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ABSTRACT

ALMOST CUBIC NONLINEAR SCHRODINGER
EQUATION:
EXISTENCE, UNIQUENESS AND SCATTERING

In this thesis, a unified treatment is given for a class of nonlinear non-local 2D el-
liptic and hyperbolic Schrodinger equation which includes the 2D nonlinear Schrodinger
(NLS) equation with a purely cubic nonlinearity, Davey-Stewartson (DS) system in
the hyperbolic-elliptic (HE) and elliptic-elliptic (EE) cases and the generalized Davey-
Stewartson (GDS) system in the hyperbolic-elliptic-elliptic (HEE) and elliptic-elliptic-
elliptic (EEE) cases. Local in time existence and uniqueness of solutions are estab-
lished for the Cauchy problem when initial data is in L*(R?), H*(R?), H*(R?) and
in ¥ = HY(R?) N L*(|z|>dx) and the maximal time of existence for the solutions all
agree. Conserved quantities corresponding to mass, momentum, energy are derived,
as well as scale and pseudo-conformal invariance of solutions. Virial identity is also
established and its relation to pseudo-conformal invariance is discussed. Various routes
to global existence of solutions are also explored in the elliptic case, namely, for small
mass solutions in L*(R?); in the defocusing case for solutions in H'(R?) and finally
in the focusing case for H'(R?)-solutions with subminimal mass. In all such cases
the scattering of such solutions in L?*(R?) and ¥ topologies are discussed. Moreover,
in the focusing case when initial energy is negative, it is shown that solutions in X
blow-up. The existence and uniqueness results are also considered for more general

nonlinearities.



OZET

NERDEYSE KUBIK DOGRUSAL OLMAYAN
SCHRODINGER DENKLEMI:
VARLIK, TEKLIK VE SACILMA

Bu tezde yerel olmayan terim igeren dogrusal olmayan iki boyutlu bir sinif
Schrodinger denklemi incelenmektedir. Bu denklem simifi kiibik dogrusal olmayan
Schrodinger denklemini igerdigi gibi indirgenmis haliyle Davey-Stewartson (DS) siste-
minin hiperbolik-eliptik (HE) ve eliptik-eliptik (EE) durumlariyla genellegtirilmig Da-
vey-Stewartson (GDS) sisteminin hiperbolik-eliptik-eliptik (HEE) ve eliptik-eliptik-
eliptik (EEE) durumlarim da igerdiginden sunulan neticeler bu denklemler i¢in de
gecerlidir. L*(R?), H'(R?), H*(R?) ve ¥ = H'(R?*) N L?*(|z|*dx) gibi fonksiyon
uzaylarinda zamana gore baslangic sinir deger probleminin varlik ve teklik neticeleri
verilmekle birlikte sozii edilen ¢oztimlerin maksimal varlik zamanlarinin ayni oldugu
gozlenmektedir. Kiitle , momentum, enerji gibi biiytikliiklerin korundugu, viryal 6zdes-
ligin, sozde-konformal ve 6l¢ek doniigiimlerinin denklem i¢in gegerli oldugu gosterilmek-
tedir. L?(R?) uzaydaki kiigiik baglangic degerli ¢oziimiin, yogunlasmama durumunda-
ki H'(R?) ¢oziimiiniin ve yogunlasma durumunda kritik kiitle altinda bir kiitleye sahip
baglangi¢ degerli ¢oziimiin global varlik neticeleri gosterilmekte, bu gibi durumlarda
L?(R?) ve X topolojilerinde ¢oziimlerin sagilmasi ve son olarak benzer tipte daha genel

dogrusal olmayan terimler i¢in ifade edilen neticelerin gegerliligi incelenmektedir.
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1. INTRODUCTION

In one of the two basic approaches related to the existence and uniqueness theory

for the initial value problem

iuy + Au = g(u)
u(0) = ¢,

(1.0.1)

where g is of either local or nonlocal nature with certain assumptions such as

Im(g(u)u) = 0 a.e. on R",

g = G for some G € C'(H'(R™);R),

the Cauchy problem (1.0.1) is considered in terms of energy techniques in the spaces

where the energy

E(u) = [[Vull3 +2G(u)

is defined. From the formal computations similar to done in Chapter 2 for a model
nonlinearity, it can be seen that the first assumption is in general to obtain mass con-
servation and the second is fundamental for the arguments where energy conservation
is used. Instead of dealing with (1.0.1) one considers approximate equations in which
nonlinearity is expected to satisfy finer local Lipchitz properties than g. The approx-
imate equations are obtained from the original via different regularization techniques
and conservation laws are derived for the approximate solutions. By utilizing these, we
try to obtain a solution as a limit of approximate solutions. Then it is possible to show
that the limit function also satisfies the conservation laws corresponding to mass and
energy. In this method conserved quantities are essential for the arguments leading to
the existence of solutions (see e.g. [1, Theorem 3.3.5] for a class of nonlinearities to be

considered below).



Another approach, mainly due to Kato, [2], uses fixed point arguments utiliz-
ing Strichartz’s estimates, Theorem A.2.1. In this method one may relax the above
conditions on the nonlinearity, which is necessary to prove conservations and still ob-
tain existence and uniqueness results since arguments do not require the conserved

quantities.

We will consider some typical nonlinearities, that can be seen in the literature,

to which the above mentioned techniques are applicable.
1.1. Typical Nonlinearities
The local nonlinearity. Let f: R"™ x R — R be such that f(x, ) is measurable in
@, continuous in v and f(x,0) = 0 for a.a. & € R". Assume also that for every M > 0
there exists L(M) < oo such that

(@, u) — f(2,0)| < LM)|u - vl

for a.a. @ € R" and all u,v with |u|,|v] < M where L € C([0,00)) if n = 1 and
L(t) < Ct* with 0 < aw < 4/(n — 2) if n > 2. Define F' by

Fla,u) = /Ouf(:z:,s)ds

for all w > 0. One can extend f as |—u|f(a2, |u]) for all w € C,u # 0. The nonlinearity
u

is given by

a.e. on R” for all measurable v : R® — C. We also need

Glu) = / F(w u(@))de



which is defined for all v : R™ — C such that F(-,|u(-)|) € L*(R"™).

An immediate example of such kind of local nonlinearities is the pure power type
nonlinearity where f(x,u) = A|u|®u for allz € R" with 0 < a < 4/(n—2) (0 < o < 00

if n =1) and A is a constant.

The Hartree nonlinearity. Let W be an even, real valued function in LP(R™) for

some p > 1 and p > n/4. We consider the nonlocal nonlinearity
g(u) = (W [u*)u

for all measurable u : R® — C such that W * |u|? is measurable and define G as

Glu) = [ (W P)@)u(a) Pde

for all measurable u such that (W x |u|*)|u|? is integrable.

The key properties for these nonlinearities which allow a common treatment as

described above can be given in the following proposition ([1, Propositions 3.2.5, 3.2.9]):

Proposition 1.1 Let g(u) be the local or the Hartree nonlinearity as given above. Let
r=a+2ifn>2 (r=2ifn=1) in the case of local nonlinearity and r = 4p/(2p — 1)
in the case of Hartree nonlinearity. Then for g and the corresponding potential G, the

following holds:

(i) G € C(H'(R™;R)), g € C(H*R"); HY(R"))) and G' = g.
(i) g € C(L"(R"); L" (R™)).
(111) For all M > 0 there exists C(M) < oo such that ||g(u) — g(v)||.» < C(M)||u—v]|,
for all u,v € HY(R™) with H*(R™)-norms < M.
(iv) Im(g(u)u) =0 a.e in R™ for all u € H*(R™).



In order to obtain the continuity properties above one mainly uses the estimate

lg(w) = g()[l < C({Jull + [Jol[H)][w = vl

in the case of local nonlinearity with C' is independent of u and v. We use the same
type of estimate for the Hartree nonlinearity where o = 2, C' depends on |||, and it

can be derived by using

(W (o) ywllp < [IW[plfull[vfl ]l

/ (W (wo))wzdae < [[W[p|[ulllvll w2,

which are obtained by Holder and Young inequalities. In the next section we will

consider a new nonlocal nonlinearity satisfying similar properties mentioned above.
1.2. A Nonlocal Nonlinearity

In this thesis, the Cauchy problem

iUy + Oy + Uy = K([ul*)u, §=+£1,

(1.2.1)
u(0) = ¢,
where u : R x R? — C and the non-local term K is defined on L? by
K(£)(€) = a(&)f (&), (122)

for £ € R? and the symbol « is assumed to satisfy

(H1) « is even and homogenous of degree zero,

(H2) a € C*(R*\ {(0,0)}),

is considered in terms of the fixed point arguments and their extensions which is also

applicable to 6 = —1. This is partly because we want to consider the case 6 = —1. We



also want to avoid complications in the energy techniques pointed out above related
to the nonlocal nature of the nonlinearity. We call § = 1 the elliptic and 6 = —1 the

hyperbolic case.

We have || K(f)]|2 < [|a|oollf]]2 which implies that K is a bounded linear operator
on L?. Although there exists a corresponding kernel W € C*°(R? \ {(0,0)}) which is
the Fourier inverse transform of « in the sense of distributions and W is homogeneous
of degree —2 ([3, Proposition 5.2]), we may not have sufficient information about the
integrability properties of W which is not the case in the Hartree nonlinearity. But
L2-boundedness of K will suffice to obtain the estimates similar to what we have stated

for the Hartree nonlinearity. We get
K (wo)wllass < [[K (wo)llaflwlla < fledloollullallvlla][w]ls
using Holder pairs (3/2,3) and (2, 2) in order. Similarly we obtain

/RZ<K<W))de < llalloollullallvllallwllall=]la-

By using these estimates and K (|u|*)u — K(|v|*)v = K(Ju|*)(u—v) +v(K(Ju]* — |[v]?))
we deduce that ||K (Jul*)u — K (|v]*)v]las < C(JJullf + [|vlI3)|lu — v]|s where C' depends
on ||als. This in turn implies H € C(L* L*3) and so it is in C(H'; H~') where
H(u) = K(|u[*)u. Also since « is even K (f) is real valued if f is real valued and this
gives the fact that Im (H(u)u)=0. Finally if we define G(u) = %l/Rg K(|ul?)|ul* de

then again by the estimates obtained above we get

‘G(u + )= Gu) — Re /R K (|ul?)us

K([v]?) (% + ’UT + Re(uv)) + g K (Re(uv))Re(uv)

RQ

< Cllulls + Il o]

C' depending on ||a|«. With these, Proposition 1.1 is true for ¢ = H with r = 4,
n = 2. We will consider a generalized form of (1.2.1) in Chapter 7.



1.3. Motivation

The motivation for this work comes from the Generalized Davey-Stewartson

(GDS) system that was derived in Babaoglu and Erbay [4] and is given by

iUy + Oy + Uy = X|u|*u + b(d1 4 + da,)u,
D1ax + M1y + oy = ([uf?) (1.3.1)

AQSQ,IELL‘ + ml¢2,yy + n¢1,a¢y = (|u|2)y7
where the corresponding symbol « is

ANF 4 (1 +my — 2n)E3E3 + ma&s
AL+ (my + Amg — n?)E363 + mamals

all)=x+b (1.3.2)
The system is classified as elliptic-elliptic-elliptic (EEE) and hyperbolic-elliptic-elliptic
(HEE) when the corresponding signs of the parameters (9, my, mao, A) are (+,+, +, +)
and (—, 4+, +, +) respectively. In [5] the conserved quantities corresponding to mass,
momentum and energy were derived for smooth solutions that decay to zero at infinity.
A global existence result was given for the Cauchy problem in the defocusing (the case
in which all H'-solutions are global and bounded in H') EEE case. An argument
was outlined for the local in time existence result for H!-solutions for the Cauchy
problem. Moreover, a virial identity was derived and was utilized to show the non-
existence of global solutions. However, the existence and uniqueness of solutions in ¥ =
H' N L?(|x|* dx) where the virial identity is meaningful was not addressed. Another
conserved quantity related to the pseudo-conformal invariance of solutions of the GDS
system was derived in Eden, Erbay and Muslu, [6] and was utilized for studying the
time asymptotics of solutions. There were two types of results there, in the HEE case,
a specific blow-up profile was found in the spirit of Ozawa’s work [7] for the DS system.
In the EEE case, using an argument of Weinstein [8] it was shown that the LP-norms
of the solutions decay to zero in time for p > 2. The blow-up profile that is considered
in [6] only belongs to L? but not in H' so an existence and uniqueness of solutions in

L? for the HEE problem was also needed.



A form for the non-local nonlinearity given in (1.2.1) was suggested in Eden
and Erbay, [9] where the existence of standing wave solutions was established in the
focusing (in which case there exists ¥-solutions blowing-up in finite time) EEE case.
The situation is different for the HEE case, the existence of traveling wave solutions was
considered in [10], necessary conditions were derived using Pohozaev type identities.
These identities are valid for H'-solutions in the HEE case. In [9] another type of global
existence result was established for solution with small initial mass. These results were
improved in Eden and Topaloglu, [11] under stronger assumptions on the structure of
the non-local term. The results on the global existence and non-existence given in [5]
was improved in [12] by a more careful analysis of the non-local term. All of the above
mentioned works have implicitly or explicitly assumed the existence and uniqueness
results in various function spaces for the Cauchy problem (1.2.1) with a as in (1.3.2)

as well as the validity of the conserved quantities in these spaces.

The analysis of the cubic nonlinear Scrodinger (NLS) equation in [2] and of the
Davey-Stewartson (DS) system in [13] and the GDS system in [5] shares striking simi-
larities which leads us to treat all these cases under a unified framework as described
by (1.2.1) and (1.2.2). The class of equations that can be considered under the present
framework also include some cases of Zakharov-Schulman equations (see (4.9) and
(4.13) in [14]). In [15], p. 138, Figure 3, an outline of an argument is given for 2D cubic
NLS equation. The main observation is that the nonlinearity considered there and in
[2] need not be local and only the operator theoretic properties between various mixed
space-time function spaces play a role. The nature of this nonlinearity was already

implicit in [16, 17, 13] and is made explicit here by considering (1.2.2).

The aim of this work is three fold: the first is to lay the proper mathematical
foundations for various results on global existence and blow-up of solutions for the GDS
system in the EEE case; the second is to obtain scattering results for solutions and the
third is to extend the range of applicability of the existence and uniqueness theorems on
nonlinear Schrodiger (NLS) equations that are given by Kato in [2] to NLS equations
with non-local terms as given above as well as the results of Ghidaglia and Saut on

DS system [13]. Throughout the text the results are stated for the general Cauchy



problem (1.2.1) and implications are considered in the conclusion. In Chapter 2 the
validity of the conservation laws, virial identity, scale and pseudo-conformal invariance
on a formal level, i.e. assuming the existence of solutions for the Cauchy problem on the
appropriate function spaces, are discussed. In the third chapter, the Cauchy problem
in L? are considered. As in the standard NLS equation in two space dimensions with
cubic nonlinearity this is the critical scaling space for existence. The main theorem in
this chapter, Theorem 3.4, establishes the existence of a unique maximal solution that
satisfies conservation of mass. In Chapter 4, we follow the steps described in [5] in
conjunction with the proof of Theorem 2.2 in [13] to establish a local in time existence
theorem in H' with maximal interval of existence [0, T*) (Theorem 4.5). On this space,
one also has the conservation of energy for the solutions and as a corollary a generalized
version (Corollary 4.6) of [5, Theorem 5.1], on global existence of H'-solutions in the

defocusing case, is obtained.

