
 

JOB SCHEDULING HEURISTICS FOR GRID 

 

 

 

 

 

 

by 

Mustafa Özgür Erbaş 

B.S., Computer  Engineering, Işık University, 2004 

 

 

 

 

 

 

 

Submitted to the Institute for Graduate Studies in 

Science and Engineering in partial fulfillment of 

The requirements for the degree of 

Master of Science 

 

 

 

 

 

 

Graduate Program in Computer Engineering 

Boğaziçi University 

2007 



 

 

ii

 

 

JOB SCHEDULING HEURISTICS FOR GRID 
 

 

 

 

 

 

 

 

 

APPROVED BY: 

 

    Assoc. Prof. Can Özturan  .............................. 

    (Thesis Supervisor) 

 

    Dr. Haluk Bingöl   .............................. 

 

    Assist. Prof. Tamer Dağ  .............................. 

 

 

 

 

 

 

 

 

 

 

DATE OF APPROVAL: 24.08.2007 

 



 

 

iii

ACKNOWLEDGEMENTS 

 

 
I would like to express my gratitude to my supervisor Assoc. Prof. Can Özturan, for his 

guidance, encouragement, kindness, and support through the whole study. I would like to 

mention his patience, giving me support and hope when I was stuck at dead-ends. Also, I 

would like to thank Haluk Bingöl and Tamer Dağ to be there for me. 

 

I would like to thank my family, especially my father, for their patient, trust and sacrifices 

without hesitation. I will be indebted to you not only for this part of my life, but forever.  

 

This thesis is dedicated to the memory of my beloved Zeynep Zengin, who was passed 

away and left me behind, always missing her. 

 

Finally, I would like to mention my friends Ali Haydar Özer, Itır Karaç, and H. Gül Çalıklı 

for their patience.  I thank them all. 

 

 



 

 

iv

ABSTRACT 

 

 

 JOB SCHEDULING HEURISTICS FOR GRID 

 
 

Grid computing can be expressed as a set of services for sharing data, computation 

capacity and other resources like special equipment. Improvements in networking enabled 

grid technology to progress quite fast. Resource selection for jobs submitted in a grid, also 

called matchmaking, is one of the most important tasks needed for operating a grid. 

Matchmaking is a process that tries to assign jobs to available resources. One important 

goal of matchmaking is to maximize grid throughput. This is a difficult goal to realize 

because of the existence of heterogeneous resources in a grid. A widely used approach is 

Condor’s matchmaking algorithm, which is used by SEE-GRID, EGEE and TR-Grid 

infrastructures. The goal of this study is to improve this algorithm to obtain better 

algorithms for the matchmaking process. 

 

We propose two new polynomial algorithms for matchmaking. The idea shared by both 

of our proposed heuristic algorithms is that our heuristics take the collection of jobs and try 

to match as many jobs to available resources. One of our heuristics, called Scarce Resource 

First Matchmaking (SRFM), assigns by first trying to match scarce resources. The other 

heuristic called Linear programming Based Matchmaking (LBM) solves relaxed version of 

the NP-hard integer program and assigns resources by using relaxed solution values. 

 

Our simulation results show that our collective matchmaking schemes work quite well 

by improving the number of completed jobs. 

 



 

 

v

ÖZET 

 

 

GRID İÇİN KAYNAK TAHSİS MODELLERİ  
 

 

Hesaplama; veri, hesaplama kapasitesi ve diğer kaynakların(özel araçlar) paylaşımıın 

sağlayan servisler topluluğu olarak tanımlanabilir. Bilgisayar ağlarındaki gelişme Grid’in 

ilerlelemesinde çok etkili olmuştur. Grid’in çalışması için en önemli işlemlerden biri, işler 

için kaynak seçimi, diğer adıyla eşleştirmedir.  Eşleştirme, yapılacak işlerin boştaki 

kaynaklara atanması işidir. En önemli hedeflerden biri grid’in verimliliğini artırmaktır. 

Kaynakların birbirinden çok farklı olduğu göz önünde bulundurulduğunda bu zor bir 

işlemdir. Eşleştirme için en popüler yaklaşımlardan biri SEE-GRID, EGEE ve                

TR-GRID’in de kullandığı Condor’un eşleştirme algoritmasıdır. Araştırmamızın amacı bu 

algoritmayı geliştirerek eşleştirme için daha verimli algoritmalar tasarlamaktır. 

 

Bu çalışmada, eşleştirme için iki yeni algoritma öneriyoruz.  Her iki algoritmada da 

yapılmaya çalışılan şey, işleri tek tek almak yerine, bir takım olarak almak ve mümkün 

olduğunca fazla işi boş kaynaklara atamaktır. Algoritmalarımızdan birisi, İlk Kıt Kaynaklar 

Eşleştirme (SRFM) algoritması, kıt kaynakları eşleştirmeye öncelik verir. Diğer algoritma 

is Lineer Programlama Tabanlı Eşleştirme (LBM) algoritması olarak adlandırılmıştır. 

 

Simulasyon sonuçlarına göre, önerdiğimiz bu algoritmaların, tamamlanan iş sayısını 

atrırarak daha iyi bir şekilde çalıştığı görülmüştür. 

 



 vi

TABLE OF CONTENTS 
 
 
 
 
         ACKNOWLEDGEMENTS.................................................................................................. iii 

         ABSTRACT.......................................................................................................................... iv 

         ÖZET ......................................................................................................................................v 

         LIST OF FIGURES ............................................................................................................ viii 

         LIST OF TABLES..................................................................................................................x 

         SYMBOLS / ABBREVIATIONS ........................................................................................ xi 

         1.  INTRODUCTION .............................................................................................................1 

1.1.  Grid Computing..........................................................................................................1 

1.2.  SEE-GRID and EGEE Projects..................................................................................1 

1.3.  TR-Grid ......................................................................................................................2 

1.4.  Motivation ..................................................................................................................2 

1.5.  Contributions..............................................................................................................4 

1.6.  Outline........................................................................................................................5 

2.  PREVIOUS WORK...........................................................................................................7 

2.1.  Introduction to Matchmaking ....................................................................................7 

2.1.1.  Condor Project................................................................................................7 

2.1.2.  Condor and Condor-G....................................................................................8 

2.1.3.  Fundamental Structure of the System ..........................................................10 

2.1.4.  ClassAds and JDL ........................................................................................14 

2.2.  Related Work Done .................................................................................................16 

2.3.  Summary..................................................................................................................35 

3.  SIMULATED MODEL and GridCAM...........................................................................38 

3.1.  Introduction .............................................................................................................38 

3.2.  Simulated Model......................................................................................................38 

3.3.  GridCAM.................................................................................................................44 

4.  PROPOSED SCHEDULING HEURISTICS ..................................................................45 

4.1.  Introduction .............................................................................................................45 

4.2.  Definition of the Problem........................................................................................46 

4.3.  Mathematical Model for Matchmaking...................................................................47 

 

  



 vii

4.4.  Scarce Resource First Matchmaking(SRFM)..........................................................49 

4.5.  Linear Programming (LP) Based Match-making(LBM).........................................52 

       5.  SIMULATIONS RESULTS.............................................................................................55 

5.1.  Introduction ..............................................................................................................55 

5.2.  Simulator Configuration...........................................................................................55 

5.3.  Simulation Results....................................................................................................56 

         6. CONCLUSION.................................................................................................................58 

         REFERENCES .....................................................................................................................60 

 

 



 viii

LIST OF FIGURES 
 

 

 

Figure 1.1.  Simple Assignment Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

 

Figure 2.1.  Condor and Globus Union     . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   9 

 

Figure 2.2.  The Condor Kernel   . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 

 

Figure 2.3   a Condor pool  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 

 

Figure 2.4.  Sample ClassAds for both Job and Machine   . . . . . . . . . . . . . . . . . . . . . .  13 

 

Figure 2.5.  Simple JDL   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   15 

 

Figure 2.6.   Matchmaking Process   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   18 

 

Figure 2.7.   Matchmaking and Ranking   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   20 

 

Figure 2.8.  Condor-G Matchmaking    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 

 

Figure 2.9.  Gangmatching Example . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   25 

 

Figure 2.10.  Greedy Heuristic Algorithm    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

 

Figure 3.1.  WMS Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

 

Figure 3.2.  Job’s Life  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

 

Figure 3.3.   Job States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 

 

Figure 4.1.  Graph Representation of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .   46 



 ix

 

Figure 4.2.  Pseudocode for SRFM Algorithm  . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .    50 

 

Figure 4.3.  Simple Matching Problem and its Input for Lpsolver  . . . . . . . . . . . . . . .   52 

 

Figure 4.4.  Pseudocode for LBM Algorithm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

 

 

 
 

 

 

 

 

 

 



 x

LIST OF TABLES 
 

 

Table 4.1.   Compatibilities for Matching  . . . . . . . . . . . . . . . . . . . . . . . . . . . .    45 

 

Table 5.1.   Simulation Parameters (Configuration 1) . . . . . . . . . . . . . . . . . . . . . . . . .   54 

 

Table 5.2.   Simulations Results of First Come First Served (FCFS) Algorithm. . . . .   56 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xi

LIST OF SYMBOLS / ABBREVIATIONS 

 

 
dwindow Duration of matchmaking 

jcr  
The request of cluster c by job j 

jq  
The number of processors requested by job j 

cp  The number of processors available on cluster c 

jd  The amount of disk space requested by job j 

cd  The amount of disk space available on cluster c 

jm  The amount of memory requested by job j 

cm  The amount of memory available on cluster c 

),( cjD  Resource c desire value for job j 

jcw  Weight of job j over for cluster c 

 

 

 

CE Computing Element 

CERN English: European Organization for Nuclear Research 

ClassAd Classified Advertisement 

CSP Constraint Satisfaction Problem  

DAG Directed Acyclic Graph 

DAGMan DAG Manager 

FCFS First Come First Served 

GIS Grid Information Service 

GMW Grid Middleware 

GRAM Grid Resource Allocation Management 

GriPhyN Grid Physics Network 

HTC High-Throughput Computing 

IPG Information Power Grid 

IS Information System(s) 



 xii

ISM Information SuperMarket 

iVDGL The International Virtual Data Grid Laboratory 

JDL Job Description Language 

L&B Logging and Bookkeeping 

LBM LP Based Match-making 

LDAP Lightweight Directory Access Protocol 

LDS Logical Dataset 

LHC Large Hadron Collider 

LJF Longest Job First 

LM Log Monitor 

NCSA National Computational Science Alliance 

NMI the NSF Middleware Initiative 

NS Network Server 

PPDG the Particle Physics Data Grid 

RB Resource Broker 

RMS Resource Management System 

SE Storage Element 

SEE South East Europe 

SJF Shortest Job First  

SRFM Scarce-Resource-First Match-making  

UI User Interface 

VO Virtual Organization 

WM Workload Manager 

WMS Workload Management System 

WN Worker Node 

 

 



 

 

1

1.  INTRODUCTION 

 

 
1.1 Grid Computing 

 

Grid computing [1] can be expressed as a set of services for sharing data, special 

equipments and computation capacity. Basically, the idea is to create a virtual super 

computer by using many distributed computers and storage. Grid computing is a good 

solution not only for complex computational problems but also simple problems. The main 

goal [2] is to create a self managing virtual computer by using large number of computers 

that are connected to each other. These computers share their resources and jobs are 

assigned available resources for the VO (Virtual Organization) that the users belong to. 

 

1.2  SEE-GRID and EGEE Projects 

 

SEE-GRID [3] is a regional computing and storage grid infrastructure. SEE-GRID-2 

[4], which is the second phase of the project, mostly focuses on grid usability and grid 

applications. The research and education communities of South East Europe, also called 

SEE, will benefit from this project and its applications. The main goals of the project are to 

improve and integrate the existing grid infrastructure and services that have been developed 

by SEE-GRID.  

 

Another important grid project is the Enabling Grids for E-sciencE project, also called 

EGEE [5, 6], which is used by scientists and engineers in 32 countries. It provides grid 

infrastructure for e-science. EGEE is supported by the European Commission. The project 

is used in many applications areas such as geology, computational chemistry, energy 

physics and life sciences. EGEE infrastructure has over 30,000 CPUs and about 5 Petabytes 

of storage.  

 

 



 

 

2

1.3  TR-Grid 

 

TR-Grid [7] the national grid infrastructure of Turkey developed by ULAKBIM and a 

number of Turkish universities. TR-Grid is a member of the SEE-GRID and EGEE 

infrastructures. The basic model of clusters in TR-Grid infrastructure as follows; First of 

all, latest version of gLite[8] middleware is installed over Computing Elements (CEs), 

Worker Nodes (WNs), and Storage Elements (SEs). gLite is the next generation 

middleware software for a grid. It provides a framework for grid applications using 

distributed resources. The gLite is a service oriented grid middleware which is providing 

services for managing distributed computing (including security), auditing and information 

services. Another important node type is Workload Management System (WMS). WMS is 

set of services that are responsible for resource allocation. However, all the clusters do not 

have to have this node because there is a centralized WMS which is  created by TR-Grid. 

Detailed information about WMS will be given in Chapter 3. 

 

1.4  Motivation 

 

Resource selection is a critical task for grid infrastructure and can be described as 

finding a set of resources that satisfy job needs at the current resource state of grid. We 

have to ensure that not only jobs achieve desired requirements but also efficient utilization 

of grid resources is realized. We have to prevent excessive resource consumption. In other 

words, we need an efficient resource selection scheme to maximize throughput, because 

finding a satisfying resource for the job does not mean finding a resource that best fits the 

job when we take other jobs’ requirements into account. By using the most appropriate 

resources for the jobs we will be able to avoid excessive resource consumption. 

