktadır. Ancak, bu problemlerin sonsuza uzanan 

sınırlarında sonsuz elemanlar kullanılması durumunda, daha gerçekçi ve doğru sonuçlar 

elde edilebilmektedir.  

 

Önce sonsuz elemanların genel bir tanımı verilmiş, daha sonra bu elemanların 

bulunuşu ve tarihsel gelişiminden detaylı olarak bahsedilmiştir. Yine bu elemanların,        

a) Haritalanan sonsuz elemanlar ve b) Azalan fonksiyonlu sonsuz elemanlar olarak 

sınıflandırılması yapılmıştır. Öncelikle, bir boyutlu sonsuz elemanlar tarif edilmiştir. Daha 

sonra geometrik ve bilinmeyen değişken interpolasyonunun tanımlanmasının ardından, 

gerilme ve stifnes matrisleri oluşturulmuştur. Bu tezde, toplam 23 farklı sonsuz eleman tipi 

1 Boyutlu (5), 2 Boyutlu (13), ve 3 Boyutlu (5) incelenmiştir. Bu elemanların geometrik ve 

bilinmeyen değişken interpolasyon fonksiyonları son derece sistematik ve anlaşılır bir 

biçimde sunulmuştur. 

 

Sonsuz elemanların son derece yüksek performans ve doğru sonuçlar verdiklerini 

gösterebilmek amacıyla, dört değişik örnek çalışma verilmiştir. İlk olarak, yarı sonsuz aksi-

simetrik ortama etkiyen tekil yük ve dairesel düzgün yayılı yük analizleri sonsuz elemanlar 

kullanılarak ve kullanılmadan yapılmıştır. Sonuçlar, Boussinesq’in kesin çözümü ile 

karşılaştırmalı olarak sunulmuştur. Daha sonra, üç boyutlu sonlu ve üç boyutlu sonsuz 

elemanlar kullanılarak, yarı sonsuz ortamdaki kare bir plağın analizi verilmiştir. Daha 

sonra, yarı sonsuz ortamdaki kare bir plağın düşey titreşimi verilmiştir. Son olarak, 

Boussinesq problemi için hassaslık analizi yapılmıştır. Ayrıca, problemin sonsuza giden 

sınırlarında yaylar kullanılmıştır ve sonuçlar irdelenmiştir. Örnekler göstermiştir ki, sadece 

sonlu elemanlar kullanıldığında sonuçlar, problemin kesin çözümüne uzak kalırken; sonsuz 

elemanların kullanılması ile kesin çözüme çok yakın değerler elde edilmektedir. 
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1.  FINITE ELEMENTS IN ENGINEERING  
 

 

1.1.  Basic Concept of Finite Element Method 

 

Many physical phenomena in engineering and science are described in terms of 

partial differential equations. In general, solving these equations by classical analytical 

methods for arbitrary shapes is almost impossible. The finite element method however, is a 

numerical approach by which these partial differential equations are solved approximately. 

From an engineering standpoint, the finite element method is a numerical approach for 

solving a variety of engineering problems, such as stress analysis, heat transfer, fluid flow 

and electromagnetics by computer simulation. 

 

Millions of engineers and scientists wordwide use the finite element method to 

predict the behavior of structural, mechanical, thermal, electrical and chemical systems for 

both design and performance analyses. Its popularity can be gleaned by the fact that over 

$1 billion is spent annually in the United States on finite element method software and 

computer time. A 1991 bibliography (Noor, 1991) lists nearly 400 finite element books in 

English and other languages. A web search in 2006 for the phrase “finite element” using 

the Google search engine yielded over 14 million pages of results. Mackerle 

(http://ohio.ikp.liu.se/fe) lists 578 finite element books published between 1967 and 2005. 

(Fish and Belytschko, 2007) 

 

The basic idea behind the finite element method is to divide the body into finite 

elements, often just called elements, connected to each other at their nodes, and obtain an 

approximate solution. The same basic approach is used in other types of problems. In stress 

analysis, the field variables are the displacements; in chemical systems, the field variables 

are material concentrations; in electromagnetics, the potential field. In fluid mechanics 

problems, the nodal unknowns may, for instance, be fluid pressures due to fluid fluxes 

(Logan, 2002). The same type of mesh is used to represent the geometry of the structure or 

component and to develop the finite element equations, and for a linear system, the nodal 

values are obtained by solving large systems (from 103 to 106 equations are common today, 

and in special applications, 109) of linear algebraic equations. 
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For problems involving complicated geometries, loadings, material properties, it is 

generally not possible to obtain analytical mathematical solutions. Analytical solutions are 

those given by a mathematical expression that yields the values of the desired unknown 

quantities at any location in body and are thus valid for an infinite number of locations in 

the body. These analytical solutions generally require the solution of ordinary or partial 

differential equations, which, because of the complicated geometries, loadings, and 

material properties, are not usually obtainable.  Hence, the numerical methods are needed, 

such as the finite element method, for acceptable solutions. The finite element formulation 

of the problem results in a system of simultaneous algebraic equations for solution, rather 

than requiring the solution of differential equations. These numerical methods yield 

approximate values of the unknowns at discrete numbers of points in the continuum. 

Hence, this process of modeling a body by dividing it into an equivalent system of smaller 

bodies or units named finite elements interconnected at points common to two or more 

elements (nodal points or nodes) and/or boundary lines and/or surfaces is called 

discretization. In the finite element method, instead of solving the problem for the entire 

body in one operation, equations are formulated and combined to obtain the solution of the 

whole body. 

 

An example of how a finite element model represents a complex geometrical shape is 

shown in Figure 1.1. It is very difficult to find the exact response (stresses and 

displacements) of the machine under any specified loading condition; this structure is 

approximated as composed of several pieces as shown in Figure 1.1 in the finite element 

method. In each piece or element, a convenient approximate solution is assumed and the 

conditions of overall equilibrium of the structure are derived. The satisfaction of these 

conditions will yield an approximate solution for the displacements and stresses (Rao, 

1989). 
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Figure 1.1. Representation of finite elements (Courtesy of Rao, 1989) 

 

1.2.  Brief History and Development of Finite Element Method 

 

Advances in aircraft engineering lead to originate the basic idea of finite element 

method. The modern development of the finite element method began as early as in the 

1940s in the field of structural engineering with the pioneering work by Hrennikoff (1941). 

Hrennikoff presented a solution of elasticity problems using the ‘frame work’ method. A 

rectangular finite element model is modeled by means of uni-dimensional lattice bars as 

originally introduced by Hrennikoff. A typical Hrennikoff lattice cell contains four uni-

dimensional flexural bars rigidly connected to each other at the corners. They can carry 

torsional moments also. The two diagonal bars, however, can only transfer bending 

moments at their ends. 

 

McHenry (1943) used a lattice of one-dimensional elements for the solution of 

stresses in continuous solids. He published in a paper in 1943 but not widely recognized 

for many years. Courant (1943) proposed setting up the solution of stresses in a variational 

form. Then he introduced piecewise interpolation (or shape) functions over triangular sub-

regions making up the whole region as a method to obtain approximate numerical solutions 

(Logan, 2002). 
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The general finite element method was developed in the 1950s in the aerospace 

industry. The major players were Boeing and Bell Aerospace in the United States and 

Rolls Royce in the United Kingdom. M. J. Turner, R. W. Clough, H. C. Martin and L. J. 

Top published one of the first papers that laid out the major ideas in 1956 (Turner et al., 

1956). They derived stiffness matrices for truss elements, beam elements, and two 

dimensional triangular and rectangular elements in plane stress and outlined the procedure 

commonly known as the direct stiffness method for obtaining the total structure stiffness 

matrix. Along with the development of the high-speed digital computer in early 1950s, the 

work of Turner et al. prompted further development of finite element stiffness equations 

expressed in matrix notation. The phrase ‘finite element’ was first introduced by Clough 

(1960) when both triangular and rectangular elements were used for plane stress analysis. 

 

Several capable researchers recognized the finite element method’s potential early, 

most notably O. C. Zienkiewicz and R. H. Gallagher (at Cornel). O. C. Zienkiewicz built a 

renowned group at Swansea in Wales that included B. Irons, R. Owen and many others 

who pioneered concepts like the isometric element and nonlinear analysis methods. Other 

important early contributors were J. H. Argyris and J. T. Oden. 

 

Engineers used the method for approximate solution of problems in stress analysis, 

fluid flow, heat transfer, and other areas in early 1960s. Field problems such as 

determination of the torsion of a shaft, fluid flow, and heat conduction were solved by 

Zienkiewicz and Cheung (1965). In the late 1960s and early 1970s, the finite element 

analysis was applied to nonlinear problems and large deformations. 

 

The finite element method is rapidly becoming an essential and integral part for the 

solution of medical problems, such as orthopedics, dentistry, etc. Finite element 

technology consists of a library of element models, a process for combining these models 

into a mathematical model of an engineering system, and a set of algorithms for numerical 

solution of equations.  This method supported by computer software and by knowledge 

based on application experiences.  The real application of finite element methods requires 

not only the superiority of the theory but also a significant computer programming effort 

(Harmandar, 2002). 
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1.3.  Applications of Finite Elements 

 

The range of applications of finite elements is too large to list, but to provide an idea 

of its versatility, following may be listed: 

 

• Stress and thermal analyses of industrial parts such as electronic chips, electric 

devices, valves, pipes, pressure vessels, automotive engines and aircraft; 

• Seismic analysis of dams, power plants, cities and high-rise buildings; 

• Crash analysis of cars, trains and aircraft; 

• Fluid flow analysis of coolant ponds, pollutants and contaminants, and air in 

ventilation systems; 

• Electromagnetic analysis of antennas, transistors and aircraft signatures; 

• Analysis of surgical procedures such as plastic surgery, jaw reconstruction, 

correction of scoliosis and many others. 

 

The finite element method was developed for the analysis of aircraft structures as 

stated earlier. This method is applicable to a wide variety of boundary value problem in 

engineering.  A boundary value problem is one in which a solution required in the domain 

of a body subject to the satisfaction of prescribed boundary conditions on the dependent 

variables or their derivatives. A general list of fields of applications of finite element 

method is given in Table. For each field of application the problem is formulated in anyone 

of the following types: 

 

• Equilibrium problems 

• Eigenvalue problems 

• Propagation or transient problems 

 

In an equilibrium problem, it is necessary to find the steady state displacement or 

stress distribution if it is a solid mechanics problem; the temperature or heat flux 

distribution if it is a heat transfer problem; and finally the pressure or velocity distribution 

if it is a fluid mechanics problem. 
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Eigenvalue problems are sometimes called characteristic value problems and occur 

in the analysis of homogeneous differential equations. Time will not appear explicitly in 

eigenvalue problems.  These problems can be considered as extensions of equilibrium 

problems in which critical values of certain constraints are to be determined in addition to 

the corresponding steady state configurations.  The natural frequencies or buckling loads 

and mode shapes are determined for the solid mechanics or structures problem; the 

stability of laminar flows for the fluid mechanics problem; and the resonance 

characteristics for the electrical circuit problem. 

 

The propagation or transient problems are time dependent.  The response of a body 

under time varying force in the area of solid mechanics and under sudden heating or 

cooling in the field of heat transfer comprise this type of problems (Harmandar, 2002).   
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Table 1.1. Fields of applications of the finite element method 

Area of Study Equilibrium Problems Eigenvalue Problems Propagation Problems

Civil Engineering 
Structures 

• Static analysis of 
trusses, frames, folded 
plates, shell roofs, shear 
walls, bridges and 
prestressed concrete 
structures 

• Natural frequencies 
and modes of structures 
 
• Stability of structures 

• Propagation of stress 
waves 
 
• Response of structures 
to aperiodic loads 

Aircraft Structures 

• Static analysis of 
aircraft wings, 
fuselages, fins, rockets, 
spacecraft and missile 
structures 

• Natural frequencies, 
flutters, and stability of 
aircraft, rocket, 
spacecraft and missile 
structures  

• Response of aircraft 
structures to random 
loads, dynamic response 
of aircraft and 
spacecraft to aperiodic 
loads 

Heat Conduction 
• Steady state 
temperature distribution 
in solids and fluids 

- 

• Transient heat flow in 
rocket nozzles, internal 
combustion engines, 
turbine blades, fins and 
building structures 

Geomechanics 

• Analysis of 
excavations, 
underground openings, 
rock joints and soil 
structure interaction 
problems. 
 
• Stress analysis in 
soils, dams, layered 
piles and machine 
foundations  

• Natural frequencies 
and modes of dam 
reservoir systems and 
soil-structure interaction 
problems 

• Time-dependent soil-
structure interaction 
problems. 
 
• Transient seepage in 
soils and rocks. 
 
• Stress wave 
propagation in soils and 
rocks 

Hydrodynamics • Analysis of hydraulic 
structures and dams 

• Sloshing of liquids in 
rigid and flexible 
containers 

• Rarefied gas dynamics 
 
• Magneto 
hydrodynamic flows 

Biomedical 
Engineering 

• Stress analysis of 
eyeballs, bones and 
teeth 
 
• Mechanics of heart 
valves 

- 

• Impact analysis of 
skull 
 
• Dynamics of 
anatomical structures 

Nuclear Engineering 

• Analysis of nuclear 
pressure vessels and 
containment structures 
 
• Steady state 
temperature distribution 
in reactor components 

• Natural frequencies 
and stability of 
containment structures 
 
• Neutron flux 
distribution 

• Response of reactor 
containment structures 
to dynamic loads 
 
• Unsteady temperature 
distribution in reactor 
components 
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2.  HISTORY OF INFINITE ELEMENTS  
 

 

2.1.  Introduction to Infinite Elements 

 

In several fields of engineering and science, a large number of problems have 

domains that are assumed to extend to infinity. The analysis extends to large distances in 

one or more directions to represent the far field domain.  

 

Such an unbounded medium appears in a wide variety of practical engineering 

problems, such as soil-structure interaction, consolidation and settlement of soils, ground 

freezing problems, seepage and ground water flow, contaminant or pollutant diffusion, 

sediment transport and fluid flow, wave diffraction and refraction, wave propagation, 

hydrodynamic pressure on dams and off-shore structures, underground structures and 

thermal transient problems. 

 

Some examples are water waves behind a breakwater, an airplane wing moving 

through air, diffraction of water waves around an island, a building or dam supported by 

the ground, aerofoil in flowing water and some of which can be seen in Figure 2.1 through 

2.5. 

Waves

Breakwater

 
Figure 2.1. Water waves behind a breakwater 
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Airflow

Wing

 
Figure 2.2. Depiction of airflow over a wing 

 

Island

 
Figure 2.3. Diffraction of water waves around an island 

 

One solution to these problems is to truncate the domain of analysis at large but finite 

distances from the place of load application. In traditional finite element analysis, these 

problems are analyzed by extending the conventional finite element mesh outward to a 

point where the influence of the place of load application is small enough to be neglected, 

and applying either fixed or movable displacement or constant stress boundary conditions 
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there. This approach generally requires experimentation with several grid sizes and 

assumed boundary conditions. The disadvantage in such schemes is that a very large 

number of node points may be involved simply in modeling the remote region where the 

perturbation in the stress or displacement field is virtually zero and the method is not 

suitable for many dynamic analyses. 

 

 
Figure 2.4. Aerofoil in flowing water 

 

To analyze such problems efficiently by the finite element method, infinite elements 

are introduced to be used combined with the finite elements in order to discretize the 

domain of analysis. One of the purposes of an infinite element is to model an unbounded 

domain economically. Reciprocal form of shape functions are introduced over infinite 

elements which then decays to zero at infinity. Several types of element shape functions 

which extend to infinity are utilized to generate infinite elements. 
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Figure 2.5. A dam supported by the ground 

 

2.2.  Origin of Infinite Elements 

 

It is easy to classify infinite elements as static type or dynamic type, as the methods 

needed for the two types are quite different. Here, the static type and dynamic type will be 

discussed, although some static types can be used for some dynamic problems. In addition, 

the infinite elements will be classified as mapped or decay function type. 

 
The first infinite element produced was that of Ungless and Anderson, in 1973. They 

called their element an infinite finite element. The idea behind the infinite element of 

Ungless and Anderson was the use of a shape function which varied as ( )r+11  in the 

radial or r direction. As they remark, this is sufficiently simple for most of the 

manipulations to be handled analytically. Their infinite finite element is three dimensional 

and has a triangular base, which is defined to be in the local xy plane, and is extended from 

this base to infinity. It is therefore approximately a triangular prism in shape, with the z 

direction (which is defined as being perpendicular to the base) being infinite. The element 

is sketched in Figure 2.6. As Ungless and Anderson (1973) point out, the simple shape 

function chosen can lead to incompatibilities between adjacent elements, if the bases of 
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adjacent elements are not parallel. The edges of the elements, in the infinite direction are 

defined as radiating from some pole. The element matrices are formed using analytical 

integration in the xy plane and numerical integration in the z direction. The integration 

scheme used is a trapezoidal rule scheme, in which the integral is first mapped onto the 

range [-∞,∞]. The element was tested on the familiar Boussinesq point load on a half space 

problem, with a hemispherical region around the load removed, to avoid problems with the 

singularity under the load. Good results were obtained for loads parallel to the free surface 

and normal to it. Some are shown in Figure 2.7. 

 

 
 

Figure 2.6. Geometry of Ungless and Anderson (1973) infinite element 
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Figure 2.7. Displacements due to a vertical point load on elastic half space obtained by 

Ungless and Anderson (1973) 

 

The second published work on infinite elements was a paper, by Zienkiewicz and 

Bettess, in 1975. The original formulation of infinite elements by Bettess is quite different. 

It is described in the two papers by Bettess in 1977 and 1980. The element domain is 

extended to infinity, using as a basis any original finite element. The shape function is then 

multiplied by a decay function which is appropriate for the particular problem type. The 

arrangement is as shown in Figure 2.8. 

 

In this type of infinite element the shape function is multiplied by a decay function, 

so that the desired behavior at infinity is obtained. The first decay functions used by 

Bettess were of an exponential type, and typical terms in the infinite element matrices thus 

had the form of a polynomial multiplied by an exp (-r) term. These types of integrals can 

be found analytically, and so infinite elements of a rectangular form, which extended to 

infinity in one or more directions were developed. They were first applied to some simple 

one dimensional examples and then they were applied to more complicated two 

dimensional and axi-symmetric problems. 
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Figure 2.8. Geometry of typical decay function infinite elements (Bettess, 1980) 

 

Bettess (1977) applied the technique to a simple two-dimensional viscous flow 

problem, that of a cylinder rotating in an infinite viscous liquid. The cylinder has a unit 

radius. The element mesh for flow around a cylinder can be seen in Figure 2.9. The results 

for element velocities in the x and y directions along various sections through the quadrant 

are shown in Figure 2.10 with comparisons with the exact solution. 
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Figure 2.9. Element mesh for flow around a cylinder (Bettess, 1977) 

 

 
Figure 2.10. Velocities around a cylinder: u and v are velocities in the x and y directions 

(Bettess, 1977) 
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Although the necessary integrations can be carried out analytically, it is also possible 

to use numerical integration methods, which lead to the possibility of parametric elements. 

 

2.3.  Infinite Element Classification 

 

Infinite element formulations are constructed following two main lines of 

development. Although detailed discussion will be made in chapter 3, these are briefly 

explained here: A) Decay Function Infinite Elements: These are produced by the help of 

decay functions in conjunction with the ordinary finite element shape functions. These use 

standard shape functions for geometry and “decay shape functions” for the field variables 

(e.g. displacement components), so that the element remains of finite size while the field 

variables decay. B) Mapped Infinite Elements: These consist of mapping of the element 

from finite to infinite domain. Many mappings are possible, and the first is that of Beer and 

Meek (1981). Opinions vary, but the Zienkiewicz mapping is seen by Bettees as the best 

available, because of its simplicity and theoretical advantages. These use standard shape 

functions for the field variables but “growth shape functions” for the geometry. The latter 

grow without bound as a natural coordinate approaches a certain value.  

 

Somewhere in between these approaches is the idea of using a series of the form 

r/1 , 2/1 r , 3/1 r , etc. This idea, taken to the first term by Ungless and Anderson, is implicit 

in the method of Wood (1976). All these methods have their attractive features and it is 

always possible to choose a problem for which a given method will give the best answer. 

 

2.4.  Studies and Development of Infinite Elements  

 

By using a specially devised mapping, Beer and Meek (1981) analyzed several 

sample problems for openings in infinite media with comparisons with either theoretical or 

boundary element solutions which include the infinite boundary in their solution technique. 

  

The geometry of the element is described by conformal mapping of the element 

including the infinite portion on to the usual, non-dimensional square or cube.  

 

 i i ijx N x=  (2.1) 
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where, ix  is the current point and iN  are the shape functions. Beer and Meek applied their 

new element to the determination of the stresses and displacements induced by an 

excavation in a pre-stressed medium. They considered two types of openings: circular and 

rectangular. The stresses and displacements necessary to give a traction-free excavation 

surface are then determined. They obtained excellent agreement between their results and 

the analytical solution of the problem. 

