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ABSTRACT 

 

 

GAME THEORIC ANALYSIS OF MAPK SIGNALING PATHWAYS  

IN Saccharomyces cerevisiae 

 

 

Understanding cellular signaling is central for gaining insight into the molecular mechanisms 

behind diseases as well as adaptation of living cells to changes in the environment. Signaling 

pathways are often branched in an interconnected fashion and are therefore integrated into 

signaling networks that are quite complex with many levels of interconnectivity of different 

molecular components. Recently, it became apparent that each MAPK pathway is a part of a 

network in which there is extensive sharing of signaling elements among the MAPK signaling 

pathways. Understanding the design principles that bridge the topology to the function of the 

network is a major challenge in systems biology since almost all known diseases exhibit 

dysfunctional aspects in these signaling networks.  In the present study, using a probabilistic 

graph model (Bayesian Network) the feasibility of alternative signaling mechanisms was 

tested in the MAPK network in Saccharomyces cerevisiae. As a result of the large cross-talks 

between MAPK pathways, several signal transmission mechanisms that are biologically 

inactive were observed to be feasible. On the other hand, adaptation of a game theoretical 

formulation, in which the optimum strategy of a player was determined by considering the 

possible strategies of other players, resulted in a Nash Equilibrium (i.e., the set of optimum 

strategies) which eliminated the false-positives due to the crosstalk and represented the 

biology successfully. This mathematical framework has shown that logical reasoning is in 

accordance with real biology and thus provides an opportunity to model complex systems. The 

proposed methodology with further improvements in biological data is expected to provide 

more insight about the underlying principle in evolutionary construction of network topology. 
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ÖZET 

 

 

MAYA HÜCRESİNDEKİ MAPK SİNYAL YOLİZLERİNİN OYUN TEORİSİ 

YAKLAŞIMIYLA ANALİZİ 

 

 

Hücreiçi sinyal ağlarının anlaşılması, gerek hastalıkların arkasında yatan moleküler 

metabolizmaların ortaya çıkarılmasında gerekse de canlı hücrelerin çevrelerindeki değişimlere 

uyumunun açıklanmasında önem taşımaktadır. Sinyal yolizleri dallanarak aralarında iletişim 

halinde olan bir yapıya dönüşürler ve bu şekilde birden çok molekülün birbiriyle bağlantılı 

olduğu karmaşık sinyal ağları oluştururlar. Yakın zamanda her MAPK yolizinin, bünyesindeki 

sinyalleme elemanlarının bu yolizlerince ortak kullanıldığı bir ağın parçası olduğu 

anlaşılmıştır. Bilinen neredeyse tüm hastalıklar bu sinyal ağlarında anormallikler gösterdikleri 

için bu ağların topolojisi ile fonksiyonları arasındaki bağlantıların ardında yatan prensiplerin 

ortaya çıkarılması sistem biyolojisindeki ana hedeflerden biridir. Bu çalışmada, olasılıklı 

grafik modeli aracılığıyla (Bayes Ağı), mayanın MAPK ağları için  alternatif sinyal 

mekanizmalarının uygunluğu test edilmiştir. MAPK yolizleri arasında büyük oranda ortak 

kullanılan elemanlar dolayısıyla oluşan karışıklık sebebiyle biolojik olarak aktif olması 

beklenmeyen çeşitli sinyal iletim mekanizmalarının olası olduğu gözlemlenmiştir. Bunun yanı 

sıra, bir oyuncunun en uygun strajesinin diğer oyuncuların olası stratejileri de gözönünde 

bulundurularak belirlendiği bir oyun teorisi formülasyonu uygulanması sonucu  ortak kullanım 

dolayısıyla ortaya çıkan hatalı beklentileri yok eden, ideal strateji kararlarını ifade eden bir 

Nash dengesi ortaya çıkmıştır ve biyolojiyi başarılı bir şekilde yansıtmıştır. Bu matematiksel 

yaklaşım mantıksal adımlarla komplike biyolojik sistemlerin de gerçeği yansıtacak şekilde 

modellenebilmesinin mümkün olduğunu göstermiştir. Önerilen metod, gelişmekte olan 

biyolojik verilerin ışığında ağ topolojisinin evrimsel yapılandırılmasının altında yatan 

prensiplerin ortaya çıkarılmasını olası kılacaktır. 
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1.  INTRODUCTION 

 

 

Cellular mechanism is a complex interplay of enzymatic and genetic regulatory events. In a 

particular environment, the cell chooses to express and regulate a specific set of molecules. 

These molecules are organized in a modular manner, and these modules (i.e. protein 

complexes, pathways, etc.) act in concert to produce a network state which may be thought as 

the “phenotype” of that cell at those conditions. Understanding the conditional selection of the 

modules by the cell is a major concept in systems biology and several studies have been 

performed within the concept of “design principles” (Milo et al., 2002; Milo et al., 2004; Wolf 

and Arkin, 2003; Zhang et al., 2004). However, the underlying principle in evolutionary 

construction of network topology is still unknown. 

 

The evolutionary selection process forces microorganisms to make the choice such that the 

cellular network acts in concert to attain the “optimal” behavior that enhance the survivability 

of the cell (Varma and Palsson, 1994). In traditional optimality theory, it is assumed that the 

best behavior for a particular species can be predicted irrespective of what others are doing. 

However, in biology, in almost all cases, the selection among alternative behaviors depends to 

a large extend on what others are doing. In the development of game theory, the understanding 

of the most rational way for humans to make decisions between alternative courses of action 

was its original purpose (Von Neumann and Morgenstern, 1953) where the outcome of a 

contest to a particular player was shaped by both the actions of the central player and the 

opponents. One of the most important consequences of game theory is that it enables the 

prediction of situations where one behavior or a specific mix of behaviors is more feasible 

than all known alternatives. The theory of rational choice states that the action chosen by a 

rational player is at least as good as all other available actions. In the subsequent years, game 

theory has been adapted by a number of scientists to examine biological dilemmas, especially 

the evolutionary problems (Axelrod and Hamilton, 1981; Bishop and Cannings, 1978; 

Hamilton, 1967; Lewontin, 1961; Maynard Smith, 1974; Slobodkin and Rapoport, 1974; 

Trivers, 1971). More recently, the evolutionary game theory was applied to understand the 
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host-parasite interactions (Frank, 1996), the properties of chromosomes (Maynard Smith and 

Szathmary, 1993), the RNA virus (Turner and Chao, 2003), bacteriocin diversity (Riley and 

Wertz, 2002), bacterial parasites (West and Buckling, 2003; Griffin et al., 2004), and ATP-

producing pathways (Frick and Schuster, 2003; Pfeiffer et al., 2001; Pfeiffer and Schuster, 

2005). Its ability to predict the optimal selection among alternative behaviors makes game 

theory an alternative viewpoint to study the structural concepts (i.e. design principles) 

underlying the network function.  

 

Here, game theoretical concepts were adapted into bioinformatics to understand the underlying 

design principles of biological pathways. A network of four interconnected MAPK signaling 

pathways in Saccharomyces cerevisiae is chosen as the model system because these pathways 

have been studied well, and hence, most of the network structure and structural properties such 

as cross-talk relationships have been reported in literature (Gustin et al., 1998; Palecek et al., 

2002; Tatebayashi et al., 2003; Verna et al., 1997; Van Drogen et al., 2001; Widmann et al., 

1999). However, little is known about the design principles of MAPK networks. The balance 

between available information and unknown design principles makes MAPK networks a good 

candidate for a game theoretical study. In the present work, using a probabilistic graph model 

(Bayesian Network), the feasibility of alternative signaling mechanisms was tested in the 

MAPK network. As a result of the large cross-talks between MAPK pathways, several signal 

transmission mechanisms that are biologically inactive were observed to be feasible, when the 

network is represented as a protein-protein interaction graph. However, the Bayesian network 

model coupled with a game theory based solution algorithm yielded accurate results in 

representing the real biology by eliminating incorrect signaling routes resulting from 

crosstalks since it considers the preferences of other players in determining the optimum 

strategies. 
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2.  THEORY 

 

 

2.1.  Cell Signaling 

 

No cell lives in isolation. All organisms, whether single-celled or multicellular, have to sense 

the environment surrounding them and make decisions based on the information they retrieve 

in order to survive, which depends on an elaborate intercellular communication network that 

coordinates the growth, differentiation, and metabolism of the multitude of cells in diverse 

tissues and organs. Even the simplest bacteria sense and swim toward high concentrations of 

nutrients, such as glucose or amino acids.   Independent of the organism type, every cell has to 

communicate with its surroundings, with other cells and within itself. This communication is 

provided by extra-, inter-, or intracellular signalling, which occurs through the transportation 

of specific molecules. Cells as those in nerve- or immunesystem get highly specialized in 

signaling. Consequently signaling controls important aspects of the cell, and possible 

malfunctions will lead to threatining the life of the organism. In depth characterization of 

signaling pathways will lead eventually to an ability to intervene in diseases in which those 

pathways are defective (Downward, 2001; Lodish et al., 2000; Cooper, 2000). 

 

In higher animals, cells communicate using hundreds of kinds of signaling molecules, 

including proteins, small peptides, amino acids, nucleotides, steroids, retinoids, fatty acid 

derivatives, and even dissolved gases such as nitric oxide and carbon monoxide, whereas yeast 

cells communicate with one another by secreting only several kinds of small peptides.  Most 

of these signaling molecules are secreted from the signaling cell by exocytosis or released by 

diffusion through the plasma membrane. On the other hand, some signaling molecules remain 

tightly bound to the cell surface and influence only cells that contact the signaling cell. Target 

cells, generally, respond by means of a specific protein called a receptor, which specifically 

binds the signaling molecule and then initiates a response in the target cell (Figure 2.1). These 

cell surface receptor proteins act as signal transducers: they bind the signaling molecule with 
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high affinity and convert this extracellular event into one or more intracellular signals that 

alter the behavior of the target cell (Downward, 2001; Alberts et al., 2002). 

