
GAIA: A GENERAL APPLICATION INSTRUCTION SET and ARCHITECTURE

EXPLORER

by

Ayşe Gaye Soykök

BSc, in Computer Engineering, Istanbul Technical University, 2004

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2008

ii

GAIA: A GENERAL APPLICATION INSTRUCTION SET and ARCHITECTURE

EXPLORER

APPROVED BY:

Assoc. Prof. Arda Yurdakul

(Thesis Supervisor)

Prof. Günhan Dündar

Assoc. Prof. Can Özturan

DATE OF APPROVAL: 24.04.2008

iii

ACKNOWLEDGEMENTS

First, I would like to thank my thesis supervisor Arda Yurdakul for her insight

into the research conducted, her motivational support and for her patience for the times

I needed a break to sort the work out.

I also would like to thank Can Özturan and Günhan Dündar for their patience

and feedback and their willingness to spend time being examiners of my thesis.

I thank people in Boğaziçi University offering such a wide range of classes that I

could find many of the topics I am interested and curious in, giving an insight one by

one.

I thanks my friends Hilal Akay and Pınar Karagülle for their help on this thesis

to sort some parts out. I think they deserve a big credit for being so motivational and

being so smart. I thank my dearest friend Neşe Alyüz and Necmiye Genç for helping

me get hold of the thesis text style. I thank Demet Nar for being there. I am so happy

to even get to know you ladies. And I thank Neşe for carrying my precious guitar all

way long.

I thank my family for their patience in the times I was not even reachable, for

their support and trust. And finally for the values they have taught me.

I thank also to the unknown ”bus driver” who will never know he created such a

basis, for his sincere, unexpected wish making me hold on with the words when things

did not go so smooth.

This thesis has been supported in part by TUBITAK, the Turkish Foundation

of Science and Technology, under Kariyer Research Project Program, under project

number 104E038.

iv

ABSTRACT

GAIA: A GENERAL APPLICATION INSTRUCTION SET

and ARCHITECTURE EXPLORER

Embedded Systems are dedicated to a task for their life time with no or slight

modifications. These systems are necessary in a wide range of industrial areas from

entertainment industry to cryptography and from house appliances to army equipment.

The emerging of processors with customizable instruction sets and customizable archi-

tectures has enabled the embedded processors to be tailored for the application they

are dedicated to. Tailoring stands for improving incompetent parts of an application

by modifying the processor.

Development of design automation tools have been a new research era for embed-

ded processors. They enable customization either by partial automation which requires

human assistance at varying levels or by full automation.

In this thesis, an automation tool GAIA that selects custom instructions (CI)

and Single Instruction Multiple Data (SIMD) style processing elements (PEs) has been

developed. The system achieves customization by examining the intermediate repre-

sentation (IR) of an application. It is a fuzzy expert system that acts as a voting

mechanism evaluating the attributes of the application components. The work of this

thesis contributes to the stage between the front-end and back-end compilation, with

the aim of assisting back-end compilation at customization process.

v

ÖZET

GAIA: GENEL UYGULAMALAR İÇİN KOMUT SETİ VE

MİMARİ ARAŞTIRICISI

Gömülü Sistemler çalışma süreleri boyunca bir uygulamaya, değişiklik olmadan

ya da ufak değişiklerle adanmış sistemlerdir. Bu sistemler, eğlence sektöründen krip-

tografiye, ev eşyalarından askeri ekipmana kadar geniş bir sektör yelpazesine hizmet

vermektedir. İşlemcilerin uyarlanabilir komut setlerine sahip ve mimarilerinin yapılan-

dırılabilir olması ile birlikte, gömülü sistemlerin atandıkları uygulamaya göre yapılan-

dırılma esnekliği sağlanmıştır. Yapılandırma, uygulamanın yetersiz olan bir kısmını

iyileştirmek için, işlemcide değişikliğe gidilmesi anlamına gelmektedir.

Kullanıcının çeşitli düzeylerde müdahelesini gerektiren yarı otomasyon ya da tam

otomasyon ile yapılandırma sağlayan araçlar, gömülü sistemler sektöründe yeni bir

araştırma dalı ortaya çıkarmıştır.

Bu tez, yapılandırılabilir komut ya da Tek Komut, Çoğul Veriyolu (TKÇV) stili

işlemci elemanlarını, gömülü sistemin ara gösterimini inceleyerek seçen bir araç sun-

maktadır. Bulanık uzman sistemi, bir oylama mekanizması olarak kullanılır. Bu tez, ön

derleme ve son derleme safhalarının ortasında yer alarak, yapılandırmada son derleme

safhasına destek olacak şekilde tasarlanmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

1.1. Terminology . 2

1.2. Automation in Customization of Embedded Systems 2

1.2.1. Instruction Set Customization 3

1.2.1.1. Instruction Identification 5

1.2.1.2. Instruction Selection 8

1.2.2. Exploiting Parallelism . 9

1.2.3. Architectures in Customizable Processors 11

1.2.3.1. SISD+CI . 11

1.2.3.2. SIMD . 11

1.2.3.3. VLIW . 11

1.2.3.4. Coarse Grained Architectures 12

1.2.4. Terms that Benefit from Customization 12

1.2.5. Challenges in Customization . 12

1.2.6. History of Fuzzy Logic and Expert Systems in HW/SW Codesign 15

1.3. Motivation and Approach . 16

1.4. Contribution of Thesis . 18

1.5. Outline of Thesis . 18

2. THE DESIGN COMPONENTS OF GAIA 19

2.1. GAIA Expert System (GES) . 20

2.1.1. Matching of Fuzzy Facts . 24

2.1.2. Defuzzification . 27

2.1.3. Platform and FuzzyClips Compilation 28

vii

2.1.4. Operator Nodes as Facts . 29

2.1.5. Control System for GES . 32

2.1.6. Salience for Expert State Machine Control 33

2.2. GAIA Graph Evaluator (GGE) . 33

2.2.1. The CDFG Model . 34

2.2.2. The Graph Input . 37

2.2.3. Boost Graph Library . 38

2.2.4. Finding Recurring SubGraphs in Graphs 40

2.2.4.1. Linearization of the Graph 41

2.2.4.2. Depth of Linearization 42

2.2.4.3. Convexity . 42

2.2.4.4. The Flow of Subgraph Pattern Matching 45

2.2.4.5. SubString Matching Algorithm 45

2.2.5. Parallelity of the Application 48

2.2.5.1. User Indicated Parallelism in Programs 48

2.2.5.2. Vector Parallelism . 49

2.2.5.3. Exploitation of Parallelism in GAIA 49

2.2.5.4. The Difference Between a PE and a CI 50

2.2.6. Node Selection . 50

2.2.7. Graph Traversal Algorithms . 50

2.2.7.1. Critic Path Traveler and Marker 51

2.2.7.2. CDFG String Travelers 51

2.2.7.3. Convexity Checker . 52

2.2.7.4. Loop Inherit Traveler 52

2.2.7.5. Total Time Traveler 52

3. EXPERIMENTS AND RESULTS . 55

3.1. Example: Rijndael Encyption . 55

3.2. Example: Motion Intensity Calculation 59

4. CONCLUSIONS . 62

REFERENCES . 65

viii

LIST OF FIGURES

Figure 1.1. Processor customization overview schema 4

Figure 2.1. GAIA explorer overview schema 21

Figure 2.2. Expert system overview schema 23

Figure 2.3. An example of a new hedge . 24

Figure 2.4. Compositional rule of inference . 25

Figure 2.5. Value (Q) determined by the RHS of the rule 26

Figure 2.6. Value(Q’) determined - min-max inference 26

Figure 2.7. Value(Q’) determined - max-prod inference 27

Figure 2.8. Initial HW membership value of the a node; high-low 27

Figure 2.9. Processed node with HW favoring rules 28

Figure 2.10. Fuzzified node template in expert system 30

Figure 2.11. A Fuzzified node data example . 31

Figure 2.12. FuzzyClips rule example . 32

Figure 2.13. SA model regulation . 35

Figure 2.14. Root-mean-square code . 36

ix

Figure 2.15. Root-mean-square CDFG . 37

Figure 2.16. The Toy CDFG - DFG part . 38

Figure 2.17. The Graph input file examples . 39

Figure 2.18. Cluster of DFG for a3 node . 43

Figure 2.19. Subclusters for a3 node . 43

Figure 2.20. Convexity algorithm . 45

Figure 2.21. String formation system flow . 46

Figure 2.22. Modified Ratcliff/Obershelp algorithm 47

Figure 2.23. String matching matrix example 47

Figure 2.24. Data independent parallel loop . 49

Figure 2.25. CriticPath handlers pseudocode 51

Figure 2.26. CDFG string handlers pseudocode 52

Figure 2.27. Convexity pseudocode . 53

Figure 2.28. LoopInheritTraveler pseudocode 53

Figure 2.29. TotalTimeTraveler pseudocode . 54

Figure 3.1. Rijndael encryption CDFG . 56

x

Figure 3.2. Rijndael - Big pattern favoring method 58

Figure 3.3. Rijndael - High recurrence factor method 58

Figure 3.4. Motion intensity calculator CDFG 60

Figure 3.5. Motion intensity - CI selection . 61

xi

LIST OF TABLES

Table 2.1. Slots of the node template . 31

Table 2.2. Strings formed for a3 node . 44

Table 3.1. Recurring subPattern results for Rijndael 57

Table 3.2. Experiment results for Rijndael encryption 57

Table 3.3. Experiment inputs for motion intensity 59

Table 3.4. Experiment results for motion intensity 61

xii

LIST OF SYMBOLS/ABBREVIATIONS

AI Artificial Intelligence

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction Set Processor

CI Custom Instruction

CDFG Control Data Flow Graph

CRA Coarse Reconfigurable Architecture

COG Center of Gravity

DAG Directed Acyclic Graph

DFG Data Flow Graph

DMA Direct Memory Access

GES GAIA Expert System

GGE GAIA Graph Evaluater

GPP General Purpose Processor

HDL Hardware Description Language

IP Intellectual Property

ISA Instruction Set Architecture

LHS Left Hand Side

OS Operating Systems

MIMD Multiple Instruction Multiple Data

RHS Right Hand Side

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

VHDL Vhsic Hardware Description Language

VLIW Very Long Instruction Word

WCET Worst Case Execution Time

PE Processing Element

1

1. INTRODUCTION

In demand of faster system requirements in computer industry and with the

applications getting more complex and compute intensive, smaller clock frequencies

and deeper pipelines have been implemented for General Purpose Processors(GPPs)

in order to speedup processors. Embedded systems, having strict and demanding

specifications to meet, necessitated a totally different approach. The approach taken

in the area of embedded systems is the customization of the processor to the application

or to the domain of the application.

Customization is not used extensively in GPPs because customization necessi-

tates a whole software tool chain for the instruction set variations. Also it introduces

incompatibility of platforms for applications. On the other hand, embedded processors

are generally dedicated to a specific task and execute it for their overall life time with

slight or no modifications. Cipher coder/decoders, image processors, audio processors

can be given as an example of embedded systems. The common point for these appli-

cations is that they have a computation intensive part that can improve if treated in a

specific way. Tailoring the processor according to the needs of an application is called

customization. The application statistics can benefit by means of several properties

such as overall execution time, critic-path execution time, area, response time, power

consumption etc. Among these properties overall execution time is the most generic

one to delve into.

