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ABSTRACT

NEW HEURISTICS FOR COMPETITIVE AND
HIERARCHICAL FACILITY LOCATION PROBLEM

A lot of versions of the facility location problem have been studied for a long time.
This work considers the combination of two versions Competitive Facility Location and

Hierarchical Facility Location Problem.

A company wants to locate hierarchical facilities to a market area where there is a
competitor that already located its hierarchical facilities. The objective is to maximize
the total net profit which is obtained by subtracting the total cost of constructing
a chain from the total captured market share. Hierarchical structure is successively
inclusive service hierarchy model and all facilities are assumed to be in two levels. Our
main assumption is that a customer splits his/her demand (buying power) among the
chains proportional to the attraction level to the closest facility of each chain. This
patronizing behavior is a hybrid of probabilistic and deterministic patronizing behavior

models.

The contribution of this study is treating the attractiveness of facilities as con-
tinuous decision variables. Also the number of each level of facilities to be opened is

not predetermined.

A nonlinear mixed integer model is developed for the problem. Firstly the SBB
solver within GAMS suite v22.0 is employed. Then a Simulated Annealing Algorithm
is developed and within this algorithm two different strai:egies each having different
add-drop criteria are employed as solution procedure. The first strategy consists of
add-drop second closest criteria (SASCAD) whereas the second strategy uses random
add-drop criteria (SARAD) for neighborhood search. In both strategies Simplex Search



and Fibonacci Search algorithms are employed to find the attractiveness values. Then
these strategies are compared and it is seen that SASCAD results better however it is
more time consuming. SARAD achieved to catch the same results with the SASCAD

in most of the experiments moreover it takes less time.
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OZET

REKABETCI VE HIYERARSIK TESIS YERI SECIMI
PROBLEMI ICIN YENI SEZGISEL YONTEMLER

Tesis yeri se¢imi probleminin tiirevleri {izerine uzun yillardir ¢alisilmigtir. Bu
caligmada iki tiirevin karmasi ele alinmaktadir: Rekabetgi tesis yeri se¢imi ve hiyerarsik

tesis yeri segimi.

Bir firma halihazirda bir rakibinin hiyerarsik tesislerini yerlegtirmis oldugu bir
pazar ortamina, hiyerarsik tesislerini yerlegtirmek istiyor. Amag toplam kapilan pazar
paymdan zincir olugturmak igin gerekli toplam maliyet cikarilarak elde edilen toplam

net kar1 en biiyiiklemektir.

Hiyerargik yapi, sonrakini igeren servis hiyerarsi modelidir ve tiim tesislerin iki

seviyeli oldugu varsayilmaktadir.

Ana varsayimimiz bir miigterinin istemini (satin alma giiciinii) iki zincir arasinda,
her zincirin ona en yakin tesisi icin ¢ekicilik diizeyi ile orantihi olarak boligtiirdiigiidiir.
Bu miigteri olma davramsi, olasiliksal ve gerekircii miigteri olma davranig modellerinin

bir karmasidir.

Bu caligmanin katkisi tesislerin gekiciliginin siirekli bir karar degigkeni olarak
ele almasidir. Aymi zamanda her diizeyde agilacak olan tesislerin sayilar1 dnceden

belirlenmig degildir.

Bu problem igin bir tamsayili dogrusal olmayan model geligtirilmistir. Ik olarak

GAMS v22.0’n i¢inde yeralan SBB ¢oziiciisii uygulanmigtir. Daha sonra bir tavlama



vii

benzetimli algoritma geligtirilmig ve bu algoritmanin icinde herbiri farkh ekle kaldir
olciitlerine sahip olan iki farkh strateji uygulanmigtir. Ik strateji (SASCAD) komsuluk
aramak icin ikinci en yakin ekle kaldir 8lgiitlerini barindirirken, ikinci strateji (SARAD)
rasgele ekle kaldir dlgiitlerini kullanmigtir. Daha sonra bu iki strateji kargilagtirilmig
ve SASCAD'n daha iyi sonug verdigi fakat daha yavag oldugu gorilmigtiir. SARAD
cogu deneyde SASCAD ile aym sonuglar: daha kisa siirede yakalamay: basarmigtir.
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1. Introduction

Facility location problems deal with finding the optimum locations of a number of
facilities with various objective functions such as minimizing the demand-weighted sum
of distances between facilities and customers. These problems have been studied for a
long time. Presently, researchers from many different fields like management science,
computer science, mathematics, architecture, and economy focus on various interpre-
tations of facility location problems. When the types of facility location problems are
investigated, it is possible to meet a large number of different versions. This thesis con-
siders two versions: the Competitive Facility Location Problem and the Hierarchical

Facility Location Problem.

Competitive facility location aims to maximize the captured market share of a
certain chain where there are other competitor(s) that already entered the market or
soon will enter the market. Within the competitive facility location models there are
also many different approaches with respect to the kind of competition, the kind of
demand and patronizing behavior. In most of the studies, the locations of facilities
are assumed to be unknown, while there are only a few works that investigate also the

attractiveness of the facilities.

In the literature, the competitive facility location is considered mostly in private
~sector models such as supermarkets, fashion store chains,and franchise systems, with

an objective of maximizing profit.

There is a hierarchical structure within the facilities in terms of services offered
to customers and one wants to locate these hierarchical facilities considering differ-
ent objective functions such as maximum coverage, and minimum travel cost in the

hierarchical facility location problems.

The hierarchical facility location is taken into account in public sector models

such as health-care systems, education systems, emergency medical service systems,



and telecommunication systems.

These two different models can be combined considering hierarchical facilities
which are planned to be located in a competitive environment. However, in the lit-
erature there is only one paper analyzing this combination. Considering hierarchical
supermarkets, hierarchical technology markets, banks, and private hospitals there is a

huge need for competitive and hierarchical models, applications, and algorithms.

In this thesis we deal with a competitive and hierarchical facility location prob-
lem in which there are competitor’s facilities already existing in the market area and
one wants to locate a number (not predetermined) of hierarchical facilities to form a
chain so as to maximize the net profit. Net profit is calculated by subtracting the fixed
costs of facilities and costs of attractiveness from the total captured market share.
The location space is discrete which means there are potential sites some of which
will be chosen as facility locations. Competition is static, hence competitor will not
react to any changes in the environment. Demand is inelastic so it does not change
with respect to the distance between competitor and facility, number of facilities ex-
isting or the utility function of customers. The patronizing behavior is a hybrid of
deterministic and probabilistic approaches. A widely used Huff-like gravity model is
employed once a customer is allocated to one’s own chain’s closest facility and com-
petitor’s closest facility. In other words, a customer splits his/her demand among two
facilities (each belongs to a different competitor) proportional to the attraction level
to the closest facility of each chain. It is the first time such a patronizing behavior is
being utilized. From the hierarchical point of view, the model is a “successively inclu-
sive facility location model” where there are two kinds of facilities. First level facility
only offers type-1 service, whereas a second level facility can provide both type-1 and
type-2 services (Daskin, 1995). It is the most appropriate hierarchical structure to
represent the real life situation of competitive and hierarchical facilities. More than
having a farely studied structure, this thesis differs from the other studies existing in
the literature with respect to decision variables. Both the facility locations and their
attractiveness values are treated as decision variables. In the literature, few papers

treat attractiveness as decision variables. Furthermore, most of these studies use a



discrete set of attractiveness values or solve a single-facility location problem, whereas
our model attempts to find continuous attractiveness. Considering attractiveness as
a continuous decision variable makes the model more difficult since optimization with
respect to location and attractiveness should be carried out simultaneously. Moreover
the customer’s proportion of demand is affected by both the location and attractiveness

that is why the model catches a trade-off between location and attractiveness.

Another feature of this study is that: the number of facilities to be located is
not predetermined, but is also a decision variable. It is decided by the solution of
the model with respect to trade-off between fixed costs of the facilities and the extra
profit from these facilities. Similarly there is no predetermined interval to restrict the

attractiveness values which are determined by the “attractiveness costs”.

We develop a mixed integer nonlinear programming model for this problem. It
is known that global optimal solution is not guaranteed by using any exact solution
technique. After randomly generating some instances, we first employ the Simple
Branch and Bound (SBB) solver within GAMS suite v22.0 to solve the generated
instances. Then Simulated Annealing (SA) algorithm, with add-drop and swap moves
is developed. Results show that using the proposed algorithm is very efficient to find

near optimal solutions.



2. Literature Review and Background

2.1. Competitive Facility Location

The competitive facility location problem aims to optimally locate facilities while
there are other facilities in the market that belong to a competitor. These problems
have been studied for a long time and studies mainly focus on the private sector with the
aim of ma)dinizing the total captured market share of a chain. Hotelling’s (1929) paper
is agreed to be the first paper about competitive facility location. He considers the
location of two competing ice-cream vendors on a line and assumes that the customers
patronize the closest facility which is called “proximity assumption” and the buying
power is uniformly distributed on the line. Because of the proximity rule he use, all
facilities are assumed to be equally attractive and when such a situation exists it is

sensible to use a Voronoi diagram to divide the region as Hotelling did.

He achieves simple but efficient results such that when a company A locates a
facility to the right side of the line, the competitor company B will definitely locates
its facility to the left side of the line, but has a tendency to locate its facility close
to A. This act will assist company B to capture more customer than A. However
some customers that are close to left edge of the line will have to travel a long distance.
Moreover if another competitor company C' decides to locate a facility then the closeness
of company A and B will be an advantage for company C. He also suggésfs that
different attributes than distance can be used as attractiveness attributes. However he

did not focus on them to simplify his model.

Competitive facility location models can be classified with respect to various fea-

tures it accommodates. In the following section we will give an extensive classification.



2.1.1. Locational Space

2.1.1.1. Continuous Space Models. These models assume that the optimal locations

for facilities can be anywhere in the plane. Starting with Hotelling (1929), many papers
that employ continuous solution space have been written so far. In most of these studies
it is argued that having a finite set of possible locations may prevent to find the optimal

solution since the optimal solution may not be included in that set.

Drezner and Drezner (2006a, 2006b), Drezner (1994, 1998), Drezner et al. (2002)
use continuous space, and they usually develop a gravitational Huff-based formulation.
McGarvey and Cavalier (2005) also study continuous location space but propose that
there are restricted regions, on which location of a facility is forbidden with respect to

travel, location or both criteria.

Usually Weizsfeld-like algorithms (Weizsfeld, 1936) and Big Square Small Square
(BSSS) techniques (Hansen et al., 1985) are employed to find optimal or near-optimal
solutions in continuous space when the problem is a single-facility location problem.
For multi-facility versions, Weizsfeld or BSSS algorithms are embedded in a univariate
search procedure. We have to emphasize that Weizsfeld algorithm is a local search
algorithm and one who wants to find global optimal solution may begin from multiple
initial solutions. Fernandez et al. (2007) propose a new partitioning method with
pruning by an adaptive multi-section rule. Drezner and Hamacher (2002) is a good
reference in terms of utilizing different heuristics in continuous space and observing

differences between them.

A more comprehensive survey about competitive continuous facility location

problems can be found in Drezner (1995).

2.1.1.2. Network Models. In network models the facilities are allowed to be located

anywhere along the edges and vertices of the network. Wendell and McKelvey (1981) is

known to be the first who carried the competitive facility location problem to a network



as an extension of Hotelling (1929). They intend to answer the question: “When can
and when cannot a firm choose a facility location that will guarantee it at least as
many customers as its competitor, regardless of where its competitor locates?” They
call the location which satisfies that question, “a locational equilibrium”. Their final
observation is that very severe symmetry requirements on individual locations and also

on demand functions are necessary to capture the equilibria.
Hakimi (1983) also analyzes the competitive facility location problem on the

network and proves that one can find a set of optimal locations on the vertices of the

network under certain circumstances.

2.1.1.3. Discrete Space Models. It can be seen that the discrete space model is a

special case of network models. If we retain the edges of the network to be potential
locations of the facilities, then the model simply becomes a discrete space model. In
discrete space models there are only a finite set of potential sites and one seeks to choose
some of these sites as locations for facilities to be opened to maximize the captured

market share.

It may not be a realistic approach to assume that a facility can be located any-
where in the plane since in real life situations it is not easy to find huge lands required
to locate especially large-scale facilities. That is why using a discrete space model

makes sense in a real-life competitive environment.

The first paper about discrete competitive location is by Goodchild’s (1984) where
a location-allocation market share model (MSM) is presented. It is an extension of
Hotelling’s approach. In MSM, the solution space is not a line but there are some
user provided potential locations from which optimal or near optimal locations will be

chosen as facility locations by using heuristic algorithms.

A p-median problem with gravitational model is adopted in discrete space by

Drezner and Drezner (2007) who apply the steepest descent method and a Tabu Search



(TS) heuristic. Berman and Krass (2002) also use a greedy algorithm to solve a discrete
space problem with elastic demand and claim that greedy type algorithms are efficient
to obtain high-quality approximate solutions. It is observed that discrete space models
are more popular in duopolistic markets particularly if the price decision is also taken
into account. Such a problem is observed by Fischer (2002). Another paper on dis-
crete space competitive facility location problem is MAXCAP which develops different
models based on various competition assumptions. (Revelle, 1986) Extensions of the
MAXCAP problem and more information about discrete space models can be found in

Serra and Revelle (1995).
2.1.2. Patronizing Behavior

Customers behave differently when they choose a facility to visit. This differ-
ence may occur due to the population in the area, distribution of income and sector.
For instance, for a customer looking for a luxury good, price, quality of the product,
transportation, product variety and distance are some of the important attributes each
having a different weight. For a customer shopping essential goods such as bread, sugar
etc. distance has a more dominant weight and some of the other attributes mentioned
above may not be important. A customer may prefer to patronize only one facility or
distributes his/her income among some facilities. All of these preferences constitute a

patronizing behavior.