In contrast to the global existence results, global-nonexistence results usually
require the solutions to be in X. In the fifth chapter, the argument given in [13] for
DS system is followed to deduce an existence and uniqueness result for the Cauchy
problem in ¥ (Theorem 5.2). This leads to a generalized version (Corollary 5.3) of
[5, Theorem 6.1] on the blow-up of solutions for the Cauchy problem for data with
negative energy. The other known route to blow-up passes from the pseudo-conformal
invariance of solutions. Combining the existence of a ground state ([9, 11]) with the
pseudo-conformal transformation a simple blow-up solution with minimal mass can
be obtained. Moreover, the existence of the pseudo-conformal invariance of solutions
allows us to deduce time-asymptotics for the LP-norms of solutions for p > 2. In the
sixth chapter as a prelude to the scattering result we verify this time asymptotics,
extending the result given in [6] to the present setting. This asymptotic behaviour
is valid in the EEE defocusing case where the global existence of solutions has been
established. This paves the way for the scattering of solutions very much in the sprit
of Tsutsumi and Yajima [18] (see also Cazenave [19, 1]). Chapter 7 deals with H>-
regularity of H!-solutions. When 6 = 1, it is proved in Theorem 7.7 that the maximal
time for existence of H2-solutions agree with L? and H'-solutions. We also consider a

pure power nonlinearity of the form |u|P~'u with p > 2 and the corresponding non-local



term and discuss to what extent the results obtained in the previous chapters remain
valid. In conclusion, we summarize the impact of our results as they pertain to the

previous work. All these results are to appear in [20].
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2. CONSERVATION LAWS AND OTHER INVARIANTS

The quantities corresponding to mass, momentum and energy for (1.2.1); are

given by
M (u) :/ lu|? da dy, (2.1)
R2
Jo(u) = / (wiy — uuy) dedy, Jy(u) = / (uity, — uu,) dz dy, (2.2)
R2 R2
1
E(u) :/ {51%\2 + Juy|* + §K(\u|2)|u|2} dz dy. (2.3)
R2

Throughout this exposition the dependence of functions u on x, y and ¢ will be assumed
but will be suppressed for ease of notation. Let us show that these quantities are ac-
tually conserved for sufficiently smooth solutions which vanish at infinity. Multiplying
(1.2.1); by 2u and considering imaginary parts we obtain
(|ul?); + 2Im[6 (upit), + (uyii),] = 0, (2.4)
which implies the conservation of mass (2.1). Multiplying (1.2.1); by 4, gives
Ul + Uy (e + Uyy) = K (Jul?)uil,. (2.5)
Next, adding (2.5) and its complex conjugate, we obtain
i(uptty — ) = K(Jul?)(|u]?)s — 2Re iy (Styy + tyy)- (2.6)

Let f := |u|?, then

/R2 K(f)f.dzdy = Re /R2 O‘(E)f(f)(fx)(ﬁ) e = %
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by using Parseval identity and the fact that « is even. For the second term on the

righthand side of (2.6),
/ Re iy (St + 11y dxdy:/ (501 2)e + (|1y[2)} d dy = 0.
R2 R2

As a result we obtain the conservation of momentum J, and similarly for J,. For
the conservation of energy, multiplying (1.2.1); by 2@, and then taking real parts give

2Re s (Ouyy + uyy) = K (Jul?)(Jul?); from which it follows that

b [ G ) ey Re [ a@f@TE) o

0= —
dt R2 R2
d 2 2 1 2 2
== | | Oua| + |uy[")dzdy + 5 | K(|ul")|ul”dzdy|,
dt R2 2 R2

again by Parseval identity and since a is even. As long as solutions remain in H! this

quantity makes sense. The following identity, known as the virial identity, will play a

crucial role in the blow-up result, see Corollary 5.3,

d?1
2 = 8B(u),

(2.7)

where [ is defined as

1:/ (622 + y?)|uf? dz dy. (2.8)
RQ

In order to show that this identity holds for § = %1, let us write (2.4) as

(|u|2)t = —i{0(ully — Wy)z + (Ully — Tuy)y},

and using
d[ . 2 _ _ _ _
— =20 [ {6*z(vu, — wu,) + y(vi, — uuy)} dedy
dt R? (2.9)

=4lm [ (zuu, + yuu,)dz dy,
R2
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we obtain

d*I
i = 4Im {m(umu + uyty) + y(uyt + uyty) } do dy.

The identity [, zuytdedy = — [o, w(@ + 24,) dzdy and the corresponding integral

relation in y results in

d*I
oE = —8Im [ (xu,u + yu,u + uwy) de dy. (2.10)
R2

Next, using the equation (1.2.1);, we have

d*I
— = 8Re/ (K (Jul)u — Sty — Uy ) (2, + yi, + @) dz
R2

dt
—s{ [ |3K0) @ Dl + K (o] o
—Re /RQ((FUM + uyy)(x - V)ude + /RQ((5|UI|2 + Juy?) da:}
= 8/}RQ(5]ux|2 + |uy|2) dx + 4/RQ[2K(]u|2)|u\2 + K(|u!2)(az . V)\u|2] dxz

So in order to prove (2.7), we need to show that [o,[K (|u|?)|u]*4+K (Jul?)(z-V)|ul?] dx =
0. Let f represent |u/? as before and also let g = |f[2. Then, with & € R2,

J= [ K(f)x V)fde= | f&-VIK(f)de= | f& V)(af)de
R? R R (2.11)

~ [ ole- Ve + [ afte-viide

First integral in the line just above vanishes since o, being homogeneous of degree 0,

satisfies (£ - V) a = 0. The second integral is real since J is so and we have,

T=[ Sevigde= [ 2v-(eg)ae- /agdg——l/ g(€V)adé— [ agde
R2 R2

R2 R2

similar to above. By using Parseval identity once more in the last integral we achieve

our aim and this establishes the virial identity on a formal level.
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We also consider the invariance of (1.2.1); under the pseudo-conformal and scale
transformations. To define the pseudo-conformal transformation, given (¢, z) € R x R?,

define the conjugate time and space variables (T, X) € R x R? by

a b
Xx— T op_ctd o € SLy(R).
a+ bt a -+ bt c d

Given u defined on (=11, Ty) x R? with 0 < Ty, Ty < oo, we set

ct+aTy o —c+als
b — 00 o < 0or b1} < —d = 00 T < 0orbly, >d
b
—21‘2% al} > —c and b1y > —d —_dcj)“TZ? aly > c and b1, < d.

We define U on (—ty,t) x R? by

oz + y?
Ult,x) = —— jh————— T.X 2.12
(t, @) a+bteXp{Z a + bt }u(  X) ( )

where X stands for (X,Y) € R?. Now let u be a sufficiently smooth solution of (1.2.1);
on (=T, Ty) x R?. Since

K(U(tx)P) = / (€U () (€) € g

RQ

= /R2 a(&)[|u(T, )] ((a + bt)€) 2w (¢

= (a+—1bt)2 /RQ[K(W(T, V) (E) iameae
N (a+—1bt)2 K(|u(T,/(a+bt)))

by the fact that a is homogeneous of order 0, U is a solution of (1.2.1); on (—t1, t5) x R?,
which in turn implies the pseudo-conformal invariance of the equation (1.2.1);. Simi-

larly solutions are invariant under the scale transformation u — U given by U(t,x) =

pu(p’t, pe), > 0.



14

The conserved quantity corresponding to scale invariance is given by FEg.(u) :=
(1/2)I' — 4t E(u) whose conservation follows from the virial identity (2.7), see (2.3) and
(2.9). Finally we consider the pseudo-conformal conservation law with the correspond-

ing conserved quantity
Eyo(u) := / [6]zu + 2idtu,|* + |yu + 2itu,|* + 2 K (|u]?)|ul’] dz dy, (2.13)
R2

which can also be written as Ep.(u) = I — 4tIm [, a(x - V)udx + 42 E(p), with I as
in (2.8) and ¢ = u(0). So

E,
dEpe(n) =["—4Im [ a(x-V)udz — tiéﬂm u(x - V)udx + 8tE(p) =0
dt R2 dt R2

from (2.7) and (2.9). This quantity, like the virial identity, makes sense for ¥-solutions
to be considered in the fifth section where X is the Hilbert space H' N L?(|z|*dx)

equipped with the norm || - |5 = || - |5 + ||| - |13
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3. THE CAUCHY PROBLEM IN L2

Lemma 2.1 in [9] generalizes a result of Cipolatti [16] and summarizes the key
properties of the linear operator K. In particular K : LP — LP is bounded for all

p € (1,00) and || K(f)]l2 < ||a|lcoll f]l2 which follows by Calderon-Zygmund theorem

(see e.g. [3, Theorem 5.16]). The following trilinear estimates follow directly by a

series of applications of Holder’s inequality

1K (fg)hllass < lledlloollf lallgllallPo]la,
I (Fg)llarsrparsy < lellcoll Fllaonllgllos s 1all s crns), (3.1)
K (fg)blla < Coysli flsllgllallplls,

where Cy/3 denotes the operator norm of K on L3, Set H(u) = K(|u[*)u. We give
some of the operator theoretic properties of H which immediately follows from (3.1),

and (3.1)s:

Corollary 3.1 Let I be an interval of R. Then there exists a constant C, > 0 depend-

ing only on ||a|le but not on I such that for every u,v € L*(I; L*)

HH(U)HL4/3(1;L4/3) < CaHU||3i4(1;L4)> (3.2)

1H (w) = H @)l s r05) < CalllulLogriy + 1ol Zaron)lle = vllpsgzs.— (3.3)

To fix some notation let S(t) represents the solution semigroup for the linear

problem iu; 4+ 0ty, + Uy, = 0 (see also A.1) and given ¢ € L? define AH (u) and Tu by

AH(u)(t) = /0 S(t—s)H(u(s))ds, (3.4)

(Tu)(t) = S(t)p — iAH (u)(t). (3.5)
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We consider a fixed point problem for the map 7 (in the appropriate function space)
equivalent to (1.2.1) with ¢ € L2 Strichartz’s estimates for both § = 41 will be
essential for the existence and uniqueness results (see A.2). As a reduction to the case
n = 2, a pair (g, r) is called admissible if 2/¢ = 1 —2/r and 2 < r < oco. From this
point on all pairs denoted by (g, 7) will be admissible. We will be using Theorem A.2.1

many times especially for ¢ =r =~y =p =4 with n = 2.

Corollary 3.2 Let I be an interval of R containing zero. Then for every (q,r) there

exists a constant Cy, = Cy,(]|0|| ), independent of I, such that

IAH ()l orizry < Copllullzag,i, (3.6)

IACH (w) = H)[orizry < Cor(llullLagirs + I0lagn)le = vllzsgrs, — (3.7)

for every u,v € L*(I; L*). Moreover AH (u) € C(I; L?).

Proof. The result follows by Theorem A.2.1 and Corollary 3.1. 0J

The next proposition is needed for the unique continuation of local solutions.

Proposition 3.3 Let I be an interval of R such that 0 € I and let p € L%. Then there
exists at most one u € C(I; L) N L*(I; L*) which satisfies (1.2.1) in D'(I; H2).

Proof. Assume v also satisfies (1.2.1) in D/(I; H™2) and let I = (0,7), T < oo
without loss of generality. u,v € LY(I; L?), H(u), H(v) € L*3(I; L*/3) — L'(I; H™2)
imply u,v € WH((0,T); H?) satisfy w = Tw in H 2 a.e. onI. Let 0 € J C I
with [J| sufficiently small. We have [|u — v||pasey < [[AH (u) — HW))| 220509y <
Cya (||u|]%4(J;L4)+||v||%4(J;L4)) |u—v|| pa¢s;zay from (3.7). For |J| small, Cy4 (HuH%z;(J;LAI)—l—
||v||%4(J;L4)) < 1. As aresult ||u — v| g0y =0 and u = v on J. J can be taken J =
(0,7) for 0 < 7 < T, 7 sufficiently small. Define § = sup{0 <7< T :u=wvon (0,7)}.
Since u,v € C([0,T]; L?), we have v = v on [0,60]. If § = T then v = v on I. Assume
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0 <T. Let uy :=u(@+-), vy :=v(0+-). u,v; € C([0,T —0]; L*) N L0, T — 0; L)
solves (1.2.1); a.e. on [0,7 — 0]. So as above, where (0,7) is replaced by (0,7 — 0),
by a similar definition to @, there exists € > 0 such that u; = v; on [0,¢€]. This in turn
implies u = v on [#,6 + €] and so on [0, + €] which contradicts with the definition of

6. So # = T. By continuation we obtain the result for more general I. 0J

The following theorem is the main result of this chapter.

Theorem 3.4 Given ¢ € L?, there exists a unique mazximal solutionu € C([0,T*); L*)N
LA([0,t]; LY), for every t < T* solving (1.2.1) in H=? a.e. on [0,T*) with the following

properties:

(1) (Further reqularity) w € L9([0,t]; L") for every (q,r) and for every t < T*,
(i) (Blow-up) T* < oo implies that ||ul|pe(o,r+);zr) = 00 for every (q,r) with r > 4,
(iii) (H'-regularity) ¢ € H' implies u € C([0,T*); H') where also [0,T*) coincides
with the mazimal interval of existence for the corresponding H*-solution to be
constdered in the next section,
(iv) (Mass Conservation) ||u(t)||2 = |||z for 0 <t < T*,
(v) (Continuous Dependence) If o, — ¢ in L* and u,’s are the corresponding solu-
tions, then for any I € [0,T*) and for any n sufficiently large u,’s are defined
on I and u, — w in LY(I, L") for every (q,r).

Proof. By Corollary 3.2, the proof is exactly the one for [1, Theorem 4.7.1], which is

true for the hyperbolic case as well.
Step 1: Local existence. Let pu > 0 be such that 8Cy4u? 8Cw2pu® < 1. By

Theorem A.2.1, S(-)p € C(R; L?) N LY(R; L") for every (g,7) . So S(-)p € L*(R; L*)
and there exists I such that 0 € I C [0,00) with |I] sufficiently small to satisfy

1SC)ellaeey < p (3.8)
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by DCT. (Hence I depends on p and ¢).

Claim 1. There exists unique u € C(I; L?) N L4(I; L") for every (g,r), solving
(1.2.1) in H=% a.e. on I.

For Claim 1, define
E={ue LYI; L") : ||lul| pacr.poy < 2}

E is complete with the metric induced by L*(I; L*)-norm. For u,v € E, by using the
estimates (3.6) and (3.7), |7 || La(r;e) < HS(')QOHUL([;[A)+C4’4HU||%4(I;L4) < u+8Cy 4 1?,
and | Tu — Tolloszny < Coa(lulaggp + 1olsn)lli — ollpscrzsy < 8Cuallu -
|| a4y Then 8Cy4p* < 1 and the last inequalities imply 7 : E — E is a strict
contraction on £ C L*(I; H=?). So there exists a unique u € E such that u = Tu. By
Strichartz’s estimates u € C(I; L) N L4(I; L") for every (q,7). u € C(I; L?) N L*(I; L*)
implies H(u) € LY3(I; L*?) — LY(I; H~?). Hence u € WY (I; H2) solves (1.2.1) in

H=2 a.e. on I. By Proposition 3.3, u is the unique such solution.

