
PARAMETRIC HUMAN BODY MODELING FOR VIRTUAL DRESSING

by

Başar Uğur

Bachelor of Science, in Computer Engineering, Boğaziçi University, 2005

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2008

ii

PARAMETRIC HUMAN BODY MODELING FOR VIRTUAL DRESSING

APPROVED BY:

Dr. Ali Vahit Şahiner

(Thesis Supervisor)

Prof. Lale Akarun

Assist. Prof. Burak Acar

DATE OF APPROVAL: 18.06.2008

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis supervisor Dr. Ali Vahit

Şahiner, for his support throughout this study with not only the subject itself but also

many other common interests of ours.

I would like to thank TÜBİTAK for their financial support during the first two

years of my study.

I am also thankful for Ayşegül Başar, who was the initiator of the virtual dress

project.

I can not forget the support of my family, with their existence and pure love. And

also my band mates from Sakareller and colleagues who encouraged and enlightened

me on or off the subject with their always-precious ideas.

iv

ABSTRACT

PARAMETRIC HUMAN BODY MODELING FOR

VIRTUAL DRESSING

This thesis presents a parameterized 3D human body modeling tool based on

shape interpolation. In order to have local control on shape interpolation, human

body shape descriptions are anthropometrically segmented. Smooth continuity at the

boundaries of individual segments is achieved by weighted interpolation.

A 3D editing tool has been developed for segmentation. This tool employs winged

edge data structure. This structure allows fast access to vertex neighborhoods. The

interpolation weights for vertices are assigned during segmentation. We use decaying

functions to assign weights on boundary regions, enabling smooth continuity.

Raytracing accelerated by octrees is used for synthesizing images of the result-

ing models. Anti-aliasing in these images is achieved by super-sampling with jittered

patterns. The thesis also introduces a virtual dressing tool. This tool contains a 3D

modeling interface and a dressing environment combined with a compositing subsys-

tem, which creates dressed images of virtual replicas by utilizing layers of photographic

images of garments and layers of synthesized images of body replicas.

v

ÖZET

SANAL GİYDİRME ORTAMI İÇİN PARAMETRİK İNSAN

BEDENİ MODELLEME

Bu tez şekil interpolasyonuna dayalı üç boyutlu parametrik bir insan bedeni mod-

elleme gereci ortaya koymaktadır. İnsan bedeni modellemede günümüze kadar uygu-

lanmış yöntemlerin bir sınıflandırması verilmektedir. Şekil interpolasyonunda yerel

kontrolu sağlamak için, insan bedeni şekil tanımları antropometrik olarak bölümlenmiş-

tir. Bölümler arası sınır bölgelerde pürüzsüz süreklilik, ağırlıklı bir interpolasyonla

sağlanmıştır.

Üç boyutlu model üzerinde bölümlerin imlenmesi için başka bir gereç geliştirilmiş-

tir. Bu gereç her model için kanatlı kenar veri yapısı oluşturmaktadır. Bu yapı

sayesinde nokta komşulukları bulunabilmektedir. Noktaların interpolasyon ağırlıkları

da bu aşamada atanmaktadır. Sınır bölgelerde pürüzsüz sürekliliği sağlamak üzere,

ağırlık atamaları için sönümlenen işlevler kullanılmaktadır.

Sonuç modellerden görüntü sentezlemek için, octree’lerle hızlandırılmış ışın izleme

yöntemi uygulanmaktadır. Örtüşme-önleme için kararsız desenli ileri örnekleme kul-

lanılmaktadır. Uygulama olarak bir sanal giydirme gereci geliştirilmiştir. Bu gereç, üç

boyutlu bir modelleme arayüzü ve giysilerin fotoğrafik görüntüleri ile bedenlerin sen-

tezlenen görüntülerini kullanan bileşim altyapısıyla sanal bedenlerin giyinmiş görüntü-

lerini oluşturan bir giydirme ortamı içermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xi