When there is a competition, decision makers firstly have to predict the mar-
ket share they can capture in order to locate the facilities optimally. This, in turn,
strongly depends on the patronizing behavior of the customers. If one employs dif-
ferent patronizing behavior assumptions to a competitive model, he/she will definitely
observe that the captured market shares will signiﬁcanﬂy differ from each other. For
this reason, while forming a mathematical model for competitive facility location prob-
lem, the decision maker has to decide on the behavior of customers. We can basically
divide patronizing behavior assumption into two classes: Deterministic patronizing be-
havior and probabilistic patronizing behavior. For a comprehensive survey one can see

Drezner and Hamacher (2002).



2.1.2.1. Deterministic Patronizing Behavior Models. Deterministic models assume that
customers patronize a facility with probability one with respect to some criteria they
take into account. These criteria may change for different aspects, sectors or the ele-

ments that the model includes.

The first paper using deterministic patronizing behavior belongs to Hotelling
(1929) where he assumes that customers patronize the closest facility according to
Euclidean distance between a customer and a facility. This assumption is called “prox-
imity assumption” and ensures that customers located at the same demand point will
patronize the same facility, which is named “all or nothing property”. Here the criterion
customers focus on is only the closeness of the facility. In MAXCAP, Revelle (1986)
also adopts proximity assumption by adding an equal distance rule: if two facilities
are equally close to a customer, then this customer splits his/her demand into two and
apportions between two competing facilities. Similar to these two papers, Plastria and
Carrizosa (2004) also assume a single patronizing criterion which is the prices offered
by facilities. Customers patronize the facility which offers them the lowest price while

the travel cost of a customer is paid by the facility he/she patronizes.

Drezner and Drezner (1994) extend this assumption by incorporating attributes
other than distance to their model, which is referred to “deterministic utility model”.
Each customer has a utility function and while choosing a facility to patronize, cus-
tomers behave in a manner such that their utility function (satisfaction) is maximized.
In some models this utility function is additive as in deterministic utility model. In
others it is multiplicative as in Multiplicative Competitive Interaction Model (Nakan-
ishi and Cooper, 1974). In the deterministic utility model, the utility function is a

weighted sum of attributes z,, p = 1,2, .....m. Utility function can be represented as:

U= prfp(xp) (2.1)

p=1

where



Tp = attributes,
Wp = associated weight of z,,

folzp) = a function of z,.

Here, all the attributes of existing and new facilities are assumed to be known
except for the distances of the new facilities. To characterize this idea we can give
some examples for attributes. One attribute can be facility size, the other may be
attractiveness of facilities or prices that facilities offer. As mentioned earlier these
attributes may change due to necessities of the model but the distance factor will
definitely be included as an attribute. They also propose a new concept called “break-
even distance”. It is the maximum distance a customer is willing to travel to a new
facility. Assume that there is an existing facility ¢ in the area and we want to locate a
new facility. Since all the attributes of the existing facility are predetermined, we can
easily calculate its utility function for a customer and let’s call it u;. We also know
all the attributes of the new facility except for the distance so the utility function of
the new facility is a function of the distance which is represented as u(d). A customer
will patronize the new facility rather than the existing one if u(d) > u;. Therefore the
maximum distance he/she would like to travel for the new facility is the solution of

u; = u(d)

Since u(d) is a decreasing function of d, this equation has a unique solution.
Likewise, if there are a certain number of facilities that have already been located, the
break-even distance for a demand point is the minimum of the break-even distances

that have been calculated for all existing facilities.

There are also other utility functions used in a deterministic model. In Aboolian
et al. (2007a) customers patronize the facility with the maximum utility function but

this time utility is a function of price, attractiveness and distance.

However, none of the above models could overhold the “all or nothing property”
although it is not a realistic approach since in reality not all the customers from a

demand point patronize the same facility. As a result, we have the probabilistic pa-
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tronizing behavior models.

2.1.2.2. Probabilistic Patronizing Behavior. The first paper which introduces a proba-
bilistic patronizing behavior for the competitive facility location problem mainly based
on Reilly’s (1929) “law of retail gravitation” is the gravitational model by Huff (1964).
He put forward very important results from empirical studies: The proportion of cus-
tomers attracted by a facility is strongly affected by the distance and the facility area
which means that the probability (frequency) that a customer patronizes a facility is
proportional to the facility area and inversely proportional to a power of the distance
function. By taking these factors into consideration, Huff proposes a formal expression
of the model as:

Py =22 (2.2

Sq

i)

where

P;; = the probability that a customer at demand point j

travels to a particular facility ¢,

n
Il

the size of facility 1,

=3
I

4 the travel time from a customer’s travel base j to a facility 1,
A = a parameter which is to be estimated empirically to reflect the effect of

travel time on various kinds of shopping trips.

It is stated that if A goes to infinity, the customer patronizes the closest facility
with probability 1. Therefore Huff’s model is a generalization of the proximity assump-
tion (Drezner 1995). Huff defines the expected number of customers at a demand point

j that are likely to patronize facility i as:

Ei; = PyC; (2.3)

where
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Ei; = the expected number of customers at demand point j that are likely
to patronize facility 7,

C; = the number of customers at demand point j.

Finally, he obtains

n
;=) PyC; (2.4)
j=1
where
I'; = the trading area of a particular facility i, that is the total expected

number of customers within a given region who are likely to

patronize facility 1.

Here we have to emphasize that all parameters except for T;; (the travel time
involved getting from a customer’s travel base j to a facility i) are predetermined and

the only decision variable is the location of the new facility.

In (2.4) if we replace C; with the total buying power of the customers who are
located at demand point 7, then we obtain “captured market share of facility . It is

clear that captured market share, a widely used term comes from Huff’s formulation.

Huff’s model is simple and although he considers a single facility, the model is
very efficient and served as foundations for many competitive location models. A large
number of studies on competitivé location benefited from his model. All criticisms
on Huff’s model compromised that using a single attractiveness measure (facility floor
area) is restrictive and unrealistic hence an extension is needed. In this way, Nakanishi
and Cooper (1974) introduce a new model called “Multiplicative Competitive Interac-

tion Model” (MCI) which also considers a single facility. The idea is similar but the
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utility model that they employ is multiplicative which contains multi-attributes.

L B
> I mgft
t=1k=1
where
m;; = Probability that a customer in the j% demand point patronize

facility 1,
Tri; = The k'™ variable (attribute) describing facility 4 at demand point 7,

Br = parameter for sensitivity of m;; with respect to attribute k.

In this model, all attributes except for the location of the new facility are prede-
termined and the only decision variable is the location of the new facility. If the number
of attributes (used for representing the attractiveness) is greater than one, generally
additive or multiplicative utility functions are adopted. Drezner and Drezner (1994,
1996) make use of additive utility functions in ra,ndom and in deterministic utility
models. The main difference between multiplicative and additive functions is that in'
additive models absence or scarcity of an attribute can be compensated by increasing
the value of another attribute or attributes, which means that it is not important not
to include one or more attributes in the model. However, in multiplicative models if an
attribute of a facility is set to zero, then the probability that a customer patronizes that
facility will definitely be zero. It simply points out that each attribute is indispensable
for the customer and in the absence of an attribute the customer will not patronize

that facility.

The MCI model is more complex in terms of facility attributes but its main
problem is the estimation of the parameters. Moreover, using binary attributes like
0-1 or present-absent is impossible since estimating parameters requires to take the
logarithms of the ratios between the attribute values and their geometric means, and
the use of binary values makes the geometric mean zero. To overcome this problem

Mahajan et al. (1978) make transformations over the MCI model.
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Huff (1964) and Nakanishi and Cooper (1974) study on a single facility problem.
Achabal et al. (1982) extend the MCI model to the location of multiple facilities which
belong to one’s own chain. They solve this nonlinear integer programming problem
by using a random search procedure with an interchange heuristic to obtain optimal
or near-optimal solutions. As we have already pointed out, a large number of studies
that focus on competitive facility location utilize Huff’s gravitational model. Some of
them make small modifications on Huff’s model to be able to adapt it to their specific

problems.

Drezner (1994) solves a gravity-based single facility location model in continuous
space by applying Weizsfeld algorithm. It is claimed that the objective function of the
problem is not concave and includes local optimal solutions. Since Weizsfeld algorithm
is a local search procedure it is advised to use different initial solutions in order not
to get stuck with the local optima. Attractiveness of the facility is predetermined
and by performing sensitivity analysis for different values of attractiveness, Drezner
reaches different results in optimal locations with respect to changes in attractiveness
values. A generalization of this study is proposed in Drezner (1998) by adding a limited
budget constraint and letting multiple facility location. She develops two models one
of which has a fixed budget while the other includes flexible budget. Drezner performs
a two-phase procedure to overcome the “simultaneous location of several new facilities
anywhere in a continuous plane problem”. First phase is to extend the single facility
case to the location of multiple facilities with known values of attractiveness. The
second phase is the formulation of allocating the resource among the new facilities
where there is a predetermined budget and decision variables represent the portion of
budget planned to be spent to each new facility. Shé attempts to find optimal locations,
optimal resource allocation policy, and optimal number of chain facilities to be located.
Fixed budget model is solved by a univariate search algorithm that includes Weizsfeld
whereas flexible budget model is handled by adding a steepest descent phase to the
univariate search algorithm. This paper is the first one which investigates the optimal
allocation of budget among new facilities. However the budget constraint enforces to
spend all the budget given which may bear worse results than not spending the whole

budget.
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After this study Drezner et al. (2002) practise the same Weizsfeld algorithm
that used in Drezner (1994). A criteria-based algorithm, an ascent algorithm, a SA
algorithm and a SA and local search algorithms are employed to solve the multi-facility
problem. They compare the results of these algorithms and conclude that the best

algorithm for the problem is the SA and local search algorithms.

Another paper that demonstrates a gravity-based multi-facility model in continu-
ous space also brings out a budget constraint and also introduces a capacity constraint
and a forbidden region constraint (McGarvey et al., 2005). Here the criticism we made
for Drezner (1998) is not valid because in this model the budget constraint is “less
than or equal to” type and one does not have to spend the whole budget that is ded-
icated. They employ BSSS algorithm embedded in a cyclic search heuristic and they
use Drezner et al.’s (2002) SA algorithm to obtain initial solution.

The gravity p-median model in a discrete space is heuristically solved by a steepest
descent algorithm and a tabu search algorithm in Drezner and Drezner (2007). Then,
these two algorithms are compared and it is seen that tabu search algorithm is more
efficient than the steepest descent algorithm. Fernandez et al. (2007) and Aboolian et
al. (2007b) are other papers which modified Huff’s gravity-based formulation for their

models.

A different probabilistic approach to remove “the all or nothing property” is
proposed by Drezner and Drezner (1996) by composing a random utility model which is
very similar to the deterministic model. In that model the attributes, their weights, and
distances are drawn from a probability distribution with known means and variances.
They try to solve the problem using a Weizsfeld-like algorithm. However, the objective
function by its nature includes a k-dimensional integral so the computational effort
is great to find the best location. Therefore in Drezner et al. (1998) they define a

simplified random utility model which is dpproxjmated by a logit function.

Conversion of random utility functions into gravity-based model is a third ap-

proach to demolish the “all or nothing property” (Benati and Hansen, 2002). The
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random utility function of a customer ¢ for a facility j is given as :

'I]ij =q; — ﬁdij -+ gij (26)
where
Usj =  the total utility of the choice of the facility ¢ by the customer j,
a; = the average attractiveness of facility 4,
820 = anumber which represents how people discount distances,
di; = the distance between 7 and j,
€ij = the random part and it stands for nonobservable variables

(described by some joint function from which all customers

are assumed to draw).

They claim that the probability of customer j patronizes facility ¢ is equal to the
probability that the utility function of facility ¢ for the customer j is the maximum
utility function among the utility functions of all facilities for customer j. It is inter-
esting that if one assumes that the random part of the utility function is independently
and identically distributed with the Weibull distribution, then the probability becomes

— eXP(Gi - ﬁdij)
> kevr €xP(ax — Bdi;)

B (2.7)
where V' represents the set of located facilities.

We see that the resulting model is a gravity-based model.
2.1.3. Customer Demand

In the literature competitive facility location problemsv generally assume that the
demands (buying power of the customers) are predetermined and constant, which is

known as “inelastic demand”. Especially in essential goods which are generally sold

in supermarkets or grocery stores, it is reasonable to assume inelastic demand since it
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is not meaningful for customers to increase or decrease their demand with respect to

distance, quality or price for these vital goods.

However, for luxury goods demand may be highly sensitive to supply or price,
and one can form a demand function so that demand reacts with respect to changes in
price, distance etc. (Plastria, 2001). This kind of demand is called “elastic demand”.
For absorbing the reason of utilizing elastic demand, we would like to define some

keywords which are mostly used in marketing literature.

Cannibalization occurs when new facilities capture some of the demand from
existing facilities. Capturing the customer demand of competitor’s facility is beneficial,
whereas cannibalizing the demand from facilities belonging to one’s own chain will not
improve the objective value. Conversely, it may cause undermining the profit of pre-

existing facilities (Berman and Krass, 2002).

