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ABSTRACT

CAN HYPERBOLIC PHASE OF BRANS-DICKE FIELD

ACCOUNT FOR DARK MATTER AND DARK ENERGY?

The main purpose of this thesis is to explain the dark matter and dark energy

contribution to standard Friedmann Equation which relates the expansion rate of the

universe, H, to the various fractions of the present energy densities of the universe by

using Brans-Dicke theory of gravity in late-time regime.

Firstly, vacuum solutions of the field equations will be analyzed and it will be

shown that there is some anomaly in explaining the dark matter issue if Brans-Dicke

field φ is solely assumed to be complex. Then, for the next step, a hyperbolic phase

of Brans-Dicke field φ is worked out in the field equations and hence the anomaly seen

under the assumption of complex Brans-Dicke field φ has been disappeared automat-

ically. Therefore, we showed that Brans-Dicke scalar tensor theory well accounts for

dark matter and dark energy provided that the Brans-Dicke field φ is modified suitably.
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ÖZET

BRANS-DICKE ALANININ HİPERBOLİK FAZI KARA

MADDE VE KARA ENERJİYİ AÇIKLAYABİR Mİ?

Bu tezin ana amacı, geç zaman rejiminde Brans-Dicke skaler-tensörel kütle çekim

teorisini kullanarak, bugünkü enerji yog̃unlug̃unu, evrenin genişleme hızına bag̃layan,

Friedmann denklemine kara madde ve kara enerjinin katkısını açıklamaktır.

İlk olarak, kompleks bir Brans-Dicke alanının, vakumdaki çözümleri analiz edile-

cek ve gösterilecektir ki; Brans-Dicke alanını kara madde ve kara enerjiyi açıklamak

için kompleks bir alan olarak ele almak bir anomali içermektedir.

Bir sonraki adımda, Brans-Dicke alanı için hiperbolik faz tanımlanacak ve hiper-

bolik faz kullanılarak alan denklemlerinin çözülmesi ile, Brans-Dicke alanındaki anoma-

linin kaldırdıg̃ı gösterilecektir. Bu sebeple, hiperbolik fazlı Brans-Dicke alanı için

vakum geç zaman çözümünün kullanılması ile gösterilecektir ki; Brans-Dicke alanı

uygun olarak modifiye edildig̃inde, Brans-Dicke skaler-tensörel kütle çekim teorisi,

karanlık enerji ve karanlık maddeye açıklık getirebilmiştir.
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1. INTRODUCTION

Discoveries of the secrets of universe have always carried forward the questions of

human being including the term ”Why?”. Starting in 1960s, spectacular observational

breakthroughs like the discovery of the cosmic microwave background [1] radiation and

large number of galaxies and other discrete objects, often those with high redshifts

renewed interest in cosmology and made it a ’hot’ research topic for many theoreti-

cal physicists and experimental particle physicists. With this expansion has come a

great deal of new information and a model for the Universe. The foundation stone of

modern cosmology and the starting point of all those interests was the discovery of

the expansion of the universe by famous astronomer Edwin Hubble in 1929 [2]. He

demonstrated that all galaxies are moving away from us and from each other and this

was a direct observational evidence for an expanding universe. This observation was

in agreement with the expanding solution of Einstein’s equations. After that, the in-

flation theories, firstly predicted by Alan Guth [3], had been able to explain not only

the accelerated expansion of the universe but also many other problems of cosmology

like homogenity, isotropy and flatness problem. Undoubtedly the most impressive so-

lutions have been the most recent analysis of the CMB data based on the WMAP

[4] observations which shows that the Universe is close to spatially flat with a large

cosmological constant Λ, and these WMAP data can be fit very well with the value of

Hubble constant. The expansion of universe results from an adequate negative pressure

of dark energy. Recent observations show that the dark energy behaves like Einstein’s

cosmological constant [5] that arises from the vacuum energy leading to the inflation

of the universe. In respect of recent WMAP data [4], dark energy constitutes nearly

72 % of our universe together with the remaining energy density composed of dark

matter which can not be observed directly although its gravitational effects on visible

matter validate its presence. Unlike normal matter (whose pressure is always positive)

scalar fields can have an effective negative pressure, therefore providing an inflationary

theory. The first attempt to construct a connection between the inflation field and a

scalar field was introduced with the new inflation theory [6] suggesting that inflation

would be explained by a scalar tensor theory of gravity. The aim of this thesis is to
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show that the contribution of modified BD field to Friedmann Equation yields to the

explanation of dark energy and dark matter issues in BD cosmology. The reason to

choose the underlying theory as BD theory is that, it is one of the alternative theories

to general relativity.

In the first chapter, the general review of standard cosmology together with scalar

tensor theories and dark matter and dark energy will briefly be discussed. The second

chapter gives the methodology for the contribution of the BD field in respect of a

complex BD field and of a hyperbolic phase of BD field. Lastly, in the third chapter,

it will be concluded that BD theory well accounts for dark matter and dark energy.

1.1. Friedmann-Lemaitre-Robertson-Walker Cosmology-The Metric

In the early years of the 20th century, scientists had little knowledge about the

structure and the distribution of matter in the Universe. In order to make further steps,

they constructed a model to widen the aspects of the Universe which was based on an

idea called the Cosmological Principle. The Cosmological Principle states that, the

universe appears to be isotropic and homogeneous on large scales. When we say that

the universe is isotropic, we mean that an observer will see the same characteristics

in the universe whichever direction he observes. When we say that it is homogeneous,

we mean that the universe will appear the same to any observer, independently of his

position. These do not automatically imply each other however if we require that a

distribution is isotropic about every point, then that does enforce homogeneity as well

according to a basic theorem of geometry. Astronomical observations of the Cosmic

Microwave Background show that the Universe appears to be isotropic on large scales

to 1 part in 105 [1]. Despite the existence of inhomogeneous structures such as stars

and galaxies, the observable universe is remarkably homogeneous and isotropic at scales

larger than about 150h−1 Mpc [7], where 1 Mpc≈ 3× 1024 cm is a convenient unit for

extragalactic astronomy and h = 0.72±0.07 characterizes the current rate of expansion

of the universe in dimensionless form. The mean distance between galaxies is about 1

Mpc while the size of the visible universe is about 3000h−1 Mpc.
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The Friedmann-Lemaitre-Robertson-Walker metric, which gives quite consistent

results with the observations in cosmological studies, is the most conventional metric

used as in solving Einstein’s equations for an isotropic and homogeneous universe which

arises the question why the universe has chosen such a special state.

Assuming flat space-time with no gravity, the Minkowski metric with a signature

(+, -, -, -) for distance ds in four dimensions (x, y, z, and t) is given by

ds2 = c2dt2 − dx2 − dy2 − dz2. (1.1)

In a static universe, this form of the metric would adequately describe the distance

between stars. However, the universe is expanding. As in a balloon, the coordinates

x, y, z in the universe remain constant; however, as more air is added to the balloon,

the distance increases proportional to the expansion factor a. The metric becomes

ds2 = c2dt2 − a2(t)[dx2 + dy2 + dz2]. (1.2)

In spherical coordinates, this flat metric becomes

ds2 = c2dt2 − a2(t)
[
dξ2 + r2(ξ)(dθ2 + sin2 θdφ2)

]
(1.3)

The definition of r(ξ) varies with the value of the curvature of space k. The three

possibilities for r(ξ) to get homogeneous and isotropic spatial sections are

r(ξ) = {sin ξ, ξ, sinh ξ}. (1.4)

These alternatives of r(ξ) are due to a purely geometric fact, independent of the details

of general relativity. In this thesis we will be working with the natural units in which

~ = c = 1. The metric we use is the spatially conformal flat form of FLRW metric

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdφ2

]
. (1.5)
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In the FLRW metric the curvature k, governed by the amount of matter and energy

inside the universe, does not change with the expansion of the universe. It can take

three different values:

• k = 1 if r(ξ) = sin ξ, corresponds to positively curved spatial sections, geometri-

cally spherical universe,

• k = 0 if r(ξ) = ξ, corresponds to local flatness namely zero spatial curvature, a

geometrically flat, Euclidean universe,

• k = −1 if r(ξ) = sinh ξ, corresponds to negatively curved spatial sections, geo-

metrically hyperbolic universe.