LIST OF SYMBOLS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

1.1. Thesis Organization . 3

2. PREVIOUS WORK . 4

2.1. 3D Sculpting Techniques . 4

2.2. Automatic Techniques . 5

2.3. Parametric Techniques . 6

2.3.1. Reconstructive . 6

2.3.2. Deformation Based . 7

2.3.3. Interpolation Based . 8

3. 3D SHAPE INTERPOLATION . 10

3.1. Determination of Targets . 10

3.1.1. Manual methods . 10

3.1.2. Data compression based methods 11

3.1.3. Scan-and-match based methods 11

3.2. Correspondence between Targets . 12

3.3. Interpolation . 13

4. INTERPOLATION BASED BODY MODELER 16

4.1. Constructing Target Models . 16

4.1.1. Skeletal lengths . 17

4.1.2. Outer body girths . 18

4.2. Calibration . 19

4.3. Segmentation Tool . 23

4.4. Local Morphing . 28

vii

5. IMAGE SYNTHESIS . 30

5.1. Rendering . 30

5.1.1. Raytracing . 30

5.2. Raytracing with Acceleration by Octrees 32

5.3. Illumination . 34

5.4. Anti-aliasing . 35

5.4.1. Experimentation . 37

6. APPLICATION: VIRTUAL DRESSING ROOM 38

6.1. Overall Interface . 38

6.1.1. Body Personalization . 38

6.1.2. Face Personalization . 40

6.1.2.1. Scaling . 42

6.2. Garment Preparation . 45

7. EVALUATION . 47

7.1. Smoothness Measure for Morphed Objects 47

7.2. Computational Cost of Morphing . 48

7.3. Acceleration of Octrees . 53

7.4. Optimum anti-aliasing scheme . 54

8. CONCLUSIONS . 55

REFERENCES . 56

viii

LIST OF FIGURES

Figure 1.1. A 3D human body with unique properties 2

Figure 2.1. An example of 3D sculpting . 5

Figure 2.2. Samples from CAESAR data set[1] 6

Figure 2.3. Image-based shape capture by Lee et al. [2] 6

Figure 2.4. Data compression based method of Thalmann et al. [3] 7

Figure 2.5. An example of free-form deformation 8

Figure 3.1. Shape interpolation example . 10

Figure 3.2. Mapping example . 12

Figure 3.3. Global and Local interpolation method 14

Figure 3.4. Spatial Transformation method 14

Figure 4.1. Graham-scan convex hull algorithm 20

Figure 4.2. Pseudocode for convex hull circumference algorithm 21

Figure 4.3. Target models and calibration . 22

Figure 4.4. Visible girths in the 3D environment 22

Figure 4.5. Winged edge polyhedron representation 23

ix

Figure 4.6. Pseudocode for propagation algorithm 25

Figure 4.7. Weight functions . 26

Figure 4.8. Effect of different weight functions on boundary regions 26

Figure 4.9. Segmentation Tool . 27

Figure 4.10. Triangulation problem . 29

Figure 5.1. A visualization of the raytracing process 31

Figure 5.2. Octree built on polygon existence in 3D space 32

Figure 5.3. 2D representation of a ray shooting iteration using octrees 33

Figure 5.4. Pseudocode for octree intersection algorithm 34

Figure 5.5. Rays used in illumination calculation 35

Figure 5.6. Super-sampling . 36

Figure 6.1. Initial models with normal measures in Sanal Giyim 39

Figure 6.2. Sanal Giyim - Body Personalization 39

Figure 6.3. Color-spatial differentiation for background extraction 40

Figure 6.4. Pseudocode for background extraction algorithm 41

Figure 6.5. Two steps of the Photograph Wizard 41

x

Figure 6.6. Sanal Giyim - Preview render and face positioning 42

Figure 6.7. 2-Pass scaling of a dress image . 43

Figure 6.8. Sanal Giyim - The Dressing Room 43

Figure 6.9. The multilayered dressing process 44

Figure 6.10. The Garment Measurement Tool 45

Figure 7.1. Laplacian representation . 47

Figure 7.2. Laplacian distance as a smoothness measure 49

Figure 7.3. Smoothness measurement for Underbust segment interpolated sep-

arately . 50

Figure 7.4. Smoothness measurement for Waist segment interpolated separately 51

Figure 7.5. Smoothness measurement for Waist and Underbust segment inter-

polated together . 52

Figure 7.6. Rendering time versus Octree depth graph 53

Figure 7.7. Number of aliased pixels before and after anti-aliasing versus IDT

graph . 54

xi

LIST OF TABLES

Table 4.1. Anthropometric measurements of the human body 17

Table 4.2. Dress measurement standards for the male body (in cm) 19

Table 4.3. Dress measurement standards for the female body (in cm) 19

Table 4.4. Edge-based data stored in winged edge structure. 24

Table 4.5. Vertex and Face-related data stored in winged edge structure. . . . 24