 

Beer and Meek (1981) also dealt with spherical opening in an elastic solid. They 

applied these elements to the elasto-plastic analysis of tabular ore body extraction at the 

Mount Isa mine in Australia. They have since developed alternative methods which 

involve linking finite elements to boundary integrals. 

 

Chow and Smith (1981) developed serendipity infinite elements to analyze static and 

periodic problems in geomechanics. Askar and Lynn (1984) developed infinite elements 

with proper decaying shape functions for ground freezing problems in different spatial 

domains:  
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The use of the infinite elements for ground freezing problems resulted in a 

considerable savings in the number of elements and nodes used in the mesh; consequently 

savings also resulted in the computer storage and cost. Damjanić and Owen (1984) used 

mapped infinite elements for modeling unbounded thermal transient problems. They 

solved three problems, namely 1) Linear infinite strip with prescribed boundary 

temperature, 2) Buried cable problem, 3) Spherical cavity problem. They saved substantial 

computational time with accurate results. 

 

Simoni and Schrefler (1987) applied mapped infinite elements in two consolidation 

problems and they achieved excellent agreement between infinite elements and analytical 

solutions. Zhao and Valliappan (1993) presented a time-dependent infinite element which 

can be used to simulate transient seepage problems in infinite media. In order to examine 
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the accuracy and efficiency of the infinite elements, they solved both a one-dimensional 

transient seepage problem in a semi-infinite medium and a two-dimensional transient 

seepage problem in a full plane using the finite and infinite element technique. 

 

Medina (1981) used an axisymmetric infinite element in order to analyze the 

Boussinesq and Cerruti problems which deal with vertical and horizontal point loading on 

an elastic half space. His shape functions in the infinite direction were similar to those of 

Ungless. He used Gauss-Laguerre numerical integration, in the problem co-ordinates, over 

an infinite domain, and paid particular attention to the number of integration points needed. 

Medina also obtained results for a vertically loaded rigid circular plate on an elastic half 

space, and they compared well with the exact solution. The problem geometry, mesh used 

and resulting displacements are shown in Figure 2.11. 

 

 
Figure 2.11. Vertically loaded rigid circular plate by Medina (1981) 
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Bettess and et al. (1982) developed some useful techniques for testing infinite 

elements. They devised simple one-dimensional test problems in order to test and evaluate 

infinite element formulations. The crux of the method is that a one dimensional problem is 

posed which is made artificially to contain decay of the solution. The first results, obtained 

using the Zienkiewicz form of mapped infinite elements, were published by Zienkiewicz 

and et al (1983). 

 

Also, Lynn and Hadid (1981) built up a series of infinite elements, which combined 

terms of the form nr1 in the shape functions, and applied them to several unbounded 

elasticity problems. They solved the case of a circular load on an elastic half space and a 

ring load. They compared their results with those of the exact solution and excellent 

performances of the element are obtained. Figure 2.12 shows the non-dimensional surface 

deflection of an elastic half-space under a ring load using infinite elements, compared with 

the exact solution. 

 

 
Figure 2.12. Surface deflection of elastic half-space due to a ring load 

 

A Static Infinite Element which classes the decay function and mapped infinite 

elements as descent and ascent shape functions respectively was described by Curnier 

(1983), and Curnier showed that they can be made equivalent under certain conditions. For 

the Flamant problem of a line load acting on an elastic half space and the Boussinesq 

problem, Curnier gave some results. Good agreement is obtained with analytical solutions 

of both line load and point load, even that for the plane problem, which has the logarithmic 

behavior. 
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Kumar gave static infinite element formulation in 1985 and he used infinite elements 

in the analysis of underground openings in 1986. 
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3.  CLASSES OF INFINITE ELEMENTS 
 

 

Infinite elements are actually the same as finite elements that have one or more 

dimensions of infinite extent in physical space. Informally one can say that some nodes of 

these elements “go to infinity”. Many physical problems deal with an unbounded medium. 

The main application of these elements is obviously the treatment of media of infinite 

extent, where “infinite” in practice means that the domain that influences the solution (the 

influence domain) is much larger than the domain of interest. These are collectively called 

unbounded domain problems. 

 

In all these problems a conventional finite element mesh (the computational domain) 

must be terminated somewhere short of infinity. For many static problems simple 

truncation at a rigid boundary may work satisfactorily, but it may be unclear where such 

truncation should take place. A computational compromise is often at work in these 

situations, as follows: If the truncation boundary is placed too near to the area of interest, 

the computational effort is saved but the solution accuracy can suffer; if the truncation 

boundary is placed far away from the area of interest, the solution accuracy is improved 

but the computation expense may become excessive. 

 

In dynamic problems a rigid boundary reflects a wave, regardless of the size of the 

mesh; therefore, the model actually misrepresents the reality. Various techniques have 

been used to treat unbounded problems, both static and dynamic, with various degrees of 

sophistication. An example of single load P on axially symmetric body of infinite extent 

can be seen in Figure 3.1 (a). The crudest model is the rigid boundary mesh truncation 

illustrated in Figure 3.1 (b). Infinite elements can be used in the model as seen in Figure 

3.1 (c) and they produce very accurate results in static problems with rather small 

computational expense. In other words, infinite elements permit satisfactory results to be 

obtained from fewer elements than would be otherwise required. 
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 (a) Real Domain   (b) Bounded Domain   (c) Unbounded Domain 

   

Figure 3.1. (a) Load P on axially symmetric body of infinite extent, (b) Large mesh of 

conventional finite elements, (c) Smaller mesh bounded by infinite elements 

 

In static stress analysis, infinite elements are analogous to elastic foundations in the 

sense that they provide approximately correct support conditions for the domain of interest 

that is modeled by conventional finite elements. Infinite elastic elements based on the 

standard total potential energy principle have been constructed with two alternate 

techniques as follows: 

 

3.1.  Mapped Infinite Elements 

 

Mapped infinite elements use completely different shape functions in the infinite 

direction. This type of infinite element almost always involves a mapping, if only to obtain 

a numerical integration formula. Sometimes two mappings are needed, one for the shape 

function and one for the integration formula. For conciseness these methods will all be 

called mapped infinite elements. Many of the infinite elements proposed have used the idea 

of mapping, or can be cast in that form. (Bettess, 1992) 

 

Mapping of the element from finite to infinite domain is performed. Standard shape 

functions are used for the field variables and growth shape functions are used for the 

geometry. The latter grow without bound as a natural coordinate approaches a certain 

value.  
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Figure 3.2. Standard shape functions of four-node line element for field variables 

 

In order to illustrate field variable interpolation of four-node line element, standard 

shape functions are sketched in Figure 3.2. Growth shape functions are pictured to 

demonstrate geometry interpolation of four-node line element in Figure 3.3. 
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Figure 3.3. Growth shape functions of four-node line element for the geometry 

 

3.2.  Decay Function Infinite Elements 

 

In the last decades, many special elements have been introduced to extend the scope 

of the finite element method to infinite elements. The main idea of the decay function 

infinite element approach is that the finite element shape function is multiplied by a decay 

function. The finite shape functions will not be appropriate to describe the behavior of the 

field variables, towards infinity, and so decay functions are introduced, which modify the 

finite element shape functions. Decay function ensures that the behavior of the element at 

infinity is a reasonable reflection of the problem. This usually means that the field variable 

must tend monotonically to its far field value. If the parent finite element shape function is 

written as ( )ηξ ,=iP  where ξ  and η are local coordinates and the decay function is 

( )ηξ ,=if , where the subscript denotes the node number then: 

 

 ),(),(),( ηξηξηξ iii fPN =  (3.1) 

(no summation on i) 
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The decay function ),( ηξif  must be unity at its own node, that is: 

 

 1),( =iiif ηξ  (3.2) 

 

In addition Ni must tend to the far field value at infinity. There is no requirement that the 

decay function takes any special value at other nodes. Whatever f is, the required 

derivatives of the element shape function can easily be established using the chain rule: 
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for decay only in the ξ  direction, and 

 

 
ξξξ ∂
∂

+
∂
∂

=
∂
∂ i

ii
ii f

Pf
PN

      and     
ηηη ∂
∂

+
∂
∂

=
∂
∂ i

ii
ii f

Pf
PN

 (3.4) 

 

for decay in both  ξ  and η  directions. Similar considerations apply in three dimensions. 

Second derivatives can also be found if required. The ξ  coordinate would normally be in 

the radial direction, away from the domain of interest, and is usually simply a constant 

multiplied by r, the radial coordinate. It is therefore simple to match ξ  to r1  or other 

known forms of decay. 

 

3.2.1.  Exponential Decay Functions 

 

An obvious choice for the decay function, and the first to be used, is the function 

exp(-x). This has the advantage that it decays to zero faster than any polynomial and so 

dominates the polynomial behavior as x is large and ensures convergence towards zero as x 

increases. It is also almost as easy to manipulate mathematically as a polynomial. The 

more precise expression for the decay function is: 

 

 ( ) ( )expi iN Lξ ξ ξ⎡ ⎤= −⎣ ⎦  ( )iξ ξ>  (3.5) 
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for decay only in the positive ξ  direction. The inclusion of iξ  ensures that equation (3.2) 

holds. For decay in both ξ  and η  directions the equation (3.5) becomes: 

 

 ( ) ( ), expi i iN Lξ η ξ η ξ η⎡ ⎤= + − −⎣ ⎦  (3.6) 

 

Here L is a length which determines the severity of the decay. It is also possible to set L to 

unity and to set the severity of the decay by the distance between the nodes. It is a trivial 

matter, if required, to cause the decay to be in the negative ξ  direction, in which case 

equation (3.5) becomes: 

 

 ( ) ( )expi iN Lξ ξ ξ⎡ ⎤= −⎣ ⎦  ( )iξ ξ<  (3.7) 

 

It is also possible to define the exponential decay in the global co-ordinates of the 

problem. In this case the dominant part of the decay function is ( )Lr−exp , where L is 

again decay length and r is the radius from some origin. 

 

For instance, a set of shape functions based on Lagrange polynomials multiplied by 

exponential decay terms may be written using the equation (3.8). The shape functions for 

3n =  and 1L =  are sketched in Figure 3.4. How the shape functions decay at infinity is 

seen easily. 

 

 ( ) ( )
1

1

i i

n
x x L x x L j

i i
j ij

j i

x x
N e L e

x x

−

− −

=
≠

⎛ ⎞−
= = ⎜ ⎟⎜ ⎟−⎝ ⎠

∏  (3.8) 

 

Please note ( )ix xe − is present only when ix x> . 
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Figure 3.4. Typical decay shape functions (Bettess, 1977) 

 

3.2.2.  Reciprocal Decay Functions 

 

The procedure is simple. A reciprocal decay function is taken of the form: 

 

 ( ) 0

0

n

i
iN ξ ξξ

ξ ξ
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
 (3.9) 

 

where 0ξ  is some origin point. This point must be outside the infinite element, i.e. it will 

be on the opposite side to that which extends to infinity. Usually, if the decay is in the 

positive ξ  direction then 10 −<ξ . This avoids a singularity within the infinite element and 

n is selected to be greater than the highest power of ξ  encountered in iP . This ensures that 

as ξ  tends to infinity the shape function, iN , tends to 0. There is no necessity for n to be 

an integer. For instance, if 3 points are considered, the first two points having finite co-

ordinates and the 3rd point being infinitely distant, shape function for the 2nd node may be 

sketched in Figure 3.5. 
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Figure 3.5. Reciprocal shape function for the 2nd node 

 

 As in the case of exponential decay, the decay function can be generalized to two 

directions, for example: 
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Decay in the negative ξ  direction can also be dealt with 

 

 ( ) 0

0

n

i
iN ξ ξξ

ξ ξ
⎛ ⎞−

= ⎜ ⎟−⎝ ⎠
 (3.11) 

 

where now 0ξ  must be > 1. It is also possible to have a decay in the global coordinate. 

This makes little difference to the theory. The decay function is written as 
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where the last term dictates the decay in global coordinates. 
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4.  UNI-DIMENSIONAL INFINITE ELEMENTS 
 

 

The theoretical derivations for uni-dimensional infinite elements will be discussed in 

this chapter. 

 

4.1.  Uni-dimensional Two-node Mapped Infinite Element 

 

As shown in Figure 4.1, a uni-dimensional two-node mapped infinite element will be 

studied. For geometry interpolation, the mapping function for a linear uni-dimensional 

element is 

 

 
ξ−

=
1

2
1N  (4.1) 

 

The satisfactory performance of this mapping function can be easily shown. Let the co-

ordinate of the left hand of the infinite element be 1x . Then the geometry interpolant can be 

written as seen in equation (4.2). 
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Figure 4.1. Uni-dimensional two-node mapped infinite element  
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The shape functions for field variables, ( ) ( )ξuxu ≡ , can be written by the use of Lagrange 

functions for the element as following and can be seen in Figure 4.2. 
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In general coordinates, using 1iξ = −  at node 1, and 1iξ = +  at node 2 the shape function 

iL  becomes; 

 ( )1 1
2i iL ξξ= +  (4.6) 
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Figure 4.2. Shape functions of two-node line element for field variables 

 

As an example of axially loaded two-node line element, let u be axial displacement 

and let node 2 be fixed. The generic displacement vector of the element: 
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 (4.7) 

 

The strain component of the element can be written as 

 

 { } { } 1 1
1 2

1 1
0 02 2x

d ddu d dL L
dx dx dx

ξ ξε
⎧ ⎫ ⎧ ⎫− +⎧ ⎫ ⎧ ⎫= = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎨ ⎬

⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭
 (4.8) 

 

From Figure 4.1, it is seen that, 1x a=  and derivative of 1L  with respect to x  

 

 

( )

( )2

1 1 1

2

11 1 1 1
22 2 2

1

dL dL dLd
dx adx d dx d a
d

ξξ
ξ ξ

ξ ξ

−⎛ ⎞ ⎛ ⎞= = = − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

−

 (4.9) 

 

Derivative of 2L  can be obtain in the same fashion but it is not needed here. The axial 

strain is 

 

 { } ( )2
1 1 1

0 2 2x

d ddL
dx a

ξ
ε

−⎧ ⎫⎧ ⎫= = −⎨ ⎬⎨ ⎬
⎩ ⎭⎩ ⎭

 (4.10) 

 

We see that for a two-node line element of physical length 2a between nodes 1 and 

2, axial strain decays parabolically from 1x d aε = −  at end 1−=ξ  to 0=xε  at end 

1+=ξ , rather than being constant value 1 2x d aε = −  throughout as would be the case for 

a standard two node element of length 2a. 

 

4.2.  Zienkiewicz Uni-dimensional Three-node Mapped Infinite Element 

 

 Zienkiewicz uni-dimensional three-node mapped infinite element will be defined. 

The element extends from point 1x  through 2x  to 3x , which is at infinity as seen in Figure 

4.3. This element is mapped onto the finite domain 11 <<− ξ  by the mapping expression 
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 2200 NxNxx +=  (4.11) 

 

where 

 

 
ξ
ξ
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−

=
10N                   

ξ−
=

1
1

2N  (4.12) 
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 (a) physical space (b) natural coordinate space 

Figure 4.3. Zienkiewicz uni-dimensional three-node mapped infinite element 

 

 At 1−=ξ  120 5.05.0 xxxx =+=  (4.13) 

 

 At 0=ξ  220 10 xxxx =+=  (4.14) 

 

 At 1=ξ  ∞=∞+∞= 20 xxx  (4.15) 

 

Although, the point at 1−=ξ  is the mid-point between 0x  and 2x , it is possible to chose 

1x  anywhere in the interval 0x  to 2x  by writing: 

 

 ( ) 021 1 xxx γγ −+=  (4.16) 
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The theory is worked out here for the case 21=γ . 

 

An important feature of this mapping is the condition that 

 

 120 =+ NN  (4.17) 

 

Otherwise the mapping will be affected by any change in the origin of the coordinate 

system. Thus a shift in the origin by xΔ  leads to the new coordinates 

 

 xxx Δ+= 00 '  (4.18) 

 

 xxx Δ+= 22 '  (4.19) 

 

If these values are inserted in the equation (4.11) then: 

 

 ( ) ( ) 2200 NxxNxxxx Δ++Δ+=Δ+  (4.20) 

 

 ( )20 NNxx +Δ=Δ  (4.21) 

 

This is only true if equation (4.17) is satisfied. The next step is to see what form 

polynomials in the finite, ξ , domain are transformed into in the unbounded x domain. 

Consider a polynomial P,  

 

 ...3
3

2
210 ++++= ξαξαξααP  (4.22) 

 

which is typical of those used in finite element methods. The ξ  to x mapping already 

obtained is 

 

 
ξ−

+=
1
2

0
axx  (4.23) 
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and its inverse is 

 

 
0

21
xx

a
−

−=ξ  (4.24) 

 

And where 0xxr −= , these can be written as 

 

 
ξ−

=
1
2ar       and      

r
a21−=ξ  (4.25) 

 

On substitution into the general polynomial, P, a new polynomial in inverse powers of r is 

obtained. 

 

 ...3

3
3

2

2
21

0 ++++=
rrr

P ξβξβξβ
β  (4.26) 

 

where the iβ  can be determined from the  α ’s and a. If the polynomial is required to 

decay to zero at infinity then 00 =β  (Zienkiewicz et al., 1983). 

 

A generic field variable is interpolated over the infinite element by the standard 

shape functions of the 3-node line element. 

 

 { } { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

3

2

1

321

d
d
d

LLLu  (4.27) 

 

where 

 

 ( )ξξ −−= 1
2
1

1L ,   2
2 1 ξ−=L ,   ( )ξξ += 1

2
1

3L . (4.28) 

 

and they are shown in Figure 4.4. 
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1L

1ξ −= 0 ξ = 1ξ =

 
Figure 4.4. Shape functions of three-node line element for field variables 

 

4.3.  Uni-dimensional Three-node Mapped Infinite Element 
 

In order to illustrate the concepts and procedures, a uni-dimensional three-node 

mapped infinite element will be studied as shown in Figure 4.5. The distance a between 

nodes 1 and 2 may be considered a characteristic length of the element. Figure 4.5 also 

shows a point labeled 0 at a distance a from 1. This point is not a node but a pole, whose 

significance is explained subsequently. 
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 (a) Physical space (b) Natural coordinate space 

Figure 4.5. Uni-dimensional three-node mapped infinite element 

 

4.3.1.  Geometry Interpolation 

 

The element geometry is interpolated according to two mapping functions, N1 and, 

N2 which are rational in the natural coordinate ξ : 

 

 { } { } 1
1 2

2

x
x N N

x
⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 (4.29) 

in which, 

 

 1
2

1
N ξ

ξ
= −

−
,           2

1
1

N ξ
ξ

+
=

−
.  (4.30) 

 

Note that 1xx = and 2xx =  for 1−=ξ  and 0=ξ , respectively. However, ∞→x , for 

1=ξ . Thus, the mapping in equation (4.29) automatically places the node 3 at infinity; 

consequently the node 3 need not be explicitly present in the geometry interpolant as seen 

in equation (4.31). 

 

 ∞=
−

++−
=

→ ξ
ξξ

ξ 1
)1(2

lim 21

13
xx

x  (4.31) 
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Consider the set of natural co-ordinates ηξ ,  and a corresponding set of global co-

ordinates x, y. By the usual rules of partial differentiation, the ξ  derivative can be written 

as 

 

 
ξξξ ∂
∂

∂
∂

+
∂
∂

∂
∂

=
∂
∂ y

y
Nx

x
NN iii  (4.32) 

 

Performing the same differentiation with respect to the other natural coordinate η  

and writing in the matrix form: 
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 (4.33) 

 

In the above, the left-hand side can be evaluated as the functions Ni are specified in 

natural co-ordinates. Further as x, y are explicitly given, the matrix [ ]J , can be found 

explicitly in terms of the natural co-ordinates. The matrix is known as the Jacobian matrix. 

 

To find now the global derivatives, [ ]J  is inverted: 
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The global derivative for a one-dimensional problem becomes: 

 

 
ξ∂

∂
=

∂
∂ − ii NJ

x
N 1  (4.35) 

 



 38

The Jacobian matrix for this uni-dimensional infinite element (same as its 

determinant because it is a scalar) is 

 

 1 2
1 2

dN dNdxJ x x
d d dξ ξ ξ

= = +  (4.36) 

 

It is seen from Figure 4.5 that  1x a= ,  2 2x a=  and the derivatives of the shape functions 

1N  and 2N  are as follows: 

 
( )

1
2

2
1

dN
dξ ξ

= −
−

 (4.37) 

 

 
( )

2
2

2
1

dN
dξ ξ

=
−

 (4.38) 

 

The Jacobian for this element may then be written as 

 

 1 2
1 2 2

2
(1 )

dN dNdx aJ x x
d d dξ ξ ξ ξ

= = + =
−

 (4.39) 

 

and goes to +∞  as  ξ → 1. 

 

4.3.2.  Interpolation of Field Variables 

 

A generic field variable is interpolated over the infinite element by the standard 

shape functions of the 3-node line element. 