1.2. Expansion and Red-Shift

Expansion of the universe means that early in its history the distance between us

and distant galaxies was smaller than it is today. The basis of this expansion begins

with redshift. The expansion of the universe is detected through the extension of the

light emitted by the receding galaxies. Due to Doppler shifts, wavelenghts received

from galaxies moving away from the milky way are elongated and contain less energy.

The observed redshift indicates that most of the galaxies are moving away from Milky

Way [8].

Redshift itself is the stretching of light emitted from galaxies due to the emitting

object’s recession. Cosmic expansion, denoted by a, cause the distances to increase, so

if the ratio of the emitted wavelength λ to the observed wavelength is directly related

to the ratio of cosmic expansion at the time when the light was emitted (tem) to when

it was observed (tobs), then

1 + z =
λobs

λem

=
aobs

aem

. (1.6)
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where z represents redshift. If an object is receding at a speed v, then its red-shift is

1 + z =

√
1 + v/c

1− v/c
, (1.7)

for v ¿ c

z =
v

c
, (1.8)

In 1929, Hubble used these relationships to discover that a galaxy’s recession ve-

locity increase linearly with its distance from Earth, thus establishing the expansion of

the universe. Because the expansion is uniform, the relationship between real distance

~dr and the co-moving distance ~dx for nearby objects can be written

~dr = a(t) ~dx, (1.9)

where the homogeneity property ensures that a is a function of time only. The recession

velocity of the nearby galaxies at fixed co-moving coordinates is ~v = d~r/dt, and is

proportional to their physical distance vector, ~dr,

~v = H ~dr. (1.10)

This relation is known as Hubble’s Law, where H is the Hubble parameter, the rate

of change of the scale factor, a. Hubble parameter, defined as H = ȧ/a, having the

dimension [LENGTH]−1, is constant over space but not over time; it determines the

expansion rate of the universe, where ȧ = da(t)/dt.
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1.3. Dynamics: The Friedmann Equations

In general relativity, the expansion rate of the universe follows from the Friedmann

Equation which is found from the G0
0 component of Einstein’s Field Equations [9, 10];

Gµ
ν ≡ Rµ

ν −
1

2
Rδµ

ν = 8πGNT µ
ν , (1.11)

where Rµ
ν is the Ricci tensor, R = Rµ

µ is the Ricci scalar, T µ
ν is the stress-energy tensor

and GN is the gravitational constant. Here we consider that the matter is in the perfect

fluid form whose energy-momentum tensor can be written as

T µ
ν = (p + ρ)uµuν − pδµ

ν . (1.12)

From homogenity and isotropy, the fluid should be at rest in comoving coordinates

which implies uµ = uν = (1, 0, 0, 0). The individual elements are thus:

T 0
0 = ρ, (1.13)

T 1
1 = T 2

2 = T 3
3 = −p, (1.14)

T 0
i = T i

0 = T i
j = 0 (i 6= j). (1.15)

Here ρ is the energy density and p is the pressure of the fluid. Solving Einstein’s

equations gives us two equations for the scale factor: G0
0 of Equation (1.11) yields

G0
0 = 3(

ȧ2

a2
+

k

a2
) = 8πGNρ,
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so that the ‘Friedmann equation’ is

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.16)

which relates expansion rate of the universe to the energy density ρ. The Gi
i component

of Equation (1.11) on the other hand yields

Gi
i = 2

ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πGNp. (1.17)

Another equation which is called ‘contunity equation’ is as follows,

ρ̇ + 3(ρ + p)
ȧ

a
= 0 (1.18)

Let us consider the evolution of the universe with an equation of state which is

defined by

γ = p/ρ (1.19)

where γ is assumed to be constant. Using (1.18) and (1.19) gives

ρ ∼ a−3(1+γ) (1.20)

For a radiation dominated universe γ = 1/3 and for a matter dominated universe γ = 0.

Most of the time during history of the universe, a single component dominates a certain

period of evolution. An example is the radiation dominated era where ρ ∼ a−4, a ∼ t
1
2 .

At later times, when matter came to dominate, this dependence switched to, ρ ∼ a−3,

a ∼ t
2
3 . It is now believed that, very recently, a has stopped growing as t

2
3 , a signal

that a new form of energy, namely dark energy, has come to dominate the cosmological

landscape, where γ = −1.
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1.4. The Density Parameter Ω

The total density of the universe is ρ = ρM + ρΛ where M is denoted by matter

(Baryons+Dark Matter) and the symbol Λ has been introduced to represent dark

energy; it is also known as the cosmological constant or vacuum energy. As the volume

of space in the universe increases, the mean density of matter decreases according to

the relation ρ = ρM,0(
a0

a
)3. However, the density of the dark energy, though, is a

constant. For any given energy density component i, it is conventional to define the

ratio of its today’s energy density (where the 0 index represent the value of today) and

today’s critical density by a dimensionless density parameter Ω, as

Ωi,0 =
ρi,0

ρc,0

, (1.21)

where ρc is the critical density required in order to make the geometry of the universe

flat, (k = 0) with

ρc(t) =
3H2

8πGN

, ρc,0 =
3H2

0

8πGN

(1.22)

With this new notation, one can rewrite the Friedmann Equation (1.16) as

Ω− 1 =
k

a2H2
, (1.23)

and can state the possibilities for the geometries of the universe depending on the

density parameter where Ω = ΩM + ΩΛ.

• Open Universe: 0 < Ω < 1 : k < 0 : ρ < ρc

• Flat Universe: Ω = 1 : k = 0 : ρ = ρc

• Closed Universe: Ω > 1 : k > 0 : ρ > ρc.
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The ratios of matter and dark energy in the universe to the critical density are

respectively given by

ΩM,0 =
8πGNρM,0

3H2
0

, ΩΛ,0 =
8πGNρΛ,0

3H2
0

. (1.24)

Although theoretically it can easily be seen from equation (1.23) that, for a flat universe,

k = 0 and Ωtot = ΩM + ΩΛ = 1, determining Ωtot has been one of the key challenges in

cosmology for decades. There has been a sudden breakthrough using measurements of

the cosmic microwave background [4] combined with other measurements like galaxy

clustering, and the latest constraint is Ωtot = 1.0002 ± 0.0295, which is very well

consistent with perfectly flat space, Ωtot = 1.

1.5. Dark Matter and Dark Energy

1.5.1. Dark Matter

In 1933, Swiss astronomer Fritz Zwicky suggested that gravity must keep the

galaxies in the cluster together, since otherwise they would move apart from each

other due to their own motion [11]. By determining the speed of motion of many

galaxies within a cluster from the measurement of the doppler shift of the spectral

lines, he could infer the required gravitational pull and thereby the total mass in the

cluster. Suprisingly, the required mass by far exceeded the visible mass in the cluster.

However, his results was not accepted by most astronomers at that time and it took

sixty years until he was proven to be right.

