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ABSTRACT

INFINITE ELEMENTS IN FINITE ELEMENT METHOD

It is natural and common to idealize stress or field problems into finite element
models with rigid boundaries remote from the area of interest. However, the degree of
accuracy of solutions may be significantly increased, if infinite elements extending to

infinity are used all along the rigid boundaries.

Infinite elements are introduced and also the history and development of these
elements are discussed in detail. The classification of the infinite elements is made as, a)
Mapped infinite elements, and b) Decay function infinite elements. Firstly, uni-
dimensional infinite elements are described and after the geometric and field variable
interpolation of these elements are expressed; the strain matrix and the stiffness matrix are
explicitly obtained. In this presentation, a total of 23 different types of 1-D (5), 2-D (13),
and 3-D (5) infinite elements have been investigated. Their geometrical configurations,
coordinate mapping and field variable mapping functions are presented explicitly in a

systematic fashion.

In order to emphasize the high performance and accuracy of the infinite elements,
four distinct case studies have been presented. Firstly, the deflection and stress analyses of
a point load and a circular uniform distributed load acting on a semi-infinite axi-
symmetrical medium have been presented with and without infinite elements. The results
have been compared with the exact solution by Boussinesq. Secondly, a square plate
loading on the axi-symmetric half space has been analyzed by using solid finite and 3-D
dynamic infinite elements. Thirdly, the calculation of the vertical vibration of a square
rigid plate resting on a semi-infinite half-space has been given. Finally, for the Boussinesq
problem, a sensitivity analysis is performed using not only various mesh sizes but also
springs all along the truncated boundaries and the results are compared. It is amply
demonstrated that the use of infinite elements provides unprecedented high degree of

accuracy.
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OZET

SONLU ELEMANLAR YONTEMINDE SONSUZ ELEMANLAR

Sonlu elemanlar yonteminde, gerilme problemlerinin ya da tabiatta karsilastigimiz
bazi problemlerin modellenmesinde; ilgilenilen bolgeden uzakta, sonsuza uzanan sinirlarin
sabitlenmesi c¢ok sik olarak kullanilmaktadir. Ancak, bu problemlerin sonsuza uzanan
siirlarinda sonsuz elemanlar kullanilmast durumunda, daha gerg¢ek¢i ve dogru sonuglar

elde edilebilmektedir.

Once sonsuz elemanlarin genel bir tamimi verilmis, daha sonra bu elemanlarin
bulunusu ve tarihsel gelisiminden detayli olarak bahsedilmistir. Yine bu elemanlarin,
a) Haritalanan sonsuz elemanlar ve b) Azalan fonksiyonlu sonsuz elemanlar olarak
smiflandirilmast yapilmistir. Oncelikle, bir boyutlu sonsuz elemanlar tarif edilmistir. Daha
sonra geometrik ve bilinmeyen degisken interpolasyonunun tanimlanmasinin ardindan,
gerilme ve stifnes matrisleri olusturulmustur. Bu tezde, toplam 23 farkli sonsuz eleman tipi
1 Boyutlu (5), 2 Boyutlu (13), ve 3 Boyutlu (5) incelenmistir. Bu elemanlarin geometrik ve
bilinmeyen degisken interpolasyon fonksiyonlar1 son derece sistematik ve anlasilir bir

bicimde sunulmustur.

Sonsuz elemanlarin son derece yiiksek performans ve dogru sonuglar verdiklerini
gdsterebilmek amaciyla, dort degisik drnek ¢alisma verilmistir. i1k olarak, yari1 sonsuz aksi-
simetrik ortama etkiyen tekil ylik ve dairesel diizgiin yayil yiik analizleri sonsuz elemanlar
kullanilarak ve kullanilmadan yapilmistir. Sonuglar, Boussinesq’in kesin ¢oziimii ile
karsilagtirmali olarak sunulmustur. Daha sonra, {i¢ boyutlu sonlu ve ii¢ boyutlu sonsuz
elemanlar kullanilarak, yar1 sonsuz ortamdaki kare bir plagin analizi verilmistir. Daha
sonra, yart sonsuz ortamdaki kare bir plagin diisey titresimi verilmistir. Son olarak,
Boussinesq problemi i¢in hassaslik analizi yapilmistir. Ayrica, problemin sonsuza giden
sinirlarinda yaylar kullanilmistir ve sonuglar irdelenmistir. Ornekler gostermistir ki, sadece
sonlu elemanlar kullanildiginda sonuglar, problemin kesin ¢oziimiine uzak kalirken; sonsuz

elemanlarin kullanilmasi ile kesin ¢oziime ¢ok yakin degerler elde edilmektedir.
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1. FINITE ELEMENTS IN ENGINEERING

1.1. Basic Concept of Finite Element Method

Many physical phenomena in engineering and science are described in terms of
partial differential equations. In general, solving these equations by classical analytical
methods for arbitrary shapes is almost impossible. The finite element method however, is a
numerical approach by which these partial differential equations are solved approximately.
From an engineering standpoint, the finite element method is a numerical approach for
solving a variety of engineering problems, such as stress analysis, heat transfer, fluid flow

and electromagnetics by computer simulation.

Millions of engineers and scientists wordwide use the finite element method to
predict the behavior of structural, mechanical, thermal, electrical and chemical systems for
both design and performance analyses. Its popularity can be gleaned by the fact that over
$1 billion is spent annually in the United States on finite element method software and
computer time. A 1991 bibliography (Noor, 1991) lists nearly 400 finite element books in
English and other languages. A web search in 2006 for the phrase “finite element” using
the Google search engine yielded over 14 million pages of results. Mackerle
(http://ohio.ikp.liu.se/fe) lists 578 finite element books published between 1967 and 2005.
(Fish and Belytschko, 2007)

The basic idea behind the finite element method is to divide the body into finite
elements, often just called elements, connected to each other at their nodes, and obtain an
approximate solution. The same basic approach is used in other types of problems. In stress
analysis, the field variables are the displacements; in chemical systems, the field variables
are material concentrations; in electromagnetics, the potential field. In fluid mechanics
problems, the nodal unknowns may, for instance, be fluid pressures due to fluid fluxes
(Logan, 2002). The same type of mesh is used to represent the geometry of the structure or
component and to develop the finite element equations, and for a linear system, the nodal
values are obtained by solving large systems (from 10° to 10° equations are common today,

and in special applications, 10°) of linear algebraic equations.



For problems involving complicated geometries, loadings, material properties, it is
generally not possible to obtain analytical mathematical solutions. Analytical solutions are
those given by a mathematical expression that yields the values of the desired unknown
quantities at any location in body and are thus valid for an infinite number of locations in
the body. These analytical solutions generally require the solution of ordinary or partial
differential equations, which, because of the complicated geometries, loadings, and
material properties, are not usually obtainable. Hence, the numerical methods are needed,
such as the finite element method, for acceptable solutions. The finite element formulation
of the problem results in a system of simultaneous algebraic equations for solution, rather
than requiring the solution of differential equations. These numerical methods yield
approximate values of the unknowns at discrete numbers of points in the continuum.
Hence, this process of modeling a body by dividing it into an equivalent system of smaller
bodies or units named finite elements interconnected at points common to two or more
elements (nodal points or nodes) and/or boundary lines and/or surfaces is called
discretization. In the finite element method, instead of solving the problem for the entire
body in one operation, equations are formulated and combined to obtain the solution of the

whole body.

An example of how a finite element model represents a complex geometrical shape is
shown in Figure 1.1. It is very difficult to find the exact response (stresses and
displacements) of the machine under any specified loading condition; this structure is
approximated as composed of several pieces as shown in Figure 1.1 in the finite element
method. In each piece or element, a convenient approximate solution is assumed and the
conditions of overall equilibrium of the structure are derived. The satisfaction of these
conditions will yield an approximate solution for the displacements and stresses (Rao,
1989).



Figure 1.1. Representation of finite elements (Courtesy of Rao, 1989)

1.2. Brief History and Development of Finite Element Method

Advances in aircraft engineering lead to originate the basic idea of finite element
method. The modern development of the finite element method began as early as in the
1940s in the field of structural engineering with the pioneering work by Hrennikoff (1941).
Hrennikoff presented a solution of elasticity problems using the ‘frame work’ method. A
rectangular finite element model is modeled by means of uni-dimensional lattice bars as
originally introduced by Hrennikoff. A typical Hrennikoff lattice cell contains four uni-
dimensional flexural bars rigidly connected to each other at the corners. They can carry
torsional moments also. The two diagonal bars, however, can only transfer bending

moments at their ends.

McHenry (1943) used a lattice of one-dimensional elements for the solution of
stresses in continuous solids. He published in a paper in 1943 but not widely recognized
for many years. Courant (1943) proposed setting up the solution of stresses in a variational
form. Then he introduced piecewise interpolation (or shape) functions over triangular sub-
regions making up the whole region as a method to obtain approximate numerical solutions
(Logan, 2002).



The general finite element method was developed in the 1950s in the aerospace
industry. The major players were Boeing and Bell Aerospace in the United States and
Rolls Royce in the United Kingdom. M. J. Turner, R. W. Clough, H. C. Martin and L. J.
Top published one of the first papers that laid out the major ideas in 1956 (Turner et al.,
1956). They derived stiffness matrices for truss elements, beam elements, and two
dimensional triangular and rectangular elements in plane stress and outlined the procedure
commonly known as the direct stiffness method for obtaining the total structure stiffness
matrix. Along with the development of the high-speed digital computer in early 1950s, the
work of Turner et al. prompted further development of finite element stiffness equations
expressed in matrix notation. The phrase ‘finite element’ was first introduced by Clough

(1960) when both triangular and rectangular elements were used for plane stress analysis.

Several capable researchers recognized the finite element method’s potential early,
most notably O. C. Zienkiewicz and R. H. Gallagher (at Cornel). O. C. Zienkiewicz built a
renowned group at Swansea in Wales that included B. Irons, R. Owen and many others
who pioneered concepts like the isometric element and nonlinear analysis methods. Other

important early contributors were J. H. Argyris and J. T. Oden.

Engineers used the method for approximate solution of problems in stress analysis,
fluid flow, heat transfer, and other areas in early 1960s. Field problems such as
determination of the torsion of a shaft, fluid flow, and heat conduction were solved by
Zienkiewicz and Cheung (1965). In the late 1960s and early 1970s, the finite element
analysis was applied to nonlinear problems and large deformations.

The finite element method is rapidly becoming an essential and integral part for the
solution of medical problems, such as orthopedics, dentistry, etc. Finite element
technology consists of a library of element models, a process for combining these models
into a mathematical model of an engineering system, and a set of algorithms for numerical
solution of equations. This method supported by computer software and by knowledge
based on application experiences. The real application of finite element methods requires
not only the superiority of the theory but also a significant computer programming effort
(Harmandar, 2002).