 

 { } { }
1

1 2 3 2

3

d
u L L L d

d

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (4.40) 

 

where 
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 ( )1
1 1
2

L ξ ξ= − − ,   2
2 1L ξ= − ,   ( )3

1 1
2

L ξ ξ= + . (4.41) 

 

and they are shown Figure 4.4. The above expressions have been written in accordance 

with Lagrangian Shape Functions for the 3-node line element. In fact, 

 

 
( )
( )ji

j
nj

ji
j

xN
ξξ
ξξ
−

−
=Π

=

≠
=

)(
1

)(  (4.42) 

 

In static analysis d3 is typically set to a prescribed value, usually zero as a boundary 

condition. The x derivative of u is obtained in the usual fashion as xε : 

 

 { }
1

31 2
2

3

x

d
dLdL dLdu d

dx dx dx dx
d

ε
⎧ ⎫
⎪ ⎪⎧ ⎫= = ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎪ ⎪
⎩ ⎭

 (4.43) 

 

Since the shape functions are dependent on the natural coordinates ζ  and η , 

differentiation of them with respect to x and y will be obtained through the Jacobi 

transformation. If the shape functions are differentiated, following equations can be 

written: 

 

 ( )1 11 1 1 2dL dLJ J
dx d

ξ
ξ

− −= = − +  (4.44) 

 

 ( )1 12 2 2dL dLJ J
dx d

ξ
ξ

− −= = −  (4.45) 

 

 ( )1 13 3 1 2dL dLJ J
dx d

ξ
ξ

− −= = +  (4.46) 
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where ( )
a

J
2

1 2
1 ξ−
=− . When equations (4.44), (4.45) and (4.46) are substituted in equation 

(4.43), equation (4.47) is obtained. 

 

 { } [ ]{ } [ ]{ }{ } [ ]{ } ( ) ( ) ( ){ }
1

1
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3

1 2 2 1 2x

d
u L d G d J d

d
ε ξ ξ ξ−

⎧ ⎫
⎪ ⎪= Δ = Δ = = − + − + ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (4.47) 

 

here, the strain matrix [ ]G  of the element can be written as 

 

 [ ] ( ) ( ) ( ) ( ){ }ξξξξ
+−+−

−
= 21221

2
1 2

a
G  (4.48) 

 

The stress component of the element is formulated obtaining stress matrix [ ]S  

 

 { } [ ]{ } { } [ ]{ } [ ]{ }dSdGEED ==== εεσ  (4.49) 

 

where [ ]D  is the material matrix which is Elastic Modulus of the element here. 

 

Variation of { }u  by ξ  can be written by the help of equations (4.40) and (4.41) as: 

 

 { } ( ) ( ) ( ){ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+−−−=

3

2

1

2
12

2
1 111

d
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u ξξξξξ  (4.50) 

 

To show the representation of  u  in terms of the physical coordinates x, let us solve 

for ξ from the geometry interpolant. The equation (4.29) is rewritten as equation (4.51) as 

follows: 
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If equation (4.51) is solved for ξ  and axx += 01 , axx 202 += , and 0xxr −=  

relations are substituted, equation (4.52) is obtained. 

 

 
r
a

xxx
xx 21

2 12

2 −=
−+

−
=ξ  (4.52) 

 

If equation (4.52) is substituted in equation (4.50), equation (4.53) is obtained. 

 

 ( ) ( ) 2

2

3213213 2234
r
addd

r
addddu +−+−+−+=  (4.53) 

 

It is seen that as ∞→r , 3du →  which is set to zero ( 03 =d ) as a boundary 

condition. If  Cddd === 321 , the constant value Cu =  prevails, rigid body movement as 

expected. Linear variations of u with r are not represented. In general, the two parenthetic 

expressions in equation (4.53) do not vanish, so u becomes infinite at point 0 because r = 0 

at point 0. Point 0 is therefore a pole or singular point about which field quantity u decays. 

This suggests that in a problem such as that of Figure 3.1 (c), in which there is indeed a 

singularity at r = 0, one should use d = e. The presence of the decay functions is noted. 

 

 
r
1 ,    2

1
r

 (4.54) 

 

The coefficients of these terms are generally nonzero. It is also seen that as ar → , 

1du →  and ar 2→ , 2du →  as it is expected ( 03 =d  for static analysis). Strain 

component can be obtained by differentiating equation (4.53) with respect to x: 

 

 ( ) ( ) 33212321 2434
r
addd

r
addd

dx
dr

dr
du

dx
du

+−−+−==  (4.55) 

 

in which 1=
dx
dr . 

 

The stiffness matrix of the infinite element can be given by the usual expression 
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 [ ] [ ] [ ][ ]∫=
V

T dVGDGK  (4.56) 

  

where [ ] ED =  and ξAJdAdxdV ==  
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After the integration, the stiffness matrix of an infinite bar element as shown in Figure 4.5 

(a) is obtained as 

 

 [ ]
46 15 52 15 2 5
52 15 64 15 4 5

2
2 5 4 5 2 5

EAK
a

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (4.59) 

 

4.4.  Uni-dimensional Four-node Mapped Infinite Element 
 

The element geometry is interpolated according to three mapping functions, N1, N2 

and, N3  which are rational in the natural coordinate ξ : 
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 (4.60) 

 

where, 
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 ( )ξ
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91 2

1N       ( )ξ
ξξ

−
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=
14

1284 2

2N       ( )ξ
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−
++

=
14

341 2

3N  (4.61) 

 

The element and the mapping functions can be seen in Figure 4.6. 
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 (a) Physical space (b) Natural coordinate space 

Figure 4.6. Uni-dimensional four-node mapped infinite element 

 

Lagrange shape functions for field variable interpolation over the element are used 

for four-node line element. 
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where 
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 ( )32
2 331

16
9 ξξξ +−−=L  (4.64) 

 

 ( )32
3 331

16
9 ξξξ −−+=L  (4.65) 
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4 99
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16
9 ξξξL  (4.66) 

 

and can be seen in Figure 4.7. 
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Figure 4.7. Shape functions of four-node line element for field variables 
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4.5.  Uni-dimensional Two-node Decay Infinite Element 

 

Dynamic axi-symmetric infinite elements are developed for the soil structure 

interaction problems, whose domains extend to infinity. Element can include additional 

wave components in its shape functions by introducing nodeless variables. The additional 

shape functions corresponding to the nodeless variables are constructed by considering the 

conditions under which the shape functions have zero values at other nodes. 

0

z

R

r

r0

1

1

ξ

ξ

0ξ = ∞

∞

0ξ =

 

Figure 4.8. Global and local co-ordinate system of uni-dimensional two-node decay 
infinite element 

 

The element can be seen in Figure 4.8 and the geometrical mapping of the infinite 

elements from the local coordinates ( ),ξ η  to the global coordinates ( ),r z  can be defined 

as: 

 ( ) ( ) ( )
1

0

1

j j

j

r M L r M Rξ η ξ
=

= =∑    (4.67) 

 

where ( )M ξ  is the mapping function for the infinite direction seen in Figure 4.9 and 

defined as 
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 ( ) ( ) ( )1 0M ξ ξ ξ= + ≤ ≤ ∞    (4.68) 
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1+ξ
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Figure 4.9. Mapping function of a bar element 

 
The elastodynamic problems often produce displacement fields in which wave components 

propagate. In such problems, a typical displacement component may be expressed for the 

uni-dimensional two-node decay infinite element as  

 

 [ ]{ } ( )0
1 1 1

ikRu N d e dα ξ− += =  (4.69) 

 

where α  is a positive constant ( )0α → , d is the element nodal point co-ordinate, and Lk  

is the wave propagation number, defined as  

 

 L
L

k
V
ω

=  (4.70) 

such that ω  and LV  are the vibration frequency and propagation velocity, respectively, of 

the wave traveling through the element. (Yong and Yun, 1992) 
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4.6.  Solution of a Differential Equation Using Decay Shape Functions of Uni-

dimensional Three-node Decay Infinite Element 

 

In choosing shape function for an element which extends to infinity there are two 

requirements to satisfy. Firstly, the shape function should be realistic, secondly, it should 

lead to integrations over the element which are finite. 

 

A set of shape functions based on Lagrange polynomials multiplied by exponential 

decay terms is used in order to model an element extending from 1x =  to infinity. A set of 

shape functions iN  is defined for 1i =  to 1n − . 
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x x
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=
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= ⎜ ⎟⎜ ⎟−⎝ ⎠∏  (4.71) 

 

L is an arbitrary distance giving a measure of the severity of the exponential decay. 

Consider the differential equation 

 

 
2

2 3

2d u
dx x

=  (4.72) 

 

subjected to the boundary conditions that ( )1 1u = , and ( )0u = ∞ . The analytical solution 

is easily seen to be  1u x= . The variational form  of the equation can be presented using 

the functional 
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1 1

4du uF dx dx
dx x

∞ ∞
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⎝ ⎠⎢ ⎥⎣ ⎦∫ ∫  (4.73) 

 

The Euler-Lagrange equation obtained by varying u is 

 

 0F d F
u dx u

∂ ∂⎧ ⎫− =⎨ ⎬′∂ ∂⎩ ⎭
 (4.74) 
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which can be written  

 

 3

4 2 0d du
x dx dx

⎧ ⎫− =⎨ ⎬
⎩ ⎭

 (4.75) 

 

and hence  

 

 
2

2 3

2d u
dx x

=  (4.76) 

 

the same as equation (4.72). This equation is modeled using an element extending from 

1x =  to infinity and having one internal node at 2x =  and one variable associated with 

that node. Take  

 

 1 2 2u N N u= +  (4.77) 

 

where 2u  is the value of u at 2x = , and  
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1 2

1x x L x Lx xN e x e
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= = −⎜ ⎟−⎝ ⎠

 (4.79) 

 

It can be seen that the equation (4.77) satisfies the boundary conditions for any value of 

2u . 1dN dx  and 2dN dx  can easily be found, and the equation (4.73) for the functional 

can be evaluated. A variation of the functional with respect to 2u  yields an equation with 

one unknown 
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2

1 2 2 2
2 3

1 1 1

2 0dN dN dN Ndx u dx dx
dx dx dx x

∞ ∞ ∞

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠∫ ∫ ∫  (4.80) 

 

This can be solved for 2u . The analytical value of for 2u  is 1 2 . The numerical value 

obtained in this method depends on the choice of L. 2 0.49u =  for 2L =  and 2 0.59u =  for 

2L = . The results show that the method reasonably effective in solving problems of this 

nature. The form of the element solution depends on the value of the exponential decay 

length, L. (Bettess, 1977) 
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5.  TWO-DIMENSIONAL INFINITE ELEMENTS 
 

 

5.1.  Shape Functions of 2-D Infinite Elements 

 

Based on direction of infinity, type being mapped of decay, two-dimensional infinite 

elements are presented in a summary chart in Table 5.1. Then; geometrical configuration, 

coordinate mapping, and field variable mapping functions of two-dimensional infinite 

elements are one by one presented in a tabular and explicit manner in Tables 5.2 through 

5.14. 

In order to describe the infinite elements in Chapters 5 and 6, information to keys of 

the code for infinite element is given in Figure 5.1. 

 

 

 
Figure 5.1. Information to keys of the code for infinite elements 

 

 

 

 

 
(1) For growth functions seeTable 5.12. 
(2) For exponential and reciprocal decay functions see Article 3.1. 
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Table 5.1. Two-dimensional infinite elements summary chart 

Infinite 

Direction 
Type Code Description Reference 

1 Mapped M2D-1I/C2-F4 
Mapped, 2-dimensional, 1-infinite 

direction, 4-node, infinite element 
Bettess, P., 1977 

1 Mapped M2D-1I/C4-F6 
Mapped, 2-dimensional, 1-infinite 

direction, 6-node, infinite element 

Cook, R. D.,  

D. S. Malkus, and 

M. E. Plesha, 1989 

1 Mapped M2D-1I/C5-F8 
Mapped, 2-dimensional, 1-infinite 

direction, 8-node, infinite element 
Bettess, P., 1977 

1 Mapped M2D-1I/C6-F8 
Mapped, 2-dimensional, 1-infinite 

direction, 8-node, infinite element 
Beer, G. and  

J. L. Meek, 1981 

1 Mapped M2D-1I/C6-F9 
Mapped, 2-dimensional, 1-infinite 

direction, 9-node, infinite element 
Bettess, P., 1977 

1 Mapped M2D-1I/C6-F9 
Mapped, 2-dimensional, 1-infinite 

direction, 9-node, infinite element 

Zienkiewicz, O. C.,  

C. Emson and  

P. Bettess, 1983 

1 Decay D2D-1I/C5-F3 
Decay, 2-dimensional, 1-infinite 

direction, 7-node, infinite element 
Chuhan Z. and  

Z. Chongbin, 1987 

1 Decay D2D-1I/C6-F9 
Decay, 2-dimensional, 1-infinite 

direction, 5-node, infinite element 
Yang, S. C., and  

C. B. Yun, 1992 

1 Decay D2D-1I/C-F4 
Decay, 2-dimensional, 1-infinite 

direction, 6-node, infinite element 
Chow Y. K., and  

I. M. Smith, 1981 

2 Mapped M2D-2I/C1-F3 
Mapped, 2-dimensional, 2-infinite 

direction, 3-node, infinite element 
Bettess, P., 1977 

2 Mapped M2D-2I/C3-F5 
Mapped, 2-dimensional, 2-infinite 

direction, 5-node, infinite element 
Bettess, P., 1977 

2 Mapped M2D-2I/C4-F6 
Mapped, 2-dimensional, 2-infinite 

direction, 6-node, infinite element 
Bettess, P., 1977 

2 Decay D2D-2I/C4-F6 
Decay, 2-dimensional, 2-infinite 

direction, 6-node, infinite element 
Chow Y. K., and  

I. M. Smith, 1981 
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Table 5.2. Mapped, 2-dimensional, 1-infinite direction, 4-node, infinite element 

Mapped, 2-Dimensional, 1-infinite direction, 4-node, Infinite Element 

Geometrical Configuration M2D-1I/C2-F4 

 

∞

ξ 1= −

∞
ξ 1= +

ξ
= +1η

1η = −

η

ξ

= +1η

1η = −

ξ 1= +ξ 1= −

η

 

Coordinate Mapping 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM G L=  
 

( )1
2 1 1

1 2
M η

ξ
= −

−
 

 

( )3
2 1 1

1 2
M η

ξ
= +

−
 

1η = − 1η = +

( )1

1 1
2

L η= −

1

2
1

G
ξ

=
−

ξ 1= − ξ 1= +

( )2

1 1
2

L η= +

ξ 0= 0η =
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Table 5.2 (Contd) 

Mapped, 2-Dimensional, 1-infinite direction, 4-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-1I/C2-F4 

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kN L Lξ η=  
 

( ) ( )1
1 11 1
2 2

N ξ η= − −  

 

( ) ( )2
1 11 1
2 2

N ξ η= + −  

 

( ) ( )3
1 11 1
2 2

N ξ η= − +  

 

( ) ( )4
1 11 1
2 2

N ξ η= + +  

ξ 1= − ξ 1= +

( )2

1 1
2

L ξ= +

1η =− 1η = +

( )1

1 1
2

L η= −

( )2

1 1
2

L η= +

ξ 0= 0η =

( )1

1 1
2

L ξ= −
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Table 5.3. Mapped, 2-dimensional, 1-infinite direction, 6-node, infinite element 

Mapped, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element 

Geometrical Configuration M2D-1I/C4-F6

 

1η = −

= +1η

ξ 1= − ξ 0=
ξ 1= +

η

ξ

= +1η

1η = −
ξ 1= − ξ 0= ξ 1= +

η

ξ

∞

∞
 

Coordinate Mapping 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM G L=  
 

( )1
2 1 1

1 2
M ξ η

ξ
−

= −
−

 

 

( )2
2 1 1

1 2
M ξ η

ξ
−

= +
−

 

 

( )3
1 1 1
1 2

M ξ η
ξ

+
= −

−
 

 

( )4
1 1 1
1 2

M ξ η
ξ

+
= +

−
 

ξ 1= − ξ 0= ξ 1= +

1

2
1

G ξ
ξ

−
=

−

2

1
1

G ξ
ξ

+
=

−

( )1

1 1
2

L η= −

( )2

1 1
2

L η= +

1η = − 1η = +0η =
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Table 5.3 (Contd) 

Mapped, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-1I/C4-F6

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kN L Lξ η=  
 

( ) ( )1
1 11 1
2 2

N ξ ξ η= − − −  

 

( ) ( )2
1 11 1
2 2

N ξ ξ η= − − +

 

( ) ( )2
3

11 1
2

N ξ η= − −  

 

( ) ( )2
4

11 1
2

N ξ η= − +  

 

( ) ( )5
1 11 1
2 2

N ξ ξ η= + −  

 

( ) ( )6
1 11 1
2 2

N ξ ξ η= + +  

 

( )1

1 1
2

L ξ ξ= − −

ξ 1= − ξ 0= ξ 1=+

( )1

1 1
2

L η= −

( )2

1 1
2

L η= +

( )2
2 1L ξ= −

( )3

1 1
2

L ξ ξ= +

1η = − 1η = +0η =
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Table 5.4. Mapped, 2-dimensional, 1-infinite direction, 8-node, infinite element 

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element 

Geometrical Configuration M2D-1I/C5-F8

 
 

∞
ξ 1= +

ξ 0=
ξ 1= −

1η = −

= 0η

= +1η

∞

ξ 1= +ξ 0=ξ 1= −

1η = −

= 0η

= +1η

η

ξξ

η

∞

 
Coordinate Mapping (serendipity) 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM G L=  
 

( )
( )

2

1

1

1
M

ξ ξη η

ξ

− − + +
=

−
 

 

( )2
1 1 1
1 2

M ξ η
ξ

⎛ ⎞+
= −⎜ ⎟−⎝ ⎠

 

 

( )6
1 1 1
1 2

M ξ η
ξ

⎛ ⎞+
= +⎜ ⎟−⎝ ⎠

 

 
( )

( )

2

7

1

1
M

ξ ξη η

ξ

− − − +
=

−
 

 

( )2
8

2 1
1

M η
ξ

⎛ ⎞
= −⎜ ⎟−⎝ ⎠

 

1

1

1

1

1

1

1

2
1

G ξ
ξ

−
=

−

2

1
1

G ξ
ξ

+
=

−

1

2
1

G
ξ

=
−

= +1η= 0η1η = −ξ 1= − ξ 0= ξ 1= +

( )1

1 1
2

L η= −

( )2

2
1L η= −

( )1

1 1
2

L η η= − −
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Table 5.4 (Contd) 

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-1I/C5-F8

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kN L Lξ η=  
 

( ) ( )1
1 11 1
2 2

N ξ ξ η η⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )2
2

11 1
2

N ξ η= − −  

 

( ) ( )3
1 11 1
2 2

N ξ ξ η η⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )2
4

1 1 1
2

N ξ η= + −  

 

( ) ( )5
1 11 1
2 2

N ξ ξ η η= + +  

 

( ) ( )2
6

11 1
2

N ξ η= − +  

 

( ) ( )7
1 11 1
2 2

N ξ ξ η η= − − +  

 

( ) ( )2
8

1 1 1
2

N ξ η= − −  

 

ξ 1= − ξ 0= ξ 1= +

( )1

1 1
2

L ξ= −

( )2
2 1L ξ= −

( )1

1 1
2

L η η= − −

( )1

1 1
2

L η= −

( )2
2 1L η= −

1η = − = 0η = +1η

( )1

1 1
2

L ξ ξ= − −

 
 

 



 58

Table 5.5. Mapped, 2-dimensional, 1-infinite direction, 8-node, infinite element 

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element 

Geometrical Configuration M2D-1I/C6-F8

 

∞
ξ 1= +

ξ 0=
ξ 1= −

1η = −

= 0η

= +1η

∞

ξ 1= +ξ 0=ξ 1= −

1η = −

= 0η

= +1η

η

ξξ

η

∞

 

Coordinate Mapping (serendipity) 

 
{ } { }i ix M x= ⎡ ⎤⎣ ⎦  

 
( ) ( )i j kM G L=  

 
( )1 1 2j j jG ξ ξ ξ= + + +  

 
for 0ξ ≤  

 
and  

 
( )1 2

1
1

j
j jG

ξ ξ
ξ

ξ

+
= + +

−
 

 
for 0ξ ≥  

ξ 1= − ξ 0= ξ 1= +

1 1
G ξ

ξ
−

=
−

1

2
1

G
ξ

=
−

1G ξ= −

2 1G ξ= +

( )1

1 1
2

L η η= − −

( )1

1 1
2

L η= −

( )2
2 1L η= −

1η = − 0η = 1η = +
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Table 5.5 (Contd) 

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-1I/C6-F8

 
{ } { }i iu N d= ⎡ ⎤⎣ ⎦  

 
( ) ( )i j kN L Lξ η=  

 

( )1
1

1 1
2

r
N F

r
η η⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

( )1
2

1 1
2

r
N F

r
η⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

 

( )1
3

1 1
2

r
N F

r
η η⎛ ⎞ ⎛ ⎞= − −⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

( )21
4 1

r
N F

r
η⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

 