In the 1970’s Vera Rubin and her team found out that the visible stars are not the

only objects making up the mass of the galaxies [12]. They measured the orbital speeds

of stars around the center of spiral galaxies and that they move with a constant velocity

independent of their radial distance from the center. This is in apparent disagreement

with Kepler’s law, which describes the orbital motion of the planets in our solar system

very correctly. If Kepler’s law is valid everywhere in the universe then, the rotational

velocities of the stars can only be explained if the mass of the galaxy is increasing with
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the radial distance from its center. Numerical calculations show that there must be

at least an order of magnitude more matter in the galaxies than is visible. From their

measurements, which they repeated on hundreds of different galaxies, they concluded

that each galaxy must be embedded in an enormous halo of dark matter, which reaches

out even beyond the visible diameter of the galaxy.

It seems that the gravitational pull of huge amounts of dark matter is preventing

individual galaxies from moving away from each other and is keeping them bound

together in large clusters. By adding the total matter in galaxies and clusters of

galaxies one ends up with a total mass which corresponds to about 28% of the critical

mass of the universe.

1.5.2. Dark Energy

After the observations of type1a supernovae by the Supernova Cosmology Project

and the High-z Supernova Search Team in 1998 [13], astronomers learned that the

universe has been expanding with acceleration. A negative pressure is required in

order to accelerate the expansion of the universe and that may be provided by some

unidentified form of dark energy. This mysterious dark energy amounts to 72% of the

critical mass of the universe and has the strange feature that its gravitational force

does not attract, on the contrary it repels. This is hard to imagine since Newton’s law

of gravity tell us that matter is gravitationally attractive. In Einstein’s law of gravity,

however, the strength of gravity depends not only on mass and other forms of energy,

but also on pressure. From the Einstein’s equation (1.11), which describes the state

of the universe, it follows that gravitation is repulsive if the pressure is sufficiently

negative and it is attractive if the pressure is positive. In order to provide enough

negative pressure to counterbalance the attractive force of gravity, Einstein originally

introduced the so-called cosmological constant to keep the universe in a steady state.

At that time all observations seemed to favour a steady state universe with no evolution

and no knowledge about its beginning and its end. When Einstein learned about the

Hubble expansion of the universe he discarded the cosmological constant by admitting

that it was his biggest blunder. For a long time cosmologists assumed the cosmological
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constant to be negligibly small and set its value to zero. However this has changed

very recently since we know about the accelerated expansion of the universe.

In the light of this introductory information about standard Einstein cosmology

and observational results, one can see that how strange the present universe behaves

cosmologically. Although the only component of the universe which we can understand

theoretically well is the radiation (Cosmic Microwave Radiation), understanding the

baryonic and dark matter density components is not trivial. Moreover, the issue of

dark energy and acceleration in present universe under the influence of this mysterious

energy today is somehow perplexing and beyond the expectations of standard Einstein

cosmology. Hence, to solve this puzzle, many alternative theories to Einstein’s gravi-

tational theory are widely being used in the literature. Scalar tensor theories are the

most favorite ones of these theories. So, in this thesis, we have chosen BD Dicke scalar

tensor theory of gravity to explain dark matter and dark energy.

1.6. Scalar-Tensor Theories and Brans-Dicke Scalar Tensor Theory

In spite of the widely recognized success of general relativity, it is now called

the standard theory of gravitation, the theory has also feeded by many “alternative”

theories. Among them, we particularly focus on the Jordan and Brans-Dicke scalar

tensor theories of gravitation. The reason why these theories are also labeled with

“tensor” is that this type of theories do not merely combine the two kinds of fields

(scalar field and gravitational field), but also they are built on the solid foundation

of general relativity and besides, since Einstein’s theory of relativity is a geometrical

theory of space-time and the fundamental building block is a metric tensor field, gµν ,

these kind of theories are named as “scalar-tensor” theories.

BD theory effectively replaces the Newtonian gravitational constant GN in the

Einstein-Hilbert action [16] by a power of the BD scalar field in such a way that

G−1 =
2π

ω
φ2, (1.25)
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where G is the effective gravitational constant as long as the dynamical scalar field φ

varies slowly. In units where c = ~ = 1, the dimension of the scalar field is chosen

to be L−1 so that Geff has a dimension L2. In the PhD thesis of M. Çalık, it is

shown that a cosmological non-vacuum solution with flat space-like section is capable

of explaining how the Hubble parameter H evolves with the scale size of the universe

a(t) and how the solution of fractional rate of change of BD scalar field, F contributes

to the evolution of H in the late era in which the universe is expanding at a slow rate

[16]. Besides, in the context of (BD) [17] theory, the action for a real BD scalar field

is given by

S =

∫
d4x

√
g

[
− 1

8ω
φ2 R +

1

2
gµυ ∂µφ ∂νφ− V (φ) + LM

]
, (1.26)

where φ represents the BD scalar field and ω denotes the dimensionless BD parameter

taken to be much larger than 1, ω > 104 À 1 [18]. LM , on the other hand, is the

matter Lagrangian such that the scalar field φ does not couple with it. The nonminimal

coupling term is φ2 R and R is the Ricci scalar. The kinetic and potential terms of the

scalar field behave effectively as time dependent cosmological constants. At this point,

we have to point out three simple assumptions made in this work:

• The BD field φ does not couple to any other field except gravity.

• The Lagrangian of the field, in addition to the kinetic term of φ, contains the

simplest potential energy density V (φ) = 1
2
m2φ2 which is composed only of the

scalar field mass term [16].

• In particular we may expect that φ is spatially uniform, but varies slowly with

time. For simplicity we also restrict our analysis to the Robertson Walker metric

1.5 to emphasize that φ is necessarily spatially homogeneous.

After applying the variational procedure [16] to the action (1.26) and assuming

φ = φ (t) and energy momentum tensor of matter and radiation excluding φ is in the

perfect fluid form of T µ
ν = diag (ρ,−p,−p,−p) where ρ is the energy density and p is

the pressure, and also noting that the right hand side of the φ equation below is set

to be zero in accordance with our first assumption on LM being independent of φ, the
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field equations considering the scalar φ field only are

3

4ω
φ2

(
ȧ2

a2
+

k

a2

)
− 1

2
φ̇2 − 1

2
m2 φ2 +

3

2ω

ȧ

a
φ̇ φ = ρM , (1.27)

−1

4ω
φ2

(
2
ä

a
+

ȧ2

a2
+

k

a2

)
− 1

ω

ȧ

a
φ̇ φ− 1

2ω
φ̈ φ−

(
1

2
+

1

2ω

)
φ̇2 +

1

2
m2 φ2 = pM , (1.28)

φ̈ + 3
ȧ

a
φ̇ +

[
m2 − 3

2ω

(
ä

a
+

ȧ2

a2
+

k

a2

)]
φ = 0, (1.29)

where k is the curvature parameter with k = −1, 0, 1 corresponding to open, flat,

closed universes respectively and a (t) is the scale factor of the universe (dot denotes

d
dt

). Since in the standard theory of gravitation, the total energy density ρ is assumed

to be composed of ρ = ρΛ + ρM where ρΛ is the energy density of the universe due to

the cosmological constant which in modern terminology is called as “dark energy”, the

right hand sides of (1.27) and (1.28) are adopted to the matter energy density term

ρM instead of ρ and pM instead of p where M denotes everything except the φ field.

The main reason behind doing such an organization is that whether if the φ terms on

the left-hand side of (1.27) can accommodate a contribution to due to what is called

dark matter and dark energy. In addition, the right hand side of the φ equation (1.29)

is set to be zero according to the assumption imposed on the matter Lagrangian LM

being independent of the scalar field φ.
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2. Methodology

2.1. Complex φ field in Vacuum Late Time Regime

Since in the previous section of this thesis, the field equations (1.27)-(1.29) are

obtained on an assumption that BD field is solely scalar, at this point of this thesis we

will start to work in BD cosmology by redefining scalar BD field φ as a complex BD

field like φ = φ1 + iφ2. Hence, the action (1.26) is modified to

S =

∫ √
g

[−1

8ω
φφ∗R +

1

2
gµν∂µφ∂νφ

∗ − 1

2
m2φφ∗ + LM

]
d4x, (2.1)

where φ2 = φφ∗.