Claim 2. Let ¢, € L? and p as before. Assume |I| is sufficiently small to satisfy
(3.8) also with ¢, and let u,v be the corresponding solutions as in Claim 1. Then

there exists a constant C, independent of I, u, v, such that
[ = vl o2y + [Ju = 0l Ly < Cllo = 2. (3.9)

For Claim 2, let u, v be solutions on I and hence they satisfy the corresponding integral
equations. Let Cy denotes maximum of the constants for (¢,7) = (00,2) and (4,4)

coming from the Strichartz’s estimates. So

lw = vl| Lo rizzy < 1SC)p = DL rizz) + [|ACH (w) = H(©)) [ 1o (1:2)

< Csllo =Yz +4C 2 1 |lu — V||
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by using Theorem A.2.1 for the first norm on the righthand side and (3.7) for the latter
together with the fact u,v € E. Similarly, |[u—vl| a4y < Csllo — ¥|l2 + 4Cua p?|Ju —

V|| za(r;z4)- Adding these two inequalities,

|u— vl poo(rrey + [u— vl zagrrsy < Cllo — ¥lla + 8 (Cua V Coo2) 1 || — v|| pa(z.14).

So by the assumption on u, namely 8 (Cy4 V Cx2) p* < 1, at the beginning of Step 1,

there exists a constant C' as claimed.

Step 2: H'-regularity on I. Let ¢ € H' and I,u be as in Claim 1. We show
that w € C(I; H'). For this we assume the existence of a unique maximal solution
ve C(0,T7); HY) n C*([0,T}); H') such that v € L*([0,t]; Wh*) for ¢ < T} which is
central to the next chapter. If I C [0,77) then by Proposition 3.3 u = v on I and this

gives the necessary regularity. So we will show that I C [0,7T7).

It suffices to consider I = (0,b), b < oo where [ is still satisfying (3.8). Assume
on the contrary b > T;. For h € R? sufficiently small, ||o(- + k) — ¢||2 is small so that
we also have ||S(-)p(- + h)||zarey < p, since ||S(-)p(- + h)||zacrrey < Csllo(- + h) —
#llz +[1SC)@llrseree). By Claim 2,

| Thv — UHLOO((O,Tl*);LQ) < |lmnu — “HU’O((O,b);L?) + [|hu — “‘|L4((07b);L4)

< Clle- +h) = ¢l

where t +— (7,v)(t) = ov(t,- + h) is the corresponding solution for the initial data
©(- + h). Dividing both sides of the above inequality by |h| and letting |h| — 0, we
obtain || Vv e ((0,r2):22) < C'||Vepl|2. Since |[v|| oo (jo,77);22) < 00, last inequality implies
[[v] Lo ((0,17);11) < 00 which contradicts with the blow-up results for H'-solutions (b >

T} implies T} < o0).

Step 3: Mass conservation on I. For ¢ € L2, let u be the corresponding solution
as in Claim 1. Consider ¢,, € H' such that ¢, — ¢ in L?. For n large, ||, —pl|2 will be
small so that (3.8) holds for ¢, by using ||S(-)@nllL1(r,4) < Csllen—@ll2+ 1S ()@l a0
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as above. Let w,’s be the corresponding solutions for those ¢,’s. Claim 2 implies
|un — ullee(rr2y < Cllen — @ll2, which in turn gives w,(t) — wu(t) in L* for t € I
(tn,u € C(I;L?)). But we have ||u,(t)|la = ||@nll2 since we have mass conservation
for H'-solutions (see Chapter 4). So ||¢nll2 — ||u(t)||2 for ¢ € I from which the result

follows.

Step 4: Maximal solution and Blow-up. Choose I = [0, T| where T is sufficiently
small to satisfy (3.8). By Claim 1, there exists unique u such that v € C([0,T]; L?) N
L([0,T]; L") for every (q,r) and u solves (1.2.1) in D'((0,T); H2). We have also
lu(t)|]2 = |l|l2 on I by Step 3. Define T* be the supremum of such 7"s. By Proposition
3.3, u can be extended uniquely to satisfy u € C([0,T*); L*) N L([0,¢]; L") for every
(q,7), t < T* and that u solves (1.2.1) in D'((0,7*); H~?) with mass conserved on
[0, 7).

Assume T* < oo and u € LA([0,T*); L*). Let 0 < ¢t < T*. Since u(t + -) satisfies
(1.2.1) in D'((0,T* —t); H=2), u(t+s) = S(s)u(t) —i [; S(t—o)H(u(t+0))do in H~>
a.e. on [0,7* —t) and so by (3.7)

HS(')“(t)||L4([07T*—t);L4) < ||U||L4([t,T*);L4) + C4,4||U||?i4([t,T*);L4)' (3.10)

Both terms on the righthand side of (3.10) are finite by assumption. By (3.10) for ¢ close
enough to T, |[S(-)u(t)|| La(o,r+—s);r4) < p/2. Since u(t) € L* by Strichartz’s estimates
S(-)u(t) € LY(R; L*). So for 0 < T < t sufficiently close to ¢, [|S(-)u(t)||Laqo,r—1);14) <
p. Now, take I = [0,7* —T') and u(t) as the initial data to use Step 1 and we obtain a
unique @ € C(I; L*) N LY(I; L") solving (1.2.1) in D'((0,T* —T); H~2) with ¢ replaced
by u(t). Extend u beyond ¢ on [0,7* — T +t) as

u(s) fo<s<t

(s —t) ift<s<T*—T+t.
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By Proposition 3.3, u is the unique solution of (1.2.1) in D'((0,T* —T +1t); H?%)

which contradicts with the definition of T™ since T' < t. So for T™ < oo,

[ull La¢o,);11) = 0. (3.11)

This establishes (ii) for r = 4. For the blow-up results with r > 4, let T' < T* < co. By
interpolation in space (r > 4 > 2) and the Holder inequality for the time integral part of
the norm, we get [|ul[r4(o,1);14) < ||U||Eoo((o7T);L2)||U||1L§E/(0,T);Lr)a for v = (r—4)/2(r —2).
By mass conservation |lu|ps(om);4) < HgngHquL;é’(O 7).y from which the necessary

blow-up results follow by (3.11).

Step 5: H'-regularity on the maximal interval of existence. Let ¢ € H' and
T} denotes the endpoint of the maximal interval of existence for the H'-solution to be
considered in the next chapter. By Proposition 3.3 and by definition of 7™, 77 < T™.
Assume Ty < T*. So we have u € C([0,T}]; H') by definition of T* and by Step 2.
But this contradicts with the blow-up result for the H!'-solutions since T} < T™* implies

T} < oo. Thus, TT =T
Step 6: Continuous dependence. Let T < T* = T*(p) and p as before. We have

sup [|S(-)u(t)|[ i@y < Cs sup [Ju(t)]js < oo

t€[0,T] t€[0,T]
by using Theorem A.2.1 and the fact that u € C([0,T]; L?). So there exists 7 > 0 such
that

U
||S(')U<t)||L4((O,T);L4) < 5, YVt € [O,T] (312)

Let n be a fixed integer satisfying T' < n7. Increase C' in Claim 2 to satisfy C' > 1 if
necessary. We want to show that for || — |2 small corresponding maximal solution v

is defined on [0, 7] and ||u — v||eo2 + ||t — v||4,4 is also small. Let ¢ be sufficiently small

such that C,C" e < /2. (C,n, 7 depend on T fixed.)
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Claim. ||¢ — |2 < e implies T*(¢)) > T and
lu = vll 2o o,ryz2) + lu = vllzagozyzey < nC™ i — |2 (3.13)
where v stands for the corresponding maximal solution on [0, 77*(¢))).

For the proof, since ||¢ — 1|2 < &,

1Sl Laqormpeyy < NSC)ellLaqormpzey + 1S — ) Laqormpzey < p/2+Cse < p

by using (3.12) and Strichartz’s estimates. Let I = [0,7/n] in step 1, so by Claims 1,
2 and the definition of T%(v),

v = vlleqormyirz) + lu —vllLaqozmiry < Clle — Yo (3.14)

and we have T* T*(¢) > T/n. In particular this implies ||u(T/n) — v(T/n)|l2 <
Clle =2 < Ce. Now take ppep = w(T'/n) and Ve, = v(T'/n), we have

1S ()v(T/n)| Lago,r/m; L)

< ISCHAT /) aqoirsainy + 1S C)@(T /) = o(T )| sty < /2 + CuC < g

similar to above by (3.12) and Strichartz’s estimates. Again by using Claims 1, 2 with
I =1[0,7/n] and with @pew, Ynew, we obtain

I~ leqosmpasy + 1~ Bllzsoasmes < Cllu(T/n) —v(T/n)ls

(3.15)
< C?llp =2 (£ C2%).

The maximal solution u defined on [0,7*) equals to

u(t) if0<t<T/n
u(t —T/n) if T/n <t <2T/n.
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on [0,27"/n] by Proposition 3.3 and 27'/n < T™ and similar result holds for v which is
the maximal solution with the initial data . (3.14), (3.15) and the last remarks imply

lu = vllcqoar/mszz) + llu — vl Lao2r/mszyy < C2lle — ¥

since C' > 1. Continuing in this way after finitely many steps, we obtain (3.13) and the
claim is proved. Also since u and v are solutions on (0,7"), they satisfy the correspond-
ing integral equations which implies that ||u — v||Le((0,7);zr) is controlled by a constant
multiple, independent of T', of || —¥||2 + ||u — v||L4((0,7);4) again using Strichartz’s es-
timates and (3.7). We obtain (v) for I = (0,7") and the result follows for more general
I € [0,7*) by using the intervals of the form (0,7") with 7" < T*. O

Remark 3.5 (See also [1, Remarks 4.7.4-5]) With certain assumptions on the initial
data and the sign of « it is possible to obtain global L?-solutions in u € L*([0, 00); L*)

which will be important for the scattering results to be considered in Chapter 6.

(i) For small initial data we obtain global solutions: The claim is that there exists

n > 0 such that if ¢ € L? satisfies

1SC)ellLamszey < m (3.16)

then 7% = oco. Indeed, let ¢ satisfies ||S(-)p||Lar,zay < p where p as in step 1 of
the above proof. Then using Claim 1 in that step with I = [0,7%), we have the
solution w € C(I;L*) N LY(I; L") for any (q,7) admissible pair. This implies that
||| La(o,r+);2m) < oo and by the blow-up alternative 7% = co. So one can take n = p.

(3.16) can be satisfied if |||z is sufficiently small considering Theorem A.2.1.

(ii) The other case is when a > ag > 0 and ¢ € L*((1 + |z|*)dz) in the
elliptic case. Here ag being a positive constant is a lower bound for the symbol a. If
¢, € 3 are such that ¢, — ¢ in L? then |x|y, is bounded in L?. Let u,’s be the

corresponding solutions, as given in Theorem 5.2, which are global by Corollary 4.6.
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Considering pseudo-conformal conservation for u,’s (see (2.13)) which will be justified

after establishing virial identity for »-solutions in Chapter 5,
”m90n||3 = ||zu, + QitVunH% + 2t2/ K(|un|2)|un|2 = QQGtQHUn”i
R2

implies that ||u,(t)||} < Ct~2 globally for all n. By Theorem 3.4, (v), |lu,(t)||} —
|u(t)||} for a.a. ¢ € [0,7*) which implies ||u(t)||} < Ct=2 a.e. on [0,T*). This gives

T* = oo by the same theorem, (7).

We have performed the formal computations to establish the pseudo-conformal
invariance in the previous section. With L2-solutions, this invariance property holds

for 6 = %1 in the sense of [1, Theorem 6.7.1].

Theorem 3.6 Supposeu € C((—T1,To); L*)NL} ((—=T1, Tz); L*) is a solution of (1.2.1);

in the sense of Theorem 3.4. Leta,b,c,d, ti,ty and U be as given in the previous section

(see (2.12) and the definitions above it). It follows that

U S C((—th tg), L2) N L4 ((—tl, tg), L4)

loc

is also a solution of (1.2.1); in the same sense.

With the existence and uniqueness result obtained above the proof is as in [1] and
mainly uses Theorem 3.4, (v) with more regular solutions so an existence and unique-
ness result for H2-solutions to be given in Theorem 7.6 and Remark 7.8 is needed. A

similar result holds with the scale transformation defined in the previous section.
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4. THE CAUCHY PROBLEM IN H'!

In this chapter (1.2.1) is considered with ¢ € H'. Let us recall the spaces

X=LLL)NINGLY, | llx =1 ooz VI llaa

Xo=LLL)NLYLLY), (- llxe =1 ooz VI - [looys

for I = [0,7T], T < oo (see [2]). We will also need X = C(I; L*) N L*(I; L*) which is
a closed subspace of X. For u € X, u solves (1.2.1); in D'((0,T); H?) if and only
if u=Tuin H2 a.e. on I as in the argument for Proposition 3.3. We consider the

maps H and AH to obtain the necessary contraction property for the map 7 defined
by (3.5).

Lemma 4.1 Let X, X, be given by (4) then for any T < oo

(i) H maps X (so Xy) boundedly and continuously into L*/3(I; L*/3).
(i) AH maps Xy boundedly and continuously into X. Also for any R > 0, AH 1is
a contraction on Bx,(0,R) = {v € Xy : ||v||x, < R}, when considered with the

metric induced by the norm || - ||x, provided T is sufficiently small.

Proof. (i) Using (3.2), (3.3) and || - ||x < TY4| - ||x,

1H ()llaz.a3 < Callullia < CaT**|lulli s, (4.1)
1H (w) = H(0)llays.a3 < 2CT72([[uli%, V [0l )llw = vllaa, (4.2)

where (', is independent of T'. The claim follows from these estimates.
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(i1) Let u,v € Xy, then

IAH (u)llgr < Corllullis < Cor T |lulll, 4 (4.3)

IACH (w) = H(0)) g < Coor T (30 4 + 1010, 0) 1 = vlloc.a, (4.4)

for (¢,7) = (00,2) and (4,4) using (3.6), (3.7) and Xy C X. The continuity property
now follows. We have also ||A(H (u) — H(v))]|qr < Cyr T1/2<Hquo74+ HU|‘C2>O,4)HU_UH4,4'
So if in addition u, v € Bx,(0, R), the last inequality implies that there exists a constant

C,, independent of T" such that
IA(H (u) = H(v)||x < T2 R?|lu —vl|x (4.5)
from which we obtain the contraction property by choosing 7" sufficiently small. U

We need some additional spaces for dealing with derivatives (see also [2]):

Y =L2(LHEYN LYW, Ly = - lx VIV - x,
Y= {fe LY3(1;LY3) :Vf e (LYY, |-y = llasazs VIV - lajzags

Y = C(I; HY) n LY (I; WHY).