 

 

 

Figure 2.1.  Simplified view of an intracellular signaling pathway (Alberts et al., 2002). 

 

2.1.1.  Ligand 

 

A ligand is any molecule, other than an enzyme substrate, that binds tightly and specifically to 

a macromolecule, usually a protein, forming a macromolecule-ligand complex (Lodish et al., 

2000). Yeast cells communicate with one another by secreting several kinds of small peptides. 

However, in higher animals, cells communicate by means of hundreds of signaling molecules, 

including proteins, small peptides, amino acids, nucleotides, steroids, retinoids, fatty acid 

derivatives, and even dissolved gases such as nitric oxide and carbon monoxide. Most of these 

signaling molecules are secreted from the signaling cell by exocytosis or released by diffusion 

through the plasma membrane. On the other hand, some signaling molecules remain tightly 

bound to the cell surface and influence only cells that contact the signaling cell (Alberts et al., 

2002). 
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2.1.2.  Receptor 

 

A receptor is any protein that binds a specific extracellular signaling molecule (ligand) and 

then initiates a cellular response. Receptors for steroid hormones, which diffuse across the 

plasma membrane, are located within the cell; receptors for water-soluble hormones, peptide 

growth factors, and neurotransmitters are located in the plasma membrane with their ligand-

binding domain exposed to the external medium (Lodish et al., 2000). 

 

Cell signaling requires not only extracellular signal molecules, but also a complementary set 

of receptor proteins in each cell that enable it to bind and respond to the signal molecules in a 

characteristic way. Some small hydrophobic signal molecules, including steroid and thyroid 

hormones, diffuse across the plasma membrane of the target cell and activate intracellular 

receptor proteins that directly regulate the transcription of specific genes. Most extracellular 

signal molecules can activate receptor proteins only on the surface of the target cell; these 

receptors act as signal transducers, converting the extracellular binding event into intracellular 

signals that alter the behavior of the target cell (Alberts et al., 2002). 

There are three main families of cell-surface receptors, each of which transduces extracellular 

signals in a different way. Ion-channel-linked receptors are transmitter-gated ion channels that 

open or close briefly in response to the binding of a neurotransmitter. G-protein-linked 

receptors indirectly activate or inactivate plasma-membrane-bound enzymes or ion channels 

via trimeric GTP-binding proteins (G proteins). Enzyme-linked receptors either act directly as 

enzymes or are associated with enzymes; these enzymes are usually protein kinases that 

phosphorylate specific proteins in the target cell. 

Once activated, enzyme- and G-protein-linked receptors relay a signal into the cell interior by 

activating chains of intracellular signaling proteins; some transduce, amplify, or spread the 

signal as they relay it, while others integrate signals from different signaling pathways. Many 

of these signaling proteins function as switches that are transiently activated by 

phosphorylation or GTP binding. Functional signaling complexes are often formed by means 
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of modular binding domains in the signaling proteins; these domains allow complicated 

protein assemblies to function in signaling networks. 

Target cells can use a variety of intracellular mechanisms to respond abruptly to a gradually 

increasing concentration of an extracellular signal or to convert a short-lasting signal into a 

long-lasting response (Figure 2.2). In addition, through adaptation, they can often reversibly 

adjust their sensitivity to a signal to allow the cells to respond to changes in the concentration 

of a particular signal molecule over a large range of concentrations (Alberts et al., 2002). 

 

 

 

Figure 2.2.  A more detailed intracellular signaling pathway (Alberts et al., 2002). 
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2.1.3.  Transcription Factors 

 

Transcription factor is the general term for any protein, other than RNA polymerase, required 

to initiate or regulate transcription in eukaryotic cells. General factors, required for 

transcription of all genes, participate in formation of the transcription-initiation complex near 

the start site. Specific factors stimulate (or repress) transcription of particular genes by binding 

to their regulatory sequences (Lodish et al., 2000). 

 

More specifically, transcription factors regulate the binding of RNA polymerase to DNA and 

as a result control the subsequent transcription of DNA into messenger RNA and eventually 

protein. Transcription factors bind to specific sequences of DNA upstream or downstream to 

the gene they regulate and then either enhance or repress transcription of these genes by 

assisting or blocking RNA polymerase binding respectively. A cluster of transcription factors 

is the preinitiation complex (PIC) that recruits and activates RNA polymerase. Conversely, 

repressor transcription factors inhibit transcription by blocking the attachment of activator 

proteins (Brivanlou and Darnell, 2002; Karin, 1990). 

 

A defining characteristic of transcription factors is that they contain a DNA binding domain 

(DBD) which bind to gene specific regulatory sites (e.g., promoter sequences). In addition, 

transcription factors often contain a second domain that sense external signals and in response 

transmit these signals to the rest of the transcription complex resulting in up or down 

regulation of gene expression. In some cases the DBD and signal sensing domains reside on 

separate proteins that associate within the transcription complex to regulate gene expression 

(Brivanlou and Darnell, 2002; Karin, 1990). 

 

2.1.4.  Signal Transduction Pathways 

 

Elucidation of the mechanisms that connect extracellular signal inputs to the control of 

transcription factors was until recently restricted to small-scale biochemical, genetic and 

pharmacological techniques. Signal transduction pathways have traditionally been viewed as 

linear chains of biochemical reactions and protein-protein interactions, starting from signal-
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sensing molecules and reaching intracellular targets; however, the increasingly recognized 

abundance of components shared by several pathways indicates that an interconnected 

signaling network exists (Albert, 2005). 

 

2.2.  Network Modeling 

 

Complex networks are currently being studied across many fields of science like 

biotechnology. Undoubtedly, many systems in nature can be described by models of complex 

networks, which are structures consisting of nodes or vertices connected by links or edges. 

The ubiquity of complex networks in science and technology has naturally led to a set of 

common and important research problems concerning how the network structure facilitates 

and constrains the network dynamical behaviours (Wang and Chen, 2003). 

 

2.2.1.  Reconstruction 

 

Reconstruction of biochemical pathways is a complex task. In metabolism, databases like 

KEGG and EcoCyc serve as valuable resources for metabolic networks. Such extensive and 

well-curated databases are not yet available for cellular signaling. The role of each protein in a 

signaling network is to communicate the signal from one node to the next, and to accomplish 

this the protein has to be in a defined signaling ‘state’. The state of a signaling molecule is 

characterized by covalent modifications of the native polypeptide, the substrates and/or 

ligands bound to the protein, its state of association with other protein partners, and its 

location in the cell. A signaling molecule may be a  receptor, a channel, an enzyme or several 

other functionally defined species, depending on its state. In the process of passing a signal, a 

molecule may undergo a transition from one functional state to another. Interactions within 

and between functional states of molecules, as well as transitions between functional states, 

provide the building blocks for the reconstruction of a signaling network (Papin and 

Subramaniam, 2004) 

 

The process of construction of signaling pathway models requires the assembly of a network 

of interacting proteins in a given context of the cell. Much of the knowledge on the pathways 
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comes from interrogation of cells by specific perturbations followed by assays and systematic 

biochemical analysis of protein complexes. Reconciliation of a large body of cellular data 

provides validation strategies for reconstructed networks. Even though the standard 

representations of biochemical pathways have been incomplete, they serve as useful models 

for constructing and testing specific biological hypotheses. Several efforts are underway 

currently to build databases of biochemical signaling pathways and networks of pathways. 

These databases are also combined into larger infrastructures containing graphical user 

interfaces and some rudimentary analysis tools (Papin and Subramaniam, 2004). 

 

2.2.2.  Mathematical Modeling and Simulation 

 

The biochemical processes in biological cells are complex and interwoven. Pathway cross-talk 

by shared metabolites or enzymes, regulation, and positive and negative feedback all 

contribute to the complexity. Although not a traditional experimental “method,” mathematical 

modeling can provide a powerful approach for investigating complex cell signaling networks, 

such as those that regulate the eukaryotic cell division cycle. Mathematical models are 

essential for understanding biochemical networks and predicting their behaviour under 

perturbation. Mathematical models permit the time dependence of metabolite concentrations 

to be simulated (Stein et al., 2007, Sible and Tyson, 2006). 

  

Models of biochemical networks are typically constructed as sets of differential equations 

describing the time dependence of compound concentrations. Ordinary differential equations 

(ODEs), dependent on only one variable (e.g. time), can be used to describe the change of 

states (e.g. compound concentrations). The equations can describe changes due to reaction and 

diffusion or other transport processes. Partial differential equations (PDEs) depend on more 

variables and enable the investigation of spatial and temporal changes of molecular 

concentrations. The differential equations contain kinetic parameters, which need to be 

determined experimentally or estimated computationally. 

 

When molecular concentrations fall below a threshold such that they can no longer be treated 

uniformly and deterministically, then the discrete nature of the molecules and their stochastic 
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behaviour has to be taken into account in simulations with random fluctuations (Stein et al., 

2007). 

Quantitative models of large systems are considerably harder to develop because they require 

large sets of relatively precise data that are yet to be obtained. The required experimental data 

fall into several categories. These include concentrations of cellular components, the rates of 

their interactions, including rates of enzyme and binding activities, their locations within cells, 

and rates of regulated movement between cellular compartments. Despite these limitations, the 

number of quantitative differential equation–based models has been growing steadily, and 

high-throughput experiments that measure rate constants are becoming a reality. Such models 

will be essential for drug development from network models (Ma’ayan et al., 2006). 

Because a universal mechanism controlling DNA synthesis, mitosis, and cell division 

underlies the growth, development, and reproduction of all eukaryotes, an understanding of 

this molecular regulatory system is one of the most important goals of modern cell biology. As 

the complex network of cell cycle controls is uncovered, it becomes increasingly difficult to 

make reliable predictions about how modification of one component affects the system as a 

whole. However, such predictions are needed if the host of mutations contributing to cancer is 

to be identified or found within the molecular network novel targets for therapeutic 

intervention. Mathematical models provide powerful tools for managing the complexity of the 

cell cycle control system and of other signaling networks. Models organize a large body of 

experimental data, describe the fundamental behaviors of the system as a whole, bridge gaps 

where experimental data are missing, and drive hypothesis-building for the next round of 

experimentation. The value of mathematical modeling in describing and predicting the 

behavior of complex systems has been well established in fields such as chemical engineering 

and meteorology, but its power has been underappreciated until recently in molecular cell 

biology (Sible and Tyson, 2006). 