2.1.1. Field Equations

Since we search for vacuum solutions (ρM = pM = 0) of BD field equations (1.27)-

(1.29) in late time regime where space-like sections of today’s universe is approximately

flat (k = 0), the modified field equations are

3

4ω
φφ∗

( ·
a

2

a2

)
− 1

2

·
φ
·
φ
∗
+

3

2ω

ȧ

a
φ̇ φ− 1

2
m2φφ∗ = 0, (2.2)

− 1

4ω
φφ∗

(
2
··
a

a
+

·
a

2

a2

)
−

(
1

2
+

1

2ω

) ·
φ
·
φ
∗

(2.3)

− 1

ω

ȧ

a
φ̇ φ− 1

2ω
φ̈ φ +

1

2
m2φφ∗ = 0,

φ̈ + 3
ȧ

a
φ̇ +

[
m2 − 3

2ω

(
ä

a
+

ȧ2

a2

)]
φ = 0. (2.4)
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where

φ̇ φ =

·
φφ∗ +

·
φ
∗
φ

2
, φ̈ φ =

··
φφ∗ +

··
φ∗φ

2
. (2.5)

Whenever we substitute equation (2.5) into (2.2) and (2.3) we get the following field

equations for complex BD field φ

3

4ω

( ·
a

2

a2

)
− 1

2

·
φ
·
φ
∗

φφ∗
+

3

4ω

( ·
a

a

)

·
φφ∗ +

·
φ
∗
φ

φφ∗


− 1

2
m2 = 0, (2.6)

− 1

4ω

(
2
··
a

a
+

·
a

2

a2

)
−

(
1

2
+

1

2ω

) ·
φ
·
φ
∗

φφ∗
(2.7)

− 1

2ω

( ·
a

a

) 

·
φφ∗ +

·
φ
∗
φ

φφ∗


− 1

4ω



··
φφ∗ +

··
φ∗φ

φφ∗


 +

1

2
m2 = 0,

··
φ

φ
+ 3

( ·
a

a

) ·
φ

φ
+

[
m2 − 3

2ω

( ··
a

a
+

·
a

2

a2

)]
= 0. (2.8)

Since solving the field equations (2.80)-(2.82) for a(t) and φ(t) is hard enough, we

first define the Hubble parameter as H =
·
a
a

and the fractional rate of change of φ as

F =
·
φ
φ

= F1 + iF2, where

··
a

a
= H2 + aHH ′ (2.9)

F1 =

·
φ1φ1 +

·
φ2φ2

φ2
1 + φ2

2

, F2 =

·
φ2φ1 −

·
φ1φ2

φ2
1 + φ2

2

(2.10)
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such that

·
φ
·
φ
∗

φφ∗
=

·
φ

2

1 +
·
φ

2

2

φ2
1 + φ2

2

= F 2
1 + F 2

2 (2.11)



·
φφ∗ +

·
φ
∗
φ

φφ∗


 =

2(
·
φ1φ1 +

·
φ2φ2)

φ2
1 + φ2

2

= 2F1 (2.12)



··
φφ∗ +

··
φ∗φ

φφ∗


 =

2(
··
φ1φ1 +

··
φ2φ2)

φ2
1 + φ2

2

= 2(aHF ′
1 + F 2

1 − F 2
2 ) (2.13)

··
φ

φ
=

·
F + F 2 = F ′aH + F 2 = (F ′

1 + iF ′
2)aH + (F1 + iF2)

2. (2.14)

Hence, we rewrite (2.80)-(2.82) in terms of H, F1 and F2 and their derivatives with

respect to a:

3H2 − 2ωF 2
1 − 2ωF 2

2 + 6HF1 − 2ωm2 = 0 (2.15)

3H2 + (2ω + 4) F 2
1 + 2ωF 2

2 + 4HF1 + 2aHF ′
1 + 2aHH ′ − 2ωm2 = 0 (2.16)

−6H2 + 2ωF 2
1 − 2ωF 2

2 + 6ωHF1 + 2ωaHF ′
1 − 3aHH ′ + 2ωm2 = 0 (2.17)

2ωaHF ′
2 + 4ωF1F2 + 6ωHF2 = 0. (2.18)
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We have to note that equation (2.17) is the real part of φ equation and (2.18) is the

imaginary part of φ equation and prime denotes the derivative with respect to a. In

order to solve (2.15)-(2.18) we propose the transformation

u =
(a0

a

)α

(2.19)

such that

aH
′

= a
dH

da
= −αu

(
dH

du

)
(2.20)

aF
′
1 = a

dF1

da
= −αu

(
dF1

du

)
(2.21)

aF
′
2 = a

dF2

da
= −αu

(
dF2

du

)
. (2.22)

Now, let’s rewrite (2.15)-(2.18) in terms of H(u), F1(u), F2(u), α and their derivatives

with respect to u.

3H2 − 2ωF 2
1 − 2ωF 2

2 + 6HF1 − 2ωm2 = 0, (2.23)

3H2+(2ω + 4) F 2
1 +2ωF 2

2 +4HF1−2αuH

(
dF1

du

)
−2αuH

(
dH

du

)
−2ωm2 = 0, (2.24)

−6H2 +2ωF 2
1 −2ωF 2

2 +6ωHF1−2ωαuH

(
dF1

du

)
+3αuH

(
dH

du

)
+2ωm2 = 0, (2.25)

−2ωαuH

(
dF2

du

)
+ 4ωF1F2 + 6ωHF2 = 0. (2.26)

Since these coupled equations are still too hard to be solved analytically for H, F1

and F2, our approach is to determine a perturbative solution in which H, F1 and F2

vary about some perturbation constants. Hence the solution to the equation system
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(2.23)-(2.26) is in the form of

H = H∞ + H1

(a0

a

)α

+ H2

(a0

a

)2α

= H∞ + H1u + H2u
2 (2.27)

F1 = F1∞ + F11

(a0

a

)α

+ F12

(a0

a

)2α

= F1∞ + F11u + F12u
2 (2.28)

F2 = F2∞ + F21

(a0

a

)α

+ F22

(a0

a

)2α

= F2∞ + F21u + F22u
2 (2.29)

where H∞, H1, H2, F1∞, F11, F12, F2∞, F21, F22 are perturbation constants and α is an

exponential factor to be determined from the theory. Once we proposed the solutions

(2.108)-(2.110) we are able to write

(
dH

du

)
= H1 + 2H2u (2.30)

(
dF1

du

)
= F11 + 2F12u (2.31)

(
dF2

du

)
= F21 + 2F22u (2.32)

H2 = H2
∞ + (2H1H∞)u +

(
H2

1 + 2H∞H2

)
u2 (2.33)

F 2
1 = F 2

1∞ + (2F11F1∞)u +
(
F 2

11 + 2F1∞F12

)
u2 (2.34)

F 2
2 = F 2

2∞ + (2F21F2∞)u +
(
F 2

21 + 2F2∞F22

)
u2 (2.35)
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HF1 = F1∞H∞ + (F1∞H1 + F11H∞)u + (F1∞H2 + F11H1 + F12H∞)u2 (2.36)

HF2 = F2∞H∞ + (F2∞H1 + F21H∞)u + (F2∞H2 + F21H1 + F22H∞)u2 (2.37)

