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ABSTRACT 

 

 

COMBINED LONGITUDINAL-TORSIONAL VIBRATION OF 

SANDWICHED PIEZOELECTRIC ULTRASONIC TRANSDUCERS 

 

 

In this thesis, combined longitudinal-torsional vibration of ultrasonic transducer 

using impedance matching method is studied. In combined vibration, two modes must 

resonate in the same frequency. Impedance matching method is applied the modes to find 

spatial solutions of the parts. Spatial solutions of horns are derived for each mode.  

 

Dimensional parameters of the transducer are studied, and change of resonance 

frequencies is presented to give the idea how to synchronize the modes of the transducer. 

Changing the dimensions of the transducer, resonance frequencies of two modes are 

equalized. This shows that synchronization of two modes is an adjustment problem. For 

illustration of the application of theory, sample transducers are designed. 
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ÖZET 

 

 

PİEZOELEKTRİK TRANSDUSERLERIN BOYLAMSAL VE  

BURULMA YÖNÜNDEKİ BİRLEŞİK TİTREŞİMİ  

 

 

Bu tezde boylamsal ve burkulma yönündeki iki modlu transduserler empedans 

eşleştirmesi yöntemi kullanılarak incelenmiştir. Birleşik modlu titreşimde, her iki mod aynı 

frekansta titreşmek zorundadır. Uzaysal çözümleri bulmak için empedans eşleşmesi 

metodu kullanılmıştır. Her mod için, hornların uzaysal çözümleri çıkarılmıştır.  

 

Ayrıca transduserin boyutsal parametreleri çalışılmış, transducerlerin modlarını nasıl 

senkronize edileceğini göstermek için resonans frekansların değişimleri verilmiştir. 

Transduserlerin boyutları değiştirilerek, iki modun resonans frekansları eşitlenmiştir. Bu 

senkronizasyonun bir ayarlama işlemi olduğunu gösterir. Teorinin uygulamasını göstermek 

için, farklı tipte hornlarla örnek transduserler tasarlanmıştır. 
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1. INTRODUCTION 

 

 

 

1.1. General 

 

 

Ultrasonics has been of interest for several decades in industry. Although ultrasonics 

is generally considered a 20th century science, the foundations for this field were laid in 

the 19th century. In many application areas such as welding, cleaning, ultrasonics testing, 

and medical applications ultrasonic is used. Ultrasonic transducer is an electronic device, 

which converts electrical energy to mechanical or vice versa.  

 

Ultrasonic welding is an industrial technique whereby two pieces of plastic or metal 

are joined together seamlessly through high-frequency acoustic vibrations. One component 

to be welded is placed upon a fixed anvil, with the second component being placed on top. 

A horn connected to a transducer is lowered down onto the top component, and a very 

rapid (~20,000 KHz), low-amplitude acoustic vibration is applied to a small welding zone. 

The acoustic energy is converted into heat energy by friction, and the parts are welded 

together in less than a second. Friction is localized at the interface of the assembly. The 

resultant heat quickly melts the plastic, which flows and joins parts. After it cools down, a 

solid homogeneous weld between the two components results.  

 

Ultrasonic plastic welding has advantages over joining methods using solvents or 

adhesives. Production cycle times are usually improved with speeds around 2000 parts an 

hour being achieved in the most favorable cases. Additional advantages include clean 

exteriors of welded parts, potential manpower savings, absence of drying time in the 

material to be welded, gas tight and completely stable assemblies, possibility of welding in 

the presence of foreign bodies such as powders and liquids, and of welding materials 

which are incompatible using any other conventional assembly processes [4,15,17]. 
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1.2. Overview of Ultrasonic Welding System 

 

 

Ultrasonic welding equipment has both electrical and mechanical parts. These are 

generator, backing, piezoceramics, front part, booster and horn. In compound vibration 

front part and booster are not used, since uniform bars decrease torsional amplitudes. A 

compound mode transducer is shown in Figure 1.1. 

 

 

 

Figure 1.1. Schematic diagram of a compound mode transducer 

 

Transducer is an electronic device that converts energy from one form to another. 

Common examples include microphones, loudspeakers, thermometers, position and 

pressure sensors, and antenna. Despite not generally being thought of as transducers, 

photocells, LEDs (light-emitting diodes), and even common light bulbs are transducers. It 

consists of materials such as piezoelectric crystals or ceramics, which show piezoelectric 

effect. Welding voltage is applied to the surfaces of piezoceramics [17].  
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In transducers, piezoceramics are clamped between two metal parts, which are horn 

and backing. Low and high tensile strength may cause crack in piezoceramics, so 

appropriate torque must be applied to bolt. And also, the backing part and horn should 

have certain characteristic impedance in order to reflect the oscillations in the direction of 

the parts to be welded. Steel has high impedance and is ideal to use as backing material. 

But horn material should have lower impedance, thus aluminium is ideal to use [15]. 

 

Boosters and horns are used to amplify the displacements or change resonance 

frequency of transducer. Booster can only change resonance frequency of longitudinal 

mode, but it also decreases amplitude of torsional mode. Horns are classified according to 

their cross-sectional areas. In this thesis, three types of horn are used, which are 

exponential, conical and catenoidal. 

 

Generator is the electrical part that supplies energy to the system. 220 V- 50 kHz the 

signal is converted to high frequencies such as 20 kHz. The frequency of the generator is 

desired to coincide with the resonance frequency of the mechanical system. But during 

welding, resonance frequency of the system changes because of some reasons such as 

heating. Thus the generator tracks resonance frequency of the transducer in small ranges 

such as 18-22 kHz [17].   

 

 

1.3. Piezoelectricity 

 

 

Jacques and Pierre Curie discovered the piezoelectric effect in 1880. They found that 

if certain crystals were subjected to mechanical strain, they became electrically polarized 

and the degree of polarization was proportional to the applied strain. The Curies also 

discovered that these same materials deformed when they were exposed to an electric field. 

This has become known as the inverse piezoelectric effect. 

 

The piezoelectric effect is exhibited by a number of naturally occurring crystals, for 

instance quartz, tourmaline and sodium potassium tartrate, and these have been used for 

many years as electromechanical transducers. A stress (tensile or compressive) applied to 
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such a crystal will alter the separation between the positive and negative charge sites in 

each elementary cell leading to a net polarization at the crystal surface. 

 

The effect is practically linear, i.e. the polarization varies directly with the applied 

stress, and is direction-dependent, so compressive and tensile stresses will generate electric 

fields and hence voltages of opposite polarity. It's also reciprocal, that is, if the crystal is 

exposed to an electric field, it will experience an elastic strain causing its length to increase 

or decrease according to the field polarity. 

 

Besides the crystals mentioned above, an important group of piezoelectric materials 

are piezoelectric ceramics, to which PZT is an example. Above a temperature known as the 

Curie point, these crystallites exhibit simple cubic symmetry. The elementary cell of which 

is shown in Fig.1.2.a. Below the Curie point, however, the crystallites take on tetragonal 

symmetry in which the positive and negative charge sites no longer coincide Fig.1.2.b, so 

each elementary cell then has a built-in electric dipole, which may be reversed, and also 

switched to certain allowed directions by the application of an electric field. Such materials 

are termed ferroelectrics because this electrical behaviour presents a physical analogy with 

the magnetic behaviour of ferromagnetic materials. They don't necessarily contain iron as 

an important constituent. The analogy can, in fact, be carried further, since to some extent 

the polarization of ferroelectrics materials exhibits hysteresis, and their dielectric constants 

are very high and temperature-dependent [14,17]. 

 

 

a. Cubic Lattice (above Curie temp) b. Tetragonal Lattice (below Curie temp) 

Figure 1.2. PZT Elementary Cell 
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1.4. Piezoelectric Constants 

 

 

Since piezoceramics are anisotropic, their physical constants (elasticity, permittivity 

etc.) are tensor quantities and relate to both the direction of the applied stress, electric field 

etc., and to the directions perpendicular to them. For this reason the constants are generally 

given two subscript indices, which refer to the direction of the two related quantities (e.g. 

stress and strain for elasticity, displacement and electric field for permittivity). A 

superscript index is used to indicate a quantity that's kept constant. The direction of 

positive polarization is usually chosen to coincide with the Z-axis of a rectangular system 

of crystallographic axes X, Y, Z. If the directions of X, Y and Z are represented by 1, 2 and 

3 respectively, and the shear about these axes by 4, 5 and 6 respectively, the various 

constants may be written with subscripts referring to them see Figure 1.3 [17]. 

 

 

 

Figure 1.3. Design of the axes and directions of deformations 

 

 

1.5. Subscripts and Indexes 

 

If X is a property of the piezoceramic material, subscripts and indexes have 

following meanings; 

 

Y

ab
X  
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• The property X is measured under constant Y, 

• Letter a is electric displacement or electric field 

• Letter b is stress or strain 

• If a is electric field, then b is stress or vice versa. 

 

 

1.5.1.  Permittivity 

 

 

The (absolute) permittivity (or dielectric constant) is defined as the dielectric 

displacement per unit electric field. The first subscript gives the direction of the dielectric 

displacement; the second gives the direction of the electric field. For example; 

 

• 11
Tε  is the permittivity for the dielectric displacement and electric field direction 1 

under conditions of constant stress, 

 

• 33
Sε  is the permittivity for the dielectric displacement and electric field direction 3 

under conditions of constant strain. 

 

The ratio of absolute permittivity to the permittivity of free space is 128.85 10x
−  F/m [17]. 

 

 

1.5.2. Compliance 

 

 

The compliance of a material is defined as the strain produced per unit stress, shortly 

inverse of young modulus or shear modulus. It's the reciprocal of the modulus of elasticity. 

The first subscript refers to the direction of the strain, the second to the direction of the 

stress. For example: 
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• 11
E

s  is the compliance for a stress and accompanying strain direction 1 under the 

conditions of constant electric field, 

 

• 36
D

s  is the compliance for a shear stress about axis 3 and accompanying strain in the 

direction 3 under the conditions of constant electric displacement. 

 

 

1.5.3. Piezoelectric charge constants 

 

 

The piezoelectric charge constant d  is defined as the electric polarization generated 

in a material per unit mechanical stress applied to it. Alternatively, it is the mechanical 

strain experienced by the material per unit electric field applied to it. The first subscript 

refers to the direction of polarization generated in the material (at E = 0) or to the applied 

field strength, the second subscript refers to the direction of the applied stress or to the 

direction of the induced strain [17]. For example; 

 

• 33d  is the induced polarization per unit applied stress in the direction 3. 

Alternatively it is the induced strain per unit electric filed in the direction 3. 