Although mathematical models can be built to describe any signaling network, application of 

modeling tools to cell cycle regulation is particularly well suited and timely. First, the data in 

this field are vast, both providing a large body of information to build comprehensive models 

and creating the need for a tool to understand how these data fit together. Second, cell cycle 
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signaling networks are modular, allowing models to be constructed in parts and then 

assembled and reassembled in various ways. Furthermore, many models of the network are 

comparable between different organisms (e.g., budding yeast and mammals) so that it is 

feasible to make relatively small changes to a model describing one particular system in order 

to apply it to another. Thus, each new model need not be constructed from scratch. Third, a 

reasonable amount of quantitative or semi-quantitative information can be extracted from the 

literature, facilitating the early phases of model building. By modifying established protocols 

(described in the accompanying articles), additional quantitative data can be generated to 

improve parameter estimation and experimental validation of models. Finally, despite the 

wealth of detailed information on cell cycle molecules and their specific interactions, there is a  

lack of a systems-level perspective of this complex control network. Modeling can provide 

this perspective by helping to identify underlying regulatory principles. Where a specific 

experimental detail is missing, modeling can serve as bridge, enabling progress in building a 

systems-level view, and guiding the design and execution of future experiments (Sible and 

Tyson, 2006). 

Although it is possible to attempt whole-cell simulations with all relevant metabolites 

included, it is more common to model individual pathways or groups of pathways. A modular 

approach can then be taken to investigate cross-talk between pathways and reconstitute cell-

like simulations from independent module. Pathways that have been extensively modelled and 

simulated recently include the mitogen-activated protein kinase (MAPK) pathway and 

glycolysis (Stein et al., 2007). 

 

2.3.  MAPK Signaling in Yeast 

 

Yeast is used as a model organism, since it is easy to handle and many data are already 

available. Signaling pathways are evolutionarily highly conserved. From an experimental as 

well as from a modeling viewpoint, the developed techniques, the specific results and the art 

of interaction of modeling and experimental research can be applied to higher organisms, in 

order to arrive at a better understanding of the dynamic operation of those pathways and to 

offer new opportunities for drug discovery. 
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Signal transduction networks permit cells to receive external stimuli and respond to the signals 

in an appropriate manner. The Mitogen-Activated Protein Kinase (MAPK) signaling pathways 

play an important role in signal transduction in eukaryotic cells, where they modulate many 

cellular events including: mitogen-induced cell cycle progression through the G1 phase, 

regulation of embryonic development, cell movement and apoptosis, as well as cell and 

neuronal differentiation. These evolutionarily conserved pathways are organized in three-

kinase modules consisting of a MAP kinase, an activator of MAP kinase (MAP Kinase Kinase 

or MEK) and a MAP Kinase Kinase Kinase (MEK Kinase, MEKK, or MAPK Kinase Kinase). 

There are at least three distinct MAP kinase signal transduction pathways in mammalian cells, 

each named after the particular MAPK associated with it. Since the budding yeast 

Saccharomyces cerevisiae is known to have more than three distinct MAPK pathways, it is 

logical to expect that there might be additional MAPK pathways in mammalian cells 

(Promega Corporation, 2000).  

The MAP kinase cascade is a highly conserved signal transduction module that propagates 

signals from cell surface receptors to various cytosolic and nuclear targets by way of a 

phosphorylation cascade and is thought to be present in all eukaryotes. The cascade typically 

consists of three layers, each based on a kinase that phosphorylates and activates an 

immediately downstream kinase. The final component in the cascade, the MAP kinase, once 

activated, phosphorylates various cytosolic targets and translocates to the nucleus to 

phosphorylate transcription factors affecting gene expression. Full activity of the MAP kinase 

(MAPK) generally requires phosphorylation at both a conserved tyrosine and threonine 

residue although evidence suggests that in some pathways partial activity is possible with 

phosphorylation at a single site. Activation of the cascade is often associated with cell death, 

environmental stress, cell proliferation, and cell differentiation responses (Schwacke and Voit, 

2006). 

2.3.1.  Mating Pheromone Response Pathway 

 

Saccharomyces cerevisiae exists in two haploid cell types, MATa and MATα. The α-factor 

released by α cells acts on a cells by binding to the G-Prote in Coupled Receptor (GPCR) 
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Ste2; and, a-factor released by a cells acts on α cells by binding to the GPCR Ste3. Both 

pheromone receptors are coupled to a common heterotrimeric G protein, Gpa1–Ste4–Ste18, 

where Gpa1 is Gα and Ste4–Ste18 is the Gβγ complex. Engagement of these GPCRs by their 

cognate pheromones leads to activation of Cdc42 and, eventually, to activation of the MAPK, 

Fus3. The action of Fus3 is responsible for eliciting the expression of numerous mating 

specific genes, imposing cell cycle arrest, promoting polarized cell growth to form copulatory 

projections toward the mating partner, establishing the changes in the plasma membrane and 

cell wall necessary for cell–cell fusion, and orienting the nucleus and modifying its envelope 

to permit fusion of the two haploid nuclei. Both the heterotrimeric G protein and Cdc42 also 

act through additional effectors to stimulate other branches of the response machinery that are 

necessary to produce mating-competent cells and achieve optimally efficient mating. Thus, 

yeast pheromone response is clearly a network of interlocking events, rather than a simple 

linear pathway, and is arguably one of the best understood MAPK-based signal-response 

systems in biology (Chen and Thorner, 2007; Van Drogen et al., 2001). 

 

The binding of a pheromone to its cognate GPCR facilitates the release of GDP and the 

subsequent binding of GTP by Gpa1 (Gα subunit). GTP binding to Gα alters its interaction 

with Gβ (Ste4), dissociating Gpa1 from the Gβγ complex. Released Gβγ can interact with 

three known effectors: Ste20 and Ste5 and a protein weakly related to Ste5, Far1. Unlike Ste5, 

the C-terminus of Far1 binds to, and most likely activates Cdc24. Ste20, activated by Cdc42–

GTP, serves as the MAPKKKK to phosphorylate and thereby trigger activation of the 

MAPKKK, Ste11, initiating activation of the remainder of the MAPK cascade, namely Ste7 

(MAPKK) and Fus3 (MAPK) (Figure 2.3). Ste5 is a scaffold protein that binds all three 

component kinases of the cascade (Ste11, Ste7, and Fus3) (Chen and Thorner, 2007). 

 

In addition to Fus3, pheromone stimulation also leads to transient activation of another 

MAPK, Kss1. Activation of Kss1 also occurs via Ste11 and Ste7, but is not dependent on the 

scaffold protein, Ste5. Cells lacking both Fus3 and Kss1 are sterile, whereas the presence of 

either one alone permits mating. Quantitative analysis shows that loss of Kss1 does not  



 14 

 

 

Figure 2.3.  Schematic diagrams of the MAPK signaling pathways in Saccharomyces 

cerevisiae. Symbols are: protein kinases, ovals; GTP-binding proteins, diamonds; scaffold, 

adaptor, and activating proteins, rectangles; cell surface proteins, trapezoids; activation, 

arrows; inhibition, T-bars; direct action, smooth lines; indirect action (or unknown molecular 

mechanism), squiggly lines. For clarity, not all factors and interactions are shown, connections 

to other pathways and processes upstream of the MAPKs are omitted, and direct targets of the 

MAPKs are not included (Chen et al., 2007). 

 

measurably reduce mating proficiency, whereas loss of Fus3 reduces mating efficiency to ~10 

per cent of the wild-type level. Analysis of other indicators (cell cycle arrest, morphological 

changes, gene induction patterns) of signal throughput in cells lacking either Fus3 or Kss1 

indicates that Fus3 is responsible for the majority, but not the entirety, of the MAPK-

dependent pheromone response. In contrast, Kss1, but not Fus3, is essential for the invasive 

growth response in haploids and the pseudohyphal growth response in diploids (filamentous 

growth response). Fus3 is much more efficient than Kss1 at mediating pheromoneinduced cell 
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cycle arrest, most likely because Fus3 phosphorylates Far1 more efficiently due to a 

highaffinity docking site in Far1 that binds Fus3, but not Kss1. Fus3 also serves as a negative 

regulator of filamentous growth because, unlike Kss1, it phosphorylates and leads to the 

degradation of the Tec1 transcription factor necessary for induction of the genes involved in 

this developmental outcome (Chen and Thorner, 2007). 

 

2.3.2.  Filamentation and Invasion Pathway 

 

Nutrient limitation induced behaviors are termed pseudohyphal growth in diploids and 

invasive growth in haploids. Although there are important biological and mechanistic 

differences between the two, many of the primary molecular components and regulatory 

pathways involved in these filamentous growth responses are the same. The MAPK cascade 

mediates signal transduction in filamentation-invasion pathway from Ras2 and Cdc42. 

Signaling from Ras2 requires the proteins Bmh1 and Bmh2 and possibly Sho1 receptor. Cdc42 

acts downstream of Ras2 and is required for the function of the Ste20 in the filamentation-

invasion pathway. Cdc42-Ste20 then transmits signal to the MAPK cascade. The MAPK for 

the filamentation-invasion pathway is Kss1. Activation of Kss1 requires Ste20 (PAK), Ste11 

(MAPKKK), and Ste7 (MAPKK) (Figure 2.3). Activation of Cdc42 during filamentous 

growth is known to be dependent on active Ras2. Sho1 can form hetero-oligomeric complexes 

with Msb2, and the absence of either protein blocks Kss1 activation and prevents filamentous 

growth in haploids.  The stimulatory function of Kss1 requires both its catalytic activity and its 

activation by the MEK (MAPK/ERK kinase) Ste7; in contrast, the inhibitory function of Kss1 

requires neither. Unphosphorylated Kss1 binds directly to the transcription factor Ste12 and 

forms a protein complex that also contains Tec1, and the inhibitory proteins Dig1 or Dig2. 