xii

LIST OF SYMBOLS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

PCA Principal Component Analysis, a vector space transform often

used to reduce multidimensional data sets to lower dimensions

for analysis

FFD Free-form Deformation

IDT Intensity Difference Threshold

OpenGL Open Graphics Library, a standard specification defining a

cross-language cross-platform API for writing applications

that produce 2D and 3D computer graphics

GUI Graphical User Interface

CAESAR Civilian American and European Surface Anthropometry Re-

source Project

JPEG Compression method and type of files using that method,

named after the Joint Photographic Experts Group, the name

of the committee that created the standard

PNG Portable Network Graphics, a bitmap image format that em-

ploys lossless data compression

TGA Truevision (Advanced Raster) Graphics Adapter, a raster

graphics file format

TIFF Tagged Image File Format, a file format for storing images,

including photographs and line art

VRML Virtual Reality Modeling Language, a standard file format for

representing 3D interactive vector graphics.

S, T Morph targets

Mi ith submesh

vi ith vertex

u Amount of interpolation / morphing

xiii

w Weight of a vertex

B(u) An in-between shape

R Roughness measure

d Depth of a vertex in a propagation

p Depth of propagation

Pi ith point in algorithmic examples

bi A barycentric coordinate

I Intensity of a light source

K Effective constant for a light source

N Surface normal vector

L Light vector

σ Variance in a Gaussian function

µ A mapping between two meshes

1

1. INTRODUCTION

3D human body models are used in a wide spectrum of applications that require

images of human replicas. Their use in film and entertainment industry and on internet

is very common. The methods used for creating and interacting with body models

have also evolved. From real-time modeling to volumetric rendering, a wide range of

applications exist.

Body models are employed in visualization and animation environments, for giv-

ing an interactive experience to the users. They can be used for creating personalized

replicas (or human avatars) in virtual worlds.

3DTV programs which involve moving bodies and talking heads such as sports

competitions or news, employ body models. Virtual reality environments containing

person - object interactions also utilize body models. Internet applications such as

mass multiplayed games and news & advertisement videos contain personalized mod-

els. Many medical applications make use of detailed graphical actualization of human

bodies.

Human body modeling is the act of creating a shape description of a specific

human body. The shape description is usually a geometrical representation in the 3D

computer environment. It is combined with skin coloring and texture mapping to give

more realistic results. Skeleton based structures can further be added to the model for

applying kinematics and giving motion.

Body can be modeled at different 3D description levels. Surface modeling is based

on creating the body using layers of polygonal meshes. Only the outer skin, or several

internal layers may be created for the purpose of the application. However volumetric

modeling is based on creating the body using scanned volume slices. They are largely

employed in medical applications.

2

In this thesis, surface modeling is used. Surface based models of human body can

be constructed at different levels of detail. Posture modification is made possible by

attaching a body skeleton during construction. Skin detail can be realized by material

coloring, using body-wide texture mapping or modifying small-scale geometry. Figure

1.1 shows an example from the CAESAR data-set, where high level details of the body

geometry is depicted.

Figure 1.1. A 3D human body with unique properties such as fatty parts and

different skin geometry.[1]

This thesis presents a parametric human body modeler based on shape interpo-

lation. Shape interpolation is based on the idea of creating new shapes by blending

existing shapes. It is simple and stable. The term 3D morphing is widely used for

the specific case where two pre-constructed and properly mapped polygonal meshes (a

morph-source and a morph-target) are used to create in-between shapes.

Morphing causes the source shape to be transformed globally as a whole. Segmen-

tation of both the source and the target shapes are required if local control is desired.

An anthropometry based segmentation for the human body shape is implemented in

this thesis. The smooth continuity at the boundaries of individual segments is achieved

by weighted interpolation.