Market ezpansion is the increase in customer demand when the facilities increase
their score of service. This score may increase.as a result of new facilities being added,
through design improvements or price adjustments. The relationship between market
expansion and cannibalization highly affect the profitability. For example, if market
expansion outweighs the cannibalization effect, a pre-existing facility might capture

more demand after new facilities are added (Aboolian et al., 2007b).

Fischer (2002) proposes a two-stage model for duopolistic competition and em-
ploys a demand function of price. (D;(p;) is the demand of market ¢ and p; is the price
which market i offers). He determines the upper bound and lower bound of the price
by setting D;(p; max) = 0 where Pimax is the upper bound and a facility that does not
want to serve market ¢ may set its price t0 p;max. D;i(0) = D; max Where 0 is the lower

bound and D; max is the maximum demand of market 1.

A demand function of utility which is also a function of facility capacity and
distance is assumed in McGarvey and Cavalier (2005). Another utility based demand

function is investigated in Aboolian et al. (2007a) where demand is a function of |
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price, facility attractiveness, and travel cost. In Aboolian et al. (2007b), they use a
similar function which does not include price. A more realistic approach is handled
by Berman and Krass (2002) where they avoid using the term “elastic demand” and
call it “non-constant expenditure function”. It is stated that the expenditure function
is assumed to be affected by both the location and the number of the facilities. With

this framework they capture both the market expansion and cannibalization terms.

Drezner and Drezner (2006b) bring a different perspective to the demand elastic-
ity and propose that there is a constant buying power which a customer plans to spend
for a branch of a sector. However, if the facilities working in that branch are too far,
then the customer may choose not to spend his/her whole buying power. The total
buying power will be spent if the facilities are very close to customers. But if they are
not close enough, then a portion of the buying power will be spent. The model has two
objective functions. The first one is the maximization of the buying power spent at all
competing facilities and the second is the maximization of the buying power captured

by one’s own chain.

The probability P that a customer at site j will not spend his/her buying power
at facility 7 is

P=1—¢di (2.8)
where
A; = parameter for sensitivity of distance,
d;; = distance between customer j and facility .

The probability that a customer will not spend his/her buying power at any
facility is Hi;l[l — e~%di], And the total buying power spent at all facilities is:

Bi(1~ [ [1—e>%]) (2.9)
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Finally the total buying power at all communities spent at facility ¢ is formulated

e~ Midij

Zf:l g~ Ardrj (2.10)

M= 3 BT - )

It is seen that the first part of equation (2.10) is the available buying power and
the second part is a Huff-like gravity based model.

Drezner and Drezner (2006b) first form a single facility maximum capture (SMC)
model without competition and in solution procedure it is aimed to maximize the cap-
tured market share which could not be captured by any other facility before. Then they
modify the model to comprise the competition (SCMC). Both of these are continuous
location models, and they are solved by Big Triangle Small Triangle algorithm which
is a version of BSSS. As a consequence of the lost demand, the total buying power
captured according to SCMC model is lower than the total buying power captured
according to the Huff model.

2.1.4. Attractiveness Assumption

Attractiveness is a concept which represents the competitive advantage of a facil-
ity. The word has a broad meaning. Some papers use this word instead of an attribute
which describes a feature of the facility that affects the customer decision. That at-
tribute can be the facﬂity area as in Huff’s model (1964), the quality of the product
or the design of the facility (Fernandez et al., 2007), the price, the capacity of the
facility (McGarvey and Cavalier, 2005). However, in some other studies it is possible
to see that attractiveness is defined as a combination of some attributes (Drezner and
Drezner, 1994, 1996), (Nakanishi and Cooper, 1974). If attractiveness is a combina-
tion, then one can investigate all the attributes of this combination or may just declare
that attractiveness measure is assumed to be a combination but does not deal with the

attributes one by one.
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One of the important issues is whether the attractiveness is a decision variable or
a parameter. In the literature many papers assume attractiveness as predetermined,
whereas there are only a few papers that treat attractiveness as a decision variable.
Utilizing attractiveness as a predetermined parameter will simplify the model. But the
attractiveness values should be chosen carefully in order to solve the problem realisti-
cally. The objective value will significantly be affected with respect to attractiveness. If
the attractiveness values are not realistic, then the solution will not be useful for a real
life situation. Drezner (1994) applies a sensitivity analysis for different attractiveness
values in a gravity based single-facility location problem, and concludes that the market

share captured by the facility is sensitive to both facility location and attractiveness.

As mentioned before, little research has been done on the determination of the at-
tractiveness. The first paper which treats the attractiveness as a decision variable and
involves a simultaneous optimization of location and attractiveness in continuous space
is by Plastria (1997) and a broad generalization of it is made in Plastria and Carrizosa
(2004) which is a single facility model in a continuous space. Customers patronize the
facility to which they are attracted the most, which is known as a maximum utility
deterministic model. They state that the solution .of the problem can be reduced to
a bicriteria maxcovering-minquantile problem for which solution methods are known.
Drezner and Drezner (1994) also develop a deterministic model with the aim of op-
timally determining both location and attractiveness. Another single facility location
problem with gravity based model is intended to be solved by using a Weizsfeld-like al-
gorithm (Fernandez 2007). They also employ an interval branch and bound algorithm

which progress by the subdivision of boxes.

The paper by Eiselt and Laporte (1989) and Santos et al. (1998) answer the
question of how to determine both the location and attractiveness of new facilities in
a discrete space with gravity based model. Their main contribution is to consider the
attractiveness as a continuous decision variable. Eiselt and Laporte (1989) use the
term “weight” for attractiveness. They investigate the simultaneous optimization of
location and weight of a single facility on a network where user provided nodes are

defined as candidate locations for the new facility. A huff-like patronizing behavior
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is adopted. The problem is a special case of r/zp medianoid problem where r = 1
and weight is a continuous decision variable. Objective function consists of captured

market share and cost of opening a facility with an unknown weight. It is given as

max z = Z (Z b;Yi; — cw;) (2.11)

iEM2 jEN
where

j = index of customers,

i = index of nodes,

M, = set of unoccupied nodes of network,

N = set of all nodes of network,

b; = demand of customer that is located at node j,

¢ = unit cost of weight,

w; = weight of the new facility that is located at i.
and

w .m./d. . .
Y = = j €N, i€ M
" wz-mi/dz-,- + Z ’if)k/dk] J ’ 2 (2'12)
keM;
where

d;; = shortest distance between node ¢ and node j,

M; = set of occupied nodes of network,

W, = known weights of already existing facilities.

1 if the new facility is located at node ¢
r; =

0 if not

Obviously it is seen that most of these papers investigate a single facility or p-
median facility location problem for simplification since attractiveness as a decision

variable causes a great complexity in the solution procedure.
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Aboolian et al. (2007b) challenge the determination of both location and at-
tractiveness and also relax the constraint of fixed number of facilities. The model
is a discrete space, elastic demand, gravity-based type and seeks the answer for the

following questions:
1. How many facilities should be located?
2. Where should these facilities be located?

3. What kind of facilities (in terms of size, product variety, and other design

aspects) should be located?

They admit that the number of facilities to be located is affected by the attrac-
tiveness of facilities since fewer more attractive facilities may be used instead of less
attractive facilities. They provide some discrete attractiveness scenarios to employ
in the solution procedure hence restrict the attractiveﬁess values. A weighted greedy
search heuristic is proposed which starts with an empty set, then identifies the location-
attractiveness pair that yield the largest improvement and stops when no improving

location-attractiveness pair are available.
2.1.5. Competition

When there is a competition in the area it is sensible to expect some future
reactions from the competitors after making a move. Since competitive facility location
generally deals with the location of facilities, expecting a change in the location of
competitor’s facilities is almost impossible because it will be too costly to open a new
facility or to relocate a facility. Therefore in most of the papers mentioned above the
competition is assumed to be static which states that a competitor cannot respond to
moves of one’s own chain. Hence the characteristics of the competition are known and

assumed to be fixed.

In a dynamic competition environment, a competitor can relocate its facilities,
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close its facilities, open some new facilities, modify the attractiveness values of its facil-
ities etc. Revelle and Serra (1991) propose a location-relocation model (MAXRELOC)
where both location of new facilities and relocation of existing facilities are allowed.
Even when the dynamic competition is assumed in competitive facility location prob-
lem, the respond of the competitor generally relies on price adjustments which will be

more beneficial for economists (Fischer, 2002).
2.2. Hierarchical Facility Location

The hierarchical facility location problem is a special case of facility location
problems where there is a hierarchy between facilities. Assume that level-k facility is the
highest level facility and level-1 facility is the lowest level facility while level-0 repfesents
the demand points or customers. Generally hierarchical facility location is faced in

public facility planing since most of the public facilities are naturally hierarchical.

These problems differ from each other with respect to flow pattern, spatial con-

figuration, objective function and service varieties.
2.2.1. Flow Pattern

Flow pattern models are usually seen in production-distribution systems. There
are two types of flow patterns: single-flow and multi-flow. In single-flow models the
flow should start from level-0, go through all levels increasingly and stop at the highest
level or vice versa. There is no restriction that the flow should start from level-0 for
multi-flow models. The flow can start from any lower level-m to any higher level-n
where m,n €{0,1,2,....,k}. However multi-flow models are more complex than single-
flow models with respect to location decision. For more information about multi-flow

models one can see Serra and Revelle (1993).
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2.2.2. Spatial Configuration

2.2.2.1. Coherent Systems. Coherent systems restrict the model so that customers

that are assigned to the same lower level facility, have to be assigned to the same
higher level facility later. Thus coherent systems provide single sourcing to satisfy the

demand in facility location problems with capacity constraint.

2.2.2.2. Non-coherent Systems. The single source constraint is relaxed in non-coherent

systems. For a customer, a higher level-m facility which will satisfy his/her type-m

demand, is chosen independently from the lower level allocations of that customer.
2.2.3. Objective Function

Hierarchical facility location models are widely used in different fields such as
health-care systems, solid waste management systems, production and distribution
systems, education systems, emergency medical services, telecommunication networks
etc. Hence various objective functions are seen in the hierarchical facility location
literature due to the field in which the model is developed. Most commonly adapted
objective functions are median based models, covering models and fixed charge location

models.

The aim of median based model is to minimize the total demand weighted travel
costs between customers and hierarchical facilities. In covering models a customer is
assumed to be covered if there is a facility which is close enough for that customer.

Typically two different objective functions are met in covering models:

(1) Set covering where one tries to minimize the total number of facilities to be

opened by ensuring that all the customers in the area are covered.

(i) Maximum covering which intends to maximize the number of customers who

are covered by locating a certain number (predetermined) of facilities. As an example
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one can see the model in Teixeira and Antunes (2008).

Pirkul and Jayaraman (1996) examine a hierarchical fixed charge location problem
with the objective of maximizing total facility fixed cost and travel costs where they

also added capacity constraint.

All the studies mentioned above settle the objectives by considering public sec-
tor. Generally the aim is to minimize the travel distance or to maximize the number
of covered customers whereas our model considers a competitive environment with a
target of maximizing the market share captured at each level of buying power of the

customers.

2.2.4. Service Varieties

2.2.4.1. A Successively Exclusive Facility Hierarchy. A facility at level-m only serves

type-m service and services offered by a level-m facility has no intersection with the
set of services offered by a level-n facility where m,n €{1,2,...,k} and m # n. To
illustrate the idea an example may be beneficial. The hierarchy of education system
simply consists of primary school, middle school and high school. One who would like
to get middle school service, can only go to middle school, a high school cannot offer

the service she/he demands for.

2.2.4.2. A Successively Inclusive Facility Hierarchy. This hierarchy structure relaxes
the constraint above and claims that a level-m facility can offer all services 1 through
m to a customer. However this type of hierarchy sometimes may go into division in the
application area. A locally inclusive service hierarchy assumes that a level-m facility
offers services 1 through m to the customers which have a distance that is close enough
to the facility but serves for only type-m demand to the customers which are far away
from that facility. A globally inclusive service hierarchy allows a level-m facility to offer

services 1 through m without taking the location of the customer into consideration.
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Typically bank branches, post offices and some of the health-care systems are
appropriate to use a successively inclusive facility hierarchy. It is sensible to employ
successively inclusive facility hierarchy for our model which suits the hierarchical gross
markets, computer stores etc. In a competitive environment with the objective of
maximizing the market share it is unavoidable to employ the successively inclusive

facility hierarchy to make a realistic assumption.

Also there are exceptions such as hospitals. In most of these models a facility at
level-m serves for some of the demand types between 1 and m, but does not serve for
some of the demand types between 1 and m. In such a situation it is sensible to use a

hybrid model of the two typical models described above.

For a better understanding of the difference between successively inclusive and
successively exclusive facility hierarchy we can examine a basic-median-based hierar-

chical location formulation.