Upon phosphorylation through a MAPK cascade, Kss1 dissociates from the complex, thereby 

destabilizing the Ste12-Dig association. Activated Kss1 phosphorylates and activates Ste12, 

leading to binding of Ste12 in combination with Tec1 to genes containing a Ste12/Tec1 

composite binding site (Chen and Thorner, 2007; Palecek et al., 2002). 
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2.3.3.  High Osmolarity/Glycerol Pathway 

 

It is a treat for cell viability that the dissolved solute concentration of the extracellular medium 

increases to a level higher than the internal osmolarity of the cell. To restore osmotic balance 

the cell increases the internal osmolyte concentration by synthesis of glycerol, a highly water 

soluble and inert solute. This mechanism is referred to as the High-Osmolarity-Glycerol 

(HOG) response. Survival under hyperosmotic conditions via the HOG pathway requires 

activation of the Hog1 from either of two upstream inputs (Chen and Thorner, 2007) (Figure 

2.3).  

 

First route is initiated by the osmosensor Sln1. Under iso-osmotic conditions, Sln1 is active 

and catalyzes autophosphorylation and subsequent phospho-transfer to an intermediate 

protein, Ypd1, which transfers the phosphate group to a response regulator, Ssk1, preventing 

interaction of Ssk1 with two semi-redundant MAPKKKs, Ssk2 and Ssk22. Mild hyperosmotic 

stress inhibits Sln1, resulting in an increase in the amount of unphosphorylated Ssk1. 

Unphosphorylated Ssk1 is able to bind to and activate Ssk2 and Ssk22. These MAPKKKs 

phosphorylate a dedicated MAPKK, Pbs2, which in turn, is responsible for dual 

phosphorylation and activation of the MAPK, Hog1. The second route for Hog1 activation is 

via the alternative MAPKKK, Ste11, which is also encountered in both the pheromone 

response pathway and the filamentous growth pathway (Figure 2.3). Stimulation of Ste11 in 

the Sho1-dependent branch requires the function of Cdc42 and Ste20. It is necessary to steer 

active Ste11 toward Pbs2 and prevent it from encountering Ste7.  The MAPKK Pbs2 

represents a true node for both the the Sln1-dependent and the Sho1-dependent branches of the 

HOG pathway. Pbs2 contains a highaffinity docking site for the MAPKKKs, Ssk2 and Ssk22, 

of the Sln1 branch and also associates with Ste11. Pbs2 serves as both the  MAPKK of the 

HOG pathway and also as scaffold for proper assembly of the signaling complexes necessary 

to propagate the signals that initiate the HOG pathway in the first place (Chen and Thorner, 

2007). 

  

Activation of Hog1 causes its rapid translocation from the cytoplasm to the nucleus. Nuclear 

Hog1 binds and phosphorylates several transcription factors, interacts with chromatin 
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modifying enzymes and RNA polymerase II, and affects the expression of hundreds of genes 

in response to hyperosmotic shock. Osmostress-regulated genes are implicated mainly in 

carbohydrate metabolism, general stress protection, protein production and signal 

transduction. In yeast, five transcription factors are known to be controlled by the Hog1 

MAPK. Hot1, Smp1, Msn2 and Msn4 activate, whereas Sko1 represses or activates, different 

subsets of osmotic-inducible and Hog1 regulated genes (Chen and Thorner, 2007; Tatebayashi 

et al., 2003). 

 

2.3.4.  Cell Wall Integrity Pathway  

 

The MAPK Slt2/Mpk1 becomes activated under a number of different conditions that stress 

the structure and function of the yeast cell wall. It is thought that the common element sensed 

in all of these cases is stretching of the plasma membrane and/or alterations of its connections 

to the cell wall. The genes under control of this response pathway include many involved in 

the synthesis and modification of the major components of the yeast cell wall, and lack of an 

Slt2/Mpk1-dependent response causes cell lysis in the absence of an osmotic support in the 

medium . Hence, the Slt2/Mpk1-dependent response is referred to as the cell wall integrity 

(CWI) pathway (Chen and Thorner., 2007). 

 

Five plasma membrane proteins, Wsc1, Wsc2, Wsc3, Mid2, and Mtl1, have been identified as 

important for activation of this pathway. The cytoplasmic Cterminal domains of Wsc1 and 

Mid2 interact with Rom2, thought to be specific for the small Rashomologous GTPase, Rho1. 

With respect to signals ensuring cellular integrity, the main effector of Rho1 is PKC1. PKC1 

is an essential activator (MAPKKKK) of the MAPK cascade required for CWI signaling—

Bck1 (MAPKKK), Mkk1 and Mkk2 (two semi-redundant MAPKKs), and Slt2/Mpk1 (MAPK) 

(Figure 2.3); the MAPKKs and MAPK in this pathway are bound by the scaffold protein Spa2 

(Chen and Thorner, 2007; Verna et al., 1997). 

 

Slt2/Mpk1 is responsible for stimulating expression of the genes for enzymes and other factors 

involved in cell wall biosynthesis and remodeling both directly and indirectly. Slt2/Mpk1 

stimulates expression of cell wall biosynthesis genes directly via phosphorylation of the 
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transcription factors. Rlm1 and the Sbf complex (consisting of Swi4 and Swi6) have been 

reported as targets of the MAPK. Rlm1 regulates transcription of a specific set of genes. Swi4 

is the DNA binding subunit and transcriptional activator of Sbf and is required for normal 

expression of the G1 cyclin genes Cln1, Cln2, Pcl1, and Pcl2 at the G1/S transition. Swi6 is 

more of a regulatory subunit, because loss of Swi6 leads to constitutive intermediate levels of 

Cln1 and Cln2 expression. Cln1 and Cln2 are G1 cyclins that complex with the cyclin-

dependent kinase Cdc28 and thereby activate the G1/S transition (Chen and Thorner, 2007; 

Verna et al., 1997). 

 

2.4.  Mathematical Methods 

 

2.4.1.  Graph Theory 

 

Since the late 1990s, the approach of abstracting complex systems to networks, resulting in 

directed or undirected graphs made of nodes and links, is increasingly employed to analyze 

systems from a range of scientific fields. These applications nicely fit the molecules to nodes 

and interactions to links simplification used to describe intracellular mammalian interactions 

networks. Watts and Strogatz (1998) used two previously defined global statistical properties 

of graphs to characterize networks: clustering coefficient and characteristic path length. It was 

found that biological interaction networks have higher clustering coefficients and similar 

characteristic path lengths expected if the networks would be randomly rewired. An initial 

striking result from the analysis of biochemical interaction networks is that network nodal 

connectivity distribution fits a power-law. Such networks are termed scale-free. Another 

approach for analysis of complex systems abstracted to network maps is characterization of 

motifs. Network motifs are subsets of interactions involving several different components. 

Alon’s group (Milo et al., 2002) was the first to propose this approach for analyzing 

biochemical interactions networks. They initially analyzed a gene regulatory network of 

bacteria. It is also possible to break up large-size biochemical interaction maps into 

subnetworks based on specific criteria such as limiting the number of steps from a receptor to 

a transcription factor and then searching for network motifs only in those subnetworks. Major 

attention is targeted toward the hubs: the highly connected nodes in protein–protein, ligand–
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protein, and gene regulatory networks. Han and coworkers (2004) distinguished between party 

hubs and date hubs. Party hub proteins interact with many other proteins in the same 

compartment and at the same time, whereas date hubs interact with many other proteins at 

different times and places in the cell. When network maps include directionality of the links it 

is possible to separate hubs based on their in-links and out-links (Ma’ayan et al., 2006). 

 

2.4.2.  Game Theory 

 

Game theory is the study of the ways in which strategic interactions among rational players 

produce outcomes with respect to the preferences (or utilities) of those players, none of which 

might have been intended by any of them (Ross, 2004). Game Theory is a misnomer for 

Multiperson Decision Theory, analyzing the decision making process when there are more 

than one decision-makers where each agent’s payoff possibly depends on the actions taken by 

the other agents. Since an agent’s preferences on his actions depend on which actions the other 

parties take, his action depends on his beliefs about what the others do. Of course, what the 

others do depends on their beliefs about what each agent does. In this way, a player’s action, 

in principle, depends on the actions available to each agent, each agent’s preferences on the 

outcomes, each player’s beliefs about which actions are available to each player and how each 

player ranks the outcomes, and further his beliefs about each player’s beliefs, ad infinitum 

(Yildiz, 2004). 

 

One way to describe a game is by listing the players (or individuals) participating in the game, 

and for each player, listing the alternative choices (called actions or strategies) available to 

that player. In the case of a two-player game, the actions of the first player form the rows, and 

the actions of the second player the columns, of a matrix. The entries in the matrix are two 

numbers representing the utility or payoff to the first and second player respectively. A very 

famous game is the Prisoner's Dilemma game (Levine). 

 

2.4.2.1.  Prisoner’s Dilemma in biochemistry : Two yeast strains that both used sugar as 

energy resource, but which may choose between two different pathways of ATP production, 



 20 

were studied from a game-theory point of view. These pathways were considered as distinct 

strategies to which payoffs were assigned that were proportional to the expected steady-state 

number of individuals sustainable on the basis of these strategies. In a certain parameter range 

the payoffs fulfilled the conditions for the prisoner’s dilemma. Therefore, cooperative 

behaviour was unlikely to occur, unless additional factors intervened. In fact, the yeast 

Saccharomyces cerevisiae used a competitive strategy by fermenting sugars even under 

aerobic conditions, thus wasting its own resource (Frick and Schuster, 2003). 