( )1
5

1 1
2

r
N F

r
η η⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

 

( )1
6

1 1
2

r
N F

r
η⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

 

( )1
7

1 1
2

r
N F

r
η η⎛ ⎞= +⎜ ⎟

⎝ ⎠
 

 

( )21
8 1

r
N F

r
η⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

ξ 1= − ξ 0= ξ 1= + 1η = − 0η = 1η = +

1rF
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

( )1

1 1
2

L η η= − −

( )1

1 1
2

L η= −

( )2
2 1L η= −
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Table 5.6. Mapped, 2-dimensional, 1-infinite direction, 9-node, infinite element 

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element 

Geometrical Configuration M2D-1I/C6-F9

 

 
Coordinate Mapping 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM G L=  
 

( )1
2 1 1

1 2
M ξ η η

ξ
⎛ ⎞= − − −⎜ ⎟− ⎝ ⎠

 

 

( )2
1 1 1
1 2

M ξ η η
ξ

+ ⎛ ⎞= − − −⎜ ⎟− ⎝ ⎠
 

 

( )2
4

2 1
1

M ξ η
ξ

= − −
−

 

 

( )2
5

1 1
1

M ξ η
ξ

+
= −

−
 

 

( )7
2 1 1

1 2
M ξ η η

ξ
= − +

−
 

 

( )8
1 1 1
1 2

M ξ η η
ξ

+
= +

−
 

1

2
1

G ξ
ξ

−
=

−

2

1
1

G ξ
ξ

+
=

−

( )1

1 1
2

L η η= − −

( )2
2 1L η= −
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Table 5.6 (Contd) 

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-1I/C6-F9

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kN L Lξ η=  
 

( ) ( )1
1 11 1
2 2

N ξ ξ η η⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

 

( ) ( )2
2

11 1
2

N ξ η η⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )3
1 11 1
2 2

N ξ ξ η η⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )2
4

1 1 1
2

N ξ ξ η= − − −  

 
( ) ( )2 2

5 1 1N ξ η= − −  
 

( ) ( )2
6

1 1 1
2

N ξ ξ η= + −  

 

( ) ( )7
1 11 1
2 2

N ξ ξ η η= − − +  

 

( ) ( )2
8

11 1
2

N ξ η η= − +  

 

( ) ( )9
1 11 1
2 2

N ξ ξ η η= + +  

( )1

1 1
2

L ξ ξ= − −

( )2
2 1L ξ= −

( )1

1 1
2

L η η= − −

( )2
2 1L η= −
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Table 5.7. Mapped, 2-dimensional, 1-infinite direction, 9-node, infinite element 

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element 

Geometrical Configuration M2D-1I/C6-F9 

 

 
Coordinate Mapping 

0 1
G ξ

ξ
= −

−

2 1
1

G ξ
ξ

= +
−

( )1

1 1
2

L η η= − −

( )2
2 1L η= −

{ }

1 2

2

3 4
1 0 1 2 2 0 2 2 3 0 3 2

4

5 6

6

2

2

2

x x
x

x x
x L G L G L G L G L G L G

x
x x

x

−⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎪ ⎪= ⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪⎩ ⎭

 

{ }

1 2

2

3 4
1 0 1 2 2 0 2 2 3 0 3 2

4

5 6

6

2

2

2

y y
y

y y
y L G L G L G L G L G L G

y
y y

y

−⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪−⎪ ⎪= ⎡ ⎤⎨ ⎬⎣ ⎦
⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪⎩ ⎭
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Table 5.7 (Contd) 

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element (contd)

Field Variable Mapping M2D-1I/C6-F9

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kN L Lξ η=  
 

( ) ( )1
1 11 1
2 2

N ξ ξ η η⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

 

( ) ( )2
2

11 1
2

N ξ η η⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )3
1 11 1
2 2

N ξ ξ η η⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )2
4

1 1 1
2

N ξ ξ η= − − −  

 
( ) ( )2 2

5 1 1N ξ η= − −  
 

( ) ( )2
6

1 1 1
2

N ξ ξ η= + −  

 

( ) ( )7
1 11 1
2 2

N ξ ξ η η= − − +  

 

( ) ( )2
8

11 1
2

N ξ η η= − +  

 

( ) ( )9
1 11 1
2 2

N ξ ξ η η= + +  

( )1

1 1
2

L ξ ξ= − −

( )2
2 1L ξ= −

( )1

1 1
2

L η η= − −

( )2
2 1L η= −
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Table 5.8. Decay, 2-dimensional, 1-infinite direction, 7-node, infinite element 

Decay, 2-Dimensional, 1-infinite direction, 7-node, Infinite Element 

Geometrical Configuration D2D-1I/C5-F3

 

Coordinate Mapping 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM L Lξ η=  
 

( ) ( )1
11 1
2

M ξ η= − −  

 
2 0M ≡  
 

( ) ( )3
11 1
2

M ξ η= − +  

 

( )4
1 1
2

M ξ η= −  

 

( )5
1 1
2

M ξ η= +  

( )1

1 1
2

L η= −

( )2

1 1
2

L η= +

( )1 1L ξ= −

2L ξ=
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Table 5.8 (Contd) 

Decay, 2-Dimensional, 1-infinite direction, 7-node, Infinite Element (contd) 

Field Variable Mapping D2D-1I/C5-F3

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )i k jN L Dη ξ=  
 

( )
0

1
1 1
2

wiR
vN e

α ξ
η η

⎛ ⎞− +⎜ ⎟
⎝ ⎠= − −  

 

( ) 02
2 1

wiR
vN e

α ξ
η

⎛ ⎞− +⎜ ⎟
⎝ ⎠= −  

 

( )
0

3
1 1
2

wiR
vN e

α ξ
η η

⎛ ⎞− +⎜ ⎟
⎝ ⎠= +  

( )
1

iD e α β ξ− +=

( )1

1 1
2

L η η= − −

( )2
2 1L η= −

( )3

1 1
2

L η η= −
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Table 5.9. Decay, 2-dimensional, 1-infinite direction, 5-node, infinite element 

Decay, 2-Dimensional, 1-infinite direction, 5-node, Infinite Element 

Geometrical Configuration D2D-1I/C6-F9

 
Coordinate Mapping 

 
For horizontal infinite elements 

  
3

1

( ) ( )j j

j

r M L rξ η

=

=∑  

 
3

1

( )j j

j

z L zη

=

=∑  

 
For radiational infinite elements  

 
3

1

( ) ( )j j

j

r M L rξ η

=

=∑  

 
3

1

( ) ( )j j

j

z M L zξ η

=

=∑  

 

 

( )1

1 1
2

L η η= − −

( )2
2 1L η= −

( )3

1 1
2

L η η= −

1M ξ= +
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Table 5.9 (Contd) 

Decay, 2-Dimensional, 1-infinite direction, 7-node, Infinite Element (contd) 

Field Variable Mapping D2D-1I/C6-F9

 
 

3

1

( ) ( ) ( )j

j

u r L F rη

=

=∑  

 
 
 
( )0( ) i k RF r e α ξ− +=  

 

( )1

1 1
2

L η η= − −

( )2
2 1L η= −

( )3

1 1
2

L η η= −

( )0( ) i k RF r e α ξ− +=

 
 

 
 



 68

Table 5.10. Decay, 2-dimensional, 1-infinite direction, 6-node, infinite element 

Decay, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element 

Geometrical Configuration D2D-1I/C4-F4

 

 

Coordinate Mapping 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM L L=  
 

( ) ( )1
11 1
2

M ξ η= − −  

 
2 0M =  

 

( ) ( )3
11 1
2

M ξ η= − +  

 

( )4
1 1
2

M ξ η= −  

 

1 1L ξ= −

4L ξ=

1

1 (1 )
2

L η= −

3

1 (1 )
2

L η= +
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Table 5.10 (Contd) 

Decay, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element (contd) 

Field Variable Mapping D2D-1I/C4-F4

 
{ } { }i iu N d= ⎡ ⎤⎣ ⎦  

 
( ) ( ) ( )i j k zN L L Dξ η ξ=  

 

( ) ( )
1

1
11 1
2

LN e
ξ

ξ η
−

= − −  

 
2 0N =  
 

( ) ( )
1

3
11 1
2

LN e
ξ

ξ η
−

= − +  

 

( ) ( )
1

4
1 1
2

LN e
ξ

ξ η
−

= −  

 

1 1L ξ= −

4L ξ=

1

1 (1 )
2

L η= −

3

1 (1 )
2

L η= +

1
Le
ξ−

1
Le
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Table 5.11. Mapped, 2-dimensional, 2-infinite direction, 3-node, infinite element 

Mapped, 2-Dimensional, 2-infinite direction, 3-node, Infinite Element 

Geometrical Configuration M2D-2I/C1-F3 

 
 

 

Coordinate Mapping 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM G G=  
 

1
2 2

1 1
M

ξ η
=

− −
 

 
 

1

2
1

G
ξ

=
−

1

2
1

G
η

=
−
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Table 5.11 (Contd) 

Mapped, 2-Dimensional, 2-infinite direction, 3-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-2I/C1-F3

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kN L Lξ η=  
 

( ) ( )1
1 11 1
2 2

N ξ η= − −  

 

( ) ( )2
1 11 1
2 2

N ξ η= + −  

 

( ) ( )3
1 11 1
2 2

N ξ η= − +  

1

1 (1 )
2

L ξ= −

2

1 (1 )
2

L ξ= + 2

1 (1 )
2

L ξ= +

1

1 (1 )
2

L ξ= −
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Table 5.12. Mapped, 2-dimensional, 2-infinite direction, 5-node, infinite element 

Mapped, 2-Dimensional, 2-infinite direction, 5-node, Infinite Element 

Geometrical Configuration M2D-2I/C3-F5

 
 

 

Coordinate Mapping (serendipity) 

 
 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( )i j kM G G=  
 

( )
( )( )1

4 1
1 1

M
ξ η

ξ η
− + +

=
− −

 

 

2
1 2
1 1

M ξ
ξ η

⎛ ⎞ ⎛ ⎞+
= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 

4
2 1

1 1
M η

ξ η
⎛ ⎞ ⎛ ⎞+

= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

1

2
1

G
ξ

=
−

1

2
1

G ξ
ξ

−
=

−

2

1
1

G ξ
ξ

+
=

−

1

2
1

G η
η

−
=

−

1

2
1

G
η

=
−

2

1
1

G η
η

+
=

−
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Table 5.12 (Contd) 

Mapped, 2-Dimensional, 2-infinite direction, 5-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-2I/C3-F5

 
{ } { }i iu N d= ⎡ ⎤⎣ ⎦  

 
( ) ( )i j kN L Lξ η=  

 

( ) ( )1
1 11 1
2 2

N ξ ξ η η⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )2
2

11 1
2

N ξ η= − −  

 

( ) ( )3
1 11 1
2 2

N ξ ξ η= + −  

 

( ) ( )2
4

1 1 1
2

N ξ η= − −  

 

( ) ( )5
1 11 1
2 2

N ξ ξ η= + −  

 
 

( )1

1 1
2

L ξ ξ= − −

( )2
2 1L ξ= −

( )3

1 1
2

L ξ ξ= +

( )1

1 1
2

L ξ= −

( )1

1 1
2

L η η= − −

( )2
2 1L η= −

( )3

1 1
2

L η η= +

( )1

1 1
2

L η= −
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Table 5.13. Mapped, 2-dimensional, 2-infinite direction, 6-node, infinite element 

Mapped, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element 

Geometrical Configuration M2D-2I/C4-F6

 

Coordinate Mapping (serendipity) 

 
{ } { }i ix M x= ⎡ ⎤⎣ ⎦  

 
( ) ( )i j kM G G=  

 

1
2 2

1 1
M ξ η

ξ η
⎛ ⎞ ⎛ ⎞− −

= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 

2
1 2
1 1

M ξ η
ξ η

⎛ ⎞ ⎛ ⎞+ −
= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 

4
2 1

1 1
M ξ η

ξ η
⎛ ⎞ ⎛ ⎞− +

= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 

5
1 1
1 1

M ξ η
ξ η

⎛ ⎞ ⎛ ⎞+ +
= ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 

1

2
1

G ξ
ξ

−
=

−

2

1
1

G ξ
ξ

+
=

−

1

2
1

G η
η

−
=

−

2

1
1

G η
η

+
=

−
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Table 5.13 (Contd) 

Mapped, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element 
(contd) 

Field Variable Mapping M2D-2I/C4-F6

 
{ } { }i iu N d= ⎡ ⎤⎣ ⎦  

 
( ) ( )i j kN L Lξ η=  

 

( ) ( )1
1 11 1
2 2

N ξ ξ η η⎛ ⎞= − − − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )2
2

11 1
2

N ξ η η⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

 

 

( ) ( )3
1 11 1
2 2

N ξ ξ η= + −  

 

( ) ( )2
4

1 1 1
2

N ξ ξ η= − − −  

 
( ) ( )2 2

5 1 1N ξ η= − −  
 

( ) ( )6
1 11 1
2 2

N ξ η η= − +  

 
 

( )1

1 1
2

L ξ ξ= − −

( )2
2 1L ξ= −

( )3

1 1
2

L ξ ξ= +

( )1

1 1
2

L ξ= −

( )1

1 1
2

L η η= − −

( )2
2 1L η= −

( )3

1 1
2

L η η= +

( )1

1 1
2

L η= −
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Table 5.14. Decay, 2-dimensional, 2-infinite direction, 6-node, infinite element 

Decay, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element 

Geometrical Configuration D2D-2I/C4-F6

 

 

Coordinate Mapping  

 
{ } { }i ix M x= ⎡ ⎤⎣ ⎦  

 
( ) ( )i j kM L Lξ η=  

 
( )( )1 1 1M ξ η= − −  

 
( )2 1M ξ η= −  
 
( )4 1M ξ η= −  
 

5M ξ η=  
 

4L ξ=
2L η=

1 1L ξ= −
1 1L η= −
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Table 5.14 (Contd) 

Decay, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element (contd) 

Field Variable Mapping D2D-2I/C4-F6

 
{ } { }i iu N d= ⎡ ⎤⎣ ⎦  

 
( ) ( ) ( )i j k zN L L Dξ η ξ=  

 

( ) ( ) 1 2

1 1

1 1 1 L LN e e
ξ η

ξ η
− −

= − −  
 

( ) 1 2

1 1

2 1 L LN e e
ξ η

ξ η
− −

= −  
 

( ) 1 2

1 1

4 1 L LN e e
ξ η

ξ η
− −

= −  
 

1 2

1 1

5
L LN e e

ξ η

ξ η
− −

=  
 
 

1 1L ξ= −
1 1L η= −

2L η=

1
Le
ξ−

1
Le

1
Le

4L ξ=

1
Le
η−
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5.2.  Derivation of Properties of Infinite Elements 

 

The equilibrium equation of a finite element is expressed as 

 

[ ]{ } [ ]{ } [ ]{ } { } { } { } { } { } { } { }
0 0 0X S T

M d C d K d P f f f f f f
ε σ

⎡ ⎤+ + = − + + + + +⎣ ⎦∑&& &  (5.1) 

 

where; { }d  = nodal displacements, [ ]M  = consistent mass matrix, [ ]C  = consistent 

damping matrix, [ ]K  = stiffness matrix, { }P  = nodal loads, { }X
f  = body forces at nodes, 

{ }S
f  = edge loads at nodes, { }

0
f

ε
 = nodal loads due to initial strains, { }

0
f

σ
 = nodal loads 

due to initial stresses, { }T
f  = temperature change loads, { }0

f  = known displacement 

loads. 

 

 [ ] [ ] [ ]T

V

M N N dVρ= ∫  (5.2) 

 

 [ ] [ ] [ ]0
T

V

C c N N dV= ∫  (5.3) 

 

 [ ] [ ] [ ][ ]T

V

K G D G dV= ∫  (5.4) 

 

 { } [ ]
x

T
yX

V z

X
f N X dV

X

⎧ ⎫
⎪ ⎪= − ⎨ ⎬
⎪ ⎪
⎩ ⎭

∫  (5.5) 

 

 { } [ ]
x

T
yS

S z S

p
f N p ds

p

⎧ ⎫
⎪ ⎪= − ⎨ ⎬
⎪ ⎪
⎩ ⎭

∫  (5.6) 
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 { } [ ] [ ] { }
0 0

T

v

f G dV D
ε

ε
⎛ ⎞
⎜ ⎟= −
⎜ ⎟⎜ ⎟
⎝ ⎠
∫  (5.7) 

 

 { } [ ] { }
0 0

T

V

f G dV
σ

σ
⎛ ⎞
⎜ ⎟=
⎜ ⎟⎜ ⎟
⎝ ⎠
∫  (5.8) 

 

 { } [ ] { }T
TT T

v

f T G dV Dα
⎛ ⎞
⎜ ⎟= − Δ
⎜ ⎟⎜ ⎟
⎝ ⎠
∫  (5.9) 

 

 { } [ ]{ }0 known
f K d=  (5.10) 

 

and generic displacements, strains and [ ] [ ]NΔ can be expressed as: 

 

 { } [ ]{ } { } [ ]{ } [ ][ ] [ ]u N d u N Gε= = Δ Δ =   (5.11) 

 

in which, [ ]Δ is the operator matrix to differentiate the shape function matrix [ ]N  and, 

 

 { } [ ]{ } { } [ ][ ]

[ ]

{ }dGDdG

S

321
=σ=ε   (5.12) 

 

in which [ ]G , [ ]D  and [ ]S are the strain matrix, elasticity matrix and stress matrix, 

respectively. Interpolation for geometry and field variables for infinite elements may be 

written in the compact matrix form as follows: 

 

 { }

1

1 2 3 4 2

1 2 3 4 3

4

M
x x x x Mx

x
y y y y My

M

⎧ ⎫
⎪ ⎪⎡ ⎤⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎪ ⎪
⎪ ⎪⎩ ⎭

    { }

1

1 2 3 4 2

5 6 7 8 3

4

N
d d d d Nu

u
d d d d Nv

N

⎧ ⎫
⎪ ⎪⎡ ⎤⎧ ⎫ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎪ ⎪
⎪ ⎪⎩ ⎭

 (5.13) 
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In order the obtain the derivatives of shape functions with respect to global 

coordinates, Jacobi transformation is needed 

 

 [ ] 11, 1,

1, 1,

x

y

N N
J

N N
ξ

η

−⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
 (5.14) 

where, 

 

 [ ] 1 , ,

, ,

1 y y
J

x xJ
η ξ

η ξ

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

         , , , ,Det J x y y xξ η ξ η= −  (5.15) 

 

For the numerical integration, dV  is converted and Gaussian Quadrature integration 

scheme or Gaussian-Laguerre Quadrature integration scheme is used.  

 

 dV t dA t J d dξ η= =  (5.16) 

 

 [ ] [ ] [ ] ( ) ( )
1 1 1 1

1 11 1 1 1

, ,
n m

T
i j i i

i j

M t N N J d d f d d A A fρ ξ η ξ η ξ η ξ η

+ + + +

= =− − − −

= = =∑∑∫∫ ∫∫  (5.17) 

 

 [ ] [ ] [ ] ( ) ( )
1 1 1 1

0

1 11 1 1 1

, ,
n m

T
i j i i

i j

C t N N J d d f d d A A fρ ξ η ξ η ξ η ξ η

+ + + +

= =− − − −

= = =∑∑∫∫ ∫∫  (5.18) 

 

 [ ] [ ] [ ][ ] ( ) ( )
1 1 1 1

1 11 1 1 1

, ,
n m

T
i j i i

i j

K t G D G J d d f d d A A fξ η ξ η ξ η ξ η

+ + + +

= =− − − −

= = =∑∑∫∫ ∫∫  (5.19) 

 

 ( ) ( )
1 10 0

, ,
n m

x
i j i i

i j

x e f d d A A fα ξ η ξ η ξ η

∞ ∞

−

= =

=∑∑∫∫  (5.20) 
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6.  THREE-DIMENSIONAL INFINITE ELEMENTS 
 

 

A brief summary of a three-dimensional, 6-node triangular prism infinite element as 

introduced by Ungless and Anderson (1973) is presented herein. 

 

6.1. Six-node Triangular Prism Infinite Element 

 
Instead of dealing with an imposed rigid or free boundary, a flexible boundary 

formed by the infinite elements has been introduced. The element model as introduced by 

Ungless and Anderson is shown in Figure 6.1. The geometry of the element and the two 

right hand cartesian coordinate systems; global (X, Y, Z) and local (x, y, z) can be seen. 