Consequently this approach will maximize system throughput. This can be a difficult task 

to realize because jobs are matched to  heterogeneous resources which have dynamically 

changing characteristics such as memory, disk and CPU capacities. 

 

We focus on attribute-based selection, namely Condor’s Matchmaking, and 

Gangmatching algorithms. Matching is done between jobs and resources, and they are 



 

 

3

described by using ClassAds. Matchmaking and gangmatching algorithms find compatible 

matches between job ClassAds and resource ClassAds. In addition, there is a Rank 

parameter which helps the algorithm in coming up with the best matching. Condor’s 

Matchmaking algorithm is explained in detail in Chapter 2 but basically algorithm; 

 

1. Iterates through the entire solution space, 

2. Determines amongst all compatible ClassAds, 

3. Chooses jobs with the highest “rank” value. 

 

Assignments of jobs are done using FCFS (First Come First Served) scheduling in TR-

Grid. Different scheduling methods can be used and details about these methods are given 

in Chapter 3. Here the problem is that these scheduling methods do not make the best 

match. Figure 1.1 demonstrates a simple scenario for scheduling. 

 

 
Figure 1.1. Simple Assignment Scenario 

 

 



 

 

4

Consider the simple scenario of three jobs that have arrived one after the other as shown 

in Figure 1. Suppose that job 1 has the highest, job 2 has the second highest and job 3 the 

lowest priorities. Suppose there are two resources: cluster machine resource A with 20 

processors and resource B with 10 processors. Assume that these resources are vacant and 

are all equally suitable for running all the jobs. If we take jobs according to priority order, 

one at a time, Condor would first take job 1 and try to assign a resource to it. Since it is 

doing this without consideration of other jobs, it is possible that it may assign 5 processors 

of resource A to it. Then it would take job 2 and it is possible that it may assign 5 

processors of resource A to it. Finally, when job 3, which needs 20 processors, is to be 

scheduled, it will fit neither of the remaining 10 processors of resource A or on resource B 

which has 10 processors. Assuming that a parallel job needs to run on a single cluster (due 

to for example networks being slow), then we will not be able to run job 3. Since it can 

only run on resource A, it will have to wait for jobs 1 and 2 to finish before it can run. If we 

take all the jobs and all the resources collectively, however, and try to match them 

simultaneously, we see that all three jobs can be assigned resources they need. Job 1 and 

Job 2 can be assigned to resource B and Job 3 can be assigned to resource A. 

 

The main idea of our approaches is to avoid excessive resource consumption so that we 

increase the system throughput. Our study is concluded with experimental tests from real 

life scenarios by using GridCAM, which is a simulation tool developed by us. GridCAM 

simulates both FCFS algorithm and our two proposed approaches. In addition, GridCAM 

uses TR-Grid infrastructure real resource capacities and architectures such as disk space, 

number of CPUs, memory space, and operating system. GridCAM is inspired and named 

after “WebCam”. The name mentions “grid camera”. Details about GridCAM simulation 

tool will be given in Chapter 3.  

 

1.5  Contributions 

 

Contributions of our work can be expressed as follows; 

• A simulation Tool, called GridCam, has been developed. GridCam creates a virtual 

environment for TR-Grid structure.  



 

 

5

• Two new heuristics Scarce Resource First (SRFM) and LP Based Matchmaking 

(LBM) were introduced for matchmaking. 

• Performance evaluations of FCFS, SRFM and LBM that are done by using 

GridCAM. 

 

1.6  Outline 

 

In Chapter 2, previous work related to matchmaking and scheduling will be considered. 

In the first section of this chapter, information about Condor Project, ClassAds and JDL 

(Job Description Language) will be presented. Then, different matchmaking methods and 

scheduling algorithms will be examined and finally these  will be compared with our 

proposed algorithms. 

 

In Chapter 3 will present information about the simulated model. In the first section of 

this chapter, we will give the details of the system that we are modeling. Basically, WMS, 

its components and working principles will be expressed. In the second part, there will be 

information about GridCAM, which is a simulation tool written by us in C++  that  

simulates both currently used algorithm and our approaches. The main components of 

GridCAM will be explained shortly. Most importantly, in this section, we will show how 

GridCAM simulates the architecture and how its model works. 

 

In Chapter 4, our proposed approaches will be presented.  First of all, related and 

important parts of Workload Management Service will be recalled. Secondly, necessary 

brief explanation of our study will be made. Finally, important part of our approaches will 

be expressed and two improved algorithms will be given. 

 

In Chapter 5, there will be experimental test results from real life scenarios by using 

GridCAM. In the first part of this section, simulation parameter and inputs will be given 

and explained. Basically, distributions used and their parameters will be expressed. In the 

second part, test results of current approach will be shown. In the third part, test results of 



 

 

6

our approaches will be presented. By comparing the test results of the current algorithm and 

ours, efficiency of our approach will be shown.  

 

In Chapter 6, the research will be concluded by presenting a summary of work done 

and its contributions. Then, planned future work and improvements that can be done will be 

discussed. 



 

 

7

2. Previous Work 

 

 
In this chapter, previous work related to matching and scheduling will be examined. In 

the first part of this chapter, Condor Project and ClassAds (Classified Advertisements) will 

be explained. Secondly, JDL (Job Description Language) will be introduced. Then, 

different matching methods and scheduling algorithms will be examined. Finally, these 

architectures will be compared with our approaches. 

 

2.1 Introduction to Matchmaking 

 

2.1.1.  Condor Project 

 
Condor project employs 30 faculties, full time staff, graduate and undergraduate 

students working at the University of Wisconsin-Madison. The group has vast experience 

in distributed computing concepts and practices, systems programming and design, and 

software engineering [9]. Their group’s focus areas and the tools are as follows [10]: 

 

• Harnessing the power of opportunistic and dedicated resources (Condor), 

• Job management services for grid applications (Condor-G, DaPSched), 

• Fabric management services for grid resources (Condor, Glide-In, NeST), 

• Resource discovery, monitoring, and management (ClassAds, Hawkeye), 

• Problem-solving environments. (MW, DAGMan), 

• Distributed I/O technology (Bypass, PFS, Kangaroo, NeST). 

 

Condor is participating national and international grid research, development, and 

deployment efforts and especially development and deployment are very important for its 

success. The projects in which Condor team is very active, are as follows; The Grid 

Physics Network (GriPhyN)[11], the International Virtual Data Grid Laboratory 

(iVDGL)[12], the Particle Physics Data Grid (PPDG) [13], the NSF Middleware Initiative 

(NMI) [14], the TeraGrid [15], the NASA Information Power Grid (IPG) [16], National 

Computational Science Alliance (NCSA) [17] and Globus Project[18,19] 



 

 

8

Despite being a research project, Condor has a significant software production 

component. Industry, government, and academia use the software routinely in critical 

settings. So, a part of the project works like a software company. Only the code base of the 

project contains nearly half-million lines, and significant pieces are tightly coupled to the 

underlying operating system. There are two versions of the software: a stable version and a 

development version, and these are developed simultaneously in multiplatform (UNIX and 

Windows) environment. New functionalities are not permitted before they mature and 

prove themselves within development series. The aim is  to operate each stable version 

release of Condor in the field before making it available to the public. In order to reach this 

goal, every release in different development phases runs in different types of 

configurations.  

 

The Condor project also focuses on the problems of production users.  System support 

for standards in programming environments such as PVM [20], MPI [21], and Java [22] 

were added for this purpose.  Condor project made necessary adaptation for the new 

protocols like Grid Resource Access and Management (GRAM) [23], and Grid Security 

Infrastructure (GSI) [24].  

 

2.1.2.  Condor and Condor-G 

 

The term “Condor” is usually perceived as a software [9, 39]. The Condor High 

Throughput Computing (HTC) refers to not only the software development activities but 

also research group. Condor is a system for HTC whose responsibility is job and resource 

management system (RMS) [25] for compute-intensive jobs. Condor provides job 

management mechanism, scheduling policy, priority scheme, resource monitoring, and 

resource management [26, 27, 28]. When jobs are submitted to Condor, Condor decides 

when and where to run the jobs by looking at a policy. In addition, it may monitor their 

progress, and inform the user about their completion. 

In addition to batch queuing systems that also provide similar functionality, Condor 

also performs well in environments in which a traditional RMS is weak in areas such as 

sustained HTC and opportunistic computing. We can explain the goal of a HTC as a 

platform providing large amounts of fault-tolerant computational power over long periods 

of time by effectively utilizing all resources available to the network. Moreover, 



 

 

9

opportunistic computing tries to use resources whenever they are available, although they 

are not entirely available. The goals of HTC and opportunistic computing are naturally 

coupled.  

 

One enabling mechanism of Condor is ClassAds mechanism that provides an 

extremely flexible and expressive framework for matchmaking between jobs and 

machines. ClassAds tell Condor desired conditions, policies, and then Condor creates a 

plan involving grid resources. Other enabling mechanisms are job checkpoint and 

migration [29] and remote system calls. 

 

With all enabling mechanisms, Condor manages not only dedicated compute clusters 

effectively but also manages wasted CPU power. For example, Condor can be configured 

to run jobs only when the keyboard and CPU are idle. If a user hits a key while a job is 

running, this job can be migrated to a different workstation by Condor [29]. The job 

resumes by starting from last checkpoint. 

 

Moreover, Condor supports preemptive-resume scheduling of dedicated compute 

cluster resources. This also makes it possible for Condor to support priority-based 

scheduling on clusters.  

 

Production system in UW-Madison Department of Computer Sciences had the first 

version of Condor in 1987 and nowadays it is used by hundreds of organizations and 

academia successfully getting together thousands of workstations for each of them. 

 

 Condor has a number of universes such as the Standard, which is used for check 

pointing and redirecting file I/O, the Vanilla, which is used to run jobs simply, the Java, 

which is used to run java codes and finally the Globus universe which is used to run jobs 

via Globus. 

 

On the other hand, Condor-G [30] can be considered as a union of Globus[18, 19] and 

the Condor projects, and it is a computation management tool for grids. Globus, which is 

part of this union, is a set of protocols for secure communications and standard access to 



 

 

10

different remote batch systems. Condor part of this union is responsible for job submission, 

allocation, and error recovery. Figure 2.1 shows this union.   
 

 
 

Figure 2.1.  Condor and Globus Union [9] 

 

For the job submission and management, Condor-G can be used and the Condor HTC 

system can be used as the grid generator service. In addition, Globus Toolkit services can 

be used for coupling HTC and Condor-G. Condor-G is better because Condor is designed 

to run jobs within a single domain, where as Globus Toolkit runs jobs across many 

domains. Condor-G gets these two abilities together. One good example of Condor-G 

usage is the European Union DataGrid [31] project’s Grid Resource Broker. 

 

2.1.3. Fundamental Structure of the System 

 

The core components in the structure called the kernel, and these components are 

shown in Figure 2.2 which also describes how core components works.  

 



 

 

11

User submits jobs to an agent and this agent called Workload Management System 

(WMS). WMS keeps jobs while finding appropriate resources to run them. Meanwhile, 

agents and resources advertise them in order to inform matchmaker, which is the 

component of WMS that actually performs matchmaking between jobs and machines.  

 

 
Figure 2.2. The Condor Kernel [9] 

 

 

Each side creates a new process to execute a job. For agent side, shadow is responsible 

for executing a job. On the other hand, for resource side, a sandbox is responsible for job 

execution and protecting resource from any damage. 

 

Working principle of Condor is shown in Figure 2.3. In the figure, “R” indicates 

Resource, “A” indicates agent, and “M” indicates matchmaker. Basically, the steps are as 

follows:  

 

• The agent and the resource advertise themselves. 

• The matchmaker informs the agent and resource about matching.  



 

 

12

• Finally, agent contacts the resource to run the job. 

 

Agents and resources separately create information about themselves and send it to a 

known matchmaker. This phase is called advertising. Then, this information will be 

available for the community. Furthermore, an agent and a resource daemon can be run over 

same machine. Thus, this machine will have the ability to not only submit jobs but also to 

execute them. 

 

 
Figure 2.3.  a Condor pool. [9] 

 

In addition, agents and resources are logically different, so a single machine may run 

either or both.  More then one instance of an agent may run over a single machine. For 

example, different users in a machine may run different agents. This is possible because no 

fixed socket or superuser privileges are necessary.  

 

Agents, resources, and matchmakers are independent and they have their own policies. 

The agent asks user for policies that include what resources are appropriate and trusted for 

the job. The resource asks the machine for policies that includes which users are 

appropriate and trusted for job. Furthermore, matchmaker works as admission controller 

and it can admit or reject sides based on their definitions and limits. Resources, agents, and 

matchmakers are autonomous, but the community is a single entity. 

 

Condor has six daemons to realize its operations and these daemons [32] are master, 

schedd, shadow, startd, starter, negotiator, and collector.  

 



 

 

13

Master daemon runs over every machine in pool all the time. It creates all other 

daemons, and monitors each ones conditions. In such situation, if they need, master restarts 

them.  

 

If a machine submits a job, it has to run Schedd and Shadow daemons. When a job is 

submitted, the Shadow monitors it and controls file I/O and remote calls. Schedd 

represents requests to the pool, and stores the job queue.  

 

Startd runs over the machines which are capable of running jobs. It advertises the 

machines attributes to the resource that runs Master daemon, in order to be matched. Startd 

daemon creates the Starter daemon and the Starter creates the execution environment, then 

runs the job. 