 

 

1.5.4. Piezoelectric voltage constant 

 

 

The piezoelectric voltage constant g  is defined as the electric field generated in a 

material per unit mechanical stress applied to it. Alternatively, it is the mechanical strain 

experienced by the material per unit electric displacement applied to it. The first subscript 

refers to the direction of the electric field generated in the material or to the applied electric 

displacement; the second refers respectively to the direction of the applied stress or to the 

direction of the induced strain [17]. For example; 
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• 31g  is the induced electric field in the direction 3 per unit stress applied in the 

direction 1. Alternatively it is mechanical strain induced in material in the direction 

1 per unit electric displacement applied in direction 3. 

 

 

1.6. Constitutive Equations 

 

 

Piezoelectricity is described mathematically within a material's constitutive equation, 

which defines how the piezoelectric material's stress (T), strain (S), charge-density 

displacement (D), and electric field (E) interact. 

 

Four possible forms for piezoelectric constitutive equations are shown below. They 

were taken from the two dependent variables on the left-hand-side of each equation [6,14]. 

 

Strain-Charge Form    Stress-Charge Form 

 

. .
E

S s T d E= +      . .
E

T c S e E= −  

. .T
D d T Eε= +      . .S

D e S Eε= +  

 

Strain voltage From    Stress Voltage Form 

 

. .
D

S s T g D= +      . .
D

T c S h D= −  

1.
T

E g T ε −= − +      . .SE h S Dβ= − +   

 

Matrix transformations for converting piezoelectric constitutive data from one form 

into another one are shown below. 
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Strain-Charge to Stress-Charge   Strain-Charge to Strain-Voltage 

 

1
E E

c s
−=       . .T

D E
s s d dβ= −  

1.
E

e d s
−=      .Tg dβ=  

1.
S T E

d sε ε −= −  

 

Stress-Charge to Stress Voltage  Strain-Voltage to Stress Voltage 

 

. .S

D E
c c e eβ= +     1

D D
c s

−=  

.Sh eβ=      1.
D

h g s
−=  

       1. .S T

D
g s gβ β −= +  

 

 

1.7. Acoustic Impedance 

 

 

Mathematically, acoustic impedance is sound pressure p divided by the particle 

velocity v divided by the surface area S through which an acoustic wave of frequency f 

propagates [4,15] 

 

 
p

Z
vS

=  (1.1) 

 

However there are other impedance definitions; such as specific acoustic impedance, 

mechanical impedance. Specific acoustic impedance is the sound pressure p  divided by 

the particle velocity v , determined from boundary conditions; 
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sp

p
Z

v
=  (1.2) 

 

And mechanical impedance ratio of sound force F to particle velocity that is; 

 

 
m

F
Z

v
=  (1.3) 

 

And characteristic impedance is given by; 

 

 
R

Z cρ=  (1.4) 

 

 

1.8. Reflection and transmission of ultrasonic waves 

 

 

Performing any operation with ultrasonic waves means transmitting them from one 

medium to another where the measurement or actuation is to be performed. In other cases, 

the objective may retain a wave in a given medium and prevent it from radiating out in the 

environment. For different environments reflection and transmissions will become 

different, and some of the cases are shown in Figure 1.4 .  

The boundary conditions are easy to state, but their understanding is essential for 

posing and solving the problem correctly. They correspond to the conditions that must be 

met in order to obtain a perfectly defined interface for the problem at hand. The most 

general case is solid-solid interface. For this to be well defined there must be no net stress 

on the interface or displacement of one medium with respect to the other. This leads to 

boundary conditions of continuity of normal and tangential components of stress and 

displacement, i.e., four conditions corresponding to the four amplitudes to be determined 

are shown in Figure 1.4.  

 

If these boundary conditions are satisfied at a given time everywhere along the 

interface, then the problem can be posed and solved. If, however, they are not respected 

locally at all times, the interface is no longer well defined and the conditions cannot be 
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written down for all values of interface coordinates and so the problem cannot be solved 

straightforwardly [13]. 

 

 

 

Figure 1.4. Reflection of waves through media 

 
At normal incidence, consider two media in contact at perfect interface. The 

boundary conditions are continuity of pressure and velocity (displacement). Using the 

definition of acoustic impedance, it follows that; 

 

 1
p p

R T+ =  (1.5) 

 

 2

1 2

2
p

Z
T

Z Z
=

+
 (1.6) 
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 2 1

1 2

p

Z Z
R

Z Z

−
=

+
 (1.7) 

 

Where 1Z  and 2Z  are the characteristic impedances of two media. At normal 

incidence these can be obtained directly from the definition of acoustic intensity, which is 

explained in section 1.9. , 2 /
L ac

I P Z= . 

 

 
2

1

2

t
p

i

I Z
T

I Z
=  (1.8) 

 

 
2

r
p

i

I
R

I
=  (1.9) 

 

Where rI  and tI  are reflected and transmitted acoustic intensities and iI  is initial 

intensity. From Equation 1.8 and 1.9, it can be verified that the law of conservation of 

energy is met. 

 

 
i r t

I I I= +  (1.10) 

 

There is a lot of simple physics in this result. If 1 2Z Z≡ , then 0
p

T ≡  and 0
p

R ≡ ; it 

is as if there were one uniform medium so there is no reflection. 

 

For 2 1Z Z� , 1
p

R ≈ −  and 0
p

T → . This is termed a free boundary, corresponding, 

for example, to medium 1 might be water or solid, and medium 2 might be air. There is a 

huge acoustic impedance mismatch, so nearly the entire acoustic wave is reflected. There 

is a phase change of π for the pressure at the interface. The transmitted acoustic intensity 

for this case is given by [13], 

 

 
2

1

2

1t
p

i

I Z
T

I Z
= �  (1.11) 
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1.9. Acoustic Intensity 

 

 

Acoustic intensity can be defined as the following way; consider some point in sound 

field and imagine a very small plane surface, normal to the direction of propagation, 

having an area, Aδ , about that point. If 
ac

Pδ  is the rate of flow of energy (or acoustical 

power) through that surface, then ratio /
m

P Aδ δ  is defined as the mean acoustic intensity 

over the area, Aδ . Proceeding to the limit 0Aδ → , then [12]; 

 

 ac
L

dP
I

dA
=  (1.12) 

 

L
I  represents the acoustic intensity at that point. The acoustic intensity 

L
I  in W/m2 

[Watt per square meter] of a plane progressive wave is: 

 

 
L ac

I P v=  (1.13) 

 

 
2

ac
L

P
I

Z
=  (1.14) 

 

 

1.10. Power and Prestressing 

 

 

Prestressing is not important when calculating resonance frequency of a transducer 

theoretically, but it is important in practice. Power is also important when introducing a 

transducer and commonly used. In practice transducers are called not only for their 

resonance frequencies but also their power. One of the ways to decrease welding time is to 

increase the power of transducer. Power of transducer mainly depends on their 

piezoceramics. Thus, to design a transducer at desired properties, quality factor must be 

examined carefully. When prestressing the transducers, it is expected that acoustic 

impedances have a certain ratio.  
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1.10.1. Quality Factor 

 

 

The Q factor or quality factor compares the time constant for decay of an oscillating 

physical system's amplitude to its oscillation period. Equivalently, it compares the 

frequency at which a system oscillates to the rate at which it dissipates its energy. A higher 

Q indicates a lower rate of energy dissipation relative to the oscillation frequency [12,13].  

 

There are various ways to define the quality factor Q of the system. These can be 

summarized as follows; 

 

1. The Q can be defined as the resonance frequency divided by the bandwidth BW, that is 

frequency difference between the upper and lower frequencies for which the power has 

dropped to half of its maximum value: 

 

 
2 1

Q
ω

ω ω
=

−
 (1.15) 

 

Hence high Q corresponds to a sharp resonance with narrow bandwidth. 

 

2. The first form of Q can be rewritten in terms of mechanical constant. 

 

 
m

Q
R

ω
=  (1.16) 

 

Thus high Q corresponds to small 
m

R  or low loss, 
m

R  is mechanical resistance. 

 

3. In terms of the decay time τ of the free oscillator, which is the time for the amplitude to 

fall to 1/ e of its initial value, 2 /
m

m Rτ = , 

 

 
1

2
Q ωτ=  (1.17) 
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4. Finally, a formal definition of Q, equivalent to above, is ; 

 

 
stored energy

Q
total energy dissipated

 
=

  
 (1.18) 

 

Again, high Q oscillatory is low loss system. 

 

5. Q can also be seen as amplification factor. As 
m

R  decreases the displacement 

frequency curve gets sharper and the amplitude at resonance 0A  increases significantly. 

Direct calculation of Q from the definition leads to 

 

 0

0

( )
k

Q A
F

=  (1.19) 

 

0 /F k  is the amplitude at asymptotically low frequencies. This is the physical basis 

for the demonstrably high displacements attainable in mechanical systems at resonance.  

 

 

 

Figure 1.5. Mean power input, as a function of frequency  

 

If Quality Factor is low at resonance frequency, amplitude becomes low and has high 

bandwidth. However, if a piezoceramic has high quality factor, this will result in narrow 

bandwidth, sharper and larger amplitudes, see Figure 1.6. 



 

 

16 

 

 

Figure 1.6. Mean power absorbed by a forced oscillator as a function of frequency  

 

 

1.10.2. Power 

 

 

Power of a compound mode transducer can be calculated in different ways. However 

output power of transducer has some loss that cannot be modeled exactly, thus the power 

of the transducer is calculated from input power. RMS electric power is simply equal to the 

multiplication of current and voltage [16,18].  

 

 
2

VI
P =  (1.20) 

 

However average power cannot be calculated by the above formula, since current, which is 

time derivative of electric displacement, can be obtained only instantaneously. 

 

 
D

I
t

∂
=

∂
 (1.21) 

 

In one mode, piezoceramics are parallel and sum of all current is equal to; 
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 1 2 ...I I I= + +  (1.22) 

 

Since piezoceramics are also capacitor, thus transducer power can be calculated using 

capacitor formula. Capacitance of a capacitor between two electrodes of area S, 

thickness
C

d , and permittivity
C

ε  is given by; 

 

 0
C

C

S
C

d

ε
=  (1.23) 

 

And also impedance of a capacitor; 

 

 
02

C
C C

C

V j
Z jX

I fCπ

−
= = = −  (1.24) 

 

Where 
C

V  and 
C

I  are phasor voltage and current respectively. 
C

X  is also called capacitive 

reactance. 

 

So, the power in a piezoceramic can be calculated by; 

 

 
2

2
C

C

C

V
P

Z
=  (1.24) 

 

Longitudinal and torsional modes are assumed to be serially connected.  