 

 
 

Figure 6.1. A three dimensional infinite element by Ungless and Anderson 
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Direction cosines of z-axis are found by the cross product of side 1-3 ( 1 3v − ) and side 

1-2 ( 1 2v − ): 

 

 ( ) ( )1 3 1 2x zv v v v− −= × =
r r r r  (6.1) 

 

 ( ) ( ) ( )2 2 2
1 3 3 1 3 1 3 1L x x y y z z− = − + − + −  (6.2) 

 

                                ( )3 1 1 3xl x x L −= − ,  ( )3 1 1 3xm y y L −= − ,  ( )3 1 1 3xn z z L −= −  (6.3) 

 

 ( ) ( ) ( )2 2 2
1 2 2 1 2 1 2 1L x x y y z z− = − + − + −  (6.4) 

 

                         ( )1 2 2 1 1 2l x x L− −= − , ( )1 2 2 1 1 2m y y L− −= − , ( )1 2 2 1 1 2n z z L− −= −  (6.5) 

 

                                      ( ) ( ) 1 3 1 3 1 3
1 3 1 2

1 2 1 2 1 2
z z z

l m n
v v l i m j n k

l m n
− − −

− −
− − −

⎛ ⎞
× = = + +⎜ ⎟

⎝ ⎠

rr rr r  (6.6) 

 

Direction cosines of y axis are obtained by: 

 

 ( ) ( ) z z z
z x y y y

x x x

l m n
v v l i m j n k

l m n
⎛ ⎞

× = = + +⎜ ⎟
⎝ ⎠

rr rr r  (6.7) 

 

Decaying shape functions of the infinite element by Ungless and Anderson is seen in 

Figure 6.2 and also the decay function of this element is in equation (6.8). 
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1( )
1

P z
z+

 
Figure 6.2. Decaying shape functions 

 

 ( )iN L P z=  (6.8) 

 

where  

 

 1( )
1

P z
z

=
+

 (6.9) 

 

and 

 

 1 2 3, ,L L Lξ η ζ= = =  (6.10) 

 

The displacement vector can be expressed as following: 
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 { } [ ] { }

1

2

3

4

5

6

7

8

9

0 0 0 0 0 0
1 0 0 0 0 0 0

1
0 0 0 0 0 0

d
d
d

u d
U v N d d

z
w d

d
d
d

ξ η ζ
ξ η ζ

ξ η ζ

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪

⎧ ⎫ ⎡ ⎤ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= = =⎨ ⎬ ⎨ ⎬⎢ ⎥+⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

�  (6.11) 

 

In order to obtain strains, strain matrix [ ]G  should be obtained: 

 

 { } [ ]{ } [ ][ ]{ } [ ]{ }U N d G dε = Δ = Δ =  (6.12) 

 

 

0 0

0 0

0 0

0

0

0

x

z

x

xz

yz

xy

x

y

u
z v

wy x

z x

z y

ε
ε
ε
γ
γ
γ

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥

∂⎢ ⎥
⎧ ⎫ ⎢ ⎥∂
⎪ ⎪ ⎢ ⎥

∂⎪ ⎪ ⎢ ⎥ ⎧ ⎫⎪ ⎪ ⎢ ⎥∂⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬∂ ∂⎢ ⎥⎪ ⎪ ⎪ ⎪
⎩ ⎭⎢ ⎥∂ ∂⎪ ⎪

⎢ ⎥⎪ ⎪ ∂ ∂⎪ ⎪ ⎢ ⎥⎩ ⎭
⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

 (6.13) 

 

Derivatives of ξ , η , and ζ with respect to x, y, and z are as follows: 

 

 31 2, ,
2 2 2

bb b
x A x A x A
ξ η ζ∂ ∂ ∂
= = =

∂ ∂ ∂
 (6.13) 

 

 31 2, ,
2 2 2

aa a
y A y A y A
ξ η ζ∂ ∂ ∂
= = =

∂ ∂ ∂
 (6.14) 
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where A is the area of triangle,  1 1a x= , 2 2a x= , 3 3a x=  and 1 1b y= , 2 2b y= , 3 3b y=  . 

 

When [ ]Δ and [ ]N matrices are multiplied, [ ]G matrix is obtained as follows with the 

multiplier of 1 1
1 2

h
z A

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
. 

 

[ ]

1 2 3

1 2 3

1 1 2 2 3 3

1 2 3

1 2 3

0 0 0 0 0 0
0 0 0 0 0 0

2 2 20 0 0 0 0 0
1 1 1

0 0 0
2 2 20 0 0

1 1 1
2 2 20 0 0

1 1 1

b b b
a a a

A A A
z z z

G ha b a b a b
A A Ab b b
z z z

A A Aa a a
z z z

ξ η ζ

ξ η ζ

ξ η ζ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −
⎢ ⎥+ + +⎢ ⎥

= ⎢ ⎥
⎢ ⎥− − −⎢ ⎥

+ + +⎢ ⎥
⎢ ⎥− − −
⎢ ⎥

+ + +⎣ ⎦

 (6.15) 

 

Material matrix is: 

 

[ ] ( )
( )( )

( )

( )

( )

1 0 0 0
1 1

1 0 0 0
1 1

1 0 0 0
1 11

1 21 1 2 0 0 0 0 0
2 1

1 20 0 0 0 0
2 1

1 20 0 0 0 0
2 1

E
D

μ μ
μ μ

μ μ
μ μ

μ μ
μ μμ

μμ μ
μ

μ
μ

μ
μ

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎢ ⎥
⎢ ⎥
⎢ ⎥− −− ⎢ ⎥= −⎢ ⎥+ −
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (6.16) 

 

 

Stiffness matrix is obtained as  
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 [ ] [ ] [ ][ ]
T

V

k G D G dV= ∫  (6.17) 

 

Direction cosines matrix of the xyz-axes can be written as 

 

 [ ]
x x x

y y y

z z z

l m n
t l m n

l m n

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (6.18) 

 

Stiffness matrix in global directions is obtained through a congruent transformation; 

 

 [ ] [ ] [ ][ ]T

XYZ
k T k T=  (6.19) 

 

As a numerical example, semi-infinite solid loaded with a point load perpendicular to the 

free surface is selected. The quarter surface of the hemispherical bowl on which the point 

load is acting forms the base plane for the infinite elements. This surface is subdivided into 

a mesh as seen in Figure 6.3. 
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Figure 6.3. Finite element mesh of hemispherical bowl with one quarter symmetry 

 

Figure 6.4 compares the results obtained from the infinite finite element analysis 

with the exact elasticity solution. The infinite element results are found to vary by 4% on 

the average from the exact solution. Directly beneath the load, agreement within 2% is 

achieved.  
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Figure 6.4. Deflections of hemispherical boundary loaded perpendicular to surface 

 

6.2. Three-dimensional Infinite Element Geometrical Configurations 

 

Based on direction of infinity, type of infinite element being mapped or decay, three-

dimensional infinite elements are summarized in Table 6.1. Geometrical configuration, 

coordinate mapping, and field variable mapping functions of three-dimensional infinite 

elements are presented in a tabular manner in Tables 6.2 through 6.6. 
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Table 6.1. Three-dimensional infinite element summary chart 

Infinite 

Direction 
Type Code Description Reference 

1 Mapped M3D-1I/C4-F8 
Mapped, 3-Dimensional, 1-infinite 

direction, 8-node, infinite element 
Bettess, P., 1977 

1 Mapped M3D-1I/C10-F6 
Mapped, 3-Dimensional, 1-infinite 

direction, 10-node, infinite element 
Beer, G. and 

J. L. Meek, 1981 

1 Mapped M3D-1I/C8-F8 
Mapped, 3-Dimensional, 1-infinite 

direction, 8-node, infinite element 

Zienkiewicz, O. C., 

C. Emson and 

P. Bettess, 1983 

2 Mapped M3D-2I/C2-F8 
Mapped, 3-Dimensional, 2-infinite 

direction, 6-node, infinite element 
Bettess, P., 1977 

3 Mapped M3D-3I/C1-F8 
Mapped, 3-Dimensional, 3-infinite 

direction, 4-node, infinite element 
Bettess, P., 1977 
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Table 6.2. Mapped, 3-Dimensional, 1-infinite direction, 8-node, infinite element 

Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element 

Geometrical Configuration M3D-1I/C4-F8

 

 

Coordinate Mapping  

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( ) ( )i j k zM G L L=  
 

( ) ( )1
2 1 11 1

1 2 2
M η ς

ξ
⎛ ⎞

= + −⎜ ⎟−⎝ ⎠
 

 

( ) ( )3
2 1 11 1

1 2 2
M η ς

ξ
⎛ ⎞

= − −⎜ ⎟−⎝ ⎠
 

 

( ) ( )5
2 1 11 1

1 2 2
M η ς

ξ
⎛ ⎞

= + +⎜ ⎟−⎝ ⎠
 

 

( ) ( )7
2 1 11 1

1 2 2
M η ς

ξ
⎛ ⎞

= − +⎜ ⎟−⎝ ⎠
 

 

1

2
1

G
ξ

=
−

1

1 (1 )
2

L η= −

2

1 (1 )
2

L η= +

1

1 (1 )
2

L ζ= −

2

1 (1 )
2

L ζ= +
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Table 6.2 (Contd) 

Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element 
(contd) 

Field Variable Mapping M3D-1I/C4-F8

 
{ } { }i iu N d= ⎡ ⎤⎣ ⎦  

 
( ) ( ) ( )i j k zN L L Lξ η ς=  

 

( ) ( ) ( )1
1 1 11 1 1
2 2 2

N ξ η ς= − + −  

 

( ) ( ) ( )2
1 1 11 1 1
2 2 2

N ξ η ς= + + −  

 

( ) ( ) ( )3
1 1 11 1 1
2 2 2

N ξ η ς= − − −  

 

( ) ( ) ( )4
1 1 11 1 1
2 2 2

N ξ η ς= + − −  

 

( ) ( ) ( )5
1 1 11 1 1
2 2 2

N ξ η ς= − + +  

 

( ) ( ) ( )6
1 1 11 1 1
2 2 2

N ξ η ς= + + +  

 

( ) ( ) ( )7
1 1 11 1 1
2 2 2

N ξ η ς= − − +  

 

( ) ( ) ( )8
1 1 11 1 1
2 2 2

N ξ η ς= + − +  

 

1

1 (1 )
2

L ζ= −
1

1 (1 )
2

L η= −1

1 (1 )
2

L ξ= −

2

1 (1 )
2

L ξ= + 2

1 (1 )
2

L ζ= +
2

1 (1 )
2

L η= +
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Table 6.3. Mapped, 3-Dimensional, 1-infinite direction, 10-node, infinite element 

Mapped, 3-Dimensional, 1-infinite direction, 10-node, Infinite Element 

Geometrical Configuration M3D-1I/C10-F6 
 

 
 

Coordinate Mapping (serendipity) 

 
 
 
 
 
 
 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( ) ( )i j k zM L G L=  
 
 
 
 
 
 

 
 
 

1

1 (1 )
2

L ξ= −

3

1 (1 )
2

L ξ ξ= +

2
2 (1 )L ξ= −

1

1 (1 )
2

L ξ ξ= − −

2 1G η= +

1

2
1

G
η

=
−

1 1
G η

η
−

=
−

1G η= −

2

1
1

G η
η

+
=

−

1

1 (1 )
2

L ζ= −

2

1 (1 )
2

L ζ= +
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Table 6.3 (Contd) 

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element 
(contd) 

Field Variable Mapping M3D-1I/C10-F6 

 
 
 

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( )1
i j k

r
N L F L

rξ ζ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
 

 

1

1 (1 )
2

L ξ ξ= − −

2
2 (1 )L ξ= −

1

1 (1 )
2

L ξ= −

1
1

rF
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

1

1 (1 )
2

L ζ= −

2

1 (1 )
2

L ζ= +
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Table 6.4. Mapped, 3-Dimensional, 1-infinite direction, 8-node, infinite element 

Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element 

Geometrical Configuration M3D-1I/C4-F8 
 

 

Coordinate Mapping 

 
 

1

2
1

G
ξ

=
−

1

1 (1 )
2

L η= −

2

1 (1 )
2

L η= +

1

1 (1 )
2

L ζ= −

2

1 (1 )
2

L ζ= +

 
 

{ }

1 2

2

3 4

4
1 1 0 1 1 2 2 1 0 2 1 2 2 2 0 2 2 2 1 2 0 1 2 2

7 8

8

5 6

6

2

2

2

2

x x
x

x x
x

x L L G L L G L L G L L G L L G L L G L L G L L G
x x

x
x x

x

η ξ η ξ η ξ η ξ η ξ η ξ η ξ η ξ

−⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪⎡ ⎤= ⎨ ⎬⎣ ⎦ −⎪ ⎪
⎪ ⎪
⎪ ⎪

−⎪ ⎪
⎪ ⎪
⎩ ⎭

 
 

}{y and }{z can be obtained similarly 
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Table 6.4 (Contd) 

Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element (contd)

Field Variable Mapping M3D-1I/C4-F8 

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( ) ( )i j k zN L L Lξ η ς=  
 

( ) ( ) ( )1
1 1 11 1 1
2 2 2

N ξ η ς= − + −  

 
( ) ( ) ( )2

1 1 11 1 1
2 2 2

N ξ η ς= + + −  

 

( ) ( ) ( )3
1 1 11 1 1
2 2 2

N ξ η ς= − − −  

 

( ) ( ) ( )4
1 1 11 1 1
2 2 2

N ξ η ς= + − −  

 

( ) ( ) ( )5
1 1 11 1 1
2 2 2

N ξ η ς= − + +  

 

( ) ( ) ( )6
1 1 11 1 1
2 2 2

N ξ η ς= + + +  

 

( ) ( ) ( )7
1 1 11 1 1
2 2 2

N ξ η ς= − − +  

 

( ) ( ) ( )8
1 1 11 1 1
2 2 2

N ξ η ς= + − +  

1

1 (1 )
2

L ζ= −
1

1 (1 )
2

L η= −1

1 (1 )
2

L ξ= −

2

1 (1 )
2

L ξ= + 2

1 (1 )
2

L ζ= +
2

1 (1 )
2

L η= +
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Table 6.5. Mapped, 3-Dimensional, 2-infinite direction, 6-node, infinite element 

Mapped, 3-Dimensional, 2-infinite direction, 6-node, Infinite Element 

Geometrical Configuration M3D-2I/C2-F8

 

 

Coordinate Mapping  

 
{ } { }i ix M x= ⎡ ⎤⎣ ⎦  

 
( ) ( ) ( )i j k zM G G L=  

 

( )3
2 2 1 1

1 1 2
M ς

ξ η
⎛ ⎞ ⎛ ⎞

= −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 

( )7
2 2 1 1

1 1 2
M ς

ξ η
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

1

2
1

G
ξ

=
− 1

2
1

G
ξ

=
−

1

1 (1 )
2

L ξ= +

1

1 (1 )
2

L ξ= −
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Table 6.5 (Contd) 

Mapped, 3-Dimensional, 2-infinite direction, 6-node, Infinite Element 
(contd) 

Field Variable Mapping M3D-2I/C2-F8

{ } { }i iu N d= ⎡ ⎤⎣ ⎦  
 

( ) ( ) ( )i j k zN L L Lξ η ς=  
 

( ) ( ) ( )1
1 1 11 1 1
2 2 2

N ξ η ς= − + −  

 

( ) ( ) ( )2
1 1 11 1 1
2 2 2

N ξ η ς= + + −  

 

( ) ( ) ( )3
1 1 11 1 1
2 2 2

N ξ η ς= − − −  

 

( ) ( ) ( )4
1 1 11 1 1
2 2 2

N ξ η ς= + − −  

 

( ) ( ) ( )5
1 1 11 1 1
2 2 2

N ξ η ς= − + +  

 

( ) ( ) ( )6
1 1 11 1 1
2 2 2

N ξ η ς= + + +  

 

( ) ( ) ( )7
1 1 11 1 1
2 2 2

N ξ η ς= − − +  

 

( ) ( ) ( )8
1 1 11 1 1
2 2 2

N ξ η ς= + − +  

 

1

1 (1 )
2

L ξ= −
1

1 (1 )
2

L ξ= − 1

1 (1 )
2

L ξ= −

1

1 (1 )
2

L ξ= + 1

1 (1 )
2

L ξ= +1

1 (1 )
2

L ξ= +
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Table 6.6. Mapped, 3-Dimensional, 3-infinite direction, 4-node, infinite element 

Mapped, 3-Dimensional, 3-infinite direction, 4-node, Infinite Element 

Geometrical Configuration M3D-3I/C1-F8

 

Coordinate Mapping  

 
 
 

{ } { }i ix M x= ⎡ ⎤⎣ ⎦  
 

( ) ( ) ( )i j k zM G G G=  
 

3
2 2 2

1 1 1
M

ξ ξ ξ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
 

1

2
1

G
ξ

=
−

1

2
1

G
ξ

=
−1

2
1

G
ξ

=
−
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Table 6.6 (Contd) 

Mapped, 3-Dimensional, 3-infinite direction, 4-node, Infinite Element 
(contd) 

Field Variable Mapping M3D-3I/C1-F8

 
{ } { }i iu N d= ⎡ ⎤⎣ ⎦  

 
( ) ( ) ( )i j k zN L L Lξ η ς=  

 

( ) ( ) ( )1
1 1 11 1 1
2 2 2

N ξ η ς= − + −  

 

( ) ( ) ( )2
1 1 11 1 1
2 2 2

N ξ η ς= + + −  

 

( ) ( ) ( )3
1 1 11 1 1
2 2 2

N ξ η ς= − − −  

 

( ) ( ) ( )4
1 1 11 1 1
2 2 2

N ξ η ς= + − −  

 

( ) ( ) ( )5
1 1 11 1 1
2 2 2

N ξ η ς= − + +  

 

( ) ( ) ( )6
1 1 11 1 1
2 2 2

N ξ η ς= + + +  

 

( ) ( ) ( )7
1 1 11 1 1
2 2 2

N ξ η ς= − − +  

 

( ) ( ) ( )8
1 1 11 1 1
2 2 2

N ξ η ς= + − +  

 

1

1 (1 )
2

L ξ= +

1

1 (1 )
2

L ξ= −

1

1 (1 )
2

L ξ= +

1

1 (1 )
2

L ξ= −1

1 (1 )
2

L ξ= −

1

1 (1 )
2

L ξ= +
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6.3.  A Dynamic Infinite Element for 3-D Infinite Domain Wave Problems 

 

6.3.1.  Introduction 

 

P-waves, S-waves and R-waves in the foundation can be simulated simultaneously in 

the present infinite element domain. The good accuracy is obtained using the present 

infinite element and finite element coupling model to simulate foundation wave problems 

has been proven by comparing the current numerical results with previous analytical 

results. 

 

The simulation of the infinite medium in the numerical method is a very important 

topic in dynamic soil-structure interaction problems. This topic arose from numerous 

practical problems such as the numerical simulation of building structure foundations, 

offshore structure foundations, dam foundations, nuclear power station foundations and so 

forth. The study of this topic becomes more important when the structure is large and the 

effects of earthquakes are considered. Due to the importance of the problem, much work 

has been done by researchers in the past. The general method for treating this problem is to 

divide the infinite medium into the near field, which includes the geometric irregularity as 

well as the non-homogeneity of the foundation, and the far field, which is simplified as an 

isotropic homogeneous elastic medium. The near field is modeled using finite elements 

and the far field is treated by adding some special artificial boundaries or connecting some 

special elements on the truncated boundary, which is a part of the representation of the 

finite elements. It has been proven that these special artificial boundaries work well for the 

wave radiation problems in which the vibration source acts on the interior region of the 

near field. However, for seismic structural analysis, which, in fact, is a typical wave 

scattering problem in the near field, these artificial boundaries are not satisfactory due to 

the earthquake wave which is incident from the far field. In such a case, some special 

elements known as infinite elements and boundary elements can still handle this problem 

even when an incident earthquake wave is presented. Although the boundary element 

method is a very effective way to simulate wave scattering problems in the homogeneous 

medium due to the great reduction in the number of degrees of freedom of the system, the 

infinite element is better for simulating wave scattering problems in the non-homogeneous 
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medium due to the banded and symmetrical nature of the global stiffness and mass 

matrices (Zhao and Valliappan, 1993). 

 

The concept of infinite elements was presented by Bettess and Ungless in the 1970s. 

Further work has been done by some other authors to apply the infinite elements to the 

solution of static problems in engineering practice. The fundamental idea to construct a 

static infinite element is to derive a special element displacement shape function, which is 

the product of the Lagrange interpolation function and the so-called decay function, or to 

use some special mapping techniques to map the infinite element into a finite one. The 

same ideas have also been employed to develop the dynamic infinite elements. However, 

owing to the quite complicated mechanism of wave propagation in the infinite medium, the 

decay function in the static infinite element was replaced by the wave propagation function 

in its dynamic counterparts. For the dynamic infinite elements used in solid media, Chow 

and Smith (1981), Medina (1983) as well as Zhao et al. (1987) have presented the 

corresponding element models which differ from the selection of the wave propagation 

function in the dynamic infinite elements. 

 

Different type of waves such as R-wave, SH-wave, SV-wave and P wave must be 

separately considered in the analysis. That is to say, for a given incident earthquake wave, 

one must separate this wave into R-wave, SH-wave, SV-wave and P-wave components and 

then use the wave number of each wave component to calculate the infinite element 

stiffness and mass matrices. Consequently, the stiffness and the mass matrices for an 

infinite element need to be calculated at least four times since the previous 3-D dynamic 

infinite element can exactly represent only one wave number each time. 