Body segments are marked by a mesh editing tool. This tool keeps a winged edge

data structure for each model, enabling fast determination of vertex neighborhoods.

3

Vertex neighborhoods are employed in vertex set propagations, defining the boundary

regions of segments. Decreasing Gaussian functions are used for weight assignments

during propagation, to obtain smooth shapes at boundary regions.

Interpolation based body modeler is presented in a virtual dressing room appli-

cation with an easy to use graphical interface. 2D image of the resulting 3D model is

synthesized by raytracing accelerated by octrees. Anti-aliasing problem is solved by

super-sampling with jittered patterns.

Synthesized images are further personalized by utilizing facial photographs. Re-

sulting images are made available in a dressing environment. Multilayer image com-

positing is employed using these images and photographic images of garments.

1.1. Thesis Organization

The organization of the thesis is as follows: Chapter 2 gives an overview of

human body modeling methods applied thus far. Chapter 3 is a detailed discussion

on 3D shape interpolation techniques. Chapter 4 gives the detailed explanation of the

interpolation based body modeler. Image synthesis method is explained in Chapter

5. Chapter 6 contains the working structure of Virtual Dressing Room application.

Chapter 7 contains the evaluation of the methods used. Thesis ends with conclusions

and planned future work.

4

2. PREVIOUS WORK

In the field of human body modeling, we can classify the existing techniques

by dividing into three categories: Sculpting, Automatic and Parametric techniques.

Sculpting techniques depend entirely on a creative perception of the body. Automatic

techniques are based on data obtained by different sources such as scanning, still images

and image sequences. Parametric techniques use standard parameterizations of the

human body and construct new bodies from existing ones using these parameters.

2.1. 3D Sculpting Techniques

3D sculpting is usually done by commercial modeling programs. This type of

modeling requires an artistic conception of the human body and it is about creating

the body gradually considering the detailed anatomical knowledge [4][5]. In Allen et

al.’s work based on constructive techniques, body is separated into three main parts, in

the order of forming: The skeleton, which consists of the bones and joints defining the

body articulation. The musculature, containing all the muscles with either movable or

non-movable parts. The fat layer, the fatty tissues under the skin, giving the body its

final outer appearance. Although these layers are polygon meshes and not formed by

volumetric data, the resulting models are realistic in the anatomical sense.

In these techniques, the user, usually a modeling artist, creates the model using

the tools for geometry modification. Typically one starts with a simple geometrical

object and modifies it gradually to come up with a human body part, as shown in

Figure 2.1.

Nevertheless, sculpting method requires exhaustive user intervention for creating

a reasonably new human body from scratch. Especially if building an anatomically

correct and realistic human model is required, 3D sculpting is not adequate, since it is

hard to model details such as face wrinkles and fatty body parts using this method.(see

Figure 1.1)

5

Figure 2.1. An example of 3D sculpting: Modeling the hands

2.2. Automatic Techniques

These approaches employ data extracted directly from real humans. Data extrac-

tion is done using 3D scanners[1][3], 2D photographs[2][6] and image sequences[7][8], es-

pecially when body postures are concerned. 3D scanning is extensively used in Civilian

American and European Surface Anthropometry Resource Project (namely CAESAR)

data set[9].

CAESAR is a partnership between government and associated industries to col-

lect the most extensive sampling of consumer body measurements for comparison,

modeling and such. The project collected data on 2,400 United States & Canadian

and 2,000 European civilians and a database was developed. Each member of this

database contains 40 traditional anthropometric measurements that were done with

a tape measure and caliper. These values are important for sophisticated design and

implementation patterns, as the whole set of measurements could be technically con-

sidered. For example, early anthropometric modeling systems[10] focus on driver-seat

or cockpit design, and measurements are important for testing and determining the

most suitable design for different bodies with different metrics.

The reconstruction techniques which exploit 2D photographs could be taken into

account as more personalized implementations and creating -in a way- visually more

6

Figure 2.2. Samples from CAESAR data set[1]

acceptable models faster. But somehow they do not allow much user interaction with

the resulting models as how different parameterizations of those would yield.