 

 

1.10.3. Prestressing 

 

 

Piezoelectric transducers for power applications sometimes consist of plates or 

blocks of piezoelectric materials, which become a part of the resonant system, at the 

desired frequency. A typical half-wave transducer is shown schematically in Fig. 1.7. It is 

similar to the Langevin sandwich structure.  
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Here, two piezoelectric elements 1P  and 2P  are located between two identical metal 

blocks A and B. The elements 1P  and 2P  are separated by an electrode E connected to the 

high-voltage lead. The electrode is, therefore, located at a node and the elements 1P  and 2P  

must be polarized in opposite directions for optimum activity. 

 

 

 

Figure 1.7. Typical half-wave piezoelectric transducer  

 

If the mating surfaces are perfectly flat and highly polished, coupling without 

bonding between the piezoelectric elements and the metal end pieces may be accomplished 

by applying high pressure across the elements. 

 

Clamping may be done in one of the two; a bolt may run through the centre of the 

elements, but is insulated from the piezoelectric elements; or a flange may be attached to 

the metal blocks and clamped externally by a series of bolts. 

The proper torque to be applied to the bolts may be determined by, 

 

1. Calculating the total force required to procedure the desired stress, 

2. Determining the force F that each bolt must hold, and  

3. Applying this value of F in the following equation: 

 

 
2

R
F k

T
bπ

=B  (1.25) 
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Where 
B

T  is the torque (Nm), 
R

F  is the force per bolt (N), k  is the pitch of bolt 

thread (m), b is the efficiency of the threaded combinations. 

 

 
R

x
F Y S Y S

x
δ

∆
= =  (1.26) 

 

Required 
R

F  may be calculated if displacements are known. δ  is strain in vibration 

direction, S is the area.  

 

The assembly described will resonate at a frequency below that of either 

piezoelectric element when it is unloaded by an amount of metal blocks or the piezoelectric 

elements. 
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2. COMPOUND MODE ULTRASONIC TRANSDUCER 

 

 

 

2.1. General 

 

 

The pre-stressed sandwiched piezoelectric ultrasonic transducers of longitudinal 

vibration mode have widely been used for many years in ultrasonic technologies. In recent 

years, the use of torsional vibration and longitudinal-torsional compound vibration for 

ultrasonic technologies has been of interest, particularly for ultrasonic motors and 

ultrasonic machining [1]. Schematic view of such a transducer is shown in Figure 2.1 [1,5]. 

 

 

 

Figure 2.1. Schematic view of compound transducer 

 

In the commonly used sandwiched ultrasonic transducer with untapered back metal 

rod, longitudinal and torsional speeds of sound, lc  and tc , inside the material, are different. 

In the design of the longitudinal-torsional transducer, the geometrical shapes and 

dimensions must be carefully chosen and designed. In this thesis, exponential, conical and 

catenoidal metal horns are used. Front part is not used, since front part only shifts 

resonance frequencies and also decreases amplitudes of torsional mode. 
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The sound speeds of longitudinal and torsional vibrations in exponential metal horn 

depend not only on the material parameters, but also on the cross-sectional geometrical 

shape and dimensions. Therefore, it is possible that longitudinal and torsional vibration 

modes could be made resonate in the same frequency.  

 

 

2.2. Vibration Modes 

 

 

Vibration modes of compound transducers can be of different types; flexural, 

torsional, longitudinal etc. In this thesis torsional-longitudinal vibration modes of a 

transducer is analyzed. Each mode is assumed to be independent. Namely, when analyzing 

a mode, the other mode piezoceramics are neglected. Each part of the transducer is 

considered as bar or shaft according to driving mode. Backing part, longitudinal and 

torsional piezoceramics are uniform. However horn is non-uniform in shape. But all part of 

the transducer is assumed to be homogenous. In the following section, displacement and 

strain equations of longitudinal and torsional of a uniform bar or rod are given. Boundary 

conditions of the modes are given. These conditions are valid for exponential, conical and 

catenoidal horns, as well. 

 

 

2.3. Longitudinal Vibrations of a Uniform Bar 

 

 

A bar of uniform cross-sectional area S, density ρ , modulus of elasticity Y, and 

length l  are fixed and free at the other end. The bar is subjected to an axial force 0F  at its 

free end, see Figure 2.2 [6,19].  
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Figure 2.2. Bar subjected to an axial force at end 

 

 0F

YS
α =  (2.1) 

 

α  is induced tensile strain in bar. As force 0F  is removed at that time, a 

displacement will occur at the end of bar, it is given by; 

 

 0( ,0)
F l

u l l
YS

α= =  (2.2) 

 

Y  and S  are young modulus and cross sectional area respectively.  

 

In a bar, there could be three types of boundary conditions. In table 2.1 these 

conditions are given. The expression 
u

x

∂

∂
 shows force condition at that point. 

 

Table 2.1. Common boundary conditions for a bar in longitudinal vibration 

 

Conditions of Bar Boundary Conditions 

 

(0, ) 0u t = ,
( , )

0
u l t

x

∂
=

∂
 

(0, )
0

u t

x

∂
=

∂
,

( , )
0

u l t

x

∂
=

∂
 

(0, ) 0u t = , ( , ) 0u l t =  

 

Fixed-free 

Free-free 

Fixed-fixed 
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2.4. Torsional Vibrations of a Uniform Rod or Shaft 

 

 

A rod of uniform radius r , polar moment of inertia J , density ρ , torsional modulus 

G , and length l  are fixed and free at the other end. The rod is subjected to a radial 

moment 0M  is at its free end as in Figure 2.3 [6]. 

 
 

Figure 2.3. Rod is subjected to an axial moment 

 

 
( , )

( , )
z

v z t
S z t r

z

∂
=

∂
 (2.3) 

 

zS  is torsional strain in rod. As 0M  moment is removed, a torsional deflection will 

occur at that time, at the end of the rod torsional deflection is given by; 

 

 0( ,0) ( ,0)
z

M l
v l S l l

GJ
= =  (2.4) 

In a rod, there could be three types of boundary conditions. The expression 
v

x

∂

∂
 

shows moment condition at that point. In table 2.2 these conditions are given.  

 
Table 2.2. Boundary conditions for a uniform rod in torsional vibration 

 
Conditions of Rod Boundary Conditions 

 

(0, ) 0v t = ,
( , )

0
v l t

z

∂
=

∂
 

(0, )
0

v t

z

∂
=

∂
,

( , )
0

v l t

z

∂
=

∂
 

(0, ) 0v t = , ( , ) 0v l t =  

 

Fixed-free 

Free-free 

Fixed-fixed 
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2.5. Elastic Wave Equation for Longitudinal Vibration in Non Uniform Bar 

 

 

Since the horn is non-uniform, displacements cannot be obtained as explained above. 

Thus non-uniform bar must be analyzed for longitudinal vibration. Consider a force F  is 

applied to an elastic bar of length l and of varying cross sectional area ( )S x , where ( , )u x t  

is the longitudinal displacement of the vibration in the x direction as shown Figure 2.4 . 

 

 

 

Figure 2.4. Schematic view of forces on a non-uniform bar  

 

For the element the stress/strain equation gives [8], 

 

 
( , )

( , ) ( )
du x t

F x t S x Y
dx

=  (2.5) 

 

After applying Newton second law to the bar,  

 

 
2

2
( )

u
F dF F S x dx

t
ρ

∂
+ − =

∂
 (2.6) 
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Equation 2.6 doesn’t include the damping forces. Putting Equation 2.5 into 2.6 

following equation, one-dimensional elastic wave equation for varying cross-sectional 

area, is derived [9].  

 

 
2 2

2 2 2

1 1 ( )
0

( )l

u dS x u u

c t S x dx x x

∂ ∂ ∂
− − =

∂ ∂ ∂
 (2.7) 

 

l
c  is the speed of sound in longitudinal vibration and is equal to

Y

ρ
. Equation 2.7 is 

also known as the horn equation. A change in cross sectional area results in an amplitude 

change at the tip of horn. 

 

Solution of the Equation 2.7 can be obtained using separation of variables method, 

and then the solution has the following form [9]. 

 

 ( , ) ( ) ( )Lu x t X x T t=  (2.8) 

 

 

2.6. Damped Wave Equation for Longitudinal Vibration in Non Uniform Bar 

 

 

Equation 2.7 has no loss term, adding damping term can be in two ways, one of them 

is viscous damping, and however in this type modeling has no analytical solution not only 

to longitudinal vibration but also to torsional vibration. Other method is structural 

damping; structural damping terms are needed to add equations of motion of the system. 

Any type of damped continuous longitudinal vibration system can be expressed in terms of 

space and time operators as follows. [4, 10]; 

 

 
2

2

( , )
[ ( , )] [ ( , )] 0

u x t
u x t u x t

t t

∂ ∂
+ + =

∂ ∂
L C M  (2.9) 

 

By comparing Equation 2.7 and 2.9, it is obvious to define the operators as follows; 
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2

2

1 dS

x S dx x

∂ ∂
= − −

∂ ∂
L  (2.10) 

 

 
2

1

l
c

=M  (2.11) 

 

It is assumed that the damping operator C  is proportional to the operator L . 