 

6.3.2.  Derivation of 3-D Infinite Element 

 

Based on the above considerations, a 3-D dynamic infinite element is discussed 

below. Since the wave numbers of the R-wave, SH-wave, SV-wave and P-wave are 

simultaneously used in the present infinite element, it is more economical to use this 

element to simulate the earthquake wave propagation mechanism in the infinite foundation. 

In addition, due to the use of a mapping technique, it is feasible to use this element to 

model arch-dam-foundations in a rectangular co-ordinate system. 
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Assuming that the foundation is subjected to harmonic loading and the medium of 

the natural foundation exhibits hysteresis damping, the governing equation of the wave 

motion of the system can be written as 

 

 

 ( )
2 2 2

2
2* * * x
u v wG u G f u

x x y x z
λ ρ

⎛ ⎞∂ ∂ ∂
∇ + + + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

&&   

 ( )
2 2 2

2
2* * * y

u v wG v G f v
x y y y z

λ ρ
⎛ ⎞∂ ∂ ∂

∇ + + + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
&& (6.20) 

 ( )
2 2 2

2
2* * * z

u v wG w G f w
x z y z z

λ ρ
⎛ ⎞∂ ∂ ∂

∇ + + + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
&&  

 

 ( )* 1 dG G iη= +  (6.21) 

 

 ( )* 1 diλ λ η= +  (6.22) 

 

where, G is the shear modulus, λ  is the Lame constant, dη  is the hysteresis damping 

coefficient of the medium, xf , yf , zf  are the unit body forces in x, y, z directions, 

respectively, ρ  is the material density and 2∇  is the second-order 3-D Laplace operator. 

For instance,  

 
2 2 2

2
2 2 2

u u uu
x y z
∂ ∂ ∂

∇ = + +
∂ ∂ ∂

 (6.23) 

 

Using the Euler’s theorem and ignoring body forces in equation (1.1), the discretized 

equation of motion of the system can be derived as 

 

 [ ]{ } ( )[ ]{ } { }2
01 dM d i K d Fω η− + + =  (6.24) 
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where { }d  is the unknown nodal displacement vector, ω is the exciting circular frequency, 

[ ]M and [ ]K are global mass and stiffness matrices of the system, respectively, { }0F  is the 

amplitude vector of the applied harmonic load. By Code Number Technique, (Tezcan, 

1963), [ ]M and [ ]K matrices as well as { }0F can be assembled from the element 

submatrices and subvectors which have the following form: 

 

 [ ] [ ] [ ]e T

V

M N N dVρ= ∫∫∫  

 [ ] [ ] [ ][ ]e T

V

K B D B dV= ∫∫∫  (6.25) 

 { } [ ] { } [ ] { }0 0 0
T T

A

F N x dA N P= +∫∫  

 

where V and A express the volume and area of the element, { }0x  and { }0P are amplitude 

vectors of boundary traction and concentrated loads, respectively, [ ]D is the element 

constitutive matrix, [ ]B  and [ ]N are the strain matrix and the shape function matrix of the 

element. It is noted that equation (1.6) holds for both finite and infinite elements. Since the 

derivation of a 3-D solid finite element is well known, only the necessary formulations of a 

3-D dynamic infinite element are given here. 
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6.3.3.  A Seismic 3-D Infinite Element 

 

1

2
1

G
ξ

=
−

Figure 6.5. A 3-D dynamic infinite element 

 

For the 3-D dynamic infinite element shown in Figure 6.5, since the sides of the 

element in the infinite direction can be represented by straight lines, only eight nodes are 

sufficient to describe exactly the geometry of the seismic infinite element in the global co-

ordinate system. Therefore, the mapping relationship between the global co-ordinate 

system and the local co-ordinate system for this element can be defined as 

 

 
1 2 8 1

1 2 8

1 2 8 8

. .

. .

. .

x x x x M
y y y y
z z z z M

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

M  (6.26) 

 

where iM  is the mapping function of the element and it can be expressed as 

 

 ( )( )( )1
1 1 1 1
4

M ξ η ζ= − + +  

 ( )( )( )2
1 1 1 1
4

M ξ η ζ= − + −  

 ( )( )( )3
1 1 1 1
4

M ξ η ζ= − − −  

 ( )( )( )4
1 1 1 1
4

M ξ η ζ= − − +  (6.27) 
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 ( )( )5
1 1 1
4

M ξ η ζ= + +  

 ( )( )6
1 1 1
4

M ξ η ζ= + −  

 ( )( )7
1 1 1
4

M ξ η ζ= − −  

 ( )( )8
1 1 1
4

M ξ η ζ= − +  

 

It is noted that since the mapping functions of the element are different from the 

displacement functions of the element, the present infinite element is not an isoparametric 

element. It is a subparametric element. 

 

Considering the compatibility condition of displacement on the connected interface 

between the finite and infinite element, the displacement field for this 3-D dynamic infinite 

element can be described as 

 

 
1 2 12 1

1 2 12

1 2 12 12

. .

. .

. .

u u u u N
v v v v
w w w w N

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

M  (6.28) 

 

where ( )1, 2,...,12iN i =  are displacement shape functions of the element and can be 

expressed as 

 

( ) ( )( )1 5 9
1 1 1
4iN N N P ξ η ζ⎡ ⎤= = = + +⎢ ⎥⎣ ⎦

 

( ) ( )( )2 6 10
1 1 1
4iN N N P ξ η ζ⎡ ⎤= = = + −⎢ ⎥⎣ ⎦

 

 ( ) ( )( )3 7 11
1 1 1
4iN N N P ξ η ζ⎡ ⎤= = = − −⎢ ⎥⎣ ⎦

 (6.29) 

( ) ( )( )4 8 12
1 1 1
4iN N N P ξ η ζ⎡ ⎤= = = − +⎢ ⎥⎣ ⎦
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 ( ) ( )31 2
1 2 3

ii iP e c e c e c e β ξβ ξ β ξαξξ −− −−= + +  (6.30) 

 

In which α  is a nominal decay coefficient, which is used to express the attenuation of 

wave amplitude due to the dissipation of wave energy in the material and the geometric 

divergence of the medium, ( )1, 2,3i iβ =  are three nominal wave numbers in 

correspondence to the R-wave, S-wave and P-wave in 3-D domains and these nominal 

wave numbers are used to express the phase characteristics of the wave during propagation 

in the medium, ( )1, 2,3ic i =  are the constants to be determined to match the displacement 

field of the domain. 

 

In order to determine the constants 1 2,c c  and 3c , equation (6.28) should be used. 

Letting the nodal displacements in any infinite side of the element in the ξ  direction equal 

the displacements expressed by equation (6.28), these constants can be determined. For 

instance, taking account of one side of the element with node 1, 5 and 9 (see Figure 6.5) 

the following relationships exist: 

 

 ( )( ) ( )( ) ( )( )

( ) ( ) ( )

[ ]31 2

31 2

1 1 1
1 21 2 1 2

2 2 2

3 3 3

1 1 1
ii i

ii i

u c c
u e e e c C c
u c ce e e

α βα β α β

α βα β α β

− +− + − +

− +− + − +

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪= − − − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

 (6.31) 

 

and therefore, 

 

 [ ]
1 1

2 5

3 9

c u
c E u
c u

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 (6.32) 

 

where [ ]E is the inverse matrix of [ ]C . If equation (6.29) is considered 

( ) ( )1, 2,...,12iP iξ = can be further expressed as  

 

 ( ) ( ) ( ) ( ) ( )31 2
11 21 31 1, 2,3,4ii i

iP E e E e E e iα β ξα β ξ α β ξξ − +− + − += + + =   
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 ( ) ( ) ( ) ( ) ( )31 2
12 22 32 5,6,7,8ii i

iP E e E e E e iα β ξα β ξ α β ξξ − +− + − += + + =  (6.33) 

 ( ) ( ) ( ) ( ) ( )31 2
13 23 33 9,10,11,12ii i

iP E e E e E e iα β ξα β ξ α β ξξ − +− + − += + + =   

 

where 

 

 ( )( ) ( ) ( )( )2 3 3 21 2 3 2 2
11

1 i i i iE e e eα β β β β− + + − −= −
Δ

  

 ( )( ) ( ) ( )( )1 3 1 31 2 3 2 2
21

1 i i i iE e e eα β β β β− + + − −= −
Δ

 (6.34) 

 ( )( ) ( ) ( )( )1 2 2 11 2 3 2 2
31

1 i i i iE e e eα β β β β− + + − −= −
Δ

  

 

 ( )32
12

1 iiE e e e ββα −−−= −
Δ

  

 ( )3 1
22

1 i iE e e eβ βα − −−= −
Δ

 (6.35) 

 ( )1 2
32

1 i iE e e eβ βα − −−= −
Δ

 

 

 ( ) ( ) ( )( )3 21 2 2 2
13

1 i iE e e eα β β− − −= −
Δ

 

 ( ) ( ) ( )( )1 31 2 2 2
23

1 i iE e e eα β β− − −= −
Δ

 (6.36) 

 ( ) ( ) ( )( )2 11 2 2 2
33

1 i iE e e eα β β− − −= −
Δ

 

 

where the Δ=the determinant value of E matrix 

 

 ( ) ( )( ) ( ) ( )( ) ( )( ) ( ) ( )( )2 3 3 2 1 2 2 123 2 2 2 2 2 2i i i i i ie e e e e e eβ βα β β β β β β− +− − − − + − −⎡Δ = − + −⎣   

 ( )( ) ( ) ( )( )1 3 1 32 2 2i i ie e eβ β β β− + − − ⎤+ − ⎦  (6.37) 
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It is noted that a sufficient condition for the existence of ( ) ( )1, 2,...,12iP iξ =  in the 

infinite element is that 1 2,β β  and 3β  are three different constants. This can be easily 

satisfied in the infinite-foundation wave problems since the R-wave, S-wave and P-wave 

have three different wave numbers. 

 

Using the element described above and equation (6.25), it is straightforward to get 

the mass matrix for the 3-D dynamic infinite element as follows 

 

 [ ] [ ] [ ]
1 1

0 1 1

e TM N N J d d dρ ξ η ζ

∞

− −

= ∫∫∫  

 [ ] [ ] [ ][ ]
1 1

0 1 1

e TK B D B J d d dξ η ζ

∞

− −

= ∫∫∫  (6.38) 

 

where J  is the Jacobian determinant which can be determined from the mapping 

relationship of the element in equations (6.26) and (6.27). Substituting equations (6.27) and 

(6.29) and related expressions into equation (6.38), the following generalized integral will 

be encountered in the evaluation of the mass and stiffness matrices of the infinite element: 

 

 ( ) ( ) ( )2

0

1, 2,3, 1, 2,3j ki iI F e d j kα β β ξξ ξ

∞

− + += = =∫  (6.39) 

 

This generalized integral can be calculated using numerical integration technique. 

 

Consider the set of natural co-ordinates , ,ξ η ζ  and a corresponding set of global co-

ordinates x, y, z. By the usual rules of partial differentiation, the ξ  derivative can be 

written as 

 

 i i i iN N N Nx y z
x y zξ ξ ξ ξ

∂ ∂ ∂ ∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (6.40) 
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Performing the same differentiation with respect to the other two co-ordinates and 

writing in the matrix form: 

 

 [ ]

i i i

i ii

i i i

N x y z N N
x x

N NN x y z J
y y

N N Nx y z
z z

ξ ξ ξ ξ

η η η η

ζ ζ ζ ζ

∂ ⎡ ⎤∂ ∂ ∂⎧ ⎫ ∂ ∂⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪

∂ ∂∂ ⎢ ⎥∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ∂ ∂∂ ∂ ∂ ∂⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪∂ ∂ ∂⎢ ⎥∂ ∂ ∂
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥∂ ∂ ∂∂ ∂ ∂ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦

 (6.41) 

 

In the above, the left-hand side can be evaluated as the functions Ni are specified in 

natural co-ordinates. Further as x, y, z are explicitly given, the matrix [ ]J , can be found 

explicitly in terms of the natural co-ordinates. This matrix is known as the Jacobian matrix. 
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7.  CASE STUDIES 
 

 

As it was mentioned earlier in Chapter 2, a difficulty is often encountered in finite 

element analysis in the treatment of an unbounded domain, for which the use of infinite 

elements offers the most powerful and effective solutions. In the process of developing the 

stiffness properties of infinite elements, the conventional finite elements are modified to 

contain some nodes and element boundaries, which model the domain stretching to 

infinity. 

 

7.1.  Boussinesq Problem 

 

In order to compare the predictive capabilities of infinite elements with closed form 

solutions of the Boussinesq problem, axisymmetric analyses are performed due to the 

rotational symmetry. A slice of semi-infinite medium, with one (1) radian central angle is 

considered for analysis. A sample mesh suitable for analysis is seen in Figure 7.1.  

 

 
 

Figure 7.1. Singular load on axi-symmetric semi-infinite medium and a slice taken from it 

for analysis 

 

1 radian = ⎟
⎠
⎞

⎜
⎝
⎛ degrees
π

180  
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In the Finite Element modeling of this Boussinesq problem*, a 5 by 5 axi-symmetric 

mesh consisting of eight-node high order quadrilateral elements is generated as shown in 

Figure 7.2. The computer package program GeoStudio SIGMA/W (GeoStudio Analysis 

Reference and Tutorials, 2004) is used for this purpose. Along the axis of symmetry, 

coinciding with the vertical truncation boundary, a boundary condition of zero horizontal 

displacement is imposed throughout. The horizontal truncation boundary at the bottom 

edge has zero vertical displacements throughout. In fact, typical movable hinge supports 

are assumed all along the three mutually perpendicular boundary lines. 

 

P = 3 000 kN

3.00 m

3.00 m

BA

DC E = 2 000 MPa
0.40ν =

 
 

Figure 7.2. Mesh of axi-symmetric body with rigid truncation boundaries 

 

For the purpose of introducing infinite elements at the truncation lines CD and BD, a 

second model is generated by attaching a corridor of eight-node high order quadrilateral 

infinite elements to the already existing mesh all along the two truncation boundaries CD 

and BD as shown in Figure 7.3. The infinite elements are indicated by an arrow head 

specifying a direction to infinity. 

 

                                                 
* A complete treatment of Boussinesq problem is given in Appendix A 
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The material is assumed to be linear and isotropic with Young’s Modulus E = 2 000 

MPa and Poisson’s ratio ν = 0.40. The point load acting vertically at the center of a three 

dimensional elastic half space is P = 3 000 kN. 

 

The vertical displacements have been calculated by three distinct methods as follows: 

 

• Finite element modeling with 5 by 5 mesh, using GeoStudio SIGMA/W package 

program; 

• The exact formulations by Boussinesq (Jumikis, A. R., 1969); 

• Finite element modeling with 5 by 5 mesh with infinite elements attached to the 

bottom and right-hand side truncation boundaries. 

 

3.00 m

3.00 m

A B

DC
E = 2 000 MPa

0.40ν =

 
 

Figure 7.3. Mesh of axi-symmetric body with infinite elements along the truncation 

boundaries  

 

The vertical displacements calculated by these three methods, all along the two 

vertical axes at r = 0 m and r = 0.6 m, and also along the horizontal line at z = 1.20 m, are 

given in Tables 7.1 through 7.3, respectively. 
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The vertical displacements calculated by these three methods are also illustrated 

graphically in a comparative fashion, together with the percentages of errors in each case, 

all along the two vertical and one horizontal lines, as described above, in Figures 7.4 

through 7.9, respectively. 

 

Table 7.1. Vertical displacements along the vertical line at r = 0 

Displacements (m)   (10-4) 
Depth(m) 

Finite Elements Theory Infinite Elements 
0 55.97 N/A 58.27 

0.3 31.82 24.51 34.14 
0.6 12.07 12.25 14.40 
0.9 6.31 8.17 8.62 
1.2 3.61 6.13 5.91 
1.5 2.70 4.90 4.97 
1.8 1.96 4.08 4.21 
2.1 1.25 3.50 3.48 
2.4 0.74 3.06 2.97 
2.7 0.35 2.72 2.01 
3 0.00 2.45   

 

Table 7.2. Vertical displacements along the vertical line at r = 0.6 m 

Displacements (m)   (10-4) 
Depth(m) 

Finite Elements Theory Infinite Elements 
0 5.58 6.68 7.86 

0.3 5.36 6.98 7.66 
0.6 3.56 6.70 5.86 
0.9 3.41 5.85 5.70 
1.2 2.81 4.98 5.08 
1.5 2.03 4.27 4.26 
1.8 1.43 3.70 3.64 
2.1 1.00 3.25 3.18 
2.4 0.63 2.89 2.80 
2.7 0.30 2.60 1.96 
3 0.00 2.36   
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Table 7.3. Vertical displacements along the horizontal line at z = 1.20 m 

Displacements (m)   (10-4) 
Depth(m) 

Finite Elements Theory Infinite Elements 
0 3.61 6.13 5.91 

0.3 3.41 5.79 5.70 
0.6 2.81 4.98 5.08 
0.9 1.80 4.10 4.03 
1.2 1.26 3.35 3.44 
1.5 0.67 2.77 2.79 
1.8 0.31 2.33 2.35 
2.1 0.07 2.00 2.02 
2.4 -0.07 1.74 1.79 
2.7 -0.16 1.54 1.03 
3 -0.18 1.38   

 

 

7.2.  Evaluation of the Results of Boussinesq Problem 

 

Superior degree of accuracy attained by the use of infinite elements is demonstrated 

clearly when the finite element solutions are compared with those of the exact solution. 

The solutions by infinite element modeling show a remarkable improvement.  

 

For instance, the vertical displacements obtained by three different methods along 

the r = 0 axis are illustrated in Figure 7.4. Very good agreements exist with the exact 

solution when quadratic infinite elements are used. The accuracies improve with larger 

depths. If we examine the displacement error percentages along this vertical line at r = 0 m 

in Figure 7.5, it is seen that the errors increase near to the point load due to the effect of 

singularity of the point load.  

 

Table 7.1 also shows that the displacement values obtained when infinite elements 

are employed are almost the same as those of the closed form solutions, whereas the pure 

finite element solutions are relatively very far from the exact theory.  

 

When the displacements along the vertical line at r = 0.6 m and along the horizontal 

line at z = 1.2 m are examined as shown in Figures 7.6 and 7.8 respectively. It is clearly 
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seen that the infinite element solutions are in a very good agreement with those of the exact 

solution. Displacement error percentages given in Figure 7.7 and Figure 7.9 also confirm 

this conclusion. It is important to recall however that due to stress concentrations in the 

vicinity of the point load, the accuracy of the numerical solution even with infinite 

elements may differ slightly from the exact solutions. 

 

In general, the regular finite element solutions underestimate the displacements. The 

situation is greatly improved however by the introduction of the infinite elements. It is thus 

proven that the use of infinite elements, provide a significant degree of accuracy at only 

very little extra computational effort.  



Figure 7.4. Displacements along the vertical line at r = 0
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Figure 7.5. Displacement error percentages along the vertical line at r = 0
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Figure 7.6. Displacements along the vertical line at r = 0.6 m
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Figure 7.7. Displacement error percentages along the vertical line at r = 0.6 m
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Figure 7.8. Displacements along the horizontal line at z = 1.2 m
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Figure 7.9. Displacement error percentages along the horizontal line at z = 1.2 m

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Distance (m)

Er
ro

r P
er

ce
nt

ag
es

 (%
)

Truncated Finite 
Elements

Infinite Elements

121

3.00 m

3.00 m

A B

DC

P = 3 000 kN

r

z



 122

7.3.  Circular Uniform Distributed Loading  

 

Uniformly loaded circular foundations are frequently encountered in soil 

engineering. As a second case study, circular tank on the ground is studied. The tank is 

2a=10 m in diameter; the applied pressure on the ground when the tank is full is 40 kPa. 

The soil is assumed to be linear and isotropic with Young’s Modulus E = 4 000 kPa and 

Poisson’s ratio ν = 0.40. Since the problem is rotationally symmetrical about the vertical 

center-line of the tank, the required finite element grid extends out from the tank center-

line and axisymmetric analyses are performed. Figure 7.10 shows schematic diagram of the 

problem including the foundation region considered in the analysis.  

 

Soil

E = 4000 kPa,     = 0.3

Truncated
Boundary

20 m

a = 5 m

15 m

ν

 
Figure 7.10. Tank on the ground 

 

In the Finite Element modeling of the problem, a 3 by 4 axi-symmetric coarse mesh 

and 6 by 8 axi-symmetric fine mesh consisting of eight-node high order quadrilateral 

elements are generated as shown in Figure 7.11 and 7.12. The numerical analyses 

associated with the problem are carried out using the computer package program 

GeoStudio SIGMA/W (GeoStudio Analysis Reference and Tutorials, 2004). Along the axis 
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of symmetry, coinciding with the vertical truncation boundary, a boundary condition of 

zero horizontal displacement is imposed throughout. The horizontal truncation boundary at 

the bottom edge has zero vertical displacements throughout. In fact, typical movable hinge 

supports are assumed all along the three mutually perpendicular boundary lines. 