 

Starter daemon communicates with the shadow daemon in order to control the I/O for 

the job. Each job has its own Starter and shadow daemons and these daemons exist only 

for the lifetime of the job. 

 

Collector daemon collects information about the Condor pool. All other daemons on all 

pool machines periodically send their ClassAds to this daemon. Collector basically knows 

whether the machine is idle, busy, matched or vacating. In other words, it works as 

Information Server (IS). 

 

Finally, Negotiator is the backbone of the Condor system and it is responsible for     

matchmaking. It asks the Collector periodically for the current status of all resources in the 

pool. Then, the Negotiator contacts both job and resource Cchedd daemon for waiting job 

requests, and matches these requests with free resources that are appropriate for them. 

 

As Condor software gets more and more developed, its usage is growing up rapidly all 

around the world. In the original design, in one community, it is easy to share resource 

because a participant was working with a single matchmaker to consume or provide 

resources. Moreover, a user could only participate in one community which is defined by a 

matchmaker. In other words, users express their needs which are limited by organizational 

boundaries and these organizations called Virtual Organization (VO). 



 

 

14

2.1.4.  ClassAds and JDL 

 

Classified Ads, also called Condor ClassAds [33], is a language for Condor system that 

is used not only describing job requirements but also creating ClassAds for describing 

resources. In addition, ClasssAds are extensible and widely used.  It has attribute name and 

value pairs. There are three possible values which are true, false and undefined for 

attributes. Requirements are constraints, and they must be evaluated to true for a match. 

Furthermore, Rank indicates the desirability of a match. Figure 2.4 shows example 

ClassAds for a machine and a jobs. 

 

In short, a ClassAd maps attributes to expressions and these expressions can be 

constants (strings, numbers, etc.), expressions (eg. other.Memory > 200M), lists (eg. { 

“grida”, “gridb”, “gridc” } ) and other ClassAds. It is semi-structured powerful tool for and 

matchmaking. In addition, JDLs which are created by users are converted to ClassAds in 

WMS and used for matching with machine ClassAds. Finally, ClassAd library is 

distributed via GNU Public License (GPL) and complete source code included library code 

[33]. 

 

On the other hand, in grid environment, users make their request by using JDL [34] 

which is close to natural language and fully extensible language. In this way, users are 

allowed to use attribute for the description of their jobs. Moreover, only a certain set of 

attributes are important for us in order to schedule and submit jobs.  

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Sample ClassAds for both Job and Machine 

Job ClassAd                                                              Machine ClassAd 
[       [ 
MyType = ‘‘Job’’     MyType=“Machine” 
TargetType = ‘‘Machine’’    TargetType=“Job” 
Requirements =     Machine=“tnt.isi.edu” 
((other.Arch==‘‘INTEL’’&&    Requirements= 
other.OpSys==‘‘LINUX’’)    (Load<3000) 
&& other.Disk > my.DiskUsage)   Rank=dept==self.dept 
Rank = (Memory ∗ 10000) + KFlops  Arch=“Intel”  
Cmd = ‘‘simulation.exe’’     OpSys=“Linux” 
Department = ‘‘CompSci’’    Disk=600000 
Owner = ‘‘CMPE’’     ] 
] 



 

 

15

Since grid users create their job requirements by using JDL, GridCAM also uses and 

processes JDLs for matchmaking. Fundamental attributes [34] of JDL are as follows; 

 

• JobType  

This attribute defines the type of the job and its possible values are Normal 

(simple, sequential job), Interactive, MPICH, Checkpointable  

• Executable 

This attribute is mandatory and it gives the name of the command. 

• Arguments  

This attribute is optional and it is used to give arguments to executable 

• StdInput 

This attribute is optional and it indicates the inputs of a job. In other words, it 

points what the necessary input files for this job execution are. 

• StdOutput 

This attribute is optional and it indicates the outputs of a job. It tells which files 

will be created at end of the job execution. 

• StdError  

This attribute is optional and it indicates the errors of a job. At end of job 

execution, this file will tell what was wrong with execution. 

• Environment  

This attribute is optional and it keeps the list of environment settings. 

• InputSandbox  

This attribute is optional and it keeps the list of files names located at User 

Interface machine (UI). These files needed by the job for execution and will be 

automatically copied to the remote resource. 

• OutputSandbox  

This attribute is optional and it keeps the list of files names will be created by 

the job and will be retrieved to UI machine. The listed files will not be 

automatically copied from WN to the UI. User must run a script in order to do 

that. 

• VirtualOrganisation  

This attribute is optional and it is different way to specify the VO of the user. 

 



 

 

16

 Basically, in a JDL file, user must specify the name of the executable, the files where 

to write the standard output and standard error of the job and the arguments to the 

executable if exists. If it is necessary, name of the files, which will be transferred from UI 

to WN and vice versa, must be also given in JDL. Figure 2.5 shows a simple JDL. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. Simple JDL 

 

2.2. Related Work Done 

 

Grids [35] are distributed and heterogeneous systems, that unite computational, and 

information resources connected over high speed networks. The main goal is to create a 

virtual system using these resources and this system will be available to users. At the 

center of the grid, there is ability to discover, allocate, and negotiate the use of resources.  

 

Nowadays, many projects make use of grids, but there are still some grid services that 

are not mature enough such as the scheduling service. Therefore, we concentrate on grid 

scheduling problem [36]. In other words, we are looking for the best way of assigning jobs 

to resources that have dynamic characteristics.  

 

The goal of our approaches is to increase throughput besides just finding resources that 

satisfy users’ jobs requirements. This is called matching [37] and matched pairs are 

consists of jobs and resources. For our approaches, resources are Computing Elements 

(CE). Resources and jobs advertise their characteristics and requirements in their 

ClassAds.  

[  

Executable = “ls”; 

Arguments = “-al”; 

StdError = “stderr.log”; 

StdOutput = “stdout.log”; 

OutputSandbox = {“stderr.log”, “stdout.log”}; 

] 



 

 

17

In order to provide detailed information about a matching process, or to support a 

matching between multiple jobs and resources [38], ClassAds are used. Therefore, this 

approach also can be considered as constrained-based scheduling. One problem is that we 

need information about the current states of distributed resources[39] for the matchmaking 

problem. In other words, we need to know about resources’ states such as load of the 

system and the list of running jobs. ClassAds are well enough in order to get rid of grid 

monitoring problem. In other words, users do not need to check resources’ states manually. 

Instead of querying states themselves, the users just define what they need for running their 

jobs in their ClassAds. Globus [19, 23] and the Open Grid Services Architecture [40] are 

working for us in order to do monitoring, dynamic discovery. 

 

Rajesh Raman [41] mentions that traditional resource management systems use 

centralized scheduler for resource allocation which is not appropriate to use in distributed 

systems such as the HTC. Here the problem is heterogeneity of resources, which makes it 

difficult to make resource allocation, and to handle different allocation policies. Because of 

these problems, they developed and implemented flexible approach called “the classified 

advertisement (ClassAd) matchmaking framework”. The main goal of resource 

management systems is to make sure that the assignments of resources to jobs are done 

efficiently. This  problem is called resource allocation or scheduling problem.  

 

The allocator receives information about states of resources at a time and uses this 

information to allocate resources to jobs in order to optimize performance metric. This is 

useful for high performance applications with tight constraints. Efficient scheduling of 

resources is critical in meeting these constraints. Moreover, the main concern of today’s 

users is the throughput. In a distributed environment, in order to increase throughput, the 

resource owners may define their usage policies, and these policies may be quite complex. 

The following exemplifies some policies: 

 

• job can be run if the it is related to aspecific subject 

• job can be  run between 1 p.m. and 10 a.m.  

• job can be run if the load is less than 0.1  

• job can be run  if the keyboard is idle over ten minutes. 

 



 

 

18

Creating a single unit system model is impossible because of distributed ownership. 

Therefore, a resource management system which does not need such a model and also it 

may work at an environment such that resource and job owners can create their own 

models dynamically. Solution is the matchmaking resource management paradigm which 

uses semi-structured data model also called ClassAd data model.  

 

R. Raman [41] found that the matchmaking works fine in an environment that includes 

heterogeneous resources like workstations, tape drives, and network links. States of these 

resources may change without notice. In this situation, opportunistic scheduling which can 

be defined as using resources as soon as they are available and task migration when 

resources need to be preempted. If the main concern is high throughput rather than high 

performance opportunistic scheduling is a good solution. 

 

According to Raman [41], idea behind matchmaking is as follows; entities (jobs, 

resources) advertise their characteristics and requirements in their ClassAds [33]. 

Matchmaking service, also called matchmaker, matches ClassAds in a manner that makes 

sure that both sides’ requirements are satisfied and then informs the sides about matching. 

The matchmaker stops working at this point, and the matched jobs and resources establish 

connection to perform desired task.Raman believes that this framework is made up of five 

components and these components are as follows:  

 

1. ClassAd specification.  

2. The advertising protocol which defines rules related to matchmaker such as 

ClassAd content the way matchmaker receives ClassAd from the advertiser.  

3. The matchmaking algorithm, which matches the contents of the ClassAds.  

4. The matchmaking protocol, which is interested in information given “when did 

entities match?” and “how matched tasks and resources are notified?”. 

5. The claiming protocol, which contains set of actions for completing desired tasks 

after matching is done. 

 

Raman also mentions the difference between their approach and the conventional 

resource allocation models. First of all, the conventional way supports only task related 

constraints but Raman’s mechanism also allows service related constraints that affect tasks. 



 

 

19

In addition, the matchmaker just creates a match between entities such as job j and 

resource r. After matching, these two entities run claiming protocols. Raman tells that 

advantage of this approach is that there are no states of the matchmaker and this makes it 

easier to recovery of failures. 

 

Resources and jobs create their ClassAds which describes themselves and send them to 

the matchmaker which is shown as Step 1 in Figure 2.6. These ClassAds must be 

appropriate for the advertising protocol that defines how the entities send their ClassAds to 

the matchmaker. Then, matchmaking algorithm runs and to do that the matchmaker 

evaluates expressions in each ClassAd to access attributes of the other. This phase is 

shown as Step 2 in Figure 2.6. Furthermore, in a ClassAd, there can be references to 

ClassAd itself and other ClassAds. 

 

 
 

Figure 2.6.  Matchmaking Process [41] 

 

The ClassAds that submitted to matchmaking algorithm are incompatible unless their 

constraint expressions are evaluated to true. If there is a reference to a non-existent 

attribute, this is evaluated as undefined or false. If an attribute does not exists both in job 

and resource ClassAds, then the expression will be evaluated to undefined. At the end, 

matching process, matchmaker may give more than one result then decision is made by 



 

 

20

looking at the rank attributes. The matchmaker selects the one with the highest rank value. 

In addition, if there are entities with same rank, random selection is done. 

 

After matchmaking algorithm executed, the matchmaker uses matchmaking protocol to 

inform both sides about matching and sends matching ads to them. This phase is shown as 

Step 3 in Figure 2.6. The matchmaking protocol could also include the generation and 

hand-off of a session key for authentication and security purposes. Finally, Step 4 in Figure 

2.6, both sides establishes communication using claiming protocol. Here the important 

point is that successful matchmaking does not mean job will get the matched resource. 

Result is clear when Step 4 is done. In addition, different approaches for matching and 

claiming has advantages such as weak consistency requirements, authentication, bilateral 

specialization and end-to-end verification [42]. 

 

In grid, matchmaking algorithm works over Resource Broker (RB), so RB finds the set 

of the suitable CEs for jobs. Then it finds the appropriate resource for a job by looking at 

rank attributes[43]. In the ranking phase the RB contacts directly the Lightweight 

Directory Access Protocol (LDAP) server and determines rank expression of the received 

JDL. Figure 2.7 shows this process. 

 



 

 

21

 
 

Figure 2.7.  Matchmaking and Ranking 

 

 

E. Imamagic [44] states that Condor-G Matchmaking mechanism is a good solution for 

grid scheduling, and he proposes a new approach by using this mechanism. Grid 

middlewares (GMW) [44], which realize integration of the resources, are the union of 

services and protocols. In addition, one of the features of GMW is grid scheduling also 

called super scheduling, metascheduling or grid brokering.  

 

Imamagic[44] adds that grid scheduling has important issues because of grid 

environment and he focuses on the most important issues among them. First of all, a grid 

scheduler should support various job types such as serial (single processor) and parallel 

(more than one processor) jobs. In addition, a job management should support 



 

 

22

checkpointing, preemption, job migration, rescheduling jobs, fault tolerance, and advance 

reservation of resources, which is reservation of  resources for a specific period of time. 

Job and resource priorities may be assigned by scheduler and not only resource should 

have preferences but also jobs should be able to request specific features like hardware 

capabilities and rank the resources. In addition, users should be able to design custom 

scheduling algorithms. In other words, conventional algorithms must be supported besides 

supporting custom algorithm development. Advance reservations should be also supported. 

Moreover, scheduler should consider data location and replication for data dependent jobs. 

This approach called data-aware scheduling. Finally, it is clear that system scalability is 

important because of grid environment. Therefore, scheduler should also take into account 

load balancing. Most of these features are getting together in Condor-G Matchmaking [44, 

45] and Imamagic uses Condor-G for its approach.  

 

Central side of Imamagic’s system consists of three components which include Grid 

Information Service (GIS) Adapter, Publisher and Condor-G Matchmakers. Figure 2.8 

demonstrate this architecture. 