Inputs:

hym = demand for type m services at node j,
= distance between node j and candidate location ¢,

P, = number of type m facilities to locate.
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Decision Variables:

1 if a facility of type m is located at candidate site 4

Xim =

0 otherwise

) if demands at node j for type m services
Yijm = are satisfied by a facility at candidate site %

0 otherwise

min 32323 himdi; Yijm (2.13)
i i m

subject to

> Yijm =1 v j,m (2.14)

2 Xim = Pm, vm (2.15)

k

Yiim < 22 Xin Vi, j,m (2.16)
h=m

Xim = 0,1 Vim (2.17)

Yiim =0,1 Vi, j,m (2.18)

In the above model the objective function is the minimization of the demand-
weighted total distance. Constraints (2.14) ensure that all the demand types of all
customers are satisfied by a facility. Constraints (2.15) stipulate that the number of
type m facilities must be equal to P,,. Constraints (2.16) say that type-m demand that
originates at node j can be served from a facility at node i if there is a level-m or a higher
level facility that is located at . This constraint represents a globally inclusive service

hierarchy model. Note that k is the highest level among the hierarchical structure.
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If we replace constraints (2.16) with the constraint:

then the model will be transformed to a successively exclusive service hierarchy which
provides that a type-m demand can only be responded by a level-m facility, not by a
facility of type m + 1 through k (Daskin, 1995).

For a comprehensive overview about hierarchical facility location, see Sahin and
Siiral (2007). We would like to mention about a few studies on hierarchical facility

location problem which have extraordinary models and structures.

Multi-service facility location model intends to co-locate different types of facil-
ities under a single roof in a successively exclusive service hierarchy assumption. The
aim is the minimization of the fixed costs of facilities and the travel costs. For instance,
in an education system, co-location of pre-school, middle school and high school is ex-
amined. The study begins with solving p-median problems for each type of facilities
by observing the effect on the travel cost of other type of facilities. Then it isb seen
that on the optimal solutions some of the locations of one type of facilities overlap with
the optimal locations of another type of facilities. This conclusion helps to co-locate
multi-facilities on the same location. With a hybrid model which takes all facility types
into account, it is concluded that when fixed costs are set to zero, locations of different
types of facilities scattered far away from each other whereas when the fixed costs are
high enough, all types of facilities t‘end to be located on the same points. (Suzuki and
Hodgson, 2003)

Another study of Suzuki and Hodgson (2004) proposes that facilities are designed
in 3 levels where level-1 facility only serves for demand level-1, likewise level-2 facilities
offer only level-2 demand, and level-3 facilities satisfy the demand of both level-1 and
level-2. Customers are also assumed to vary as ones who desire only type-1 service, ones
who desire only type-2 service and ones who desire both type-1 and type-2 service. The

last type of customers may be served by a joint facility (level-3) or may prefer to make
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a trip from a level-1 facility to a level-2 facility or vice versa. This kind of behavior
is called multi-purpose trip making. A p-median based model that minimizes the total
travel distance and the effect of multi-purpose trip makers is investigated on optimal
locations and type of facilities. Results show that services have a tendency to cluster

in level-3 facilities, even when the proportion of type-3 customers is small.

The only paper that raises the idea of joining the competitive structure and hi-
erarchical structure in facility location problem belongs to Serra et al. (1992). The
objective is to maximize the captured market share. The authors formulate a hierarchi-
cal covering model (LOHICO) which allows the location of new facilities and relocation
of existing facilities. It is emphasized that most of the hierarchical models in the liter-
ature have arisen from classical location formulations such as p-median, the maximal
covering location models and no consideration had been given to facilities in a market

economy where they compete for customers.

The model includes a deterministic customer behavior in a discrete space where
there are specific potential locations for each level of facilities. For instance a level-1
facility can only be settled to a potential level-1 location and the same rule is valid for
level-2 facilities. They define a distance-based term T, which is the additional distance
that people are willing to travel to any higher-level facilities for level-m services. Let
Sjm = min(dy,,dn — T,,) where d,, is the distance between customer j and the closest‘
level-m facility of competitor to the customer 7, and dj, is the distance between customer

4 and the closest level-h facility of competitor to the customer j where h > m.

If one’s own chain opens a level-m facility at a distance lower than S;,,, then
customer j will fully be captured by that facility. Or in the event of opening a new
facility which has a level higher than m, at a distance lower than S;, + T;,, again
customer 4 will fully be captured. In the presence of an equation between competitor
and one’s own chain, the demand of the customer is split into two and it is shared by
both competitors. Obviously, it is seen that the only criterion that customers take into
account is the distance, no other attractiveness attributes are incorporated. Moreover

they fix the number of facilities to be opened and also the number of facilities to
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be relocated. A programming software is employed to solve the linear mixed-integer
programming problem. It is concluded that the model returns successful results even

when the competitors optimizes their locations by using a p-median model.
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3. Problem Description and Model Formulation

In this thesis we focus on locating facilities and determining facility attractive-
ness for a certain chain where a competitor has already located its facilities. In this
competitive environment there also exists a hierarchical structure. It is assumed that
each customer demands for two types of services for which they dedicate some buy-
ing power. Both chains’ facilities are structured to be in two levels where a level-1
facility can only serve for demand type-1 and a level-2 facility can satisfy both type-1
and type-2 demands, which is called a successively inclusive service hierarchy. Here
k € {1,2} is the index for both service types and facility levels. We try to answer the

following questions:
(i) How many level-1 facilities to open?
(ii) How many ievel—2 facilities to open?
(iii) Where should level-1 and level-2 facilities be located?
(iv) What should be the attractiveness of each level of facilities?

Customer choice among these facilities is modeled by using a hybrid of determin-
istic and probabilistic patronizing behavior. Demands (buying powers) of customers
are assumed to be fixed which means a static competition is adopted. Customers are
located at a discrete set of points also called potential sites, some of which will be
chosen as facility locations. There is an associated fixed cost fi which represents the
fixed cost of opening a level-k facility. Since the location space is discrete we define

the binary decision variable z;;, as

1 if a level-k facility is located at potential site ¢
Ti =

0 otherwise
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Because of our hierarchical structure, namely successively inclusive service hier-
archy, we do not expect that in the optimal solution a level-1 facility and a level-2
facility are both opened at the same potential site. Since level-2 facilities can satisfy
both type-1 and type-2 demands and a level-2 facility is more attractive than a level-1
facility, opening a level-1 facility at the same site of a level-2 facility will bring only
negative effect on the objective value. When systems are nested, the constraint that is

explained below is a widely used method for optimality (Narula and Ogbu, 1979)

2
kz—:lxik <1 i=1,..,n (3.1)

This constraint guarantees that at most one facility (that can be level-1 or level-2)

is located at each site.

Each level of facility has an unknown attractiveness. Let A;; is the attractiveness
of a level-k facility that is located at potential site ¢ and is assumed to be continuous.
uay, is the unit cost of attractiveness of a level-k facility. Clearly it is seen that both
fixed costs and unit attractiveness costs are independent from the potential site where
the facility is located. In other words, any cost that exist in the model is not affected
by the location of the facility. We have to emphasize that all type-1 facilities have
the same attractiveness value likewise all type-2 facilities have the same attractiveness
value. Moreover, a higher level facility should certainly have a higher attractiveness
value than a lower level facility since in real life situations hierarchical competitive
chains generally follow this strategy. To provide these assumptions we employ the

constraints:

2
ZEzA =Ai~ i=1,...,n;k=1,2
2, mindn = Ak (3.2)
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Ay > Ay (3.3)

where the variable A, k = 1,2 is used to force all facilities of the same level to have
the same attractiveness values. Since we have an optimality constraint for facility
location which was mentioned above, the attractiveness of a level-k facility that is
located at site 7 namely A, is guaranteed to be equal to Ay which is valid for all level-
k facilities. Furthermore, if there is no facility at site 4, then the attractiveness of that
site will be zero. However if we do not have constraint (3.1), constraint (3.2) would be
wrong. Constraint (3.3) ensures that attractiveness of a level-2 facility is higher than
attractiveness of a level-1 facility. We have to underline that while determining the

attractiveness values of competitor’s facility, the same rule is employed (CA; > CA,).

The objective is to maximize the total net profit of one’s own chain. Total net
profit is obtained by subtracting the total fixed costs and attractiveness costs of located
facilities from the total captured market share. Before explaining the objective function
in detail we would like to give information about customer choice. Note that customer
j has different buying powers for each type of services: BP;; is the money that is
dedicated to type-k service by customer j. For consistency please always assume that

demand and buying power, both have the same meaning.

As mentioned earlier patronizing behavior is a hybrid of deterministic and prob-
abilistic behavior. Firstly the deterministic part takes place. A type-k demand of a
customer j, BP; is allocated to both one’s own chain’s closest level-k or higher level
facility that is located at site i, and competitor’s closest level-k or higher level facility
c. We have two levels of facilities and two types of demand. Note that the closest
facility to a type-1 customer is determined from the set of all level-1 and level-2 fa-
cilities whereas for type-2 demand the closest facility is obtained from the set of only
level-2 facilities. For type-1 demand, customer can be satisfied by a level-1 facility or
by a level-2 facility. It means that a type-1 customer can be served by a level-2 facility

as long as that facility is the closest one to the customer. However to satisfy type-2



33

demand, a customer should surely be allocated to a level-2 facility. To illustrate the

idea, defining the allocation variables will be beneficial:

if type-k demand of customer j is allocated to competitor’s
bejr. = facility c.

0 otherwise.

An allocation of BPj, is done if competitor’s level-k (or higher level) facility
c is the closest facility for customer j among competitor’s all level-k or higher level

facilities. Likewise

if type-k demand of customer j is allocated to one’s own chain’s
Yijk = facility located at site 4.

0 otherwise.

Here allocation is done if one’s own chain’s level-k or higher level facility located
at site 7 is the closest facility for customer j among one’s own chain’s all level-k or
higher level facilities. Since the competitor has existing facilities, all b values are
determined by applying the proximity rule. The allocation of customers to one’s own

chain facilities is determined by binary variables y;;, which relate to location variables
Tik-

2
ST 2 Yk t=1,..,mk=12j=1,...,m (3.4)
het

Equation (3.4) simply states that customer j can get type-k service from site i
only if a level-k or a higher level facility is located at i. Hence, y;;x can take value 1
only if a level-k or higher level facility is located at site 4. To ensure that this facility

is the closest facility for customer j we use the constraint below:

n 2
Zdijyijk =dtj+M(1—- Z.Ttg) t= 1,...,n;j=1,...,m;k= 1,2 (35)
i=1 g=k

which imposes that type-k demand of customer j is allocated to the closest level-k or
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higher level facility where M is a sufficiently big number. In other words if the closest

facility is located at site 4, y;;x is set to one by that constraint.

We have to mention that here allocation of a customer to a facility does not mean
that this customer will patronize that facility. In other words, customer j will not spend
the whole BPj;, at the facility located at site <. Both demand types of all customers
are ensured to be allocated to two facilities, one of them belongs to competitor and
one of them belongs to one’s own chain. This is done to ensure that customer j will
divide his/her buying power among these two facilities, which means that BFP;, will
be shared among competitor’s facility ¢ and one’s own chain’s facility located at site <.
We have to mention that this is a kind of single source assumption and is realized by

using the constraint:

Z:lyijk =1 _7 = 1, ...,m;k = 1,2 (36)

We define the probability or frequency of shopping of customer j for demand
type-k, after he/she is allocated to one’s own chain’s closest facility located at site ¢

and competitor’s closest facility c as:

Aik/(di' + 1)'\
Py, = - 3.7
ik Azk/(dzj -+ 1)>‘ -+ OAck/(dccj + 1))‘ ( )
where
P = the probability (frequency) that customer j will patronize facility
located at site 7 for demand type-k,
Air = attractiveness of a level-k facility located at site 1,

CAg =  attractiveness of a level-k facility ¢ that belongs to competitor,
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di; = between customer j and facility that is located

at site 1,
cde; = Euclidean distance between customer j and competitor’s facility c,
A = sensitivity parameter for distance.

It is seen that a customer splits his/her demand between two facilities propor-
tional to the attractiveness of a facility and inversely proportional to some power of
the distance, which is a version of Huff’s gravity based model. Here, attractiveness can

be assumed to be either a single attribute or a combination of attributes.

In the literature many papers modify Huff’s distance function. Most of them
adapt only the distance between a customer and facility. The motivation in using a
distance correction factor in Drezner and Drezner (1997) is that customers are not lo-
cated at discrete points in reality but they are distributed continuously in the plane. To
see the effect of using discrete customer locations, they develop a continuous customer
location model and compare it with the same model but which has discrete customer
locations. They observe that significant changes occur in the optimal locations. How-
ever using continuous customer locations requires solving a double integral and it could
be difficult in some cases. As a result, they formulate a distance correction approach

A
in a discrete model which is represented as: [d? + 0.16scir]? where

d = distance between the center of the circle in which customers are located
and the facility,
scir = the area of the circle(scir = mr?),

A = parameter for sensitivity of distance.

In many of the discrete space models another approach is adopted. (d;; + 1)’\ is
used as the distance function. It is claimed that d,?‘j as the denominator may cause un-
desired situations. If a facility is located on customers or sufficiently close to customers,
then the attractiveness of the facility will be unimportant and that particular facility
will capture almost all buying power of that customers. We have to emphasize that in

Huff-based models unless a correction factor or an additional term is used, as distance
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goes to zero the term (—d%; goes to infinity. Moreover in the solution step especially in
discrete space problems when the sites where facilities are located are also locations of
customers, many division by zero issues appear (Drezner and Drezner, 2007). Aboolian
et al. (2007b) who also use (d;; + 1)* in a discrete space Huff-like model show that
u;; = Ajexp(—Ady;) is completely equivalent to u;; = A;(d;; + 1)*. As a result of the

reasons explained above, we also utilize that kind of distance factor.

Now we can combine the deterministic and probabilistic parts of the patronizing
behavior.