1.3. Applications of Finite Elements

The range of applications of finite elements is too large to list, but to provide an idea

of its versatility, following may be listed:

e Stress and thermal analyses of industrial parts such as electronic chips, electric
devices, valves, pipes, pressure vessels, automotive engines and aircraft;

e Seismic analysis of dams, power plants, cities and high-rise buildings;

e Crash analysis of cars, trains and aircraft;

e Fluid flow analysis of coolant ponds, pollutants and contaminants, and air in
ventilation systems;

o Electromagnetic analysis of antennas, transistors and aircraft signatures;

e Analysis of surgical procedures such as plastic surgery, jaw reconstruction,

correction of scoliosis and many others.

The finite element method was developed for the analysis of aircraft structures as
stated earlier. This method is applicable to a wide variety of boundary value problem in
engineering. A boundary value problem is one in which a solution required in the domain
of a body subject to the satisfaction of prescribed boundary conditions on the dependent
variables or their derivatives. A general list of fields of applications of finite element
method is given in Table. For each field of application the problem is formulated in anyone
of the following types:

e Equilibrium problems
e Eigenvalue problems

e Propagation or transient problems

In an equilibrium problem, it is necessary to find the steady state displacement or
stress distribution if it is a solid mechanics problem; the temperature or heat flux
distribution if it is a heat transfer problem; and finally the pressure or velocity distribution
if it is a fluid mechanics problem.



Eigenvalue problems are sometimes called characteristic value problems and occur
in the analysis of homogeneous differential equations. Time will not appear explicitly in
eigenvalue problems. These problems can be considered as extensions of equilibrium
problems in which critical values of certain constraints are to be determined in addition to
the corresponding steady state configurations. The natural frequencies or buckling loads
and mode shapes are determined for the solid mechanics or structures problem; the
stability of laminar flows for the fluid mechanics problem; and the resonance
characteristics for the electrical circuit problem.

The propagation or transient problems are time dependent. The response of a body
under time varying force in the area of solid mechanics and under sudden heating or
cooling in the field of heat transfer comprise this type of problems (Harmandar, 2002).



Table 1.1. Fields of applications of the finite element method

Area of Study

Equilibrium Problems

Eigenvalue Problems

Propagation Problems

Civil Engineering
Structures

o Static analysis of
trusses, frames, folded
plates, shell roofs, shear
walls, bridges and
prestressed concrete
structures

o Natural frequencies
and modes of structures

o Stability of structures

o Propagation of stress
waves

 Response of structures
to aperiodic loads

Aircraft Structures

o Static analysis of
aircraft wings,
fuselages, fins, rockets,
spacecraft and missile
structures

o Natural frequencies,
flutters, and stability of
aircraft, rocket,
spacecraft and missile
structures

¢ Response of aircraft
structures to random
loads, dynamic response
of aircraft and
spacecraft to aperiodic
loads

Heat Conduction

o Steady state
temperature distribution
in solids and fluids

e Transient heat flow in
rocket nozzles, internal
combustion engines,
turbine blades, fins and
building structures

Geomechanics

e Analysis of
excavations,
underground openings,
rock joints and soil
structure interaction
problems.

e Stress analysis in
soils, dams, layered
piles and machine
foundations

o Natural frequencies
and modes of dam
reservoir systems and
soil-structure interaction
problems

¢ Time-dependent soil-
structure interaction
problems.

¢ Transient seepage in
soils and rocks.

o Stress wave
propagation in soils and
rocks

Hydrodynamics

o Analysis of hydraulic
structures and dams

e Sloshing of liquids in
rigid and flexible
containers

o Rarefied gas dynamics

e Magneto
hydrodynamic flows

Biomedical
Engineering

o Stress analysis of
eyeballs, bones and
teeth

e Mechanics of heart
valves

o Impact analysis of
skull

¢ Dynamics of
anatomical structures

Nuclear Engineering

o Analysis of nuclear
pressure vessels and
containment structures

o Steady state
temperature distribution
in reactor components

o Natural frequencies
and stability of
containment structures

e Neutron flux
distribution

¢ Response of reactor
containment structures
to dynamic loads

e Unsteady temperature
distribution in reactor
components




2. HISTORY OF INFINITE ELEMENTS

2.1. Introduction to Infinite Elements

In several fields of engineering and science, a large number of problems have
domains that are assumed to extend to infinity. The analysis extends to large distances in

one or more directions to represent the far field domain.

Such an unbounded medium appears in a wide variety of practical engineering
problems, such as soil-structure interaction, consolidation and settlement of soils, ground
freezing problems, seepage and ground water flow, contaminant or pollutant diffusion,
sediment transport and fluid flow, wave diffraction and refraction, wave propagation,
hydrodynamic pressure on dams and off-shore structures, underground structures and

thermal transient problems.

Some examples are water waves behind a breakwater, an airplane wing moving
through air, diffraction of water waves around an island, a building or dam supported by
the ground, aerofoil in flowing water and some of which can be seen in Figure 2.1 through

2.5.

Breakwater

Yo 7

Figure 2.1. Water waves behind a breakwater



Airflow

Figure 2.2. Depiction of airflow over a wing

Water Flow

Island

!

Figure 2.3. Diffraction of water waves around an island

One solution to these problems is to truncate the domain of analysis at large but finite
distances from the place of load application. In traditional finite element analysis, these
problems are analyzed by extending the conventional finite element mesh outward to a
point where the influence of the place of load application is small enough to be neglected,

and applying either fixed or movable displacement or constant stress boundary conditions
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there. This approach generally requires experimentation with several grid sizes and
assumed boundary conditions. The disadvantage in such schemes is that a very large
number of node points may be involved simply in modeling the remote region where the
perturbation in the stress or displacement field is virtually zero and the method is not

suitable for many dynamic analyses.

—— e e e e ‘

Figure 2.4. Aerofoil in flowing water

To analyze such problems efficiently by the finite element method, infinite elements
are introduced to be used combined with the finite elements in order to discretize the
domain of analysis. One of the purposes of an infinite element is to model an unbounded
domain economically. Reciprocal form of shape functions are introduced over infinite
elements which then decays to zero at infinity. Several types of element shape functions

which extend to infinity are utilized to generate infinite elements.
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Figure 2.5. A dam supported by the ground

2.2. Origin of Infinite Elements

It is easy to classify infinite elements as static type or dynamic type, as the methods
needed for the two types are quite different. Here, the static type and dynamic type will be
discussed, although some static types can be used for some dynamic problems. In addition,

the infinite elements will be classified as mapped or decay function type.

The first infinite element produced was that of Ungless and Anderson, in 1973. They
called their element an infinite finite element. The idea behind the infinite element of

Ungless and Anderson was the use of a shape function which varied as 1/(1+r) in the

radial or r direction. As they remark, this is sufficiently simple for most of the
manipulations to be handled analytically. Their infinite finite element is three dimensional
and has a triangular base, which is defined to be in the local xy plane, and is extended from
this base to infinity. It is therefore approximately a triangular prism in shape, with the z
direction (which is defined as being perpendicular to the base) being infinite. The element
is sketched in Figure 2.6. As Ungless and Anderson (1973) point out, the simple shape

function chosen can lead to incompatibilities between adjacent elements, if the bases of
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adjacent elements are not parallel. The edges of the elements, in the infinite direction are
defined as radiating from some pole. The element matrices are formed using analytical
integration in the Xy plane and numerical integration in the z direction. The integration
scheme used is a trapezoidal rule scheme, in which the integral is first mapped onto the
range [-o0,0]. The element was tested on the familiar Boussinesq point load on a half space
problem, with a hemispherical region around the load removed, to avoid problems with the
singularity under the load. Good results were obtained for loads parallel to the free surface

and normal to it. Some are shown in Figure 2.7.

Figure 2.6. Geometry of Ungless and Anderson (1973) infinite element
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Undeformed boundary
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Deformed boundary

Exact solution
® |nfinite element solution

Figure 2.7. Displacements due to a vertical point load on elastic half space obtained by

Ungless and Anderson (1973)

The second published work on infinite elements was a paper, by Zienkiewicz and
Bettess, in 1975. The original formulation of infinite elements by Bettess is quite different.
It is described in the two papers by Bettess in 1977 and 1980. The element domain is
extended to infinity, using as a basis any original finite element. The shape function is then
multiplied by a decay function which is appropriate for the particular problem type. The

arrangement is as shown in Figure 2.8.

In this type of infinite element the shape function is multiplied by a decay function,
so that the desired behavior at infinity is obtained. The first decay functions used by
Bettess were of an exponential type, and typical terms in the infinite element matrices thus
had the form of a polynomial multiplied by an exp (-r) term. These types of integrals can
be found analytically, and so infinite elements of a rectangular form, which extended to
infinity in one or more directions were developed. They were first applied to some simple
one dimensional examples and then they were applied to more complicated two

dimensional and axi-symmetric problems.
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Figure 2.8. Geometry of typical decay function infinite elements (Bettess, 1980)

Bettess (1977) applied the technique to a simple two-dimensional viscous flow
problem, that of a cylinder rotating in an infinite viscous liquid. The cylinder has a unit
radius. The element mesh for flow around a cylinder can be seen in Figure 2.9. The results
for element velocities in the x and y directions along various sections through the quadrant

are shown in Figure 2.10 with comparisons with the exact solution.
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Figure 2.9. Element mesh for flow around a cylinder (Bettess, 1977)
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Figure 2.10. Velocities around a cylinder: u and v are velocities in the X and y directions

(Bettess, 1977)
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Although the necessary integrations can be carried out analytically, it is also possible

to use numerical integration methods, which lead to the possibility of parametric elements.

2.3. Infinite Element Classification

Infinite element formulations are constructed following two main lines of
development. Although detailed discussion will be made in chapter 3, these are briefly
explained here: A) Decay Function Infinite Elements: These are produced by the help of
decay functions in conjunction with the ordinary finite element shape functions. These use
standard shape functions for geometry and “decay shape functions” for the field variables
(e.g. displacement components), so that the element remains of finite size while the field
variables decay. B) Mapped Infinite Elements: These consist of mapping of the element
from finite to infinite domain. Many mappings are possible, and the first is that of Beer and
Meek (1981). Opinions vary, but the Zienkiewicz mapping is seen by Bettees as the best
available, because of its simplicity and theoretical advantages. These use standard shape
functions for the field variables but “growth shape functions” for the geometry. The latter

grow without bound as a natural coordinate approaches a certain value.

Somewhere in between these approaches is the idea of using a series of the form
1/r, 1/r*,1/r°, etc. This idea, taken to the first term by Ungless and Anderson, is implicit
in the method of Wood (1976). All these methods have their attractive features and it is

always possible to choose a problem for which a given method will give the best answer.
2.4. Studies and Development of Infinite Elements
By using a specially devised mapping, Beer and Meek (1981) analyzed several
sample problems for openings in infinite media with comparisons with either theoretical or

boundary element solutions which include the infinite boundary in their solution technique.

The geometry of the element is described by conformal mapping of the element

including the infinite portion on to the usual, non-dimensional square or cube.

X = N. X. (2.1)
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where, X; is the current point and N, are the shape functions. Beer and Meek applied their

new element to the determination of the stresses and displacements induced by an
excavation in a pre-stressed medium. They considered two types of openings: circular and
rectangular. The stresses and displacements necessary to give a traction-free excavation
surface are then determined. They obtained excellent agreement between their results and

the analytical solution of the problem.