 



 

 

23

 
Figure 2.8. Condor-G Matchmaking [45] 

 

Publisher component provides information to Condor-G matchmakers. GIS adapters let 

publisher to collect information from particular type of GIS. In addition, the most 

important contribution of Imamagic is the modifications over Condor-G Matchmaking. By 

this modification, it is possible to use multiple Condor-G Matchmakers, so greater 

scalability is achieved. Moreover, by focusing on GIS, there is no need for resource 

adapters, sensor management and information management. In other words, by this 

approach, there is no need to collect information from each resource type. 

 

Heinz Stockinger [46] focuses on grid enabled physics analysis and for this reason they 

focus on WMS which is used to find suitable CEs to execute data intensive physics related 



 

 

24

jobs. A dataset name indicates a certain physics event uniquely and this event includes 

several particles. The main idea behind their approach is that physicists will be able reach 

all the particles by using one dataset. Stockinger modifies WMS, particularly matchmaker, 

to allow physicists to express their job requirements in terms of datasets.  This makes it 

necessary to modify data catalogues also. As a result, they come up with a simple “Data 

Location Interface” that make it possible for WMS, new dataset and file catalogues to 

work together.  

 

They have made several changes and enhancements to the conventional WMS which 

will be described in Chapter 3, in order to use datasets in the physics analysis process. 

Basically, the WMS needs to allow for datasets in the JDL as attributes. In addition, the 

Matchmaker needs to interact with a dataset catalogue. They define a term called Logical 

Dataset (LDS) which points to an entity of data. It works like Logical File Names (LFNs) 

and Global Unique Identifiers (GUIDs) where both methods are used to show location of a 

file. The difference of LDS is that it can be considered as a file collection instead of a 

single file. Here the assumption of them is that physical files in a dataset are stored at the 

same SE and can be reached via the same protocol. Finally, by creating their own UI they 

make it possible to matchmaker work with LDS. Heinz Stockinger [46] approach can be 

classified as data-aware scheduling. 

 

According to Nicholas Coleman [47], resource management for distributed systems is 

difficult and centralized allocators do not satisfy the grid environment. Matchmaking using 

ClassAds works fine in such situation, but due to the distributed polices and dynamics 

environments it is difficult to understand why some ClassAds are matched while others are 

not. [47] describes problematic sides of policies and offer some modifications in this 

manner. However, there is more interesting study in this paper which is about detecting 

conflict in ClassAds. It is possible to create a ClassAd that contains predicates which 

conflict with each other. These predicates may be satisfied side on their own, but are not 

satisfied on the other side. When one of them evaluates to false, there will be no matching. 

For example a ClassAd, which have two separate statements like other.Arch= “Intel” and 

other.Arch= “AMD”, will not be matched.  

 



 

 

25

Detecting these conflicts requires the evaluation of the individual expressions in the 

context of ClassAds. First, Coleman separates the predicates in a clause by attribute 

reference. Then for each attribute he converts predicates to points or intervals depending 

on the type of the values. If the intersection of these intervals is empty then there is a 

conflict. For this purpose, Minimal Failing Subexpression (MFS), and Maximal 

Succeeding Subexpression (MSS) sets are created [48]. Here the problem shown by 

Godfrey [48] is that finding all MFSs is NP-Hard, but Godfrey proposes a linear time 

algorithm to find one MFS and a polynomial time algorithm to find fixed number k MFSs. 

 

Hongsuda T. [49] starts by defining the resource matching problem for the grid in a 

manner assigning resources to tasks in order to satisfy both sides. This is done by using 

requirements and policies which are expressed in as models. Thus, resource selector 

performs matching between task and resources. In [49], they propose a flexible and 

extensible approach for solving resource matching problem in the grid via semantic web 

technologies. Furthermore, they use an ontology-based resource selector that uses 

ontologies, and rules for matching. 

 

Hongsuda mentions that [49] existing resource management systems for the grid are 

highly unnatural. Traditional resource matching like Condor Matchmaker [41] or Portable 

Batch System [50] does attribute based matching. Systems like these which perform 

matching between tasks and resources are not flexible and are difficult to improve. This is 

because it is difficult to ensure the syntax, semantics of resource and task descriptions. 

Hongsuda [49] proposes a flexible and extensible approach for matchmaking in grid. This 

approach is ontology based matchmaker which describes resource request properties based 

on symmetric flat attributes. Here the problem is the number of attributes grows too much, 

and hence handling will be difficult. Separate ontologies are created in order to describe 

resources and job requests using an expressive ontology language. In this approach, instead 

of exact syntax matching, their ontology based matchmaker performs semantic matching 

using predefined terms in ontologies. In addition, this approach can be easily improved by 

adding new terms, and rules to ontologies. Finally, Hongsuda created a matchmaker using 

existing semantic web technologies to use ontologies and rules for resource matching.  

 



 

 

26

Rajesh Raman [51] starts by examining matchmaking which is a well formed and 

powerful resource management solution for grids.  Although it has its advantages, 

matchmaking does not support multiparty policies like co-allocation. In [51], Raman 

proposes gangmatching which is a multilateral matchmaking. 

 

The gangmatching modifies ordinary ClassAd's single implicit bilateral match rule 

with an explicit list of required bilateral matches. The ClassAd representing the gang-

match request for the Job-Workstation-License example is illustrated in Figure 2.9  

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9. Gangmatching Example [51] 

 

The ports attribute, which presents the required matches for job, indicates a list to 

satisfy the job. As it mentioned gangmatching is multilateral matching and this is realized 

with bilateral matching between ports of ClassAds.  

 

In short, the idea is to find a compatible match amongst a gang of ClassAds where each 

of them contains a list of ports specifying requirements for matching ClassAds.  For this 

purpose a recursive backtracking search is done by starting at a root ClassAd. Algorithm 

proceeds sequentially to satisfy ClassAd ports by finding compatible ClassAds.  If a 

[  Type = “Job”  

Owner = “CMPE” 

Cmd= “simulation” 

Ports = { 

   [   Label = “cpu” 

        ImageSize = 30M 

        Rank = cpu.Kflops+cpu.Memory 

        Constraint = “cpu.Type = = “Machine” && cpu.Arch = = “Intel” &&  

         cpu.OpSys == “Linux”   ] 

  [     Label = “license” 
        Host = cpu.Name 

        Constraint = “license.Type = = “License” && license.App = = Cmd    ] 

           } 

] 



 

 

27

matching ClassAd has unbound ports, it is considered as a root and recursively satisfies its 

ports. If no match is found, algorithm goes back to previous port. If all ports of the root are 

fulfilled, it returns with a valid solution. Furthermore, if the algorithm tries to get back 

from first port, it returns with no solution. Finally, when optimization is the issue; using 

indexing scheme to exclude incompatible ClassAds or heuristic to satisfies ports in 

ascending order of candidate set size can be used. 

 

As described before, the Matchmaking framework [41] creates a link between a job and 

appropriate resource. Raman et al. [37] and Liu et al. [38] extend matchmaking in order to 

map a task to multiple resources and to support resource co-allocation, respectively, and 

they propose a number of heuristic algorithms to solve the mapping problem.  

 

Raman et al [37] gives information about matchmaking and then continues with its 

bilateral matching disadvantages. In other words, it allows matching between a job and a 

single resource which means that it does not allow co-allocation. In this paper, they 

propose multilateral extended matchmaking model, also called gangmatching. 

 

According to [37] matchmaking’s most important disability is that it supports matching 

between single resource and job. Sometimes, it is necessary to use collection of resources 

in order to run a job.  Another problem is that a Condor user has licenses for different 

software packages and jobs. In addition, some licenses may be valid only on some 

workstations, while others may be valid on certain networks. Because of this, it is logical 

to treat software licenses as resources. Gangmatching handles these at once. The 

matchmaking is not able to handle dependencies between jobs, resources and licenses. 

However, an approach with two steps can be used. The idea is that first, a match between a 

job and a resource is made. Then, this job and resource match is advertised to find an 

appropriate license.  In the worst case scenario, a deadlock could rise if first and second 

matchmaker waits for the same resource. 

 

Liu et al. [38] also proposes matchmaking framework like Gang-Matching. They 

propose a resource selection framework that solves matchmaking related problem 

described in [37] for grid environment. For this framework set matching is used, and this 



 

 

28

framework extends the Condor matchmaking framework in order to not only support single 

job single resource model but also multiple resources for a job.  

 

Liu also defines set extended ClassAds language [38] that allows users to request 

different resource properties like total memory, and minimum bandwidth. Set matching 

matchmaking algorithm, which supports set extended ClassAds language, is proposed also. 

This framework supports one job and many resource matching. Set extended ClassAd is 

identical to conventional ClassAd except that it can include both set expressions, and 

individual expressions. In this framework, not only application and resource requirements 

are defined but application performance models can be defined. According to these criteria, 

resource selector finds suitable set of resources.  

 

According to set extended ClassAds [38], a successful match can be defined as relation 

between a single set request and a resource set. Set extended ClassAds are used to express 

set requests and individual expressions such as memory size, which have to be applied 

each resource in the set individually. The set-matching algorithm attempts to construct a 

resource set that satisfies both individual and set constraints. A set of resources is returned 

when the set extended matchmaking is successful. In addition, set extended ClassAd 

language extends conventional ClassAds are as follows; First, in ClassAds, a new type is 

created which is “Set” (e.g. Type= “Set”) this is used to tell matchmaker, this ClassAd is 

set extended ClassAds. Secondly, three aggregation functions, which are Max, Min, and 

Sum, can be used in set extended ClassAds. Their usage is like 

aggregation_function(expression). For aggregation function max, it returns the highest 

value when the expression is applied to set of ClassAds. Min works like Max, but it returns 

lowest value. Finally, Sum returns the sum of the values returned by expression. Third 

extension is a boolean function Postfix(V, L) and it is defined such that returns true when 

one of the member of list L is the postfix of value V. For example, 

Postfix(“yildirim.cmpe.grid.boun.edu.tr”, {“boun.edu.tr”, “grid.boun.edu.tr”}) will return 

true. Finally, function SetSize that refers number of elements within the current resource 

set. 

 

Set Matchmaking works with set-extended ClassAds. It performs matching between 

request and set of resource ClassAds then returns the resource set with highest rank. This 



 

 

29

process is done in two steps. In the first step, which is called the filtering phase, some 

individual resources are filtered by looking at individual expressions in the request. For 

example, consider the individual expression like "other.arch == intel && 

other.memory>=10M". For this sample expression, resources with non-intel architecture 

and memory with less than 10 MB will be removed from consideration list. For filtering 

purpose, Set Matching algorithm uses index to obtain high performance. In the second 

step, also called set construction phase, Set Matching algorithm try to locate a resource set 

that best fits job requests. Here the problem is, result set may be too large, and it’s not 

feasible to evaluate all possible combinations. Instead of doing that, paper proposes to use 

a greedy heuristic algorithm after first step to create a resource set. Figure 2.10 gives this 

algorithm. 

 

Basically, a candidate pool is created and the resource with the highest rank is selected. 

Then, this resource is added to candidate pool. Algorithm repeats this. If the candidate set 

has higher rank than the best set created, then the candidate set become the new best set. 

This is repeated until resource pool is empty. Finally, the best resource set is returned as 

result. Algorithm returns a failure if no resource is found.  

 

Liu et al. [38] mentions that the used greedy algorithms for Set Matching does not 

guaranty finding the best solution if it exists. The set-matching problem is NP-hard under 

some circumstances. In other words, it is difficult to find a general algorithm to solve this 

problem efficiently, especially for large resource set. However, in this paper proposed 

framework has an efficient heuristic algorithm with time complexity O(N2) . 

 

 

 

 

 

 

 

 

 

 



 

 

30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10. Greedy heuristic algorithm [38] 

 

 

C. Liu [52] proposes a new approach to symmetric matching that brings important 

advantages when compared to conventional ClassAds. Important point in their research is 

that they consider matching as a constraint satisfaction problem (CSP) and they try to solve 

by using constraint-solving technologies.  

 

Liu describes a new matching system with new features which can not be realized by 

conventional ClassAds. First feature is that they describe resources with different levels of 

generality in order to make their system more flexible. Normally, ClassAds perform only 

exact matches via examining attributes. However, in this approach descriptions with 

varying levels of generality and complexity can be defined. Secondly, in this approach 

matching advertisements are based on not only properties but policies. Policies are 

important resource selection criterion and in this approach policy queries can be used in 

CandidateSet = NULL; 

BestSet=NULL; 

LastRank = -1; Rank = 0; 

while (ResourceSet != NULL) 

{ 

Next = {X : X in ResourceSet && for all Y in ResourceSet, 

rank(X+CandidateSet) > rank(Y+CandidateSet); } 

ResourceSet = ResourceSet - Next; 

CandidateSet = CandidateSet + Next; 

Rank = rank(CandidateSet); 

If (requirements(CandidateSet)==true && Rank > LastRank) 

BestSet=CandidateSet; 

LastRank=Rank; 

} 

if BestSet ==NULL return failure 

else return BestSet 



 

 

31

expressions. For example, a user may ask: “Find all machines that allow access between 

7:00 PM and 9:00 PM.”. Finally, this approach supports one to many matching, also called 

multilateral matchmaking, like Gang-Matching [37, 38]. They have created a prototype 

system for experiments and it is called RedLine. 