Avei/ (deg + 1) _
Pftjk: = — tkyt]k/gmffp ) t = 1, Ny ) = 1’“,m;k = 1’2

;Aikyijk/(dij + 1)’\ -+ 2:1 CAckbcjk/(Cdcj + 1))‘

(3.8)
where

Pfir = probability (frequency) that customer j shops for type-k demand
from potential site t,

Ay = attractiveness of a level-k facility that is located at site £,

Ytik = allocation variable of a type-k demand of a customer for potential
site t,

di; = distance between customer j and site ¢.

If a level-k or higher level facility located at site ¢ is not the closest level-k or
higher level facility among one’s own chain to customer j or if there is no level-k or
higher level facility at site ¢, then the allocation variable Yiix Will be zero. This will
cause P fi;, to be zero, which means that customer j will not shop from potential site
t for his/her type-k demand. Actually this probability function will be greater than
zero for just one potential site at which the closest level-k or higher level facility is
located. Hence if we sum up the probabilities of all potential sites we will achieve the

probability or frequency that a customer j shops for type-k demand from one’s own
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chain, which is represented as:

> Auwije/ (dij + 1)
-ij ="n = comp J=1.,m k=1,2 (39)
> A/ (dij + 1>+ 57 CAckbeji/(cdej + 1)
g=1

c=1

And finally the total market share captured by one’s own chain (TCMS]) is
obtained by multiplying this probability by each customer’s type-k buying power and

summing the multiplication over the demand type and over the customers.

m 2 > Awije/ (dsj + 1)
TCMS =Y > BPj— =1 o . (3.10)
7=1 k=1 > Airyig/(dig + D>+ 3 CAckbejie/ (cdej + 1)
=1

c=1

The total captured market share by one’s own chain is the first part of our
objective function. In median based models where the number of facilities to be opened
is predetermined, the objective is usually maximizing the market share. However in
our model, the number of each type of facilities to be opened is not predetermined and

is also a decision variable. The total fixed costs of locating facilities can be written as

n 2
TFC =YY" fuzu (3.11)

=1 k=1

We have to point out that a chain may consist of a mixture of level-1 and level-2
facilities, or only level-1 facilities, or only level-2 facilities. It is also possible that the

owner of the chain may prefer not to open any facilities in the presence of a negative
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profit. The total attractiveness cost of the chain is given as

n 2
TCA=> > uarArzu (3.12)

i=1 k=1

Finally the total net profit is

m 2 i Auyie/(dij + 1) n 2
TNP =Y Y BPy— = =Y > fumak

comp
T3 Aupie/ (g + D)+ 3 Chabege e #1705 b

i=1

(3.13)
n 2

- Z Z UL ALTsr

i=1 k=1

The total net profit is obtained by subtracting the costs of forming a chain (which
includes fixed costs of facilities and attractiveness costs) from the total captured market
share. Obviously we can argue that total captured market share is directly proportional
to the number of facilities to be opened since the distances will be smaller when there
are more facilities in the area. Hence the first part of the model (TCM S) will always
attempt to open more facilities with high attractiveness values, however the second
part of the model will cause a decrease in the objective function as more facilities are

opened (T'FC) and as facilities have high attractiveness values (T'CA).

In the model there is an interplay between number of facilities to be opened and
attractiveness values. One can try to find the optimal solution by opening less facilities
with high attractiveness values -which will cause high distances between facilities and
customers- or reversely by opening many facilities each having less attractiveness values
in which distances between facilities and customers will be significantly small. Also
trade-off situations between the number of level-1 and the number of level-2 facilities

to be opened, included by the model.
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We name this model Competitive and Hierarchical Location Problem(COHILP)

and the complete formulation becomes the following mixed integer nonlinear program:

1 = index of potential sites 1=1,..,n
= index of customers i=1,...m
k = index of both demand types and facility levels k£ =1,2
¢ = index of competitor’s facilities c=1,...,comp
Parameters:
BP;, buying power of customer j for demand type-%k
CAc attractiveness value of a level-k facility c
CAg attractiveness value of a level-k facility that belongs to competitor
bejk allocation parameter of a type-k demand of customer j to facility ¢
cde; distance between competitor’s facility ¢ and customer j
d;; distance between potential site 7 and customer j
A parameter for sensitivity of distance
fx fixed cost of opening a level-k facility
uay unit cost of attractiveness of a level-k facility
M a sufficiently big number
Variables: oy = 1 if a level-k facility is located at potential site ¢
0 otherwise
type-k demand of ‘customer 7 is allocated to one’s own chain’s
Yijk = facility located at site i.
0 otherwise
A;, = attractiveness value of a level-k facility located at site 4

Ap

common attractiveness value of all level-k facilities
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m 2 S Augige/ (ds + 1
COHILP: max 3. Y BPj— SR _
Y Awin/ (dig + 1+ Y, Chabege (edeg + 1)
3 > fuTi— i i uarArTik
i=1 k=1 i=1 k=1
(3.14)
subject to
éwih > Yijk i=1,..m7=1,..mk=12
~ (3.15)
f:lyijk =1 ji=1,..,mk=12 (3.16)
:Zjlwik <1 i=1,.,n (3.17)
i:ldijyijk =dy + M(1— ikmtg) t=1,.,mji=1,.... mk=12
i= =
(3.18)
ik TinAn = As i=1,.mk=1,2 (3.19)
Ay > Ay (3.20)
A 20 k=1,2 (3.21)
zi € {0,1} i=1,....mk=1,2 (3.22)
viik € {0,1} i=1,...,n;5=1,....mk=1,2

(3.23)
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4. Solution Procedure

Since the problem is a nonlinear-mixed integer programming model using ex-
act solution techniques do not guarantee to find the global optimal solution moreover
trying to calculate the objective values of all feasible solutions will cause a great com-
putational effort. SBB solver within GAMS v22.0 is employed for different instances.
With fixed parameters the results obtained by SBB solver are not as good as expected.
Heuristic methods may turn out to be efficient for solving combinatorial optimiza-
tion problems. Hence SA algorithm which includes add, drop and swap moves, are
employed in the outer loop to determine the number of facilities to be opened and
their locations. For finding the continuous attractiveness values Nelder-Mead Simplex
search and Fibonacci search algorithms are used in the inner loop after level-1 and
level-2 facilities are located. The main motivation of using SA is the non-convexity
of the objective function. If a function is not convex or concave, then many local op-
timal solutions exist and using a steepest ascent algorithm may cause stucking at a
local optimal solution. To prevent this, SA algorithm is a widely used method which
moves to better solutions with probability 1 and to worse solutions with some proba-
bility which is proportional to the quality of the solution. In the literature the most

preferred meta-heuristic algorithms for facility location problems are SA and TS.

We will first mention the general procedure of the algorithm and then explain

the operators and the algorithms used in the inner loop.
4.1. Initial Solution
We obtain the initial solution by opening a level-1 facility to a randomly selected
site and then by opening a level-2 facility to another randomly selected site which is

different from the location of level-1 facility.

Like Weizsfeld algorithm, the final solution of our algorithm strongly depends on

the initial solution hence we run our algorithm multiple times.
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4.2. Simulated Annealing

After the initialization step, an initial temperature is determined and the initial
solution is sent to the improvement loop. The following operations are performed for

a predetermined number of iterations:

Three operators are used: (i) Add level-1: It opens a level-1 facility at a site (ii)
Add level-2: It opens a level-2 facility at a site. (iii) Drop level-1: It closes a level-1
facility that was located. (iv) Drop level-2: It closes a level-2 facility that was located
(v) Swap: It consists of three steps which are swap a level-1 facility, swap a level-2
facility and exchange the locations of a level-1 and a level-2 facility. We select a random
move. After determining a new solution with respect to number and locations of‘the
facilities, this new solution is sent to Simplex search or Fibonacci search algorithm to
find the attractiveness values depending on the number of variables. For instance, if
the number of open level-1 facilities and the number of open level-2 facilities are both
positive, then it is clear that we have to find two attractiveness values for each type.
Hence a simplex search is employed. On the other hand, if open facilities are all of
the same level, then we only need the attractiveness value of a single level and we
employ Fibonacci search. Finally, the objective value of the new solution is calculated
with reSpect to locations of the facilities and attractiveness values. SA moves to a new
solution with probability 1 if its objective value is greater than the objective value
of the existing solution or with probability in (0,1) if the objective value of the new
solution is worse than the objective value of the existing solution. This probability is
calculated using the temperature and the objective values of both existing and new
solution. If the difference between objective values is small, then the probability of
accepting the new solution will be high, which means that as the quality of the new
solution increases the probability of accepting the solution increases. At the end of
the improvement loop the temperature is updated by multiplying with a coefficient
between Ov and 1, which is called “cooling” step. Note that the probability of accepting
a worse solution is directly proportional to the temperature hence at the beginning,
the algorithm accepts worse results with a high probability which provides a better

exploration of the solution space. At each increment of the improvement loop the value
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of the temperature decreases implying that the probability of accepting bad solutions

decreases at each step.

4.3. Termination Criterion

As mentioned earlier, during the improvement loop a predetermined number of
iterations are made. And the best objective value among these iterations is deter-
mined. We compare the best objective value of the current improvement loop with
the best objective value found in the previous improvement loop and if there is no im-
provement we increment the no_improvement parameter by one, otherwise the value
of no_improvement is set to one. The algorithm stops if there are no improvements
for consecutive maz_no_imp loops. In other words, when the value of no_improvement
is equal to maz_no_imp which is a certain number determined at the beginning of the

algorithm, SA is terminated.

Notation
initial = number of different initial solutions
max _initial = maximum number of different initial solutions
no_improvement = number of non improvements
maxT_noimp = maximum number of non improvements
intem = initial temperature

4.4. Neighborhood Structure

We two strategies each having different add-drop rules within the SA algorithm.
The first strategy, namely SA with Second Closest Add Drop (SASCAD), uses add-by-
second-closest and drop-by-second-closest rules. The second strategy which is called
SA with Random Add Drop (SARAD), includes random add-drop rules which will be
defined below (Brimberg et al 2000).
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4.4.1. Add Move

Add moves are employed to open new facilities on the potential sites where there
is no facility that is already located. Both add moves and drop moves help us to
determine the number of level-1 and level-2 facilities to be opened and the locations of

these facilities.

4.4.1.1. Add By Second Closest(ASC). Let s be the objective value of the current

solution and 7, be the objective value of the solution when a facility is temporarily
added to an unoccupied site u. Assume that US is the set of all unoccupied sites
and u € US. Note that when a facility is located at u, then a reallocation of the
customers who are now closer to the newly opened facility than their current facility
(which becomes the second closest) is made. After the reallocation step the objective
value r,, is calculated and the difference in the objective value is then equal to 7, — s.
This procedure is repeated for all unoccupied sites and a facility is located at the site

Umax = max {(r, — s), u € US}.

4.4.1.2. Random Add(RA). Randomly choose an unoccupied site u where u € US

and locate a facility in the site u.

4.4.2. Drop move

Drop moves are employed to close an open facility.

4.4.2.1. Drop by Second Closest(DSC). Let z be the objective value of the solution

when a facility located at site o is temporarily deleted. And customers allocated to
this facility, are reallocated to the second closest facility. Assume that OS is the set
of sites where there are facilities already located and o € OS. After the reallocation
step the objective value zp is calculated and the difference in the objective value is now
equal to s — zg. This procedure is repeated for all occupied sites and the facility which

is located at Omi, = min {(s — zp),0 € OS} is dropped.
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We have to emphasize that generally an increase is expected in the add-by-second-
closest move and a decrease is expected in the drop-by-second-closest-rule. However
in our case there are costs in the objective function, and opening a facility may have
negative effect if the total costs of opening that facility is greater than the contribution
(captured market share) of that facility. Also dropping a facility may have a positive
effect because of the same reason. This situations may appear if a facility is located at a

site which is too far away from customers or in the presence of market cannibalization.

4.4.2.2. Random Drop(RD). Randomly choose an already located facility at site o

where 0eOS and drop that facility.
4.4.3. Swap Moves

If a p-median version of the problem is desired to be solved then employing only

the swap moves in the simulated algorithm will be beneficial. It consists of 3 steps:

1) Swap a level-1 facility: Randomly choose a level-1 facility located at site o
from the set OS. Also choose an unoccupied site v randomly from the set US. Move
the level-1 facility from o to u.

2) Swap a level-2 facility: Randomly choose a level-2 facility located at site o
from the set OS. Also choose an unoccupied site u randomly from the set US. Move

the level-2 facility from o to u.

3)Exchange: Choose an existing level-1 facility, and level-2 facility randomly, then

exchange their locations.
4.5. Simplex Search Algorithm

When both types of facilities are opened in the outer loop, then the optimization

of two continuous decision variables are required: A; the attractiveness variable of
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level-1 facilities, and A, the attractiveness variable of level-2 facilities.

If one has to find optimal values of more than one continuous variables, then
simplex search used for unconstrained optimization is an appropriate algorithm. It
was first proposed by Nelder and Mead (1965). However we employ a revised simplex
search algorithm as described by Humphrey and Wilson (2000).

Since we have two unknown variables, the simplex is a triangle. Initially three
vertices of the triangle should be determined. It can be done randomly or using some
criteria. For our problem the first coordinates of the vertices, which represent the
attractiveness variable of a level-2 facility (As), are chosen randomly from the interval
[0, wC Ay] where w is a predetermined coefficient and C' A, is the level-2 attractiveness
value of competitor. Level-1 attractiveness values are chosen randomly from the interval
[0, A2]. We have to underline that these intervals are determined only for initialization
and it does not mean that the final values of attractiveness of each level will be in this

interval.