 

2.4.2.2.  Game-theoretical approaches to studying the evolution of biochemical systems : 

Evolutionary processes need to be considered for a detailed understanding of complex 

biochemical systems. Evolutionary optimization has been successfully used to increase the 

understanding of key properties of biochemical systems. Evolutionary processes do not simply 

optimize these systems because there are interactions between the evolving population and its 

environment. Thus, traditional optimization is often insufficient for understanding the 

dynamics of evolutionary processes because usually there is a mutual relationship between the 

properties optimized by evolution and the properties of the environment. Thus, by evolving 

towards optimal properties, organisms change their environment, which in turn alters the 

optimum. Evolutionary game theory provides a more appropriate tool with which the 

dynamics and outcome of  evolution of biochemical systems can be studied (Pfeiffer and 

Schuster, 2005). 

 

Recent studies have applied evolutionary game theory to key issues in the evolution of energy 

metabolism. Biochemical phenomena such as biofilms that show strong interactions between 

the population and its environment were analyzed by evolutionary game theory. In another 

application, the coexistence of  three types of strain was reported to resemble the rock–

scissors–paper game. Assuming that both toxin production and toxin resistance were 

associated with metabolic costs, each of the three strains described above could invade another 

type but was also susceptible to invasion by the remaining type (Pfeiffer and Schuster, 2005). 
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2.4.3.  Bayesian Networks 

Cell signaling networks typically modeled by computer simulations could also be modeled by 

classifier systems (Holland, 2002). Classifier systems share many aspects of cell signaling 

networks such as parallelism and coordination, conditional actions, modularity, and 

adaptation. Exploratory statistical models built using these concepts can provide insight into 

the operation of perturbed pathways in DS. One of the most commonly used classification 

methods for this purpose is Bayesian networks (BN). Construction of BN from experimental 

measurements of mRNA levels, as a time-series or under different perturbations, to reverse-

engineer gene regulatory networks from microarray data are the most common approach so far 

to rebuild networks from these data. Bayesian networks are acyclic graphs in which nodes 

represent the experimentally measured variables and links are probabilistic influences of 

variables on each other. Woolf and coworkers (2005) used this approach to build a BN from a 

multivariant dataset of 28 signaling proteins under 16 combinations of experimental 

conditions applied to mouse embryonic stem cells. These cells can be driven to self-renewal or 

to differentiation in culture based on the extracellular media provided (i.e., stimulation by 

extracellular ligands). The authors searched for network topology and probabilities to connect 

variables to best fit the experimental results. The resulting network was validated against 

shuffled networks and helped the authors to hypothesize about the outcome of differentiation 

versus self-renewal under conditions not yet tested experimentally. Sachs and coworkers 

(2005) used the BN approach to study the relationships between proteins and phospholipids, 

and the directionality of their links, after T-cell activation of naïve T-cells. Sachs and 

coworkers (2005) used data from single cell measurements using flow cytometry to measure 

the phosphorylation levels of key signaling nodes (proteins and phospholipids). The authors 

then determined hierarchical ordering of signaling components by applying experimental 

perturbations, such as knocking out a protein, by either pharmacological agents or RNA 

interference. They were able to determine which proteins are upstream or downstream in the 

signaling network using statistical correlations. Dynamic Bayesian networks (DBN) attempt to 

solve some limitations of standard BN analysis. Dynamic Bayesian networks analysis is 

applied to multivariant time-series data. The idea is to identify correlations between variables 

at different time points. For example, if variable x is up at time point t1 and variable y is up at 
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time point t2, it is possible that variable x upregulates variable y. Dynamic Bayesian networks 

was implemented by Zou and Conzen (2005) to infer a gene regulatory network function from 

the yeast cell cycle dataset. The first implementation of DBN in biology is attributed to 

Murphy and Mian (1999). Bayesian networks do not perform well when only few time points 

are available, while thousands of variables are measured (i.e., time-series microarrays data). 

Segal and coworkers (2005) recently suggested a potential solution. Instead of treating each 

variable independently, variables are grouped into modules such that the BN is constructed to 

connect the modules. Bayesian networks application to experimental results is essentially 

statistical. Another elaborate statistical method was used by Janes and coworkers (2005) to 

study cell signaling axes of apoptosis. The author analyzed 7980 experimental measurements 

by constructing high-dimensional vectors from the data to understand the trajectory of cellular 

response to different stimuli that induce either apoptosis or promote cell survival. Such 

approaches may be useful in identifying where cellular dynamics trajectories are deformed in 

DS (Ma’ayan et al., 2006). 

A Bayesian network is a directed acyclic graph which encodes the joint probability 

distribution over a set of random variables x1, . . . , xn. The joint probability distribution can 

be expressed as 

   

 (2.1) 

 

where pa[xi] is the set of parent variables of xi in the graph. This decomposition gives a space-

efficient method of representing the joint probability distribution compared to the general 

case. 

 

To study system dynamics, one can extend Bayesian networks by “unfolding” the graph 

structure. For each time point under consideration, a nodes of the Bayesian network are 

duplicated. The probability distribution for a variable in time step t + 1 is then given in terms 
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of its parents in time step t. The resulting graph is also a Bayesian network, and it can be used 

to make inferences involving dynamic behaviour of the variables (Pitkänen, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

3.  MATERIALS AND METHODS 

 

 

3.1.  MAPK Network 

 

Like other eukaryotes, yeasts share several mitogen-activated protein kinase (MAPK) 

signaling pathways (Widmann et al., 1999). The MAPK cascades are activated by diverse 

stimuli (cytokines, growth factors, hormones, cellular stress, etc.) and they are regulated by a 

variety of extra- or intra-cellular signals (Gustin et al., 1998). When the cascade is activated, 

several transcriptional factors are regulated by MAP kinase phosphorylation. In 

Saccharomyces cerevisiae, four functionally distinct pathways including a MAPK cascade 

have been established and extensively investigated: (i) high-osmolarity signaling pathway 

(Tatebayashi et al., 2003), (ii) mating pheromone response pathway (Van Drogen et al., 2001), 

(iii) filamentous growth and invasion pathway (Palecek et al., 2002), and (iv) cell-wall 

integrity pathway (Verna et al., 1997).  

 

In the present study a protein-protein interaction network of 49 proteins annotated to be 

functioning in the above-mentioned MAPK pathways in the MIPS-CYGD functional 

catalogue (Güldener et al., 2005) is reconstructed by May 12th, 2006. For the physical 

interactions through which the signal is transmitted, the assembly of protein-protein 

interactions obtained from three public databases is used, BioGRID (Breitkreutz et al., 2003), 

DIP (Salwinski et al., 2004) and STRING (Von Mering et al., 2005) by February 9th, 2006. 

Only the physical interactions representing the signal transduction, which is validated by 

specific signaling studies using small-scale experimentation, were considered to eliminate 

possible false-positives in the interactome assembly. So the basis of the work, namely the 

proteins in the network and the interactions among them, is limited to current knowledge in 

biology, and it will be improved with the advances in the field. The present reconstruction 

attempt for MAPK network resulted in an intertwined network (Figure 3.1) of four MAPK 

pathways.  
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Figure 3.1.  The interwined structure of the reconstructed MAPK network including the four 

functionally distinct MAPK pathways in Saccharomyces cerevisiae. 

 

Perception of environmental conditions is maintained by existence of nine receptors (Ste2, 

Ste3, Ras2, Sho1, Sln1, Wsc1, Wsc2, Wsc3, and Mid2) that are able to sense several kinds of 

ligands including cytokines, growth factors, hormones, and cellular stress. The transduction of 

the perceived signal to the eleven regulatory components, i.e. transcription factors (Ste12, 

Tec1, Msn2, Msn4, Hot1, Sko1, Far1, Fus1, Rlm1, Swi4, and Swi6), is sustained through 

several signaling mechanisms, i.e. MAPK cascades. The basic assembly of a MAPK cascade 
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is a three-component cascade of sequentially activated kinases:  a MAP kinase kinase kinase 

(MAPKKK or MEKK), a MAP kinase kinase (MAPKK or MEK), and a MAP kinase 

(MAPK). The sequential activation is achieved by tethering to scaffold proteins, e.g. Ste5, as 

well as direct interaction between kinases of the cascade. Organization into MAPK cascades 

ensures segregation of the pathways from other signaling events in the cell and also allows the 

use of a kinase in more than one MAPK module without affecting the specificity of the 

response (Widmann et al., 1999).  

 

3.2.  Graph Representation of the MAPK Signaling Network 

 

The MAPK network is represented as a directed acyclic graph (DAG), which is composed of a 

set of nodes (signaling proteins) and a set of directed edges (protein-protein interactions 

indicating the direction of signal transmission) on the set of nodes (Figure 3.2.a).  The graph 

containing 49 nodes is represented by a binary, square adjacency matrix, A, of dimensions 

49x49. A(i,j)=1 if there is an edge from node i to node j; otherwise, A(i,j)=0 (Figure 3.2.b). 

The directed graph of the MAPK network is made up of 9 inputs (receptors) and 11 outputs 

(transcription factors).   
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Figure 3.2.  Illustrative example of the methodology. (a) The pathways are represented by a 

directed acyclic graph (DAG), in which nodes represent signaling proteins and the directed 

edges represent the physical interactions. (b) The binary adjacency matrix (A) representing the 

network. (c) The set of linear paths connecting each input to output (conically independent 

basis vectors). (d) A normalized, uniformly-distributed random matrix (S) with exactly the 

same topology as the adjacency matrix. (e) The payoff matrix (PM) obtained by the Bayesian 

Network model for the output pair. The pareto-optimal NEQ (most probable strategy pair) is 

represented in bold. (f) The optimal strategies given by the NEQ. 
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3.3.  MAPK Signaling Network as a System of Linear Paths 

 

The time-invariant topological structure of the signaling network can be mathematically 

captured as a system of linear paths that characterize the phenotypic potential of the network. 