An application can be treated specifically by means of hardware/software

(HW/SW) codesign and/or parallelization. In instruction customization concept,

HW/SW codesign term means migrating the instruction or a set of instructions to

the hardware. Parallelization of tasks is possible by exploiting data independent loops

consuming a high ratio of the execution time in applications. Tailoring the architec-

ture and the instruction set, has been a possible approach with the introduction of

Application Specific Instruction Set Processors (ASIPs) and soft processors.

2

1.1. Terminology

Before proceeding further, terminology used in customizable processors is pre-

sented in this section for clarification. Processor ”customization” may stand for both

the architecture and the ISA(Instruction Set Architecture)of a processor. ASIPs are

processors that come with a fixed architecture but extensible instruction set, where it

is possible to ”customize instruction set” and synthesize customized instructions to a

programmable hardware logic. ”Architecture customization” is possible in soft proces-

sors where generally a CPU core template with modifiable architectural features exists

in an Hardware Description language(HDL).

The abbreviation for processing element (PE), stands for concurrently executing

several processing elements which communicate with GPP as well as among other PEs,

whereas (custom instruction) CI is a single element that resides on the datapath of the

GPP.

SISD+CI is a processor architecture with a Central Processing Unit(CPU) core

coupled with a set of CIs. Processor and CIs execute sequentially where CIs are inte-

grated to processor’s datapath. SIMD architecture stands for concurrently executing

PEs that are identical. Processing elements reside along with GPP. When VLIW term

is mentioned, concurrently executing non-identical PEs along with GPP is meant. In

some terminologies, VLIW stands only for instruction cascading in a longer instruction

and parallel PEs can be identical.

1.2. Automation in Customization of Embedded Systems

Automation in customization of embedded systems is an emerging branch in

customizable embedded systems area. After the advent of customizable processors,

the knowledge in the domain had to be acquired and applied to the application under

evaluation. Architecture customization is conducted with the help of user interaction.

An expert choose the parts that need special attention [1]. A tool may help the user

to mark the problematic parts of the application and specify what and how it is to be

3

done. A further step is to automate the process and leave the customization process

to the tool. The recent research and challenge are in this area [2], [3], [4], [5], [6].

The stages in the customization of embedded processors is given in Figure 1.1, for

an overall insight. The schema stands for a general approach. High level design part

enables user to specify the embedded application with a high level representation such

as C, UML or a graphic language. Hardware library and constraints for the system are

extracted from the user, along with the application software. Hardware library consists

of IP cores, specification of the IP cores in terms of clock cycle, power consumption,

HDL description, area etc. System constraints can be the area the system must fit, IO

specifications, the frequency system must operate on etc. The high level stage provides

input to the intermediate design part where partitioning; CI/PE selection takes place.

Inputs to the decision phase are the system specifications, HW library and the inter-

mediate representation of the application for control and data flow. The decision part

is the core of the automation of customization, where CI/PE exploration is performed.

Data flow graph (DFG) to HDL converter stands for the HDL construction module

for the HW partitions marked in the intermediate representation. After decision phase

comes the realization phase of the system. HW partitions are synthesized into a con-

figurable logic. Custom instructions’ opcodes are added to the instruction set of the

processor and the whole application is compiled into assembly code.

This thesis focuses on automating the instruction selection and identification

process and the way instruction customization will be treated.

In the following subsections, details on instruction set customization, architec-

tures in customizable processors are given. The last subsection is about fuzzy logic

and expert systems on HW/SW codesign literature.

1.2.1. Instruction Set Customization

The idea behind migrating from General Purpose Processors (GPPs) to Applica-

tion Specific Instruction Processors (ASIPs) is to customize the instruction set of the

4

Figure 1.1. Processor customization overview schema

5

processors, depending on the application (or the domain of the application [7]) so that

it merits either average or worst case execution time.

When there is no automation, a set of tools are provided so that it enables

the expert user to develop a new instruction set [1]. The decision is based on user’s

experience and knowledge. This requires a team of people with adequate knowledge of

HW and SW.

Automating customization engine, eliminating user interaction to some extent

is the final approach. Profiling of the application, detection of hot spots and the

instructions that increases efficiency in any means is left to the tool.

Generally the input to the instruction set customization is a graph representation

of the application, although it is not the only approach. The graph models vary for

the control and data flow of the application. Control flow graph(CFG) represents

the control statements of the application like loops, IF statements, branches etc. Data

dependency is modeled in a data flow graph(DFG). Generally CFG and DFG is blended

into one graph; control data flow graph (CDFG). CDFGs with different variations are

used. Some of the examples are hierarchical CDFG [8] or acyclic CDFG [9]. A survey

of graphs and ASIPs, can be read in [10].

Instruction set extension can be classified under two topics;

• Instruction set generation for which possible custom instructions are chosen (sec-

tion 1.2.1.1).

• Selection of custom instructions that will implemented in customizable logic, from

a set of feasible custom instructions (section 1.2.1.2).

1.2.1.1. Instruction Identification. Identification of custom instructions means extract-

ing patterns from the intermediate representation of the system application. An exam-

ple is is enumerating patterns in a DFG which are feasible to become custom instruc-

6

tions [11]. Some of the work in literature targets just identification and optimization

of identification process excluding the selection [3], [12]. All patterns are not feasible

for ASIPs because of micro-architectural constraints such as input/output sizes due to

register ports, area or forbidden tasks as memory operations. The work in literature

has been either carried out to overcome these restrictions to generate more efficient

custom interactions [13], [14] or driven by the restrictions employing them as heuristics

to reduce search space [2], [3], [11], [12].

An approach that profiles the application to vote for more beneficial blocks to be

chosen as CI has been carried out, not evaluating the feasible custom instructions in the

optimization function [15]. It uses enumeration method in [11] This is inline with our

idea that the attributes of elements have to be taken into account. Considering just the

topology of the graph, in other words edges connecting the nodes, without evaluating

the attributes of the nodes is not sufficient for specialization of customization.

There are works that eliminate architectural constraints from identification pro-

cess. Work carried out in [7] employs a recurring pattern identification method to

create a library of patterns. This work has a similar approach with this thesis in the

idea of targeting recurring patterns. It differs in the way it is used for creating a pattern

library, for several applications in one domain. Recurring pattern identification stands

for finding isomorphic subgraphs that exist several times in a graph. It is also called as

recurring subgraph problem [16]. An earlier work that pre-existing library templates

such as multiply-accumulate and shift-add chains [17]. It searches for the templates in

the application, and marks them as custom instructions. Another recurrent subgraph

approach has been used in custom instruction identification area is mentioned in [1].

The algorithm called sequences detects only recurrent sequences of two instructions

such as multiply-accumulate and shift-add.

The following sections summarize the restrictions that are evaluated in literature

in instruction selection phase.

7

Input/Output size

The maximum number of input output operands depends on register files and

feasibility of instructional encoding. However it is an artificial restriction that is im-

posed by the designer to prune design space. The smallest input/output pattern is

2/1 input/output. MISO stands for multiple inputs but a single output. K inputs

may exist in the instruction but there is a single output. MIMO is the acronym for

multiple-input multiple-output.

The number of operands is highly related to the speedup gained by implementing

custom instructions. It has been figured out 2 to 4 inputs perform with reasonable

speedup [2].

Memory restriction

Memory is one of the restrictions evaluated [3]. Patterns that include memory

operations are left out of the set of feasible patterns for instruction generation, in

order not to involve any memory access instruction inside custom instruction pattern.

Memory load operations are an example. This restriction arises because the system

under design has a fixed architecture to an extent and size of the register file cannot be

changed. Since soft processors do not have hard architectural constraints, it is possible

to eliminate memory restriction from custom instruction identification stage. For soft

processors, distributed memory may be created along with instructions.

Block boundaries

One other aspect mentioned in instruction generation is implementation of in-

structions that cross basic block boundaries. Basic blocks in a CDFG are DFG parti-

tions that does not contain any control nodes. Crossing block boundaries introduces

IO size increase in CIs generally, although there are exceptions such as the ADPCM

decoder in [18]. If the patterns are chosen cleverly, there may be a reduction in tem-

porary registers to pass data between blocks. The area required for an instruction will

8

increase, resulting fewer instructions to be chosen due to area. It is mentioned crossing

block boundaries do not outperform [3]

Number of custom instructions

As the number of custom instructions increases, the performance of the system

rises increases in a nonlinear fashion. However it is not possible to implement every-

thing in custom instructions. One reason is the area constraint of the system. The

other is the number of instructions imposed by the decodable opcode range in the

processor. A research on the number of custom instructions is given in [2].

1.2.1.2. Instruction Selection. The second phase of instruction extension design is in-

struction selection. Some of the feasible custom instruction patterns do not contribute

to performance optimization of the system. Since there are limited number of resources

there is the necessity to choose optimal or suboptimal solutions. The problem is also

modeled in operational research and economics. There are restricted resources and an

optimization function. The task is to find a solution that maximizes the benefit. In-

teger linear programming(ILP) based methods inherited from operational research are

used extensively for the solution of the problem. The following sections summarizes

the factors evaluated in optimization function.

Exploiting critical parts of the application

Most of the applications aim to reduce average case execution time (ACET)

which results in faster systems. For real time systems, there are timing constraints

which can be hard. Hard phrase means that a specific task must be done in a specified

span of time. In such a case, the aim should be speeding up critical paths, which

perform poorer than they ought to be. Worst case execution time (WCET) reduction

has been mentioned in literature. The work carried out in [4] reduces the WCET of

an application, to serve real-time embedded applications requirements. Timing values

of a system are constructed from its CDFG by traversing it. The custom instructions

9

are chosen from paths marked as possessing the worst case execution time.

WCET reduction idea lacks the fact that the path performing the worst may not

have a hard constraint. A path in WCET range may have a soft time constraint which

results in some slack to finish the required task. In this case, there might be a faster

path with a hard constraint and the path may not be satisfying this timing requirement

imposed. If the customization is performed for real time systems, the criticality of the

timing constraint should also be introduced into the problem.

Exploiting average execution time

Instead of healing the paths with worst time consumption, the aim is to heal the

overall performance in terms of system speedup. A path with WCET may not be on

a common executing path, so healing WCET would not contribute to the performance

optimization of the overall system. The common approach in literature is maintaining

an overall speedup, reducing average case execution time (ACET) [2].

The enumerated CI patterns that are most common and most hit in the execution

of a program are chosen in a DFG, so as to optimize average execution time. Loops

constitute an example for the CI patterns that are hit most, as in general HW/SW

partitioning problem.

1.2.2. Exploiting Parallelism

Parallelism in an application may exist as data, instruction, and pipeline paral-

lelism. Data parallelism is exploited by SIMD, instruction parallelism by VLIW and

pipeline parallelism by instruction fusion.

It is a fact that much of the execution time is consumed by loops in an application.

Migrating the loops or part of the loops to hardware is beneficial. Parallelization of

loops in an appropriate way is considered to be more advantageous in terms of execution

time [1]. As an example of data parallelism the below loop can be considered.

10

For i = 0 to i = k

Task A[i]

If task A[i] is independent of A[i-1], task A can be executed in parallel. When-

ever task A instruction is detected in fetch decode cycle, N similar PEs, executing k/N

times is called SIMD style parallelization. Here the granularity of PEs may differ. PEs

may be fine grained and data input-output can be handled via register file or they

might be having their own local memory. This way of processing is called heterege-

nous multiprocessing in a source [1]. Note that in literature, SIMD term in ”SIMD

instructions” does not necessarily mean instructions are the same for all PEs. VLIW

style architectures are also referred [19], [5] with the same term. In VLIW style, PEs

do not have to be the same. Instructions for PEs are packed into one long instruction

and executed in parallel. The below loop constitute an example for parallelization and

loop regulation.