Since H' — LP for p € [2,00), L>(I; H') — X;. This implies Y C X, and | - ||y
< C¢|l - |lx, where C, is independent of T. By Theorem A.2.1 and the fact that
StV =VS(t), S(-) € LIH:;Y) and A € L(Y;Y). A property of H in Y-spaces is
the following.

Lemma 4.2 H maps Y boundedly into Y' and in fact, there exists a constant M

independent of T such that

1H ()l < M TY2ull3- (4.6)
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Proof. Being different from the argument in [13] for Lemma 2.3, we consider an alter-

native way for obtaining the estimate
IV H (u)llajs.ars < CT?|uly (4.7)
for some C' independent of T" by utilizing the properties of K. For u € Y, we have
w € H' N WH. Therefore |u|> € H'. By [9, Lemma 2.1, (iii)], K(|u|?) € H'
and VK (Ju[?) = K(V[u[*) = (K((|u[*).), K(([u[*),)). So K([ul*)v € W' and
V(K (Jul*)v) = K(uVu + aVu)v + K(|u[*)Vo. For some C' depending only on ||a]|so,
IV (E ([ul)o)lagz.ars < Clullaal Vullaallollaa + [all ol Volla) (4.8)
by (3.1)9. As a result VH(u) € LY3(I; L*®) with VH(u) = K(V|u|?)u + K(Ju|*)Vu
and [|VH (u)la/z4/3 < C||u||i4||Vu||474. This implies (4.7) since ||Vullsq < |lully and
Jul|3, < TY?||ul|% 4 Also by using (3.2) and Y — Xy — X
1H (w)lla/3.473 < Callullia < CaT 2 ullaallul.q (4.9)
We have [| - [ls4 <[ [ly and || [lscs <[ [[xo < Cell - [y~ So (4.9) implies

1H (w)llaj.4r3 < CTY?|Jull5 (4.10)

for some constant C' depending on [lay|/e, Ce but not on T'. (4.7) and (4.10) prove
the claim. U

Let us note that unlike in [2] we have only worked with reflexive spaces in the
above argument and this eased our task. Now we can state the contraction property

for 7, fundamental to the existence of H!-solutions.

Lemma 4.3 Let ¢ € H', R > 0 be given and T be defined by (3.4) and (3.5). Also
let By (S(-)p,R) ={veY :|v—5S0)¢lly <R} be considered as a metric space with
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the metric induced by the norm || - ||x. Then T is a strict contraction on By (S(-)p, R)
provided T is sufficiently small.

Proof. ¢ € H" implies S(-) € Y by Strichartz’s estimates as noted before Lemma 4.2.
If u € By(S(-)¢, R), then H(u) € Y' by Lemma 4.2 and

1Tu = SCelly = IAH W)y < [AllopMT?||ull5 (411)
< MllopMT2(RA+ SOl )® < [AllopM TR + oo )?

by (4.6) and Theorem A.2.1. Let v € By (S(:)y, R) also. By (S(:)¢, R) C Bx,(0,C.(R+
IIS(:)¢lly) since Y — X;y. Then

1w = To|lx = [A(H (u) = H©)|x < C,CZTV2(R+ [[SC)elly)?[lu - vllx (4.12)
< CfT(R A+ |l ) lu — vllx

by (4.5) and Stricahrtz’s estimates. (C/ is independent of T). (4.11), (4.12) holds for

arbitrary T' < oo. Choosing T' small will prove the claim. U

Remark 4.4 By(S(-)p, R) is a complete metric space when considered with || - || x.
Indeed, let {v,}n>0 C By (S(:)p, R) such that v, — v in L*(I; L*). Now let J be an
open interval in R with / C J and extend v, v,,S(-)¢ to J being 0 on J \ I. There
exists a subsequence, which we still denote by v, such that v,(t) — v(t) for a.a. t € J.
Wt — L* and ||v, — S(-)¢llzawray < R. So by [1, Theorem 1.2.5], v € L*(J; W4)
and [[v — S(-0)||pawray < liminf, o [, — SC)@llawray < R. Also H' — L*
and v, bounded in L*®(I; H'), so similarly v € L>(I; H') and |[v — S(-)@|| poe(s;m1) <
liminf, .o [|[vn — S()@|leesmry < R. As a result we have v € By (S(-)p, R) which
implies that By (S(-)p, R) is closed in L*(I; L*) and so in X and this establishes the

claim since X is a Banach space.

As a result of the lemmas above we have the main theorem of this chapter:
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Theorem 4.5 Given ¢ € H', there exists a unique mazimal solutionu € C([0,T*); H')N
CH[0,T*); H™) solving (1.2.1) on [0, T*) with the following properties:

(i) (Further regularity) Vu € L*([0,t]; L*) for every t < T*,
(ii) (Blow-up) T* < oo implies that ||u| Lo (jo,r+);m1) = 00,
(iii) (Continuous Dependence) @, — @ in H* andu,,’s are the corresponding solutions.
Then for any I € [0,T*) and for any n sufficiently large u,’s are defined on I
and u, — w in C(I; H').
(iv) (Mass and Energy Conservation) |u(t)||2 = ||¢llz and E(u(t)) = E(p) for 0 <
t<Tr.

Proof. By Lemma 4.3, for T sufficiently small there exists unique u € By (S(-)g, R)
such that v = 7w in Y since By (S(+)g, R) is a complete metric space when furnished
with || - || x as shown in Remark 4.4. This gives local existence and the local uniqueness

is by considering Proposition 3.3.

Maximal solution and Blow-up. Let T* = sup{T > 0 : Ju € C([0,T]; H') N
C*([0,T); H™') solving (1.2.1) on [0,T] and Vu € L*([0,T]; L*)}. By Proposition 3.3,
we can extend the solution uniquely to u € C([0,T*); H') N C*([0,T*); H') solving
(1.2.1) on [0,7*) and also Vu € L*((0,t); L*) for every t < T*.

Assume T* < oo and |[ul|geo((o,r+);m1) < 00. Let {t;} be a sequence such that
t; 1 T* and ||u(t;)||m < A for some A > 0. Let T satisfy CTY2(R+ (|||l m VA))? < 1
and || A, M'TY2(R+(||¢l| g1 VA))? < R. Let k be such that ¢, +T > T*. So there exists
unique u € C([0,T]; H') n C*([0,T]; H') solving (1.2.1); on [0, 7] and @(0) = u(ty).
Then

ult) if0<t<t
at — ty) if t), <t <T+t

is the unique solution of (1.2.1) on [0,7T" + t;| which contradicts with the definition of
T* since tg + 1 > T*. This shows (7).
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Continuous dependence. Consider any T" < T*(¢). Set A = supyejo 7 ||u(t)|| a1
Let ¢, — ¢in H and R = A. Let T satisfy ||A||,, M'T"/?(34)% < Aand C;TY%(3A)? <
1. There exists k € Nsuch that 7"/k < T'. For some ng, n > ng implies ||¢,| < 2|¢] g1-
We have [|Allop M/ (T /K)2(A + gl )* < A, C(T'/R) (A + gl < 1 for
such n which imply that there exist unique solutions w,, € By (S(+)¢n, A) on [0,7"/k]
with initial conditions ¢, (note that Y = Y([0,T"/k])). Also ||A]lo,M'(T"/k)Y2(A +
lellm)® < A, CHT'J)2(A + gllin)? < 1 which imply ulos € By(S()g, A).
Since u, € By (S(*)¢n, A) and ||¢n|lgr < 2||¢||m < 2A, we have

[unlly <ISC)enlly +A < Cllenllar + A <2(C+1)A

by using Lemma 4.2. Similar result holds for u since u € By (S(-)p, A). So there exists

a constant C' such that
[nlly ully < CA (4.13)
(we consider u,’s with n > ng). Since
un —u=5()(pn — @) = iAH (un) — H(u)), (4.14)

we have the estimates

[t = ullooz < Csllon — @ll2 + Coop(llunllia + lullia)llun — ullaa
< Cullon = @l + Coo2(T'/R) 2 (%, + llull )l — wllas
< Cullon = @l + 20 2C2(C)(T' k)2 A%y, — w44

by using Theorem A.2.1, Corollary 3.2, X — X, (4.13) and Y — X,. Similarly

lun = ullaa < Cillon = @l +2C1aCZ(C) (T /k) 2 A un — ulaa-
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As a result of the last two inequalities there exist constants C7, Cy where C] is inde-

pendent of 7"/k and Cy depends only on A such that

[t — oo + un — tllsa < Cillon — @llm + Co(T' /)2 |lun — ullas. (4.15)

We can increase k further to satisfy Cy(T"/k)*/? < 1 and still have that u,,, u are defined
on [0,7"/k]. So at last we have

[un = ulloo2 + l[un = ullaa < Csllon = ollm, (4.16)

for some constant Cs which implies u,, — u both in L*°([0, 7" /k]; L?) and in L*([0,T"/k]; L*)

as n — 00.
Taking gradients of both sides of (4.14) implies that

V(u, —u) =S()V(en — ) —iAV(H (u,) — H(u)). (4.17)

From (4.17) we obtain

IV (un = u)llec2 < CulllV(pn = @)ll2 + IV (H (un) = H(w))llaszass),

IV (un = w)llag < CullIV(on = @)ll2 + IV (H (un) — H(u)llazzas3),

(4.18)

by Theorem A.2.1 where C; represents the maximum of the constants for (¢, ) = (o0, 2)
and (4,4) as before. We have to deal with ||V (H (u,) — H(u))||4/3,4/3- By the proof of
Lemma 4.2, for u,v € Y, V(K (|u|?)v) € L*3(I; L*/3) and V(K (|u|?)v) = K(V|u|*)v +
K(|u|*)Vv. We have

IV (H (un)—H () llasazs < C(2f|un)

sl Vi llaallun = ullss + lunl3 41V (un — 1)la4
+ (lunllaa + llulla ) IVullsaliun = ullag + 2funllaallullaallV (un = w)llag

+ 2wl a4l Vullaallun — ull4,4),
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where C' depends only on ||a|«, by first rearranging and then by using (3.1)s. Again
by a series of the application of the facts Y < Xy < X and (4.13), we obtain that for

some constants Dy, Dy depending only on A,

IV (H (u)—H (w)) | a3,4/3

(4.19)
< Dy(T"/k) | — llaa + Do(T'/R)YHV (i — ) [l 4,4-

By (4.18) and (4.19), there exist constants Cy, Cs, Cs where Cy is independent of T7"/k
and C5, Cs depends only on A such that

IV (un — 1) ||oo2 + |V (un — u)|las
< Cyllen — @llm + Cs5(T' k) |uy — ullaa + Co(T" k)| V (wn — )| 4,4.

We can increase k further as before so that Cg(7"/k)/* < 1. As a result, there exist

C7, Cy such that
IV (tn = w)lloe2 + |V (1 — w)llaa < Crllion — @llir + Cs(T'/k)Y*|un — ullaa.

Since u,, — w in L*([0,T'/k]; L), we have Vu, — Vu in L>([0,T"/k]; L?) which to-
gether with the first part implies u,, — w in L*°([0,7"/k]; H'). Now taking u(T"/k),
{un(T'/k) }r>n, instead of ¢,{¢,} as initial conditions and modifying the above ar-
gument give u, — u (after some n; > ng) in L°°([0,27"/k]; H') where we continue
the previous solutions u,, beyond T"/k with this second application of the argument (k
will not increase further in this second and later applications since all the constants,
seen above, to determine k will appear in the same way) . Iterating this &k times gives
u, — u in L>([0,7']; H'). And the result for any compact subinterval of [0, 7*) will

follow from here (recall that we have chosen 7" < T* arbitrary in the above argument).

Conservations. Taking the H~! — H' duality product of (1.2.1); with 2u gives

2ius, 1)1 = 28l + Ny 1) +2 [ K (o)l da.
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on [0,77). Since the right hand side is real, we obtain the mass conservation on [0, 7).

The computations done in Chapter 2 to establish energy conservation is mean-
ingful with H2-solutions which will be shown to exist in Chapter 7 . So let ¢, € H?
such that ¢, — ¢ in H'. Given any compact subinterval I of [0, T*), for sufficiently
large n, the corresponding solutions wu,, € C([0,T*(¢,)); H?) N CY([0,T*(py)); L?) are
defined on I and u,, — u in C(I; H') by (). So we have E(u,(t)) — E(u(t)) for any
t € I. Since E(un(t)) = E(p,) and E(p,) — E(p), we obtain E(u(t)) = E(p) for
t € I, I being any compact subinterval of [0, 7). O

We have global existence for the case § = 1 in the defocusing case (i.e. a > 0):

Corollary 4.6 Suppose that o(&) > 0 for all € € R* . Then H'-solutions of (1.2.1),
0 =1 are global.

Proof. Let f = |u|* as before. We have

B(u(t) = Va3 [ KQuOPIu() de = [Tu®li+; [ olfEede. (420)

(4.20) and conservation of energy implies ||[Vu(t)||3 < E(u(t)) = E(yp) for 0 <t < T*
since we have the assumption on . By mass conservation, |[u(t)|[3, < E(¢) + |¢l/3

on [0, 7%) which gives T* = oo by Theorem 4.5, (ii). O
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5. THE CAUCHY PROBLEM IN %

In order to justify rigorously what was done in [5, Section 6] for the global nonex-
istence results for GDS system and to generalize the argument to the problem (1.2.1),

we need to establish local existence and uniqueness results for (1.2.1) in X.

For the weight considered in ¥ we will define

Z={veY:|xjve X} (5.1)
with the norm || - ||z = || - [y + [|J - ||lx where (Ju)(t) = ((Jiv)(¢), (J2v)(t)) =
(J1(t)v(t), Jo(t)v(t)) and

Ji(t) = Zitg—f + oz, Jo(t)y = Qit% + y1, (5.2)

for any sufficiently smooth space function 1. So we consider Z = L°(I; X)NL*(1; W1H)N
LA(I; L*(|z|* dz)) with ||-||z where I = [0,T], T' < oo as before. We will investigate the
contraction properties of 7 on Z for H(u) = K(|u|?)u where K is defined by (1.2.2).

Lemma 5.1 Let Z,J be defined by (5.1), (5.2).