Beer and Meek (1981) also dealt with spherical opening in an elastic solid. They
applied these elements to the elasto-plastic analysis of tabular ore body extraction at the
Mount Isa mine in Australia. They have since developed alternative methods which

involve linking finite elements to boundary integrals.

Chow and Smith (1981) developed serendipity infinite elements to analyze static and
periodic problems in geomechanics. Askar and Lynn (1984) developed infinite elements
with proper decaying shape functions for ground freezing problems in different spatial

domains:

a 4 n-l1 0_9
N =|— ! 2.2
' (rj H 6 -0 2)

The use of the infinite elements for ground freezing problems resulted in a
considerable savings in the number of elements and nodes used in the mesh; consequently
savings also resulted in the computer storage and cost. Damjani¢ and Owen (1984) used
mapped infinite elements for modeling unbounded thermal transient problems. They
solved three problems, namely 1) Linear infinite strip with prescribed boundary
temperature, 2) Buried cable problem, 3) Spherical cavity problem. They saved substantial

computational time with accurate results.

Simoni and Schrefler (1987) applied mapped infinite elements in two consolidation
problems and they achieved excellent agreement between infinite elements and analytical
solutions. Zhao and Valliappan (1993) presented a time-dependent infinite element which

can be used to simulate transient seepage problems in infinite media. In order to examine
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the accuracy and efficiency of the infinite elements, they solved both a one-dimensional
transient seepage problem in a semi-infinite medium and a two-dimensional transient

seepage problem in a full plane using the finite and infinite element technique.

Medina (1981) used an axisymmetric infinite element in order to analyze the
Boussinesq and Cerruti problems which deal with vertical and horizontal point loading on
an elastic half space. His shape functions in the infinite direction were similar to those of
Ungless. He used Gauss-Laguerre numerical integration, in the problem co-ordinates, over
an infinite domain, and paid particular attention to the number of integration points needed.
Medina also obtained results for a vertically loaded rigid circular plate on an elastic half
space, and they compared well with the exact solution. The problem geometry, mesh used

and resulting displacements are shown in Figure 2.11.

¢

a) Circular mesh b) Rectangular mesh
with infinite element with infinite elements

T 10

g P,

a ——

" [ Exact
a ' solution
oy W

i os | :

=N Numerical solutions

g2 oElastic FFB , mesh(a)

o = ®Rigid FFB . mesh(a) o

J OElastic FFB , mesh (b) .

‘5.-, 0 | 1 1

0.5 1.0 1.5 2.0
Distance from z-axis , r/o

(c) surface (plane z = 0) vertical displacement solution

Figure 2.11. Vertically loaded rigid circular plate by Medina (1981)
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Bettess and et al. (1982) developed some useful techniques for testing infinite
elements. They devised simple one-dimensional test problems in order to test and evaluate
infinite element formulations. The crux of the method is that a one dimensional problem is
posed which is made artificially to contain decay of the solution. The first results, obtained
using the Zienkiewicz form of mapped infinite elements, were published by Zienkiewicz

and et al (1983).

Also, Lynn and Hadid (1981) built up a series of infinite elements, which combined
terms of the form 1/ r" in the shape functions, and applied them to several unbounded

elasticity problems. They solved the case of a circular load on an elastic half space and a
ring load. They compared their results with those of the exact solution and excellent
performances of the element are obtained. Figure 2.12 shows the non-dimensional surface
deflection of an elastic half-space under a ring load using infinite elements, compared with

the exact solution.

0.0

o1k Ring load

02}

Exact solution
03
04

05
A Fine mesh (6x10)
O Coarse mesh (4x6)

w / [Er, /(P(1-v2))]

0.6

0.7

08

Figure 2.12. Surface deflection of elastic half-space due to a ring load

A Static Infinite Element which classes the decay function and mapped infinite
elements as descent and ascent shape functions respectively was described by Curnier
(1983), and Curnier showed that they can be made equivalent under certain conditions. For
the Flamant problem of a line load acting on an elastic half space and the Boussinesq
problem, Curnier gave some results. Good agreement is obtained with analytical solutions
of both line load and point load, even that for the plane problem, which has the logarithmic

behavior.
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Kumar gave static infinite element formulation in 1985 and he used infinite elements

in the analysis of underground openings in 1986.
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3. CLASSES OF INFINITE ELEMENTS

Infinite elements are actually the same as finite elements that have one or more
dimensions of infinite extent in physical space. Informally one can say that some nodes of
these elements “go to infinity”. Many physical problems deal with an unbounded medium.
The main application of these elements is obviously the treatment of media of infinite
extent, where “infinite” in practice means that the domain that influences the solution (the
influence domain) is much larger than the domain of interest. These are collectively called

unbounded domain problems.

In all these problems a conventional finite element mesh (the computational domain)
must be terminated somewhere short of infinity. For many static problems simple
truncation at a rigid boundary may work satisfactorily, but it may be unclear where such
truncation should take place. A computational compromise is often at work in these
situations, as follows: If the truncation boundary is placed too near to the area of interest,
the computational effort is saved but the solution accuracy can suffer; if the truncation
boundary is placed far away from the area of interest, the solution accuracy is improved

but the computation expense may become excessive.

In dynamic problems a rigid boundary reflects a wave, regardless of the size of the
mesh; therefore, the model actually misrepresents the reality. Various techniques have
been used to treat unbounded problems, both static and dynamic, with various degrees of
sophistication. An example of single load P on axially symmetric body of infinite extent
can be seen in Figure 3.1 (a). The crudest model is the rigid boundary mesh truncation
illustrated in Figure 3.1 (b). Infinite elements can be used in the model as seen in Figure
3.1 (c) and they produce very accurate results in static problems with rather small
computational expense. In other words, infinite elements permit satisfactory results to be

obtained from fewer elements than would be otherwise required.
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Rigid Boundary < Infinite Elements

(a) Real Domain (b) Bounded Domain (c) Unbounded Domain

Figure 3.1. (a) Load P on axially symmetric body of infinite extent, (b) Large mesh of

conventional finite elements, (c) Smaller mesh bounded by infinite elements

In static stress analysis, infinite elements are analogous to elastic foundations in the
sense that they provide approximately correct support conditions for the domain of interest
that is modeled by conventional finite elements. Infinite elastic elements based on the
standard total potential energy principle have been constructed with two alternate

techniques as follows:

3.1. Mapped Infinite Elements

Mapped infinite elements use completely different shape functions in the infinite
direction. This type of infinite element almost always involves a mapping, if only to obtain
a numerical integration formula. Sometimes two mappings are needed, one for the shape
function and one for the integration formula. For conciseness these methods will all be
called mapped infinite elements. Many of the infinite elements proposed have used the idea

of mapping, or can be cast in that form. (Bettess, 1992)

Mapping of the element from finite to infinite domain is performed. Standard shape
functions are used for the field variables and growth shape functions are used for the
geometry. The latter grow without bound as a natural coordinate approaches a certain

value.
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Figure 3.2. Standard shape functions of four-node line element for field variables

In order to illustrate field variable interpolation of four-node line element, standard
shape functions are sketched in Figure 3.2. Growth shape functions are pictured to

demonstrate geometry interpolation of four-node line element in Figure 3.3.



24

Figure 3.3. Growth shape functions of four-node line element for the geometry
3.2. Decay Function Infinite Elements

In the last decades, many special elements have been introduced to extend the scope
of the finite element method to infinite elements. The main idea of the decay function
infinite element approach is that the finite element shape function is multiplied by a decay
function. The finite shape functions will not be appropriate to describe the behavior of the
field variables, towards infinity, and so decay functions are introduced, which modify the
finite element shape functions. Decay function ensures that the behavior of the element at
infinity is a reasonable reflection of the problem. This usually means that the field variable
must tend monotonically to its far field value. If the parent finite element shape function is

written as P, =(§,77) where & and nare local coordinates and the decay function is

f. =(&77), where the subscript denotes the node number then:

N;(&,n) =P (&) f,(Sn) (3.1)

(no summation on i)
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The decay function f,(&,7) must be unity at its own node, that is:

fi(&im) =1 (3.2)

In addition N; must tend to the far field value at infinity. There is no requirement that the
decay function takes any special value at other nodes. Whatever f is, the required

derivatives of the element shape function can easily be established using the chain rule:

0§ 0¢ o¢ on  0n
for decay only in the & direction, and
N P pdi gpg N Ry pdh (3.4)
o 0 o¢ on  on on

for decay in both & and 7 directions. Similar considerations apply in three dimensions.
Second derivatives can also be found if required. The & coordinate would normally be in
the radial direction, away from the domain of interest, and is usually simply a constant
multiplied by r, the radial coordinate. It is therefore simple to match & to 1/r or other

known forms of decay.
3.2.1. Exponential Decay Functions

An obvious choice for the decay function, and the first to be used, is the function
exp(-x). This has the advantage that it decays to zero faster than any polynomial and so
dominates the polynomial behavior as x is large and ensures convergence towards zero as x
increases. It is also almost as easy to manipulate mathematically as a polynomial. The

more precise expression for the decay function is:

N (£)=exp| (& -¢)/L] (£>4) (35)
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for decay only in the positive & direction. The inclusion of &, ensures that equation (3.2)

holds. For decay in both & and 7 directions the equation (3.5) becomes:

N (&m)=exp[ (& +m-&-n)/L] (3.6)

Here L is a length which determines the severity of the decay. It is also possible to set L to
unity and to set the severity of the decay by the distance between the nodes. It is a trivial

matter, if required, to cause the decay to be in the negative & direction, in which case

equation (3.5) becomes:
N (¢)=exp[(¢-&)/L] (¢<&) (3.7)

It is also possible to define the exponential decay in the global co-ordinates of the
problem. In this case the dominant part of the decay function is exp(— r/L), where L is

again decay length and r is the radius from some origin.

For instance, a set of shape functions based on Lagrange polynomials multiplied by
exponential decay terms may be written using the equation (3.8). The shape functions for
n=3 and L=1 are sketched in Figure 3.4. How the shape functions decay at infinity is

seen easily.

n-1
X. —X
Ni — (XI_X)/LLi :e(x,—x)/L | I [XJ . J (38)

Please note e is present only when x> x; .
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0 1 2 3

Figure 3.4. Typical decay shape functions (Bettess, 1977)
3.2.2. Reciprocal Decay Functions

The procedure is simple. A reciprocal decay function is taken of the form:

é:'_é:o |
N. =230 3.9
) (5—&} 49

where &, is some origin point. This point must be outside the infinite element, i.e. it will

be on the opposite side to that which extends to infinity. Usually, if the decay is in the

positive & direction then &, < —1. This avoids a singularity within the infinite element and
n is selected to be greater than the highest power of & encountered in P,. This ensures that
as & tends to infinity the shape function, N,, tends to 0. There is no necessity for n to be

an integer. For instance, if 3 points are considered, the first two points having finite co-
ordinates and the 3" point being infinitely distant, shape function for the 2" node may be

sketched in Figure 3.5.
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Recirocal decay function N, (£)=[(&-&)/(¢-&)]
|\|2 Example, N, =[1/(£+2)]" (n>2)

1 / ffffffff 1

Oe------- -® ® ®
0 1 2 3

§=-2 =-1 =0 E=+1

Figure 3.5. Reciprocal shape function for the 2" node

As in the case of exponential decay, the decay function can be generalized to two

directions, for example:

Ni(g,n)=(§i_§°]l[’7‘_"°]m (3.10)

$-% =1

Decay in the negative & direction can also be dealt with

%Eo_égi ”
N. =20 _>i 3.11

where now &, must be > 1. It is also possible to have a decay in the global coordinate.