Figure 2.3. Image-based shape capture by Lee et al. [2]

2.3. Parametric Techniques

2.3.1. Reconstructive

Reconstruction from source data and the parametrization of the resulting models

simplify the creation of new models. Furthermore, texture transferring and inter-

model morphing implementations are an advantage for the realistic properties of the

7

output models, as depicted in the relevant studies. However, though the preprocessing

part reduces the overall amount of work, these approaches generally require storing

of some considerable number of the dataset geometry, and make use of morphing the

coordinates in the relevant space in Principal Component Analysis (PCA) applied

models[3][11]. For instance, anthropometric segment interpolation is not applied di-

rectly. Instead, additional work is needed to map segment interpolation controls and

the resulting PCA weights. These techniques are well applied by Thalmann et al.

[3][12]. Their implementation starts with the mapping of a template mesh to one

specific body. PCA is then applied to the mapped models and certain features are

determined by analysis. Features can be controlled in the parameter space by several

weights. Supplying the anthropometric measurements for each body model -given in

the dataset-, interpolation nodes could be determined. As a result, it becomes possible

to form new models by entering a few sizing parameters.

Figure 2.4. Data compression based method of Thalmann et al. [3]

2.3.2. Deformation Based

Deforming an object or transforming one object into another is a visually powerful

design and animation technique. It is applied to human body modeling by an initial

parameterization of the body. Here, the user has only one base model and creates

new models by deforming the marked segments. Thalmann and Kasap[13] present a

detailed segmentation based deformation. Their work additionally focuses on regional

8

deformation, a concept similar to local morphing.

Free-form Deformation

The main 3D object deformation method is Free-form Deformation or FFD. In-

spired by Barr’s work [14] and later developed by Sederberg and Parry [15], this method

enables modifying any part of a geometry with an outlying set of control points. The

interaction is very much like using the control points of a spline, but there are many

variations on how to use the 3D control point set. A simple example can be seen in

Figure 2.5 where the upper part of a sphere is controlled by a simple box. As the box

is being deformed by a y-axis scaling, the points inside the box are deformed according

to their relative coordinates.

Figure 2.5. An example of free-form deformation

Deformation based methods are also used in sculpting, where the user deforms

the submeshes of the segmented editable mesh. The parameterization may constrain

the amount of deformation, defining minimum and maximum values. In these cases,

deformation becomes similar to interpolation.

2.3.3. Interpolation Based

In this method there may be several target body models and new bodies are

created by interpolating among them, either by parts or as a whole. Parameters may

be directly connected to the geometry, such as the amount of morphing for a submesh

9

in a mesh segmentation. Or they may have indirect effects on the geometry, such as

the effect of body fat amount on the shape of hip or effect of body weight on the whole

geometry.

Deformation and interpolation based parametric techniques are tightly coupled

with 3D shape interpolation, which is considered a separate field of study. Hence we

examine and discuss the several aspects of the problem in the next chapter.

10

3. 3D SHAPE INTERPOLATION

Before moving on to the detailed explanation of our own method, we should

also construct a background for the shape interpolation methods implemented thus

far. Different terms are used for this field besides shape interpolation, such as 3D

metamorphosis or mesh morphing using morph targets. The main idea is creating new

intermediate objects or obtain a smooth visual process, by using several target models.

Figure 3.1. A shape interpolation example in 2D, a square is turned into a triangle.

The problem is generally separated into three phases. First, the determination

of targets. How do we specify our reference points in the interpolating environment?

Second, the correspondence (or matching) of the core geometric elements of these

targets, usually vertices. Third, the interpolation method itself. That is, how the

targets are transformed into each other and what further work is done on the resulting

intermediate models.

3.1. Determination of Targets

We can also identify the problem as the ”object space” determination problem.

We divide the approaches in this area into three sections, as how the target models are

obtained.

3.1.1. Manual methods

As previously mentioned, manual creation / 3D sculpting is a method of forming

new bodies, which is also the case for any 3D object. Examined in many indepen-

dent or commercial package based tutorials and books, and with high details, one can

11

produce satisfactory results for obtaining a 3D model as a starting point. From there

on, concerning the morphing phase, several other target models can be obtained by

preserving the mesh topology for both the whole model and certain areas. That is,

keeping the same vertex-edge graph not only for the whole model, but also for the

subsets of it; such as the same body areas for different featured models.