F2F1 = F1∞F2∞ + (F1∞F21 + F11F2∞)u + (F1∞F22 + F11F21 + F12F2∞)u2 (2.38)

where the equations are written to the second power of u. Therefore, substituting these

equations into (2.23)-(2.26) and keeping only the zeroth, first and second order terms

of u and neglect higher terms, we get the following equations to be solved:

3[H2
∞ + (2H1H∞)u +

(
H2

1 + 2H∞H2

)
u2]− (2.39)

2ω[F 2
1∞ + (2F11F1∞)u +

(
F 2

11 + 2F1∞F12

)
u2]−

2ω[F 2
2∞ + (2F21F2∞)u +

(
F 2

21 + 2F2∞F22

)
u2]+

6[F1∞H∞ + (F1∞H1 + F11H∞)u + (F1∞H2 + F11H1 + F12H∞)u2]− 2ωm2 = 0,

3[H2
∞ + (2H1H∞)u +

(
H2

1 + 2H∞H2

)
u2]+ (2.40)

(2ω + 4)[F 2
1∞ + (2F11F1∞)u +

(
F 2

11 + 2F1∞F12

)
]

+2ω[F 2
2∞ + (2F21F2∞)u +

(
F 2

21 + 2F2∞F22

)
u2]+

4[F1∞H∞ + (F1∞H1 + F11H∞)u + (F1∞H2 + F11H1 + F12H∞)u2]−
2αu(H∞ + H1u + H2u

2)(F11 + 2F12u)

−2αu(H∞ + H1u + H2u
2)(H1 + 2H2u)− 2ωm2 = 0,
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−6[H2
∞ + (2H1H∞)u +

(
H2

1 + 2H∞H2

)
u2] (2.41)

+2ω[F 2
1∞ + (2F11F1∞)u +

(
F 2

11 + 2F1∞F12

)
]

−2ω[F 2
2∞ + (2F21F2∞)u +

(
F 2

21 + 2F2∞F22

)
u2]+

6ω[F1∞H∞ + (F1∞H1 + F11H∞)u + (F1∞H2 + F11H1 + F12H∞)u2]

−2ωαu(H∞ + H1u + H2u
2)(F11 + 2F12u)

+3αu(H∞ + H1u + H2u
2)(H1 + 2H2u) + 2ωm2 = 0,

−2ωαu(H∞ + H1u + H2u
2)(F21 + 2F22u)+ (2.42)

4ω(F1∞F2∞ + (F1∞F21 + F11F2∞)u + (F1∞F22 + F11F21 + F12F2∞)u2)+

6ω(F2∞H∞ + (F2∞H1 + F21H∞)u + (F2∞H2 + F21H1 + F22H∞)u2) = 0.

From these equations (2.39)-(2.42) we get the following equations according to their

order of u;

In the zeroth order:

3H2
∞ − 2ωF 2

1∞ − 2ωF 2
2∞ + 6F1∞H∞ − 2ωm2 = 0, (2.43)

3H2
∞ + (2ω + 4) F 2

1∞ + 2ωF 2
2∞ + 4F1∞H∞ − 2ωm2 = 0, (2.44)

−6H2
∞ + 2ωF 2

1∞−2ωF 2
2∞ + 6ωF1∞H∞+2ωm2 = 0, (2.45)

(4ωF1∞ + 6ωH∞)F2∞ = 0. (2.46)

In the first order of u;

(6F1∞ + 6H∞)H1 + (6H∞−4ωF1∞)F11 − 4ωF21F2∞ = 0, (2.47)
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((6−2α)H∞ + 4F1∞)H1 + ((4−2α)H∞ + (4ω + 8) F1∞)F11 + 4ωF21F2∞ = 0, (2.48)

((3α− 12)H∞ + 6ωF1∞)H1 + ((6ω−2ωα)H∞ + 4ωF1∞)F11 − 4ωF21F2∞ = 0, (2.49)

[(−2ωα + 6ω)H∞ + 4ωF1∞]F21 + 4ωF11F2∞ + 6ωH1F2∞ = 0, (2.50)

In the second order of u;

3H2
1 + 6H∞H2 − 2ωF 2

11 − 4ωF1∞F12 (2.51)

−4ωF2∞F22 − 2ωF 2
21 + 6F1∞H2 + 6F11H1 + 6F12H∞ = 0

(3− 2α)H2
1+ (2ω+4) F 2

11 + (4− 2α)F11H1 + (4F1∞ + 6H∞ − 4αH∞)H2 (2.52)

+[4H∞ + (4ω+8) F1∞ − 4αH∞]F12 + 2ωF 2
21 + 4ωF2∞F22 = 0

(3α− 6)H2
1+2ωF 2

11 + (−2ωα + 6ω)F11H1 + (−12H∞ + 6αH∞ + 6ωF1∞)H2 (2.53)

+(−4ωαH∞ + 4ωF1∞ + 6ωH∞)F12 − 2ωF 2
21 − 4ωF2∞F22 = 0

(4ωF1∞ − 4ωαH∞ + 6ωH∞)F22 + (−2ωαH1 + 4ωF11 + 6ωH1)F21 (2.54)

+4ωF2∞F12 + 6ωF2∞H2 = 0.

2.1.2. Solutions

Solving the equation set (2.43)-(2.46) and (2.47)-(2.50) respectively, provide

F2∞ = 0 H∞ =
2 (ω + 1)

√
ωm√

(6ω2 + 17ω + 12)
F1∞ =

H∞
2ω + 2

, (2.55)
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α = 3 +
1

ω + 1
F11 = −3

2
H1 F21 = free− parameter. (2.56)

and afterwards, substituting (2.55) and (2.56) into the equation set (2.51)-(2.54) yields

the following equation set to be solved for H2, F12, F21, F22 as

(12ω + 18)H∞H2 + (8ω + 12)H∞F12 − 4ω(ω + 1)F 2
21 = (9ω2 + 21ω + 12)H2

1 , (2.57)

−(12ω+16)H∞H2− (12ω+16)H∞F12 +4ω(ω+1)F 2
21 = −(9ω2 +27ω+20)H2

1 , (2.58)

(18ω+24)H∞H2−(12ω2 +16ω)H∞F12−4ω(ω+1)F 2
21 = −(9ω2 +21ω+12)H2

1 , (2.59)

F22 = − H1

H∞
F21. (2.60)

To proceed one step further, we write the standard Friedmann equation

(
H

H0

)2

= ΩΛ,0 + ΩM,0

(a0

a

)3

(2.61)

and we fit all theory parameters to the observational density parameters;

ΩΛ =
H2
∞

H2
Σ

, (2.62)

ΩM =
2H∞H1

H2
Σ

, (2.63)

where

H2
Σ = H2

∞ + 2H∞(H1 + H2) + H2
1 . (2.64)
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With these relations above and the constraint ΩΛ + ΩM = 1, where ΩM = ΩVM +ΩDM,

we can express H1 in terms of the observational density parameters ΩΛ, ΩM and H∞

as

H1 =
ΩM

2ΩΛ

H∞, (2.65)

Using recent observational results [4] on density parameters ΩDM ' 0.28, ΩΛ ' 0.72

and ΩVM = 0 (since the universe we study in this theory is vacuum) together with

(2.65) we determine;

H1 =
0.28

1.44
H∞ ' 0.19H∞. (2.66)

Similarly, using (2.66) in solving the equations (2.57)-(2.60); the solutions are;

H2H∞ =
9ω3H2

1 + 4F 2
21ω

3 + 18ω2H2
1 + 8F 2

21ω
2 − ωH2

1 + 4F 2
21ω − 12H2

1

12ω2 + 34ω + 24
, (2.67)

F12H∞ =
45ω2H2

1 + 4ω2F 2
21 + 123ωH2

1 + 4F 2
21ω + 84H2

1

24ω2 + 68ω + 48
, (2.68)

As ω →∞;

H2 '
(

1

3
ω

F 2
21

H∞
+

3

4
ω

H2
1

H∞

)
, (2.69)

F12 '
(

4

24H∞
F 2

21 +
45

24H∞
H2

1

)
, (2.70)

F22 = − H1

H∞
F21. (2.71)
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2.1.3. Results

At this point, we emphasize that H2 must be zero in order to make sense with

recent observational data on density parameters of the universe and to find the exact

value for F21. Therefore, when we insert H2 = 0 we see that

F 2
21 ' −9

4
H2

1 (2.72)

Namely, F21 is non-physical. In the previous work of Arik and Calik [19], φ was accepted

as solely scalar and this assumption showed that, while BD scalar tensor theory well

accounts for dark energy, it does not contribute to dark matter. On the other hand,

in our work, we expect to find a contribution to dark matter in the presence of F2

term. Since F21 is the coupling term with (a0

a
)3, we see that there is some anomaly in

considering BD field φ as a complex field to explain the dark matter in BD cosmology.