 

Alain Roy [53] focuses on preemptive resume scheduling. Condor is a batch job system 

that works with not only dedicated computers but also non-dedicated computers like 

desktop computers. Roy does not see these non-dedicated computers as a problem. They 

call them as “opportunistic resources”. Usage of these non-dedicated computers creates 

extra computing power, but this approach brings an additional responsibility to Condor 

which is called preemption. In other words, Condor will checkpoint and preempt jobs if the 

resource that the job runs is unavailable and move this job to available computer. Here the 

important point is that job can be resumed on the available computer without loss of work 

because checkpointing saves the state of running job. This can be done easily by Condor 

libraries. Jobs that require checkpointing should re-linked with libraries provided by 

Condor. Running a job in a Condor pool is a cooperative process between a job, a machine, 

and the matchmaker as described in [41]. Therefore, when preemption is considered, each 

of these parties is allowed to preempt a running job in order to satisfy their requirements. 

Another issue is when checkpointing will be done. Condor can checkpoint jobs when they 

are preempted from a machine, or user can request checkpoints manually, or , Condor can 

do checkpoint jobs periodically to avoid future failures.  

 

Sinaga [54] also focuses on co-allocation like [37, 38, 52] does. In Sinaga, it is 

mentioned that existing co-allocation mechanisms DUROC component of the Globus 

Toolkit, does not provide resource-brokering or fault tolerance functionalities. In [54], 

these two features are coupled in the form of a software layer on the top of DUROC and 

propose as a new system. 

 

The job management can be expressed as a set of operations that is used to control how 

capabilities provided by grid resources are made available to users. In other words, 

resource management does not focus on core client related functions of a resource, but 

rather it focuses on when a requested operation starts or how long it takes to complete.  



 

 

32

In addition, standard functionalities of job management systems are as follows: 

checkpointing, preemption, job migration, fault-tolerance and rescheduling. Existing 

management systems, which have these features, are as follows; Condor, Nimrod/G and 

Gridbus Broker [55, 56 57], AppLeS Parameter Sweep Template [58], GridWay [59], CSF 

[60], and Moab/Silver [61]. 

 

Effective scheduling over the distributed resources is mandatory in order to overcome 

overheads in the grid. In addition, a Directed Acyclic Graph (DAG) based scheduling 

algorithm can be very effective for improving the performance because it reduces 

redundant transmission of input and output data from execution of related client requests.  

 

In [62], the main idea is the study of the architecture specification of the Workload 

Management System. In particular they focus on how resource co-allocation and job 

partitioning are addressed.  It is stated that job partitioning requires mechanisms to address 

the problem of job dependencies. It is further stated that it is possible to define 

dependencies on a set of program executions, building a Directed Acyclic Graph (DAG), 

whose nodes are jobs, and whose arcs represent dependencies between them. They use 

DAGMan for the WMS, in order to manage a DAG schedule. Here, the main purpose of 

the DAGMan is to determine which nodes are free of dependencies, and monitor the 

execution of the corresponding jobs. The owner of documents believes that minimizing the 

dependencies between the different components requires that the simplification of the flow 

of control within the Workload Management System.  

 

Condor Project is used to develop, implement, deploy, and evaluate mechanisms and 

policies that support HTC [28] on large collections of distributive computing resources. It 

can be used by scientists and engineers in order to increase their computational throughput. 

DAGMan (Directed Acyclic Graph Manager) is a meta-scheduler for Condor which 

manages dependencies between jobs. DAG can be used to represent a set of jobs where the 

input, output, or execution of one or more jobs is dependent on other jobs. Here, the jobs 

will be denoted by nodes, and the edges will indicate dependencies of these nodes. 

DAGMan submits jobs to Condor. There is an input file which describes the DAG. Each 

node in the DAG needs its own Condor submit description file. As DAGMan submits jobs 



 

 

33

to Condor, it uses a single Condor log file to enforce the ordering required for the DAG. 

The DAG itself is defined by the contents of a DAGMan input file. In addition, DAGMan 

is responsible for scheduling, recovery, and reporting for the set of programs submitted to 

Condor.  

 

 [63] focuses on general the issues involved in mapping complex workflows onto the 

grid. An abstract workflow is the order of the execution of the jobs. Since the workflow is 

determined, next step is that to map this workflow onto the available grid resources, 

performing resource discovery and selection. Paper gives Condor-G/DAGMan [32] as an 

example.  

 

There are two main approaches: First one lets the planner make an exact plan of 

computation based on the current information about the system. The planner decides where 

the tasks need to execute, the exact location of input. This is called full-plan-ahead. In the 

second approach, on the other hand, planner allows executer make many decisions such as 

compute platforms to use.   

 

The benefit of the first approach is that planner can optimize the scheduling by using 

entire structure of the DAG. Since execution environment is very dynamic, when a task in 

the DAG is ready to execute, the environment might have changed so that necessary data 

may no longer be available at the location assumed by the planner (execution-time error). 

Quickly re-plan may be a solution to this problem. On the other hand, using second 

approach causes more trouble then the first one. It is obvious that user can find out about 

the state of the resources and the location of the data and make a locally optimal decision. 

However, it could make potentially expensive decisions, because the users do not have 

global information. Another approach is deferred scheduling, where the user and the 

planner work together to come up with a plan. The planner provides an abstract workflow 

for jobs and ask user for confirmation. In this way, user would reach the global information 

because plan will be created by using the most up-to-date information. Here the drawbacks 

are high communication overheads and a large amount of computation because of            

re-planning. 

 



 

 

34

[64] on the other hand focuses on efficient scheduling of requests in order to use grid 

resources that must adapt to dynamic environments. Jank-uk [64] describes a framework 

called SPHINX that can administer grid policies, and schedule complex and data intensive 

scientific applications.  They show that SPHINX can effectively schedule work across the 

large number of distributed clusters.  Main component of the system is SPHINX server. 

Their idea is as follows; First of all, the server determines which way is the best way to 

allocate resources in order to complete the jobs. Second, it maintains catalogs of data, 

executables and their replicas.  Then, it determines completions time of the requests that 

requires these resources.  Finally, the server monitors the status of its resources. SPHINX 

adapts finite automaton for scheduling status management.  The scheduler moves a DAG 

through predefined states to complete resource allocation to the jobs in the DAG.  The 

server has a control process, which completes the scheduling by managing several 

SPHINX inner service modules such as resource monitoring interface, DAG reducing and 

planning. The DAG reducer reads an incoming DAG, and eliminates previously completed 

jobs in the DAG. Then, it determines whether the output files of each job exists, and if they 

all exist, the job and all precedence of the job can be deleted.   

 

[65] is about the ATLAS experiment which is a large, multipurpose experiment 

designed to be sensitive to a broad range of phenomena that are expected to appear at the 

energies of the Large Hadron Collider at CERN. As part of the studies on this experiment, 

a prototypical resource broker for have been developed for testing some of the scheduling 

concepts by Atlas group. According to this, there is a database (MySQL) that keeps 

predictors of CPU execution time and data transfer time for jobs. The jobs in the grid 

environment, which use the GLOBUS toolkit, have production files that are called DAGs. 

DAGs manage the job input and output. The DAGs that are input to the job execution can 

be created via a package called “Chimera”. Database keeps the information about job 

execution parameters and by using these parameters and available resources, the scripts 

that run the resource broker are used to modify the DAGs to optimize the job execution. 

This idea is mentioned as “virtual data” in grid context by ATLAS group. 

 

 

 



 

 

35

2.3. Summary 

 

The main purpose of grid computing is to let users run their jobs upon a pool of shared 

resources. Since there is rarely a one to one correspondence between the jobs and 

resources, a scheduling model is necessary. This model will know about both jobs and 

resources and will make decisions with respect to requirements. Our research is based on 

this idea, and we are looking for the best way to allocate the resources in order to increase 

throughput of the system. For this purpose, many approaches investigated and we found 

out that matchmaking area needs further contribution. 

 

First of all, we addressed the adaptation of whole matchmaking structure that was 

explained in [41]. Like [44], our model will support various job types. Basic types are 

serial and parallel jobs. Serial job is a job that needs single processor for execution. On the 

other hand, parallel job requires more then one processors for execution. In addition, a job 

management should support checkpointing, preemption, job migration, rescheduling jobs, 

fault tolerance, advance reservation of resources, which is about the reservation of  

resources for a specific period of time. We are not interested in these features because our 

focus on this thesis is just matchmaking problem. 

 

In our model, job and resource priorities are assigned in order to prevent the starvation 

problem. According to researchers, custom scheduling algorithms should be supported but 

this can not be applied for us since we try to develop a new scheduling algorithms. In 

addition, (e.g. jobs that waited for long time) advance reservations mechanism may be 

used.  

 

Moreover, data-aware scheduling can be done at some level by using requirements in 

ClassAds. In this way, jobs that require large data will be assigned to resources closer to 

data in order to avoid heavy network traffic. However, our approach will not examine 

characteristics of network links like data-aware scheduling does. 

 

Another approach presented in [46] focuses on physics related jobs. They modify 

WMS, particularly matchmaker, to allow physicists to express their job requirements in 

terms of datasets.  They also created their own modified user interface. WMS is modified 



 

 

36

in order to use datasets in the physics analysis process. Basically, the WMS needs to allow 

for datasets in the JDL as attributes. In addition, the Matchmaker needs to interact with a 

dataset catalogue. However, this approach is only helpful if we need ClassAd or WMS 

modifications because performance is not main concern of this paper but we are.  

 

Information obtained from [47] is important because they try to detect conflict in 

ClassAds. This is helpful for our research because it is possible to create a ClassAd that 

contains predicates which conflict with each other. Paper proposes a solution for this 

problem. This model was not adopted, and it is given as future work. 

 

Hongsuda T. [49] proposes a flexible and extensible approach for solving resource 

matching problem in the grid via semantic web technologies. According to [49] existing 

resource management systems for the grid are highly unnatural. Traditional resource 

matching like Condor Matchmaker [41] does attribute based matching which is not flexible 

and is difficult to improve. They create ontologies and corresponding attributes. Here the 

problem is the number of attributes grows too much thus handling will be difficult. In this 

approach, instead of exact syntax matching, their ontology based matchmaker performs 

semantic matching using predefined terms in ontologies. This can be also considered as 

future work because it focuses on ClassAd modifications rather than matchmaking 

 

Rajesh Raman [51] proposes a model that supports co-allocation, and it’s called   

Gang-Matching. Difference between Matchmaking and Gang-Matching is that Gang-

Matching does multilateral matchmaking. Liu et al. [38] and Raman et al. [37] also extend 

Matchmaking in order to mapping a task to multiple resources and to support resource    

co-allocation. All these similar approaches and our approach will be based on conventional 

Matchmaking which is also used by TR-Grid.  

 

In the next related approach, Alain Roy [53] focuses on preemptive resume scheduling 

and examines how Condor does this. Preemptive resume scheduling is necessary especially 

for non-dedicated computers. There are no non-dedicated computers in TR-Grid, therefore 

this is not the main concern of our approach. 

 



 

 

37

Finally, in [62, 64] DAG and DAGMan problem solver is offered in order to improve 

scheduling performance. DAGMan can also be used in our approach when we re-order the 

job queue. It can submit jobs in new order into Condor queue if necessary. 

 



 

 

38

3.  SIMULATED MODEL and GridCAM 
 

 

3.1  Introduction 

 

In this chapter, simulated grid model will be explained. In the second part of this 

chapter, we will give the details of the system that we are modeling. Basically, WMS, its 

components and working principles will be expressed. In the next section, there will be 

brief information about GridCAM, which is a simulation tool developed by us in C++. 

GridCAM simulates both Condor’s matchmaking algorithm and our proposed algorithms. 

Finally, the main components of GridCAM will be explained briefly.  

 

3.2  Simulated Model 

 

The goal of grid systems and its applications is to integrate, virtualize and manage 

distributed resources and services across different VOs that are defined as individuals or 

institutions having direct access to resources. Many VOs need sharing of resources through 

services like accessing, allocating, monitoring, and accounting and these are realized by 

using grid middleware which can be defined as a layer between services and physical 

resources. On the TR-Grid platform that we are modeling, gLite [66, 67] middleware is 

used. 

 

Users may interact with CEs and may find an appropriate resource for job submission. 

On the other hand, Workload Management System (WMS) [68, 69] can do that for us. 

Basically, its goal is to submit a given job to an appropriate CE found by a matchmaking 

process which was described in detail in Chapter 2. Note that CE must not only advertise 

its availability but also  collect user accounting information.  

 

 In addition, there are two job submission (Task Queue) models according to user 

requests and site policies 

• PUSH (Eager Scheduling): In this model, job is pushed to CE without checking to 

see  whether CE is available.  



 

 

39

• PULL (Lazy Scheduling): In this model, job is submitted by WMS when CE is 

available 

 

PULL model is used in TR-Grid and therefore, we also use it in our GridCAM 

simulation tool. 

 

WMS [69] can be considered as set of middleware components which are responsible 

for distribution and management of jobs across grid resources. There are two main 

components of WMS. Figure 3.1 shows the components of WMS. 

 

• Workload Manager (WM): This is the component that accepts and satisfies requests 

for jobs. The matchmaking is done in this component.  

• Logging and Bookkeeping (L&B): This component keeps track of job execution in 

terms of events such as submitted, running, and done.  

 

 
Figure 3.1. WMS Architecture [68] 

 



 

 

40

As stated earlier, WMS is a union grid middleware components responsible for 

distribution and management of tasks over grid resources. It accepts jobs via WM and it 

passes the job to an appropriate CE for execution by considering job and resource 

requirements in JDL. Appropriate CE is chosen by performing matchmaking. Figure 3.2 

shows that how these phases work. 