3.1.2. Data compression based methods

These methods are based on defining and recording certain features of scanned

and matched (i.e. correspondence problem solved) 3D data, and applying data com-

pression / pattern recognition techniques on those. The target models are obtained by

locating certain featured models at some coordinate in the multi-dimensional space.

Allen et al.’s work focuses on creating different-posed models [16][1]. Blanz and Vetter’s

face based personalization method[17] is also another inspiring work in this field. They

use the laser scans of 200 heads of young adults, containing geometric and textural

data. Using PCA again as a data compression method, they extract certain features

such as gender, hooked nose and weight. Constructing a parametric face model that

can easily generate any new face, the morphing problem of the example-based tech-

nique (correspondence, as they call it) becomes a mathematical optimization problem.

Here, one should notice the differences of face and body modeling. Face, as a geometric

object, has been more important an area of study about human recognition than body.

Additionally, body features do not project onto an efficient space as faces do. One

should give credit to the similar work done for bodies (as previously cited) but should

also notice the difference in resulting quality.

3.1.3. Scan-and-match based methods

Using the state-of-the-art scanning technologies, many 3D datasets are formed

for the use of different application areas. Human body scan is very common too; as

previously mentioned, CAESAR is an important example. Scan-and-match method

is based on defining a template mesh initially. The scanned models are then mapped

onto this template mesh. The mapping algorithm consists of two parts: Skeleton fitting

12

is used for finding the pose of the scanned data. Template model’s skeleton is fit to

the pose of the body. Skin refinement is iteratively improving the fitting accuracy by

minimizing the shape difference between the template and the scan model.

3.2. Correspondence between Targets

The problem is finding a mapping between the boundaries of the source and target

shape. This is either achieved by constructing new models from the same base model

without changing the mesh topology, or by finding a mapping between two arbitrary

meshes.

Mapping methods are introduced early by Kent et al. [18] and later developed by

Eck et al. [19]. Mapping is constructed on a unit sphere or disk -respectively in cited

studies-, creating a correspondence between the Genus-0 polyhedra (a mesh without

any holes), and finally merging their vertex-neighborhood graphs. General polyhedra

are dissected into topological disks and each part of the mesh is mapped to a disk using

a parameterization such as the original faces of the meshes [20] or harmonic embeddings

[21]. Kanai et al.’s harmonic embeddings method is shown in Figure 3.2 as an example.

Figure 3.2. Harmonic mapping method by Kanai et al. [21]

13

3.3. Interpolation

Metamorphosis techniques are used in widespread applications and are commonly

employed by the graphics industry. Image morphing has become a standard tool,

because it is stable, easy to use and allows a lot of flexibility defining the actual morph

sequence. Changing one 3D object into another is also a useful effect, but one with

problems for which general-purpose solutions are still being developed. The main idea

is to obtain smooth intermediate models or create a smooth interpolation among target

models. (see Figure 3.1). Our main interest in this field is local morphing or segmented

mesh morphing as we divide the body models into segments and try to have visually

adequate outcoming metamorphosis.

Of our interest, one classification for morphing is global and local. This separation

is different from that of curve control. In curve control points, global control means

that moving one control point changes the entire curve; however distant sections may

change only slightly. And local control means that moving one control point only

changes the curve over a finite bounded region. In morphing terms, global morphing

(or global surface interpolation) is the transformation of all the vertices contained in

one mesh -usually, to the vertices of another-, by the specified interpolation function.

Local morphing is the transformation of a subset of mesh vertices. Usually that subset

is composed of neighboring vertices and edges, which form a meaningful segment of

the the mesh.

An example can be seen in Figure 3.3. The left model is the base with normal

parameters, with an overall dress sizing of 38. The middle one is obtained by a global

morphing, controlled by the sizing parameter -which is 46 in this case. The right one

is obtained by local morphing, where legs are made shorter, and hips are enlarged by

local sizing parameters.