Therefore, to get rid of this problem we will shift to the hyperbolic phase of φ field.

2.2. Hyperbolic φ Field in Vacuum Late Time Regime

In the first part of the thesis we have used a complex φ field such that

φ = φ1 + iφ2 = φReiβ (2.73)

where φR is real scalar field amplitude. Such complex BD field can also be represented

as in matrix form

φ =


 φ1 φ2

−φ2 φ1


 = φ1 + iσ2φ2 (2.74)

where σ2 is a Pauli spin matrix.

However, we will take the phase of φ to be hyperbolic by replacing the term
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iβ = Ψ in (2.73) such that φ becomes

φ =


 φ1 φ2

φ2 φ1


 (2.75)

and its conjugate matrix becomes

φ∗ =


 φ1 −φ2

−φ2 φ1


 (2.76)

together with

φ1 = φR cosh Ψ (2.77)

φ2 = φR sinh Ψ (2.78)

where Ψ is real. With this modification, we note here that Ψ gains a ”ghost” character

since its kinetic contribution (φφ∗ = φ2
1 − φ2

2) brings a minus sign. With this new

modification the action equation (2.1) becomes

S =
1

2
tr

∫
d4x

√
g

[−1

8ω
φφ∗R +

1

2
gµν∂µφ∂νφ

∗ − 1

2
m2φφ∗ + ILM

]
. (2.79)

where I is the unit matrix.

2.2.1. Field Equations

Remembering our modified field equations from the first part;

3

4ω

( ·
a

2

a2

)
− 1

2

·
φ
·
φ
∗

φφ∗
+

3

4ω

( ·
a

a

)

·
φφ∗ +

·
φ
∗
φ

φφ∗


− 1

2
m2 = 0, (2.80)
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− 1

4ω

(
2
··
a

a
+

·
a

2

a2

)
−

(
1

2
+

1

2ω

) ·
φ
·
φ
∗

φφ∗
(2.81)

− 1

2ω

( ·
a

a

) 

·
φφ∗ +

·
φ
∗
φ

φφ∗


− 1

4ω



··
φφ∗ +

··
φ∗φ

φφ∗


 +

1

2
m2 = 0,

··
φ

φ
+ 3

( ·
a

a

) ·
φ

φ
+

[
m2 − 3

2ω

( ··
a

a
+

·
a

2

a2

)]
= 0. (2.82)

We also recall that, we define the Hubble parameter as H =
·
a
a

and the fractional rate

of change of φ as F =
·
φ
φ
, where

··
a

a
= H2 + aHH ′ (2.83)

F =

·
φφ∗

φφ∗
=




φ1

·
φ1−φ2

·
φ2

φ2
1−φ2

2

φ1

·
φ2−

·
φ1φ2

φ2
1−φ2

2

φ1

·
φ2−

·
φ1φ2

φ2
1−φ2

2

φ1

·
φ1−φ2

·
φ2

φ2
1−φ2

2


 =


F1 F2

F2 F1




F1 =
φ1

·
φ1 − φ2

·
φ2

φ2
1 − φ2

2

=

·
φR

φR

, F2 =
φ1

·
φ2 −

·
φ1φ2

φ2
1 − φ2

2

=
·
Ψ

such that

φφ∗ =


φ2

1 − φ2
2 0

0 φ2
1 − φ2

2


 , (2.84)

·
φ
·
φ
∗

=




·
φ

2

1 −
·
φ

2

2 0

0
·
φ

2

1 −
·
φ

2

2


 (2.85)
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·
φ
·
φ
∗

φφ∗
=




·
φ

2

1−
·
φ

2

2

φ2
1−φ2

2
0

0
·
φ

2

1−
·
φ

2

2

φ2
1−φ2

2


 =


F 2

1 − F 2
2 0

0 F 2
1 − F 2

2


 (2.86)

·
φφ∗ +

·
φ
∗
φ

φφ∗
=




2(φ1

·
φ1−φ2

·
φ2)

φ2
1−φ2

2
0

0 2(φ1

·
φ1−φ2

·
φ2)

φ2
1−φ2

2


 =


2F1 0

0 2F1


 (2.87)

··
φφ∗ =


 φ1

··
φ1 − φ2

··
φ2 −

··
φ1φ2 + φ1

··
φ2

−
··
φ1φ2 + φ1

··
φ2 φ1

··
φ1 − φ2

··
φ2


 (2.88)

φ
··
φ
∗

=


 φ1

··
φ1 − φ2

··
φ2 −φ1

··
φ2 +

··
φ1φ2

−φ1

··
φ2 +

··
φ1φ2 φ1

··
φ1 − φ2

··
φ2


 (2.89)

··
φφ∗ +

··
φ
∗
φ

φφ∗
=




2(φ1

··
φ1−φ2

··
φ2)

φ2
1−φ2

2
0

0 2(φ1

··
φ1−φ2

··
φ2)

φ2
1−φ2

2


 =


F ′

1aH + F 2
1 + F 2

2 0

0 F ′
1aH + F 2

1 + F 2
2




(2.90)

·
φ

φ
=




φ1

·
φ1−φ2

·
φ2

φ2
1−φ2

2

φ1

·
φ2−

·
φ1φ2

φ2
1−φ2

2

φ1

·
φ2−

·
φ1φ2

φ2
1−φ2

2

φ1

·
φ1−φ2

·
φ2

φ2
1−φ2

2


 =


F1 F2

F2 F1


 (2.91)

··
φ

φ
=




φ1

··
φ1−φ2

··
φ2

φ2
1−φ2

2

−
··
φ1φ2+φ1

··
φ2

φ2
1−φ2

2

−
··
φ1φ2+φ1

··
φ2

φ2
1−φ2

2

φ1

··
φ1−φ2

··
φ2

φ2
1−φ2

2


 =


F ′

1aH + F 2
1 + F 2

2 F ′
2aH + 2F1F2

F ′
2aH + 2F1F2 F ′

1aH + F 2
1 + F 2

2


 , (2.92)
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Having specified all terms (2.84)-(2.92) in matrix form, provides us to write the matrix

equations of the field equations (2.80)-(2.82):

3

4ω
H2


1 0

0 1


− 1

2


F 2

1 − F 2
2 0

0 F 2
1 − F 2

2


 +

3

4ω
H


2F1 0

0 2F1


− 1

2
m2


1 0

0 1


 =


0 0

0 0


 (2.93)

− 1

4ω
(3H2 + 2aHH ′)