 

 s
R

ω
=C L  (2.12) 

 

s
R and ω  are longitudinal damping coefficient and the driving angular velocity of 

the system respectively. Since the motion is harmonic, it can be assumed that solution of 

( , )u x t  has following form; 

 

 ( , ) ( ) j tu x t X x e ω=  (2.13) 

 

and derivation of Equation 2.13 with respect to time as follows; 

 

 
( , )

( , )
u x t

j u x t
t

ω
∂

=
∂

 (2.14) 

 

Using Equations 2.13 and 2.14, Equation 2.9 can be rearranged as; 

 

 
2

2

( , )
(1 ) [ ( , )] 0

s

u x t
jR u x t

t

∂
+ + =

∂
L M  (2.15) 

 

Expressing L and M  operators with their initial forms as in Equation 2.10 and 2.11, 

the general horn equation with structural damping for longitudinal vibration will become as 

follows [9]; 

 

 
2 2

2 2 2

( , ) 1 ( ) ( , ) 1 1 ( , )
( ) 0

( ) 1
s l

u x t dS x u x t u x t

x S x dx x jR c t

∂ ∂ ∂
+ − =

∂ ∂ + ∂
 (2.16) 
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2.7. Elastic Wave Equation for Torsional Vibration in Non Uniform Shaft 

 

 

The horn can be considered as a shaft for torsional vibration. If an elastic non-

uniform shaft is subjected to an external torque ( , )f z t  per unit length as represented in 

Figure 2.5. If ( , )v z t  is the angle of the twisting of the cross section, the relation between 

the torsional deflection and the twisting moment ( , )M z t  is given by [3]; 

 

 ( , ) ( )
v

M z t GJ z
z

∂
=

∂
 (2.17) 

 

 

 

Figure 2.5. A non-uniform rod subjected to a twisting moment 

 

G and J(z) are the shear modulus and polar moment of inertia in the case of a circular 

cross section respectively, and the GJ(z) is called torsional stiffness. Inertia torque acting 

on an element of length dz becomes; 

 

 
2

2
( )

v
I z dz

t

∂

∂
 (2.18) 

 

I(z) is the mass polar moment of inertia per unit length of the shaft, and for 

homogenous shafts the relation between J(z) and I(z) is given by; 

 

 ( ) ( )I z J zρ=  (2.19) 
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The application of Newton second law to the shaft yields the equation of motion: 

 

 
2

2
( ) ( )

v
M dM fdz M I z dz

t

∂
+ + − =

∂
 (2.20) 

 

In the case of free vibration, fdz  term vanishes. Using Equation 2.17 and 2.19, 

Equation 2.20. can be rearranged as; 

 

 
2

2
( ) ( , ) ( ) ( , )

d v v
GJ z z t I z z t

dz z t

∂ ∂ 
= ∂ ∂ 

 (2.21) 

 

2 2

2 2 2

1 ( ) 1
( , ) ( , ) ( , ) 0

( )
t

v J z v v
z t z t z t

z J z z z c t

∂ ∂ ∂ ∂
+ − =

∂ ∂ ∂ ∂
                 (2.22) 

 

t
c  is the speed of sound in torsional vibration and equals to

G

ρ
. The solution of 

Equation 2.22 can be separated into two parts in the following form; 

 

 ( ) ( )
T

v z T tθ=  (2.23) 

 

 And harmonic solution of Equation 2.22 is assumed in the following form; 

 

 ( ) j t
v z e

ωθ=  (2.24) 

 

 

2.8. Damped Wave Equation for Torsional Vibration in Non Uniform Shaft 

 

 

Equation 2.22 has no loss term, like longitudinal vibration, adding damping term can 

only be done by structural damping method. Similarly any type of damped continuous 

torsional vibration system can be expressed in terms of space and time operators as 

follows. [4, 10]; 
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2

2

( , )
[ ( , )] [ ( , )] 0

v z t
v z t v z t

t t

∂ ∂
+ + =

∂ ∂
P Q R  (2.25) 

 

By comparing Equation 2.22 and Equation 2.25, it is obvious to define the operators 

as follows; 

 

 
2

2

1 dJ

z J dz z

∂ ∂
= − −

∂ ∂
P  (2.26) 

 

 
2

1

t
c

=R  (2.27) 

 

It is assumed that the damping operator Q  is proportional to the operator P . 

 

 v
R

ω
=Q P  (2.28) 

 

v
R  is torsional damping coefficient. Putting operators P , Q  and R  in Equation 2.25, 

the general horn equation with structural damping for torsional vibration will become as 

follows:  

 

 
2 2

2 2 2

( , ) 1 ( , ) 1 1 ( , )
( ) 0
1

v t

v z t dJ v z t v z t

z J dz z jR c t

∂ ∂ ∂
+ − =

∂ ∂ + ∂
 (2.29) 

 

 

2.9. Wave Equations  

 

 

In general there are four types of ultrasonic horn, which are uniform, exponential, 

conical, catenoidal. As explained before uniform horn cannot be used for synchronization. 

It is easy to synchronize exponential and catenoidal horns with respect to conical horn, 

since relation of dimensions is straight in conical horn.  For torsional mode, solution of 

catenoidal horn is more complex with respect to exponential, conical horn.  
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2.9.1 Exponential Horn 

 

 

Exponential horn has similar changing laws of cross sectional area and inertia 

moments in longitudinal and torsional vibration. 

 

 

 

Figure 2.6. Exponential Horn 

 

For exponential horn, cross sectional area changes in the following form; 

 

 1( ) x
S x S e

β−=  (2.30) 

 

β  is radius decay coefficient which is 1

2

1
ln( )

S

L S
β = , and 1S  and 2S  are the initial 

and end cross sectional area. After putting ( )S x  into Equation 2.16, the spatial solution of 

exponential horn for longitudinal vibration is obtained as follows;  

 

 2 22
1 1

1 1
( ) ( cos ( ) sin ( ) )

1 2 1 2

x

L Ll l

l s l s

c cx x
X x e A B

c jR c jR

β β βω ω

ω ω
= − + −

+ +
 (2.31) 

 

For exponential horn, inertia moment changes in the following form [11]; 

 

 1( ) x
J x J e

γ−=  (2.32) 



 

 

31 

Where 1

2

1
ln( )

J

L J
γ = , and 1J  and 2J  are the initial and end inertia moments, 

respectively.  Putting ( )J x  into 2.29, the spatial solution for torsional vibration is obtained 

as follows; 

 

 2 22
1 1

1 1
( ) ( cos ( ) sin ( ) )

1 2 1 2

z

T Tt t

t v t v

c cz z
z e A B

c jR c jR

γ γ γω ω
θ

ω ω
= − + −

+ +
 (2.33) 

 

Real parts of Equations 2.31 and 2.33 give the solution. Constants are determined 

from boundary conditions. 

 

 

2.9.2 Conical Horn 

 

 

Conical horn can also be used for synchronization. Typical form of the horn is 

given in Figure 2.7. Diameter of conical horn changes as follows; 

 

2
1 2 1( ) [ ( )]

x
d x d d d

L
= + −     (2.34) 

 

 

 

Figure 2.7. Conical Horn 
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Cross sectional area of conical horn is; 

 

2
1 2 1( ) [ ( )]

4

x
S x d d d

L

π
= + −     (2.35) 

 

And polar moment of inertia is: 

 

2

32
x

z

d
J

π
=      (2.36) 

Putting 
x

d  into 
z

J ; 

 

2
1 2 1[ ( )]

32z

z
J d d d

L

π
= + −     (2.37) 

 

And the spatial solutions of two modes are obtained for conical horn as follows; 

 

1 1

1 1 1
( ) ( cos sin )

( 1) 1 1
L L

l s l s

x x
X x A B

L N x c jR c jR

ω ω
= +

+ − + +
 (2.38) 

 

Here 2

1

d
N

d
= , and solution for torsional vibration; 

 

32 1
1 3 3 1 3 3

1 2 1

( ) ( ) ( ( ) ( ))T Td d
z A H Z B G Z

d L zd zd
θ

−
= +

+ −
  (2.39) 

 

3 ( )H Z and 3( )G Z  are first and second kind Bessel functions of third order. 3Z  is equal to; 

 

1 1 2 1
3 2

2 1

2
( )( )
1 ( )

t v

d L d L zd zd
Z

c iR d d

ω + −
=

+ −
   (2.40) 
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2.9.3 Catenoidal Horn 

 

 

Typical catenoidal horn is seen in Figure 2.8. Cross sectional area of a catenoidal 

horn changes in following way; 

 

2( ) cosh ( )S x S L xµ= −     (2.41) 

 

Where 1 1

2

1
cosh ( )

d

L d
µ −=  and 2

2 2 / 4S dπ= .  

 

 

 

Figure 2.8. Catenoidal Horn 

 

The polar moment of inertia takes following form; 

 

4
2 cosh

x

x
J J

a
=     (2.42) 

Where 2 / 2a d=  and 
4

2 2

a
J

π
= . Solutions of two modes are obtained as follows; 

 

1 1' '

1
( ) ( sin cos )

cosh( )
L LX x A x B x

L x c c

ω ω
= +

− +
  (2.43) 

 

'
c  is the  modified speed of sound, and is equal to;  
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'

21 ( )

l

l

c
c

cµ

ω

=

−

     (2.44) 

 

The spatial solution of torsional vibration is obtained as follows; 

 

1 1
ln(tanh( / ) 1) ln(tanh( / ) 1)

2 2
1 1( ) ( )

a z a a z a
T T

z e A A B Bθ
− − − +

= +   (2.45) 

 

Where A and B are equal to; 

 

1/ 2 1/ 2 1/ 2 2 2 2 1/ 2

1/ 2 1/ 2

( 2 2 ) ( 2 2 ) ( 2 2 ) (1 ))
( ) ( )

2 ( 2 2 ) 2 ( 2 2 )
2 1

2 1/ 2

1
( (tanh 1)) (2 tanh( ) 2) ( , ; , )
2

(1 tanh( / ) )

t v t v t v

t v t v

c i R a ai c i R a ic R c a i

c i R c i R

x x x x

z z
F a b c d

a aA
z a

ω ω ω− + + + − + − − − + +

− + − +− +
=

−

(2.46) 

1/ 2 2 2 2 1/ 2

1 / 2 1 / 2

(1 ) ( 2 2 )1 (1 ) 1
( ) ( )
2 22 ( 2 2 ) 2 ( 2 2 )

2 1

2 1/ 2

1
( (tanh 1)) (2 tanh( ) 2) ( , ; , )
2

(1 tanh( / ) )

t v t

t v t v

i a ic R c ai a

c i R c i R

y y y y

z z
G a b c d

a aB
z a

ωω + − − ++
+ +

− + − +− +
=

−
  

(2.47) 

Where 2 1( , ; ; )
x x x x

F a b c d  and 2 1( , , , )
y y y y

G a b c d  are Gauss hypergeometric functions, 

which are; 

 

2 1
0

( ) ( ) ( )
.

( ) !

k

x k x k x

k x k

a b d
F

c k

∞

=

=∑  and 2 1
0

( ) ( ) ( )
.