The algorithm starts by calculating the objective values for each vertex (in the
outer loop locations of the facilities are already found) and the simplex is sorted from
the best value (largest) to worst value (smallest). The main idea is then changing the
worst vertex to a better one by using some procedures namely: reflection, expansion,

contraction.

The algorithm is repeated until one of two stopping conditions are satisfied: (i)
The difference between the edges in the simplex are smaller than a predetermined
tolerance number. (i) There is not a convergence but the number of iterations made

exceeds a certain limit. In this case, a local maximum cannot be found.
4.6. Fibonacci Search Algorithm

If only one type of facilities are opened in the outer loop (assume level-1 facilities

are opened), then we only need to find the optimal value of A; since A, will definitely
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be zero. In other words, an optimization of one variable is required.

Fibonacci search is an appropriate algorithm for our purpose. It is a line search
procedure which has the aim of maximizing a function 8 over a closed bounded interval
([thq, o4] for iteration g). Only in the first iteration two functional evaluations are made
and then at each iteration one evaluation is performed. The reduction of the interval

varies from one iteration to another. The algorithm is based on Fibonacci sequence

{F,} where

Fv+1=Fv+F_1 'U=1,2, .....
F0=F1=1

Unlike other algorithms, Fibonacci search procedure requires the total number
of observations to be predetermined. This is because at each reduction of the interval,
Fibonacci numbers, which depend on the total number of observations (w) are used.
Hence w should be chosen such that F, > (o1 — 41)/¢ where ( is the final length of
the interval. We have to emphasize that as an initial interval ¥; = 0 and o7 = QCA,

is assumed where € is a predetermined coefficient (Bazaraa et al., 2005).

Both Fibonacci search and simplex search algorithms are used for unconstrained
optimization. However for attractiveness variables we have constraints (3.20) and
(3.21). For the non-negativity constraint the Fibonacci search algorithm is not an
issue since the interval from where optimal solution is found, is predetermined. So
fixing the left side of the interval by zero overcomes the problem. However for the
Simplex search algorithm, a modification is handled to find non-negative values of
attractiveness. If the modification is not made, it is possible to find negative attrac-
tiveness values because in the objective function there exists total attractiveness costs
of opening a chain and this term is subtracted from the total captured market share.
If the attractiveness values are negative, the total cost of opening a chain will bring
a positive contribution to the objective value while the total captured market shafe

will be negative. Moreover, if the absolute value of the negative effect of the total
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captured market share is less than the positive effect of total unit attractiveness costs,
then the algorithm will assign negative values to attractiveness. Hence a modification

is required.

Constraint (3.20) can be satisfied by using appropriate fixed costs and unit at-
tractiveness costs. Therefore, no modification is made for this constraint. Only costs
are chosen carefully. Even if a solution in which A; > A, was obtained, it would just

be infeasible and would not be taken into account.
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5. Computational Results

In the following sections, we present the results of our computational experiments

performed by using two different strategies: SASCAD and SARAD.
5.1. Experimental Setup

Since the model is sensitive to the parameters, several test problems have been
generated. The parameters are investigated in two levels and all combinations of dif-

ferent levels are taken into account.
The problem size is handled in three levels:
(i) 20-customer problem
(ii) 50-customer problem
(iii) 100-customer problem

As mentioned earlier, customer sites are also potential sites for opening facilities.
Hence in a 20-customer problem n = m = 20, in 50-customer problem n = m = 50
and in 100-customer problem n = m = 100. The coordinates of the potential sites
which are also customer sites are generated randomly. The customers and the sites are
located in the two-dimensional Euclidean plane. The buying power of each customer
BP;, is randomly generated from the interval [1, 50] hence buying powers are uniformly

distributed between 1 and 50.

For each problem size, 32 problems are created in which the following parameters
all have two levels: Number of level-1 facilities that belong to competitor (NL1),
number of level-2 facilities that belong to competitor (INVL2), locations of competitor’s

facilities (Comp.’s Loc.), fixed costs of opening facilities (fx), unit attractiveness cost
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(uay) of each level of facilities. For a better understanding, the tables below are used
to illustrate the design of experiments. Here S € {20,50,100} where 20 represents

20-customer problemetc.

Table 5.1. Experimental Design for NL1 =2, NL2 = 2

Prob. Comp.’s
No Loc. i | v
S.1 1 L|L
S.2 1 L| H
5.3 1 H| L
S.4 1 H| H
S.5 2 L| L
S.6 2 L| H
S.7 2 H| L
S.8 2 H| H

Table 5.2. Experimental Design for NL1 =2, NL2 =1

Prob. Comp.’s

No Loc. i | a

5.9 1 L| L
S.10 1 L| H
S.11 1 H| L
S.12 1 H| H
S.13 2 L| L
S.14 2 L| H
S.15 2 H| L
S.16 2 H| H

The locations of competitor’s facilities are chosen randomly from the potential
sites. However the locations of competitor’s facilities have a strong effect on the op-
timal solution. Hence for the first four problem locations of competitors’ facilities are

fixed. 1 represents the first locations of facilities. We change the locations of competi-
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tors’ facilities for the second four problems. 2 represents the second locations of the
facilities. The fixed costs of opening facilities are determined by trying different values
and observing the behavior of the model. Here L means “low” and H means “high ”.

Unit attractiveness costs are also obtained by trial.

Table 5.3. Experimental Design for NL1 =1, NL2 = 2

Prob. Comp.’s
No Loc. i | v
S.17 1 L| L
S.18 1 L| H
S.19 1 H| L
S.20 1 H| H
S.21 2 L| L
S.22 2 L| H
S.23 2 H| L
S.24 2 H| H

Table 5.4. Experimental Design for NL1=1,NL2=1

Prob. Comp.’s
No Loc. e | v
S.25 1 L| L
S.26 1 L| H
S.27 1 H| L
S.28 1 H| H
S.29 2 L| L
5.30 2 L| H
S.31 2 H|{ L
S.32 2 H| H
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5.2. Comparison of SASCAD and SARAD

Now we would like to declare the values of the parameters that are used in the
algorithm before comparing the results of them.

Table 5.5. Parameters in Simulated Annealing Algorithm

max _no_imp | intem | coef | improcrt | M

5} 200 0.7 |0.05 1000000

Table 5.6. Parameters in Simplex Search Algorithm

alB |v|lp |w
0520018

Table 5.7. Parameters in Fibonacci Search Algorithm

¢ €
0.005 | 0.1

Table 5.8. Parameters in the model

A CA; | CA,
2110 20

Deciding on the initial temperature is a challenge. Normally in SA algorithm, the
initial temperature is determined by choosing an initial probability and finding Ay,

as described below:

Ag=9,-0 a=12.v (5.1)
where
¥, = objective value of existing solution,
U/ = objective value of new solution,
v = total number of observations,
A, = difference between the objective values of new and existing solutions,

Aug = average difference between objective values of new and existing solutions.
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A,
Dgyg = —* (5.2)
The probability of accepting worse solutions:
pr — e—Aavg/intem (53)

Once the probability is chosen, then the initial temperature is calculated as:

Ac::vg

intem = W

(5.4)

The new solution is found by neighborhood search from the existing solution. For
our algorithm these are add, drop and swap operators. However, we do not employ this
procedure while deciding on the initial temperature. Since the algorithm includes add
and drop operators, values of A,’s will not be close to each other. The reason of this is
the cannibalization effect. At the beginning when there is no facility opened, opening
a facility will bring a large contribution to the objective value whereas when there are
a lot of facilities already existing, opening a facility will bring a small contribution.
It may even be expected that opening a facility may cause a negative effect on the
objective value. Hence finding an average difference will not be meaningful since the

deviation will be large. The initial temperature is chosen by trial and error approach.

Since we mainly focus on hierarchical gross markets, it is appropriate to take
the value of A as 2. In the literature it is advised to choose a value from the interval
[2,2.5] for grocery stores (B.ell et al, 1998). The parameters given above are fixed
ones for all problem sizes. The rest of the parameters change for each problem size

(fx, uag, max _iter, max _initial).
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We would like to mention that the costs have an effect on the optimal solutions.
If too high fixed costs or unit attractiveness costs were set, then the model would try to
open as less facilities as it could with low attractiveness values. It would even choose
not to open any facilities if the total cost of constructing a chain exceeds the total
captured market share. If the costs were very low, then the model would tend to open
too many facilities with very high attractiveness values. Hence we try to choose the
values of costs such that the number of facilities and their attractiveness values can be

realistic.

In the event of having low costs, the number of possible solutions would be ex-
tremely high. Too many trade-off scenarios may appear. For instance, it may be chosen
to open too many facilities with low attractiveness values in order to minimize the dis-
tances between facilities and customers. Or it may be preferred to open only a few
facilities with high attractiveness values. Furthermore deciding on the number of each
level of facilities to be opened would be challenging hence the probability of finding
the optimal solution would dramatically decrease. In fact the most difficult part of the

solution procedure is deciding on the number of each level of facilities to be opened.

5.2.1. 20-customer Problem

Here we compare SASCAD with SARAD in 20-customer problem. The parame-

ters that change for each problem size are:

Table 5.9. Parameters for 20-customer problems

max _iter | max _initial

50 9

for 20-customer problem. And the costs are:

The maximum objective values (T"NP*), and CPU times which are obtained by

employing two strategies are:
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Table 5.10. Costs for 20-customer problems

fi| fa | ua; | ua

L2060 |1 3
50 | 150 | 3 9

Table 5.11. Results and Comparison of SARAD and SASCAD for NL1 =2, NL2=2

(n = 20)
Prob. | CPU by CPU by
o, TNPispap | TNP§sscap | Joimpr | SARAD | SASCAD
(sec) (sec)
20.1 361.05 361.05 100.00 41 114
20.2 180.65 192.06 94.06 71 148
20.3 254.62 - 254.62 100.00 33 109
20.4 55.68 55.68 100.00 58 136
20.5 358.17 422.55 84.76 61 129
20.6 210.56 252.05 83.54 57 171
20.7 264.24 328.00 80.56 44 137
20.8 90.06 132.36 68.04 44 165

Percent improvements obtained by SARAD is calculated as:

TNPsarap

%impr = ———r
T = TN Psascap

100 (5.5)

It is seen that in most of the problems SARAD obtains the same results as

SASCAD does while taking a relatively small CPU time.

It is observed that for the problem 20.18 SARAD results even with a better
objective value that SASCAD. However in a few problems SASCAD gives better results
than SARAD but the difference is negligible.
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Table 5.12. Results and Comparison of SARAD and SASCAD for NL1 =2, NL2=1

(n = 20)
Prob. CPU by CPU by
No. TNP3upap | TNPigscap | 7impr | SARAD | SASCAD
(sec) (sec)
20.9 551.43 551.43 100.00 43 116
20.10 409.21 423.91 96.53 58 135
20.11 453.64 453.64 100.00 40 129
20.12 276.57 276.57 100.00 98 138
20.13 461.94 461.94 100.00 o4 139
20.14 263.70 272.89 96.63 59 157
20.15 359.86 359.86 100.00 50 140
20.16 160.87 160.87 100.00 80 157

Table 5.13. Results and Comparison of SARAD and SASCAD for NL1 =1, NL2 =2

(n =20)
brob. CPU by CPU by
o TNP:srup | TNPissonp | %impr | SARAD | SASCAD
(sec) (sec)
20.17 486.11 499.84 97.25 o7 122
20.18 372.38 371.96 100.11 96 162
20.19 384.89 384.89 100.00 59 134
20.20 230.13 230.13 100.00 106 172
20.21 -386.64 386.63 100.00 44 120
20.22 226.43 226.43 100.00 62 173
20.23 286.82 286.82 100.00 44 133
20.24 102.90 175.68 58.57 .65 151

For all problems SARAD is faster than SASCAD. In 21 problems the objective
values of SARAD overlap with the objective values of SASCAD and for one problem
SARAD is better than SASCAD.
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Table 5.14. Results and Comparison of SARAD and SASCAD for NL1=1, NL2=1

(n = 20)
Prob. CPU by CPU by
No. TNPspap | TNP3scap | %impr | SARAD | SASCAD
(sec) (sec)
20.25 604.33 604.33 100.00 48 124
20.26 464.62 464.62 100.00 63 148
20.27 514.33 514.33 100.00 o7 123
20.28 361.86 361.86 100.00 91 154
20.29 476.64 486.91 97.89 44 115
20.30 296.23 296.23 100.00 73 178
20.31 385.90 385.90 100.00 41 136
20.32 192.99 192.99 100.00 54 154

5.2.2. 50-customer Problem

We compare the results of SASCAD with SARAD in 50-customer problem. The

values of the parameters and costs that are used in 50-customer problem are listed

below. The reason of decreasing the number of maximum initial solutions is the time

constraint. The run times of the programs exponentially increase as the problem size

increases. The costs are also adapted to 50-customer problem because the number of

customers increase from 20 to 50 which causes an increase in the total market share.