This makes little difference to the theory. The decay function is written as

mo-(42) (4 @12

where the last term dictates the decay in global coordinates.
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4. UNI-DIMENSIONAL INFINITE ELEMENTS

The theoretical derivations for uni-dimensional infinite elements will be discussed in

this chapter.
4.1. Uni-dimensional Two-node Mapped Infinite Element

As shown in Figure 4.1, a uni-dimensional two-node mapped infinite element will be
studied. For geometry interpolation, the mapping function for a linear uni-dimensional

element is

N, = (4.1)

2
I-¢

The satisfactory performance of this mapping function can be easily shown. Let the co-

ordinate of the left hand of the infinite element be x,. Then the geometry interpolant can be

written as seen in equation (4.2).

x=x, N, (4.2)
£=—1 E=0 £=1
X r
%d—»‘ 1 2
0 1 2
N
X; I-¢ 4
X 1 / ,,,,,,,,,,,,,
X, = 0
(a) Physical space (b) Natural coordinate space

Figure 4.1. Uni-dimensional two-node mapped infinite element
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The shape functions for field variables, u(x)=u(&), can be written by the use of Lagrange

functions for the element as following and can be seen in Figure 4.2.

d
wi=1L L) { dl} (43)
1
L, =5(1—§) (4.4)
L,= %(1 +¢) (4.5)

In general coordinates, using & =—1 at node 1, and & =+1 at node 2 the shape function

L. becomes;
(4.6)

L =%(1+§§i)

I &

Figure 4.2. Shape functions of two-node line element for field variables

As an example of axially loaded two-node line element, let u be axial displacement

and let node 2 be fixed. The generic displacement vector of the element:
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{5 154

The strain component of the element can be written as

-fEge ufl2ls A e

From Figure 4.1, it is seen that, x, = a and derivative of L, with respect to x

d_dds (an)1 (1) | __10-¢) @9)
dc  déde \dé)dx \ 2) 2a 2 24 '
N

Derivative of L, can be obtain in the same fashion but it is not needed here. The axial

strain is

{gx}z{fl—i}{cé}z—j—;% (4.10)

We see that for a two-node line element of physical length 2a between nodes 1 and

2, axial strain decays parabolically from & =-d,/a at end £=-1 to ¢, =0 at end
& =+1, rather than being constant value &, =—d,/2a throughout as would be the case for

a standard two node element of length 2a.
4.2. Zienkiewicz Uni-dimensional Three-node Mapped Infinite Element

Zienkiewicz uni-dimensional three-node mapped infinite element will be defined.

The element extends from point x, through x, to x,, which is at infinity as seen in Figure

4.3. This element is mapped onto the finite domain —1< & <1 by the mapping expression
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x=x,N, +x,N, (4.11)
where
N, =% N, =L (4.12)
1- 1-¢&
X r E=— &=0 &=1
a a
1 2 3
o 1 2 3
X
X
X,
X3 =0
N, = i
1-¢
(a) physical space (b) natural coordinate space

Figure 4.3. Zienkiewicz uni-dimensional three-node mapped infinite element

At & =-1 x=x,05+x,05=x, (4.13)
At £=0 x=x,0+x,1=x, (4.14)
At & =1 X = X,00 + X,00 =00 (4.15)

Although, the point at & =—1 is the mid-point between X, and X, , it is possible to chose

X, anywhere in the interval X to X, by writing:

x, =yx, +(1-y)x, (4.16)
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The theory is worked out here for the case y =1/2.
An important feature of this mapping is the condition that
N,+N, =1 (4.17)

Otherwise the mapping will be affected by any change in the origin of the coordinate

system. Thus a shift in the origin by Ax leads to the new coordinates
xX,'=x, +Ax (4.18)
X,'=x, +Ax (4.19)
If these values are inserted in the equation (4.11) then:
x+Ax = (x, + Ax)N, + (x, + Ax)N, (4.20)
Ax = Ax(N, + N,) (4.21)
This is only true if equation (4.17) is satisfied. The next step is to see what form
polynomials in the finite, &, domain are transformed into in the unbounded x domain.
Consider a polynomial P,

P=a,+a,E+a,E* +a,E +.. (4.22)

which is typical of those used in finite element methods. The & to x mapping already

obtained is

(4.23)
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and its inverse is

I —— (4.24)
X=X,
And where r = x — x,, these can be written as
r= 2% and e=1-24 (4.25)
1-¢& r

On substitution into the general polynomial, P, a new polynomial in inverse powers of 7 is

obtained.

P:ﬂo-i-ﬁlé-i-ﬂzfz +ﬂ3§3 +. (4.26)
r r r

where the f. can be determined from the «’s and a. If the polynomial is required to

decay to zero at infinity then S, =0 (Zienkiewicz et al., 1983).

A generic field variable is interpolated over the infinite element by the standard

shape functions of the 3-node line element.

dl
Wwi={L, L, L,}1d, (4.27)
d3
where
L==2eli-¢), Li=1-, L= &+¢) 4.28)

and they are shown in Figure 4.4.
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H
N
w

Figure 4.4. Shape functions of three-node line element for field variables

4.3. Uni-dimensional Three-node Mapped Infinite Element

In order to illustrate the concepts and procedures, a uni-dimensional three-node
mapped infinite element will be studied as shown in Figure 4.5. The distance a between
nodes 1 and 2 may be considered a characteristic length of the element. Figure 4.5 also
shows a point labeled 0 at a distance a from 1. This point is not a node but a pole, whose

significance is explained subsequently.
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X - E=-1 =0 &=1
a a
1 2 3
0 1 2 3
Xg
X; 1
X,
0
Xy = ©
No= 2| .
1 1_ 5
(a) Physical space (b) Natural coordinate space

Figure 4.5. Uni-dimensional three-node mapped infinite element
4.3.1. Geometry Interpolation

The element geometry is interpolated according to two mapping functions, N; and,

N> which are rational in the natural coordinate & .

(x}={N, N,) {"} (4.29)

in which,

Y N, =1te (4.30)

Note that x=x,and x=x, for £=-1 and{ =0, respectively. However, x -, for
& =1. Thus, the mapping in equation (4.29) automatically places the node 3 at infinity;

consequently the node 3 need not be explicitly present in the geometry interpolant as seen

in equation (4.31).

X, zlcfinll_zéxll—'— (ig+§)x2 - (431)
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Consider the set of natural co-ordinates &£, 77 and a corresponding set of global co-
ordinates x, y. By the usual rules of partial differentiation, the & derivative can be written

as

ON, _aN, &x  oN, &

el (4.32)
0F  ox 0 oy OF

Performing the same differentiation with respect to the other natural coordinate 7

and writing in the matrix form:

ON,| [ax oy [eN, oN,
o | o of || ax o
_ =[/] (4.33)
AR A R
on) lon onll oy y

In the above, the left-hand side can be evaluated as the functions N; are specified in
natural co-ordinates. Further as x, y are explicitly given, the matrix [J ], can be found

explicitly in terms of the natural co-ordinates. The matrix is known as the Jacobian matrix.

To find now the global derivatives, [J] is inverted:

oN, N, o _o|[aN,
o N T
=[] =5 (4.34)
av| v | PV e e o,
oy on L On  0¢ [{On
The global derivative for a one-dimensional problem becomes:
N _ J! N, (4.35)

x| o8
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The Jacobian matrix for this uni-dimensional infinite element (same as its
determinant because it is a scalar) is

dg  dg dg

It is seen from Figure 4.5 that x, =a, x, =2a and the derivatives of the shape functions
N, and N, are as follows:

v, ____2 . (4.37)
¢ (1-¢)
an, __2 . (4.38)
¢ (1-¢)

The Jacobian for this element may then be written as

Y - (4.39)
ag”ag v ae (=9

and goes to +o0 as ¢ — 1.

4.3.2. Interpolation of Field Variables

A generic field variable is interpolated over the infinite element by the standard
shape functions of the 3-node line element.

d
{up={L, L, L} {4, (4.40)
d

%)

where
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le—%g(l—g), L=1-&, L3:%§(1+§). (4.41)

and they are shown Figure 4.4. The above expressions have been written in accordance

with Lagrangian Shape Functions for the 3-node line element. In fact,
—re-g)
N(x)= ! (4.42)
:!/;)[ (51 - 5 j )
i#]

In static analysis d; is typically set to a prescribed value, usually zero as a boundary

condition. The x derivative of u is obtained in the usual fashion as ¢ _:

dl

{g}:ﬂ:{% dL, %} J (4.43)
Y dx dx dx dx a’2
3

Since the shape functions are dependent on the natural coordinates ¢ and 77,

differentiation of them with respect to x and y will be obtained through the Jacobi
transformation. If the shape functions are differentiated, following equations can be

written:

dLy _ yadly_ o
—=J E J(-1/2+¢) (4.44)
dL, _ ,dL, _ .
—o=J T J(-2¢) (4.45)
ALy _ jr sy (1/2+¢) (4.46)

dx dé
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2
where J™ =(l;—§). When equations (4.44), (4.45) and (4.46) are substituted in equation
a

(4.43), equation (4.47) is obtained.

dl
{ef=[al{u} =[al{e}{a} = [Gd} = {(-V/2+¢) (-26) (V2+8)f {dy( (447)
d3
here, the strain matrix [G] of the element can be written as
G- (29 0200 (a9
The stress component of the element is formulated obtaining stress matrix [S ]
to}=[plie}= Ete}= ElG}d} = [s]id] (4.49)

where [D] is the material matrix which is Elastic Modulus of the element here.

Variation of {u} by & can be written by the help of equations (4.40) and (4.41) as:

) (4.50)

To show the representation of u in terms of the physical coordinates x, let us solve
for ¢ from the geometry interpolant. The equation (4.29) is rewritten as equation (4.51) as

follows:

_)_ 28 1+gl|
{x}—{ Iz l—foz} (4.51)
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If equation (4.51) is solved for & and x, =x, +a, x, =x,+2a, and r=x—x,

relations are substituted, equation (4.52) is obtained.

f=—— 72 122 (4.52)

If equation (4.52) is substituted in equation (4.50), equation (4.53) is obtained.