(i) If v € Z then for every t € I, Jt)H(v(t)) € L*3 N L? and there erists a
constant k depending on ||a||s and the operator norm of K on L¥3 such that for

(p,q) = (4/3,4) and (2,8)
17 H (w)lp < £llv@IZI1T )o@ (5.3)
(i) Given ¢ € ¥ and R > 0, T maps Bz(S(:)¢, R) into itself and is a contraction

on it with respect to the metric induced by || - ||x + [|J - [|x provided that T is
sufficiently small.
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Proof. (i) Let v € Z and define ¢(x,y) = dz* + y*. Note that for ¢ # 0,

Ji(t)v(t) = 2it €i¢/4ti{v(t)e—i¢/4t}’
8x,€

for k = 1,2 where 71 = 2,25 = y. Set w(t) = v(t)e™*/* for t # 0. Then |w(t)| = |v(t)]

and w(t) € H' N L* (so H(w(t)) € WH/3) since v(t) € X. We have

(6 H (v(t)) = 2it ei¢/4ta%{ﬂ(v(t)>e—i¢/4t} ~ 2z'tei¢/4ta%H(w<t)>

(v(t) € H' N L* N L*(|z|*dx) gives Jy(t)H(v(t)) € L*3) and this implies
| Je(t)H (v(t))||ays = 2[t]||On, H(w(t))]|as3 for any t # 0. As in Lemma 4.2, VH(w) =
K(V|w]*)w + K(Jw]*)Vw for t # 0. We proceed as

1T @) H (w(@)llazs < Colll @) H (v(E)llass + [|J2(6) H (0(E)) llays)
= 2C1[t]([|0: H (w(t))llay3 + 10y H (w(t)) 1 /5) (54)
< Coltl[w(®) [ Vw(®) [l = Callv@) 12T () o ()4,

where, to obtain the second inequality, (3.1); is used so Cy = Cs(]|||o). Similarly,
g [ J(t)H (v(t))|* dz = 4t]* /RQ [VH(w(t))]* dz < Csllo(®) |57 (#)v ()13,
by using (3.1)3. So we have
1T H(v(t)ll2 < Callo@®) R T (#)v(t) 4, (5.5)
with Cy depending on the operator norm of K on L¥3. (5.4) and (5.5) imply (5.3) for
t #0. Fort =0, J(0)H(v(0)) = (dzH (v(0)),yH(v(0))), J(0)v(0) = (dzv(0), yv(0))

and estimates (3.1) give the result as above by using v(0) € ¥ N L(|z|* dx).

(it) A formal computation shows that J, commutes with i0; + §0,, + 0. By
density we have J(t)S(t)p = S(t)J(0)p on R for ¢ € ¥ which gives S(-)p € C(R;X)
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(this property is known as the conformal invariance property of the linear Schrodinger
operator [21] and an extension to non-elliptic case is by [13, Lemma 3.1] ). By (5.3),
JH(v) € LY3(1; L*3) with ||[JH(v)|las3473 < £lv]|4llJv]l44 and JAH (v) = AJH (v)

for v € Z as a result of the above commutation, where A is defined by (3.4) on .

Let ¢ € ¥. S(-)¢p € Z by Strichartz’s estimates. Let v € Bz(S(:)p, R) C
By (S(-)p, R). Asin (4.11),

17w = SC)elly < IMlopMT2(R+ S ()pll2)*. (5.6)

J(Tv — S(-)¢) = AJH(v) by the commutation and AJH(v) € X since JH(v) €
LA3(I; L*3), by Theorem A.2.1. We get

1J(Tv = S()p)llx = IATH(v)llx < Cill TH(©)lagz.a73 < Collv[|34llTv]la
for some C',C5 which are multiples of the constants in Strichartz’s estimates and
using Theorem A.2.1, (i1) and (5.3). ||U||421’4 < T1/2||”u||§o74 < 03T1/2||v||%/, | Jv]|s4 <
[Jv[lx < [lv]lz imply
1J(Tv = SC)p)llx < CCITY2 vy < CC2TVA(R + [|S()ell2)?, (5.7)
where C,, Cy are independent of T'. By (5.6) and (5.7), for some C3 independent of T
T~ SC)pllz < CT2(R 4+ 1SVl 5:8)
for any v € Bz(S(-)¢, R).

Let v, vy € Bz(S(-)g, B) C By (S()¢, ) C B, (0, Ce(R+ [|S(-)#lly)), by (4.5)

1Tv1 = Tvsllx < COITA(RA+ (ISl z)* o — valx. (5.9)
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Next we need to estimate ||J(7v; — Tvy)||x. J(Tvy —Twvy) = JA(H(v1) — H(va)) =
AJ(H(v1) — H(va)). So

[7(Tor = Tw) | x < [[AJ(H (1) = H(v2))lloo2 V [[AJ(H (v1) = H(2)) 4,4

< Cyl|J(H (v1) — H(v2))lays.a3

(5.10)

where C} is a constant depending on the constants coming from Strichartz’s estimates.

Let w;(s) = v;(s)e™/4%, j = 1,2 for s # 0 then
|/ (s)(H (v1(s)) — H(va(s)))] = 2|s][V(H (wi(s)) — H(w(s)))] (5.11)

for s # 0. By rearranging first and then by using (3.1);

IV (H (wy) — H(ws))|las < Cs{lJwy — wala([Jwills + [Jwalla)([[Vwi]ls + [|[Vws|4)

+ {1V (wr = wa)lla(llw ][5+ [lwal[D)}-

where C5 depends on C, and is independent of s € I and of 7. (5.11) and the last

inequality imply

[7(H (01) = H(v2))llays < Cs{[[or = vallallvrlla + [lozfla) (| Tvr 4 + [ Talla)

+ {17 (o1 = va)llaCllonll + llo=]l)}

a.e. on I. So we obtain

| J(H (v1) — H(v2))||lay3,a/3 < Cs{llvr — vallaa(l[vrllaa + lvz2laa)([[Jv1 |44
+ ([ Jvallaa) + ([T (01 — v2)|laa(([or |74 + lo2llie)} (5.12)

< G R+ 1SOellz)* {Ilor = vallx + 1 (01 = v2) 1}

where we apply the Holder inequality to the time integral for the first inequality and we
obtain the second one from the facts Bz(S(:)p, R) C By (S(-)¢, R)) C Bx,(0,Ce(R +
ISCellz)s Nvillaa < TV villooa < TV villxe, - llx < 1[Iy < I+ |2, and ¥ C Xo.

C1; is independent of T" as in the the previous estimates. Finally by (5.9), (5.10) and
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(5.12) for some constant Cy independent of T,

[Tvr — Tvo)||x + ||J(Tvr — Twa))|x

< GsTYY R+ [1S()ell2)?(llor — vallx + | T (v = v2)l|x)  (5.13)

for vi,vs € Bz(S(-)¢, R) and T sufficiently small. The proof is complete when we
consider (5.8), (5.13) and reduce T further if necessary. O

With this contraction property, the following existence and uniqueness result

follows:

Theorem 5.2 Given ¢ € ¥, there exists a unique mazimal solutionu € C([0,T%); )N
CY([0,T*); H™') solving (1.2.1) on [0,T*) with the following properties:

(i) (Further regularity) |z|u, Vu € L*([0,t]; L*) for every t < T*.
(ii) (Blow-up) T* < oo implies that ||u|| L= (jo,1+)x) = 0.
(iii) (X-solutions are H'-solutions) [0, T*) coincides with the maximal interval of ex-
istence for the H-solution in Theorem 4.5 with initial data o.
() (Virial Identity, Pseudo-conformal Conservation) For § = 1, t w— I(t) =
Joo [ P|u(t, ) ? dx € C*([0,T)) and for every t € [0,T)

I'(t) = 4Im/ (xuu, + yuu,) dz dy,
R2

I"(t) = 8E(u(t)).

Moreover Ep.(u) as defined in (2.13) is in C*([0,T*)) and is conserved.
(v) (Continuous Dependence) o, — ¢ in 3 and u,’s are the corresponding solutions.

Then for any I € [0,T%) and for any n sufficiently large u,’s are defined on I
and u, — u in C(I;%).

Proof. Bz(S(-)p, R) is complete when considered with the norm || - ||x + ||/ - ||x

with an argument similar to given in Remark 4.4. So we have a unique local solution
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w=Tuin C([;H)YNCYI; H) (Bz(S(-)¢), R) C By(S(-)p, R)) solving (1.2.1) on
I (uniqueness follows from Proposition 3.3). Ju = J7Tu = S(-)J(0)p —iAJ(H (u)) €
C(I; L?) by Strichartz’s estimates since ¢ € ¥ and JH (u) € L*¥3(I; L*?). As a result
u € C(I;¥). Moreover v € Z implies xu, Vu € L*(I; L*). Similar to the previous
definitions of maximal interval of existence, let 7% = sup{7" > 0 : Ju € C(I;X) N
CY(I; H™') solving (1.2.1) on I with |z|u, Vu € L*([0,T]; L*)}. By Proposition 3.3,
we obtain the unique maximal solution which also satisfies (7). We also deduce (7i)
in a similar way leading to H'-blow-up in Theorem 4.5. (by replacing H'-norm with
Y-norm and using the fact that ||S(-)¢l||z is a constant (independent of I) multiple of
|l¢lls which follows from Theorem A.2.1).

(i7i) Let [0,77) be the maximal interval of existence for the solution in Theorem
4.5 with initial data ¢ € ¥ and let v denote this solution. 7} > T (since otherwise
uw e C([0,T%); H') N CY([0,T*); H™') satisfies (1.2.1) and also Vu € L*([0,t]; L*) for
every t < T™* which contradicts with the definition of 77). We have u = v on [0,T%)
by Proposition 3.3. We claim that 7% = T}. Assume on the contrary that 7™ <
T7y. This implies T* < o0, |[ul|zee(o,r+)y) = 00 by (i) and |[ul|pe(o.1+);m1) < 00.
So limy_p« [Jully o) + |Jul|x o) = o0 (v € C([0,7%);¥)). But T* < T} implies
|lw|ly (o) < oo and this, in turn, yields lim, .- ||Ju| x(o4) = oo. Since u = Tu
in Z on [0,7%), J(t)u(t) = S(t)J(0)p — (AJH(u))(t) on [0,7*) by the commutation
property of J. We deduce that, for t € [0,T*)

1T (@)u@)lla < [15(2) 90||4+C/ 8) 721 (s)H (u(s))l|a/3 ds

< [SOIO)ell+C [ (6= lats) 1) ds
. 1/4
< 15070l + o ([ 1euolias)

by using the property ||S(t)w|, < (4r|t])~ 2P|y, p € [2,00], t # O (see e.g.

A9, [13]), (5.4), the fact that ||u||geo(o,r+);£4) is finite and the Holder inequality in the

order they were mentioned. C' denotes changing constants and is independent of the
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particular time ¢t < 7. So for t € [0,7),

wmwwMSC@ﬂmmwM+AWWW@M%) (5.14)

1S(¢)J(0)pl Lamszey < Cs|J(0)ll2, we obtain ||Ju||so,r+).04) < oo using Gronwall’s
lemma with (5.14). Similarly,

IS (@) u@)lls < [15()J(0)¢lls + Ca /Ot ()17 (s)u(s)[la ds

< ¢ (15070l + [ 17635

since S(t) is unitary on L? and (5.5) and |[u|pec(o 05y < oo hold.  We get
| Jull o2y < Cllells + [|Jullpror)r4) < oo after taking supremum of each
side of the above inequality on [0,7*) and using ||Ju||p4(0,r+);24) < 00 obtained in the
previous step. Finiteness of the last two norms contradicts with lim, .- [[Ju|| x(j0,q) =

00. So we have T = T7.

(iv), (v) (We modify the arguments in [1, Proposition 6.5.1]) Since (1.2.1); holds
in H=! on [0,7*), we can not just multiply by |z|?u ¢ H', take the imaginary part
and then integrate as we did in Chapter 2. Instead we need a regularization. Let
J=1[0,T], T <T* Fore >0, x— e 2 |x|2u(t,z) € H for every t € [0,T*) since

x — e 22 ¢ S We have

Re (uy, e % |z |?u) _,; = Im / {6u,le 212 2 2a], + u, [ 21|z ?a], } de

Rz (5.15)

— Im / W{ounle 2 (2], + uyfe 2 2], } da,
RQ

by considering the H~' — H' duality product of (1.2.1); with e~2¢/®|& |24 and then tak-
ing the imaginary part. Since u € C(J; H') N CY(J; H™Y), I'(t) = 2Re(u,, e~ 21 |2

u)_11 in D'((0,7)) where I.(t) = |,

R2 6_25‘”“‘2|w|2|u(75)|2 dx. So we obtain

I(t)=4Im [ e 2151 — 2¢|@)ztuu, + (1 — 2¢|x)?)yuu, } de,
R2
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by (5.15) and this in turn implies
t 2
() _IE(O)+4/ Im/ e 20 {5(1 — 2ela )z, + (1 — 22|yt } da ds (5.16)
0 R2

on J since both sides are real valued continuous functions of time. For ¢t € J fixed, let

e — 0in (5.16). Using DCT for time and space integrals gives

t
/ |a:|2|u(t)|2dxdy:/ |w|2|gp|2dxdy+4/ Im/ (0ztu, + yuu,) dedyds (5.17)
R? R2 0 R2

on J so by FTC, I € C(J) and the first equality of (iv) (with § = 1) holds on J. T is
any time less than 7™, so the result holds on [0, 7).

Next we show (v). Let J = [0,T], T < T* as above. ¢, — ¢ in ¥ implies,
for n sufficiently large, (we consider such n’s hereafter) the corresponding solutions
u, € C([0,T*(¢,); X)) are defined on J and u,, — w in C(J; H') by Theorem 4.5, (iii).
We want to show that |x|u, — |z|u in C(J; L?). Assume on the contrary that there
exists € > 0 such that for every n there exists t,, with |||x|u,(t,) — |z|u(t,)]]2 > €. For
some subsequence of t, which we still denote by t,, t, — 7 for some 7 € J. Since
u, — u in C(J;HY), (u,), is bounded in L>®(J; H') C L*(J; H') and (H(uy,)), is
bounded in L*(I; H') by using || H (un(t))]la/3 < Callun(t)]|i. (1.2.1); implies that
(tnt)n is bounded in L*(J; H™') C L*(J; H'). We obtain v, € C(J;L?) and for
t,seJ

lun(t) = un(s)]l5 = 2/ Re (uni(7), un(7) = un(5)) 11 d7

< A|un| oo () | wnel| oo (1 m—1) [ = s,

which implies that (u,),’s are bounded in C%V2(J; L?). So u,(t,) — u(r) in L? since
|tn (t) — tn(T) |2 < Ot — 7|/2. We also have

t
e lun (B2 = |Hzc\g0n\|§+4/ Im/2<5mnum+yanuny) dz dy ds (5.18)
0 R
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on J. (5.18) gives that

t
el ()13 < llllenlls + C/O o} (5)[|2]|Vun(s) 2 ds

from which the uniform boundedness of |||z |u,(t)|]2 in t € J and n is deduced by using
Gronwall’s lemma and the fact that ||Vuy,| pe(s,z2)’s are bounded. Therefore there
exists a weakly convergent subsequence of |x|u,(t,) which we still denote as |x|u,,(t,).
We have |- [u,(t,) — |-|u(7) in L? since u,(t,) — u(7) in L?. By using (5.17) and (5.18)
we also obtain |||x|u,(t,)]]2 — |||z|u(7)||2. Norm and weak convergence in L? imply
|z|u,(t,) — |Z|u(T) in L? and this gives |z|u,(t,) — |z|u(t,) in L? which contradicts
with the assumption. So we have |z|u, — |z|u in C(J;L?). The result on compact

sets follows since J = [0, 7] and T is arbitrary satisfying T < T*.

For the virial identity in (iv), we first consider a regular initial data. We will give
the details for the computations related to the nonlocal nonlinearity and refer to [1]

for the standard computations.

Case 1: ¢ € H>N Y. By the regularity results, Corollary 7.7, the corresponding
solution u € C([0,T%); ¥) is also in C([0,T*); H*) N C ([0, T*); L?). Let 6.(x) = e~<l*I’

for € > 0. Define

he(t)=Im [ 6O.u(x-V)udx forte[0,T7).