Table 5.15. Parameters for 50-customer problems

Table 5.16. Costs for 50-customer problems

max _iter

max _initial

80

4

f 1 f 2 uay | uaz
L 12075 2 8
H|50|200](3 12
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Table 5.17. Results and Comparison of SARAD and SASCAD for NL1 =2, NL2 =2

(n = 50)
b CPUby | CPU by
o, TNPgppap | TNPSpscap | Toimpr | SARAD | SASCAD
(sec) (sec)
50.1 978.75 981.62 99.71 337 2963
50.2 809.67 823.70 98.30 307 3715
50.3 853.75 853.75 100.00 207 2297
50.4 679.30 679.30 100.00 288 2853
90.9 888.58 888.58 100.00 514 2181
50.6 717.02 717.02 100.00 479 2779
50.7 763.58 763.58 100.00 246 2338
50.8 592.02 592.02 100.00 643 3019

The results are similar with the results of 20-customer problem, furthermore if
one pays attention to the CPU times, it will be seen that the difference between the run
times of two strategies significantly increases. In 50-customer problem SARAD obtains
the same objective values with SASCAD in 21 problems out of 32. It is seen that the
quality of solutions obtained by SARAD is not affected by the size of the problem.
Considering the results shown in all of the tables it is concluded that SASCAD is more
successful than SARAD. In fact it is an expected result since the SASCAD employs
add-by-second-closest, drop-by-second-closest rules. In SASCAD, whenever a solution
is sent to one of these operators, the add/drop operator tries to make an improvement
in the objective value. The add operator opens a facility at an unoccupied site which
has the highest contribution to the objective value. Even if each unoccupied site has
a negative effect in the objective value, add-by-second-closest operator opens a facility
at a site which brings the least negative effect. The same principle is also valid for the
drop-by-second-closest operator. However in SARAD making an improvement is not
obligated since the strategy uses random-add, random-drop rules. The aim of these

operators is just searching the solution space, not improving the current solution.
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Table 5.18. Results and Comparison of SARAD and SASCAD for NL1=2, NL2 =1

(n = 50)
_— CPU by CPU by
o | TNPsanan TNPiasoap | %impr | SARAD | SASCAD
(sec) (sec)
50.9 1441.30 1436.30 100.35 523 2397
50.10 1311.02 1311.02 100.00 253 2553
50.11 1316.30 1316.30 100.00 303 3727
50.12 1186.02 1186.02 100.00 262 3296
50.13 1141.79 1165.67 97.95 356 2760
50.14 988.39 1033.04 95.68 409 2601
50.15 1016.79 1068.61 95.15 580 2149
50.16 863.39 917.88 94.06 243 2662

Table 5.19. Results and Comparison of SARAD and SASCAD for NL1=1, NL2 =2

(n = 50)
Prob. CPU by CPU by
. TNP:apap | TNPiasoap | %impr | SARAD | SASCAD
(sec) (sec)
50.17 1257.61 1257.61 100.00 240 2467
50.18 1105.08 1105.08 100.00 390 2870
50.19 1132.61 1132.61 100.00 332 2628
50.20 980.08 980.08 100.00 286 2519
50.21 915.69 918.00 99.75 381 2199
50.22 735.88 747.47 98.45 263 2574
50.23 793.00 793.00 100.00 331 2477
50.24 622.47 622.47 100.00 217 2703

On the other hand the CPU times of SARAD are significantly less than the CPU
times of the SASCAD. The factors which cause this significant difference are also the
add/drop operators. Firstly we would like to investigate SASCAD. Assume we have v
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Table 5.20. Results and Comparison of SARAD and SASCAD for NL1=1, NL2 =1

(n = 50)
Drob, CPU by CPU by
No. TNPi pap | TNPgy504p | Joimpr | SARAD | SASCAD
(sec) (sec)
50.25 1303.19 1303.19 100.00 234 2588
50.26 1142.64 1146.56 99.66 156 2542
50.27 1178.19 1178.19 100.00 156 2559
50.28 1021.56 1021.56 100.00 203 2421
50.29 1237.64 1237.64 100.00 194 2679
50.30 1077.32 1077.41 99.99 226 2664
50.31 1112.64 1112.64 100.00 214 2012
50.32 952.41 952.41 100.00 269 2873

unoccupied sites and (n — v) occupie‘d sites. In the add-by-second-closest operator, v
possible solutions are tried one by one to decide where to open a facility. In one trial
after a location is selected, a Fibonacci search or simplex search algorithm is employed
to find the new attractiveness values of the facilities and to calculate the objective
value. This procedure is repeated for v times and the best location to open a facility is
then found. The drop-by-second-closest operator also investigates each of the (n —v)

occupied sites for closing a facility.

However in SARAD, both the add operator and the drop operator randomly
choose a site to open a facility or to close a facility. So only one Fibonacci or simplex
search algorithm is applied and one objective value is calculated. We can declare
that add-by-second-closest operator is almost v times slower than randomly add, and
drop-by-second-closest operator is almost (n — v) times slower than the randomly drop
operator. We use the word “almost” because these conclusions are not strict since
Fibonacci search and simplex search algorithms are both based on convergence hence

CPU times of them may deviate. It is obvious that this effect will be stronger as the
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problem size (n) increases. As it is seen above the differences between CPU times of

two strategies are negligible in 20-customer problem, whereas the differences between
CPU times of SASCAD and SARAD significantly increase when the problem size is
changed to 50 from 20.

5.3. Results of SASCAD

In this section you see best (max) objective values T'N P*, the number of facilities

opened and the attractiveness values for the best solution, average of max _initial

number of solutions and their standard deviations which are found by using SASCAD.

Table 5.21. Results of SASCAD for NL1 =2, NL2 =2 (n = 20)

Prob. TNPSssons No.of No.of A A CPU Ave. | Std. Dev.

No. Lev-1 | Lev-2 (sec)

20.1 © 361.05 1 1 22.96 | 48.18 114 | 351.14 17.84
20.2 192.06 2 2 3.11 | 6.80 148 183.68 8.91
20.3 254.62 0 1 - |59.09| 109 |237.64| 49.16
20.4 55.68 0 1 - 1097 | 136 52.41 5.35
20.5 422.55 1 1 23.40 | 52.38 129 | 405.68 32.90
20.6 252.05 1 1 9.93 | 8.33 171 | 238.41 19.47
20.7 328.00 0 1 - 60.66 137 | 304.22 60.79
20.8 132.36 0 1 - 11.03 165 128.65 7.37




Table 5.22. Results of SASCAD for NL1 =2, NL2 =1 (n = 20)
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Prob. TNP oo No.of | No.of A 4, CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
20.9 551.43 1 1 21.51 | 35.74 | 116 | 549.44 3.16
20.10 423.91 1 2 5.70 | 6.09 135 | 412.22 10.04
20.11 453.64 0 1 - 46.35 129 | 453.64 0.00
20.12 276.57 0 1 - 13.47 | 138 | 273.08 | 9.09
20.13 461.94 1 1 27.09 | 44.51 139 | 452.43 14.25
20.14 272.89 2 2 4.07 | 5.86 157 | 262.97 9.32
20.15 359.86 0 1 - 54.34 | 140 | 359.32 1.61
20.16 160.87 0 1 - 21.42 | 157 | 1583.19 23.05
Table 5.23. Results of SASCAD for NL1 =1, NL2 =2 (n = 20)
Prob. TNPLisonn No.of | No.of A, A, CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
20.17 499.84 1 2 6.41 | 16.97 | 122 | 493.19 7.45
20.18 371.96 1 2 499 | 6.17 162 | 355.50 21.46
20.19 384.89 0 1 - 4935 | 134 | 381.70 9.56
20.20 230.13 0 1 - 14.43 172 | 229.61 1.54
20.21 386.63 1 1 27.06 | 46.87 | 120 | 365.70 21.50
20.22 226.43 2 1 453 | 6.71 173 | 227.72 2.56
20.23 286.82 0 1 - 57.78 133 | 264.15 68.02
20.24 175.68 0 1 - 21.57 151 90.68 45.08




Table 5.24. Results of SASCAD for NL1 =1, NL2 =1 (n = 20)
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Prob. TNPEiconn No.of | No.of A, 4, CPU Ave, | Std. Dev.
No. Lev-1 | Lev-2 (sec)
20.25 604.33 0 1 - 42.15 124 | 591.50 19.39
20.26 464.62 2 1 2.77 | 13.48 148 | 449.56 16.87
20.27 514.33 0 1 - 42.15 123 | 503.52 31.55
20.28 361.86 0 1 - 17.28 154 | 361.86 0.00
20.29 476.64 1 1 26.22 | 42.68 115 | 478.73 8.64
20.30 296.23 1 1 10.77 | 17.08 | 178 | 293.16 4.37
20.31 385.90 0 1 - 52.57 | 136 | 382.10 6.58
20.32 192.99 0 1 - 20.89 1564 | 172.30 33.10
Table 5.25. Results of SASCAD for NL1 =2, NL2 =2 (n = 50)
Prob. TNPSisons No.of | No.of A 4, CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
50.1 981.62 1 1 23.14 | 43.58 | 2963 | 962.94 35.04
50.2 823.70 1 1 14.77 | 30.34 | 3715 | 788.46 42.55
50.3 853.75 0 1 - 15232 2297 |846.10| 10.30
50.4 679.30 0 1 - 136.67| 2853 |632.38| 59.19
50.5 888.58 0 1 - 51.57 | 2181 | 869.11 15.16
50.6 717.02 0 1 - 13592 2779 |677.15| ©52.56
50.7 763.58 0 1 - | 5157 | 2338 | 73589 | 55.39
50.8 592.02 0 1 - 35.92 | 3019 | 587.20 8.34




Table 5.26. Results of SASCAD for NL1 =2, NL2 =1 (n = 50)
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Prob. TNPlisons No.of | No.of A 4, CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)

50.9 1436.30 0 1 - 39.71 | 2397 | 1423.97 14.76
50.10 1311.02 0 1 - 28.31 | 2553 | 1308.11 5.83
80.11 1316.30 0 1 - 37.88 | 3727 | 1207.10 | 100.23
00.12 1186.02 0 1 - 28.31 | 3296 | 1166.92 35.34
50.13 1165.67 3 1 10.28 | 34.80 | 2760 | 1145.93 23.58
50.14 1033.04 0 1 - 30.94 | 2601 | 1008.59 19.64
50.15 1068.61 0 1 - 45.17 | 2149 | 1068.61 0.00
50.16 917.88 0 1 - 31.74 | 2662 | 878.54 78.67

Table 5.27. Results of SASCAD for NL1 =1, NL2 =2 (n = 50)

Prob. TNPisons No.of | No.of Al o4 | CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)

50.17 1257.61 0 1 - | 45.21 | 2467 | 1256.42 2.38
50.18 1105.08 0 1 - 1 30.90 | 2870 | 1078.79 52.57
50.19 1132.61 0 1 - 145.21 | 2628 | 1132.61 0.00
50.20 980.08 0 1 - 130.90 | 2519 | 974.98 10.20
50.21 918.00 0 1 - (8L.13 | 2199 | 900.82 20.34
50.22 T47.47 0 1 - | 35.85 | 2574 | 734.09 26.77
50.23 793.00 0 1 - | 8L.13 | 2477 | 77251 40.98
50.24 622.47 0 1 - [ 3585 | 2703 587.85 | - 34.81




Table 5.28. Results of SASCAD for NL1 =1, NL2 =1 (n = 50)
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Prob. TNPLiconn No.of No.of A 4 CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
50.25 1303.19 0 1 - | 45.73 | 2588 | 1248.20 | 63.53
50.26 1146.56 0 1 - | 33.87 | 2542 | 1143.85 3.36
50.27 1178.19 0 1 - | 45.73 | 2559 | 1128.16 63.02
50.28 1021.56 0 1 - | 33.87 | 2421 | 1019.83 3.46
50.29 1237.64 0 1 - | 46.86 | 2679 | 1223.00 17.16
50.30 1077.41 0 1 - [ 32.56 | 2664 | 1070.71 13.41
50.31 1112.64 0 1 - 146.86 | 2012 | 1108.55 4.72
50.32 952.41 0 1 - | 32.56 | 2873 | 947.26 8.83




5.4. Results of SARAD

Table 5.29. Results of SARAD for NL1 =2, NL2 =2 (n = 20)
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Prob. TNPran No.of | No.of A, 4, CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
20.1 361.05 1 1 22.79 | 47.92 41 353.26 10.42
20.2 180.65 1 2 5.39 | 7.62 71 160.58 30.79 |
20.3 254.62 0 1 - 59.09 33 254.62 0.00
20.4 55.68 0 1 - 10.97 58 55.51 0.50
20.5 358.17 1 1 26.99 | 55.86 61 351.22 18.26
20.6 210.56 2 1 4.26 | 6.93 57 199.21 16.15
20.7 264.24 0 1 - 66.20 44 264.24 0.00
20.8 90.06 0 1 - 11.39 | 44 90.06 0.00
Table 5.30. Results of SARAD for NL1 =2, NL2 =1 (n = 20)
Prob. TNPiran No.of | No.of 4, 4 CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
20.9 551.43 1 1 22.04 | 35.86 | 43 | 541.19 18.32
20.10 409.21 0 2 - 7.37 o8 397.28 16.29
20.11 453.64 0 1 - |46.35| 40 |421.76 | 49.93
20.12 276.57 0 1 - 1347 | 98 |266.04| 16.29
20.13 461.94 1 1 27.02 | 44.39 54 423.84 42.55
20.14 263.70 1 1 1141 | 17.71 59 | 248.52 17.03
20.15 359.86 0 1 - | 5434 50 | 359.32 1.61
20.16 160.87 0 1 - | 2142 80 135.18 |  40.08