For i =0 to i = k

Task A[i]

Task B[i]

Task C[i]

Tasks A, B and C can be executed in different PEs in parallel if they are not data

dependent on each other. Even if they are data dependent, regulating the instructions

in loops, which is called software pipelining, makes the parallel execution possible [20].

Software pipelining is an approach used together with loop unrolling. It is used for

handling data dependencies in loops. Pipelining does not occur in the architecture but

it is an arrangement of instructions in the loop [1]. Data belonging to the previous

indexed loop executions are prepared prior to execution of latter indexed ones.

In parallel processing, arranging communication in PEs is a term to consider.

The speed of execution and efficiency of communication depend on the method used.

The soft processor implementation carried out in [21] makes it possible to arrange the

11

interconnects via a look-up table.

1.2.3. Architectures in Customizable Processors

The given specification may be mapped onto a SISD+CI, SIMD, VLIW or MIMD

architecture with an appropriate processor core. The choice may be specified by the

user, dictated by the underlying target hardware or chosen by the tool. One soft

processor can support several of the architectures.

1.2.3.1. SISD+CI. SISD+CI architectures have a SISD style GPP coupled with CIs.

The instruction set of the GPP is cutomized and additional CIs are added to the

set. There can be several CIs added to instructon set. However, execution of CIs are

sequential and one at a time. The CIs reside in the datapath of the GPP which has the

control. CIs are functional after a fetch decode cycle. GPP also executes sequentially

with the CI set.

1.2.3.2. SIMD. A branch of the literature is dedicated to SIMD Processor cores [5],[19].

VLIW architectures can be found and phrased as SIMD cores also. With an assembly

code and timing constraints, the code is constructed as SIMD operations [5]. The

hardware is then mapped to a RISC or DSP kernel with SIMD functional units. SIMD

functional units are duplicated around the processor core. The custom instructions are

SIMD type.

1.2.3.3. VLIW. VLIW architectures stand for concurrently executing PEs residing

along with the GPP, where PEs are not identical. VLIW stands for the different

instruction commands cascaded together in one long instruction. Each sub-instruction

is decoded for one PE. From one perspective, if the sub-instructions are identical, PEs

can also be identical. There are works carried out in literature specialized for VLIW

architectures [5], [22]. Applications with vector operations or applications that can

exploit instruction level parallelism are beneficial to execute on VLIW architectures.

12

1.2.3.4. Coarse Grained Architectures. In spite of not excluding the classification re-

garding data/instruction attributes in the above sections, another architecture type

is coarse-grained style. CRAs (Coarse Grained Reconfigurable Architectures) are tar-

geted in [23] with a clustering method. The method is applied to loop specifications of

the program.

1.2.4. Terms that Benefit from Customization

Architecture and Instruction set Customization is performed so that particular

embedded application or a domain of applications is improved in an aspect. Generally

improvement is achieved in time related issues considering area and power constraints.

Overall execution time is the most profitable and worked on issue. Overall execu-

tion time can be achieved with no additional constraint in the CI identification process.

The aim is to maximize speedup via loop parallelization, implementation of HW ver-

sions for complex and special functions, migration of time consuming and recurring

patterns to HW as CIs.

Some applications for real time systems have hard timing constraints for some

specific tasks. Instead of overall execution, speedup in specific partitions may be more

mandatory. Considering application specific architectures, attention should be on user

requirements and inputs. Hard constraints on timely issues constitute an example for

application specialization, which is a must for real time systems.

1.2.5. Challenges in Customization

Below section explains the terms mentioned in customization literature, both from

PE and CI point of view. The terms belong to constraints to meet or consequences to

consider.

13

Area

Total area required for the system increases with the introduction of custom

instructions. However, improvement on timing is not possible without migration of

instructions to hardware. Area increases because the CIs or PEs are migrated to

hardware which consumes additional space other than the processor core. Increase

in area is higher with parallelization of tasks via PE usage. During design space

exploration, area increase should be included in the model and must be pre-estimated

so that a feasible solution is found in a reasonable time span. There may be parallelism

in the application that is beneficial to exploit however because of the area budger, a

solution with SISD+CI may be chosen which generally consumes smaller area compared

to PE solution.

Memory

Memory is another constraint for architecture customization, although it is not as

critic as area. Program data memory may increase during the introduction of custom

instructions. Custom instructions and PEs can have their own local memory blocks

since memory operands that require access to memory are not restricted. This results

in distributed memory throughout the softprocessor.

Increase in memory size is also possible because of methods like loop unrolling and

software pipelining. Recurring instructions are expanded or regulated, and written into

memory. On the other hand, instruction fusion may decrease code memory because

several instructions can be indicated by only one instruction.

Memory has been one of the design limitations in the litarature [3], [11]. Search

space is also reduced by removing memory-related operations. Forbidden nodes are

the nodes in the DFG that include memory access and excluded from CI identification

process [3], [11]. However, the real benefit may be in the CIs/PEs that include memory

access. Loop or vector operations that access and process data in some specific partition

of memory can be taken as an example. The data memory can be divided into chunks

14

and be processed in parallel. PEs executing in parallel have their own local memory .

This SIMD style processing is called heterogenous multiprocessing [1].

An approach has been considered to overcome the exclusion of memory potential

problem [24]. A work in soft processors is observed in [21] to include PEs with local

memories. The availability of local memory in PEs directs the literature to include

operands with memory access while pruning design space. Although introducing mem-

ory access operands increases the time overhead to get PEs operational, it increases

speedup efficiency for data independent and data-intensive applications.

Introducing memory operands requires an estimation for the size of a caching

module to be merged to the system which will copy a part of the global memory to

the local memories for parametric access. A block of potentially accessible memory

is downloaded to local memories prior to execution . This results in removing the

necessity to access to global memory during execution of CIs or PEs and enabling

them to execute atomically.

Input/Output

Custom Instructions transfer the required input/output (I/O) data through reg-

ister files. I/O constitutes a limit for the solution space due to register file’s size.

Register files are fixed structures in ASIPs, although there is the possibility to change

them in soft processors. A branch of the literature has been shaped by the fixed size

of register files limiting/parameterizing I/O number of CIs [11], [3].

Complexity of the search space

CI selection and identification process can take huge execution time depending on

the optimality of the algorithm and pre-assumed specifications. In [11] the enumeration

method is called slow because it evaluates all the DFG of the application in order to

derive CIs from it. The method proposed in [3] is faster. It relies on some heuristics

and does not explore the whole design space. As a result it is not optimal. The

15

introduction of forbidden nodes which are memory accesses and I/O constraints speeds

up the algorithm, decreasing search space. The harder the constraints are for the input

output specification, the faster the algorithm is due to the search space collapsing.

The disconnectivity of the graphs also affects the complexity of the search space.

Disconnected DFGs can exploit parallelism in nature. However spanning disconnected

graphs increases time complexity of the algorithm employed. Infeasibility of search

space has been reported in [12], [3].

Clock Cycle

The clock frequency of the system is an imposed constraint of the system by

the user. Whenever CIs/PEs are created, clock frequency constraint may be violated.

The communication overhead introduced by the coupling of CI/PE with the main

processor or the latency of the combinational logic in the PEs or CIs constitute a

challenge for achieving required clock freguency. It may not be possible to implement

large combinational PEs for high clock frequencies. The latency of the CIs/PEs should

be estimated during design space exploration in order not to end up with an infeasible

solution.

1.2.6. History of Fuzzy logic and Expert Systems in Hardware Software

Codesign

Before ASIPs and custom instructions coming into scene, expert systems have

been employed in HW/SW codesign research. The work is, however, in a larger scale

where the components are coarse grained functions of an embedded system. The target

system consists of a microprocessor coupled with an FPGA or several FPGAs. An

approach utilized a fuzzy expert system as the hardware software partitioner, where

the instantiated rules are at a larger scale. The rules evaluate line of codes of software,

control elements in a module or combination of operations in a module. The resultant

component is mapped to an FPGA if it is chosen to be in hardware [25].

16

In another work carried out for microprocessor based systems, the expert system is

employed for knowledge representation for the overall embedded system design process

[26]. A part of the expert system performs task partitioning between HW and SW.

The scale is large; HW/SW codesign process targeting a whole embedded system as in

the previous work mentioned in [25]. Expert system rules considered for partitioning

is not mentioned and fuzzy logic is not used in [26]. Another approach in HW/SW

partitioning literature, designed for Application Spesific Integrated Circuits(ASICs)

employs an expert system [27]. Fuzzy logic is used to model the imprecise terms of

HW/SW partitioning phase. It operates on large scale of blocks.

1.3. Motivation and Approach

GAIA is developed for a soft processor architecture. The architecture of a soft

processor is not fixed and can be guided by the characteristics of the application or

the domain of the application. The design can be free from architectural constraints

that are considered by some of the earlier works in literature [3], [11], [12], because the

architecture is not fixed. It is obvious that some flexibility is present during instruction

identification process. There are some drawbacks introduced. The search space cannot

be collapsed without memory and I/O constraints. On the other hand, abstracting the

architecture considerations enables the customization of the architecture of the system.

The result can be integrated for a soft processor. A back-end and front-end compiler

is required to construct a whole tool chain. The resulting tool chain can be used to

design a customized embedded system not mandated by the architecture limitations of

a specific hardware.

Embedded systems having a broad range of applications and systems, necessitates

special handling of the customization process, according to the system and application

specifications. GAIA serves different demands of customization imposed by the na-

ture the applications. Serving a broader range of applications is required for a general

automation tool in customization. The system specifications, like time critic or area

critic, or any special system specifications like reducing a specific path for a real time

application that has a hard constraint can be added to the voting mechanism of GAIA

17

expert system. The work aims to assess conflicting/cooperating attributes of an ap-

plication and tailor the automation process as well as architecture. Discrete rules vote

together for the parts to be implemented in hardware.

Much of the work in literature is carried out to overcome the restriction of an

existing architecture. For example, to overcome register file limitation, shadow registers

have been implemented so that I/O size of the instructions is increased [13].

Automation in customization research is to ”mimic the choices of an expert” [1].

Earlier works have aimed at optimizing some aspect of the CI selection or identification.

The work carried out differs mainly in the idea to introduce a broader range of aspects.

Customization of the automation process is targeted with hardly optimum methods,

as a human expert is likely to perform. An expert system is constructed by extracting

the rules of thumb knowledge of the domain. The system decides upon the components

of the application to be customized according to the attributes of the application and

system specifications.

This work resides between the front-end and back-end compiler. To be more

specific, it is a component that can be plugged into the compilation process. But it

would not be possible to cascade GAIA with front-end and back-end compiler end to

end, since it does not carry all the information required in back end compilation such as

inputs like register information, data wordlength, memory design, etc. GAIA profiles

abstract data and control characteristics of the application and proposes the parts that

should be in hardware as a CI or PE.

There are neither architectural constraints nor specifications. The data are ab-

stracted. Therefore the operator granularity is flexible can be as granular as assembly

level or as coarse as functional level. A coarse grained architecture can be targeted

with a soft processor. For this reason, GAIA should not reside after back-end compiler

since the operator granularity would have already been decomposed into instructions.