 

 

 
Figure 3.2. Job’s Life [68] 

 

In Figure 3.2, job management requests a job submission, or cancellation which is 

expressed with JDL. Task queue keeps submission requests. If no resource is available for 

matching a request, these requests are stored in this queue. It works with FCFS but 

different models like Shortest Job First (SJF), Longest Job First (LJF) can be also used. 

Information Supermarket is the repository of resource information and provides 

information to the matchmaker. Information in this component is updated via notifications 

or polling methods. Then, the matchmaker tries to find an appropriate resource, i.e. a CE, 

for each request. Meanwhile, Job Submission and Monitoring component performs actual 

job submission and monitoring operations.  

 



 

 

41

Other components of WMS are as follows [68, 69];  

• Network Server (NS) is responsible for accepting request from  UI 

• Resource Broker (RB) is responsible for matchmaking. Its goal is to find resources 

appropriate for job requests.  

• Information SuperMarket (ISM) is a repository of resource information which is 

accessible by RB.  

 

In our model, NS and RM are implemented but ISM is not explicitly implemented. 

 

Monitoring and submission related components are as follow; 

• Job Adapter is responsible for making final modifications over a JDL expression 

for a job before it is submitted to Condor. This is because, Condor works with 

ClassAds, and therefore,  Job Adapter converts JDLs to equivalent ClassAds. 

• Condor is the component that is responsible for doing the actual job management       

operations such as job submission and removal. 

 DAG Manager (DAGMan) which is described in Chapter 2 in detail. 

 Log Monitor (LM) is responsible for watching Condor log file, catch the events for 

active jobs. It is interested in events like job done and job cancelled 

 

Job Adapter, Condor, DAGMan and LM are not implemented in our model, 

 

In the real WMS architecture [68, 69], jobs states and transition between them are 

shown in Figure 3.3. Our model supports all the states except Aborted and Canceled.  

 



 

 

42

 
Figure 3.3.  Job States [68] 

 

• Submitted state indicates that, job is submitted by the user but it is not transferred to 

NS yet. 

• Waiting state indicates that job is accepted by NS and waiting for WM for 

processing. 

• Ready state indicates that job is processed by WM but not yet transferred to the CE 

queue. 

• Scheduled state indicates that job is waiting in the CE queue.  

• Running state indicates that job is running on CE. 

• Done state indicates that job is done successfully or failed.  

• Aborted state indicates that job was aborted by WMS because it may exceed WM 

queue or CE queue timeout. 

• Cancelled  state indicates that owner of the job canceled the request. 

• Cleared state indicates whether job owner collected the outputs or whether the 

outputs are removed due to the timeout. 

 

If something goes wrong, the WMS tries to schedule the job again. Therefore, 

matchmaking is performed again for this job and the job is now assigned to a different 



 

 

43

resource. Number of resubmissions can be defined in JDL with attributes RetryCount for 

minimum and MaxRetryCount attribute for maximum number of trials. Job resubmission 

can be disabled by assigning zero to RetryCount attribute. In our simulated model, we do 

not implement this feature because our automatically generated JDLs always have at least 

one appropriate resource. 

 

RB must find the most suitable CE where the job will be executed, so it collects 

information from Data Management Services and Information Services which provide all 

the information necessary for matching.  In other words, RB chooses a CE with respect to 

job requirements. There could be more than one available resource. In this case, CE with 

the highest rank is chosen. In the worst case scenario, if there exists a resource with the 

same rank, random selection between these resources is done to find appropriate CE for the 

job. 

 

Furthermore, there are three possible matchmaking scenarios which are as follows; 

• Direct job submission: User defines the CE, which she wants to run job over, in the 

JDL file. There is no matchmaking process in this type of scenario. 

• Job submission with computational requirements only: There is no InputData or 

OutputSE attribute defined in the JDL. Matchmaking is necessary for this type of 

scenario.  

• Job submission with data access requirements: The attributes InputData and/or 

OutputSE are defined in JDL.  

 

Our model supports “Job submission with computational requirements only”. In 

addition, users are assigned priorities based on past resource usage, policies.  In this 

schema, users with better priority have higher probability to get what they want. However, 

in our model, the users are not assigned priorities. 

 

In short, we simulate the WMS and UI with some exceptions in order to create grid 

environment. For the UI part of the system, only job submission is done. Job cancellation 

and data upload operations are excluded. 

 

 



 

 

44

3.3  GridCAM 

 

GridCAM is a simulation tool, which is developed by us in C++, that used to create 

environment explained in subsection 3.2. It simulates the WMS and UI with some 

exceptions in order to create grid environment. For the UI part of the system, only job 

submission is done. It creates random ClassAds with different distributions and keeps them 

in a queue.  There are three different kinds of distributions which implemented in our tool. 

These are exponential, uniform (flat), and Gaussian distributions. 

 

GridCAM has event oriented architecture and there are four different event types that 

are as follows; 

 

• Job Create Event is responsible for creating a new job with given parameters and 

boundaries.  

• Job Done Event is responsible for collecting outputs of completed jobs. It is also 

responsible for removing jobs from all queues.  

• Job Timeout Event is responsible for removing jobs from queues hat exceed 

timeout limits. 

• Matchmaking Event is responsible for matching resources and jobs by using not 

only  Condor’s matchmaking model but also our two proposed approaches. We tell 

the simulation which matchmaking model and parameters will be used via a 

configuration file. 

 

In addition, for matchmaking purpose, GridCAM uses Condors Matchmaking Library 

Version 0.9.8 [33] and for the distributions GSL –GNU Scientific Library [70] with some 

modifications. 

 

 



 45

4. PROPOSED SCHEDULING HEURISTICS 

 

 
In this chapter, our scheduling approaches are going to be presented.  In the first part, 

some important WMS related information will be given. Then, explanation of the 

scheduling problem will be made and finally, our two scheduling heuristics will be given. 

Our new approaches are as follows; 

• Scarce Resource First Matchmaking (SRFM) 

• LP Based Matchmaking (LBM) 

 

4.1  Introduction 

 

Resource management and scheduling of distributed resources in grid environment are 

difficult problems. In grid frameworks, improvements were achieved in the past few years 

but there are still problems that need to be solved. Researches mostly focus on the subjects 

which includes workload management, resource discovery and matchmaking (brokering). 

  

Significant results have been achieved on the problem of scheduling. In other words, 

efficient way of handling large number of jobs while mapping them to heterogeneous 

resources. In the area of scheduling and resource management, there are many unsolved 

issues that need to be tackled. 

 

Basically, WMS comprises a set of grid middleware components responsible for the 

distribution and management of tasks over grid resources, in such a way that both sides are 

satisfied. The most important component of the WMS is the Workload Manager (WM) 

which is responsible for accepting and satisfying requests for job management. 

Requirements are expressed via a ClassAd-based JDL. Another important component is the 

job logging and bookkeeping which keeps tracks of jobs. For a job, there are two main 

types of requests which are submission and cancellation. Basically, the meaning of the job 

submission is passing the responsibility of the job to the WMS. The, the WM will pass the 

job to an appropriate CE that satisfies job requirements described in the JDL. The WMS 

keeps submissions while there is no appropriate resource. Condor uses this approach in its 



 46

systems. In addition, the decision of which resource will be used is the outcome of a 

matchmaking process which is done between resources and jobs. Our approaches 

contribute at this point. Basically, we propose two different approaches and the following 

sections in this chapter will give detailed information about these approaches. 

 

4.2  Definition of the Problem 

 

Matchmaking in grid environment is similar to matching in graphs in  that in a given 

graph we try to obtain the largest subset of it edges with the property that no two are 

connected to same vertex [71]. This is also known as maximum cardinality bipartite 

matching problem. The problem is easier with some restrictions. For instances, matching 

between jobs and resources is an example of bipartite matching. Furthermore, perfect 

bipartite weighted matching is known as Assignment Problem. Here the purpose is that to 

find a perfect matching of minimum weight in a bipartite graph. In addition, assignment 

problem can be  solved via network flow algorithms.  

 

The following example will help to understand how to model this problem. Suppose 

that there are five jobs and five resources. The goal of the matchmaker is to find 

compatible matches between jobs and resources in a way that maximizes the number of 

jobs that are granted resources. Table 4.1 shows jobs and their compatible resources. The 

graph, corresponding to this table, represents the problem of maximizing the number of 

compatible matches. 

 

Table 4.1.  Compatibilities for Matching 

 Resource 1 

(C1) 

Resource 2 

(C2) 

Resource 3 

(C3) 

Resource 4 

(C4) 

Resource 5 

(C5) 

Job 1 (J1) - Compatible - - - 

Job 2 (J2) Compatible - - - - 

Job 3 (J3) Compatible Compatible - - - 

Job 4 (J4) Compatible Compatible - - Compatible 

Job 5 (J5) - - Compatible Compatible Compatible 

 



 47

Figure 4.1 shows the graph that represents Table 4.1. In figure, there is a weight which 

is equal to 1, for each compatible pairs. 

 

J1

J5

J4

J3

J2

C1

C5

C4

C3

C2

JOBS RESOURCES

w=1

w=1

w=1
w=1

w=1
w=1

w=1

w=1
w=1

w=1
 

Figure 4.1. Graph Representation of the Problem. 

 

 4.3  Mathematical Model for Matchmaking  

 

Suppose that P(J,R,C) represents our matchmaking problem where:  

•  J = {j1,j2,..,jm} is the set of jobs , 

• C = {c1,c2,..,cm} is the set of resources, each resource being a cluster. 

• R = { rjc : job j requests cluster c}is the set of requests , 

 

Let rjc represent the request of cluster c by job j. If  rjc = 1, it will mean job j will be 

assigned to cluster c and if  rjc = 0, job j will not be assigned to cluster c. The number of 

processors requested by job j will be denoted by qj. The number of processors available on 



 48

cluster c will be given by cp . In order to make our mathematical formulation general, we 

also associate a weight jcw  with each request jcr . Given these, we try to maximize the 

number of jobs that have been assigned to clusters by setting all jcw  =1 and subject to the 

conditions that a job is assigned to at most 1 cluster and the total number of processors 

requested by jobs assigned to the same cluster is no more than the number of available 

processors on that cluster.  Our objective and constraints can be expressed respectively as 

follows: 

 

Maximize   jc
Jj Cc

jcrw∑∑
∈ ∈

               (1) 

 

subject to  

1≤∑
∈Cc

jcr     for all Jj∈ ,               (2) 

 

c
Jj

jcj prq ≤∑
∈

    for all Cc∈ ,        (3) 

 

}1,0{∈jcr   for all Jj∈  and Cc∈ .  

 

Note that this problem is similar to the generalized assignment problem [72] where the 

constraint (2) appears as 

 

jcCc
r∑ ∈

= 1.  

 

This problem can be shown to be NP-hard by a transformation from the knapsack problem 

[73]. Therefore, fast heuristics need to be devised that will run fast enough in order to 

schedule submitted jobs rapidly. According to our simulated model match-making window, 

which is a duration denoted by dwindow , must satisfy following; 

 

Talg(P(J,R,C))  <    dwindow  

 

 



 49

where Talg denotes execution time of matchmaking. In other words, simulated model 

waits an amount of time (in seconds) called matching window or simply dwindow, while, it 

accumulates jobs in the job queue. After this duration, matchmaking event is executed for 

all jobs, and algorithm tries to find appropriate resources for the jobs. Here the important 

point is that the duration of this matching process must be less than the duration of 

matchmaking window. For instance, suppose that matchmaking window is 120 seconds. 

Since window does not vary during the simulation, we have to ensure that duration of each 

matchmaking event must take less amount time then 120 seconds. In this way, we can 

ensure that we have fast heuristics in order to schedule submitted jobs rapidly.  The 

matchmaking heuristics we describe below, tries to achieve these goals. The aim of these 

heuristics is to eliminate Condor’s matchmaking algorithm’s disadvantages. We illustrated 

one important disadvantage in Figure 1.1 which actually motivated us to propose following 

heuristics. For both SRFM and LBM heuristics, the idea that we try to implement is that 

rather than taking jobs one at a time, after specified amount of time, called matching 

window, we take all the jobs in the queue and try to match them 

 

4.4  Scarce Resource First Matchmaking (SRFM).   

 

The first approach is SRFM matchmaking and this heuristic works as follows: Jobs are 

treated in descending order of priority. There are three kinds of jobs and these are jobs with 

no compatible resource, jobs with only one compatible resource and jobs with more than 

one compatible resource. Actually this is only a logical method to group jobs. In other 

words, jobs are kept in the same job queue. In this approach, a quantity called the degree, 

is computed for each job which gives the number of compatible resource that can be 

assigned to a job. If no compatible resource (cluster) exists for a job or job cannot be 

assigned a resource (because the resource is no longer available), then the priority of the 

job is increased in order to prevent starvation problem. This is repeated in every 

matchmaking process until a timeout event of the job is triggered which causes it to be 

deleted from job queue. This job’s degree is equal 0. However, if a job has only one 

compatible resource (degree=1), then it is assigned to the resource it requests. Here, our 

purpose is to avoid creating timeout events for these kinds of jobs. In other words, suppose 

there are jobs that not only have more than one compatible resource but also high priority. 

Furthermore, suppose that there are jobs that have only one compatible resource. Note that 



 50

these two groups may have a common resource for execution. Under these circumstances, 

jobs with high priority will get what they request. Job with one compatible resource must 

wait for a while. In addition, timeout event will be created for this job and it is possible that 

the job will reach this timeout threshold and will be removed for queue before execution. 

Furthermore, jobs that have more than one compatible resource are collected in a list. In 

other words, compatible and available resources for each job are determined and stored. 