Previously, the topology of biological networks is investigated via a set of fundamental routes 

(pathways) in the networks (Schuster and Hilgetag, 1994). This set of routes may include all 

possible linear paths from inputs to outputs (Mavrovouniotis, 1995; Seressiotis and Bailey, 

1988; Steffen et al., 2002) or conically independent basis vectors (called “elementary flux 

modes” or “extreme pathways”) in solution space (Schilling and Palsson, 1998; Schuster and 

Hilgetag, 1994; Schuster et al., 1996). Given the proteins and the interactions among them, 

both sets as obtained from literature, together with the start and end terminals, the set of linear 

paths connecting each input to output were calculated using NetSearch algorithm (Steffen et 

al., 2002) so that any network state can be defined as a nonnegative, linear combination of 

them (Figure 3.2.c).   

 

3.4.  Bayesian Network Model (BN) 

 

A probabilistic graphical model called Bayesian Network (BN) is used to represent the 

probabilistic relationships between interacting proteins. The most important advantage of 

using BN is that an edge between two nodes can be taken as an indicator of causality, i.e. how 

causes generate effects, on a solid mathematical basis (Pearl, 2000). Bayesian Network is 

represented by a directed acyclic graph (DAG), a family of conditional probability 

distributions (CPD) and their parameters. In BN formulation, the proteins (nodes) were 

represented as random variables. BN associates a conditional probability ( )ii UXP  with each 

variable Xi, where XU i ⊆ is the set of parents of Xi. The conditional independence between 

proteins was represented by the absence of edges between these proteins. In BN, the 

conditional independence relationship states that a node is independent of its ancestors given 

its parents, where the ancestor/parent relationship is with respect to some fixed topological 

ordering of the nodes. The joint distribution over a set of random 
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variables, { }nXXXX ,...,, 21= , is represented as a product of conditional probabilities. Then, 

the joint distribution is in the following form: 

 

( ) ( )∏=
i

iin UXPXXXP ,...,, 21    

 (3.1) 

 

The DAG structure defines a unique rule for expanding the joint probability in terms of 

simpler conditional probabilities (Jensen, 2001), i.e. the product decomposition is guarantied 

to be a coherent probability distribution (Friedman, 2004).  

 

3.5.  Strategic Game Representation – BN coupled with Game Theory 

 

The strategic game is a model of competitive players consisting of (i) a set of players, (ii) a set 

of strategies for each player, and (iii) preferences over the set of strategies for each player.  

 

In the present study, the targets of the MAPK network, which are the transcription factors, are 

considered as the players.  Considering the structure of the network (Figure 3.1) consisting of 

four different MAPK pathways in yeast, the players may be (i) co-operating, i.e. the TFs are 

functioning in the same pathway, (ii) competitive, i.e. the TFs are functioning in different but 

cross-talking pathways, or (iii) independent, i.e. the TFs are functioning in different and non-

cross-talking pathways. As the set of strategies for each player (i.e. TF), all possible 

alternative routes (i.e. all possible linear paths ending at the player) are used in which the 

signal can be transmitted to the specified player from any of the receptors. The preferences 

over the set of strategies for each player are defined as the likelihood of preferring a specific 

linear path with respect to others.  

 

Assuming simultaneous activation of all receptors by the same amount of ligand (independent 

of the type of the ligand) and guaranteeing that receptor saturation does not occur (i.e., the 

ligand concentrations are below the binding capacity of all receptors), the BN model is used to 

simulate the transmission of signal from an upstream protein to any of the possible succeeding 
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proteins. The conditional probability distribution at each node is assumed to be uniform 

between the interval [0, 1]. During simulation, these probabilities are assigned by computer 

based on uniform distribution for each of the succesive runs. The conditional probabilities are 

described by a uniformly-distributed random matrix, S, with exactly the same topology as the 

adjacency matrix, A (Figure 3.2.d). Since each entry Sij describes the probability of signal 

transmission from protein i to protein j, the random matrix is normalized to ensure that total 

probability mass is one (i.e. summation of elements in each row is restricted to be equal to 1). 

In order to use a matrix representation for the game, the players, i.e. transcription factors, are 

considered pair-wise. For each of the linear paths related to the considered transcription factor 

pair, the joint probability of signal termination at the target transcription factor is calculated by 

Equation (3.1), i.e. by multiplication of all conditional probabilities of adjacent protein-pairs 

on the path; and the linear path pair yielding the maximum signal transmission to both of the 

outputs is considered as the preferred strategy. This procedure is repeated for 1000 times, 

which is found to be a sufficient number in a range up to 50000 such that the results does not 

change significantly, i.e. the results can be easily reproduced. The payoff matrix, PM, is 

created for each output pair (Figure 3.2.e) where the rows of the PM correspond to the 

preferred strategies of the first player (transcription factor) and the columns correspond to 

those of the second player. The PM indicates the density of preferred strategies, i.e. PMij = 

(number of times the strategy pair (i,j) is preferred)/1000. The present mathematical 

formulation assures that the payoffs of the two players are the same.  

 

3.6.  Solution Algorithm 

 

In order to determine the most-preferred strategies in a game consisting of two transcription 

factors as players, the solution algorithm uses the payoff matrix considering the basic 

principles of game theory: 

 

i. Elimination of dominated strategies: A strategy S dominates the other strategy T if 

every outcome in S is at least as good as the corresponding outcome in T, and at least 

one outcome in S is strictly better than the corresponding outcome in T. A rational 

player should never play a strategy dominated by any of its other strategies. 
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ii. Saddle point search: An outcome in a matrix game is called a saddle point if the entry 

at that outcome is both less than or equal to any entry in its row, and greater than or 

equal to any entry in its column. If a matrix game has a saddle point, both players 

should play a strategy which contains it. The game does not necessarily contain a 

saddle point. 

iii. Identification of Nash Equilibrium (NEQ): The outcome in a strategic game is called 

Nash equilibrium if the outcome of each player is at least as good as the other 

outcomes according to the player’s preferences. A strategic game necessarily has at 

least one Nash equilibrium. Due to the structure of the payoff matrix, NEQ was 

observed at the most preferred strategy pair for every player and every outcome of 

these players. 

iv. Analyzing the Pareto-optimality and multiplicity of NEQ: An outcome of a game is 

Pareto-optimal if there is no other outcome which would give both players higher 

payoffs, or would give one player the same payoff but the other player a higher payoff. 

To be acceptable as a solution to a game, an outcome should be Pareto-optimal. Due to 

the structure of the payoff matrix, NEQ is always Pareto-optimal. However, multiple 

NEQ may be present indicating same payoffs for the players. 
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4.  RESULTS AND DISCUSSION 

 

 

The topological analysis of signaling networks revealed numerous alternatives of signal 

transmission mechanisms from receptors to target transcription factors, most of these 

mechanisms are inactive in reality. In the present work, game theoretical concepts were 

adapted to bioinformatics to question the rationality of the “optimal” choice of pathway 

structure in real signaling networks. Game theory is thus here used to predict situations when 

one type of behavior or specific combination of them is more feasible than all known 

alternatives taking into account the preferences of all players.  

 

Eleven target transcription factors (Ste12, Tec1, Msn2, Msn4, Hot1, Sko1, Far1, Fus1, Rlm1, 

Swi4, and Swi6) of MAPK signaling network are considered as competitive players.  All 

possible linear paths starting from any receptor and ending at each transcription factor are used 

as the set of strategies for each player, i.e. transcription factor.  Using the Bayesian Network 

(BN) model, the likelihood of preferring a specific linear path with respect to others is 

determined in pair-wise games. 

 

The cell wall integrity pathway neither shares an input signal nor shows a cross-talk with the 

other MAPK pathways (Figure 3.1), and it seems to work independent of other pathways. 

Therefore, the comparison of its transcription factors (Rlm1, Swi4 and Swi6) with others was 

not meaningful in the game theoretical approach as the players were not competing. Among 

the remaining eight players, the transcription factors of the high osmolarity signaling pathway 

(Msn2, Msn4, Hot1, and Sko1) have the same strategy set; i.e. they are mathematically 

identical. Consequently, five different players (Ste12, Tec1, Far1, Fus1, and Msn2 - 

representing any of the Msn2/Msn4/Hot1/Sko1) are considered and all possible pair-wise 

games (ten games) among them are analyzed. 
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4.1.  Crosstalk Analysis in the Protein Interaction Network 

 

Perception of environmental conditions in cells is maintained by existence of a great variety of 

receptors that are able to sense several kinds of stimuli. The transduction of the perceived 

signals to the regulatory machinery is sustained through several signaling pathways triggering 

corresponding responses. Cells must be able to process multiple signals in parallel, each 

relaying its signal to the corresponding response specifically. The required specificity of 

signaling would seem to dictate that parallel cascades function independently. However, cells 

must also integrate the signals in order to trigger the appropriate response and this is achieved 

by the interaction between the signaling pathways, a phenomenon called ‘crosstalk’. This was 

the case in the reconstruction attempt of MAPK network which resulted in an intertwined 

network (Figure 3.1) of four MAPK pathways, rather than parallel streaming of independent 

signaling pathways.  

 

Many different definitions and measures of crosstalk have been described in the literature 

taking into account topological, structural and dynamical aspects (Binder and Heinrich, 2004; 

Cowan and Storey, 2003; Komarova et al., 2005; Papin and Palsson, 2004; Schwartz and 

Baron, 1999; Schwartz and Madhani, 2004; Somsen et al., 2002). Here, the classical definition 

is accepted in which sharing of identical signaling molecules in different signaling pathways is 

used as the measure of crosstalk (Schwartz and Baron, 1999).  