In other words, coarse grained user function specifications are lost after back-end com-

pilation.

18

1.4. Contribution of Thesis

In customization literature, the ongoing effort targets full automation, mimicking

the choices of an expert. Tool should exhibit generality and should be able to assist

the customization process with rules of thumbs of the research area. There has not

been any work in instruction customization, to our knowledge, employed as a knowl-

edge database, namely an expert system. In this thesis an expert system which is

integrated with fuzzy logic in order to represent imprecise terms of the domain has

been implemented. Due to data abstraction, the system is designed to assist back-end

compilation process, residing between front-end and back-end compiler.

1.5. Outline of Thesis

The thesis is organized as follows: Chapter 2 describes the GAIA Explorer system

in detail in two parts: the Fuzzy Expert system part and the Graph Evaluator part.

Fuzzy Expert system basics along with the utilization in GAIA Expert System(GES)

is given. In GAIA Graph evaluater(GGE) section, the established CDFG model of

GAIA system and several graph related tasks on which GGE performs are given. The

solution to recurring subgraph problem is also proposed.

In Chapter 3, GAIA explorer is executed on a set of applications from literature,

and the results are presented. Benchmarks with different attributes are chosen to depict

the generality of the system.

Chapter 4 concludes with a summary of the results obtained, with a plan on

future research directions.

19

2. THE DESIGN COMPONENTS OF GAIA

Customization process requires to act on intermediate representation of the ap-

plication which is generally a graph. Several tasks are carried out on the graph such

as extraction of recurring subgraphs, distribution of control nodes’ attributes to data

nodes and satisfaction of data dependency between the nodes. Expert system is em-

ployed to vote on the customization of the application depending on the attributes

of the nodes: 1) attributes possessed from the details of the node itself 2) attributes

possessed from the place the node resides in the graph. Fuzzy logic on the other hand,

is introduced to represent the imprecise terms of customization process for the expert

system.

In order to accomplish the above tasks, GAIA Explorer consists of two subcompo-

nents: 1)the fuzzy expert system which acquires the rules of thumb for the customiza-

tion process; 2) the graph evaluator part which acts on CDFG of the application and

evaluates graph related data. In this chapter, the details of subcomponents, namely

GAIA Expert System(GES)(section 2.1), and GAIA Graph Evaluater(GGE)(section

2.2) are given.

Main flow could be depicted as follows: Input CDFG data is received by GGE

and the data structures to represent the CDFG is created within. Before passing DFG

related data to GES, GGE performs several routines in depth-first search (DFS) and

breadth-first search (BFS) manner. GGE employs GES both during string matching

and during CI/PE selection. In string matching phase, strings created by GGE are

passed to the GES system in order to be grouped and counted. GES passes back the

string processing and grouping results, so that GGE marks the nodes in pattern in

CDFG data structures. Node data are passed from GGE to GES and GES performs

the fuzzy expert system task, altering the memberships of the nodes for processor

customization. The results are passed back to GGE, and the results and statistics

are created by GGE finally. The overall schema of GAIA explorer is given in Figure

2.1. The tasks performed by GES and GGE are mentioned in figure along with the

20

interaction points in-between the two sub-components.

2.1. GAIA Expert System (GES)

GES is the expert system database of GAIA Explorer. An expert system is a

computer software which reacts as a human expert to reach at solutions for the given

problems. Being a subsection of artificial intelligence (AI), it employs facts to specify

the situation under examination and rules to act on these facts that correspond to the

knowledge extracted in a specific domain. Expert system uses an ”inference engine”

which organizes the rules and facts to reach at the results. The inference engine does

not have to act on rules and facts sequentially. It employs a specified method to reach

at conclusions, like depth-first or breadth-first search, or an approach acting on some

salience factor dependent upon the rules.

As the programming language for the expert system, FuzzyClips [28] is used.

FuzzyClips is an enhancement of Clips [29], the expert system development tool created

by NASA. Clips is developed in C and can be embedded in C programs, motivating

the utility of this particular tool set in this work. It employs LISP, a non-sequential

rule-based expert system language. FuzzyClips development set provides Clips expert

system tool set with additional fuzzy rules and facts. It is backward compatible with

most of the features of Clips.

In the literature of custom instruction identification and selection, there has not

been any observed approach with an expert system utilized in the process. However,

expert systems has been spotted in hardware software codesign area, which can be

regarded as the parent branch of CI selection but is in a larger scale [25], [26], [27].

The common point of the works is the choice of large chunks from the system as dictated

by the HW/SW codesign process. The partitioning process results in the whole system

and control of the system is not guided by instruction set. In this thesis, expert system

is employed to perform custom instruction selection phase.

As stated in a recent book about customizable embedded processors [1], the aim

21

Figure 2.1. GAIA explorer overview schema

22

of the customization work carried out in literature is to ”mimic the choices of an

expert”. It is observed that the works aimed optimizing an aspect of the CI selection

or identification, bypassing the other aspects. This work differs mainly in the idea

to introduce a broader range of aspects with hardly optimum features, as an human

expert is likely to perform.

Rules and facts of knowledge database are generally acquired to a system by an

expert or a knowledge engineer who extracts data from experience of the experts and

statistics and transfer them to a database. There are simple databases that provide

a GUI to end-user to alter the database. Or it might be the case where the end user

has no initiative in the knowledge database and the rules and facts have been coded

previously and permanently before. It is also possible that the expert system can be

self-learning with an AI method. The rules may be altered by a learning system and

be merged into the database.

Fuzzy logic is chosen as a result of the fact that the crisp facts would not be

enough to evaluate and vote for the attributes of the nodes/instructions. When fuzzy

logic is employed, the attributes of the nodes act together to identify the membership

of nodes to architectural components. The attributes are the pre-assigned properties

of a node like the execution time of the node, concurrency and being part of a regular

pattern. Pre-assigned attributes are initial facts of the expert system. When these

initial attributes are considered in conjunction with each other, they help the expert

system to identify the post attributes, namely the architectural specifications of the

nodes.

The architectural specifications of a node are whether it is in HW or SW. If the

node is in HW it can either be a CI or be in PE. These attributes are conflicting; for

example a node cannot be both in HW and in GPP. This is where fuzzy logic becomes

necessary. A node can have membership to any conflicting or cooperating architecture

attributes. For example it can be both in HW and in GPP to some extent. However,

during the defuzzification process, the most likely attribute is determined with an

appropriate technique. An overview chart of expert system is given in Figure 2.2. The

23

Figure 2.2. Expert system overview schema

nodes are passed to the GES with crisp values. Fuzzification phase is performed to

determine the fuzzy values of the nodes. Rules of GES alter the memberships of the

fuzzy nodes. Defuzzification phase takes place on processed fuzzy nodes to reach at

crisp nodes. Processed nodes are passed back to GGE. The node templates and rule

definitions are coded in FuzzyClips language in a ”.clp” file; nodes.clp to constitute an

input to the system.

For fuzzy attributes of the nodes, membership values are defined with primary

terms along with the definition of the range of each primary term. It is also possible

to bind fuzzy value membership to a function. Primary terms for memberships of the

nodes to the attributes are ”low” and ”high”. For example, if the fuzzy values were

created for an age classifier those primary terms would be ”young” and ”old”.

24

Figure 2.3. An example of a new hedge definition: modify value to the power of 5

With modifiers called ”hedges”, primary terms are shaped into more precise

terms, like ”very high” or ”slightly high”. Hedges are functions that modify the mem-

bership values. It is possible to define new hedges by implementing functions and

assigning linguistic terms to them. An example of a new hedge definition is given

in Figure 2.3. The ”most-extremely” hedge has been defined and introduced to the

system modifying membership values to the power of five.

2.1.1. Matching of Fuzzy Facts

Rules in FuzzyClips consists of two parts; first part being the Left Hand Side(LHS)

and the second one Right Hand Side(RHS) of the rule. In the LHS, there exists patterns

to match with the facts in the database. If LHS has a match with a fact, the rule is

fired and the statements in the RHS are executed. RHS stands for the action rules of

fact, may be a function call or a modification to a fact.

Compositional Rule of Inference

LHS of a rule should match with an attribute of the fact in database as determined

by the pattern in the LHS. Matching of crisp values is straightforward as it corresponds

to equality. For fuzzy variables, equality is not the valid. A fuzzy variable in the LHS

part of the rule means it should overlap with a fuzzy fact. For example, the fuzzy facts

pressure low and pressure medium may have a range in common so that they overlap in

one range and thus match. The behaviour is called ”Compositional rule of Inference”.

The fuzzy value in the RHS of the rule is determined by the overlapping range of the

fuzzy fact in the LHS. The relation can be stated as given in Figure 2.4 .

In Figures 2.5 and 2.6, compositional rule of inference effect on fuzzy value is

given. The X axis is the per centage of the attribute which is a crisp value. The Y axis

25

stands for the membership values of the nodes, where zero stands for no membership

and one for full membership. The sets are depicted with the same X and Y planes

for proceeding fuzzy values. The fuzzy value altered is the HW membership which is

depicted. The example rule that is altering the HW membership is based on software

time (swtime) fuzzy value of the node. The value that is assigned to the RHS of the fact

is in Figure 2.5. However, because the RHS of the figure does not fully contribute to the

”high” fuzzy definition of swtime attribute, compositional rule of inference determines

the LHS. The value assigned to the HW attribute can be seen in Figure 2.6.

The effect of the overlap range differs according to the method used in com-

positional rule of inference. FuzzyClips provides two of them; min-max method and

max-prod method [28]. The effect of the two different methods is given in Figure 2.6

for min-max and in Figure 2.7 for max-prod.

P and Ṕ:

Observation: X has property P

Relation 1 : X and Y are in relation W1

Conclusion : Y has property Q

Observation: X has property P’

Relation 1 : X and Y s are in relation W1

Conclusion : Y has property Q’

Figure 2.4. Compositional rule of inference

It is not necessary for a fact to fully contribute to a rule. The RHS of the rule

is determined by using the method of compositional rule of inference. Compositional

rule of inference gives accurate flexibility for voting mechanism of the rules. In this

thesis the max-prod compositional rule of inference method is chosen instead of the

min-max method because a smoother result on the modified fuzzy value is obtained.

In Figure 2.8 the initial membership of a node, ”high-low” is given. ”High-low”

is a linguistic term that is built up from conjunction of two primary terms: ”high” and

26

Figure 2.5. Value (Q) determined by the RHS of the rule

Figure 2.6. Value (Q’) determined by the LHS of the rule - min-max inference type

27

Figure 2.7. Value (Q’) determined by the LHS of the rule - max-prod inference type

”low”. An inbetween state of this node is given in Figure 2.9, where a HW favoring

rule has voted for the membership. String ”???” is for fuzzy values that can not be

represented with a linguistic term such as ”very high”.

Figure 2.8. Initial HW membership value of the a node; high-low

2.1.2. Defuzzification

After fuzzy rules have fired and altered the HW and PE memberships of the

nodes, defuzzification phase takes place. In order to pass the nodes back to the GGE,

28

Figure 2.9. Processed node with HW favoring rules:After executions favor HW

attribute increase on the same node - max-prod inference type

crisp values corresponding to the membership values have to be calculated. Center

of gravity(COG) method has been chosen for defuzzification because mean-of-maxima

leads to ambiguity as the membership functions have maximum values at several points.

COG method returns the X axis value corresponding to the COG of the area under

the membership function [28].