2

u=dy+(~d, +4d, —3d,) = +2(d, - 2d, +d; )~ (4.53)
r r

It is seen that as r — o, u—d, which is set to zero (d, =0) as a boundary
condition. If d, =d, =d, = C, the constant value u = C prevalils, rigid body movement as

expected. Linear variations of u# with » are not represented. In general, the two parenthetic
expressions in equation (4.53) do not vanish, so u becomes infinite at point 0 because » = ()
at point (. Point 0 is therefore a pole or singular point about which field quantity u# decays.
This suggests that in a problem such as that of Figure 3.1 (c), in which there is indeed a

singularity at » = (), one should use d = e. The presence of the decay functions is noted.
1
- = (4.54)
r

The coefficients of these terms are generally nonzero. It is also seen that as r —> a,

u—>d, and r—>2a, u—>d, as it is expected (d, =0 for static analysis). Strain

component can be obtained by differentiating equation (4.53) with respect to x:
a

3

du _ du dr —(d, —4d, +3d, )= - 4(d, - 2d, +d3)r

=" _ i 4.55
dx dr dx r ( )

in which ﬂ =1.
dx

The stiffness matrix of the infinite element can be given by the usual expression
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[K]- j (6] [plclar (4.56)

Vv

where [D]= E and dV = Adx = AJd&

[K]= :fEA[G]T [G]udé (4.57)
a0 [CY2eE)
K-ra[ GEN (o) 158 ey (20) s s
12|

After the integration, the stiffness matrix of an infinite bar element as shown in Figure 4.5

(a) is obtained as

46/15 —-52/15  2/5
[K] _tA —52/15  64/15 —4/5 (4.59)
2a
2/5 -4/5  2/5

4.4. Uni-dimensional Four-node Mapped Infinite Element

The element geometry is interpolated according to three mapping functions, N;, N>

and, N; which are rational in the natural coordinate & :
{x}={N, N, N,}qx, (4.60)

where,
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_—1+9¢&7 N _4-8£-12¢7 N _1+4&£+43¢7

=" _— 2 4.61
B e () b
The element and the mapping functions can be seen in Figure 4.6.
N - E=-1 E=-1/3 E=1/3 E=1
1 2 3 4

(a) Physical space (b) Natural coordinate space

Figure 4.6. Uni-dimensional four-node mapped infinite element

Lagrange shape functions for field variable interpolation over the element are used

for four-node line element.

X

S

{“}:{Ll L, L, L4} (4.62)

Y

S

where

I R S-S NS
1_16( 9+9+§ 5) (4.63)
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L =%(1—3§—§2 +38°) (4.64)
9 2 3
L3=E(1+3§—/§ -3¢£°) (4.65)
9( 1 ¢ o 3j
=—|-——=—=4+&°4+ 4.66
4 16( g gt te (4.66)
and can be seen in Figure 4.7.
1 2 3 4
E=-1 E=-1/3 &=+1/3 & =+1
9 1
| e I I
W

L —i(

= —(1-3¢-£+3¢°)
m

9 2 3
L3:E(1+3§—(§ -3&) 4

Figure 4.7. Shape functions of four-node line element for field variables
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4.5. Uni-dimensional Two-node Decay Infinite Element

Dynamic axi-symmetric infinite elements are developed for the soil structure
interaction problems, whose domains extend to infinity. Element can include additional
wave components in its shape functions by introducing nodeless variables. The additional
shape functions corresponding to the nodeless variables are constructed by considering the

conditions under which the shape functions have zero values at other nodes.

I

T
7 2 .
=0 1%00
Ry
1 c=0
g
Y o
V4

Figure 4.8. Global and local co-ordinate system of uni-dimensional two-node decay
infinite element

The element can be seen in Figure 4.8 and the geometrical mapping of the infinite
elements from the local coordinates (5,77) to the global coordinates (r,z) can be defined

as:

r:ZM(f)Lj(n)rj - M(&)R, (4.67)

where M (zf) is the mapping function for the infinite direction seen in Figure 4.9 and

defined as
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M(&)=(1+¢) (0<&E<w) (4.68)

(LA
[l
S
v &

|

1+&

Figure 4.9. Mapping function of a bar element

The elastodynamic problems often produce displacement fields in which wave components
propagate. In such problems, a typical displacement component may be expressed for the

uni-dimensional two-node decay infinite element as
u=[N]{d,}=e")"g, (4.69)

where « is a positive constant (a - 0) , d is the element nodal point co-ordinate, and &,

is the wave propagation number, defined as

k, =— (4.70)

such that @ and V, are the vibration frequency and propagation velocity, respectively, of

the wave traveling through the element. (Yong and Yun, 1992)
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4.6. Solution of a Differential Equation Using Decay Shape Functions of Uni-

dimensional Three-node Decay Infinite Element

In choosing shape function for an element which extends to infinity there are two
requirements to satisfy. Firstly, the shape function should be realistic, secondly, it should

lead to integrations over the element which are finite.

A set of shape functions based on Lagrange polynomials multiplied by exponential
decay terms is used in order to model an element extending from x =1 to infinity. A set of

shape functions N, is defined for i =1 to n—1.

n—1
X.—X
N, = e(x,—x>/LH£xf_x ] (4.71)

L is an arbitrary distance giving a measure of the severity of the exponential decay.

Consider the differential equation

du 2
dx2 :? (472)

subjected to the boundary conditions that u (1) =1, and u (O) =o. The analytical solution

is easily seen to be u =1/x. The variational form of the equation can be presented using

the functional

jF dxzﬂlﬂj +4—?} dx (4.73)
dx X

The Euler-Lagrange equation obtained by varying u is

oF _dJorl_y (4.74)
ou dx |ou
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which can be written

4 _i{@} ~0 (4.75)
x> dx | dx
and hence
d*u 2
“r_= 4.76
d* X ( )

the same as equation (4.72). This equation is modeled using an element extending from
x =1 to infinity and having one internal node at x =2 and one variable associated with

that node. Take

u=N+N,u, (4.77)

where u, is the value of u at x =2, and

N = [ X, =X Je(xl—x)/L _ (2 _x)e(l—x)/L (4.78)
Xy =X

v, :( X —x ]e(xz_x)/L ~ (x—1)el (4.79)
xl x2

It can be seen that the equation (4.77) satisfies the boundary conditions for any value of

u,. dN,/dx and dN,/dx can easily be found, and the equation (4.73) for the functional
can be evaluated. A variation of the functional with respect to u, yields an equation with

one unknown
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0 o0 2 0

ﬂ%dx+uz (szj dx + 2]\3/2 dx=0 (4.80)
dx dx dx X

1 1 1

This can be solved for u,. The analytical value of for u, is 1/2. The numerical value
obtained in this method depends on the choice of L. u, =0.49 for L =2 and u, =0.59 for

L =2. The results show that the method reasonably effective in solving problems of this
nature. The form of the element solution depends on the value of the exponential decay

length, L. (Bettess, 1977)
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5. TWO-DIMENSIONAL INFINITE ELEMENTS

5.1. Shape Functions of 2-D Infinite Elements

Based on direction of infinity, type being mapped of decay, two-dimensional infinite

elements are presented in a summary chart in Table 5.1. Then; geometrical configuration,

coordinate mapping, and field variable mapping functions of two-dimensional infinite

elements are one by one presented in a tabular and explicit manner in Tables 5.2 through

5.14.

In order to describe the infinite elements in Chapters 5 and 6, information to keys of

the code for infinite element is given in Figure 5.1.

-

M

Coordinates

by Growth Functions
Field Variables

by Lagrange

M

or

D

Coordinates

by Lagrange or
Growth Functions,
Field Variables

by Decay Functions

M

D

2D 11 C2 F4
ction

Infinite in One Dk 4-Node Field Variables

2-D Infinite Element 2-Node Coordinates

Figure 5.1. Information to keys of the code for infinite elements

()

()

For growth functions seeTable 5.12.

For exponential and reciprocal decay functions see Article 3.1.
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Infinite o
o Type Code Description Reference
Direction
Mapped, 2-dimensional, 1-infinite
1 Mapped | M2D-11/C2-F4 o o Bettess, P., 1977
direction, 4-node, infinite element
Mapped, 2-dimensional, 1-infinite Cook, R. D.,
1 Mapped | M2D-11/C4-F6 o ) ) D. S. Malkus, and
direction, 6-node, infinite element M. E. Plesha, 1989
Mapped, 2-dimensional, 1-infinite
1 Mapped | M2D-11/C5-F8 o o Bettess, P., 1977
direction, 8-node, infinite element
Mapped, 2-dimensional, 1-infinite Beer, G. and
1 Mapped | M2D-11/C6-F8 o o
direction, 8-node, infinite element J. L. Meek, 1981
Mapped, 2-dimensional, 1-infinite
1 Mapped | M2D-11/C6-F9 o o Bettess, P., 1977
direction, 9-node, infinite element
Mapped, 2-dimensional, 1-infinite Zienkiewicz, 0. C.,
1 Mapped | M2D-11/C6-F9 o ) ) C. Emson and
direction, 9-node, infinite element P. Bettess, 1983
Decay, 2-dimensional, 1-infinite Chuhan Z. and
1 Decay D2D-11I/C5-F3 o o _
direction, 7-node, infinite element Z. Chongbin, 1987
Decay, 2-dimensional, 1-infinite Yang, S. C., and
1 Decay D2D-11/C6-F9 o o
direction, 5-node, infinite element C.B. Yun, 1992
Decay, 2-dimensional, 1-infinite Chow Y. K., and
1 Decay D2D-11/C-F4 o o )
direction, 6-node, infinite element L. M. Smith, 1981
Mapped, 2-dimensional, 2-infinite
2 Mapped | M2D-2I/C1-F3 o oo Bettess, P., 1977
direction, 3-node, infinite element
Mapped, 2-dimensional, 2-infinite
2 Mapped | M2D-2I/C3-F5 o oo Bettess, P., 1977
direction, 5-node, infinite element
Mapped, 2-dimensional, 2-infinite
2 Mapped | M2D-21/C4-F6 o oo Bettess, P., 1977
direction, 6-node, infinite element
Decay, 2-dimensional, 2-infinite Chow Y. K., and
2 Decay D2D-21/C4-F6

direction, 6-node, infinite element

I. M. Smith, 1981
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Table 5.2. Mapped, 2-dimensional, 1-infinite direction, 4-node, infinite element

Mapped, 2-Dimensional, 1-infinite direction, 4-node, Infinite Element

Geometrical Configuration M2D-11/C2-F4
A 77
&
4
g
®
2
&
E=+1
1 1
M) | e ; ;o |
E=-1 E=0 E=+1 n=-1 n=0 n
M; :(G )(Lk) 1
l L =5(1—77)
2! 6= lm
=g 2l L 1-¢
Vst IW
{ J




Table 5.2 (Contd)
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Mapped, 2-Dimensional, 1-infinite direction, 4-node, Infinite Element

(contd)
Field Variable Mapping M2D-11/C2-F4
{uf =[Ni J{di}
M) | L 2] ;
£=-1 £=0 E=+1 n=-1 n=0 n=+1
1
MRl L=2(1-¢) L-1(1-n)




Table 5.3. Mapped, 2-dimensional, 1-infinite direction, 6-node, infinite element
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Mapped, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element