 

There are several mechanisms by which the three MAPK pathways (high-osmolarity signaling 

pathway, mating pheromone response pathway and filamentous growth and invasion pathway) 

crosstalk, i.e. interact with each other : 

 

a. The plasma membrane protein Sho1 containing an SH3 domain acts as receptor of both 

high-osmolarity and filamentous growth and invasion pathways. 

b. The Cdc42 protein, a rho-like GTPase which is essential for establishment and 

maintenance of cell polarity, functions in all of the three pathways by activating the 

signal transducing kinase Ste20. 
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c. The Ste20 protein, which is a signal transducing kinase of the p21-activated kinase 

family, is involved in all of the three pathways by activating the MAPK cascades. 

d. The signal transducing MEK kinase Ste11 functions in upstream element of all of the 

three MAPK cascades by phosphorylating either the Ste7 protein or the Pbs2 protein.  

e. The Ste7 protein acts as the MAPKK in cascades involved in both of the mating 

pheromone response pathway and filamentous growth and invasion pathway, 

phosphorylating Fus3 and Kss1 proteins, respectively. 

f. The transcription factor Ste12 activates genes involved in both the mating pheromone 

response pathway and filamentous growth and invasion pathway, and it is activated by 

the corresponding MAP kinase signaling cascades.   

 

4.2.  Traditional Optimization with Bayesian Network : Preferred Strategies of Players 

when the Preferences of Other Players are Not Considered 

 

In order to simulate the transmission of signal from a set of receptors to a specific transcription 

factor, thousand simulations, found to be adequate for the saturation level, were performed 

using the BN model. For each of the linear paths related to the considered transcription factor, 

the joint probability of signal termination at the target transcription factor is calculated by 

Equation (3.1), and the linear path yielding the maximum signal transmission to the specific 

transcription factor is considered as the preferred strategy. Then, the vectors indicating the 

density of preferred strategies (number of times the strategy is preferred/total number of 

simulations, i.e. thousand) is calculated for each of the transcription factor.  

 

As a result of the intertwined structure of the MAPK network, the BN simulations showed that 

the signal could be transduced by any nonnegative linear combination of the linear paths 

connecting the receptors to the target transcription factors, i.e. all strategies were probable, 

since for any of the transcription factors, the vectors indicating the density of preferred 

strategies were consisting of non-zero elements. Furthermore, for several transcription factors, 

a linear path indicating a signal transmission mechanism that is not biologically active was 

observed to be the most-probable path. For example, the most-probable path for the Msn2 

transcription factor was pointing out a biologically inactive signal transmission from the 
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receptor of the filamentous growth and invasion pathway, Ras2, to the transcription factor of 

high osmolarity signaling pathway, Msn2. Additionally, in several cases, as a result of the 

cross-talks by other signaling pathways, the Bayesian network model produced a highly-

probable signal transduction to the corresponding transcription factor even though an essential 

protein was not functioning in the signaling pathway. In order to test the effect of protein 

malfunctioning, the simulations were repeated with the exclusion of the upstream proteins of 

the high osmolarity signaling pathway, namely, Sln1, Ypd1, and Ssk1. It was observed that 

there were still highly-probable linear paths representing the ability of the osmoregulation 

MAPK Hog1 to transduce the signal to the targets, namely, the four transcription factors 

Msn2, Msn4, Hot1 and Sko1, as a result of the crosstalk through the signal transducing MEK 

kinase Ste11.  

 

The above results indicated that the traditional optimization framework, in which preferred 

strategies of players were independent of those of other players, is not sufficient to represent 

real biology.  To avoid false-positive signal transmission mechanisms, there is a need for a 

framework in which the preferences of other players could also be regarded in determining the 

optimum behavior.   

 

4.3.  Nash Equilibrium Represents the Real Biology : Preferred Strategies of Players 

when the Preferences of Other Players are Also Considered 

 

The BN model coupled with game theory is here used to simulate the transmission of signals 

from an upstream protein to any of the possible succeeding proteins taking the preferences of 

other players into consideration. In order to use a matrix representation for the game, the 

players, i.e. transcription factors, are considered pair-wise. For each of the linear paths related 

to the considered transcription factor pair, the joint probability of signal termination at the 

target transcription factor is calculated by Equation (3.1), and the linear path pair yielding the 

maximum signal transmission to both of the outputs is considered as the preferred strategy-

pair. The payoff matrix indicating the density of preferred strategies is created by thousand 

simulations for each output pair, and using the payoff matrix, Nash Equilibrium (NEQ) of 

each game is identified (see materials and methods for details).  
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In almost all cases (eight out of the ten games), the resultant NEQ were successfully 

representing the real biology. Here three possible cases will be exemplified:  

(i) Co-operating TFs, i.e. the TFs are functioning in the same pathway: The Ste12 vs. 

Tec1 game resulted in a NEQ, which represents the Sho1-mediated branch of the 

filamentous growth and invasion pathway (Figure 4.1.a). Ste12 and Tec1 are co-

operating players in this pathway and working in concert to cooperatively bind to 

filamentation response elements (FREs) in genes involved in filamentous growth 

(Madhani and Fink, 1997). In all the simulations, the strategies representing the 

real biology of the Ras2-mediated branch of the filamentous growth and invasion 

pathway were dominated by those of Sho1-mediated branch. Therefore, in none of 

the games the Ras2-mediated branch of the filamentous growth and invasion 

pathway was represented in the resultant NEQ. Interestingly, Sho1-mediated 

branch is more preferred compared to that of Ras2.  

(ii) Competing TFs, i.e. the TFs are functioning in different but cross-talking 

pathways: In Tec1 vs. Far1 game, the full structure of the mating pheromone 

response pathway and Sho1-mediated branch of the filamentous growth and 

invasion pathway were successfully represented in the resultant NEQ (Figure 

4.1.b), even though these two pathways contain almost all of the cross-talking 

elements (Cdc42, Ste20, Ste11, Ste7, and Ste12) present in the MAPK network.  

(iii) Independent TFs, i.e. the TFs are functioning in different and non-cross-talking 

pathways: In the absence of any crosstalk between pathways, the game theoretical 

analysis proposed here also resulted in successful reconstructions. For example, the 

Sho1-mediated branch of filamentous growth and invasion pathway and the Sln1-

mediated branch of the high osmolarity signaling pathway were successfully 

represented in the resultant NEQ of the Tec1 vs. Msn2 game (Figure 4.1.c). 
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Figure 4.1.  The most preferred strategies represented by the NEQ of (a) Ste12 vs. Tec1 game 

between co-operating players in the filamentous growth and invasion pathway, (b)  Tec1 vs. 

Far1 game between the players which are acting in different pathways showing significant 

crosstalks. The Tec1-specific links in its preferred strategy are shown by dashed lines, and (c) 

Tec1 vs. Msn2 game between the players which are acting in branches of different pathways 

without crosstalk. 

 

4.4.  Bottlenecks of the Network Model and Troubleshooting 

 

In the two games (Tec1 vs. Fus1 and Far1 vs. Msn2), the resultant NEQ included unexpected 

signal transduction from the receptor Ste3 to the Bmh1/2 proteins (Figure 4.2.ab) although 

neither Bmh1 nor Bmh2 has been reported to have a function in the mating pheromone 

response pathway. The presence of the unexpected link Cdc42-Bmh1/2-Ste11 in the resultant 

NEQ was mainly due to the crosstalk between mating pheromone response pathway and 

filamentous growth and invasion pathway. In fact, Cdc42 functions in all of the three 
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pathways, namely high-osmolarity signaling pathway, mating pheromone response pathway 

and filamentous growth and invasion pathway; and it activates the signal transducing kinase 

Ste20 either directly or indirectly through Bem1. Cdc42 also interacts with Bmh1/2 which is 

an essential binding protein that activates the MEK kinase Ste11 in Ras2-mediated signaling 

during pseudohyphal growth.   

 

In principle, protein-protein interaction data are directly employed to reconstruct signaling 

networks. However, the full potential of these data cannot be utilized for discovering signal 

transduction networks for several reasons: (i) The incompleteness of the reconstructed 

network model due to lack of data and low reliability of the protein-protein interaction data 

due to high noise levels may lead to observations of several false-positive signal transduction 

mechanisms. To increase data reliability, only 49 proteins are taken into consideration, which 

are already annotated to have function in the above-mentioned MAPK pathways in the MIPS-

CYGD functional catalogue. However, most probably, there may be several other proteins 

functioning in the network but not yet reported in the databanks due to the lack of 

experimental evidence. (ii) Lack of suitable mathematical models for representation and 

analysis of signaling networks is another bottleneck. The biological system is here represented 

as a protein-protein interaction network in which all components are homogeneously 

distributed over space, i.e. there is no physical separation or compartmentation; but, this 

system does not have the potential of representing the scaffolding and inhibitory events.  

 

Considering the above-mentioned games (Tec1 vs. Fus1 and Far1 vs. Msn2), experimental 

evidence indicates that the interaction of Ste20 with Bem1 is required for association of 

scaffolding protein Ste5 with the Ste11-Ste7-Fus3 MAPK cascade in the mating pheromone 

response signaling pathway (Van Drogen et al., 2001). However, the reconstructed model 

network could not represent the effect of scaffolding. Therefore, the inclusion of the 

unexpected signal transductions from the receptor Ste3 to the Bmh1/2 proteins is 

indispensable in the resultant NEQ.  
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Figure 4.2.  (a) The resultant NEQ of the Tec1 vs. Fus1 game which includes an infeasible 

signal transduction from the receptor Ste3 to the Bmh1 protein. (b) The NEQ of the Far1 vs. 

Msn2 game indicating an infeasible signal transduction from the receptor Ste3 to the Bmh2 

protein. (c) The refinement in the network. Removed interactions are represented by dashed 

lines, whereas the newly added interactions are given in bold. (d) The resultant NEQ of the 

Tec1 vs. Fus1 game using the refined network. (e) The resultant NEQ of the Far1 vs. Msn2 

game using the refined network. 