2.1.3. Platform and FuzzyClips Compilation

FuzzyClips source code is developed and provided by Orchard [28] for the devel-

opers who embed a fuzzy expert system to the system under development. FuzzyClips

consists of C source code that can be compiled with several operating systems and

on several machines. In this work it has first been tried to compile FuzzyClips in Mi-

crosoft Visual C++ but due to compatibility problems, the platform has been changed

to ECLIPSE CDT (C development tool) [30]. For the compiler and linker tool suit,

mingw [31] and a GNU (GCC, MAKE, GDB, G++ etc) C /C++ tool suit on Windows

platform has been instrumented within ECLIPSE CDT.

In order to tailor the compilation of FuzzyClips one has to change the setup.h

accordingly. The flag for the platform has been chosen as ”IBM MSC” (IBM PC,

with Microsoft C 6.0). Also other flags to note in setup.h is ”RUN TIME” which

is set for compiling the constructs (facts and rules). Compiling the facts and rules

29

creates a standalone executable, preventing further modification to the rules. When

the flag is not set, the rules and templates are interpreted from ascii files. In this thesis

”RUN TIME” flag has not been set so the rules and templates are not stabilized and

can be modified. The facts however constructed during execution and is not read from

files. Templates and facts required for the system reside in nodes.clp and pattern.clp.

Flags for supporting fuzzy rules, facts and templates in the setup.h file has been raised

for FuzzyClips to be functional.

After FuzzyClips source code has been compiled into objects, the system can

be integrated to FuzzyClips features with required directives. It is utilized basically

by including the FuzzyClips and Clips related headers to the application. Whenever

expert system is to be used initialization of the expert system is performed within main

application. The facts are placed on agenda as soon as facts are fired. It is possible to

create facts and rules, and employ all the other features Clips and FuzzyClips provides

within the application code thorough utility functions.

The design includes both C and C++ langugage components. The design part

of graph related functions is in C++ code and the FuzzyClips source code is mainly

in C. Objects are compiled in their own style and C parts are linked to C++ objects

with C extern directive later on.

2.1.4. Operator Nodes as Facts

GES evaluates the attributes of nodes in a discrete manner. Group of nodes are

handled by the graph related C++ part of the object and required data is propagated

to the node attributes.

One of the basic reasons of embedding FuzzyClips into graph related C++ code is

that the expert system alone is not efficient to assess all the attributes of the nodes. It

is prolific in node basis, however some attributes of the nodes require relationship with

other nodes. They are inherited from the topology of the application. They can be

derived by utilizing graph functions in the graph evaluator of the system. For example,

30

detecting patterns in the application is a graph function. Based on the pattern data

constructed by the graph evaluator GGE, nodes which are found in regular patterns

are marked as CIs or PEs by GES. CI and PE selection of nodes is done by the expert

system via changing their membership values.

A node template is given in Figure 2.10 which is created for fuzzified nodes. Slots

store the fuzzified values of nodes, both pre-assigned and evaluated by GGE or GES.

A node stores the values listed in Table 2.1.

Figure 2.10. Fuzzified node template in expert system

After a fuzzified node has been created from a crisp node, the rules vote for the

attributes of the node. The resultant fuzzified node for the example template of Figure

2.10, is shown in Figure 2.11. Note that ”???” string is displayed in place of fuzzy

values whenever it is not possible to represent the fuzzy value with a linguistic term

like ”very high”. Here, the ”high” linguistic term is a pre-defined fuzzy value template

that represent the membership set of the ”high” term. The ranges for the fuzzy value

templates are defined previously in nodes.clp. The membership set representation can

be seen in the screenshot 2.11 from GES. Membership set with a sequence of numbers

is one of the ways to represent fuzzy values. In the screenshot, the first sequence from

10 to 90 represent the membership fuzzy value of HW slot, while the rest follow in

order of the slots. It is observed the HW membership value has been altered by rule(s)

and the membership set has been recalculated. On the other hand the second set from

10 to 90 has the initial value.

31

Table 2.1. Slots of the node template

Slot Name Explanation

HW Hardware membership fuzzy value determined by GES

SW GPP membership fuzzy value determined by GES

PE PE membership fuzzy value determined by GES

control Storage for control flags of rules

swtime Fuzzified Software execution time

hwarea Fuzzified hardware area

execnumber Fuzzified execution number determined by GGE

parallelity Concurrency indication determined by GGE

on critical path Indication on being in critical-path determined by GGE

special node Indication for special nodes such as IP cores

in pattern Fuzzified Pattern count determined by GGE

Figure 2.11. A Fuzzified node data example

32

In Figure 2.12, a rule definition that has been instantiated to change the attributes

of the nodes is given. The left side of the ”=>” operator stands for THE LHS, while

the right side for RHS of the rule. The variables are declared with ”?” operator, where

the assignment operator is ”< −”. The usage of the FuzzyClips grammar is given in

the tutorial [28]. Clips grammar is given in [32].

Figure 2.12. FuzzyClips rule example

2.1.5. Control System for GES

A control system to rule database is mandatory. Modifying nodes in FuzzyClips

results in modified facts to be evaluated with the same rules again, causing infinite

loops. There is no sequential execution in Clips. Matched facts and rules are placed in

agenda to be executed. Prevention of infinite loops is handled with facts that serve as

control flags. In GES, every rule should act upon every fact only once. All the rules

matching previously, match again after rule modification because of LHS has patterns

of unchanged attributes.

In order to prevent continuous firing of rules a control mechanism has been im-

plemented. This is achieved by introducing control slots to nodes, where every rule

evaluating a fact inserts its id to the control slot. Evaluating the control slot prevents

the rule to match a node and change its membership a second time. LHS part of the

rules include their own flag ID. If the ID exists on some node, the RHS part of the

rule, is never operated on that node.

33

2.1.6. Salience for Expert State Machine Control

Separate stages of the fuzzy system like defuzzification, fuzzification and fuzzy

rule attribute evaluation, are manipulated by the method called Salience. Salience is

the term that represents the priority of a rule. High salienced rules fire first while the

low ones fire last. Salience is used just for determination of stages in GES. Membership

altering fuzzy rules have the same firing salience. The order of the rules with the same

priority are set using a breadth-first method: A term standing for newly activated rules

have less priority and rules fire in a queue manner.

2.2. GAIA Graph Evaluator (GGE)

An application can be represented as a CDFG where data dependency and control

flow are constructed as a directed acyclic graph (DAG). It is assumed CDFG input is

in single assignment(SA) model which is constructed from a high level language. The

GAIA system acts upon a CDFG, which is a group of nodes that have a pattern

according to the rules explained in section 2.2.1.

The GAIA expert system acts on node basis, but nodes have attributes that they

inherit from the topology of the graph or the specifications of the application. These

attributes are marked by the graph evaluator component of GAIA, i.e GGE.

The graph evaluator component has been implemented in C++ with a generic

graph library, since the graph tasks are computation-intensive. A well known and

credited work that performs graph related tasks is the BOOST graph library [33]. By

utilizing this library, it is possible to merge customized data structures to templates

and use libraries functions and algorithms.

GAIA graph explorer assumes there is an application that has been passed to

GAIA in the structure of a CDFG. GGE acts upon the CDFG model established in

Section 2.2.1.

34

2.2.1. The CDFG Model

The input of the GAIA system is a CDFG that represents the control and data

dependency of operations. A CDFG consists of data nodes and control nodes such as

loop, conditions, branches. Group of data nodes correspond to a DFG. A DFG is a

directed acyclic graph that has operators as the nodes and operands as the edges. DFG

nodes can be fine-grained as addition, subtraction operations or coarse-grained like

functions declared in a high level language. There is no restriction on the granularity

of the nodes. The coarse grained nodes enables the user to specify special nodes. The

coarse grained nodes correspond to functions that have third party netlist files. They

can be intellectual property (IP) cores.

It is assumed that the DFG is arranged in SA model which stands for the ar-

rangement of the graph where variables in the graph are assigned only once. The model

prevents cycles in a DFG occurring from data dependency. For example the following

code can be considered:

1: X ← a+b

2: X ← c+X

Here, X is assigned several times thorough out the sequence. The resultant DFG

has cycles due to multiple assignment of the X variable. Creating the temporal register

X1 prevents cycles in DFG as well as retaining the data dependency. The resultant

model is SA model. The DFGs before and after regulation are given in Figure 2.13.

The sequence can be rewritten as below with the X1 variable:

1: X1 ← a+b

2: X ← c+X1

CDFGs can be derived from different high level languages such as C or a hard-

ware description language like VHSIC Hardware Description Language(VHDL). CDFG

is also the intermediate representation of compilers, reproduced by the front-end compi-

lation stage. Although the intermediate representation is a CDFG, there is no standard

35

Figure 2.13. SA model regulation a) DFG before regulation b) DFG after regulation

in SA model

between the CDFG models [8], [9].

The input of the GAIA system is an abstract CDFG model, which only represents

the data needed for CI/PE selection. Evaluating a CDFG representation as the input,

the GAIA stands between the front-end compilation and back-end compilation stage.

GAIA system should not be integrated after a back-end compilation phase, i.e. after

all the nodes have been mapped into assembly language of the target architecture.

The necessity arises because of the reason that GAIA system evaluates user-marked

special nodes which will be directly mapped to CIs. This is advantageous if the user

has a third-party hardware definition of a function; in other words an IP core that will

outperform software version, such as square-root function.

CDFG model used in GAIA is defined as follows. CDFG is a directed acyclic

graph, G(V,E). The vertex set V of the CDFG consists of two disjoint vertex sets. VD

and VC stand for vertex sets of data nodes and control nodes respectively. A data node

can be a simple arithmetic logic operator or a miscellaneous operator such as a user

defined module or an IP. A control node can be one of the following:

36

• a branch construct like ”if/else” or ”case/select”.

• a loop construct

• a function call

The edge set E of the CDFG is made up of three disjoint sets. EDD is the edge set

that represents dependency between data nodes. ECD covers the edges that describe

the transactions from control nodes to data nodes. ECC is the edge set that shows the

control flow dependency between two subsequent control constructs. Note that there’s

no edge set from data nodes to control nodes because the CDFG is partitioned into

DFGs by using a control node only at the root of each DFG. For a small example,

consider the code in Figure 2.14. This code calculates root-mean-square of N values of

array arr. The corresponding CDFG is shown in Figure 2.15. The operation carried

out in line eight is done with a function call, i.e. average. The definition of average

also appears in the CDFG. The operation of line nine is done with a miscellaneous

operator, sqrt.

1: void main()

2: {

3: sum ← 0; i←0;

4: while i < N do

5: sum += arr[i]*arr[i];

6: i++;

7: end while

8: ave ← average (sum, N);

9: result ← sqrt(ave);

10: }

11: average(sum, N)

12: {

13: return (sum/N);

14: }

Figure 2.14. Root-mean-square code

37

Figure 2.15. Root-mean-square CDFG

2.2.2. The Graph Input

The CDFG graph is the input to the program via several text files consistent with

the model. There are three files to form the graph.

• opdet.txt : This file holds physical properties of each operand. These are hard-

ware area (hwarea), hardware execution time (hwtime), software execution time

(swtime). Operands can be fine grained as a GPP instruction or coarse grained

as a function specification. The first column is the key of the operand and con-

stitutes an index for details.txt

• details.txt : This file holds both DFG and CDFG nodes. It requires operands def-

initions and has an index entry per node to the opdets.txt. There are other graph

related attributes per node in addition to the attributes taken from opdet.txt. The

node can be a control or data node, where ’1’ flag is used for control and ’0’ flag

for data nodes. It can also attain attributes of being parallel or being a special

node depending on whether it is a control or data node. In details.txt, the main

CDFG node of the application should be on top. This is necessary for the GAIA

to operate on nodes properly. The top node can also be a NOP (no operation).