Meanwhile, a resource desire value is computed for these jobs according to the following 

formula: 

 

=),( cjD  ( jq * jd * jm  ) / ( cp * cd * cm  )     (4) 

 

Here, jq , jd  and jm  refers to the required number of processors, amount of disk space and 

memory respectively requested by job j.  Note that a high value of D(j,c) indicates an 

almost full resource and hence can be  thought of as a scarce resource. Similarly, cp , cd  

and cm  are the available number of processors, amount of disk space and memory 

respectively on resource (cluster) c. These jobs with more than one compatible resource are 

then treated in descending order of resource desire value and assigned resources. 

Pseudocode for SRFM algorithm is presented in Figure 4.2 

 

SRFM algorithm complexity can be examined in two parts. First part of the algorithm 

is the ranking phase and matching phase for the jobs with no resource and only one 

compatible resource. Complexity of the part is O(M*N) where M and N are total number 

of jobs and resources respectively. Second part is the matching phase for the jobs with 

more than one compatible resource. Complexity of the part is O(K) where K  is the total 

number of jobs (K ≤ M ) that have more than one compatible resource. Therefore, overall 

time complexity of the algorithm is O(M*N). Note that necessary sorting operations are 

done by using priority queues so no additional sorting mechanism is implemented. The 

sorting operation takes O(MlogM). 

 

 

 

 



 51

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Pseudocode for SRFM Algorithm  

Algorithm SRFM 
Input: Jobs in queue 
Output: Matched pairs (jobs and resources) 
 
/* Ranking Phase */ 
for each job j ∈ J 
{ 
  degree=0; 
  for each resource c ∈ C 
  { 
   if check_feasibility(job j, resource c, qj , dj , mj , pc, pc, pc) = true 
   { 
    degree++; 
    =),( cjD  ( jq * jd * jm  ) / ( cp * cd * cm  ) ;  
   } 
  } 
  
/* Matching Phase for the jobs with no resource*/ 

 
// No available resource for the job. 
if (degree = 0)  increase_priority(job j); 

 
/* Matching Phase for the jobs with exacly one resource*/ 

// Job has only one proper resource for execution. 
  if (degree = 1)   assign_job (job j, rjc ); 
  // first phase for the jobs that have more than one compatible resource 
  if (degree >1 )  enter_job( job j, multi_resource_queue, ),( cjD ); 
} 
 
/* Matching Phase for the jobs that have more than one compatible resource */ 
   
 Sort jobs in descending order of resource desire value 
 

// Second phase for the jobs that have more than one compatible resource  
for each job j ∈ multi_resource_queue   

 { 
  if check_feasibility(job j, resource c, qj , dj , mj , pc, pc, pc) = true 
  { 
   assign_job (job j, c ); 
  } 

} 
 
Done=1; 
Return Done; 



 52

4.5.  Linear Programming (LP) Based Matchmaking (LBM)   

 

LBM heuristic uses Lp-solve which is a non-commercial linear programming code. It 

is written in ANSI C and is reported to solve problems as large as 30,000 variables and 

50,000 constraints. Lp-solve can also handle smaller integer and   mixed-integer problems. 

It is available at [74].  

 

LBM matchmaking heuristic works as follows: First, jobs are treated in descending 

order of their priorities. After each matching window, heuristic starts collecting jobs from 

job queue and finds compatible resources. If no compatible resource (cluster) exists for a 

job or job cannot be assigned a resource (because the resource is no longer available), then 

the priority of the job is increased in order to prevent starvation problem. This is repeated 

in every matchmaking process until a timeout event of the job is triggered which causes it 

to be deleted from the job queue.  

 

If a job has compatible resource or resources, its feasible requests are collected in a list. 

In other words, compatible and available resources for each job are determined and stored. 

Feasibility is determined via checking jq , jd  and jm versus cp , cd  and cm  on resource c. 

After finding feasible job-resource pairs, they are converted into LP format input for Lp 

solver by using formulation expressed in section 4.3. This input is created in sparse matrix 

format in order to increase efficiency of the algorithm.  

 

LP format contains three parts which includes objective function, constraint and 

declaration. First, objective function is a linear combination of optional variables and 

constants. In this part, we tell lpsolver what we try to maximize or minimize. This part is 

required, but can be empty. Secondly, constraint is optional and it is linear combination of 

variables and constants followed by a relational operator. The relational operator can be 

any of the followings: "<" "<=" "=" ">" ">=". Finally, declaration is the part that we 

define variables. Example shown in Figure 4.3 can be considered as  a simple example 

problem for  the Lp-solve. 

 



 53

J1

J2 C2

JOBS RESOURCES

C1

LP Data

Max: r11 + r12 + r22 ;
r11 <= 1;
r12+r22 <= 1;
r11 <= 2;
r12+r22 <= 1;
r11 <= 1;
r12 <= 1;
r22 <= 1;

r11

r22

r12

q1=1

q2=1

p1=2

p2=1

 
 
 

Figure 4.3. Simple Matching Problem and its Input for Lp-solve 
 
Suppose we have the following example in which: 

 

• There are two jobs J1 and J2. 

• There are two clusters C1 with 2 processors and C2 with 1 processor. 

• The compatibilities are as shown in Figure 4.3 (a) 

 

The linear program that corresponds to this example is as shown in Figure 4.3 (b). 

Solution for the problem is r11=1, r12=0, and r22=1 as expected. In other words, edges r11 

and r22 will be used so that job 1 and job 2 will be assigned to cluster 1 and cluster 2 

respectively. Note that the result set is relaxed so solutions do not have to be integers. In 

other words, we do not have declaration part in our data. If we do not do this, then this 

problem is NP-hard. 

  

Finally, requests (rjc) are treated in descending order of Lp solver solutions and 

checked whether they are still feasible. If they are, jobs are assigned to resources. 

Pseudocode for LBM algorithm is presented in Figure 4.4. 

 

LBM algorithm complexity can be also examined in two parts. In the first part of the 

algorithm, feasible job-resource pairs are determined. Complexity of this part is O(M*N) 

where M and N are total number of jobs and resources respectively. Second part is the 

matching phase and complexity of this part is dominated by complexity of the Lp-solve. 

 ( a )  ( b ) 



 54

Note that the necessary sorting operations are done by using priority queues so no 

additional sorting mechanism is implemented. The sorting operation takes O(MlogM). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Pseudocode for SRFM Algorithm  

 

 

 

 

 

 

 

Figure 4.4. Pseudocode for LBM Algorithm  

Algorithm LBM 
Input: Jobs in queue 
Output: Matched pairs (jobs and resources) 
 
/* Determining feasible job-resource pairs  */ 

for each job j ∈ J 
{ 
  degree=0; 
  for each resource c ∈ C 
  { 
   if check_feasibility(job j, resource c, qj , dj , mj , pc, pc, pc) = true 
   { 
    degree++; 
    Add request to Request_Queue; 
   } 
  } 
  
/* Matching Phase for the jobs with no resource*/ 

 
// No available resource for the job. 
if (degree = 0)  increase_priority(job j); 

} 
 
/* General Matching Phase */ 
  
   Lpdata=Using Request_Queue create input for Lpsolver; 
  Lp_solve(Lpdata);  
 
 Sort requests in descending order of lpsolver solution ; 
 

// Second phase: Assignment of jobs to resource 
for each request r ∈ Request_Queue   

 { 
  if check_feasibility(request r, resource c, qj , dj , mj , pc, pc, pc) = true 
  { 
   assign_job (job j, c ); 
  } 

} 
Done=1; 
Return Done; 



 55

5.  SIMULATION RESULTS 
 

 

  5.1  Introduction 

 

In this chapter, we will present experimental test results by using GridCAM. There 

are three main parts. In the second part of this chapter, simulation parameters will be given. 

Basically, distributions used and their parameters will be given. In the third part, the test 

results of our proposed approaches will be given.  

 

5.2  Simulator Configuration 

 

GridCAM uses three fundamental distributions which are exponential, uniform and 

gaussian. 

 

Table 5.1.  Simulation Parameters  

 JOB Arrival 

(s) 

JOB Done 

(s) 

Number of

CPU 

DISK 

(Byte) 

MEMORY 

(Byte) 

Distribution Exponential Uniform Uniform Uniform Uniform 

Seed Time Time Time Time Time 

Mean 60 N/A N/A N/A N/A 

Parameter a N/A 10 2 1000 100 

Parameter b N/A 3600 30 10000 1000 

 
Model : FCFS 

 

 
Matchmaking Interval (s): 1 

 
Model : SRFM and LBM 

 

 
Matchmaking Interval (s): 120 

 

 

 

 

 

 



 56

GridCAM, which is a tool to simulate Workload Management Service (WMS), uses    

GSL – GNU Scientific Library [70] for different distributions. In this simulation tool, time 

for job arrival is determined via an exponential distribution with mean 300 sec. Simulator 

determines when jobs will be done via uniform distribution with parameters 10 and 3600 

sec. In other words, a time will be chosen for jobs between 10 and 3600 seconds, and the 

job will be done after this amount of time. In addition, if the type of the job is parallel 

(MPI) than the job needs more than one CPU. Simulator determines the required number 

of CPUs via a uniform distribution and its parameters are 2 and 30. In other words, MPI 

jobs will ask for between 2 and 30 CPUs. Disk space requirements for the jobs are also 

determined via a uniform distribution with parameters 1000 bytes and 10000 bytes. 

Finally, uniform distribution with parameters 100 to 1000 bytes is used to determine 

memory requirements of the jobs.  

 

Configuration with dwindow=1, given in Table 5.1, is used for FCFS algorithm. On the 

other hand, configuration with dwindow=120, is used for both SRFM and LBM heuristics. 

The only difference between these two configurations is the dwindow variable which was 

explained in Chapter 4. 

 

5.3  Simulation Results 

 

We have run simulations for four different time intervals: 1 hour, 2 hours, 10 hours 

and 24 hours. Simulations were run for FCFS, SRFM and LBM algorithms. Table 5.2 

gives the simulation results for these algorithms. In the table, completed jobs and 

scheduled jobs indicate weighted-average of percentage of the number of the jobs 

completed and scheduled jobs respectively. The difference between the completed and 

scheduled jobs is that scheduled jobs were assigned to resources and they are still running 

whereas completed jobs are finished. In addition, waiting time for completed and 

scheduled jobs columns indicate the amount of time passed before a job is assigned to a 

resource. Since both completed and scheduled jobs do not wait for resources anymore, 

average waiting time values are computed not only for completed jobs but also scheduled 

jobs.  

  

 



 57

Table 5.2. Simulations Results of FCFS, SRFM, and LBM Algorithms 
 

Jobs 

Waiting Time for 

Completed and 

Scheduled Jobs (s) 
Schedule 

Scheme 

Sim. 

Time 
Number 

Submitted 

Percentage 

Completed 

Percentage 

Scheduled Max Avg. 

FCFS 
60 52,97 45,28 277 16,33 

SRFM 69 53,18 45,24 163 61,87 
LBM 

1 Hrs 

60 48,51 51,23 120 59,71 
FCFS 

115 81,16 16,49 574 20,04 
SRFM 137 77,29 18,33 1289 84,68 
LBM 

2 Hrs 

129 70,97 26,40 751 75,37 
FCFS 567 62,42 4,87 1406 19,03 
SRFM 530 84,59 3,23 5667 157,80 
LBM 

10 Hrs 

574 90,09 4,65 3214 72,10 
FCFS 1523 14,12 1,42 2361 40,43 
SRFM 1414 83,84 5,03 5190 90,39 
LBM 

1 Day 

1429 88,01 2,27 6083 69,99 
  

 

We have done 20 iterations for each simulation case except 1 day simulations. For one 

day simulations, we have done 4 iterations because of memory limitations of the machine 

we are using.  

 

When you look at the results in Table 5.2, it is clear that SRFM and LBM are more 

successful then FCFS for long simulations. Our proposed heuristics’ simulation results are 

quite encouraging and show that in long simulations with our SRFM and LBM scheme, we 

can have more jobs completed than the FCFS scheme. One disadvantage of our heuristics 

is the average waiting time values for both completed and scheduled jobs are higher than 

FCFS scheme. This was expected because we have more completed and scheduled jobs 

than FCFS. Furthermore, in our proposed heuristics we use a matchmaking window that 

also affects weighted-average value of maximum waiting times and average waiting times. 



 

 

58

6. CONCLUSION 

 
 

More and more people and industries are moving their applications to grids because grid 

computing presents with us an infrastructure where various resources can be shared. 

Therefore, the topic of resource schedulers that provide effective usage of the grid resources is 

becoming more and more important. Matchmaking process in a resource scheduler tries to 

assign jobs to available resources. We have to ensure that not only jobs achieve desired 

requirements but also efficient utilization of grid resources is achieved. In other words, we 

need an efficient resource selection scheme to maximize throughput. It is difficult to realize 

that, because jobs are matched to heterogeneous resources which have dynamically changing 

characteristics such as disk and CPU capacities. 

 

Main idea of our approaches is to avoid excessive resource consumption, so we may 

increase the system throughput. In this study, we proposed two new polynomial-time 

heuristics for matchmaking based on this idea. A common idea shared by our heuristics is that 

both take a collection of jobs at each step and try to match as many jobs to available resources 

by using their own strategy. The first one is a collective matchmaking heuristic called Scarce 

Resource First Matchmaking (SRFM). In  this heuristic, jobs are assigned by first attempting 

to match scarce resources. The second approach is an LP based heuristic that will solve 

relaxed version of our optimization problem and obtain matchings from the relaxed solution.  