( ) !

k

y k y k y

k y k

a b d
G

c k

∞

=

=∑   (2.48) 

 

, , ,
x x x x

a b c d  and , , ,
y y y y

a b c d  are equal to; 

 

1/ 2 2 2 2 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2

( 2 2 ) (1 ) (1 2 ) ( 2 2 ) ( 2 2 )

2 ( 2 2 )
t v t t v t v

x

t v

a ic R c a i a c i R a ai c i R
a

c i R

ω ω ω− − − + + + + − + + + + − +
=

− +

(2.49) 

1/ 2 2 2 2 1/ 2 1/ 2

1/ 2

( 2 2 )(1 ) (1 2 ) ( 2 2 ) ( 2 2 )

2 ( 2 2 )
t v t t v t v

x

t v

a ic R c a i a c i R a ai c i R
b

c i R

ω ω ω− − − + + − + − + + + + − +
=

− +
 

(2.50) 
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1/ 2 1/ 2 2 2 2 1/ 2

1/ 2

( 2 2 ) ( 2 2 ) (1 )

( 2 2 )
t v t v t

x

t v

c i R a ic R c a i
c

c i R

ω− + − − − + +
=

− +
  (2.51) 

 

tanh( / ) 1

2x

z a
d

+
=      (2.52) 

 

1/ 2 2 2 2 1/ 2 1/ 2 1/ 2 1/ 2

1/ 2

( 2 2 ) (1 ) (1 2 ) ( 2 2 ) ( 2 2 )

2 ( 2 2 )
t v t t v t v

z

t v

a ic R c a i a c i R a ai c i R
a

c i R

ω ω ω− − + + + + − + + + + − +
=

− +

(2.53) 

1/ 2 2 2 2 1/ 2 1/ 2

1/ 2

( 2 2 )(1 ) (1 2 ) ( 2 2 ) ( 2 2 )

2 ( 2 2 )
t v t t v t v

z

t v

a ic R c a i a c i R a ai c i R
b

c i R

ω ω ω− − − + + + + − + − − − − +
=

− − +
 

(2.54) 

1/ 2 1/ 2 2 2 2 1/ 2

1/ 2

( 2 2 ) ( 2 2 ) (1 )

( 2 2 )
t v t v t

z

t v

c i R a ic R c a i
c

c i R

ω− + + − − + +
=

− +
  (2.55) 

 

tanh( / ) 1

2z

z a
d

+
=     (2.56) 

 

 

2.10. Constitutive Piezoelectric Equations 

 

 

Piezoceramic equations used in transducer design are different for each mode. For 

longitudinal vibration, T-E type constitutive equations are used. When a voltage V  is 

applied to electrodes of a piezoelectric disc of the cross sectional area S, and thickness l , 

the piezoelectric constitutive relations for thickness mode disc are given by [6,20]; 

 

 3 33 3 33 3
D

x
T c S h D= −  (2.57) 

 

 3 33 3 33 3
S

x
E h S Dβ= − +  (2.58) 
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33h  can be expressed in terms of voltage constant of piezoceramic and elastic 

coefficient, 33 33 33
D

h g c= . For torsional vibration S-E Type constitutive equations are used. 

The piezoelectric constitutive relations for torsional the disc are given by [6,7],  

 

 3 55 3 15 3
D

z
S s T g Dθ θ= +  (2.59) 

 

 3 15 3 11 3
T

z
E g T Dθ β= − +  (2.60) 

 

D , D
c , D

s , h , g  are the electric displacements, the elastic coefficient, elastic 

compliance (stiffness), piezoelectric constants respectively. 33
Sβ  and 11

Tβ  are the dielectric 

impermeability constants (the inverse of the electric permittivity ε ). Voltage V , which is 

applied to a piezoceramic between two electrodes,  is the integral of the electric field E ;  

 

 
0

l

V Edl= ∫  (2.61) 

 

 

2.11. Boundary and Matching Conditions 

 

 

Using Impedance matching method, boundary conditions are applied to transducer 

which made up of n subsystems has 2n boundary matching conditions both for longitudinal 

and torsional vibration. The first and last boundary conditions are usual for one-

dimensional wave equation. 

 

 

2.11.1. Boundary Conditions for Longitudinal Vibration  

 

 

Boundary conditions can be free-free, fixed-fixed, fixed-free or vice versa as 

explained in sections 2.3. and 2.4. As an example, fixed-free boundary condition is given 
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to build impedance matrix. Longitudinal boundary conditions of the parts of the transducer 

made up of N parts are assumed as follows: If first part of the transducer is fixed from end 

and the horn is free from tip, then following boundary conditions can be applied to the 

system [4,21]. At 0x =  since the first resonator is fixed; 

 

 1(0, ) 0u t =  (2.62) 

 

The second and third matching conditions come from the displacement ( , )u x t and 

force ( , )F x t  continuity at the interface between the first and the second resonators. 

 

 1 1 2( , ) (0, )u L t u t=  (2.63) 

 

 1 1 2( , ) (0, )F L t F t=  (2.64) 

 

and between the first two longitudinal piezoceramics 

 

 2 2 3( , ) (0, )u L t u t=  (2.65) 

 

 2 2 3( , ) (0, )F L t F t=  (2.66) 

 

If there are more than two piezoceramics, boundary conditions will continue as follows. 

 

 1 1( , ) (0, )n n nu L t u t− − =  (2.67) 

 

 1 1 1( , ) (0, )n n nF L t F t− − −=  (2.68) 

 

Since at x=L the transducer is free to vibrate, then there will be no force at tip of the 

horn. So the last boundary condition is; 

 

 (0, ) 0nF t =  (2.69) 
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The displacement ( , )u x t  and the electric displacement D of the i’th part are assumed 

to be varying harmonically in time as follows; 

 

 ( , ) ( ) j t

i i i iu x t X x e
ω=  (2.70) 

 

 *( ) j t

i iD t D e
ω=  (2.71) 

 

Therefore, the force ( , )F x t can be rearranged using Equations 2.57, 2.70 and 2.71 as: 

 

 *( , ) ( ) ( ' )j t

i i i i i iF x t S x e Y X h D
ω= −  (2.72) 

 

*
iD  and ih  are the electric displacement and the piezoelectric constant respectively, 

which are zero for non-piezoelectric materials. When Equations 2.69 and 2.70 are put into 

Equations 2.62 -2.69, the equations will become time independent. Spatial solution of each 

part can be derived using Equation 2.47 given in section 2.9. After rearranging equations 

boundary conditions will take form as follows; 

 

 1 2( ) (0)X L X=  (2.73) 

 

 * *
1 1 1 1 1 1 2 2 2 2 2( '( ) ) ( '(0) )S Y X L h D S Y X h D− = −  (2.74) 

 

Expressing boundary conditions in general forms for two matching conditions 

between the (i-1)’th and i’th parts are: 

 

 1 1( ) (0)i i iX L X− − =  (2.75) 

 

 * *
1 1 1 1 1 1( '( ) ) ( '(0) )i i i i i i i i i i iS Y X L h D S Y X h D− − − − − −− = −  (2.76) 

 

And the last boundary condition is; 

 

 *'( ) 0n n n n nY X L h D− =  (2.77) 
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2.11.2. Boundary Conditions for Torsional Vibration 

 

 

A similar procedure can be followed for torsional vibration, as well. Boundary 

conditions of parts of the transducer, made up of N parts, are assumed to be as follows. If 

the first part of the transducer is fixed from end and the horn is free from the tip, following 

boundary conditions apply to the system. At 0z =  since the first resonator is fixed [3]; 

 

 1(0, ) 0v t =  (2.78) 

 

Note that z is exactly the same with x, but it is used not to confuse torsional 

equations with longitudinal ones. 

 

The second and third matching conditions come from the torsional deflection  ( , )v z t  

and moment ( , )M z t  continuity at the interface between the first and the second resonators. 

 

 1 1 2( , ) (0, )v L t v t=  (2.79) 

 

 1 1 4( , ) (0, )M L t M t=  (2.80) 

 

and between the first two torsional piezoceramics ; 

 

 4 4 5( , ) (0, )v L t v t=  (2.81) 

 

 4 4 5( , ) (0, )M L t M t=  (2.82) 

If there are more than two piezoceramics, boundary conditions will continue as 

follows. 

 1 1( , ) (0, )n n nv L t v t− − =  (2.83) 

 

 1 1 1( , ) (0, )n n nM L t M t− − −=  (2.84) 
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Since at x=L the transducer is free to vibrate, then there will be no moment at the 

tip of the the horn. So the last boundary condition is; 

 

 (0, ) 0nM t =  (2.85) 

 

The torsional deflection ( , )v z t  and the electric displacement zD  of the i’th part are 

assumed to be varying harmonically in time as follows; 

 

 ( , ) ( ) j t

i i i iv z t z e
ωθ=  (2.86) 

 

 *( ) j t

zi ziD t D e
ω=  (2.87) 

 

And in a circular disc with radius r, torsional moment can be expressed as [7]; 

 

 ( , ) z

s

M z t rT dsθ= ∫∫  (2.88) 

 

ds  is the circular unit area. From Equation 2.59; 

 

 15
3 3

55 55

1
z zD D

g
T S D

s s
θ θ= −  (2.89) 

 

Here 
z

Sθ  is torsional strain and equal to; 

 

zS r
z

θ

θ∂
=

∂
                            (2.90) 

 

Using Equations 2.89 and 2.90, ( , )M z t  can be rearranged as: 

 

 3( , ) t q zM z t Z Z D
z

θ∂
= −

∂
 (2.91) 
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Where 
55

p

t D

I
Z

s
=  , 15

55

q D

Wg
Z

s
=  and 2

p

s

I r ds= ∫∫  and 
s

W rds= ∫∫ . 

 

 *( , ) ' j t j t

i i t i i qi ziM z t Z e Z D e
ω ωθ= −  (2.92) 

 

*
ziD  and 15g  are the electric displacement and the piezoelectric constant respectively, 

which are zero for non-piezoelectric materials. Inserting Equations 2.86 and 2.87 into 

boundary conditions will become: 

 

 1 2( ) (0)Lθ θ=  (2.93) 

 

 * *
1 1 1 1 1 2 2 2 2'( ) '(0)t q z t q zZ L Z D Z Z Dθ θ− = −  (2.94) 

 

Spatial solutions of each part can be derived from Equation 2.33 given in section 2.9. 

Expressing boundary conditions in general forms for two matching conditions between the 

(i-1)’th and i’th parts are: 

 

 1 1( ) (0)i i iLθ θ− − =  (2.95) 

 

 * *
1 1 1 1 1'( ) '(0)t i i i qi zi t i i qi ziZ L Z D Z Z Dθ θ− − − − −− = −  (2.96) 

 

And the last boundary condition is; 

 

 *'( ) 0t n n n qn znZ L Z Dθ − =  (2.97) 
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3. IMPEDANCE METHOD 

 

 

 

3.1. General 

 

 

An ultrasonic welding system excited through piezoelectric materials can be 

analyzed with the impedance method. The impedance method assumes harmonic solutions 

in time: 0( , ) j t
u x t u e

ω=  and 0( , ) j t
v z t v e

ω= . The spatial solutions to both systems include 

unknown constants such as A and B, which are determined by applying boundary 

conditions [4]. 

 

For a system with n parts, the 2n boundary and matching conditions can be expressed 

in matrix form. Consequently, all the terms in the equations are on the left hand side of the 

corresponding equations except i ih D  and qi t iZ D  terms, which serve as forcing in the 

system. The spatial solutions, ( )i iX x  and ( )i izθ , always have the following form [4]: 

 

 ( ) ( )L L

i i i i i i iX A x B x= ϒ + Ψ  (3.1) 

 

 ( ) ( )T T

i i i i i i iA z B zθ = Φ + Ω  (3.2) 

 

L

i
A , L

i
B , T

i
A  and T

i
B  are constants to be determined with boundary conditions. 