• graphcon.txt : It represents the connectivity of the nodes. The graph connectivity

38

is implemented as an adjacency list. The parent node is the starting point in

the line, while the preceding nodes are children connected to the parent. The

line order of the connection relations is not important. The IDs of the nodes in

graphcon.txt address the details.txt for the attributes of the nodes. The key of

details.txt is used for indexing operands.

The graph in Figure 2.16 is constructed as an input. The input example files for

the Toy DFG is given in Figure 2.17.

Figure 2.16. The Toy CDFG - DFG part

2.2.3. Boost Graph Library

Boost Graph Library(BGL) is a header-only library that provides data structures

related with graphs. Utilities to construct and modify graphs, several graph specific

tasks as well as general algorithms used in graph theory are provided by BGL. Boost

graph library is designed in the concept of generic programming. A familiarity to

standard template programming(STL) is necessary for using the library. With the

introduction of templates, flexibilty is targeted. The algorithms of BGL can work on

39

Figure 2.17. The Graph input file examples a) details.txt b)graphcon.txt c) opdets.txt

40

every kind of data structure. In the thesis boost graph library version boost 1 34 0 is

used [34].

The data structure used for the CDFG implementation is an adjacency list instead

of adjacency matrix since the graph has a highly sparse structure. In order to enable

the movement from child nodes to parents or vice versa, the edges are chosen to be

bidirectional. Note that this does not mean undirected or back edges are allowed.

Back edges are connections from child to the parent. The resultant graph is acyclic.

Introducing bidirectional edges requires additional memory for the GAIA system.

Data structure of vertices has been utilized to hold the data required for nodes

of the CDFG. The algorithms are modified to operate on the data included in the

vertices, such as BFS and DFS.

2.2.4. Finding Recurring SubGraphs in Graphs

Problem of finding isomorphic subgraphs and a recurring isomorphic subgraphs

has many uses in chemistry, biology and data mining fields. It is a highly worked

research area. There are several papers on optimization and various algorithms can

be classified by the keywords like subgraph isomorphism, recurring subgraphs or motif

detection. Most of the work is focused on the topology of the graph, namely the

connection between the vertices. The algorithms generally use adjacency matrix of the

graph, trying to capture the connection patterns in the graph. Connection patterns

usually change. However, in CDFGs, the connection patterns do not change drastically.

For the recurring subgraph problem of CDFG, the connections of the vertices are not

varied and the graph is highly sparse. The in-edges of a node is generally around two.

The in-edges of a node correspond to the input operands, while the node stands for

the operator.

The previous work on recurring subgraph problem that has been spotted in

HW/SW codesign and CI selection area is as follows. A recurrent subgraph approach

has been used in custom instruction identification in a previous work. The approach

41

acknowledges to find a small patterns [1]. In the approach taken in this thesis, it

is possible to identify more than two instructions as well as shift-add and multiply-

accumulate chains. It is a brute force algorithm that linearizes the graph for every

node and converts the recurring subgraph problem to a recurring sub-string problem,

which is less expensive to compute. In this thesis a method has been proposed to solve

recurring substring problem. The method is based on Ratcliff/Obershelp algorithm

[35] which extracts longest common subsequence between two substrings. The worst

case computation time of the algorithm is pseudo-polynomial. Note that when recur-

ring subgraphs are chosen, convexity constraint is considered and introduced into the

problem both as a heuristic and as a mandatory constraint for CI patterns.

2.2.4.1. Linearization of the Graph . The approach to subgraph isomorphism detec-

tion is implemented with linearization of the graph patterns. It works in a brute-force

way, with the addition of a heuristic. The heuristic is that whenever the nodes of the

graph violate the convexity constraint, the algorithm stops string formation on that

particular node, i.e. newer nodes are not included to the string. Algorithm advances to

the next node with a depth-first search performed on the nodes of the DFG. Strings are

constructed from every node in the graph. String construction is performed advancing

from sink node and including parent nodes upwards. The combination of parents of

the node in string formation is also considered since the order of the parent nodes does

not make a difference for GAIAs recurring subgraph problem.

One noticeable point of the approach is the spanning of basic blocks for recurrent

subgraphs. All the basic blocks are evaluated concurrently in a pool and the recurrency

factor is determined on the whole application basis.

The heuristics that reduce the search space are as follows.

• Convexity violation: The parents of the nodes are evaluated to one by one. If

the included node violates convexity then route is terminated and string is con-

structed for only up to that point.

42

• Control node elimination: Strings are not formed with control nodes. Once a

control node is reached, the string generation is stopped. The string generator is

working on DFGs only. Note that control nodes and data nodes exist in CDFG.

According to the graph model, control nodes are reached from a control node

which is the root, aka main.

• ”Depth to go” parameter: The details of depth to go parameter are given in

section 2.2.4.2.

The constructed strings after linearization of the graph are transferred to the

expert system in order to detect the similar patterns. Similar patterns are asserted as

’pattern facts’. The matched patterns are grouped, counted and marked so that the

highly recurring patterns have a higher weight in CI selection process in GES system.

2.2.4.2. Depth of Linearization . Linearization is performed on all nodes, starting

from the nodes that are reached in a depth first manner. The task is performed from

the starting node up above the ancestors. It is possible to continue string formation

until the entrance node of DFG is reached. In this way bigger patterns can be extracted.

However this is computationally a heavy process. Therefore a depth-to-go parameter

is introduced. Depth-to-go limits the level that the algorithm can go above, up to

the ”main”. Considering the case depth-to-go is two, the resultant level that can be

advanced from the ”a3” is shown in Figure 2.18. The possible clusters from which the

string are formed for node a3 is given in Figure2.19. Corresponding strings for clusters

is given in Table 2.2. Aliases of the nodes given in the example are fictive. In the

GAIA system, the operators are assigned a unique character and the characters of the

operators form the string patterns. For example, considering a3 and a2 are addition

operators, an ’A’ character replaces ”a3” and ”a2”. The character ”!” is employed to

represent level changes in the DFG. There are no isomorphic patterns in the example,

just possible node linearization for node ”a3” is given.

2.2.4.3. Convexity. Convexity of a subgraph is mandatory for Custom instruction

selection. Otherwise the operators in the custom instruction would have to produce

43

Figure 2.18. Cluster of DFG for a3 node Depth-to-Go = 2

Figure 2.19. Subclusters for a3 node Depth-to-Go = 2

44

Table 2.2. Strings formed for a3 node

Cluster Strings formed

(a) !a3a2!a2a4a1! and !a3a2!a2a1a4

(b) !a3b2a2!a2a4a1 and !a3b2a2!a2a1a4

(c) !a3b2a2!a2a1

(d) !a3b2a2!a2a4

(e) !a3a2b2!b2b1

(f) !a3a2!a2a1

(g) !a3a2!a2a4

(h) !a3b2!b2b1

data and wait for an external input at some point in the execution. A halt event

during the operation of the instruction interrupts atomic execution of the CI. Therefore,

convexity constraint should be met, in order for a CI to execute atomically.

Convexity of the subgraph is traced during pattern string generation phase.

Whenever strings are generated from the graph, parent vertex is added to the sub-

graph only if convexity is not violated. If the addition of the parent vertex violates

convexity, string formation on that part of the tree is not resumed and aborted.

At the parent addition process, the children nodes of the candidate vertex are

checked. The adjacent nodes are children of the parent vertex. For every child that is

not already in the subgraph (i.e. CI set), a BFS is performed. The algorithm concludes

that the convexity is violated if a node in subgraph, i.e. CI set is visited during the

BFS search. The subgraph must be convex prior to the addition. After addition to

the subgraph, if the parent vertex under examination results in a path that ends in the

subgraph, but has vertices outside of the subgraph, then convexity is violated. The

formulation of the convexity algorithm is given in Figure 2.20

45

FUNC Convexity Checker

INPUT: GD (VD,EDD), Gs (Vs, Es) and v ε Vs

such that Gs ⊆ GD, Vs’= VD − Vs and Gs is convex

FOR every (w ε Vs’ and u, z ε Vs such that evz ε EDD and ewu ε EDD)

IF there exists a path between v and w, THEN Vs is not convex.

Figure 2.20. Convexity algorithm

2.2.4.4. The Flow of Subgraph Pattern Matching. First step is the generation of the

patterns from the BBs of the CDFG in the GGE part of the system. GGE part forms

the strings regarding the convexity constraint, control node elimination and depth-to-

go parameter. Once the strings are created, they are passed to the expert system so

as to be matched and grouped under patterns. Receiving a pool of string patterns, the

expert system evaluates them with GES rules. Note that these rules are not fuzzy and

made up of string functions mostly.

The string processing function is coded in C and added to the source code of

FuzzyClips so that it can be used within FuzzyClips rules. The function evaluates the

input strings two by two and returns all the sub-strings common in both strings. This

enables the linearized portions of the graph to be compared one by one. As a result,

all common substrings are created. The substrings are then collapsed and grouped

with their counts by GES. The resultant group of substrings, along with their counts,

is passed to the GGE. A basic flow chart is given in Figure 2.21

2.2.4.5. SubString Matching Algorithm. The algorithm, which finds all matching

strings between two strings is developed by modifying Ratcliff/Obershelp pattern-

matching algorithm. Ratcliff/Obershelp algorithm finds the longest subsequence be-

tween two one-dimensional strings. For two input strings of length n and m, the algo-

rithm creates an (n+1)x(m+1) matrix, as in Ratcliff/Obershelp algorithm [35]. The

way matrix entry values are calculated is modified, in order to find matching strings,

not sequences. The complexity of the algorithm is O(M ∗N). The modified algorithm

is shown in Figure 2.22. The terms str1 and len1 stand for the first string and the

46

Figure 2.21. String formation system flow

47

length of the first string. Second string is indexed with two.

Figure 2.22. Modified Ratcliff/Obershelp algorithm

To clarify, if the selected characters do not match, the cell that stands for their

combination will be 0. Otherwise, it is calculated by increasing the value in the up-

left corner by 1. Since up-left corner stands for the pair of both characters’ preceding

characters, eventually, each cell will reflect ”number of characters matching” up to that

pair, in the matching string it is involved. After the matrix is built, every value greater

than one is followed towards up-left cells, and the strings are derived. A sample matrix

for strings ”abcdef” and ”bcdxdef” is depicted in Figure 2.23

Figure 2.23. String matching matrix example

The operation sequence on sample matrix in Figure 2.23 is as follows:

• Value: c,

• Up-left: b. String = bc Value 1 reached.

• Value: e,

• Up-left: d. String = de Value 1 reached.

• Value: f,

• Up-left: e, String = ef Value 1 not reached, go on.

• Up-left: d, String = def Value 1 reached.

48

• Matching strings found: bc, de, ef, def

2.2.5. Parallelity of the Application

There may be parallelism in an application in the structure of data parallelism

or instruction parallelism. It is well known the most profitable one is the data level

parallelism to exploit. This is done in SIMD architecture, where same operation exe-

cutes on data that is separated into chunks. Concurrently executing identical PEs act

on different chunks of data. This is possible in loops which are not data dependent or

vector operations that act on a data vector that can be divided into subvectors.