RZ

As obtained in [1, Step 1, p. 181], h. € C'([0,7*)) with hL(t) = —Im [5, u{20.70,u +
(20 + 10,0, )u} de so by the equation (1.2.1); we obtain

B (t) = Re / (H(u) — Au) {26010, + (20. + 1,0.)a} da. (5.19)
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We proceed by assuming v € D. We have

— Re/ Auf{20.r0.u + (20. + r0,.0.)u} dx
R2
= 2/ 0.|Vu|*dx + / {2r0,0.|10,ul* + (30,0, + rd20.)Re (ud,u)} dz, (5.20)
R2 R?

which also follows from [1, (6.5.15)]. For the part containing the nonlinearity H(u) in
(5.19), using Re{u[20.r0,u + (20, + r0,0.)u]} = V - (x6.|u|*) we get

Re | H(u)[20:.r0,u+ (20- + r0,0.)u] da = / K(|u|?)V - (x6.|u|?) dz
R2

R (5.21)

:—/ 0.lul2m - K (V]uf?) da.
R2

On the other hand, using the identity V - (H(u)uxf.) = 20.H (u)u + H(u)uVo. - x +
Ocful*a - K(V|u*) + K([u*)b(z - V)|ul?,

- / .2z - K(V]uf?) de
]R2

:/2 20.H(wadz + | K(u?)b. (- V)|u?dze+ | H(uwa(z-V)o.de. (5.22)

R2 R2

By the last equality, (5.21) and (5.20), (5.19) can be written as

RL(¢) :2/ 0.|Vu|* dx + / 2r0,0:|0,ul® + (30,0 + rd20.)Re (ud,u)] dz
R2 R2

+2 /11&2 0.H(u)udx + /R2 K(u®0.(x - V)|ul?de + [ H(u)u(x-V)b.dz

RQ

for every u € H? by density. By using DCT

lim RL(t) = 2||Vul3 + 2/ Hw)adz +1lim [ K(|Jul*)b.(x - V)|u*dz.
E— R2

e—0 R2

Now we claim that

lim [ K(ju2)8.(a - V)|uf? dz = —/RQH(u)ﬁdw. (5.23)

e—0 R2
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For the result, we exploit the properties of o as in Chapter 2. Let f = |u|* as before.

— = - =

| K9 de = [ IKGlf) *01 + (FPlaleh) 0 d¢
- / (a6 f + afe)lEf) * 0+ (0 f + afe)l(Ef) « 0. d&.

Since [ g f.d¢ = 1 for any € > 0, by approximations to the identity, the last integral
converges to J, see (2.11). Handling J as we did there gives (5.23).

Also lim. o he(t) = Im [, @ - Vuda, which is equal to h(t) by definition. So we
obtain h € C'([0,T*)) and K/ (t) = 2F(u(t)) and by definitions of i and I, 4h = I'.

Case 2: ¢ € Y. This follows as in , [1, Step 2, p. 182] where the necessary

continuous dependence in our case follows from Theorem 5.2, (v). O

According to Theorem 5.2, (i), I(t) = I1(0) + I'(0)t + 4E(p)t? for t € [0,T*)
using also the conservation of energy. Any of the three conditions on the initial data
to be given below forces I to attain negative values after a finite time. So we can state
a generalized version of [5, Theorem 6.1] on the blow-up of the solutions with initial

data in X:

Corollary 5.3 Let u be the solution of the Cauchy problem (1.2.1), 6 = 1 with initial
value @ € . If one of the conditions E(¢) < 0 or E(p) =0 and Im [, px-Veode <0
or E(¢) > 0 and —Im [, ¢x - Vo da > \/E(p)I(0) holds then T* < oo and so, as a

result of Theorem 4.5, (i1), u blows up in finite time.

The existence of an initial data ¢ satisfying one of the conditions above requires

more specific information on «, for DS system see [13] and for GDS system see [5, 12].

It is possible to obtain explicit blow-up solutions in the elliptic case. Generalizing
the results in [9, 11] as described in Conclusion we obtain global solutions of the form

u(T, X) = e R(X) where R is a ground state solution satisfying AR — R = K(R?)R.
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We have |lu||4(r;z4) = 00. By using the pseudo-conformal transformation (2.12) with
a=d=0,b=—1,c =1 we obtain the solution U(t,z) = %e’%”%R(a:/t) (see
Theorem 3.6). After translating U in the positive direction in time, we obtain a solution
having subminimal mass || R||s and blowing-up in finite positive time since (6.5) implies
that||U|| 14 ((~c0,0);:24) = 00. We did not consider in this work the characterization of the

minimal blow-up solutions which was established in [22] with initial data in H! in the

case of NLS with pure power nonlinearity with the critical exponent.
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6. ASYMPTOTIC BEHAVIOR AND SCATTERING OF
SOLUTIONS

In this section we consider the asymptotic behavior of the global solutions. We
mainly deal with the case 6 = 1. For the results we will utilize the pseudo-conformal
invariance of (1.2.1);. The pseudo-conformal transformation was defined in Chapter 2

(see (2.12) and the definitions preceding it). With these

U@z = llu(T)]]2- (6.1)

where T'= (¢ + dt)/(a + bt). Also for >0 and d — 0T >0

U®)l|p42 = (d = BT) 7% [u(T) | 12, (6.2)
12U (1)]ls = (d — bT) | Xu(T)||o, (6.3)
IVU ()]s = §||<—bX +2i(d — bT)V))u(T)||o- (6.4)

For bT} > —d, bT» < d and t;,ts as defined above (2.12) in Section 2,

NU za((=t1,02):0) = llullza=my, 1)) (6.5)

By (6.1), (6.3)-(6.4), u € C((=T},T3);Y) implies that U € C((—t1,t2);X). Note that

the pseudo-conformal transformation preserves the spaces L? and ¥ but not H!.

Now we will generalize a previously obtained result on the asymptotic behavior

of solutions in EEE case of GDS system in [6] to the problem (1.2.1); when 6 = 1.

Proposition 6.1 Consider the equation (1.2.1);, 6 = 1. Let ¢ € X be such that

the corresponding mazimal solution wu is global and for some constant C, ||V|u|||3 <
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CE(|ul|) holds globally. Then
lu(s)lly < N(1+]s])*™" (6.6)

forp>2 and s € R where N depends only on ¢ and p.

Proof. We will only argue for positive times. Let u € C([0,00); ¥) be as claimed. Let
Ty =0 and T3 = 0o and U be defined as in (2.12) witha=d =1,b= -1, ¢ =0. We
have ty =0, =1, t=T/(1+T) for T € [0,00) and U € C([0,1);X) solves (1.2.1);
on [0,1) with U(0) = e~il21*/4p —: ©_, since we have the pseudo-conformal invariance
property as given by Theorem 3.6. So we have T*(¢_1) > 1 and by Proposition 3.3 the
maximal solution corresponding to ¢_; coincides with U on [0,1). From ||V|U]||2 <

IVU]||2 (by Stampacchia’s inequality) and the definition of energy, we get
E(U@)]) < EU(t)) = E(p-1), (6.7)

for t € [0,1) where we have used the conservation of energy. |U(t, )| = 1 |u(T, X)|
and 1/(1 —t) =1+ T gives

E(lu(T)) = (1 =t)’E(U®)]) < (1= 1)*E(p-1) = 1+ T) *E(p-1),

for T" € [0,00) by (6.7). The above inequality, Gagliardo-Nirenberg inequalities and
the assumption ||V|u|||3 < CE(|u|) on [0,00) imply that

la(T)I[ < CLlIV (DI lu(D)3 < CoE(u(TNP22pll; < N(1+T)*?

for p > 2 and T € [0, 00) where N depends only on ¢ and p. This proves the claim for

positive times. The result for negative times follows by a time reversal argument. [

Given ¢ € X, for o« > 0 on R? | the global solution satisfies the assumption in the

above proposition (see Corollary 4.6). On the other hand, for «(£) < 0 for all £ € R?
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the global solution as in Remark 6.4, (7i7) has the same property.

We need another proposition before stating the scattering results, the proof fol-

lows the same line of argument as in [1, Proposition 7.5.1].

Proposition 6.2 Let u € C([0,00); L?) (respectively € C([0,00); %)) be a solution of
(1.2.1); and U € C([0,1); L?) (respectively € C([0,1);%)) be as in the above proof. It
follows that S(—T)u(T) has a strong limit in L? (respectively in %) as T — oo if and

only if U(t) has a strong limit in L* (respectively in X) as t T 1, in which case

lim S(—T)u(T) = ™ /*S(=1)U(1) in L? (respectively in X). (6.8)

T—o00

In terms of the scattering theory in L?, Ry := {p € L* : T* = co and lim; ..,
S(—t)u(t) exists in L?}. By (6.5) and the L? well-posedness of (1.2.1), a necessary and
sufficient condition for U(t) to have a limit in L* as t — 1 is that ||| 14(0,00):14) < 00,
where v and U is as in Proposition 6.2 and so we obtain R, = {p € L* : T* =
0o and ||| p([o,00);24y < 00}. Similarly, {¢ € ¥ : T* = oo and limy_.o S(—t)u(t) exists
in ¥} =R, N from YX-regularity of the solutions for (1.2.1). If we define R_ := {p €
L?: ¢ € R}, similar results hold for negative times by time reversal arguments (see
[19, Theorem 4.13] for purely cubic power nonlinearity). The following theorem shows
the existence of the scattering states in X for the global solutions with the assumptions
given in Proposition 6.1. For a similar but stronger result in the case of purely power

nonlinearity, see [18] and [1, Theorem 7.5.4].

Theorem 6.3 Consider (1.2.1); with 6 = 1. Let ¢ € X be such that the correspond-
ing mazimal solution u is global and for some constant C, |V|ul||3 < CE(|u]) holds

globally. Then there ezist ux € X such that limg_, o S(—$)u(s) = ux in 2.

Proof. Again we argue only for positive times. By Proposition 6.2 it is enough to show

that {U(t)}co,1) has a strong limit in ¥ as ¢ T 1. Let U be as in the above proofs
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and ¢ as in Proposition 6.1. So by using (6.2) with § = 2, (6.6) with p = 4 and
1+T7T=1/(1—1), we have

U= 1 +T)lu(T)l; < N(1+T)*=N

1
(1—1)
on [0,1) which implies ||U(¢)||ls+ < C on [0,1) for some constant C. We noted that
T*(p_q) > 1. If T*(¢_1) = 1 then by the blow-up alternative given by Theorem
3.4, (i), ||U]|t4(0,1);L4y = oo but this contradicts with ||U(t)|ls < C on [0,1) (in the
previous sections by regularity results it was seen that for an initial data in X the
maximal solutions in L?, H', ¥ are the same and T is common so we can use Theorem
3.4, (i1) ). As a result T*(p_1) > 1 from which we deduce that U € C([0,1];X). This
implies lim;_,; U(t) = U(1) in ¥. So by Proposition 6.2 the proof is complete. O

Remark 6.4 (i) Note that for any ¢ € ¥ as in the above theorem there exist unique
scattering states u4 in X by uniqueness of solutions. One can see from the proof that

PERLNR_NY. Sofora>0on R, LCRLNR_.

(i1) As a result of Remark 3.5, Proposition 6.2 and the observation following it,
for « > ag > 0 where ag as described in Remark 3.5, L*((1 + |z|*)dx) C R NR_,
and without any assumption on the signs of «, sufficiently small neighborhoods of 0
in L? are in R, NR_. In both cases we have unique scattering states in L? for the

corresponding initial data.

(iii) When () < 0 for all £ € R? and ¢ € ¥ satisfies |¢|a < ||R]|2 for R
being the ground state solution of AR — R = K(R?)R, the corresponding solution in
2 :
IR|2 ||u||§||V|u|||§ which

2
holds globally (see Conclusion for the generalization of the results in [9]). This implies

1
E(lul) = [V ]ulls + S (K (jul*), [u)2 2 [[V]ullz (1 = ll¢ll2/ [ B])3) , for every ¢ € [0, 00)

¥ is global. Also we have the estimate —(K (|ul?), |ul?) <

so we have the assertions of Theorem 6.3.

With another smallness assumption on the initial data we obtain a similar result.
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Let ¢ € ¥ such that the corresponding maximal solution w is global and ||¢lls <
|1R]|2/(||||ss)*/? where R is the ground state solution of AR — R+ R = 0. Similar to
above we have E([ul) > ||V]ul[|3(1— [[alllelI3/ [ EI3), globally from (K (Juf*), [ul*)s <
laloollulli < llallso(2/[|RII2) |V |u][|3]|u]|3 where we utilize the inequality (I.2) in [23] to

control |lul|f. So again we obtain scattering results in ¥ by Theorem 6.3.

(iv) More generally similar to [19, Corollary 4.9] for purely cubic power nonlin-
earity, R4, and R, N Y are open in L? and ¥ respectively which implies low-energy
scattering in those spaces i.e. with initial data having small norm in L? (respectively
in ¥) and for which the corresponding maximal solution is global, we have unique
scattering states in L? (respectively in X). This is by Proposition 6.2 and the remarks

following it.

(v) The following claim related to asymptotic behavior holds for the case § =
—1 as well. The problem (1.2.1) that we are considering here also falls under the
class considered by Constantin in [17] hence Theorem 2.3 there applies. In particular,
when m = 2 (since for n = 2 this is the smallest possible m we can take there) and
lollz Vv [[Apl3 V |||z]?¢]3 is small enough we have |u(t,z)| < C(1 + |t|)7!, i.e. the

L*°-norm of the solutions decay to 0.
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7. THE CAUCHY PROBLEM FOR A GENERALIZED
EQUATION AND FURTHER REGULARITY

We will be dealing with the Cauchy problem

iUy + Oy + Uy = K([ulP™u, d==%1, co>p>2
u(0) = .

(7.1)

in this section where K is defined by (1.2.2). We have considered the problem for
p=3in L? H' and ¥ in the previous sections. Here we will show that for co > p > 2
we have H'-solutions and in addition we will consider (7.1) in H?. Let H(u) denote
K(|u/P~")u throughout this section. The following result which is a corollary to [9,

Lemma 2.1] gives some of the operator theoretic properties of H:

Corollary 7.1 H € C(Lr*; L®+V/P)y \ O (L?%; L?) with

1@l < Crllulley V€ L7, o
1H (W)~ H) s < Corllulet + ol — vllper Vv € L7,

1H (w)ll2 < Callulls, Yue L, 3
1 () = H(v)ll2 < Ca(llulls,” + lvlls, llu = vlls,  Vu,v € L.

Proof. Let u,v € LP*" then by using the Holder inequality we get || K ([ulP~")v|| 1)/ <
C'p||u||Zﬁ||v||p+1 where C), denotes the operator norm of K on LP+Y/(P=1 by using [9,

Lemma 2.1, (i)]. This gives (7.2);. Similarly

1H (u) = H)ll s/ < Cp  lullpiille = vllper + Cl(ulP~2 + [0 ~2)ju = vf[|es 0]l -
p—1
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If we use || (JulP™ + [oP~*)|u — vlllpz < (lullfd + lullj)llu — vllpe with p > 2, we

obtain (7.2)s. (7.3) can also be obtained by using the same Hélder pairs. O

Remark 7.2 (i) For k = 1 — 1/p, H* — L% by the Sobolev embedding. 0 < k < 1
implies H! — H*. With the above inequalities H € C(H*; L?) N C(H?; L?).