1 0

0 1


−

(
1

2
+

1

2ω

) 
F 2

1 − F 2
2 0

0 F 2
1 − F 2

2


−

1

2ω
H


2F1 0

0 2F1


 +

1

4ω


F ′

1aH + F 2
1 + F 2

2 0

0 F ′
1aH + F 2

1 + F 2
2


 +

1

2
m2


1 0

0 1


 =


0 0

0 0


 (2.94)


F ′

1aH + F 2
1 + F 2

2 F ′
2aH + 2F1F2

F ′
2aH + 2F1F2 F ′

1aH + F 2
1 + F 2

2


 + 3H


F1 F2

F2 F1


 +

[
m2 − 3

2ω
(2H2 + aHH ′)

] 
1 0

0 1


 =


1 0

0 1


 (2.95)

At this point, writing ρ, p and φ equations just in one matrix form can be much more

useful and they are;




3
4ω

H2 − 1
2
(F 2

1 − F 2
1 )+

3
2ω

HF1 − 1
2
m2

0

0
3
4ω

H2 − 1
2
(F 2

1 − F 2
1 )+

3
2ω

HF1 − 1
2
m2




=


0 0

0 0


 (2.96)
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− 1
4ω

(3H2 + 2aHH ′)

−(1
2

+ 1
2ω

)(F 2
1 − F 2

2 )

− 1
ω
HF1

+ 1
4ω

(F ′
1aH + F 2

1 + F 2
2 ) + 1

2
m2

0

0

− 1
4ω

(3H2 + 2aHH ′)

−(1
2

+ 1
2ω

)(F 2
1 − F 2

2 )

− 1
ω
HF1

+ 1
4ω

(F ′
1aH + F 2

1 + F 2
2 ) + 1

2
m2




=


0 0

0 0




(2.97)




F ′
1aH + F 2

1 + F 2
2 + 3HF1

+
[
m2 − 3

2ω
(2H2 + aHH ′)

] F ′
2aH + 2F1F2 + 3HF1

F ′
2aH + 2F1F2 + 3HF1

F ′
1aH + F 2

1 + F 2
2 + 3HF1

+
[
m2 − 3

2ω
(2H2 + aHH ′)

]




=


0 0

0 0


 (2.98)

where, while the diagonal terms of the matrix form of the φ equation represents the

real part and the non-diagonal terms of the matrix form of the φ equation represents

the imaginary part. Now, it is time to write our field equations in terms of H, F1, F2

and their derivatives with respect to a:

3H2−2ωF 2
1 +2ωF 2

2 +6F1H−2ωm2 = 0 (2.99)

3H2 + (2ω + 4) F 2
1 − 2ωF 2

2 + 4F1H + 2aHF ′
1 + 2aHH ′ − 2ωm2 = 0 (2.100)

−6H2 + 2ωF 2
1 +2ωF 2

2 + 6ωF1H+2ωaHF ′
1 − 3aHH ′ + 2ωm2 = 0 (2.101)

(4ωF1+6ωH) F2 + 2ωaHF ′
2 = 0 (2.102)
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Again with the same transformation

u =
(a0

a

)α

(2.103)

we rewrite (2.99)-(2.102) in terms of H(u), F1(u) and F2(u);

3H2 − 2ωF 2
1 + 2ωF 2

2 + 6HF1 − 2ωm2 = 0, (2.104)

3H2+(2ω + 4) F 2
1−2ωF 2

2 +4HF1−2αuH

(
dF1

du

)
−2αuH

(
dH

du

)
−2ωm2 = 0, (2.105)

−6H2+2ωF 2
1 +2ωF 2

2 +6ωHF1−2ωαuH

(
dF1

du

)
+3αuH

(
dH

du

)
+2ωm2 = 0, (2.106)

−2ωαuH

(
dF2

du

)
+ 4ωF1F2 + 6ωHF2 = 0. (2.107)

Remembering our perturbative solution to the equation system (2.104)-(2.107);

H = H∞ + H1

(a0

a

)α

+ H2

(a0

a

)2α

= H∞ + H1u + H2u
2 (2.108)

F1 = F1∞ + F11

(a0

a

)α

+ F12

(a0

a

)2α

= F1∞ + F11u + F12u
2 (2.109)

F2 = F2∞ + F21

(a0

a

)α

+ F22

(a0

a

)2α

= F2∞ + F21u + F22u
2 (2.110)

If we substitute (2.108)-(2.110) into (2.104)-(2.107) and keep only the zeroth, first and

second order terms of u and neglect higher terms, we get the following equations to be
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solved:

3[H2
∞ + (2H1H∞)u +

(
H2

1 + 2H∞H2

)
u2]− (2.111)

2ω[F 2
1∞ + (2F11F1∞)u +

(
F 2

11 + 2F1∞F12

)
u2]+

2ω[F 2
2∞ + (2F21F2∞)u +

(
F 2

21 + 2F2∞F22

)
u2]+

6[F1∞H∞ + (F1∞H1 + F11H∞)u + (F1∞H2 + F11H1 + F12H∞)u2]− 2ωm2 = 0,

3[H2
∞ + (2H1H∞)u +

(
H2

1 + 2H∞H2

)
u2]+ (2.112)

(2ω + 4)[F 2
1∞ + (2F11F1∞)u +

(
F 2

11 + 2F1∞F12

)
u2]

−2ω[F 2
2∞ + (2F21F2∞)u +

(
F 2

21 + 2F2∞F22

)
u2]+

4[F1∞H∞ + (F1∞H1 + F11H∞)u + (F1∞H2 + F11H1 + F12H∞)u2]−
2αu(H∞ + H1u + H2u

2)(F11 + 2F12u)

−2αu(H∞ + H1u + H2u
2)(H1 + 2H2u)− 2ωm2 = 0,

−6[H2
∞ + (2H1H∞)u +

(
H2

1 + 2H∞H2

)
u2] (2.113)

+2ω[F 2
1∞ + (2F11F1∞)u +

(
F 2

11 + 2F1∞F12

)
u2]

+2ω[F 2
2∞ + (2F21F2∞)u +

(
F 2

21 + 2F2∞F22

)
u2]+

6ω[F1∞H∞ + (F1∞H1 + F11H∞)u + (F1∞H2 + F11H1 + F12H∞)u2]

−2ωαu(H∞ + H1u + H2u
2)(F11 + 2F12u)

+3αu(H∞ + H1u + H2u
2)(H1 + 2H2u) + 2ωm2 = 0,

−2ωαu(H∞ + H1u + H2u
2)(F21 + 2F22u)+ (2.114)

4ω(F1∞F2∞ + (F1∞F21 + F11F2∞)u + (F1∞F22 + F11F21 + F12F2∞)u2)+

6ω(F2∞H∞ + (F2∞H1 + F21H∞)u + (F2∞H2 + F21H1 + F22H∞)u2) = 0.
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Writing (2.111)-(2.114) according to their order of u, we obtain the following equations

firstly according to zeroth order of u:

3H2
∞ − 2ωF 2

1∞ + 2ωF 2
2∞ + 6F1∞H∞ − 2ωm2 = 0, (2.115)

3H2
∞ + (2ω + 4) F 2

1∞ − 2ωF 2
2∞ + 4F1∞H∞ − 2ωm2 = 0, (2.116)

−6H2
∞ + 2ωF 2

1∞+2ωF 2
2∞ + 6ωF1∞H∞+2ωm2 = 0, (2.117)

(4ωF1∞ + 6ωH∞)F2∞ = 0. (2.118)

secondly according to first order of u:

(6F1∞ + 6H∞)H1 + (6H∞−4ωF1∞)F11 + 4ωF21F2∞ = 0, (2.119)

[(6−2α)H∞ + 4F1∞]H1 + [(4−2α)H∞ + (4ω + 8) F1∞]F11 − 4ωF21F2∞ = 0, (2.120)