The other kind of data parallelism is instruction level parallelism. This is a VLIW

architecture where the parallel executing PEs are not identical but they operate con-

currently on independent data. A possible way to exploit instruction level parallelism

is finding disconnected parts of the CDFG and fusing the operations together where

operands are not identical but can be executed in parallel. This approach is taken

mostly for vector data since the cascaded instructions can be executed several times

on portions of vectors. In general applications, application attributes do not benefit

from instruction level parallelism in an extensive order. An example in literature is

XTENSA [36] that exploits data and instruction level parallelism together.

2.2.5.1. User Indicated Parallelism in Programs. The parallelism of the program is

mainly expressed with the help of user in parallel programming languages via compiler

directives. Some well known programming languages are MPI and OPENMP. Alter-

natively, programming languages can profile the parallelism in the program to some

extent. Also in XTENSA system, the user has to mark the parallel portions of the

application [36].

It is possible to mark parallel regions or indicate parallel loops in OpenMP via

pragmas [37]. Loops are generally the main source of parallelism in applications. For

the loops to be executed in parallel, there should be no data dependency between each

49

while i from 1 to 100 do

a(i) = a(i) + b(i)

end while

Figure 2.24. Data independent parallel loop

iteration. Considering the example in Figure 2.24, the iteration could be done 1-50 on

one thread and iterations 51- 100 on the other if there were two identical PEs.

2.2.5.2. Vector Parallelism. Another data parallelism to consider is vector instruc-

tions, where same operand executes on the vector entries. Vector parallelism can be

exploited in SIMD style. VLIW style may be chosen where several operators are cas-

caded for corresponding architectures. In this thesis, it is focused on the systems where

PEs are identical.

2.2.5.3. Exploitation of Parallelism in GAIA. For the reason that data parallelism is

the most profitable attribute to exploit and most tools expect the user to mark the

parallel parts, GAIA explorer assumes input CDFG has its loops marked as parallel or

the vector data nodes marked as parallel if there is any parallelism to exploit.

For data nodes, the parallel operation is restricted only to vector data nodes.

In this case, data nodes are separated to PEs. There is no specification for vector or

scaler data indication in the DFG model due to abstraction. If a data node is marked

as parallel the voting mechanism assumes it is parallelizable. Granularity of data node

can be as fine as an operand or as coarse as a user defined function. There is no

restriction since GAIA does not care about the granularity of the nodes.

If the loop node is marked as parallel, the DFG portion under the loop control

node is marked also parallel by the system. It is the DFG part of the loop that is

divided into PEs. Section 2.2.5.4 describes the difference of a PE from a CI. Details of

the algorithm carrying the parallelity of the loop node down to data nodes is given in

section 2.2.7.4

50

2.2.5.4. The Difference Between a PE and a CI. This lexicon is taken from the soft

processor implementation of Sonmez [21]. When partitions of HW is called as a PE, an

SIMD style architecture is meant where parallel PEs reside along with the GPP. PEs

are indeed invoked by custom instructions. Whenever CI is mentioned, the architecture

is SISD style tightly coupled custom instruction that is working along with GPP.

2.2.6. Node Selection

After the voting for the customization is performed in GES, nodes have to be

chosen to be in CI, PE or GPP. The resultant nodes that GES passes to the GGE

are sorted according to their HW per centages. The selection process is dominated by

GES, whereas GGE performs graph-related fusion. Node fusion occurs when a chosen

node is in a recurring pattern. The other nodes in the pattern are also marked to be

in CI.

The pattern choice is another criteria since a node can be in several patterns.

The default approach is highly recurring pattern to be exploited. To give a penalty

for small patterns, the pattern to choose is determined with the following formula:

RecurrencyFactor ∗NodesInPattern. RecurrencyFactor is the count of the patterns

found in the CDFG. The value is calculated by GGE. NodesInPattern is the number

operations residing in a pattern.

The results for the method that favors the biggest patterns are also observed. The

criteria for the big pattern choice was simply NodesInPattern. This method chooses

the pattern which has the most operations in it.

2.2.7. Graph Traversal Algorithms

GGE part of the system performs several tasks on the overall CDFG of the input

application. The most notable is the linearization of the graph with string formation

task which has been explained in section 2.2.4.1. The other smaller tasks performed in

graphs are mentioned in following sections. The input to the graph algorithms is the

51

FUNC BFS CriticPathTraveler

for all nodes in CDFG do

if CDFG to DFG entrance then

COMPUTE overall time consumed for current DFG BFS

end if

end for

GET the DFG subgraph with highest value for DFG time consumption

CALL BFS CriticPathMarker with critic DFG

ENDFUNC

FUNC BFS CriticPathMarker

for all nodes in the input DFG do

SET node attribute ”criticpath”

end for

ENDFUNC

Figure 2.25. CriticPath handlers pseudocode

CDFG of the graph, while the output is the processed CDFG unless stated otherwise.

Graph traversals have been implemented with the help of Boost Graph Library

visitor concept [33]

2.2.7.1. Critic Path Traveler and Marker. Critic Path traveler is for identifying the

DFG that has the most time consuming task in the graph. All the CDFG is traversed

to compute the time span of the DFG parts of the graph. After the Critic DFG part is

identified with Critic Path Traveler, the nodes in the DFG are marked in ”critic-path”

by Critic Path Marker. The pseudocode of the algorithm is given in 2.25

2.2.7.2. CDFG String Travelers. :

The functionality of string formation and details about the algorithm have been

52

FUNC DFS CDFGForStringTraveler

for all nodes in CDFG do

if CDFG to DFG entrance then

CALL BFS StringConstructorTraveler for the DFG

end if

end for

ENDFUNC

FUNC BFS StringConstructorTraveler

for all nodes in input DFG do

CALL CreateString (recursive)

end for

ENDFUNC

Figure 2.26. CDFG string handlers pseudocode

identified in section 2.2.4. The pseudocode of the implementation is given in Figure

2.26.

2.2.7.3. Convexity Checker. Convexity checker is called during string formation task,

whenever the string formation advances up to parent nodes. The convexity algorithm

usage and phase is given in section 2.2.4.3. The implemented pseudocode is depicted

in Figure 2.27. The function ConvexityChecker is given in 2.20.

2.2.7.4. Loop Inherit Traveler. Loop Inherit Traveler is for propagating some of the

attributes of control nodes to the DFG nodes that are the children of the control node

under evaluation. For example if a ”loop” node is parallel, DFG nodes under the control

loop node possess parallelity. The pseudocode of traveler that propagates attributes of

control nodes to data nodes is given in Figure 2.28

2.2.7.5. Total Time Traveler. Total time traveler is for statistical data which is the

overall execution time the application CDFG consumes. The traveler is executed both

53

FUNC IsStillConvex

SET S as the current Custom Instruction

SET V as the set of adjacent nodes of parent to be added

for all v ε V do

CALL BFS ConvexityChecker for v with S

end for

if BFS ends in a node that is in S then

RETURN convexity is violated

end if

ENDFUNC

Figure 2.27. Convexity pseudocode

FUNC DFS LoopInheritTraveler

CurrExectime⇐ 0

for all nodes in CDFG do

if advancing from a loop node to a DFG node then

parallelity ⇐ loop node’s parallelity

currExecT ime⇐ LoopsExecT ime ∗ currExecT ime

else

nodesExecT ime⇐ currExecT ime

nodesParallelity ⇐ parallelity

end if

if GOING OUT a pre-visited control loop node then

ROLLBACK currExecT ime and parallelity value

end if

end for

ENDFUNC

Figure 2.28. LoopInheritTraveler pseudocode

54

FUNC TotalT imeTraveler

overallT ime⇐ 0

for all nodes in CDFG do

if the node is data node then

if in HW then

if in CI then

overallT ime+ = (hwTime ∗ execT ime)

end if

if in PE then

overallT ime+ = (hwTime ∗ execT ime)/PE

end if

end if

if in SW then

overallT ime+ = (swTime ∗ execT ime)

end if

end if

end for

ENDFUNC

Figure 2.29. TotalTimeTraveler pseudocode

before and after the CI/PE selection phase. The improvement achieved on the total

time can be recorded and compared via Total time traveler. The results can be observed

in statistics.txt. Note that the statistics are dependent on the user input of ”opdets.txt”

file which includes the timing values entered by the user for hardware execution time

and software execution time.

The total time traveler basically performs the functionality as in the pseudocode

depicted in Figure 2.29.

55

3. EXPERIMENTS AND RESULTS

Experiments have been carried out on a cryptographic algorithm Rijndael and an

algorithm for motion estimation from MPEG7 specification. Rijndael gives hint on the

recurring sub-graph behavior of the GAIA Explorer. Details of the run instances and

the results are given in section 3.1. Motion Intensity works on matrices and performs

operation on matrix elements, which can exploit parallelism. The details on motion

intensity calculation example is given in section 3.2. The run instances are performed

on Windows XP Professional OS, Intel P2 1400MHZ processor, 320MB RAM .

3.1. Example: Rijndael Encyption

Rijndael is a cryptographic language that is the new generation of AES, chosen

by NIST. It is a block cipher algorithm that can support several key sizes of 128,192

and 256 bits. The round count differs according to the key size. The round count used

in the example is 12. The CDFG plot of the Encryption phase of Rijndael is given in

Figure 3.1. Band label stands for the operator ”bitwise and”. Encrypt, decrypt and

getu32 are functions in Rijndael standard. Rijndael CDFG has recurring patterns due

to rounds in encryption. The example is chosen with full unroll mode, which is the

extensive mode of the standard and increases patterns. The related CDFG files are

constructed from C source code.

The number of operator and control nodes in encryption stage is 170. It took

GAIA explorer 30 mins to evaluate the CDFG input and create the results.

Pattern selection method has been chosen both as biggerpatterns and

highrecurring favoring. The details of the pattern selection methods is given in Sec-

tion 2.2.6. The found patterns with their assigned characters are given in Table 3.1.

’M’, ’L’, ’K’ characters stand for ’ ˆ ’, ’band’ and ’<<’ operators in the Figure 3.1,

in order. The assigned value for depth to go parameter is equal to two. The chosen

nodes with big block favoring method, biggerpatterns is sketched in Figure 3.2. The

56

Figure 3.1. Rijndael encryption CDFG

57

results of highrecurring favoring method is given in Figure 3.3. The chosen pattern

with highrecurring method also exists in getu32 function DFGs, which is a function

found in Rijndael.

Table 3.1. Recurring subPattern results for Rijndael

method resultant time pattern

biggerpatterns 25200 timeunits !MLM!MLK

highrecurring 26250 timeunits !MM!MM

High recurrence method, which is basically recurrencefactor ∗ patternsize, re-

sults in a longer execution time than big block favoring method. However, the results

are highly dependent on application under test. Assuming a case, there are two in-

stances of the bigger pattern while there are 100 instances of the small one, it might

be favorable to select the high recurrent pattern as the CI.

GAIA Explorer is experimented on Rijndael encryption CDFG for different area

contraints. The time consumed for the CDFG when residing in GPP was 28200 time

units. The results for different area constraints is given in table 3.2. The pattern choice

is based on high recurrency factor of the patterns.