M2D-11/C4-F6

Geometrical Configuration
n
77:+1.2 2 6.
g
3
n=-1 g 3 n=-lem ° "o
. ° g=-1  &=0 g=+1
- £20 0
E=+1
Coordinate Mapping
{xp =[Mi J{x )
1
Mi=(G) (L) | 4 : 3 . ¢
§=- £E=0 E=+1 n=- n=0 n=+1
2 1 1
M1=é5(1—77) Wﬂ\h\. o Clem
e G/
G,:% ( 1 :
2¢£ 1
M2:1__§E(1+77>
ot 1
) ml !
_l+e 1
M4_1—§ 2(1+77)
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Mapped, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element

(contd)

Field Variable Mapping M2D-11/C4-F6
{ut=[N; J{di}
Ni =(LJ§) (Lkﬂ)
1 1 1 2 3 _1 2
Ny =—2&(1=¢) S(1=n) | e== B R p=-1 1=0 n=+
1
1 1 L=-—¢(1-¢)
N2=—E§(1—§)5(1+77) ! 2 leé(lfry)
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Table 5.4. Mapped, 2-dimensional, 1-infinite direction, 8-node, infinite element

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element

Geometrical Configuration

M2D-11/C5-F8

|
—_—
L
|
i
|
iy
S
J’_
=
o
SN—
I
— | —
‘+
e (W

L=(-n")




Table 5.4 (Contd)

(contd)
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Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element
M2D-11/C5-F8

Field Variable Mapping

{u} =[N; J{di}
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Table 5.5. Mapped, 2-dimensional, 1-infinite direction, 8-node, infinite element

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element

Geometrical Configuration M2D-11/C6-F8
n
®
6 5
g
19
2 3
®
E=0 E=+1
{xd =M J{x}
l 2 3
= =0 n=+
Mi:(Gj)(Lk) n=-1 n 7=+1
1
L=——n(l-
Gj:1+§j+(1+2§j)§ lm 1 2’7( 7)
for &£<o0
and 2 1
G =" L=—(1-
iz (=)
1
142& )&
Gj:1+§j+% lm
for &£>0
G,=1+¢
‘1
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Table 5.5 (Contd)

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element
(contd)

Field Variable Mapping M2D-11/C6-F8

L=-Ln(1-n)
J(~Jati-n G e
ol | e
=F|L 1 1+
. [jzn( n)
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Table 5.6. Mapped, 2-dimensional, 1-infinite direction, 9-node, infinite element

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element

Geometrical Configuration M2D-11/C6-F9

n
.8 9.
5 6
e @ ¢
2 3
L @
£=0 g=+1

Coordinate Mapping
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Table 5.6 (Contd)

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element

(contd)
Field Variable Mapping M2D-11/C6-F9
{uf =[N J{di}
N; = (Lie) (L)
1 1
N =3 £(1-8) (<5 | 1-n)
M= (1-8) (3 | L2 3 o2 3
E=-1 £=0 £=+1 n=-1 n=0 0=+
1 1
N3—E§(1+§) (—5}7(1—77) 1|H L1=—%§(1—§) . le—%n(l—n)
N, =-6(1-¢) (1-7°)
L=(1-¢) L =(1-7")
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Table 5.7. Mapped, 2-dimensional, 1-infinite direction, 9-node, infinite element

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element

Geometrical Configuration

M2D-11/C6-F9

n=+1@
n=0@4
1 2 3
n=-1¢ ® ®
§=-1 £=0 g=+1
Coordinate Mapping
1 2 3 1 2 3
g=-1 £=0 E—+1 y=-1 =0 gt

{X}=[LG, LG, LG, LG, LG, LG,]

{y}:[LlGO Lle LZGO Lsz L3G0 L3Gz]

2¥5 =Y




Table 5.7 (Contd)

63

Mapped, 2-Dimensional, 1-infinite direction, 9-node, Infinite Element (contd)

Field Variable Mapping

M2D-11/C6-F9

{u} =[N; J{di}
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Table 5.8. Decay, 2-dimensional, 1-infinite direction, 7-node, infinite element

Decay, 2-Dimensional, 1-infinite direction, 7-node, Infinite Element
D2D-11/C5-F3

Geometrical Configuration
i”l l’?
n=+l1e3 o 7® S o 7P
2 2
n=06e - & n=06@ ~-&
P B 4 6 I B 4 6
n=-1¢ ® ® n=-1¢ ® ®
€=0 £=1 E=o0 £=0 E=1 E=+1
Coordinate Mapping
{xp =M Jox}
Mi=(Lie) (L) 1 2 1 2 3
| £=0 £=+1 n=-1 n=0 n=-+l
Mlz(l_f)g(l_ﬂ)
H L=(1-¢) [[ L =5(=m)
M, =0 1 1
M; = (1-£) 3 (1+7)
| Lz:ﬁf LZZ%(1+T7)
I\/I4—§5(1—;7) 1 Ml
I\/I5—§—(1+77)
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Table 5.8 (Contd)

Decay, 2-Dimensional, 1-infinite direction, 7-node, Infinite Element (contd)

Field Variable Mapping D2D-11/C5-F3




Table 5.9. Decay, 2-dimensional, 1-infinite direction, 5-node, infinite element
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Decay, 2-Dimensional, 1-infinite direction, 5-node, Infinite Element

Geometrical Configuration D2D-11/C6-F9
B
Z Z.
n=-11 ! :
" E
_ 3
Upper Layers n=1 ;' n
Underlying R,
Half Space
n=-1g41
n=0g>
n=1«73
n
y
V4
Coordinate Mapping
For horizontal infinite elements
3
r= E M) L;m)r;
- 1 2 1 2 3
° ° ® ° °
3 £=0 E=w =-1 n=0 n=+1
Z= L:(m)z; 1
E iz . L, =—577(1—n)
=l M=1+¢&
For radiational infinite elements L= (1 - 772)
2 ' ,wm,
r= E M) L;(m)r;
1
j=1 = — l—
L= n(1-n) .
3
2= E M (&)L, ()2,
j=1
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Table 5.9 (Contd)

Decay, 2-Dimensional, 1-infinite direction, 7-node, Infinite Element (contd)

Field Variable Mapping D2D-11/C6-F9
l . 2 ! 2 3
> =0 g=+1  g-o p=-1 q=0  g=+
U(r)=ZL,-(f7)F(r) |
= L L =—5’7(1—77)
F (r) —e —(a+ikR))¢

F(r) :e—(a+i kRy)&

My st




Table 5.10. Decay, 2-dimensional, 1-infinite direction, 6-node, infinite element
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Decay, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element

D2D-11/C4-F4

Geometrical Configuration

l’?
=16~ o: -® > o -9
2
1=0@ - & n=0@ =5
_ 1 4 6 3 1 4 5
n=-1¢g ° ° n=-1¢g ° ®
£=0 =1 g=oo =0 t-1 g=oo
Coordinate Mapping
X =[M; J{x}
1 4 1 2 3
Mi:(Lj)(Lk) _: ° s P _:
£E=0 E=+1 n=-1 n=0 n=-+1
1
M, =(1-¢&) —(1- 1
=(=6)30-n) L =1-¢ L=1a-m
lﬂm}m, lﬂm}m,
M, =0
My =(1-&) L1+ L=La+n)
3 =(1-8) S (1+n) L =& =y
Ml
M, =& S (1-
4 5 '7)
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Table 5.10 (Contd)

Decay, 2-Dimensional, 1-infinite direction, 6-node, Infinite Element (contd)
D2D-11/C4-F4

Field Variable Mapping

——
[y
——'
Il
|
=z
| I—
—_—
o
——
[S5Y
S
@ —
[ 1)
[ 18]

=
Il
—_
=
Il
o
=

+1

0 3

|_—(1

N, =0
L —71(1+ )
3T, n
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Table 5.11. Mapped, 2-dimensional, 2-infinite direction, 3-node, infinite element

Mapped, 2-Dimensional, 2-infinite direction, 3-node, Infinite Element

M2D-21/C1-F3

Geometrical Configuration
n L1
n=+19, 1=+l =
O £ ® g
1 2 1 2
n=-1¢ ® n=-1¢ ®
E=-1 E=+1 £=-1 E=+1
Coordinate Mapping
} L A2 } L ‘2
{x}=[M; [{%} =0 Q;O E=+1 =-1 n;O =+1
M; =(G;) (Gk)
G- 2 G- 2
Moo 2 2 N 1-n
==
1-¢& 1-n
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Table 5.11 (Contd)

Mapped, 2-Dimensional, 2-infinite direction, 3-node, Infinite Element
(contd)
M2D-21/C1-F3

Field Variable Mapping

1 1
N, == (1+&) (1-7) 1
20 2 L =50+ L=+
.wﬂjjml .w‘jﬂjjml
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Table 5.12. Mapped, 2-dimensional, 2-infinite direction, 5-node, infinite element

Mapped, 2-Dimensional, 2-infinite direction, 5-node, Infinite Element

Geometrical Configuration M2D-21/C3-F5
n L
n=-+1 ?5 n=+1 .5
@4 & ®4 -3
1 2 3 1 2 3
1= g —— ¢ n=-1¢ ® ®
&=-1 g=+I E=-1 E=+1
Coordinate Mapping (serendipity)
{xp=[M; Jix}
M; :(Gj)(Gk)
_—A(1+&+7)
C(1=9)(1-n)




Table 5.12 (Contd)
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(contd)

Mapped, 2-Dimensional, 2-infinite direction, 5-node, Infinite Element

M2D-21/C3-F5

Field Variable Mapping

fup =[Ni J{di}
N =(Lse ) (L) . 2 2
g=-1 £=0 =
N, =—%e§(1—§) [—%)n(l—n) . '-1=—%§(1—§)
L, =(1-¢%)

+1

[ @

=
— PN
oW

1
I
Il
|
o |
=
—_
—
|
S
~
|

—

o
=
|
+
—_
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Table 5.13. Mapped, 2-dimensional, 2-infinite direction, 6-node, infinite element

Mapped, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element

Geometrical Configuration M2D-21/C4-F6
Wi n
n=-+1 ?6 n=-+l1 .6
+ 5 5
4 ® - @94 -
1 2 3 1 2 3
1= g ———g n=-1¢ ® ®
£=-1 g=+1 £=-1 E=+1
Coordinate Mapping (serendipity)
X =[Mi Jx}
M; =(G;) (G)
w2222
1-&)(1-7




Table 5.13 (Contd)
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(contd)

Mapped, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element

Field Variable Mapping

M2D-21/C4-F6

ll @
|| [ 18]
H [ 1%

|B] —75(1 ¢)

%

L, —5(1+§)m|

| @
1

=

—

I &

+
—_

_.
=
N‘_. T TS

—
©

It
—~~

—
|
=S

N

i

n(+7) ﬂ
m]]ﬂ]]ﬂm




Table 5.14. Decay, 2-dimensional, 2-infinite direction, 6-node, infinite element
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Decay, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element

D2D-21/C4-F6

Geometrical Configuration

i’?
=< . ;
2 5 1=l 3 5
n=1@ ® =] n=1@ [
_ 4 6 _, I 4 6
=0 ¢ ® o ~: =0 ¢ ® & ~:
=0 g=1 g=o0 £=0 E=1 g=o0
Coordinate Mapping
X =[Mi Jx}
1 4 1 2
[ . [ L
Mi = (L ) (L) §=0 §=+1 n=0 n=+1
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Table 5.14 (Contd)

Decay, 2-Dimensional, 2-infinite direction, 6-node, Infinite Element (contd)
Field Variable Mapping D2D-21/C4-F6

{uf =[Ni J{di} 1 4 1 2
='+1 n ='0 n ='+1




78

5.2. Derivation of Properties of Infinite Elements

The equilibrium equation of a finite element is expressed as
MY} [C]d) (KT =P} = [0, +{tr )+ (1), +(F) 1), ] 6D

where; {d} = nodal displacements, [M] = consistent mass matrix, [C] = consistent

damping matrix, [K] = stiffness matrix, {P} = nodal loads, { f} = body forces at nodes,

{ f } , = edge loads at nodes, { f } ~ =nodal loads due to initial strains, { f } = nodal loads
€0 0]

due to initial stresses, {f} = temperature change loads, {f} = known displacement

loads.