[(3α− 12)H∞ + 6ωF1∞]H1 + ((6ω−2ωα)H∞ + 4ωF1∞)F11 + 4ωF21F2∞ = 0, (2.121)

[(−2ωα + 6ω)H∞ + 4ωF1∞]F21 + 4ωF11F2∞ + 6ωH1F2∞ = 0, (2.122)

and lastly according to second order of u:

3H2
1 + 6H∞H2 − 2ωF 2

11 − 4ωF1∞F12 + 4ωF2∞F22 (2.123)

+2ωF 2
21 + 6F1∞H2 + 6F11H1 + 6F12H∞ = 0



33

(3− 2α)H2
1+ (2ω+4) F 2

11 + (4− 2α)F11H1 + (4F1∞ + 6H∞ − 4αH∞)H2 (2.124)

+[4H∞ + (4ω+8) F1∞ − 4αH∞]F12−
2ωF 2

21 − 4ωF2∞F22 = 0

(3α− 6)H2
1+2ωF 2

11 + (−2ωα + 6ω)F11H1+ (2.125)

(−12H∞ + 6αH∞ + 6ωF1∞)H2 + (−4ωαH∞ + 4ωF1∞ + 6ωH∞)F12+

2ωF 2
21 + 4ωF2∞F22 = 0

(4ωF1∞ − 4ωαH∞ + 6ωH∞)F22 + (−2ωαH1 + 4ωF11 + 6ωH1)F21 (2.126)

+4ωF2∞F12 + 6ωF2∞H2 = 0.

2.2.2. Solutions

Solving the equation set (2.115)-(2.118) and (2.119-(2.122) respectively, will give

us the same solutions as we found in the first part of the thesis;

H∞ =
2 (ω + 1)

√
ωm√

(6ω2 + 17ω + 12)
(2.127)

F1∞ =
H∞

2ω + 2
(2.128)

F2∞ = 0, (2.129)

F11 = −3

2
H1, (2.130)
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F21 = free− parameter (2.131)

α = 3 +
1

ω + 1
' 3, (as ω →∞). (2.132)

Continuing with the same procedure applied in the first part, we substitute (2.127)-

(2.132) into the equation set (2.123)-(2.126) and this yields to the following equation

set to be solved for H2, F12, F21, and F22 as

(12ω + 18)H∞H2 + (8ω + 12)H∞F12 + 4ω(ω + 1)F 2
21 = (9ω2 + 21ω + 12)H2

1 (2.133)

−(12ω+16)H∞H2−(12ω+16)H∞F12−4ω(ω+1)F 2
21 = −(9ω2 +27ω+20)H2

1 (2.134)

(18ω+24)H∞H2−(12ω2+16ω)H∞F12+4ω(ω+1)F 2
21 = −(9ω2+21ω+12)H2

1 (2.135)

F22 = − H1

H∞
F21. (2.136)

Recall that

H1 =
0.28

1.44
H∞ ' 0.19H∞. (2.137)

Using (2.137), in the solutions to the equation system (2.133)-(2.136) provides;

H2H∞ =
9ω3H2

1 − 4F 2
21ω

3 + 18ω2H2
1 − 8F 2

21ω
2 − ωH2

1 − 4F 2
21ω − 12H2

1

12ω2 + 34ω + 24
, (2.138)

F12H∞ =
45ω2H2

1 − 4ω2F 2
21 + 123ωH2

1 − 4F 2
21ω + 84H2

1

24ω2 + 68ω + 48
, (2.139)
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As ω →∞;

H2 '
(
−1

3
ω

F 2
21

H∞
+

3

4
ω

H2
1

H∞

)
(2.140)

F12 '
(
− 4

24H∞
F 2

21 +
45

24H∞
H2

1

)
, (2.141)

F22 = − H1

H∞
F21, (2.142)

2.2.3. Results

As soon as we set H2 = 0, we find that

F21 ' 3

2
H1, (2.143)

which physically means the anomaly related with the contribution to dark matter via

F21 is totally eliminated. Substituting F21 into (2.141) and (2.142) and using (2.128)-

(2.130) and (2.137) simultaneously, enables us to write all perturbation constants in

terms of H∞:

H1 ' 0.19H∞, H2 = 0, (2.144)

F1∞ =
H∞

2ω + 2
, F11 = −3

2
H1 ' −0.28H∞, F12 ' 3

2

H2
1

H∞
' 0.05H∞ (2.145)

F2∞ = 0, F21 ' 3

2
H1 ' 0.28H∞, F22 ' −3

2

H2
1

H∞
' −0.05H∞ (2.146)

where

H∞ =
2 (ω + 1)

√
ωm√

(6ω2 + 17ω + 12)
. (2.147)
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Hence, with these perturbation constants we can express (2.108)-(2.110);

H = H∞ + 0.19H∞
(a0

a

)3

(2.148)

F1 =
H∞

2ω + 2
− 0.28H∞

(a0

a

)3

+ 0.05H∞
(a0

a

)6

(2.149)

F2 = 0.28H∞
(a0

a

)3

− 0.05H∞
(a0

a

)6

(2.150)

where

H∞ ' 0.84H0 (2.151)

if (2.148) is satisfied for H = H0, and H0 is the present value of the Hubble parameter

[4].
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3. DISCUSSION AND CONCLUSION

In this thesis, we tried to analyze the dark matter (ΩDM) and the dark energy

contribution (ΩΛ) to Friedmann Equation (2.61) solely by BD theory of gravitation with

no other input. As far as we know, the scalar field φ was always examined individually

however we brought forward a new idea such that it can have different components

and each of these components can account for different energy densities. First, we have

attempted to use a complex scalar field φ, such as φ = φ1 + iφ2. After we obtain field

equations in terms of H, F1 and F2, we put up the argument of perturbative solutions

with the constant terms H∞, H1, H2, F1∞, F11, F12, F2∞, F21 and F22. All of these

constants have made it possible to originate new predictions on dark matter and dark

energy contribution of BD theory. Similarly, the term H∞ which has no scale factor

term, just like the energy density term due to the cosmological constant ΩΛ in the

Friedman Equation, was found purely from theory;

H∞ =
2 (ω + 1)

√
ωm√

(6ω2 + 17ω + 12)
. (3.1)

For this reason, using a complex φ field has revealed meaningful solutions for H∞, H1,

F1∞, F11 and F2∞. More importantly, in the asymptotic limit ω → ∞ (where BD

approaches Einstein theory), α was found 3, as it appears in the Friedman Equation

in the form ΩM

(
a0

a

)3
. However, the solution of F21 was found non-physical.Therefore,

although this approach has brought brand new considerations and aspects to Friedman

Equation in the concept of dark matter and dark energy, a more suitable solution was

found with the modification of scalar field by using a hyperbolic phase iβ = Ψ. This

method has canceled out the anomaly in F21 and made us able to find all perturbation

constants. If we rewrite our solutions with obtained values;

H = H∞ + 0.19H∞
(a0

a

)3

(3.2)



38

F1 =
H∞

2ω + 2
− 0.28H∞

(a0

a

)3

+ 0.05H∞
(a0

a

)6

(3.3)

F2 = 0.28H∞
(a0

a

)3

− 0.05H∞
(a0

a

)6

(3.4)

We see that in equation (3.2), the second term is smaller than the first one and the

third term is smaller than the second one. Namely, the dominating term is the first one

which can be predicted to be the contribution to dark energy. The second term can be

interpreted as the contribution of dark matter. However, the situation is different for

F1 and F2 equations. Looking for different contributions from different components, it

is agreeable to predict that while F1∞ is contributing to dark energy, F21 is contributing

to dark matter.
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