Table 3.2. Experiment results for Rijndael encryption

Area constraint chosen resultant execution time

Run Instance 1 1000 areaunits 26250 timeunits

Run Instance 2 3000 areaunits 21150 timeunits

58

Figure 3.2. Rijndael - Big pattern favoring method; depth to go= 2

Figure 3.3. Rijndael - High Recurrence factor method; depth to go= 2

59

3.2. Example: Motion Intensity Calculation

The MPEG-7 standard is for providing a framework for handling multimedia

content. Color, texture, shape and motion can be represented with a set of descriptors

and can be employed in several multimedia tasks. The motion intensity calculation

is used for motion estimation in spatial video sequences. GAIA Explorer system is

run on motion intensity calculation function which is a part of the MPEG7 motion

estimation algorithm. The key point of the motion intensity calculation function is,

the function works on matrices to perform the required task. The function can merit

from parallelization and as well as from IP cores, for functions like square root. There

is no recurrency to exploit in the application

The CDFG representation has been constructed consistent to the established

model in section 2.2.1. The CDFG model depiction is given in Figure 3.4. The appli-

cation consists of 40 control and operation nodes. The matrix size is taken as 12 ∗ 12.

The application takes 40652 time units to execute when all in GPP. The experiment

inputs and results after several runs are given in tables 3.3 and 3.4 in order. The GAIA

Explorer run time is 5 secs.

Table 3.3. Experiment inputs for motion intensity

PE count Area area critic special function

Run Instance 1 4 1000 areaunits N N

Run Instance 2 2 1000 areaunits N N

Run Instance 3 2 300 areaunits Y Y (sqrt)

60

F
ig

u
re

3.
4.

M
ot

io
n

in
te

n
si

ty
ca

lc
u
la

to
r

C
D

F
G

61

Table 3.4. Experiment results for motion intensity

resultant time operators chosen

Run Instance 1 28844 timeunits sqr(PE)

Run Instance 2 30284 timeunits sqr(PE)

Run Instance 3 22796 timeunits Figure 3.5

Figure 3.5. Motion Intensity CI selection: critic area system, special node: sqrt IP

core (90/400 hwtime/swtime)

62

4. CONCLUSIONS

With the advent of customization of embedded processors, automation in cus-

tomization research area has emerged. Automation is necessary in order the design

inexpensive systems that meet quick-to-market deadlines. The research aims to fully

automate the customization process, however it is directed with user input to some

extent for satisfactory results.

Generality of the applications is another target to work on because embedded

systems with specialized applications exhibit a highly varying nature. The wide range

of the attributes that the applications possess can be exemplified like parallelism in

matrix calculations in multimedia applications, recurrency of operations in cryptogra-

phy applications, hard time constraints of real-time-systems... The embedded systems

also has to be customized according to different system attributes like being area-critic

or time-critic etc. If generality is targeted in tailoring the processor to an applica-

tion, the varying nature of the applications and systems should be evaluated by the

customization process.

In GAIA Explorer, an expert system, GES, at the intention of assisting the

customization process has been implemented in this thesis. The imprecise data are

represented with fuzzy logic. The customization domain knowledge is constructed into

expert system with rules. Expert system is augmented with a graph evaluater, GGE,

to assess the topological attributes of the nodes such as recurrency of operations, par-

allelism, control inherited behaviour of nodes and data dependency flow. The control

of the GAIA explorer is handled by GGE.

The abstraction of the data nodes results in flexible partitioning process. The

input can be as fine-grained as assembly level, as coarse-grained as user defined func-

tions or a mixture of both. The flexibility results in IP cores to be evaluated as special

nodes during partitioning process.

63

According to the results, the conflicting/cooperating attributes of the nodes have

been evaluated in the expert system. GES, acting as a voter for customization process,

marks the HW/PE membership of the nodes. The voting results are passed to the

GGE. Selection is performed until area constraint is violated without changing the

choice order of the GES.

However in node selection phase, GGE intervenes to the selection process. If a

node in a recurring pattern, has a high membership, GGE selects the other nodes in

the pattern for node fusion, exploiting recurrent nature of the application. A naive

approach for choosing the pattern has been implemented and can further be improved

with a method like graph covering. The methods used are given in section 2.2.6.

Node fusion is not favored other than patterns in GAIA Explorer so as not to

jeopardize a high percentage HW node to be left in GPP due to area budget. Fusing

the nodes around the selected nodes can result in area consumption by nodes that

have low percentage HW attribute. However, when the data nodes are fine grained

as in assembly level, fragmentation of the graph occurred. A control mechanism to

prevent external fragmentation of the graph for fine grained data input is observed to

be necessary.

In addition to the task of representing imprecise terms and constructing domain

knowledge in an expert system, a recurrent isomorphic subgraph approach has been

implemented. A rule in GES acts on nodes that are in pattern. In order to provide

the relevant data to GES, GGE marks the nodes in pattern before passing them to

GES. The solution has been achieved by mapping the recurrent subgraph problem to

recurrent substring problem. A pseudo polynomial-time complexity algorithm used in

multimedia applications to find the longest subsequence is modified in order to find

the common substrings. In order to map the subgraph problem to substring problem,

linearization of the graph has to be performed without losing data topology and data

dependency of the nodes. A pool of strings are constructed from the nodes. Search

space has been bound by a parameter depth-to-go. An enhanced approach to lin-

earization of the graph can further be found to decrease the search space, eliminating

64

depth-to-go parameter.

For future directions, a user modifiable expert system can be implemented, to

increase the generality and variety of the domain. The results show that a voting

mechanism for conflicting and cooperating attributes of the nodes is achievable and

logical. Since the attributes are discrete, new components can be added to the GGE

along additional rules for GES depending on further requirements of different indus-

tries. Also a genetic algorithm can be employed for a self-learning system.

65

REFERENCES

1. P. Ienne, R. L., Customizable Embedded Processors , Morgan Kaufman Publishers,

2007.

2. Pan Yu, T. M., “Characterizing embedded applications for instruction-set exten-

sible processors”, In Proc. of DAC , 2004.

3. Pan Yu, T. M., “Scalable custom instructions identification for instruction-set ex-

tensible processors”, In Proc. of CASES , 2004.

4. Yu, P. and T. Mitra, “Satisfying real-time constraints with custom instructions”,

pp. 166–171, 2005.

5. Togawa, N., K. Tachikake, Y. Miyaoka, M. Yanagisawa and T. Ohtsuki, “Instruc-

tion set and functional unit synthesis for SIMD processor cores”, pp. 743–750,

2004.

6. K. Tachikake, Y. M. J. C. M. Y. T. O., N.Togawa, “REDEFIS A System with a

Redefinable Instruction Set Processor”, In Proc. SBCCI , 2006.

7. Arnold, M. and H. Corporaal, “Designing domain-specific processors”, pp. 61–66,

2001.

8. “An algorithm for synthesis of large time-constrained heterogeneous adaptive sys-

tems”, ACM Trans. Des. Autom. Electron. Syst., Vol. 6, No. 2, pp. 207–225, 2001.

9. Knudsen, P. V. and J. Madsen, “PACE: A Dynamic Programming Algorithm for

Hardware/Software Partitioning”, p. 85, 1996.

10. Galuzzi, C., K. Bertels and S. Vassiliadis, “Graph Theory and Application Specific

Processors”, , November 2004.

66

11. K.Atasu, P., L.Pozzi, “Automatic Specific Instruction Set Extensions under Mi-

croarchitectural Constraints.”, In Proc. of DAC , 2003.

12. X.Chen, Y., D.L. Maskell, “Fast Identification of Custom Instructions for Exten-

sible Processors”, , 2006.

13. Jason Cong, G. H. A. J. G. R. Z. Z., Yiping Fan, “Instruction set extension

with shadow registers for configurable processors”, ACM/SIGDA 13th interna-

tional symposium on Field-programmable gate arrays , pp. 99 –106, 2005.

14. Biswas, P., V. Choudhary, K. Atasu, L. Pozzi, P. Ienne and N. Dutt, “Introduction

of local memory elements in instruction set extensions”, pp. 729–734, 2004.

15. Zou, G. and X. Liu, “An Efficient Approach to Custom Instruction Set Genera-

tion”, pp. 547–550, 2005.

16. Vázquez, A., R. Dobrin, D. Sergi, J. P. Eckmann, Z. N. Oltvai and A. L. Barabási,

“The topological relationship between the large-scale attributes and local interac-

tion patterns of complex networks.”, , December 2004.

17. Liem, C., T. May and P. Paulin, “Instruction-set matching and selection for DSP

and ASIP code generation”, European Design and Test Conference, 1994. EUROA-

SIC, The European Event in ASIC Design, Proceedings., pp. 31–37, 28 Feb-3 Mar

1994.

18. Galuzzi, C., E. M. Panainte, Y. Yankova, K. Bertels and S. Vassiliadis, “Au-

tomatic selection of application-specific instruction-set extensions”, pp. 160–165,

2006, http://doi.acm.org/10.1145/1176254.1176293.

19. C. M. Hohenauer, H. S., “Retargetable Code Optimization with SIMD Instruc-

tions”, In Proc. of CODE , 2006.

20. F. Barat, P. B. G. D., M. Jayapala, “Software Pipelining for Coarse Grained Re-

configurable Instruction Set Processors.”, In Proc. of VLSID , 2002.

67

21. Sonmez, N., SIXD:A Configurable and Customizable SISD/SIMD Microprocessor

Soft Core, Master’s thesis, Bogazici University, 2006.

22. Aditya, S., B. R. Rau and V. Kathail, “Automatic Architectural Synthesis of VLIW

and EPIC Processors”, pp. 107–113, 1999, citeseer.ist.psu.edu/562518.html.

23. J. Lee, N. D., K. Choi, “An Algorithm for Mapping Loops Onto Coarse-Grained

Reconfigurable Architectures”, In Proc. of LCTES , 2003.

24. Biswas, P., N. Dutt, P. Ienne and L. Pozzi, “Automatic identification of application-

specific functional units with architecturally visible storage”, pp. 212–217, 2006.

25. Catania, V., M. Malgeri and M. Russo, “Applying Fuzzy Logic to Codesign Parti-

tioning”, IEEE Micro, Vol. 17, No. 3, pp. 62–70, 1997.

26. Basu, R. S. M. A., “Knowledge representation in MICKEY: an expert system for

designingmicroprocessor-based systems”, Systems, Man and Cybernetics , 1997.

27. López, M. L., C. A. Iglesias and J. C. López, “A knowledge-based system for

hardware-software partitioning”, pp. 914–915, 1998.

28. Orchard, B., FuzzyClips 10d Manual , http://iit-iti.nrc-cnrc.gc.ca/.

29. “A Tool for Building Expert Systems http://clipsrules.sourceforge.net/”, .

30. “Eclipse C/C++ Development”, http://www.eclipse.org/cdt/.

31. “MINGW - http://www.mingw.org/”, .

32. NASA, Clips Basic Programming Guide, http://www.ghg.net/clips/CLIPS.

html.

33. Jeremy G.Siek, A. L., Lie-Quan Lee, The Boost Grah Library , Addison Wesley,

2001, www.boost.org.

68

34. “Boost Library”, http://www.boost.org/doc/libs.

35. “Ratcliff/Obershelp Algorithm -http://www.ddj.com/184407970?pgno=5”, .

36. Gonzalez, R. E., “Xtensa — A Configurable and Extensible Processor”, IEEE

Micro, Vol. 20, No. 2, pp. 60–70, /2000.

37. Quinn, M. J., Parallel Programming in C with MPI and OpenMp, McGrawHill,

2004.