(ii) For (r,p + 1) admissible and u,v € L>®(I; LP*!), I bounded,

| @) = HI,, | e

< CulllY" M (ullf g, oy + 101G gyt = llrzmeny. (74)

(iii) We generalize the definitions of X, Xy, X, Y, Y, Y (see Chapter 4 for the
previous definitions) by replacing L* with LP+1, L*(I; L*) with L"(I; LP*1) and LY3(1; LY/3)
with L™ (I; Lprl) where (r,p + 1) is admissible (in terms of Theorem A.2.1, (i) we
have considered the case (v, p) = (4,4) previously when p = 3 and here we consider
the more general case (v,p) = (r,p+ 1), p > 2. Note that the constants appear-
ing in Strichartz’s estimates also depend on the particular choice of (v,p)). By a
modification of the argument given in Chapter 4 due to the change in the definition
of the above spaces and using (7.2), (7.4) to obtain general versions of the previ-
ous results in the same section, given ¢ € H*, there exists unique maximal solution
u € C([0,T%); H') n C*([0,T*); H') solving (7.1) such that Vu € L"([0,t]; LPT') for
every t < T*. We also have |[u||po(jo,r+);m1) = 00 provided T* < co. Another existence
and uniqueness result can be obtained in L? for 2 < p < 3 in the elliptic case as in [1,

Theorem 4.6.1] since we have (7.2) and p+ 1 < 7.

We define another group of spaces in order to deal with (7.1) in H? (I = [0,T],

with any 7" < oo as before). Let

Z={veXmeX MelnLLY)}, |-llz=1"lxVI[o lIxVIA-lxe 75)
’ pt+l )
g ={fel(L): e L(LL)} -z =1 lloe2 VIO I en
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and Z={ve X vy, € X, AveC(I;L*)} CY, Zis a closed subspace of Z. We have
lolly < CTY"|lv]2 (7.6)

with C' independent of T'. In order to obtain further contraction property for 7 on Z we

need some preliminary lemmas. We prove the existence and uniqueness of H2-solutions

in the elliptic case by a modification of the argument in [2].

Lemma 7.3 Let A be defined by (3.4) and § =1 then

i) there exists some constant Cs being independent of T such that for every f € Z’

IAfllx < Cullfll12,
IAF)ellx < ColllFO)l2 + el 1))

(7.7)
i) S() € L(H* Z), A€ L(Z'; 2).

Proof. (i) (7.7); follows by Theorem A.2.1, (i) with (v, p) = (00,2). Let v := Af.
Z'Cc LMI;L*) so f e WH((0,T); H ) — C(I; H). If f € CY(I; H™!) then

v (t) = S(t) f(0) +/0 S(t—s)fi(s)ds in H' fortel. (7.8)

We have v; € L'((0,T); H™'). For f, sufficiently smooth and f,, — fin WH((0,T); H™'),
v, — v and v,y — S(+)f(0) + fS( — 8)fi(s)ds in L1((0,T); H'). So (7.8) holds for
f e Wh((0,T7); H™') and by0 Strichartz’s estimates (taking (v,p) = (r,p + 1)) we
obtain (7.7)s.

(it) ||S()e|lx < C|l¢|l2 by Strichartz’s estimates. ¢ € H? implies that S(-)¢ €
C(R; H?) N C*(R; L?) solves iu; + Au = 0. So we obtain [|AS(-)e|lx = ||S()Ap|x =
I(SC)e)illx < CllAp]l2, by using the linear equation and Strichartz’s estimates. We
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obtain the first claim with
1SC)ellz < Cillelluz (7.9)
with ' independent of T'.

By using (7.7), [[Afllx < CST|fllz and [[(Af)illx < 2G| fllz Af € C(I; L)
solves 1v; + Av = f such that v(0) = 0 and v € C(I;L*) N CY(I; H?) since f €
C(I; H™'). By the equation AAf € L>®(I; L?) and we have ||[AAf]loo2 < [[(Af)]lx +
[ fllooz < (2Cs + 1)||f]lz. Also AAf and (Af); € C(I;L*) by approximation since

A maps smooth functions into Z. So the second assertion is obtained. Note that the

operator norm of the map A : 2’ — Z depends on T and for T < 1

[Afllz < 2C: + D fllz = Callfll2-- (7.10)

See [2, Lemma 3.2] and [1, Lemmas 4.8.2, 4.8.5] for these results. O

Next lemma is in parallel with [2, Lemmas 3.3, 3.4], we get similar results for H:

Lemma 7.4 Let 0 =1—k/2 withk=1—1/p.

(i) For everyv € Z, H(v) € C°(I; L*) and

1H (u(t) = H(v(s)llz < CllollZlt = s, Vtsel

with C' being independent of T.
(ii)) H maps Z into Z' boundedly and if T <1

1H (v) = H(O)|lz2 < MTV" o], Woe 2

where M is independent of T and H(v(0)) represents t — H(v(0)) fort e I.
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Proof. (i) 0 <k <2and v e ZC WhH>((0,7T); L*) — C%(I; L?) so

l(t) = v(s)llar < llv(t) = v(s) | o) = v(s)ll2

< Clollz It = s vl < Cllvllzlt — sI°
for every t, s € I where C is independent of I,v. Since H* — L we obtain
[v(t) — v(s)|l2p < Cllvllzlt — s|° Vi, se€l,veZ, (7.11)

with C' independent of I and changing accordingly. By using (7.3)s, (7.11) and H? —
L?* we obtain (i).

(11) We need to show the estimates:

1H (v) = H(0(0))l|so2 < CTY" "0l

ICH @))illr ey < CTY 0l el x

for every v € Z where C is independent of T. By (i) for any ¢t € I, ||[H(v((t)) —
H(v(0))|| < Ct%||v||%. Taking the supremum of each side on I gives the first inequality
when 7"< 1 (60 > 1/r' —1/r).

Consider H(v(t + h)) — H(v(t)) for t € I and h small. By using (7.2), we have
[t
[H (v(t + h)) = H(v(t))][p22 < 2Ck|v[l, / [[0:(s)llp41 ds (7.12)
P t
for which Z < Y — Xj is used. It was seen that ||-||x, < C¢||-||y and C. is independent
of T, same is true for Z C Y for T < 1 from (7.6). Also for u € Z, [|H(u)||,s »+1 <
Cllulf5 T =" {|ul|ypy1 for T < 1 where we used the above embeddings and (7.2);.

So by (7.12), [1, Proposition 1.3.12] implies that H(v) € W' ((0,T); L®*1)/P) and

ICH@))ellza < Crrllolli lvellyrper < 26TV 0l [0 (7.13)
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which establishes the second inequality and the claim is proved by these inequalities.[]

With these results we can state the contraction property needed to establish the

existence and uniqueness of H2-solutions:

Lemma 7.5 Let p € H?, 6 =1 and R > C||¢||lgz + Ca||H(p) |2 where Cy, Cy are as
in (7.9) and (7.10). Set E = {v € Bz(0,R) : v(0) = ¢}. Then for sufficiently small T,
T : E— E and is a strict contraction on E when considered with the metric induced

by the X -norm. (Given ¢ € H*, T and A are defined by (3.4), (3.5).)

Proof. S(-)p € E # (. Let v € E then (7v)(0) = ¢ and by (7.9), (7.10) and Lemma
7.4, (ii) for T <1

1Tv]lz < Cillellaz + Co(H(v) = H(p)l[zr + |1H()l2)
< Cullelluz + Co(MTY" 7 |[oll + [ H(¢)l2)

< Cullelluz + Co(MTYV" " RP + | H() )

where H(p) on I represents t — H (). Now let w € E also. We have ||[7v — Tw|x =
IA(H (v) = H(w))|lx < CsT"2R?|jv — w||x by using Bz(0, R) C Bx,(0, R) and the
estimate similar to (4.5) where (4,4) in the X-norm is replaced by (r,p + 1) (see
Remark 7.2, (iii)). So for T small we obtain the result by the estimates above. O

Theorem 7.6 Given ¢ € H?, there exists a unique mazximal solution v € C([0,T*); H*)N
CH([0,T*); L?) solving (7.1), § = 1 with the following properties:

(i) up € L"([0,t]; LP*Y) for every t € [0,T%),

(ii) T* < oo implies that ||u|| oo (o, r+);m2) = 00.

Proof. For T sufficiently small and R as in Lemma 7.5, there exists a unique u € E such

that u = 7 u by the fact that F is complete when considered with the metric induced by
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the X-norm. Since 7 : Z — Z by Lemma 7.3, (i) and Lemma 7.4, (i), u € C(I; H?),
u, € C(I; L*) N L7 (I; LP*Y) with T =[0,T]. H(u) € L'(I; L?) so u satisfies (7.1); with
§ =1in D'((0,7); L?) and u(0) = ¢. Since u € Z, u € C(I; H*) N C*(I; L?) with
u; € L"(I; LP*1) solves (7.1) on I. Let v € C(I; H*) N C*(I; L?) be another solution on
I. Let 0 € J C I, we have

Il = vllzr ey = 1 Tw = Toll ooy < CIH ) = HE |, e

< Ol (lall ooy + 1007yl = vllrizosy

which implies v = v on J for |J| sufficiently small and by a continuation argument
the same is true on I. As a result we have a unique u with the properties given
above and so u can be uniquely extended to [0,7*), where T* = sup{7T > 0 : Ju €
C([0,T]; H?) N C*([0,T7]; L*) solving (7.1) on [0, T] such that u; € L"([0,T]; LP™)}.
This gives (i).

Assume 7% < oo and let t; T 7™ such that there exists A > 0 satisfying
ol [[u(t)||: < A. Let R > C1A + CoCAP where we use |[H()|2 < C| - |2
by (7.3)1, C appears because of H?> — L?*. Choose T sufficiently small such that
Ch A+ C’g(MTl/T/*l/TRp + C'Ap) < R and C5T"?R? < 1 where Cj is as in the proof of
Lemma 7.5. Let ¢, be such that t; + 7T > T*. Proceeding as in the proof of Theorem
4.5, Step 2 (after the choice of t; there) yields a contradiction which implies (i7). O

After considering the Cauchy problem in H? in the sense of the above theorem

we can state the H2-regularity of H'-solutions.

Corollary 7.7 Let ¢ € H?. Then the H'-solution v € C([0,T*); H') noted in Remark
7.2, (i) is in C([0,T*); H*) N CY([0,T*); L?) and [0,T*) coincides with the mazimal

interval of existence of the corresponding H?-solutions.

Proof. Let Ty be the end point of the maximal interval of existence for the H?2-solution

v. By the uniqueness obtained in the above proof, Ty < T* and u = v on [0,7T3).
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Assume on the contrary that Ty < T%. So ||u(t)||gz — oo as t T Ty since Ty < oo.

u € C([0,T*); H') implies
||U||L<><>([0,T5];H1) < 0. (7.14)

By the above theorem

u € L>([0,7]; H*) and
(7.15)
u € L2([0,7]; L) N L7([0, 7); LP*Y) < L7 ([0, 7]; LP*)

for every 7 < Ty. We want to show that u; € L>([0,T5); L?). u satisfies u(t) =
S(t)p —iAH(u)(t) in L? on [0,Ty). Let 7 < Ty,

ot

S Cfl“‘ﬁHH2 + OS(HH(SO)HQ + OHU”,];(_O%[O,T])||ut||LT’([0,T];LP+1)) (716)

el £ o.r3:Lry < Chllpllm + Co(LH () [|2 + [ (H () )]

< Cillellaz + Coll H(@)ll2 + Cslluell 0,7, 041

with C5 being independent of 7 by using Lemma 7.3 with f = H(u) and (7.13). Let

€ < 7, we have

”utHLT/([O,T];LP“'l) < HUtHLr’([o,T—a];LpH) + ”utHLT/([T—E,T];Lp+1)

1/r'=1/r

< ||Ut||Lr’([o,T;—e];Lp+1) t+e [te| (e, Lony

< C. +51/TI_1/THut”LT([O,T};LPH)-

So by (7.16)
HUtHLT([O,T};LP+1) S Cgo + 0505 + 0561/#71””utHLr([o’ﬂ;LP+l).

By fixing € < 7 sufficiently small ||w|| .- (o,-;p+1) < C as 7 — T Similar to (7.16) we

obtain

[uel| Lo o.r1:22) < Cullollmz + Csl[H(@)ll2 + Colluell 1 (0.1, 1+1
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which together with the last result imply that u; € L*°([0, Ty ); L?) since Ty < oo. We

also have

1 (u(®)l2 < Crllu@)ll5, Ilu(®) 2 < Crllu@)ln lu®)]lar < Csllu®)llm,

for t < Ty by (7.3)y, H' — H* — L[? for k=1 —1/p and (7.14). So by interpolation

and Young’s inequality
_ 1
| H (u(®)]l2 < Cellu@®)ll5”lu@®)1 7" < Co+ Zllu(t) a2 (7.17)

for t < Ty since u € L>([0,T5]; L?). Using (7.17) and the equation, we get ||Au(t)|s <
||ut||Loo([0’T2*);L2) —+ Og =+ %||U(t>”H2 Wthh 1mphes ||U(t)||H2 S Clg -+ 1/2||U(t)||H2 fOI‘
t < Ty by (7.14) and the fact u; € L>®([0,Ty); L?) obtained above. Hence we get

|l o< (f0,73); 52y < 00 which contradicts with Theorem 7.6, (i) since Ty < oco. O

Remark 7.8 When 6 = —1, we cannot extend Kato’s framework to the H?-regularity of
solutions and to their maximal interval of existence. However, for p = 3, an alternative
argument, which works for the hyperbolic case as well, gives the result. Indeed, given
¢ € H* and R > 0, for I = [0,T], T sufficiently small, 7 is from Be(r,n2)(S(-)p, R)

into itself and is a strict contraction on it, by the estimates

17w = SC)pllioe 2y < OT*|[ul| ooz, ),

17w = Tollsoqrmz) < CT (ulle sy + el 3o o)l — 0llcoe iy

which hold for every u,v € C(I; H?). These are obtained by Theorem A.2.1 and the
control of AH in LY3(I; L*?). The existence and uniqueness of a maximal solution on
[0,T5) and the blow-up alternative in H? follow as in the case of H'-solutions. For the
regularity result, || AH (u)||4/3.4/3 is estimated more carefully in order to make use of Y-
norm of the solution. For this, let 7* be as in Theorem 4.5 and v be the corresponding
H'-solution. Then by definitions of Ti, T* and by Proposition 3.3, Ty < T* and u = v
on [0, 7). We want to show that Ty = T™.
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Assume on the contrary that 75 < T*. Then by H? blow-up, ||Au||zeo.1):02) =
oo since |[ul|pe(oryrz) < 00. Let 7 < Ty and J = [0,7). Since Au = S(-)Ayp —
iAAH (u) on J, by Theorem A.2.1,

Al im(sszsy < Crlelln + IAH @] gars(gzors)
< Colllpllae + ull sy 1 Bulscrzey + [ Vl2aqpo lull o

+HUHL‘*(J;L“P/(?’*QP))||AUHL4(J;L2)”UJHL‘l(J;L‘lP’/?’))’

for some 1 < p < 3/2. By the last inequality we obtain

[Aul| o s22) < Cs(llpll 2 + T *M?|| Aul| poo 12y + TV M?),
where M = ||lully(o,rz))- Specify 7 by choosing 7 = T3 /n for fixed n sufficiently large.
This gives §[|Aul|poe(s,22) < 1+Cslp| 2. Iterating n times we get 5 [| Au|| poo(o,np)22) <

1+ C [ Jnax |w(k7)|| g2 which contradicts with || Au||ze(jo,r);L2) = 0.
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8. CONCLUSION

In the elliptic case, we claim that all of the previous results on the purely elliptic
GDS system that are mentioned in the introduction [5, 9, 6, 12, 11] are now fully
justified.