 

A B

DC

r

20 m

15 m E = 4 000 kPa
= 0.4ν

 
Figure 7.11. Coarse mesh of axi-symmetric body with rigid truncation boundaries 

 

z

rA

C

p = 40 kPa

    = 0.4
15 m

20 m

B

D

ν  
Figure 7.12. Fine mesh of axi-symmetric body with rigid truncation boundaries 
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For the purpose of introducing infinite elements at the truncation lines CD and BD, a 

third and fourth models are generated by attaching a corridor of eight-node high order 

quadrilateral infinite elements to the already existing 3 by 4 coarse mesh and 6 by 8 fine 

mesh all along the two truncation boundaries CD and BD as shown in Figures 7.13 and 

7.14. The infinite elements are indicated by an arrow head specifying a direction to 

infinity. 

 

A B

DC

r

20 m

15 m

z

E = 4 000 kPa
= 0.4ν

 
 

Figure 7.13. Coarse mesh of axi-symmetric body with infinite elements along the 

truncation boundaries 



 125

rA
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Figure 7.14. Fine mesh of axi-symmetric body with infinite elements along the truncation 

boundaries 

 

The vertical stresses and the vertical displacements along the vertical, central axis 

through the center of the circular area have been calculated by three distinct methods as 

follows: 

 

• Two finite element modelings with 3 by 4 coarse mesh and 6 by 8 fine mesh using 

GeoStudio SIGMA/W package program; 

• The exact formulations (Poulos and Davis, 1974); 

• Finite element modeling with 3 by 4 coarse mesh and 6 by 8 fine mesh with 

infinite elements along the bottom and right-hand side truncation boundaries. 

 

According to analytical solution, the vertical stress and the vertical displacement 

along the vertical, central axis through the center of the circular area are given in Equations 

(7.1) and (7.2) respectively. 
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( )

3 2

2
11

1
z p

a z
σ

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= −

⎜ ⎟⎢ ⎥+⎝ ⎠⎣ ⎦

 (7.1) 

 
( ) ( )

( ) ( )

2
2

2

2 1
1 1

2 1 1

pa z aw z a z a
E z a

ν

ν

⎡ ⎤− ⎛ ⎞ ⎢ ⎥= + − +⎜ ⎟ ⎢ ⎥⎝ ⎠ − +⎣ ⎦

 (7.2) 

  

where p is the uniformly distributed loading over the circular bearing area, a is the radius 

of the circular bearing area, z is the depth, ν  is the Poisson’s ratio of the medium, and E is 

the modulus of elasticity of the medium. 

 

The vertical stresses and displacements calculated by these three methods, along the 

vertical, central axis through the center of the circular area are given in Tables 7.4 and 7.5, 

respectively and also illustrated graphically in a comparative fashion, for each case in 

Figures 7.15 and 7.16. 

 

Table 7.4. Vertical stresses along the vertical central axis 

Stresses (kPa) 
Finite Elements Infinite Elements Depth (m) 

Coarse Fine Coarse Fine 
Theory 

0.00 55.82 39.36 55.81 39.35 40.00 
1.25   39.07   39.09 39.43 
2.50 39.18 37.06 39.39 37.13 36.42 
3.75   31.60   31.71 31.36 
5.00 25.04 27.03 25.33 27.19 25.86 
6.25   21.55   21.69 20.95 
7.50 19.31 17.06 19.85 17.17 16.96 
8.75   14.51   14.52 13.82 
10.00 11.53 11.85 12.13 11.76 11.38 
11.25   10.34   10.08 9.48 
12.50 9.40 8.82 9.43 8.40 7.98 
13.75   8.01   7.37 6.80 
15.00 7.06 7.17 7.50 6.31 5.85 
16.25   6.77   5.66 5.08 
17.50 6.63 6.35 4.22 5.43 4.44 
18.75   6.23   2.61 3.92 
20.00 5.95 6.10 0.03 -0.66 3.48 
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Table 7.5. Vertical displacements along the vertical central axis 

Displacement (m) (10-2) 
Finite Elements Infinite Elements Depth (m) 

Coarse Fine Coarse Fine 
Theory 

0.00 7.12 7.35 9.71 9.27 9.10 
1.25   6.61   8.54 8.34 
2.50 5.54 5.69 8.15 7.63 7.42 
3.75   4.78   6.73 6.50 
5.00 4.20 3.92 6.79 5.87 5.67 
6.25   3.22   5.16 4.97 
7.50 2.74 2.65 5.28 4.57 4.39 
8.75   2.17   4.07 3.92 
10.00 1.80 1.77 4.25 3.66 3.52 
11.25   1.44   3.31 3.19 
12.50 1.18 1.16 3.56 3.02 2.91 
13.75   0.92   2.77 2.68 
15.00 0.72 0.71 3.06 2.55 2.48 
16.25   0.51   2.36 2.30 
17.50 0.34 0.34 2.28 2.19 2.15 
18.75   0.17     2.02 
20.00 0.00 0.00     1.90 

 

7.4.  Evaluation of the Results of Circular Uniform Distributed Loading 

 

Even for a relatively coarse mesh (3 by 4) as shown in Figure 7.13, the improvement 

of results over a similar analysis but without infinite elements is evident which can be seen 

from the displacement values along the vertical central axis in Figure 7.16. When fine 

mesh (6 by 8) is employed, almost no change takes place in the displacements on the other 

hand the same mesh with infinite elements along the bottom and right-hand side truncation 

boundaries gives perfect performance as seen in Figure 7.16. 

 

In the case of the stresses, as secondary dependant variables, although the 

convergence with mesh refinement is observed, no significant improvement of results is 

seen when employing meshes containing infinite elements as illustrated in Figure 7.15. 

However, even slightly, the results are still observed to be better when infinite elements are 

used. 



Figure 7.15. Vertical stresses along the vertical central axis
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Figure 7.16. Vertical displacements along the vertical central axis
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7.5.  First Case Study for 3-D Seismic Infinite Element 

 

This numerical example for verifying the 3-D dynamic infinite element is that the 

calculation of the compliances of a square massless rigid plate resting on an isotropic 

homogeneous elastic half-space. Figure 7.15 shows the discretization of a plate on the half-

space, in which only a quarter of the plate and the half-space is modeled by finite and 

infinite elements due to the symmetry of the problem. It needs to be mentioned that the 

symmetry boundary condition is added on the xz and yz planes since the case was vertical 

vibration of the plate. In order to compare current numerical results with the previous 

results, the same assumptions as in the References of Hamidzadeh-Eraghi and Grootenhuis 

1981 and Wong and Luco 1976 are adopted and the parameters seen in Table 7.1 are used 

in the analysis. 

 

 
 

 

Figure 7.17. Discretization of a plate on the half-space 
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Table 7.6. Material properties 

Plate Rock Soil 
1224 10pE kPa= ×  624 10sE kPa= ×  3872 / secPV m=  0.028α =  

10B m=  0.333μ =  1936 / secSV m=  sG Shear Modulus=

1t m=  324 /s kN mγ =  1804 / secRV m=  0P Dynamic Load=  

 

In the calculation, the plate is modeled by either thick plate elements or a 

combination of thick plate elements and plane stress elements. The near field of the 

foundation is modeled by 3-D solid finite elements and the far field of the foundation is 

modeled by 3-D dynamic infinite elements. From the wave velocities and the harmonic 

wave frequency of the foundation, the wave numbers ( 1, 2, 3)i iβ =  in the infinite element 

can be evaluated. Besides, the numerical results are expressed as 

 

 
0

( )X
X

UC GB
P

= ,      
0

( )Z
Z

UC GB
P

=  (1.1) 

 

where ,X ZC C  are the dimensionless compliances due to the dynamic load of the plate 0P  

in x and z directions, 1 3,Δ Δ  are the corresponding complex displacements in x and z 

directions, G is the shear modulus of the rock medium, 0 Sa B Vω=  is the dimensionless 

frequency in which SV  is the S-wave velocity of the rock. 

 

 
Figure 7.18. Comparison of the current results with the previous results 

 

Figure 7.16 shows a comparison  between the current results and the previous results 

(Hamidzadeh-Eraghi and Grootenhuis 1981 and Wong and Luco 1976) where the solid line 



 132

and dashed line for XC  and ZC  are sited from Reference of Wong and Luco, 1976. The 

solid dot and circle are the numerical results from the present infinite element model in 

which the plate is modeled using the combination of thick plate elements and plane stress 

elements. It is noted from Figure 7.16 that there is a very good comparison when the plate 

is modeled by the combination of thick plate elements and plane stress elements. This 

demonstrates that accurate results can be obtained from the present finite and infinite 

element coupling model. Therefore, it is recommended in the seismic analysis of a plate 

subjected to horizontal earthquakes, shell elements or a combination of thick plate 

elements and plane stress elements be used in the analysis. 

 

7.6.  Second Case Study for 3-D Seismic Infinite Element 

 

This numerical example for verifying the 3-D dynamic infinite element is the 

calculation of the vertical vibration of a square massless rigid plate resting on a viscoelastic 

layered foundation, which, in fact, wave propagation problem in the non-homogeneous 

foundation.  

 
Figure 7.19. Vertical vibration of a rigid plate on a layered foundation 
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Figure 7.17 shows the discretized model, where only a quarter of the plate and the 

foundation is considered due to the symmetry of the problem. The selection of the 

parameters and the considerations are similar as that in the first example, except for the 

layered foundation is considered resting on a rigid base and the ratio of the layered depth to 

the plate width is chosen as 2. 

 

A comparison between the current results and the previous results (Chow Y. K., 

1987) is shown in Figure 7.18 where K and C are the damping stiffness coefficient and 

damping coefficient of the plate, respectively, the solid line expresses the previous results 

(Chow Y. K., 1987) and the solid circle denotes the current results. It is observed that there 

exists a good agreement between the current results and previous results. This illustrate 

that accurate results can be achieved using finite and infinite element coupling model to 

solve 3-D layered-foundation wave problems. 

 

 
Figure 7.20. Comparison of the current results with the previous results 

 

Thorough the comparison of the numerical results from the present finite and infinite 

coupling model with previous results for a massless, smooth rigid square plate on a 

homogeneous elastic half-space or viscoelastic layered foundation, it is demonstrated that 

accurate results can be obtained using this coupling model to solve 3-D foundation wave 

problems. 
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7.7.  Sensitivity Analysis of Finite Element Modeling  

 

In order to see the effect of enlargement of domain used in finite element modeling 

and the effect of springs used all along the truncation boundaries of unbounded domain 

problems, axisymmetric analyses are performed for Boussinesq problem. 

 

The material is assumed to be linear and isotropic with Young’s Modulus E = 2 000 

MPa and Poisson’s ratio ν = 0.40. The point load acting vertically at the center of a three 

dimensional elastic half space is P = 3 000 kN. The computer package program GeoStudio 

SIGMA/W (GeoStudio Analysis Reference and Tutorials, 2004) is used for this purpose. 

 

The vertical displacements, beneath the point load, have been calculated by five 

distinct finite element modeling, using the same size finite elements and exact formulation 

as follows: 

 

• Finite element modeling with 5 by 5 mesh (3m ×  3m), 

• Finite element modeling with 25 by 25 mesh (15m ×  15m), 

• Finite element modeling with 50 by 50 mesh (30m ×  30m), 

• Finite element modeling with 5 by 5 mesh, using springs along the truncated 

boundaries, 

• Finite element modeling with 5 by 5 mesh with infinite elements attached to the 

bottom and right-hand side of truncated boundaries, 

• The exact formulations by Boussinesq (Jumikis, A. R., 1969). 

 

Meshes used for these finite element models may be seen in Figures 7.21 through 7.23. 
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P = 3 000 kN

3.00 m

3.00 m
3.00 m

3.00 m

BA

DC

A B

DC

P = 3 000 kN

C D

A B

3.00 m

3.00 m

P = 3 000 kN

 Rigid truncation  Springs Infinite elements 
Figure 7.21. Meshes of axi-symmetric body (5 by 5) 

 

 

P = 3 000 kN

15 m

15 m

 
Figure 7.22. Truncated mesh of axi-symmetric body (25 by 25) 
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P = 3 000 kN

30 m

30 m

 
Figure 7.23. Truncated mesh of axi-symmetric body (50 by 50) 

 

The vertical displacements calculated by these six methods, along the vertical axis at 

r = 0 m are given in Tables 7.7 and illustrated graphically in a comparative fashion in 

Figure 7.24. 

 

Table 7.7. Vertical displacements along the vertical central axis 

Displacements (m) 
Depth(m) 

5x5 25x25 50x50 Spring (5x5) Infinite(5x5) exact 

0 1.21E-03 1.39E-03 1.41E-03 1.50E-03 1.44E-03 1.23E-03 

0.6 3.61E-04 5.46E-04 5.69E-04 6.54E-04 5.91E-04 6.13E-04 

1.2 2.70E-04 4.54E-04 4.77E-04 5.58E-04 4.97E-04 4.90E-04 

1.5 1.96E-04 3.80E-04 4.03E-04 4.81E-04 4.21E-04 4.08E-04 

1.8 7.38E-05 2.60E-04 2.83E-04 3.45E-04 2.97E-04 3.06E-04 

2.4 0.00E+00 2.00E-04 2.23E-04 2.16E-04   2.45E-04 
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The coarse mesh of 5 by 5 with infinite elements along the truncated boundaries 

gives consistently the best results, compared with the results of other meshes of 5 by 5,    

25 by 25 and 50 by 50 with truncated boundaries. When springs are employed in order to 

represent the soil conditions all along the truncated boundaries, the results are better than 

those of the coarse or fine meshes with truncated boundaries. The results of coarse mesh 

with infinite elements however are the most accurate and closest to the exact solution 

among all other cases. 

 



Figure 7.24. Vertical displacements along the vertical central axis
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8.  CONCLUSIONS  
 

 

In this Thesis, infinite elements are introduced including a discussion of history and 

development, fields of application, and their chief merits. Basic classification of infinite 

elements is given as mapped infinite elements and decay infinite elements with some 

detailed discussions. General formulations of 1-D, 2-D and 3-D infinite elements are 

discussed. A comprehensive set of coordinate and field variable mapping functions of 2-D 

and 3-D infinite elements are presented in practical and explicit fashion. Numerical 

examples are also supplied to illustrate the use of infinite elements in a variety of 

problems. Based on the results of the case studies contained herein certain concluding 

remarks may be stated as follows: 

 

1) The stiffness matrices and all other properties of an infinite element may be 

formulated in a manner similar to that used for the conventional finite elements. This fact 

is explicitly demonstrated for the formulation of 1-D, three-node infinite element. In fact, 

when appropriate isoparametric shape functions are selected for both coordinates and field 

variables, the derivation of matrix properties of infinite elements of any size and shape 

becomes a straightforward routine operation. 

 

2) The adaptation of an infinite element into a standard finite element package 

program does not introduce any special difficulty, simply because the infinite elements 

retain the narrow band width nature of the master stiffness matrix, and require relatively 

smaller memory space. 

 

3) The infinite elements provide systematically a very high degree of accuracy even 

with relatively coarse mesh sizes in unbounded continuum problems. Therefore, the use of 

infinite elements is indispensable in these categories of problems including the load 

analysis on semi-infinite medium, soil-structure interaction, seepage and ground water 

flow, wave propagation, off-shore structures, etc. 

 

4) In order to investigate the relative accuracy supplied by the infinite elements, a 

sensitivity analysis is performed for the deflections produced by a point load acting on a 
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semi-infinite elastic half-space. The accuracy of the deflections in the near field is 

increased steadily if the geometrical size of the finite element modeling of the field is 

increased. For instance, the error percentage for the vertical deflection at 1.2m depth below 

surface was 45% when only a 5 by 5 coarse mesh is used. The error is only reduced to 

2.7% when a 50 by 50 fine mesh is used 10 times greater field size and 100 times greater 

number of finite elements. When infinite elements are used however, with only 5 by 5 

mesh size, the error is a mere 1.4%. The economy and efficiency gained in computation 

time and effort, by using infinite elements, are thus unmistakenly proven. 

 

5) Although, the use of equivalent springs all along the truncated boundary provides 

considerable accuracy compared with cases of enlarged field and mesh size, the use infinite 

elements gives always superior results. 

 

6) The use of finer mesh size and higher number of finite elements does not increase 

the accuracy of results as efficiently and drastically as the use of infinite elements. For 

instance, the vertical deflection at the surface of a semi-infinite medium under a circular 

loading is 91.0mm by the exact theory. The errors are 21.7% and 19.2% for the 3 by 4 

coarse mesh and 6 by 8 fine mesh sizes, respectively. When infinite elements with only 3 

by 4 coarse mesh size are used however, the error is drastically reduced to 6.7%. 

 

7) Further research is recommended using 2-D and 3-D infinite elements in a variety 

of unbounded continuum problems in order to discover the immense versatility of infinite 

elements. 
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APPENDIX A:  STRESS DISTRIBUTION IN SOILS 
 

 

Here, stresses and displacements in the soil due to the point load on it will be given. 

One of the principal problems of soil mechanics relative to the founding of structures is the 

study of the relationships between the following factors: load, loading area, depth of 

foundation, settlement, and duration of loading (Jumikis, 1962). 

 

Because of the great diversity in soil properties, and the many variables involved in 

the stability problems of soil and structure, the relationships between these factors are very 

complex indeed; and in theoretical studies one is forced in many instances to assume 

idealized conditions and simplifications, or to study soil mechanics problems 

experimentally. 

 

A.1.  Contact Stresses 

 

The stresses in soil are caused by two principal factors, namely: 

 

1) Self-weight of the soil, 

 

 Hs γσ =  (A.1) 

 

 where,  σs = stress in soil at depth H, and 

 γ  = unit weight of soil,  

 

2)  The stress from the structural load applied to the soil.  

 

A.2.  Boussinesq’s Theory 

 

Boussinesq’s stress distribution theory is based on the results given by the 

mathematical theory of elasticity for the simplest case of loading of a solid, homogeneous, 

elastic-isotropic, semi-infinite medium: namely, the case of a single, vertical, point load 

applied at a point on the horizontal boundary surface (ground surface). 
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A semi-infinite body is one bounded from one side with a horizontal boundary plane. 

In the case of soil, the horizontal boundary plane would be the ground surface, and semi-

infinite medium is the mass of soil below the ground surface.  

 

Point loads in soil mechanics are single, concentrated loads, and uniformly 

distributed loads over symmetric polygonal, or circular areas when stresses in soil are 

considered only at depths greater than threefold diameter of the loaded area. In deriving his 

stress distribution theory for a single, concentrated load, following assumptions are made: 

 

1) The soil medium is an elastic, homogeneous, isotropic, semi-infinite medium 

which extends infinitely in all directions from a level surface and which obeys 

Hooke’s law. 

2) The soil is weightless. 

3) Originally, before the application of the single concentrated load, the soil is 

not subjected to any other stress, the soil is stress-less or unstressed. 

4) The stress distribution from the applied, concentrated load is independent of the 

type of material of which the homogeneous, elastic-isotropic body is made. 

Relative to soil the change in volume upon the application of stress to the soil is 

neglected. 

5) The stress-strain relationship is assumed to be linear. 

6) There exists a continuity of stress. 

7) In such a system the stresses are distributed symmetrically with respect to the z-

axis. 

 

 The limitations of the theory based on the above assumptions restrict it to the 

proportionality between stress and deformation. The principles of derivation of 

Boussinesq’s equations are: there are six unknown quantities in the stress distribution 

problem, seen in Figures A1 and A2 and namely: 

 

 the normal stresses:    σy,  σt,  σR  ; 

 the shear stresses:   τ, and 
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 displacements:   s1 (radial component) and  

  sv (vertical component). 

 

Hence, the solution requires 6 independent equations. The equilibrium condition of an 

elementary material prism renders 2 equations for the axi-symmetrical stress condition. 

The relationship between stress and strain and the continuity conditions render the other 

four equations. 

 

A.3.  System 

 

In applying Boussinesq’s theory to soil, imagine the following system, Figure A.1, 

the ground surface is the (z = 0)-plane (plane Ho – Ho); it is the horizontal boundary of a 

semi-infinite medium, the medium of soil.  

 

 
 

Figure A.1. Orthogonal stresses (Jumikis, 1962) 

 

A single concentrated load, P, is acting on this plane at the point of origin of coordinates, 

0, along the z-axis. The positive direction of the z-axis is here, for the sake of convenience, 

directed downwards into the body of the semi-infinite medium to suit the contents of the 

matter under discussion. The positive branch of the y-axis is directed horizontally 90˚ 
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counter-clockwise from the z-axis. The positive x-axis is directed orthogonally to the y- 

and z-axes. The +x direction is then toward the viewer when viewing the (z-y)-plane. 