 

 

3.2. Expressing the Boundary Conditions in Matrix Form 

 

 

When boundary conditions are written beginning from the first part of the transducer 

of n parts, 2n equations will be obtained. These equations can be expressed in matrix form. 

Force and moment terms are formed by hD coefficients and gD  coefficients respectively. 
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3.2.1. Longitudinal Mode 

 

 

Matrix form of boundary conditions, given in section 2.11.1, can be written as 

follows. Let U be the mode shape vector, F the force vector, and [Z] be the 2n by 2n 

impedance matrix made up of ( )i ixϒ  and ( )i ixΨ  evaluated at the boundaries. U, F and [Z] 

are related by:  

 

 

 [Z]U=F (3.3) 

 

Where:  

 U

1

1

2

2

2 1

L

L

L

L

L

i

L

i

L

n

L

n nx

A

B

A

B

A

B

A

B

 
 
 
 
 
 
 
 =
 
 
 
 
 
 
 
  

M

M

 and, F

* *
1 1 2 2

* *
2 2 3 3

* *
1 1

* *
1 1

2 1

0

0

0

0

0

0

i i i i

n n n n

nx

h D h D

h D h D

h D h D

h D h D

+ +

− −

 
 
 
 −
 
 
 − 
 

=  
 
 −
 
 
 
 
 −
 
  

M

M

 (3.4) 

 

 

The Matrix F can be separated into two parts and expressed as follows: 

 

 F = [H]D (3.5) 
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 [H]

1 2

2 3

1

1

2

0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

0 0 0

0

0 0 0

0 0 0 0 0

i i

n n

nxn

h h

h h

h h

h h

−

−

 
 
 
 −
 
 
 −

=  
 
 −
 
 
 −
 
  

L L O M

 and, D 

*
1

*
2

*

*

1piezo

i

n
nx

D

D

D

D

 
 
 
 
 =
 
 
 
  

M

M

 (3.6) 

 

 

3.2.2. Torsional Mode 

 

 

In the same manner, matrix form of boundary conditions, given in Section 2.11.2, 

can be written as follows; let UT be the mode shape vector, T the moment vector, and [ZT] 

be the 2n by 2n impedance matrix made up of ( )i izΦ and ( )i izΩ  evaluated at the 

boundaries. UT, T and [ZT] are related by: 

 

 [ZT] UT =T (3.7) 

Where: 
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The matrix T can be separated into two parts and expressed as follows: 

 

 T = [GT]Dz (3.9) 

 

Integrating term W over cross sectional area, term 
q

Z  can be expressed as; 

 

 
3

15
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2

3q D

r g
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π
=  (3.10) 

[GT] and Dz are as follows; 
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 (3.11) 

 

The impedance matrices [Z] and [ ]TZ are determined by expressing the boundary matching 

conditions in the matrix form. 

 

 

3.3. Solution Method 

 

 

Expressing coefficients of longitudinal and torsional spatial solutions, which are 1
L

A , 

1
L

B , 2
L

A , 2
L

B , ..... L

n
A , L

n
B  and 1

T
A , 1

T
B , 2

T
A , 2

T
B , ..... T

n
A , in terms of electric 

displacements, and using the expression V Edx= ∫  given in Section 2.10, coefficients of 

spatial solutions can be determined. The equations det([ ]) 0Z =  and  det([ ]) 0TZ =  give 
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the frequency equations, whose solution provides the longitudinal and torsional natural 

frequencies of the system. 

 

 

3.3.1. Longitudinal Displacements: 

 

 

The mode shape vector U can be obtained in terms of the electric displacements *
jD ’s as: 

 

 -1[U] = [Z] [H][D]  (3.12) 

 

Letting 1[ ] [ ]Q Z H−= , a row of Equation 3.12 is: 

 

 *

1

piezon

i ij i

j

U q D
=

= ∑  (3.13) 

 

Therefore, the spatial displacements ( )
i i

X x are given by: 

 

 * *
(2 1), (2 ),

1 1

( ) [ ] ( ) ( )
piezo piezon n

i i i j j i i i j j i i

j j

X x q D x q D x−
= =

 
= ϒ + Ψ 

 
∑ ∑  (3.14) 

 

Which can be compactly expressed as: 

 

 *

1

( ) ( )
piezon

i i j i j

j

X x p x D
=

= ∑  (3.15) 

 

In this equation, 
j

p ’s is equal to; 

 

 (2 1), (2 ),( ) ( ) ( )
j i i j i i i j i i

p x q x q x−= ϒ + Ψ  (3.16) 
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The electric displacements *
i

D  can be determined as follows. Inserting Equations 

3.14, 3.15, and 3.16 into Equation 2.60 and taking the integral of the resulting expression 

we can obtain a relation between the electric displacement 
i

D and the voltage ( )x i
V  applied 

to i ’th piezoelectric disc: 

 

 ( ) [ ( ) (0)] S

x i i i i i i i iV h u L u D Lβ= − − +  (3.17) 

 

The voltage applied to the piezoelectric materials is of the form, j t

x n
V V e

ω= . 

Inserting 3.14 into 3.17, replacing 
x

V  and D  with j t

n
V e

ω  and * j t
D e

ω  the following 

expression is be obtained: 

 

 * *
( )

1

( ( ) (0))
piezon

S

x i i j i j j i i i

j

V h p L p D L Dβ
=

= − − +∑  (3.18) 

 

Expression 3.18 can be written in matrix form: 

 

 

*
11

*
22

V

*

( )

( )
[ ]

( )
piezopiezo

n

n

n nn

VD

VD
Z

VD

   
   
   =
   
   
     

MM
 (3.19) 

 

From 3.18, each element of the matrix 
V

Z can be determined as: 

 

 ( ) ( ( ) (0)) S

V ij i j i i i ijZ h p L p Lβ δ= − +  (3.20) 

 

ij
δ is the Kronecker’s delta. Therefore the electric displacements are obtained as: 

 

 1[ ] [ ] [ ]
V n

D Z V
−=  (3.21) 
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A compact expression for the spatial displacements can therefore be written as follows: 

 

 1 1[ ] [ ] [ ][ ] [ ]
V n

U Z H Z V
− −=  (3.22) 

 

 

3.3.2. Torsional Displacements 

 

 

In the same manner, the mode shape vector UT can be obtained in terms of the 

electric displacements *
z

D ’s as: 

 

 -1
T T T zU  = [Z ] [G ] [D ]  (3.23) 

 

Letting 1[ ] [ ] [ ]
T T

W Z G
−= , a row of Equation (3.23) is: 

 

 *

1

piezom

i ij zi

j

N r D
=

= ∑  (3.24) 

 

Therefore, the spatial displacements ( )
i i

zθ are given by: 

 

 * *
(2 1), (2 ),

1 1

( ) [ ] ( ) ( )
piezo piezom m

i i i j z j i i i j z j i i

j j

z r D z r D zθ −
= =

 
= Φ + Ω 

 
∑ ∑  (3.25) 

 

This can be compactly expressed as: 

 

 *

1

( ) ( )
piezom

i i j i z j

j

z t z Dθ
=

= ∑  (3.26) 

 

Where  
j

t ’s is equal to 

 

 (2 1), (2 ),( ) ( ) ( )
j i i j i i i j i i

t z r z r z−= Φ + Ω  (3.27) 
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Calculating Equation 2.59 over cross-sectional area of torsional piezoceramics, it is found; 

 

 11T hi zi
E Z D

z

θ
β

∂
= − +

∂
 (3.28) 

 

Inserting Equation 3.28 into Equation 2.60 and taking the integral we obtain: 

 

 ( ) 11[ ( ) (0)]z i hi i i zi iV Z L D Lθ θ β= − − +  (3.29) 

 

Where 
11

15
11

55

T

D

g

s
β β= +  and /

hi qi i
Z Z S= . Equation 3.29 can be expressed in matrix form as: 

 

 

*
11

*
22

Z

*

( )

( )
[ ]

( )
piezopiezo
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mz

m mz m

VD

VD
Z

VD

   
   
   =
   
   
     

MM
 (3.30) 

 

Each element of the matrix 
Z

Z can be determined as follows: 

 

 11( ) ( ( ) (0)) T

Z ij qi j i i ijZ Z t L t Lβ δ= − +  (3.31) 

 

Therefore the electric displacements are obtained as follows: 

 

 1[ ] [ ] [ ]
z Z m

D Z V
−=  (3.32) 

 

A compact expression for the spatial displacements can therefore be written as follows: 

 

 1 1[ ] [ ][ ] [ ]
T T Z m

U Z H Z V
− −=  (3.33) 

 

Putting coefficients of the spatial solutions into Equations 3.1. and 3.2 will give the 

displacements of the two modes. Using spatial solutions at a special frequency, 

displacement and force or moment graphs of a transducer with N parts can be plotted. 
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3.4. Determining the Length of the Exponential Horn 

 

 

In this thesis, the length of the backing material is selected as a variable. 

Determination of the length of horns is an adjustment problem. In the simplest case, a 

uniform bar can be considered. In this case, full wavelength of the horn, λ , will be equal 

to [9]; 

 

 
2c c

L
f

π
λ

ω
= = =  (3.34) 

 

In Equation 3.34, f , ω  are resonance frequency and angular velocity. c is the speed 

of sound inside the material, but in different vibration modes it is different. For exponential 

horn, the speed of sound in exponential horn is given by; 

 

 '

21 ( )
2

l
l

l

c
c

cβ

ω

=

−

 (3.35) 

 

 '

21 ( )
2

t
t

t

c
c

cγ

ω

=

−

 (3.36) 

 

'
l

c  and '
t

c  are the speeds of sound in exponential horn in longitudinal and torsional 

vibration, respectively. 

 

Length factors are parameters to choose, for a half wave horn length factor will be 

0.5. 2L
L , 2T

L are the lengths of exponential horn and 
L

LF ,
T

LF  are length factors in 

longitudinal and torsional vibration. For longitudinal vibration, the length of horn is 

defined as: 

 

 
'

2
l

L L

c
L LF

f
=  (3.35) 
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For torsional vibration: 

 

 
'

2
t

T T

c
L LF

f
=  (3.36) 

 

When the two modes are synchronized, 2L
L  and 2T

L  should be equal. For conical 

and catenoidal horns the same procedure can be followed; however they can be adjusted by 

trial and error more easily. The length of the horn is a very important parameter to amplify 

displacements. 
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4. TRANSDUCER DIMENSIONAL PARAMETERS 

 

 

 

4.1. General 

 

 

It is difficult to synchronize two systems at the same frequency only by changing the 

dimensions of the transducer; however it could be facilitated by using graphical methods. 