 

In order to test whether the inclusion of the experimental evidence into the model can 

eliminate the unexpected links in the NEQ, the analysis were repeated for the corresponding 

games (Tec1 vs. Fus1 and Far1 vs. Msn2) by refining the network as follows: two interactions, 

Ste5-Bem1 and Bem1-Ste11, are included and the direct interactions Ste5-Ste11, Ste5-Ste7 

and Ste20-Ste11 are removed (Figure 4.2.c), so that Bem1 was strictly required for association 

of Ste5 with the proteins in the MAPK cascade (Ste11 and Ste7) of the mating pheromone 

response signaling pathway. Since the network should be represented by a directed acyclic 

graph, the interactions Cdc42-Bem1 and Bem1-Ste20 were also removed in order to avoid 

formation of a cycle between Bem1, Ste20 and Ste5. By this way, the interaction of Ste20 with 

Bem1 was assumed to be achieved by sequential binding via Ste5. For both of the games, the 

analysis of this hypothetical network resulted in NEQ, where the false-positives are eliminated 

and the real biology is better represented by replacing the link of Cdc42-Bmh1/2-Ste11 protein 

with Cdc42-Ste20-Ste5-Bem1-Ste11 (Figure 4.2.de).  

 

4.5.  Topological Parameters as Indicators of NEQ 

 

It is hypothesized that the resultant preferences of each player in the analysis may be due to 

the topological parameters of the components in the network. Therefore the existance of any 

correlation between the preference of the path and the connectivity of the proteins in the path 

or the path length is investigated.  
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Figure 4.3.  Analysis of network topology.  (a) The trends of probability of having a 

connectivity k, P(k), and the probability of contribution of a protein with connectivity k to the 

resultant Nash equilibria, P(NEQ,k) with respect to the connectivity, k. (b) The correlation 

between the path length and average preference of a path with a path length of L. 

 

Any correlation between the connectivity and the preference of a protein in the network was 

tested by determining the probability distribution of having a connectivity k, P(k). Although 

there seems to be a negative correlation between connectivity and the probability of having 

connectivity k, P(k); this was not statistically proved (Figure 4.3.a). The probability of 

contribution of a protein with connectivity k to the resultant Nash equilibria, P(NEQ,k), is 

calculated. Similarly, no significant correlation between connectivity, k, and probability of 

contribution of a protein with connectivity k to the resultant Nash equilibria, P(NEQ,k), was 

found although a trend can be observed in Figure 4.3.a.  

 

Any correlation between path length and the preference of a path in the network was also 

investigated by calculating the average preferences of paths having a path length of L using 

the payoff matrices of all games. A significant correlation could not be observed between the 

path length and average preference of a path with a path length L (Figure 4.3.b).  

 

These results indicated that the preferences of each protein cannot be considered as directly 

related to its connectivity and the preference of each strategy, i.e. linear path, is not correlated 

with its path length. 

 

4.6.  Effect of Scaffold Proteins 

 

Physical segregation provided by several scaffold proteins is proposed as an explanation for 

the achievement of the highly specific response to available signals in spite of the uncertainties 

due to the crosstalk (Garrington & Johnston, 1999; Posas et al., 1998; Yashar et al., 1995). 

However, just looking at the available knowledge on the structure and topology of the  
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Figure 4.4.  The resultant NEQ of the Ste12 vs. Fus1 game in (a) the absence of the scaffold 

protein Ste5, (b) the presence of the scaffold protein Ste5.  The resultant NEQ of the Ste12 vs. 

Msn2 game in (c) the absence of the scaffold protein Ste5, (d) the presence of the scaffold 

protein Ste5. 

 

network, current computational frameworks based on protein interaction networks in which all 

components are homogeneously distributed over space, i.e. there is no physical separation or 

compartmentation, cannot give successful reconstruction of individual pathways. The 

adaptation of game theoretical concepts into bioinformatics can give an idea on the underlying 

design principles of this type of networks and lead to successful reconstruction of biological 

pathways. 

 

Despite the presence of scaffold proteins in the protein interaction network, the preferred 

strategy analysis by the BN model, without considering the preferences of other players 

(transcription factors), gave rise to numerous alternatives of signal transmission mechanisms 

from receptors to target transcription factors, however most of these mechanisms are not 

active in reality. The biological system represented here as the protein interaction network 

does not have the potential of representing the scaffolding and inhibitory events. In order to 

test the effect of the scaffolding proteins in the network, the scaffold protein, Ste5, is removed 

from the network. The scaffold protein Ste5 is able to co-localize all the members of the 

MAPK cascade required for mating (Ste11-Ste7-Fus3) by simultaneous binding, and also 

enhance the activity of the Fus3 MAPK (Van Drogen et al., 2001). Ste7 protein activated by 

Ste11 phosphorylates Kss1 in the filamentous growth and invasion pathway (Widmann et al., 

1999).  

 

Six games (Ste12 vs. Far1, Ste12 vs. Fus1, Ste12 vs. Msn2, Tec1 vs. Fus1, Far1 vs. Fus1, and 

Fus1 vs. Msn2) related to at least one of these cross-talking pathways (filamentous growth and 

invasion pathway and the mating pheromone response pathway) were performed in the 

absence of the scaffold protein Ste5 in the network. They were found to yield NEQ with the 

unexpected signal transductions. In the Ste12 vs. Fus1 game without the scaffold protein Ste5, 

the NEQ points out an unfeasible strategy for Fus1 (Figure 4.4.a) including unexpected signal 
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transmission from the receptor Ste3 to the MAPK Kss1. The inclusion of the scaffold protein 

Ste5 into the network enabled the link Ste11-Ste7-Kss1 to be replaced by a linear path 

between Ste5-Ste7-Fus3 (Figure 4.4.b). In another game, Ste12 vs. Msn2, the absence of the 

scaffold protein Ste5 in the network resulted in a NEQ with unexpected signal transduction 

from the receptor Sho1 to the MAPK Fus3 (Figure 4.4.c). Similarly, inclusion of Ste5 into the 

network replaced the link Ste11-Ste7-Fus3 with that of Ste5-Ste11-Ste7-Kss1 (Figure 4.4.d), 

which represents the reality. Inclusion of the scaffold protein Ste5 into the network solved the 

problem of false-positive signals. 

 

4.7.  Network Topology from an Evolutionary Perspective 

 

In the last decade, topological analysis of many biological networks indicated that biological 

networks have a “specialized” topology characterized by highly-connected proteins, scale-free 

degree distribution and small-world characteristics (Jeong et al., 2001; Wagner, 2001; Maslov 

and Sneppen, 2002). In addition, particularly as a result of high-throughput experimentation, 

highly complex protein-protein interaction graphs are obtained for several species. These 

findings gave rise to several new questions to be answered: What are the underlying 

organizational principles in this complex map of interactions and how this “specialized” 

topology contributes on the network function? Development of several network-growing 

models, such as preferential attachment (Barabasi and Albert, 1999), indicated clues on 

understanding of how the scale-free topology evolutionary emerges. However, the effect of the 

topology on the efficiency of the network function is still unknown. Since cellular systems are 

a result of Darwinian evolution, a promising approach should be the investigation of the 

answers of the above question in this view.  

 

The linear path analysis indicated that, even with the simple MAPK network used in this 

study, there are a huge number of possibilities in transmitting the signal from a receptor to a 

transcription factor. However, previous experimental evidences showed that a very limited 

number of them were biologically active and traditional optimization was not sufficient to 

explain this fact. In the present study, by adapting a game theoretical formulation to the 

problem, the false-positive signaling routes were eliminated and the biology was successfully 
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represented. The proposed methodology with further integration of biological data will give 

more insight about the underlying principle in evolutionary construction of network topology. 
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5.  CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1.  Conclusions 

 

Cellular signaling is central for gaining insight into the molecular mechanisms behind diseases 

as well as adaptation of living cells to changes in the environment. Signaling pathways are 

often branched in an interconnected fashion and are therefore integrated into signaling 

networks that are quite complex with many levels of interconnectivity of different molecular 

components. Recently, it became apparent that each MAPK pathway is a part of a network in 

which there is extensive sharing of signaling elements among the MAPK signaling pathways. 

Understanding the design principles that bridge the topology to the function of the network is 

a major challenge in systems biology since almost all known diseases exhibit dysfunctional 

aspects in these signaling networks. In the present study, considering the known network 

topology of MAPK signaling in yeast, the traditional optimization method is found to be 

unsuccessful since it provides false-positive signal transmission mechanisms. The BN model 

coupled with a game theory based solution algorithm, however, yielded accurate results in 

eighty per cent of the games in terms of representing the real biology. This method eliminates 

the false-positive signaling routes resulting from crosstalks since it also considers the 

preferences of other players in determining the optimum strategies. Using a more suitable 

network representation describing the scaffolding events, having the ability to deal with 

cycling systems and a completed databank of molecular interactions, game theoretical 

analyses will tell more about the underlying principle in evolutionary construction of network 

topology and enable handling of complex networks crucial for biology. 

 

5.2.  Recommendations 

 

The present study aimed to provide a method to obtain active pathways in an unknown 

network given the proteins present in the system and their possible interaction sets. To this end 

several choices and assumptions have been made to prove the validity for at least a system. 
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Further research and developments are possible to achieve a code applicable to more general 

systems. 

- Instead of simultaneous activation of all receptors by the same amount of ligand, 

receptors can be activated at different times by different amounts of lignad. 

- Binding capacity of receptors can be made limited, resulting in receptor saturation. 

- The probabilities assigned to protein-protein interactions are based to uniform 

distribution, this can be checked using several other random distributions. 

- For each run of the code one single pathway set has been selected to be dominating. 

Rather than this Boolean logic approach, fuzzy logic can be applied to sum up the 

probabilities for each run to obtain the final decision for the dominating pathways. 

- Current approach has the advantage of considering two players simultaneously using a 

game-theoretical approach. This can be improved by considering more players 

simultaneously. 

- Current protein-protein interactions are taken to be single sided, i.e. directional, and 

acyclic to be more target-oriented. Adding a method to deal with reverse interactions 

and loops will improve the applicability of the method to a great extent. 

- Protein-protein interactions considered are limited with those that are known to be 

existent. Once the method is developed as mentioned above, the complexity of the 

system can be increased by taking more interactions that are available in databases. 
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