 

 
 

Figure A.2. Loads and stresses in a cylindrical coordinate system (Jumikis, 1962) 

 

In Figure A.1 are shown the orthogonal stresses at point, N(x; y; z), which are the 

normal and the shear stresses. In Figure A.2 are shown at point N(R; β) the polar stress, σR; 

or else, using the cylindrical coordinate system, there is shown the vertical stress, σz; the 

horizontal radial stress, σr; and the horizontal tangential stress, σt, in the R, z, r, and 

tangential directions. Here R is a radius-vector from O to N, making an angle, β, with the 

positive direction of the z-axis. The angle, β, is a directed angle and is measured from the 

+z-axis to the radius-vector, R, connecting the stressed point, N, with the point of origin of 

coordinates, O. The angle, β, is positive when it is followed counterclockwise. The 

horizontal distance from the z-axis to an arbitrary point, N, is designated by r. 
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A.4.  Designation of Stresses 

 

The stressed condition of soil at any point is characterized by the stresses acting at 

that point along the coordinate axis. In the orthogonal coordinate system, the stressed 

condition of an elementary cube of soil, the faces of which are parallel to the planes of 

coordinates is characterized by the following stresses Figure A.1 b. 

 

a) Normal Stresses: 

σz vertical stress 

σx horizontal normal stress acting along or parallel to the x-axis of coordinates 

σy horizontal normal stress acting along or parallel to the y-axis of coordinates. 

 

b) Shear Stresses 

τxy and τyx shear stresses acting in the planes of a cube, planes which are parallel 

to the z-axis of coordinates. These two shear stresses are acting in mutually 

perpendicular directions. 

τyz and τzy shear stresses acting in the planes parallel to the x-axis 

τzx and τxz shear stresses acting in the planes parallel to the y-axis 

 

Another mnemonic device for memorizing the shear stress designation is as follows: 

of the two subscripts to the shear stress symbol, τ, the first one indicates the direction of the 

plane in which the shear stresses, τ, acts whereas the second subscript indicates the 

direction in which τ acts. 

 

In the cylindrical coordinate system, the stresses σz, σr, and σt are normal stresses. 

The shearing stresses are designated by τ. Because of symmetry of the state of stress with 

respect to the z-axis, the shear stresses in the vertical, radial planes, such as the plane 

ONoNO’, as shown in Figure A.2 are of zero magnitude. 

 

According to the Boussinesq’s Theory, the various stresses caused in the semi-

infinite medium by a single, concentrated load have the functions summarized as follows: 
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In the semi-infinite medium by a single, concentrated load, according to the 

Boussinesq’s Theory, horizontal and vertical displacements are also obtained as follows: 
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The stresses in soil at any point N(R; β) in polar coordinates are: 
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For m = 2, 0=tσ  (A.16) 
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A volume-stable soil is characterized by Poisson’s coefficient of m = 2, in which the 

cubal deformation is proportional to (m - 2). With m = 2, Poisson’s ratio is                   μ = 

1/m = 0.5. 

 

Engineers are mostly interested in the vertical, normal, compressive stress, σz, 

particularly as it pertains to the bearing capacity of soil at different depths and on different 

types of soil layer below the ground surface, and to consolidation settlement analysis of 

foundation soils. For the same reasons, the derivation of the equation of the σz stress for   

m = 2 will now be presented. 

 

A.5.  Derivation of σz Stress 

 

Deformation: Assume point N(R; β) in the mass of soil, Figure A.3, and an 

elementary area m – n at N, and thereby ⊥  R. The problem is to express algebraically the 
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magnitude of the polar stress, σR, acting ⊥  to the area, m – n, and then to find an equation 

for σz.  

 

Consider that point N, is now translocated at point N1, by an amount of dR. Through 

points N and N1, two hemispheres can be drawn, the radii of which are R, and R + dR, 

respectively. The change in length of radius is, thus, dR. Note that the farther the point, N, 

is spaced, along radius from the concentrated load, P, the less is its displacement. The 

displacement is thought to take place because of the radially distributed stress in the soil. 

Besides, considering point N translocating along the circle whose radius is R, note that 

when β = 0, displacement of point N is larger than at β > 0. At β = 90°, displacement of 

point N approaches to the value of zero. 

 

 
 

Figure A.3. State of stress at a point (Jumikis, 1962) 

 

Designating displacement by the symbol, s, and noting from the above discussion 

that displacement is inversely proportional to R, and that displacement for a constant, R, is 

largest when β = 0, then displacement, s, can be written as 
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R

Cs βcos
=  (A.18) 

 

where C = coefficient of proportionality. At constant, R, when β = 90° , s = 0. 

 

Assume now that point N is displaced at point N1. Displacement, analogous to 

equation (A.18), is written as 
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Strain, ε, or relative deformation, δ/dR, relative to length, dR, where δ is absolute 

deformation, is 
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Stress and Strain: Neglecting in the denominator of equation (A.21) the quantity (R 

dR) which is small as compared with R2, obtain radial compressive strain 

  

 2

cos
R

C βε =  (A.22) 

 

By Hooke’s Law, it can be assumed that stress is proportional to strain 

 

 R Eσ ε=  (A.23) 

 

where E = modulus of elastisity, then the algebraic expression for polar stress is 

 



 150

 2

cos
R

EC
R
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Equilibrium: The coefficients, α and C, in equation (A.24), and consequently the 

polar compressive stress, σR, can be determined from the equilibrium condition between 

the single, concentrated load, P, acting normally to the horizontal, semi-infinite plane 

along the z-axis, and the system of the vertical projections of the upward-directed, polar, 

compressive stresses (equation A.24), acting with uniform distribution over the 

hemispherical surface with a radius of R, through point N, for example. 

 

∑ Fz = 0 

 

 dAP
A

R βσ cos
0∫=  (A.25) 

 

where  ( ) ββπββππ dRdRRdhRdA sin2sin22 2===  (A.26) 

 

is the curved surface of the spherical zone, n1nmm1, bounded by two parallel planes (nn1 

and mm1), Figure A.4. 

 
 

Figure A.4. Equilibrium conditions 

 

Equation (A.25) is now rewritten as  
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or, after integration, 
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Figure A.5. Relation of vertical stresses to polar stresses 

 

Polar Stress: Substituting equation (A.29) into equation (A.24), obtain the 

expression for polar stress 
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This equation reads that the polar stress, σR, varies inversely as the square of the distance, 

R2, from the point of application of the concentrated load, P, at the ground surface. 
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Vertical Normal Stress: In foundation engineering engineers are interested more in 

the vertical, normal, compressive stress, σz, acting on a horizontal area rather than in the 

polar stress. To find the vertical, normal, compressive stress, σz, Figure A.5, use is now 

made of Mohr’s graphical stress circle, Figure A.6. By means of this construction, 

 

 βσσ 2cosRz =  (A.31) 

 

Note from Figure A.6 that angle β determines the magnitude of σz ; σR is here known from 

equation A.30.  

 

 
 

Figure A.6. Finding vertical stresses σz , from Mohr’s circle (Jumikis, 1962) 
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Figure A.7. Coordinates of point N, the point of application of σz (Jumikis, 1962) 

 

Because Rz=βcos , 
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or substituting equation (A.30) into equation (A.32), obtain 
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With    222 rzR += , and with 222 yxr += , where x, y, and z are the coordinates of point 

N, Figure A.7, the vertical, normal, compressive stress, σz, is calculated as 
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or 
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is the Boussinesq vertical stress coefficient. 

 

Thus, equation (A.1) permits the calculation of the vertical, normal, compressive 

stress, σz, caused by concentrated load, P, at any point N, below the boundary surface, Ho-

Ho of a semi-infinite medium. 

 

When point N is on the z-axis, on the line of action of P, then β = 0, r = 0, and σz has 

a maximum value of 
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Note that Boussinesq’s equations give the stresses in a semi infinite medium caused 

by the surface loads only and the medium is weightless and the load P is a concentrated 

point load. 
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APPENDIX B:  NUMERICAL INTEGRATION FORMULAS 
 

 

Table B.1. The Gaussian quadrature formulas for constant weight function (Krylov, 1962) 
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Table B.2. The Gaussian Laguerre quadrature formulas (Krylov, 1962) 

 



 157

REFERENCES 

 

 

Abdel-Fattah, T. T., H. A. Hodhod, A. Y. Akl, 2000, “A Novel Formulation of Infinite 

Elements for Static Analysis”, Computers & Structures, Vol. 77, pp. 371-379. 

 

Anderson, D. L. and R. L. Ungless, 1977, “Infinite finite elements”, Int. Symp. Innovative 

Num. Anal. Appl. Eng. Sci., France. 

 

Askar, H. G. and P. P. Lynn, 1984, “Infinite Elements for Ground Freezing Problems”, 

Journal of Engineering Mechanics, Vol. 110, pp. 157-172. 

 

Astley, R. J., 2000, “Infinite elements for wave problems: a review of current formulations 

and an assessment of accuracy”, International Journal of Numerical Methods in 

Engineering, Vol. 49, pp. 951-976. 

 

Beer, G. and J. L. Meek, 1981, “Infinite Domain Elements”, International Journal for 

Numerical Methods in Engineering, Vol. 17, pp. 43-52. 

 

Bettess, P., 1977, “Infinite elements”, International Journal for Numerical Methods in 

Engineering, Vol. 11, pp. 53-64. 

 

Bettess, P., 1980, “More on infinite elements”, International Journal for Numerical 

Methods in Engineering, Vol. 15, pp. 1613-1626. 

 

Bettess, P., 1992, Infinite Eleements, Penshaw Press, U.K. 

 

Bettess, P., C. Emson, and K. Baldo, 1982, “Some Useful Techniques for Testing Infinite 

Elements”, Applied Mathematical Modeling, Vol. 6, pp. 436-440. 

 

Bettess, P., and O. C. Zienkiewicz, 1977, “Diffraction and refraction of surface waves 

using finite and infinite elements”, International Journal of Numerical Methods in 

Engineering, Vol. 11, pp. 1271-1290. 



 158

 

Bolza, O., 1973, Lectures on the Calculus of Variations, Chelsea Publishing Company, 

New York. 

 

Booker, J. R. and J. C. Small, 1981, “Finite Element Analysis of Problems with Infinitely 

Distant Boundaries”, International Journal of Numerical Methods in Engineering, Vol. 

5, pp. 345-368. 

 

Cheng, Y. M., 1996, “The Use of Infinite Elements”, Computers and Geotechnics, Vol. 18, 

No. 1, pp. 65-70. 

 

Cheung Y. K., S. H. Lo, A. Y. T. Leung, 1996, Finite Element Implementation, Blackwell 

Scince Ltd.  

 

Chow Y. K., 1987, “Vertical vibration of three-dimensional rigid foundation on layered 

media”, Earthquake Eng. Struct. Dyn., Vol. 15, pp. 585-594. 

 

Chow Y. K., and I. M. Smith, 1981, “Static and Periodic Infinite Elements”, International 

Journal for Numerical Methods in Engineering, Vol. 17, pp. 503-526. 

 

Chuhan Z. and Z. Chongbin, 1987, “Coupling Method of Finite and Infinite Elements for 

Strip Foundation Wave Problems”, Earthquake Engineering and Structural Dynamics, 

Vol. 15, pp. 839-851. 

 

Clough, R. W., 1960, “The Finite Element Method in Plane Stress Analysis”, Proceedings, 

American Society of Civil Engineers, 2nd Conference on Electronic Computation, 

Pittsburgh, pp. 345-378. 

 

Cook, R. D., D. S. Malkus, and M. E. Plesha, 1989, Concepts and Applications of Finite 

Element Analysis, John Wiley & Sons, Inc., USA. 

 

Courant, R., 1943, “Variational Methods for the Solution of Problems of Equilibrium and 

Vibrations”, Bulletin of the American Mathematical Society, Vol. 49, pp.1-23. 



 159

 

Curnier, A., 1983, “A Static Infinite Element”, International Journal for Numerical 

Methods in Engineering, Vol. 19, pp. 1479-1488. 

 

Damjanıć, F., D. R. J. Owen, 1984, “Mapped Infinite Elements in Transient Thermal 

Analysis”, Computers & Structures, Vol. 19, No. 4, pp. 673-687. 

 

Elsgolc, L. E., 1962, Calculus of Variations, Addison-Wesley Publishing Company Inc., 

Massachusetts. 

 

Fish, J., T. Belytschko, 2007, A First Course in Finite Elements, John Wiley & Sons, Inc., 

England. 

 

Gelfand, I. M. and S. V. Fomin, 1963, Calculus of Variations, Prentice-Hall, Englewood 

Cliffs, N.J. 

 

GeoStudio Version 6.02, Stress and Deformation Modeling with SIGMA/W, GEO-SLOPE 

International Ltd, Calgary, Alberta, Canada, 2004. 

 

GeoStudio, Analysis Reference, Stress and Deformation Modeling with SIGMA/W, GEO-

SLOPE International Ltd, Calgary, Alberta, Canada, 2004. 

 

GeoStudio, Tutorials, GEO-SLOPE International Ltd, Calgary, Alberta, Canada, 2004. 

 

Gökhan, G., 1978, Varyasyonlar Hesabı, Kutulmuş Matbaası, İstanbul. 

 

Hamidzadeh-Eraghi, H., R. and P. Grootenhuis, 1981, “The dynamics of a rigid foundation 

on the surface of an elastic half-space”, Earthquake Eng. Struct. Dyn., Vol. 9, pp.505-

515. 

 

Harmandar, E., 2002, Performance of Higher Order Finite Elements, M.S. Thesis, 

Boğaziçi University. 

 



 160

Hrennikoff, A., 1941, “Solution of Problems in Elasticity by the Frame Work Method”, 

Journal of Applied Mechanics, Vol. 8, No: 4, pp. 169-175. 

 

Jumikis, A. R., 1969, Theoretical Soil Mechanics : with practical applications to soil 

mechanics and foundation engineering, Van Nostrand Reinhold Co., New York. 

 

Jumikis, A. R., 1962, Soil Mechanics, D. Van Nostrand Company, Inc., New Jersey. 

 

Kaplan, W., 1980, Advanced Mathematics for Engineers, Addison-Wesley Publishing 

Company, USA. 

 

Khalili, N., M. Yazdchi and S. Valliappan, 1999, “Wave Propagation Analysis of Two-

Face Saturated Porous Media Using Coupled Finite-Infinite Element Method”, Soil 

Dynamics and Earthquake Engineering, Vol. 18, pp. 533-553.  

 

Krasnov, M. L., G. I. Makarenko and A. I. Kiselev, Problems and Exercises in the 

Calculus of Variations, MIR Publishers, Moscow. 

 

Kreyszig, E., 1962, Advanced Engineering Mathematics, John Wiley and Sons, New York. 

 

Krylov, V. I., 1962, Approximate Calculation of Integrals, The Macmillan Company, New 

York. 

 

Kumar P., 1985, “Static Infinite Element Formulation”, Journal of Structural Engineering, 

Vol. 111, pp. 2355-2372. 

 

Kumar P., 1986, “Numerical Modeling Criterion for the Analysis of Underground 

Openings using Infinite Elements”, Applied Mathematical Modeling, Vol. 10, pp. 357-

366. 

 

Kumar P., 2000, “Infinite Elements for Numerical Analysis of Underground Excavations”, 

Tunneling and Underground Space Technology, Vol. 15, pp. 117-124. 

 



 161

Logan, D. L., 2002, A First Course in the Finite Element Method, Thomson Learning, 

California. 

 

Lynn P. P., and H. A. Hadid, 1981, “Infinite elements with nr1  type decay”, International 

Journal for Numerical Methods in Engineering, Vol. 17, pp. 347-355. 

 

Lysmer, J., and R. L. Kuhlemeyer, 1969, “Finite Dynamic Model for Infinite Media”, 

Journal of the Engineering Mechanics Division of the ASCE, pp. 859-877, August. 

 

McHenry, D., 1943, “A Lattice Analogy for the Solution of Plane Stress Problems”, 

Journal of Institution of Civil Engineers, Vol. 21, pp. 59-82. 

 

Medina, F., 1981, “An axisymmetric infinite element”, International Journal for 

Numerical Methods in Engineering, Vol. 17, pp. 1177-1185. 

 

Medina, F., 1983, “Finite Element Techniques for Problems of Unbounded Domains”, 

International Journal for Numerical Methods in Engineering, Vol. 19, pp. 1209-1226. 

 

Noor, A. K., 1991, Bibliography of books and monographs on finite element technology, 

Appl. Mech. Rev., pp. 307-317. 

 

Pissanetzky, S., 1983, “An Infinite Element and a Formula for Numerical Quadrature over 

an Infinite Interval”, International Journal for Numerical Methods in Engineering, 

Vol. 19, pp. 913-927. 

 

Poulos, H. G. and E. H. Davis, 1974, Elastic Solutions for Soil and Rock Mechanics, John 

Wiley & Sons, Inc, New York. 

 

Rajapakse, R. K. N. D. and P. Karasudhi, 1986, “An efficient Elastodynamic Infinite 

Element”, International Journal of Solids and Structures, Vol. 22, No. 6, pp. 643-657. 

 

Rao, S. S., 1989, The Finite Element Method in Engineering, Pergamon Press, Oxford. 

 



 162

Sadecka, L., 2000, “A Finite / Infinite Element Analysis of Thick Plate on a Layered 

Foundation”, Computers and Structures, Vol. 76, pp. 603-610. 

 

Simoni, L. and B. A. Schrefler, 1987, “Mapped Infinite Elements in Soil Consolidation” 

International Journal for Numerical Methods in Engineering, Vol. 24, pp. 513-527. 

 

Tezcan, S. S., 1963, “Simplified Formulation of Stiffness Matrices”, Journal of the 

Structural Division, ASCE, pp. 445-449. 

 

Turner, M. J., R. W. Clough, H. C. Martin, and L. J. Topp, 1956, “Stiffness and Deflection 

Analysis of Complex Structures”, Journal of Aeronautical Sciences, Vol. 23, No. 9, pp. 

805-824. 

 

Ungless, R. L., 1973, An infinite finite element, M.S. Thesis, University of British 

Columbia. 

 

Wong, H. L. and J. E. Luco, 1976, “Dynamic response of rigid foundations of arbitrary 

shape”, Earthquake Eng. Struct. Dyn., Vol. 4, pp.579-587. 

 

Wood, W. L., 1976, “On the finite element solution of an exterior boundary value 

problem”, International Journal for Numerical Methods in Engineering, Vol. 10, pp. 

885-891. 

 

Yong, S. C., and C. B. Yun, 1992, “Axisymmetric infinite elements for soil-structure 

interaction analysis”, Engineering Structures, Vol. 14, pp. 361-370. 

 

Yun, C., D. Kim and J. Kim, 2000, “Analytical Frequency-Dependent Infinite Elements for 

Soil-Structure Interaction Analysis in Two-Dimensional Medium”, Engineering 

Structures, Vol. 22, pp. 258-271. 

 

Zhao, C. and S. Valliappan, 1993, “A Dynamic Infinite Element for Three-Dimensional 

Infinite Domain Wave Problems”, International Journal for Numerical Methods in 

Engineering, Vol. 36, pp. 2567-2580. 



 163

 

Zhao, C. and S. Valliappan, 1993, “Transient Infinite Elements for Seepage Problems in 

Infinite Media”, International Journal for Numerical Methods in Engineering, Vol. 17, 

pp. 323-341. 

 

Zhao, C. and S. Valliappan, 1994, “Transient Infinite Elements for Contaminant Transport 

Problems”, International Journal for Numerical Methods in Engineering, Vol. 37, pp. 

1143-1158. 

 

Zhao, C., C. Zang, and G. Zang, 1987, “Study on the characteristics of mapping dynamic 

infinite elements”, Earthquake Eng. Eng. Vib., , Vol. 7, pp. 1-15. 

 

Zienkiewicz, O. C., 1971, The Finite Element Method in Engineering Science, McGraw-

Hill Publishing Company, London.  

 

Zienkiewicz, O. C. and Y. K. Cheung, 1965, “Finite Elements in the Solution of Field 

Problems”, The Engineer, pp. 507-510. 

 

Zienkiewicz, O. C. and Y. K. Cheung, 1967, The Finite Element Method in Structural and 

Continuum Mechanics, McGraw-Hill Publishing Company, London.  

 

Zienkiewicz, O. C., C. Emson and P. Bettess, 1983, “A Novel Boundary Infinite Element”, 

International Journal for Numerical Methods in Engineering, Vol. 19, pp. 393-404. 

 

Zienkiewicz, O. C. and P. Bettess, 1977, “Diffraction and Refraction of Surface Waves 

Using Finite and Infinite Elements”, International Journal for Numerical Methods in 

Engineering, Vol. 11, pp. 1271-1290. 

 

Zienkiewicz, O. C., K. Bando, P. Bettess, C. Emson, and T. C. Chiam, 1985, “Mapped 

Infinite Elements for Exterior Wave Problems” ,International Journal for Numerical 

Methods in Engineering, Vol. 21, pp. 1229-1251. 

 



 164

Zienkiewicz, O. C. and P. Bettess, 1975, “Infinite elements in the study of fluid structure 

interaction problems”, Proc. 2nd Int. Symp. On Comp. Methods Appl. Sci., Versailles, 

also published in Lecture Notes in Physics, Vol. 58, Eds. J. Ehlers et al., Springer-

Verlag, Berlin, 1976. 

 

Zienkiewicz, O. C. and Y. K. Cheung, 1967, The Finite Element Method in Structural and 

Continuum Mechanics, McGrow-Hill Publishing Company, London.  

 