In order to do this, a single parameter is changed while fixing other parameters. The 

change is represented graphically. An arrangement can be done to synchronize the two 

modes by this method. Amplitude changes must be paid attention to get better 

performance. 

 

 

4.2. Parametric Studies on Exponential Horn 

 

 

Parametric studies are done by using exponential horn with every boundary 

condition. In another transducer, these graphs could be different but they will change in the 

same manner with the same boundary conditions. 

 

There are other parameters to be changed apart from β and 4L . These are backing 

length 1L , diameter of piezoceramics ,
L T

d d  and piezoceramics thickness 2 3,L L . 

Parameters of transducer parts are given in Figure 4.1. 

 

To apply plane wave approach, however the diameters of piezoceramics must be 

larger than their length. Single parameter cannot be used to adjust the two modes. 

Combination of the parameters should be used. 
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Figure 4.1. Dimensional parameters of transducers with exponential horn 

 

The first three parametric studies are about the combination of the dimensional 

parameters of exponential horn. Horn length 4L  is changed according to dimensions given 

in Table 4.1 for constant end radius, 2d . In Figure 4.2 and 4.3 resulting resonance 

frequencies are shown. Natural frequencies of two systems are nearly the same. 

 

Table 4.1. Increments of horn length 

 

4L  [m] 0.164 0.1642 0.1644 0.1646 0.1648 0.165 

 

Direction of arrows shows increasing change of horn length. Similarly, in the other 

graphs, they will show increase of related parameter. As can be seen from the figures 

below, increasing length of exponential horn results in big decrease in resonance 

frequency. This may also cause a decrease in the amplitudes of displacement in both 

vibration modes. So, this parameter cannot be useful on its own, however when it is used 

with the other parameters it could be useful. 
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Figure 4.2. Change of longitudinal resonance frequencies for increasing L and constant 2d  
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Figure 4.3. Change of torsional resonance frequencies for increasing L and constant 2d  
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Another important parametric study is the relation between 2d  and β . When L  and 

initial radius are constant and β  is increased slightly, relation between end radius 2d and 

β  will become like in Table 4.2. 

 

Table 4.2. Increments of end diameter and beta 

 

2d  [m] 0.00204 0.00188 0.00174 0.00160 0.00148 0.00137 

β  40 41 42 43 44 45 
 

Similarly as seen in Figure 4.4 and 4.5, torsional mode frequency increases more 

than longitudinal, even if the same changes are applied. The difference is nearly half kHz 

which is really remarkable. But there are large changes at the end of horn, since torsional 

displacements depend on the circumference of end diameter which should be kept as small 

as possible to obtain higher displacements. As can be seen from figures, for free-free 

boundary conditions there is an intersection point. 

 

In Table 4.3, dimensions of 2d and 4L  are given for a constant β  value of 40. As 

seen from Figures 4.6 and 4.7, longitudinal resonance frequency decreases more than 

torsional frequency. However, change in resonance frequency is less with respect to other 

parameters. With this parameter big differences cannot be decreased with small 

increments. The best possible synchronization point seems to exist for free-free boundary 

condition.  

 

Table 4.3. Increments of horn length and end diameter 

 

4L  0.164 0.1642 0.1644 0.1646 0.1648 0.165 

2d  [m] 0.00261 0.00260 0.00259 0.00259 0.00257 0.00257 
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Figure 4.4. Change of longitudinal resonance frequencies for increasing β  and constant L  
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Figure 4.5. Change of torsional resonance frequencies for increasing β  and constant L  
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Figure 4.6. Change of longitudinal resonance frequencies for increasing L  and constant β  
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Figure 4.7. Change of torsional resonance frequencies for increasing L  and constant β  
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Backing length may also be selected as a parameter. In Table 4.4 increments of 

backing length 1L  are given. Resulting changes in resonance frequencies are given in 

Figures 4.8 and 4.9.  

Table 4.4. Increments of backing length 

 

 

 

 

Figure 4.8. Change of longitudinal resonance frequencies for backing length 
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Figure 4.9. Change of torsional resonance frequencies for backing length 
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Another parameter to be varied is the diameter of piezoceramics. In Table 4.5 

increments of piezoceramic diameters are given. In Figures 4.10 and 4.11 the resulting 

resonance frequencies are shown. However in real, these frequencies could be of little 

difference than expected values due to some limitations.  

 

Table 4.5. Increments of piezo diameters of two modes 

 
 

Figure 4.10. Change of longitudinal resonance frequencies for piezo diameter 
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Figure 4.11. Change of torsional resonance frequencies for piezo diameter 
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Piezoceramic thickness is another parameter. In Figures 4.12 and 4.13, changes of 

resonance frequencies are shown. In Table 4.6, changes of piezoceramic thickness are 

given.  

Table 4.6. Increments of piezo lengths of two modes 

2 3,L L  [mm] 4 4,2 4,4 4,6 4,8 5 

 

Figure 4.12. Change of longitudinal resonance frequencies for piezo thickness 

1.975 1.98 1.985 1.99 1.995 2 2.005 2.01

x 10
4

2

4

6

8

10

12

14
x 10

-5Resonance Frequency Change : 0.08 kHz

Frequency[Hz]

D
is

p
la

c
e
m

e
n
ts

 [
m

m
]

Lpie=4 mm

Lpie=5 mm

 

Free-Free 

2.6 2.62 2.64 2.66 2.68 2.7 2.72 2.74

x 10
4

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
-4 Resonance Frequency Change : 0.67 kHz

Frequency[Hz]

D
is

p
la

c
e

m
e

n
ts

 [
m

m
]

 

Fixed-Fixed 

2.23 2.24 2.25 2.26 2.27 2.28 2.29 2.3

x 10
4

0

1

2

3

4

5

6

7

8

9
x 10

-4 Resonance Frequency Change : 0.13 kHz

Frequency[Hz]

D
is

p
la

c
e

m
e

n
ts

 [
m

m
]

 

Free-Fixed 

2.3 2.35 2.4 2.45

x 10
4

0

1

2

3

4

5

6

7

8

9

10

x 10
-4 Resonance Frequency Change : 0.58 kHz

Frequency[Hz]

D
is

p
la

c
e

m
e

n
ts

 [
m

m
]

 

Fixed-Free 



 

 

66 

 

 Figure 4.13. Change of torsional resonance frequencies for piezo thickness 
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4.3. Material Thickness Effects on Modes of Transducer 

 

 

Resonance frequencies of the two modes of the transducer may also change with the 

thickness of the material to be welded. In Figure 4.14 and 4.15, with increment of 2 mm, 

resonance frequencies are plotted for material length of 1 cm. Longitudinal resonance 

frequency does not change with material thickness, however torsional resonance frequency 

changes remarkably.  

 

In this study, polythene (PE) is used as the material to be welded. For many materials 

torsional stiffness coefficient G is not given in written sources. Instead of G, using 

Young’s module and Poisson ratio η , torsional stiffness can be stated as; 

 

 
2(1 )

Y
G

η
=

+
 (4.1) 
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Figure 4.14. Change of longitudinal resonance frequencies for material thickness 
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Figure 4.15. Change of torsional resonance frequencies for material thickness 

 

 

4.4. Numerical Study 

 

 

To synchronize two modes, numerical studies are carried out. If the resonance 

frequency of the transducer is given, the resonant length of a certain part of the transducer 

can be computed. The dimensions of the horn of the transducer can be computed as 

explained in section 3.4. However the cases studied are more complex than single mode. 

 

In transducer design, dimensions and materials should be chosen appropriately. 

Difference in resonance frequencies should not be very large at the beginning of numerical 

study. 
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Not only dimensions but also material parameters change the resonance frequency. 

Material parameters are piezoceramic constants, Young modulus or torsional stiffness and 

density. Using the following procedure, the two modes can be synchronized [1]. 

 

1- Resonance frequency of the transducer must be determined. The resonance 

frequency is equal to that of the longitudinal or torsional vibration of the 

transducer. 

 

2- Materials of backing and exponential horn used must be determined. Low 

mechanical loss and large elastic modulus must be taken into account when 

choosing materials. Light front material and heavy backing material are more 

preferable in order to increase the ratio of the displacement of the front end of the 

exponential horn. 

 

3- The type of longitudinal and torsional piezoceramics must be chosen, including the 

number of the piezoceramics, and the material, the geometrical shape and 

dimensions. And the length and radius of backing part must be assigned. To 

simplicity, all radiuses can be chosen the same. 

 

4- If appropriate piezoceramics are chosen, they will have close resonance 

frequencies. The important point in synchronization is that torsional mode is more 

sensitive to radial changes, and longitudinal mode is more sensitive to longitudinal 

changes. 

 

5- For exponential horn, choosing appropriate length factor, length of the horn can be 

adjusted the same in both modes, but their resonance frequencies will be different. 

When the lengths of exponential horn are the same in the two modes, then γ  will 

be twice radius decay coefficient β . A certain end radius and length factor of 

exponential horn is chosen. According to these values, resonance frequencies are 

computed. 

 

6- Dependent upon above step, it is seen that there is only one end diameter and length 

factors to synchronize two modes for certain length of backing part. For example if 
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the length of backing material is changed, then other parameters must be studied 

again.  

 

 

4.5. An Example Transducer 

 

 

As a simple example, a transducer which has four piezoceramics, two longitudinally 

and two tangentially polarized piezoceramics is designed by using exponential horn. As 

seen in Figure 4.16, piezoceramics are clamped between two metal parts by a bolt, which 

goes through piezoceramics without touching an electrode. Contact between the bolt and 

the electrodes can cause short circuit problem.  

 

 

 

Figure 4.16. Schematic view of a compound mode transducer 
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Because of good acoustic properties, steel and aluminium are used as backing and 

horn materials respectively, see Table 4.7. Its geometrical dimensions are given in table 

4.3. The piezoceramic is the equivalent of PZT 4. Material parameters used are density and 

compliances 3
0 7.5 10xρ =  3/kg m  12

33 15.5 10E
s x

−=  2 /m N  12
55 39 10E

s x
−=  2 /m N . 