Table 5.31. Results of SARAD for NL1 =1, NL2 =2 (n = 20)
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Prob. TNPLynin No.of | No.of A, 4, CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
20.17 486.11 1 2 9.84 | 17.83 57 471.88 19.46
20.18 372.38 1 2 5.57 | 6.17 96 355.11 19.15
20.19 384.89 0 1 - 49.35 99 384.89 0.00
20.20 230.13 0 1 - 14.43 106 | 227.91 4.50
20.21 386.64 1 1 26.63 | 47.11 44 369.95 28.60
20.22 226.43 2 1 4.61 | 6.66 62 205.44 20.17
20.23 286.82 0 1 - 57.78 44 266.85 47.24
20.24 102.90 0 1 - 10.49 65 99.23 12.58
Table 5.32. Results of SARAD for NL1 =1, NL2 =1 (n = 20)
Prob. TNPLnin No.of | No.of A 4 CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
20.25 | 604.33 0 1 - 42.15 48 601.86 4.43
20.26 464.62 2 1 2.71 | 13.61 63 435.53 30.39
20.27 514.33 0 1 - 42.15 o7 489.83 45.41
20.28 361.86 0 1 - 17.28 91 343.67 27.21
20.29 476.64 1 1 25.90 | 47.39 44 464.82 23.01
20.30 296.23 1 1 11.04 | 17.18 73 284.17 13.31
20.31 385.90 0 1 - 52.57 41 385.05 2.53
20.32 192.99 0 1 - 20.89 54 187.92 15.19




Table 5.33. Results of SARAD for NL1 =2, NL2 =2 (n = 50)
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Prob. TNPSiman No.of | No.of A, 4 CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)

50.1 978.75 0 1 - 15232] 337 |973.32 7.64
50.2 809.67 1 1 14.03 | 31.51 307 | 801.00 7.83
50.3 853.75 0 1 - 52.32 | 207 | 84541 11.57
50.4 679.30 0 1 - | 36.67| 288 |658.77| 24.21
50.5 888.58 0 1 - 51.57 | 514 | 879.01 11.24
50.6 717.02 0 1 - | 3592| 479 |707.31 13.37
50.7 763.58 0 1 - | 51.57 | 246 | 761.58 4.00
50.8 592.02 0 1 - 1 3592| 643 |549.69 | 60.15

Table 5.34. Results of SARAD for NL1 =2, NL2 =1 (n = 50)

Prob. TNPS i No.of | No.of Al o4 CPU Avg. | Std. Dev.
No. Lev-1 | Lev-2 (sec)

50.9 1441.30 0 1 - | 37.88 523 1406.49 37.24
50.10 1311.02 0 1 - | 28.31 253 1308.06 3.65
50.11 1316.30 0 1 - | 37.88| 303 | 130456 | 23.48
50.12 1186.02 0 1 - | 2831 262 1184.15 3.74
50.13 1141.79 0 1 - | 47.08 356 1141.49 0.34
50.14 988.39 0 1 - | 32.73| 409 | 940.98 42.37
50.15 1016.79 0 1 - | 47.08| 580 | 1016.79 0.00
50.16 863.39 0 1 - | 32.73 | 243 | 847.69 22.23




Table 5.35. Results of SARAD for NL1 =1, NL2 =2 (n = 50)
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Prob. TN P iman No.of | No.of Al o4 CPU Avg. | Std. Dev.
- No. Lev-1 | Lev-2 (sec)
50.17 1257.61 0 1 - | 45.21 | 240 1182.74 82.76
50.18 1105.08 0 1 - 13090 | 390 |1079.22 30.77
50.19 1132.61 0 1 - | 45.21 332 1127.52 3.81
50.20 980.08 0 1 - [ 3090 | 286 956.33 43.38
50.21 915.69 0 1 - 18377 381 833.46 112.75
50.22 735.88 0 1 - [ 37.85 | 263 702.13 48.40
50.23 793.00 0 1 - | 8113 | 331 789.10 6.35
50.24 622.47 0 1 - | 35.85 217 618.17 5.53
Table 5.36. Results of SARAD for NL1 =1, NL2 =1 (n = 50)
Prob. TNPiynip No.of | No.of Al o4, CPU Ave. | Std. Dev.
No. Lev-1 | Lev-2 (sec)
50.25 1303.19 0 1 - | 45.73 | 234 1291.84 18.82
50.26 1142.64 0 1 - | 31.88 156 1119.61 39.36
50.27 1178.19 0 1 - | 45.73 156 1173.29 6.40
50.28 1021.56 0 1 - 13387 203 1004.50 31.55
50.29 1237.64 0 1 - | 46.86 194 | 1213.34 24.76
50.30 1077.32 0 1 - 13462 | 226 1076.78 1.13
50.31 1112.64 0 1 - | 46.86 | 214 | 1062.67 85.72
50.32 952.41 0 1 - 13256 | 269 952.39 0.04
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As mentioned earlier, CPU times of SASCAD are significantly higher than SARAD.
It is known that the CPU times increase exponentially as the problem size increases
hence for 100-customer problem (n = m = 100) we only perform SARAD. The param-

eters for 100-customer problem are listed below:

Table 5.37. Parameters for 100-customer problems

max _iter | max _initial

80 4

Table 5.38. Costs for 100-customer problems

fi| fa | uay | uay
L {30120 4 12
701280 | 6 20

Table 5.39. Results of SARAD for NL1 =2, NL2 =2 (n = 100)

Prob. . No.of No.of CPU
TNPSARAD Al A2

No. Lev-1 | Lev-2 (sec)

100.1 5656.10 1 1 65.69 | 95.78 1699

100.2 4790.14
100.3 5391.22
100.4 4626.04
100.5 5514.25
100.6 4803.08
100.7 5364.62
100.8 4668.72

3 - | 2430 | 964
1 |68.56| 95.56 | 841
1 | 4343 66.76 | 1052
1 - | 123.27| 2033
2
1
1

30.82 | 35.26 | 1036
64.39 | 99.90 | 1020
50.63 | 66.66 | 1368

= [ O | =




Table 5.40. Results of SARAD for NL1 =2, NL2 =1 (n = 100)

Prob. No.of | No.of CPU

No. TN Fanap Lev-1 | Lev-2 & o (sec)
100.9 6400.50 1 1 49.68 | 99.15 779
100.10 5579.79 0 1 - 79.52 1448
100.11 6163.48 0 1 - 110.45 | 992
100.12 5419.79 0 1 - 79.52 966
100.13 6449.69 3 1 2748 | 71.43 1086
100.14 5859.82 1 1 50.95 | 56.35 | 1115
100.15 6318.40 0 1 - 100.23 807
100.16 5630.48 1 1 27.84 | 62.42 990

Table 5.41. Results of SARAD for NL1 =1, NL2 =2 (n = 100)

Prob. No.of | No.of CPU
No. TN Feanap Lev-1 | Lev-2 A A (sec)
100.17 6198.83 0 1 - 1 109.22 | 829
100.18 5472.70 0 - | 76.65 1143
100.19 6038.83 0 1 - 1 109.22 | 1639
100.20 5312.70 0 1 - | 76.65 1546
100.21 6281.39 0 1 - | 96.63 906
100.22 5633.79 0 1 - | 6742 985
100.23 6121.39 0 1 - | 96.63 896
100.24 5475.39 0 1 - | 68.64 950
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Table 5.42. Results of SARAD for NL1 =1, NL2 =1 (n = 100)

Prob. No.of | No.of CPU
No. N anan Lev-1 | Lev-2 A A (sec)
100.25 6506.90 0 1 - 109.47 | 1118
100.26 5771.32 0 - 78.46 | 2279
100.27 6346.90 0 1 - 109.47 | 941
100.28 5611.32 0 1 - 78.46 1110
100.29 6210.81 1 1 76.59 | 93.43 | 940
100.30 9509.26 1 1 64.79 | 65.83 1521
100.31 6223.42 1 1 83.05 | 90.55 849
100.32 5357.57 1 1 51.78 | 69.59 | 967
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6. CONCLUSIONS and RECOMMENDATIONS FOR
FUTURE RESEARCH

6.1. Summary and Conclusions

In this work, a competitive and hierarchical facility location problem has been
studied. Because of the non-convexity of the objective function, standard solution tech-
niques fail for these problems. Therefore some heuristics approach have been developed

and tested on some test instances.

In the first strategy SASCAD, add-by-second-closest and drop-by-second-closest
rules are applied for neighborhood search. The results are efficient however the strategy
is time consuming. For small-sized problems CPU times are acceptable but as the size
of the problem increases, CPU times increase dramatically. Random add-drop rules
are employed in the second strategy namely SARAD. It was known that SARAD does
not intend to improve the current solution in opposition to SASCAD. On the other

hand it was expected that SARAD would be significantly faster than SASCAD.

In three different problem sizes, many instances are generated by defining different
levels for number of competitor’s facilities, the locations of competitors facilities, fixed
costs of each level of facilities and unit attractiveness costs of each level of facilities.
It is observed that in most of the experiments, SARAD returns results that are as
good as the results of SASCAD. Moreover CPU times of SARAD are significantly
less than CPU times of SASCAD. For small problem sizes both strategies are efficient
and appropriate to employ whereas for large problem sizes, it is more sensible to use
SARAD as the solution procedure. Two search algorithms are embedded in both
algorithms to optimally find the attractiveness values. Revised Nelder Mead Simplex

Search algorithm and Fibonacci Search algorithm are both convergence algorithms.
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6.2. Recommendations for Future Research

Since it is known that location of competitive and hierarchical facilities is a rarely

studied problem, researchers may easily extend the problem through many directions.

We assume that the number of each level of facilities to be opened are not prede-
termined. For simplification, a pg median version of this work can be studied. In this

way utilizing only the swap moves might be efficient.

The continuous attractiveness variables are assumed to be a weighted sum of
attributes, however we do not deal with the attributes one by one. As a future work
it can be interesting to find the values of different attributes one by one. Furthermore

the weights of the attributes may vary for each customer site.

From the hierarchical point of view, we develop a successively inclusive service
hierarchy. Researchers may convert this assumption to a successively exclusive service

hierarchy by taking private schools, some private hospitals, etc. into account.

To capture a more realistic approach, treating the costs as functions of locations

may be beneficial.

Finally to see the effect of using a different heuristic algorithm, TS can be em-
ployed as a solution procedure for the same mathematical model. It is known that T'S

algorithm is a widely used method in facility location problems.



APPENDIX A: PSEUDOCODE OF SIMULATED

Notation

initial

max _initial

no.improvement =

MaT-No-1mp
iter
maz_iter
obj-cur
obj_new

obj best
obj_best_imp
loc_cur
aval_cur
loc.new
aval_new
loc_best
aval_best
loc_best_imp
aval_best_imp
ntem

coef

temp
tmpro_crt

T (temp)
prev_best_imp

M

ANNEALING ALGORITHM

= number of different initial solutions

= maximum number of different initial solutions
number of non improvements

= maximum number of non improvements

= number of iterations preformed

= maximum number of iterations

= objective value of current solution

= objective value of new solution

= Dbest objective value among max_iter iterations
= best objective value among max no_imp iterations
= facility locations of the current solution

= attractiveness values of the current solution
= facility locations of the new solution

= attractiveness values of the new solution

= facility locations of obj_best

= attractiveness values of obj_best

= facility locations of the obj_best_imp

= attractiveness values of the obj_best_imp

= initial temperature

= update coefficient of the temperafcﬁre

= counter for temperature

= improvement criterion

= temperature at the tempth iteration

= the objective value of the previous improvement cycle

= a sufficiently large number
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Simulated Annealing algorithm
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Input:

cde beeinydij, B Pk, fryuar, CAc

Determine the parameters:
coef,max_no_tmp,maz_iter intem,impro_crt
initial = '1

While (initial < maz_initial) do

Initialization

Generate an initial solution loc_cur, find aval_cur
calculate obj_cur by using SIMPLEX SEARCH
Set

obj_best_imp := obj._cur

loc_best_imp := loc_cur

aval_best_imp := aval_cur

Set

no_improvement := 1,temp := 1,T(temp) = intem



While(no_improvement < maz_no-imp) do

Set obj_best := —M

Set iter :=1

While(iter < max _iter) do

Choose an operator randomly to determine loc_new

/* Among the operators listed below: */

1) Add level-1

2)Add level-2

3)Drop level-1

4)Drop level-2

5)Swap

If loc_new contains both level-1 and level-2 facilities then

GoTo SIMPLEX SEARCH to find aval_new

else

GoTo FIBONACCI SEARCH to find aval_new

Endif

7



Calculate obj_new

If obj_new > obj_cur then

obj_cur = obj_new

loc_cur = loc_new

aval_cur = aval_new

If obj_new > obj_best then

obj_best := obj_new

loc_best = loc_new

aval_best = aval_new

Endif

else

SET

obj_cur = obj_new

loc.cur = loc_new

aval.cur := aval_new

WITH PROBABILITY e(~(0bj-cur—obj.new)/T (temp))
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endif

iter .= iter + 1

End While

If obj_best > obj_best_imp then

obj _best_imp = obj_best

loc_best_imp := loc_best

aval_best_imp := aval_best

Endif

T (temp + 1) := T'(temp) * coef

temp = temp+1

1f (obj_best_imp — prev_best_imp)/(prev_bestimp + €) < impro_crt then
.no_improvement = no.z'mprovemeni + 1
else

no_improvement = 1

endif

prev_best_imp = obj_best_imp
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End while

initial = initial + 1

End while
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