 

Our study is concluded with experimental tests by using GridCAM simulation tool. 

Simulation results are quite encouraging and show that in long simulations with our schemes, 

throughput of the system is increased. Thus, we can have more completed jobs than the FCFS 

scheme.   

 

We have identified the following that can be done as future work; 
 

• Dynamically change matchmaking window in order to optimize our heuristic 

algorithms. 

• Adopt a conflict detection mechanism for ClassAds that is proposed in Coleman [47]. 

This might be helpful for our researches because users may create ClassAds that 



 

 

59

contains predicates which conflict with each other. Colemon proposes a solution for 

this problem.  

• DAGMan can be used to assign jobs to resources in case jobs have been submitted 

with precedence relations indicated by a DAG. Especially, DAGMan can be utilized 

when we change the execution order of jobs. 

 

 

 

 

 
 
 

 

 



 60

REFERENCES 
 

 

1. “Wikipedia, the Encyclopedia”, http://en.wikipedia.org/wiki/Grid_computing, 2007 

 

2. Fundamentals of Grid Computing, IBM Redbooks Paper by Viktors Berstis, November   

2002. 

 

3. “SEE-GRID”, http://www.see-grid.org, 2007 

 

4. “SEE-GRID2”, http://www.see-grid.eu, 2007 

 

5. “EGEE”, http://public.eu-egee.org, 2007 

 

6. “EGEE2”, http://eu-egee.org, 2007 

 

7. “Tr-Grid”, http://www.ulakbim.gov.tr/trgrid/, 2007 

 

8. “gLite”, http://glite.web.cern.ch/glite/, 2007 

 

9. Condor and the Grid, Douglas Thain, Todd Tannenbaum, and Miron Livny , University of 

Wisconsin-Madison, Madison, Wisconsin, United States, 2003 

 

10. “Condor Researches”, http://www.cs.wisc.edu/condor/publications.html  

 

11. “The Grid Physics Network (GriPhyN)”, http://www.griphyn.org, May 2007. 

 

12. “The International Virtual Data Grid Laboratory (iVDGL)”, http://www.ivdgl.org, 2007. 

 

13. Particle Physics Data Grid (PPDG), http://www.ppdg.net, August, 2002. IPPS/SPDP 

Workshop on Job Scheduling Strategies for Parallel Processing, 1988, pp. 62–82. 

Techniques in Physics Research (ACAT), 2000, pp. 161–163. 

 



 61

14. “NSF Middleware Initiative (NMI)”, 

      http://www.nsf.gov/pubs/2003/nsf03513/nsf03513.htm, 2007. 

 

15. “TeraGrid Project”, http://www.teragrid.org, 2007. 

 

16. “NASA Information Power Grid”,  

       http://www.gloriad.org/gloriad/projects/project000053.html, 2007. 

 

17. “The National Computational Science Alliance”, http://www.ncsa.uiuc.edu/ , 2007. 

 

18. Foster, I. and Kesselman, C. (1998) The globus project: a status report. Proceedings of the              

Seventh Heterogeneous Computing Workshop, March 4–19, 1998, 

citeseer.nj.nec.com/foster98globus.html. 

 

19. Foster, I. and Kesselman, C. (1997) Globus: a metacomputing infrastructure toolkit.      

      International Journal of Supercomputer Applications, 11(2), 115–128. 

 

20. Pruyne, J. and Livny, M. (1994) Providing resource management services to parallel 

applications. Proceedings of the Second Workshop on Environments and Tools for 

Parallel Scientific Computing, May, 1994. 

 

21. Wright, D. (2001) Cheap cycles from the desktop to the dedicated cluster: combining  

opportunistic and dedicated scheduling with Condor. Conference on Linux Clusters: The 

HPC Revolution, Champaign-Urbana, IL, June, 2001. 

 

22. Thain, D. and Livny, M. (2002) Error scope on a computational grid: theory and practice. 

Proceedings of the 11th IEEE Symposium on High Performance Distributed Computing 

(HPDC), July, 2002. 

 

23. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W. and Tuecke, 

S. (1988) A resource management architecture for metacomputing systems. Proceedings 

of the 5th ACM Conference on Computer and Communications Security Conference, 

1998, pp. 83–92. 

 



 62

24. Foster, I., Kesselman, C., Tsudik, G. and Tuecke, S. (1998) A security architecture for 

computational grids. Proceedings of the 5th ACM Conference on Computer and 

Communications Security Conference, 1998, pp. 83–92. 

 

25. Ferstl, F. (1999) Job and resource management systems, in Buyya, R. (ed.) High 

Performance Cluster Computing: Architectures and Systems. Vol. 1. Upper Saddle River 

NJ: Prentice Hall PTR. 

 

26. Tannenbaum, T., Wright, D., Miller, K. and Livny, M. (2001) Condor – a distributed job 

Scheduler, in Sterling, T. (ed.) Beowulf Cluster Computing with Linux. Cambridge, MA; 

MIT Press. 

 

27. Tannenbaum, T.,Wright, D., Miller, K. and Livny, M. (2001) Condor – a distributed job 

scheduler, in Sterling, T. (ed.) Beowulf Cluster Computing with Windows. Cambridge, 

MA; MIT Press. 

 

28. Basney, J. and Livny, M. (1999) Deploying a high throughput computing cluster, in eds- 

Buyya, R. (ed.) High Performance Cluster Computing: Architectures and Systems. Vol. 1. 

Upper Saddle River NJ: Prentice Hall PTR. 

 

29. Krueger, P. E. (1988) Distributed Scheduling for a Changing Environment, Technical 

Report UW-CS-TR-780, University of Wisconsin – Madison, Computer Sciences 

Department, June, 1988. 

 

30. Frey, J., Tannenbaum, T., Foster, I., Livny, M. and Tuecke, S. (2001) Condor-G: a  

computation management agent for multi-institutional grids. Proceedings of the Tenth 

IEEE Symposium on High Performance Distributed Computing (HPDC), San Francisco, 

CA, August, 7–9, 2001. 

 

31. “European Union DataGrid Project”, http://www.eu-datagrid.org, 2007. 

 

32. “Condor”, http://www.cs.wisc.edu/condor, 2007 

 

33. “Condor ClassAds”, http://www.cs.wisc.edu/condor/classad, 2007 



 63

 

34. EGEE-JRA1-TEC-590869-JDL-Attributes-v0-8, Activity: JRA1 – Middleware,  

      https://edms.cern.ch/document/590869/1, 2006 

 

35. Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a Future Computing     

Infrastructure. Morgan-Kaufmann, 2004. 

 

36. Pavel Fibich, Ludek Matyska, and Hana Rudová. Model of grid scheduling problem. In 

AAAI’05 Workshop on Exploring Planning and Scheduling for Web Services, Grid and 

Autonomic Computing. AAAI Press Technical Reports, 2005. 

 

37. R. Raman, M. Livny, and M. Solomon. Policy Driven Heterogeneous Resource            Co-

Allocation with Gangmatching. In Proceedings of the Twelfth IEEE International 

Symposium on High-Performance Distributed Computing, June 2003. 

 

38. C. Liu, L. Yang, I. Foster, and D. Angulo. Design and Evaluation of a Resource Selection 

Framework for Grid Applications. In IEEE International Symposium on High 

Performance Distributed Computing (HPDC-11), July 2002. 

 

39. M. J. Litzkow and M. Livny. Experience with the Condor Distributed Batch System. IEEE 

Workshop on Experimental Distributed Systems, 1990.  

 

40.  I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid Services for Distributed System 

Integration. IEEE Computer, 35(6), June 2002. 

 

41. R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Management 

for High Throughput Computing. In The Seventh IEEE International Symposium on High 

Performance Distributed Computing, July 1998. 

 

42. J. H. Saltzer, D. P. Reed, and D. D. Clark. End-To-End Arguments in System Design. 

ACM Transactions on Computer Systems, 2(4):277.288, Aug. 1984. 

 

43. Data Grid WP1 – WMS Software Administrator and User Guide, Doc. Identifier:  

      DataGrid-01-TEN-0118-1_28, November 2003. 



 64

44. An approach to grid scheduling by using Condor-G Matchmaking Mechanism E.  

      Imamagic, B. Radic, D. Dobrenic University Computing Centre, University of Zagreb, 

Croatia 

 

45. Imamagic E, Radic B, Dobrenic D. CROGRID Grid Execution Management System. 

      In: Proceedings of the 27th International Conference on Information Technology 

Interfaces; 2005 Jun 20-23; SRCE University Computing Centre; 2005. p. 77-83. 

 

46. Matchmaking, Datasets and Physics Analysis. Heinz Stockinger, Flavia Donno, Giulio  

Eulisse, Mirco Mazzucato, Conrad Steenberg Heinz.Stockinger@cern.ch  

 

47. Distributed Policy Management and Comprehension with Classified Advertisements 

      Nicholas Coleman, Rajesh Raman, Miron Livny and Marvin Solomon University of 

Wisconsin, 1210 West Dayton Street, Madison, WI 53703, April 2003 

 

48. P. Godfrey. Minimization in cooperative response to failing database queries. 

      International Journal of Cooperative Information Systems (IJCIS), 6(2):95. 149, June 

1997. 

 

49. Ontology-based Resource Matching in the Grid - The Grid meets the Semantic Web  

Hongsuda Tangmunarunkit, Stefan Decker, Carl Kesselman Information Sciences 

Institute University of Southern California 

 

50. “The portable batch system”, http://pbs.mrj.com, 2007 

 

51. Resource Management through Multilateral Matchmaking, Rajesh Raman, Miron Livny  

and Marvin Solomon University of Wisconsin, 1210 West Dayton Street, Madison WI 

53703 

 

52. A Constraint Language Approach to Grid Resource Selection, Chuang Liu Ian Foster 

 

53. Condor and Preemptive Resume Scheduling, Alain Roy and Miron Livny Department of 

Computer Science, University of Wisconsin-Madison 

 



 65

54. A Dynamic Co-Allocation Service in Multicluster Systems,  J.M.P. Sinaga, H.H.  

Mohamed, and D.H.J. Epema Faculty of Electrical Engineering, Mathematics, and 

Computer Science Delft University of Technology 

 

55. Buyya R, Abramson D, Giddy J. Nimrod-G Resource Broker for Service-Oriented Grid 

Computing. IEEE Distributed Systems Online, Volume 2, Number 7. November 2001. 

 

56. “The Gridbus Project”, http://www.gridbus.org, 2007 

 

57. Venugopal S, Buyya R, Winton L. A Grid Service Broker for Scheduling Distributed 

Data-Oriented Applications on Global Grids. In: Proceedings of the 2nd International 

Workshop on Middleware for” Grid Computing; 2004 October 18; Toronto, Canada. 

ACM Press, 2004, USA. 

 

58. Berman F, Wolski R, Casanova H, Cirne W, Dail H, Faerman M, Figuiera S, Hayes J, 

Obertelli G, Schopf J, Shao G, Smallen S, Spring N, Su A, Zagorodonov D. Adaptive 

Computing on the Grid Using AppLeS., IEEE Transactions in Parallel and Distributed 

Systems, Volume 14, Number 5.  May 2003. 

 

59. “GridWay”, http://www.gridway.org/, 2007 

 

60. Open source metascheduling for Virtual Organizations with Community Scheduler 

      Framework (CSF). Technical whitepaper, 2004. http://sourceforge.net/projects/gcsf/ 

 

61. Moab Grid Scheduler. http://www.clusterresources.com/products/mgs/  

 

62.  WP1 document of DataGrid (WP1: Workload Management, 25/09/2007) ISFN 

 

63. From Metadata to Execution on the Grid Pegasus and the Pulsar Search, Ewa Deelman 

James Blythe Yolanda Gil Carl Kesselman Gaurang Mehta Karan Vahi, USC Information 

Sciences Institute, Marina Del Rey, CA 90292 Scott Koranda University of Wisconsin 

Milwaukee, Milwaukee, WI 53211, Albert Lazzarini Caltech, Pasadena, CA 91125, Maria 

Alessandra Papa, Albert Einstein Institute, Germany 

 



 66

 

64. SPHINX: A Fault-Tolerant System for Scheduling in Dynamic Grid Environments,    

Jang-uk In, Paul Avery, Richard Cavanaugh, Laukik Chitnis, Mandar Kulkarni and 

Sanjay Ranka University of Florida  

 

65. “Atlas Experiment”, http://atlasexperiment.org/, 2007 

 

66. “gLite Middleware”, http://www.glite.org, 2007 

 

67.  EGEE Middleware Architecture, EGEE-DJRA1.1-476451-v1.0 

      August 26, 2004. Document can be downloaded from 

https://edms.cern.ch/document/476451/ 

 

68. Tr-Grid, an Introduction to Grid Computing,  

http://www.grid.org.tr/etkinlikler/egitim/ 

 

69. Workload Management, in particular WMS User & Admin Guide and JDL docs 

http://egee-jra1-wm.mi.infn.it/egee-jra1-wm/  

 

70. “GSL – GNU Scientific Library”, http://www.gnu.org/software/gsl, 2007 

 

71. Robert Sedgewick, Algorithms in C Third Edition, Princeton University, 2002, p. 67-68, 

p. 419-420 

 

72. R. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, Theory, Algorithms and 

Applications, Prentice Hall, 1993  

 

73. M. Garey, D. Johnson, Computers and Intractability, A Guide to the Theory of             

NP-Completeness, W. H. Freeman, 1979. 

 

74. “LP Solve Library”, http://lpsolve.sourceforge.net/5.5/  

 

 

 