When «a(&) = x we recover the cubic NLS. To recover the DS system in the HE
and EE cases just take o(&) = x + bﬁ. We have in this case x +b > «(§) > x
when b > 0 and xy > a(f) > x + b when b < 0 for all ¢ € R% For the HEE and
EEE cases of the GDS system, the corresponding symbol is given by (1.3.2). All of
these three symbols satisfy (H1) and (H2). The case a > 0 where the global existence
of H'-solutions as well as Y-solutions are proven in Corollary 4.6 and Theorem 5.2,
(111) was already considered for the GDS system in [5] as well as in [12]. In fact, the
conditions that are assumed on the parameters were in order to ensure «(§) > 0 for all
¢ € R?\ {(0,0)}. On the other hand, when a < 0 in the special case of the GDS system
with b < 0, it was shown that there can be data ¢ with negative energy resulting in
the blowing-up of solutions. When b > 0, in the case where « takes both positive and

negative values, neither a global existence nor a blow-up of solutions was obtained, this

is still the case in this work. (see [12])

The framework considered here for the nonlinearity was inspired by [9]. If we let
K([ul*)u = x|u|?*u + bK(|u[*)u then we obtain the framework presented in [9]. In fact
replacing the nonlinear functional J there (see (35) in [9]) by

—2|[v[I3] Vi3
(K([v]?), [v]?) L2

J(v) =

we can obtain the result of Theorem 2.2. Hence we generalize the work of Weinstein
[23] on the critical NLS. The assumptions on the parameters in [9] imply that o < 0.
In [11] an alternative route was taken leading to the existence of standing waves. To
rephrase the main result there (Theorem 1): If either lim, . a(s&1,&) = @ < 0 or

lim, g+ (&1, &) = @z < 0 then the constrained minimization has a positive solution.
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Note that a; = x + a1b and @y = x + agb in the terminology of that paper. In the DS
case, a1 A ag < 0 is equivalent to x < (—b) vV 0. Moreover, in the GDS case for b < 0
it is observed in [12] that &; A @2 < 0 suffices to guarantee solutions with negative
energy (Lemma 2, (ii)). Both of these results also implied a global existence result
for initial data with subminimal mass. These observations indicate that the focusing
and defocusing cases for (1.2.1) are not as sharply demarcated yet as in the cases of
NLS and DS system. For solutions in X these two cases can be seperated as follows:
(1) either there exists u € 3 such that (K (|ul?),|u|?) < 0 (focusing) then there exists
initial value with negative energy. By Corollary 5.3 the corresponding solution in X
blows up in finite time (i) or for every u € 3, (K (|ul?), |u?) > 0 (defocusing) hence
conservation of energy and mass gives boundedness of H'-norm of the H!'-solutions.
From the proof of Corollary 4.6 it follows that H'-solutions are global so by Theorem
5.2, (iii), the Y-solutions exist globally. In [6], asymptotic behavior of LP-norms were
also considered, we have rephrased this in Section 6, Proposition 6.1. All of the papers
mentioned so far were on the purely elliptic case of the GDS system. We also presented
new results on the global existence of solutions for the GDS system. Firstly, in the HEE
and EEE cases, when the initial mass is small enough L?-solutions are global (Remark
3.5). Secondly , in the elliptic case when o > 0 and ¢ € 3 the Cauchy problem has a
global solution in .. Moreover, the same is true under the conditions described above
i.e. for small solutions with subminimal mass when &; < 0 or & < 0 or when o < 0

when ¢ € X

It is clear that the key observation that makes all of the arguments go smoothly
in the present work is that the nonlinear term that we are considering acts in the same
way as the purely cubic power nonlinearity acts as an operator on the mixed space-time
norm spaces (see e.g. Corollaries 3.1, 3.2, 7.1, Lemmas 4.1, 4.2, 5.1, (1), 7.4 and Remark
7.2). Since the pure power case is a special case of the term that we have considered
this may have been a natural consequence of the general framework considered in [2].
Note however that we have refrained from decomposing the nonlinear term into two
parts as done there by a cut-off function since we do not know how to deal with such
an operation in the presence of a real non-local nonlinearity. Consequently we have

also avoided some of the technical details that had to be considered in [2].
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In deriving the conservation laws we always had to recourse to same type of
regularity result, hence H'— L? and H? — H' regularity results were needed. We deduce
mass conservation and the pseudo-conformal invariance for 6 = +1 with L?-solutions,
this justifies the argument on the blow-up profile given in [6]. Energy conservation is

also valid for § = +1 with H'-solutions .

As a final comment we would like to mention the situation in the 2D case when
the nonlinearity is like a pth power nonlinearity, i.e. when H(u) = K(|u/P~!)u for
oo > p > 2. We have the operator estimates for H given in Corollary 7.1 which leads
to the existence and uniqueness of H'-solutions (for both § = +1) for p > 2 and of
L*-solutions (in the case § = 1) for 3 > p > 2. We also obtain H?-solutions for p > 2
in the elliptic case which is important in establishing the pseudo-conformal invariance
property, the energy conservation in H' and the virial identity. And finally with the
H' — H? regularity result we obtain that for an initial data in H? the maximal interval

of existence of L?, H', ¥ and H?-solutions coincides and those solutions are the same.
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APPENDIX A: LINEAR SCHRODINGER EQUATION

Although the following results are considered for n = 2 throughout the text, they
hold in general as stated here. We refer to [1] for the elliptic case and [13] for the
hyperbolic case.

A.1. Fundamental Properties

Let (S(t)):er represents the solution semigroup for the linear problem du; + du,, +

Uyy = 0, 6 = £1. We have the following result:

Proposition A.1.1 Let I be a bounded, open interval of R with 0 € R. Let s € R,
o € H¥(R™), f e LNI; H*(R")) and u € L*(I; H*(R™)). Then u satisfies

for a.a. t € I if and only if w € WH(I; H*"*(R"™)) and

Wy + OUpy +Uyy = f foraa tel

u(0) = ¢

If, in addition, f € C(I; H**(R")) and u € C(I; H*(R™)), thenu € C'(I; H*"*(R"))

and the equation holds on I.

A.2. Strichartz’s Estimates for Schrodinger

Let S(t) be as above and Af(t) = fot S(t—s)f(s)ds and (Tu)(t) = S(t)p—iAf(t).
We say that a pair (¢, r) is admissible if




65

2<r<ocifn=1,2<r <ooif n=2). We have :

Theorem A.2.1 The following properties hold:

(i) For every p € L*(R™), the function t — S(t)¢ € LY(R; L"(R™)) N C(R; L*(R™))
for every (q,r) admissible pair and there exists a constant C' depending on q and

r such that

ISC)ello@Lr@ny) < Cliell-

(ii) Let I be an interval of R, J = I, and 0 € J. If (v,p) is an admissible pair
and f € LV (I; L (R™)), then for every (q,r) admissible pair, the function t
Af(t) == fot S(t—s)f(s)ds fort e I, belongs to L4(I; L"(R™)) N C(J; L*(R"))
and there exists a constant C' depending on q,r,y and p and is independent of 1

such that

||Af||LQ(I;LT(1R“)) < CHfHL“/'(I;LP'(R"))'

Regarding Theorem A.2.1, see [1, Theorem 2.2.3] and [13, Lemma A.1] for elliptic and

hyperbolic cases respectively.
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APPENDIX B: SOME INEQUALITIES

Proposition B.1 (Young’s inequality) [24, Appendix B.2, c.] Let 1 < p < oo then
fora,b>0

aP b
ab < — + —.
p q

Proposition B.2 (Young’s inequality for convolutions) [25, Theorem 1.5.2] Let
1<p<ooand fe L'R"), ge LP(R"). Then f * g is well-defined for almost every
x and is in LP(R™) with

17 gllp < £l Nlgllp-

Proposition B.3 (Gronwall’s lemma) [26, Lemma4.2.1] Let T > 0, A € L'((0,T)),
A>0ae and C,Cy > 0. Let p € LY((0,T)), ¢ > 0 a.e., be such that \p € L*((0,T))

and
P(0) < Cut Ca [ A)es)ds.
0
for a.e. t € (0,T). Then
o(t) < Crexp (C’z /t)\(s) ds,)
0

for a.e. t € (0,7T).

Proposition B.4 (Gagliardo-Nirenberg’s inequality) [19, Theorem 1.3.7] Let 1 <

p,q, 7 < 0o and let j,m be two integers, 0 < j < m. If

1:Z+a(1_ﬂ>+M

q
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for some a € [j/m,1] (a < 1 ifr > 1 and m —j—2 = 0), then there exists

C(n,m, j,a,q,r) such that

doIDMl, < C | > IDll, | fully

laf=j laj=m

for every u € D(R™).



68

APPENDIX C: SOBOLEV EMBEDDING RESULTS

Theorem C.1 [25, Theorem 2.4.5] Let m > 1 be an integer and 1 < p < co. Then

1 m 1 1

1) if ——— >0, W™P(R") — L{R")) with — = — —

) if = T 0, W) s LIRY)) with - =
m

1
i) if = — = 0, Wr(R") — LR™), for p < q < oc,
p n

Y

s 13

1
i) if - % <0, WmP(R") < L®(R™)).

We have also an embedding result for partial fractions. It can be deduced from

27, Theorem 6.5.1] that H*(R") — LI(R") when s = 3 — 2 with s € R.



10.

69

REFERENCES

. Cazenave, T., Semilinear Schrodinger equations. Courant Lecture Notes in Math-

ematics, 10. New York University, Courant Institute of Mathematical Sciences,

New York, American Math. Society, Providence, RI, 2003.

. Kato, T., On nonlinear Schrodinger equations, Ann. Inst. Henri Poincaré-Physique

théorique, 46, 113-129, 1987.

. Folland, G. B., Lectures on partial differential equations, Springer, Berlin, 1983.

. Babaoglu, C. and Erbay, S., Two-dimensional wave packets in an elastic solid with

couple stresses, Int. J. Non-Linear Mech. 39, 941-949, 2004.

. Babaoglu, C., Eden, A. and Erbay, S., Global existence and nonexistence results for

a generalized Davey-Stewartson system, J. Phys. A: Math. Gen. 37, 11531-11546,
2004.

Eden, A., Erbay, H.A. and Muslu, G.M., Two remarks on a generalized Davey-
Stewartson system, Nonlinear Anal. TMA 64, 979-986, 2006.

Ozawa, T., Exact blow-up solutions to the Cauchy problem for the Davey-
Stewartson systems, Pro. R. Soc. London 436, 345-349, 1992.

. Weinstein, M. 1., The nonlinear Schrodinger equation-singularity formation, sta-

bility and dispersion, Contemp. Math. 99, 213-232, 1989.

. Eden, A. and Erbay, S., Standing waves for a generalized Davey-Stewartson system,

J. Phys. A: Math. Gen. 39, 13435-13444, 2006.

Eden, A. and Erbay, S., On traveling wave solutions of a generalized Davey-

Stewartson system, IMA J. Appl. Math. 70, 15-24, 2005.



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

70

Eden, A. and Topaloglu, I. A., Standing waves for a generalized Davey-Stewartson

system: Revisited, Appl. Math. Lett. DOI:10.1016//j.aml.2007.04.003, 2007.

Eden, A., Erbay, H.A. and Muslu, G.M., Closing the gap in the purely elliptic

generalized Davey-Stewartson system, Nonlinear Anal. TMA, to appear

Ghidaglia, J. M. and Saut, J. C.; On the initial value problem for the Davey-
Stewartson systems, Nonlinearity 3, 475-506, 1990.

Zakharov, V. E. and Schulman, E. 1., On additional motion invariants of classical

Hamiltonian wave systems, Physics D 29, 283-320, 1988.

Tao, T., Nonlinear Dispersive Equations. Local and Global Analysis. CBMS Re-
gional Conference Series in Mathematics, 106. American Math. Society, Provi-

dence, RI, 2006.

Cipolatti, R., On the existence of standing wave solutions for a Davey-Stewartson

system, Commun. Partial Differ. Equ. 17, 967-988, 1992.

Constantin, P., Decay esitmates for Schrodinger equations, Commun. Math. Phys.

127, 101-108, 1990.

Tsutsumi, Y. and Yajima, K., The asymptotic behaviour of nonlinear Schrodinger

equations, Bull. Amer. Math. Soc. 11, 186-188, 1984.

Cazenave, T., Blow-up and scattering in the nonlinear Schrodinger equation. Textos
de Métodos Matematicos, 30. Instituto de Mathematica, Universidade Federal de
Rio de Janeiro, Rio de Janeiro, 1994.

Eden, A. and Kuz, E., Almost cubic Nonlinear Schrédinger equation: Existence,

uniqueness and scattering, (Preprint).

Ginibre, J. and Velo, G., On a class of nonlinear Schrodinger equations Parts III,

J. Funct. Anal. 32, 1-32, 33-71, 1978, Part III, Ann. Inst. Henri Poincaré A 28,



22.

23.

24.

25.

26.

27.

28.

29.

30.

71

287-316, 1985.

Merle, F., Determination of blow-up solutions with minimal mass for nonlinear

Schrodinger equations with critical power, Duke Math. J. 69, 427-454, 1993.

Weinstein, M. 1., Nonlinear Scrodinger equations and sharp interpolation constants,

Commun. Math. Phys. 87, 567-576, 1983.

Evans, L. C., Partial diferential equations, (Reprinted), American Math. Society,
Providence, 1999.

Kesavan, S., Topics in functonal analysis and applications, Wiley Eastern Limited,

New Delhi, 1989.

Cazenave, T. and Haraux, A., An intorduction to Semilinear evolution equations,

Calderon Press, Oxford, 1998.

Bergh, J. and Lofstrom, J., Interpolation Spaces, Springer, Berlin, 1976

Bourgain, J., Global solutions of nonlinear Schrodinger equations. Amarican Math.
Society Colloquium Publications, 46. American Math. Society, Providence, RI,
1999.

Strauss, W. A., Nonlinear wave equations. CBMS Regional Conference Series in

Mathematics, 73. American Math. Society, Providence, RI, 1989.

Sulem, C. and Sulem, P. L., The nonlinar Schrodinger equation. Self-focusing and

wave collapse, Applied Mathematical Sciences, 139, Springer, New York, 1999.