 

Table 4.7. Properties of the example transducer 

 

 

Material 
i

d  

[cm] 
f

d  

[cm] 
inner

d  

[cm] 

Backing St 5 5 2 

L.P.P. PZT 4 5 5 2 

T.P.P. Equivalent of PZT 4 5 5 2 

Horn Al 5 0.2 - 

Number of Longitudinally Polarized Piezoceramics 2 

Number of Tangentially Polarized Piezoceramics 2 

Lengths of Piezoceramics [mm] 5 

Voltage [V] 2000 

 

When designing a compound mode transducer, it is assumed that the two modes do 

not affect each other. As the longitudinally polarized piezoelectric ceramic elements are 

excited by an external electric field while the tangentially polarized piezoelectric ceramic 

elements are open circuited, the transducer will vibrate only in longitudinal mode. In this 

case, the tangentially polarized piezoelectric ceramic elements can be regarded as a pure 

mechanical vibrating body in longitudinal vibration. For longitudinal and torsional 

vibrations, free-free boundary conditions are given below respectively. 

 

 1(0) 0T =  (4.2) 

 

 1 1 2( ) (0)u L u=  (4.3) 

 1 1 2( ) (0)T L T=  (4.4) 

 

 2 2 3( ) (0)u L u=  (4.5) 
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 2 2 3( ) (0)T L T=  (4.6) 

 

 3 3 6( ) (0)u L u=  (4.7) 

 3 3 6( ) (0)T L T=  (4.8) 

 

 6 6( ) 0T L =  (4.9) 

 

For simplicity, piezoceramic and metal parts are assumed to have same diameters, 

so stress can be used instead of force. And boundary conditions for torsional vibration; 

 

 1(0) 0M =  (4.10) 

 

 1 1 4( ) (0)Lφ φ=  (4.11) 

 1 1 4( ) (0)M L M=  (4.12) 

 

 4 4 5( ) (0)Lφ φ=  (4.13) 

 4 4 5( ) (0)M L M=  (4.14) 

 

 5 5 6( ) (0)Lφ φ=  (4.15) 

 5 5 6( ) (0)M L M=  (4.16) 

 

 6 6( ) 0M L =  (4.17) 

 

As mentioned in section 4.4, dimensions of the compound mode transducer are 

arranged with numeric study. Their lengths are designed to vibrate in the same frequency 

with a small error. In Figure 4.17 and 4.18, displacements are plotted versus frequency. 

Longitudinal vibration displacements are in millimeter, however torsional vibration 

displacements are in radians. 
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Figure 4.17. Displacements vs. frequency of longitudinal vibration 

 

 

 

Figure 4.18. Displacements vs. frequency of torsional vibration 
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5. MULTIPLE MODELLING AND EXAMPLES 

 

 

 

A transducer which has multiple longitudinal and torsional piezoceramics does not 

differ from a transducer that has two longitudinal and two torsional piezoceramics as those 

in the previous chapters. In Figure 6.1, a transducer which has multiple piezoceramics is 

shown. Longitudinal piezoceramics should always be at the back and torsional 

piezoceramics should always be at front. Theoretically it is not important, however in 

practice, since there is a slipping risk between the two surfaces of piezoceramics, 

displacements may get smaller. To avoid this risk an adhesive substance must be used 

between all surfaces. 

 

 

 

Figure 5.1.  Displacements vs. frequency in torsional vibration 

 

Using the procedures given before, a transducer can be designed step by step. 

Again a transducer which has two longitudinal and two torsional piezoceramics are used. 

Duralumin is used for backing and exponential horn. Longitudinal piezoceramics, which 

are made by THORNTON-INPEC given in the article of Arnold&Muhlen [20,21], are used 

for thickness mode, and Morgan Piezo custom made PZT 407 piezoceramics are used for 

torsional mode. In Table 5.1, dimensions of transducer are given: 
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Table 5.1. Dimensions of the example transducer 

 

 Material i
d  [cm] 

f
d  [cm] 

inner
d  [cm] 

Backing St 5 5 2 
L.P.P. PZT 4 5 5 2 

T.P.P. Equivalent of PZT 4 5 5 2 

Horn  Al 5 - - 
 

Notice that initially some dimensions, which are end diameter of horn, length of 

piezoceramics and backing length, are not given. These values will become definite after 

design. For these dimensions, initial values are assigned. These dimensions will be 

changed as required. In Table 5.2, initial dimensions are given. 

 

Table 5.2. Initial dimensions of example transducer 

 

End Diameter of Exponential Horn [cm] 0.18 
Lengths of  Longitudinal Piezoceramics [mm] 4 
Lengths of  Torsional Piezoceramics [mm] 4 
Backing Length[m] 0.03 

 

With this assumption, obtained resonance frequencies are given below. 

 

Table 5.3. First values of resonance frequencies 

 

Longitudinal Resonance Frequency [kHz] 22.15 
Torsional Resonance Frequency [kHz] 20.25 

 

At first, longitudinal resonance frequency is more than torsional resonance 

frequency. To decrease the difference, parametric studies given in section 4.2 can be used. 

Difference is nearly 2 kHz, so a good parameter such as the backing length is needed. 

Decreasing backing length 10 cm gives closer resonance frequencies.  

 

Table 5.4. Second values of resonance frequencies 

 

Longitudinal Resonance Frequency [kHz] 20.44 
Torsional Resonance Frequency [kHz] 19.86 
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Difference is now less then 0.6 kHz. As told before, combined parametric study 

must be carried out. Decreasing end diameter of the horn 2 mm and increasing 

piezoceramic thickness of longitudinal mode 4.2 mm, then the transducer will be 

synchronized. In Table 5.5, final resonance frequencies are given. 

 

Table 5.5. Final values of resonance frequencies 

 

Longitudinal Resonance Frequency [kHz] 19.692 
Torsional Resonance Frequency [kHz] 19.69 

 

And final values of design dimensions are given in Table 5.6. 

 

Table 5.6. Final dimensions of the transducer 

 

End Diameter of Exponential Horn [cm] 0.2 
Lengths of  Longitudinal Piezoceramics [mm] 8.2 
Lengths of  Torsional Piezoceramics [mm] 4 
Backing Length[m] 0.02 

 

It is not the best performance but fast approach. In Figure 5.2 and 5.3 resonance 

frequency response graphs are given and also from Figure 5.4 to Figure 5.9, nodes & 

antinodes and admittance change are given respectively. 

 

At resonance real part of impedance of the system 
s

Z  goes to infinity.  For each 

mode impedance is found in following way;  

 

max

1 2 ....s

n

V
Z

I I I
=

+ + +
     (5.1) 

 

For longitudinal vibration 
i i

I j Dω=  and 
i

D  is obtained from Equation 3.21. 

Electrical admittance is equal to; 

 

1/
s s

Y Z=      (5.2) 
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Similar procedure can be followed for torsional mode. In Figure 5.8 and 5.9, 

Electrical admittance is plotted versus frequency. At resonance, admittance goes to 

infinity. 
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Figure 5.2. Resonance frequency of the longitudinal mode 
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Figure 5.3. Resonance frequency of the torsional mode 

 
Figure 5.4. Nodes of the longitudinal mode 
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Figure 5.5. Antinodes of the longitudinal mode 

 

Figure 5.6. Nodes of the torsional mode 
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Figure 5.7. Antinodes of the torsional mode 
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Figure 5.8. Electric admittance of the longitudinal piezoceramics 
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Figure 5.9. Electric admittance of the torsional piezoceramics 

 
Using same type and number of piezoceramics, another transducer is designed with 

conical horn. Similar procedure is applied to the transducer. After synchronization, final 

dimensions are given in Table 5.7. Frequency responses are seen in Figure 5.10 and 5.11.  

The difference of resonance frequencies of the modes is 7 Hz. 

 
Table 5.7. Final dimensions of the transducer 

 

 Material i
d  [cm] 

f
d  [cm] 

inner
d  [cm] 

Backing St 5 5 2 

L.P.P. PZT 4 5 5 2 

T.P.P. Equivalent of PZT 4 5 5 2 

Horn  Al 5 2.17 - 

Lengths of  Longitudinal Piezoceramics 
[mm] 

10 

Lengths of  Torsional Piezoceramics [mm] 5 

Backing Length [m] 0.015 
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Figure 5.10. Resonance frequency of longitudinal mode of conical horn 
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Figure 5.11. Resonance frequency of torsional mode of conical horn 
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Catenoidal horn is also used to synchronize the two modes with the same type and 

numbers of piezoceramics. Final dimensions are given in Table 5.8. Frequency responses 

are seen in Figure 5.12 and 5.13. Difference of resonance frequencies of the modes is 10 

Hz. 

 

Table 5.8. Final dimensions of the transducer 

 

 Material i
d  [cm] 

f
d  [cm] 

inner
d  [cm] 

Backing St 5 5 2 

L.P.P. PZT 4 5 5 2 

T.P.P. Equivalent of PZT 4 5 5 2 

Horn  Al 5 2.17 - 

Lengths of  Longitudinal Piezoceramics 
[mm] 

4 

Lengths of  Torsional Piezoceramics [mm] 5 

Backing Length [m] 0.063 
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Figure 5.12. Resonance frequency of longitudinal mode of catenoidal horn 
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Figure 5.13. Resonance frequency of torsional mode of catenoidal horn 
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SUMMARY AND CONCLUSIONS  

 

 

In this thesis, longitudinal and torsional vibration modes of an ultrasonic transducer 

for welding were examined. A matlab code is developed to analyze the welding system. 

Impedance matching method was used to analyze the system. Coefficients of the spatial 

solutions of the ultrasonics transducer were found by applying boundary conditions. 

 

Using exponential, conical and catenoidal horns, longitudinal and torsional vibration 

modes were synchronized. Using the Matlab code and applying the concepts given in 

Chapter 4, dimensions of transducer were changed and found a frequency at which two 

modes were synchronized. To solve the synchronization problem of the transducer, length-

beta (L-β) parameters have been examined widely for exponential horn. Through the 

studies, it was shown that when a dimension of a transducer is changed, resulting 

resonance frequency can be guessed. 

 

The plane-wave assumption was used in the analysis. That is lateral dimensions 

should be less than a quarter of the wavelength of the transducer. In this thesis thermal 

effects were neglected. However, as a result temperature length of horn may change during 

ultrasonic welding, and the synchronization of horn could be lost. This is one of the 

realistic problems, and needs a more detailed study. 

 

It is assumed that theoretically torsional vibration has no slipping problem. However 

this assumption may not be valid in practice. Expected amplitudes could not be obtained. 

Thus to glue the parts of transducers with a filling material, such as epoxy resin, can be 

used to avoid this problem. 

 

It is assumed that longitudinal and torsional vibrations are independent. The 

interaction between the longitudinal and torsional vibrations in the compound transducer, 

the impedance characteristics, and vibration characteristics of the transducer for high 

power applications can be studied further. 
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