[M]:pI[N]T[N]dV (52)
[C]:COI[N]T[N]dV (5.3)
[K]:I[G]T[D][G]dv (5.4)

{f}xz—j[N]T x; av (5.5)

P,
{f}5=—I[N]T p,+ ds (5.6)

S P, Js
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(), { e va[01 (¢}, 6)

v

{t}, =“[G]Tdv]{a}o (5.8)

(f} =-o ATU [G] dv ]{D}T (5.9)

'

{1 =[KNd} o (5.10)

and generic displacements, strains and [A][N] can be expressed as:

up= [N}d}  {e}=[aliup  [A][N]=[G] (5.11)

in which, [A] is the operator matrix to differentiate the shape function matrix [N] and,

te}=1[Glld} {o}=[p][G]{d} (5.12)

in which [G],[D] and [S]are the strain matrix, elasticity matrix and stress matrix,

respectively. Interpolation for geometry and field variables for infinite elements may be

written in the compact matrix form as follows:

N
N, (5.13)
N
N
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In order the obtain the derivatives of shape functions with respect to global

coordinates, Jacobi transformation is needed

le -1 Nl
e

where,

_ 1 -
[9] lzm[—y; ij Det[d|=x. y,-V.X, (5-15)
517 >

For the numerical integration, dV is converted and Gaussian Quadrature integration

scheme or Gaussian-Laguerre Quadrature integration scheme is used.
dv =tdA=t|J|d.d, (5.16)

+1 +1 +1 +1

[M]zptII[N]T[N]|J|d§d77=J.J.f(§,n)d§dn=ZH:Zm:AAjf(§,ni) (5.17)

+1 +1 +1 +1 n

[C]:potjj[N]T[N]|J|d§d77:-“J‘f(f,n)dédn:ZZm:AAjf(fi,ni) (5.18)

v i=1

n

[K]:t:fj‘l[G]T[D][G]|J|d§dn=.+fjff(5,77)dgdn=z _m AAf(&.m) (5.19)

i=1

Ijxae‘xf(é,n)dédﬂ=ZZAAjf(§i,m) (5.20)

i=1
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6. THREE-DIMENSIONAL INFINITE ELEMENTS

A brief summary of a three-dimensional, 6-node triangular prism infinite element as

introduced by Ungless and Anderson (1973) is presented herein.

6.1. Six-node Triangular Prism Infinite Element

Instead of dealing with an imposed rigid or free boundary, a flexible boundary
formed by the infinite elements has been introduced. The element model as introduced by
Ungless and Anderson is shown in Figure 6.1. The geometry of the element and the two

right hand cartesian coordinate systems; global (X, Y, Z) and local (X, y, z) can be seen.

Y

(x15 y1; 21)

Y
(1y; Mmy; ny) ds

Figure 6.1. A three dimensional infinite element by Ungless and Anderson
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Direction cosines of z-axis are found by the cross product of side 1-3 (v, ;) and side

1-2 (v,):

(U =V s)x(V,) =V, (6.1)

Ly =y =) + (= %) +(z -2 62)
Lo=(%=%)/Ls, m=(vs-w)/ls, N =(2-2)/L, (6.3)
Lo =y %)+ () + (2 -2 (64)

|172 :(Xz _Xl)/Ll—Z » M, :(yz - yl)/Ll—Z » N, :(Zz _Zl)/l-yz (6.5)
(*1_3)><(~1_2)=(:1-3 21-3 :1-3j=|j+mz]+nzlz (6.6)
(*Z)x(*x)z(lz Z ZJ=|yr+myi+ny|Z (6.7)

Decaying shape functions of the infinite element by Ungless and Anderson is seen in

Figure 6.2 and also the decay function of this element is in equation (6.8).



Figure 6.2. Decaying shape functions

N =L, P(2)
where
1
P(z)=—
(2) 1+z
and

L1:§' L2:771 Lazé/

The displacement vector can be expressed as following:

83

(6.8)

(6.9)

(6.10)



Py

1
1+z

o ™y O
o3 o
3 o o
o o Wy
o o

Uj=qv=[NJdj

o O
v O O
o O3

In order to obtain strains, strain matrix [G] should be obtained:

tey=[AJ{U}=[A][N]{d}=[G]{d]

i 0 O

OX
c 0 i 0
x oy
gZ

0 O ﬁ u
&y _ 0z v
Vel |0 @

Z 200 W
V2 8y OX
Y Xy i 0 i

0z OX

g 2 9

L 0z oy |

Derivatives of &, 77, and & with respect to X, y, and z are as follows:

o _b on_b
ox 2A’

o¢ _ by
ox 2A

o O

™

w N L

I

fee] ~ (2]

Q_Q.Q.Q_mQ_Q.Q.Q.O_

©
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(6.11)

(6.12)

(6.13)

(6.13)

(6.14)
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where A is the area of triangle, a, =X, a,=X,, a,=x, and b =y,, b,=y,, b, =y, .

When [A]and [N]matrices are multiplied, [G]matrix is obtained as follows with the

multiplier of h= (LJ(LJ
1+z )\ 2A

b, 0 0 b, 0 0 b, 0 0
0 a 0 0 a, 0 0 a, 0
0o o 2 o o M o o 2K
1+z 1+z 1+z
[G]=| a b 0 a b 0 a, b, o |h(6.15)
2R 0 o M0 oy 2Ry
1+z 1+z 1+z
—2AS —2Ay —2AC
0 a 0
i 1+z % 1+z ? 1+7 % |

Material matrix is:

1 A H 0 0 0
1-u4 1-u
T Y . 0 0 0
1-u 1-u
lL lL 1 0 0 0
) Gl R L 12 (6.16)
L+u)-24) 0 o 0 H 0 0
2(1—,u)
0 0 0 0 1-2u 0
2(1—,u)
0 0 0 0 0 1-2u
I 2(1-p) |

Stiffness matrix is obtained as
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.
[k]zJ-[G] [D][G]dV (6.17)
\Y
Direction cosines matrix of the xyz-axes can be written as

IX
[t]=|1, m, n (6.18)

1,

Stiffness matrix in global directions is obtained through a congruent transformation;
T
[kl =[T] [K][T] (6.19)

As a numerical example, semi-infinite solid loaded with a point load perpendicular to the
free surface is selected. The quarter surface of the hemispherical bowl on which the point
load is acting forms the base plane for the infinite elements. This surface is subdivided into

a mesh as seen in Figure 6.3.
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Figure 6.3. Finite element mesh of hemispherical bowl with one quarter symmetry

Figure 6.4 compares the results obtained from the infinite finite element analysis
with the exact elasticity solution. The infinite element results are found to vary by 4% on
the average from the exact solution. Directly beneath the load, agreement within 2% is
achieved.



88

P=1
R=1 -
- X
Undeformed Boundary
Deformed Boundary
—— Exact solution
Y o Infinite element solution

Figure 6.4. Deflections of hemispherical boundary loaded perpendicular to surface

6.2. Three-dimensional Infinite Element Geometrical Configurations

Based on direction of infinity, type of infinite element being mapped or decay, three-
dimensional infinite elements are summarized in Table 6.1. Geometrical configuration,
coordinate mapping, and field variable mapping functions of three-dimensional infinite

elements are presented in a tabular manner in Tables 6.2 through 6.6.



Table 6.1. Three-dimensional infinite element summary chart

89

Infinite o
o Type Code Description Reference
Direction
Mapped, 3-Dimensional, 1-infinite
1 Mapped | M3D-11/C4-F8 . o Bettess, P., 1977
direction, 8-node, infinite element
Mapped, 3-Dimensional, 1-infinite Beer. G. and
1 Mapped | M3D-11/C10-F6 | TV S een =
direction, 10-node, infinite element J. L. Meek, 1981
Mapped, 3-Dimensional, 1-infinite | Zenkiewicz.0.C.
1 Mapped | M3D-11/C8-F8 o o C. Emson and
direction, 8-node, infinite element P. Bettess, 1983
Mapped, 3-Dimensional, 2-infinite
2 Mapped | M3D-21/C2-F8 . Lo Bettess, P., 1977
direction, 6-node, infinite element
Mapped, 3-Dimensional, 3-infinite
3 Mapped | M3D-3I/C1-F8 Bettess, P., 1977

direction, 4-node, infinite element
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Table 6.2. Mapped, 3-Dimensional, 1-infinite direction, 8-node, infinite element

Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element

Geometrical Configuration M3D-11/C4-F8
6 {=+1
® ©
8
® ©
2 - {=-1
———————————————————— @ oo —
4
®
£=+1

Coordinate Mapping




Table 6.2 (Contd)
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Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element

(contd)
Field Variable Mapping M3D-11/C4-F8
{ut=[N; {di}
le(l‘ié)(l‘kﬂ)(l‘zg)
1
N =2 (1-¢) S (1+n) S(1-¢)
1
N2—2(1+5) (1+’7) S(1-¢) | 4 2 3 1 2 3 1 2 3
&=-1 £=0 E=+1 n=- n=0 n=+l1 = =0 {=+1
tasataoantao _1 1, L
Ny=q (-8 (mglze) | L300 P LAl
No=5(1+6) 20 20-¢) | L-tao 1 L-taso)
2 2 2Ty L2:5(1+17) 2
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Table 6.3. Mapped, 3-Dimensional, 1-infinite direction, 10-node, infinite element

Mapped, 3-Dimensional, 1-infinite direction, 10-node, Infinite Element

Geometrical Configuration

M3D-11/C10-F6

L=0-&)

§(1+§) U

*(1 )

ﬂmﬂﬂﬂm

1 3
=1 n=0 n=+1
1
Gl=—77
Glzi
-
) K

m 1+

QQ
*r——

1 2 3
¢=-1 =0 C=+1
1
—Z(1-
L=50-0)
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Table 6.3 (Contd)

Mapped, 2-Dimensional, 1-infinite direction, 8-node, Infinite Element

(contd)

Field Variable Mapping

M3D-11/C10-F6

L=20+0)

1
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Table 6.4. Mapped, 3-Dimensional, 1-infinite direction, 8-node, infinite element

Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element

Geometrical Configuration M3D-11/C4-F8

n=+1

Coordinate Mapping

1 2 3 1 2 3 1 2 3
g=-1 £=0 g=+1  p=-1 n=0 n=+ g=-1 £=0 ¢ =+1
1
-~(1-
L=50-0)
1
1
L=50+0)

{X} = [Lln |—1§Go Ly, |—1§Gz Ly, L1§Go Ly, ngc‘z Ly, ngGo Ly, ngGz Ly, |—2§Go Ly, ngc‘z]

{y}and {z} can be obtained similarly




Table 6.4 (Contd)
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Mapped, 3-Dimensional, 1-infinite direction, 8-node, Infinite Element (contd)

Field Variable Mapping M3D-11/C4-F8
{ut=[N; J{di}
le(L15)<Lkﬂ)(LZ§)
1
N =2 (1-¢) 5 (+n) S(1-¢)
1 2 3 1 2 3 1 2 3
L=30-2) L=t L=50-0)
1 1 1 IH]]]]]]]]]IED}, 'H]]]]]ID]:I.L. !
Ny =2(1-¢) 5(1-n) 5 (1~¢)
L=5@+9) L-Larn L=,@+0)
1 1 ' ' )
N =3(1+£) 20-1) 20-¢)
1
N =>(1-¢) 5 (1+7) (1+<)
1 1
N =E(1+ &) E(1+ n) =(1+¢)




96

Table 6.5. Mapped, 3-Dimensional, 2-infinite direction, 6-node, infinite element

Mapped, 3-Dimensional, 2-infinite direction, 6-node, Infinite Element

Geometrical Configuration M3D-21/C2-F8

® ©
é (=-1
n=-+1
4
® ©
E=+1

Coordinate Mapping




Table 6.5 (Contd)
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Mapped, 3-Dimensional, 2-infinite direction, 6-node, Infinite Element

(contd)
Field Variable Mapping M3D-21/C2-F8
{uf =[N J{di}
Ni :(Lié) (Lkﬂ) (ng)
1 1 1
Ny =2 (1-¢) 5(1+n) 5(1—€)
1 1 1
N, :E(“f) 5(1“7) 5(1—§)
1 2 3 1 2 3 1 2 3
=-1 &=0 E=+1 n=-1 n=0 n=+l1 (=-1 =0 ¢ =+1
1 1 1
No =5 (1-8) 5 1-n) 5(1-¢)
B [ L=50-9) [ L-20-9) | L-20-9)
1 1 1
Ny =5(L+8) 5(1-n) 5(0-¢)
2 2 2 1 1 1
L=7 L=> L=7

Ny =5 (1) 5 (1+m) 5 (1+)
N =%(1+5) %(1“7) %(l—kg)

N, = 2(1-6) 5 (1-n) 3{1+<)

N |-

N, :%(1+§) %(1_;7) %(l+g)
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Table 6.6. Mapped, 3-Dimensional, 3-infinite direction, 4-node, infinite element

Mapped, 3-Dimensional, 3-infinite direction, 4-node, Infinite Element

Geometrical Configuration M3D-31/C1-F8

®
£=+1

Coordinate Mapping
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Table 6.6 (Contd)
Mapped, 3-Dimensional, 3-infinite direction, 4-node, Infinite Element
(contd)
Field Variable Mapping M3D-31/C1-F8
{ut=[N; {di}
Ni =(Li§) (Lkﬂ) (ng)
1
N =2 (1-¢) S (1+n) S(1-¢)
N, =2 (1+6) S (L+n) S (1-¢)
1 2 3 1 2 3 1 2 3
1 1 g=-1 £=0 E=+1 n=-1 n=0 n=+1 ¢=-1 =0 ¢ =+1
Ny ==(1-&) =(1-75) =(1-
3=5(1-¢) 5 (1-n) 5(1~¢) leé(l—g) L-ta-) L-ta-g
N =5 (1+6) 5(1-n) 3(1-) 1 1
4 2 L=50+9) leg(ug) L=20+8)

1

1
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6.3. A Dynamic Infinite Element for 3-D Infinite Domain Wave Problems

6.3.1. Introduction

P-waves, S-waves and R-waves in the foundation can be simulated simultaneously in
the present infinite element domain. The good accuracy is obtained using the present
infinite element and finite element coupling model to simulate foundation wave problems
has been proven by comparing the current numerical results with previous analytical

results.

The simulation of the infinite medium in the numerical method is a very important
topic in dynamic soil-structure interaction problems. This topic arose from numerous
practical problems such as the numerical simulation of building structure foundations,
offshore structure foundations, dam foundations, nuclear power station foundations and so
forth. The study of this topic becomes more important when the structure is large and the
effects of earthquakes are considered. Due to the importance of the problem, much work
has been done by researchers in the past. The general method for treating this problem is to
divide the infinite medium into the near field, which includes the geometric irregularity as
well as the non-homogeneity of the foundation, and the far field, which is simplified as an
isotropic homogeneous elastic medium. The near field is modeled using finite elements
and the far field is treated by adding some special artificial boundaries or connecting some
special elements on the truncated boundary, which is a part of the representation of the
finite elements. It has been proven that these special artificial boundaries work well for the
wave radiation problems in which the vibration source acts on the interior region of the
near field. However, for seismic structural analysis, which, in fact, is a typical wave
scattering problem in the near field, these artificial boundaries are not satisfactory due to
the earthquake wave which is incident from the far field. In such a case, some special
elements known as infinite elements and boundary elements can still handle this problem
even when an incident earthquake wave is presented. Although the boundary element
method is a very effective way to simulate wave scattering problems in the homogeneous
medium due to the great reduction in the number of degrees of freedom of the system, the

infinite element is better for simulating wave scattering problems in the non-homogeneous
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medium due to the banded and symmetrical nature of the global stiffness and mass

matrices (Zhao and Valliappan, 1993).

The concept of infinite elements was presented by Bettess and Ungless in the 1970s.
Further work has been done by some other authors to apply the infinite elements to the
solution of static problems in engineering practice. The fundamental idea to construct a
static infinite element is to derive a special element displacement shape function, which is
the product of the Lagrange interpolation function and the so-called decay function, or to
use some special mapping techniques to map the infinite element into a finite one. The
same ideas have also been employed to develop the dynamic infinite elements. However,
owing to the quite complicated mechanism of wave propagation in the infinite medium, the
decay function in the static infinite element was replaced by the wave propagation function
in its dynamic counterparts. For the dynamic infinite elements used in solid media, Chow
and Smith (1981), Medina (1983) as well as Zhao et al. (1987) have presented the
corresponding element models which differ from the selection of the wave propagation

function in the dynamic infinite elements.

Different type of waves such as R-wave, SH-wave, SV-wave and P wave must be
separately considered in the analysis. That is to say, for a given incident earthquake wave,
one must separate this wave into R-wave, SH-wave, SV-wave and P-wave components and
then use the wave number of each wave component to calculate the infinite element
stiffness and mass matrices. Consequently, the stiffness and the mass matrices for an
infinite element need to be calculated at least four times since the previous 3-D dynamic

infinite element can exactly represent only one wave number each time.

6.3.2. Derivation of 3-D Infinite Element

Based on the above considerations, a 3-D dynamic infinite element is discussed
below. Since the wave numbers of the R-wave, SH-wave, SV-wave and P-wave are
simultaneously used in the present infinite element, it is more economical to use this
element to simulate the earthquake wave propagation mechanism in the infinite foundation.
In addition, due to the use of a mapping technique, it is feasible to use this element to

model arch-dam-foundations in a rectangular co-ordinate system.
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Assuming that the foundation is subjected to harmonic loading and the medium of
the natural foundation exhibits hysteresis damping, the governing equation of the wave
motion of the system can be written as

oy o o’w

G*VU+(A*+G*)| —+ +
OX~ oxoy oxoz

j+fxzp(j

(6.20)

2 2 2
G*VV+(1*+G*) ou  ov aw]+ , =PV

+——t

oxoy oy- oyoz

o'u  ov  o°w
+ +

oxor oyor or°

G*Viw+(1*+G*) J+ f, = pW

G*=G(L+in,) (6.21)
%= A (L+in,) (6.22)

where, G is the shear modulus, A is the Lame constant, 7, is the hysteresis damping

coefficient of the medium, f_,

X

f,, f, are the unit body forces in x, y, z directions,

respectively, p is the material density and V? is the second-order 3-D Laplace operator.

For instance,

o°u o’u du
2 + 2 + 2

ox® oy® oz

V= (6.23)

Using the Euler’s theorem and ignoring body forces in equation (1.1), the discretized

equation of motion of the system can be derived as

—*[M{d}+(1+in, )[K]{d} = {F,) (6.24)
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where {d} is the unknown nodal displacement vector, wis the exciting circular frequency,

[M]and [K]are global mass and stiffness matrices of the system, respectively, {F,} is the

amplitude vector of the applied harmonic load. By Code Number Technique, (Tezcan,

1963), [M]and [K]matrices as well as {F,}can be assembled from the element

submatrices and subvectors which have the following form:

w7 = [[] v7 e ey

(KT :”L[B]T [D][B]av (6.25)
(7o) =[] INT {sjannT {2}

where V and A express the volume and area of the element, {X,} and {ISO} are amplitude
vectors of boundary traction and concentrated loads, respectively, [D]is the element

constitutive matrix, [B] and [N ]are the strain matrix and the shape function matrix of the

element. It is noted that equation (1.6) holds for both finite and infinite elements. Since the
derivation of a 3-D solid finite element is well known, only the necessary formulations of a

3-D dynamic infinite element are given here.
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6.3.3. A Seismic 3-D Infinite Element

13
B,

16
&

Figure 6.5. A 3-D dynamic infinite element

For the 3-D dynamic infinite element shown in Figure 6.5, since the sides of the
element in the infinite direction can be represented by straight lines, only eight nodes are
sufficient to describe exactly the geometry of the seismic infinite element in the global co-
ordinate system. Therefore, the mapping relationship between the global co-ordinate
system and the local co-ordinate system for this element can be defined as

X XX X5 || M,
Y=Y Yo o Ve |y (6.26)
z Z, 7, Zg || M,

where M, is the mapping function of the element and it can be expressed as

M, = (1) (L+7)(1+¢)

M, = (1-)(L+n)(1=¢)

M, =3 (1-¢)(1-n)(1-¢)
M, = S(1-&)(1-7)(1+) (6.27)

4
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M, =%§(l+77)(1+§)
M, =3 £(L+n)(1-¢)
M, =3 ¢(1-n)(1-¢)

My = 2&(1-7)(1+6)

It is noted that since the mapping functions of the element are different from the
displacement functions of the element, the present infinite element is not an isoparametric

element. It is a subparametric element.

Co