An early work by Barr [14] focuses on the spatial transformation in a hierarchical

object space. He introduces globally and locally defined deformations as new hierar-

chical operations for use in solid modeling. These operations extend the conventional

14

Figure 3.3. Different shaped bodies obtained by global and local interpolation.

operations of rotation, translation, Boolean union, intersection and difference. Defor-

mations allow the user to treat a solid as if it were constructed from a special type of

topological putty or clay, which may be bent, twisted, tapered, compressed, expanded,

and otherwise transformed repeatedly into a final shape. They are highly intuitive and

easily visualized operations which simulate some important manufacturing processes

for fabricating objects, such as the bending of bar stock and sheet metal. (Figure 3.4)

Figure 3.4. Spatial Transformation method: a) Moebius Band is produced with a

twist and a bend, b) a bent, twisted, tapered solid 3D primitive [14]

Alexa’s related work focuses on local controls and submesh morphing. In a 2001

work[22], he uses Laplacian coordinates to represent the subset of mesh vertices that

is the region of interest. Given the correspondence with the target object, Laplacian

representation enables independence from transformations of the shape and tolerate

degeneracies in the mesh. However, it is not insensitive to scaling or rotating. Yet the

Transition State concept is applied, which is similar to our implementation. That is,

defining weights per vertex and then using these weights during morphing. Scaling and

15

rotation adjusted local morphing is achieved by the mesh fusion method of Kanai et

al. Their work is also a mapping-based morphing technique. However they utilize the

algorithm with harmonic mappings [21] and later develop the algorithm by introducing

mesh fusion with Fusion Control Functions (FCF ’s)[23]. This method parameterizes

the smoothness at boundary regions and enables the control of the outcome polyhe-

dron. Transformation adjustments are determined by a rigid transformation and a

deformation step in these methods.

16

4. INTERPOLATION BASED BODY MODELER

In our body modeling tool, we have employed the interpolation based approach,

calibrated target models and manually segmented these models utilizing an editing

tool. We first explain our approach for constructing new models using the base mea-

surement system. Then we introduce a body segmentation approach for creating target

submeshes used in local morphing and explain our calibration methods for the mea-

surement constraints. We finalize this part with the explanation of our local morphing

method built upon the work done in the first two subsections.

4.1. Constructing Target Models

Human body is divided into parts to study in a detailed manner at every branch

of science. Even at elementary school, the body is first taught to us with the rough

division of ”head - torso - arms & legs”. Then as both industry and science branches

into many different areas, body is examined by dividing into special parts according

to the necessities of these particular areas. One of the many divisions is the standards

based upon anthropometry.

Anthropometry began as the science of human body measurements at the be-

ginning of the 20th century. The name was given by Alphonse Bertillon in 1883, who

claimed that when these measurements were made and recorded systematically, every

single individual would be found to be perfectly distinguishable from others. The very

starting point of Bertillon, matches our final purpose in this work. Today, there exist

international standards based upon anthropometry, such as ISO 7250 - Basic human

body measurements for technological design, or EN 13402 - European standard for la-

beling clothes sizes. Mainly, according to these standards, body is measured by linear

lengths, horizontal girths and body mass.

Our choice of anthropometric parameters is simply an extension of EN 13402 (see

Table 4.1), depending on its simplicity for being definitive of human body geometry and

17

Table 4.1. Anthropometric measurements of the human body

Body Measurement Definition

1 Stature Vertical distance between the top of the

head and the bottom of the heel bone.

2 Leg Length Vertical distance between the crotch

level and the bottom of the heel bone

3 Arm Length Distance from the armscye shoulder

line intersection over the elbow to the

far end of the wrist bone.

4 Neck Girth Girth of the neck base

5 Chest / Bust Girth Convex hull circumference at chest /

bust height

6 Under-bust Girth Horizontal girth at the height just be-

low the breasts

7 Waist Girth Horizontal girth at waist height.

8 Hip Girth Horizontal girth at largest convex hull

at hip area.

9 Upper Leg / Thigh

Girth

Horizontal girth at the largest convex

hull at the upper leg.

10 Lower Leg / Lower Limb

Girth

Horizontal girth at the largest convex

hull at the lower leg.

the final aim of that work being a dressing simulation. For a customizable body model,

the selection of control parameters should be subject oriented. If the task is creating

a cartoon environment, reality is not much of an aspect; therefore anthropometric

standards may be discarded. In this work, the directly-usable lengths and girths -

geometric values included in the standard- are taken into account. Body mass is

not used due to its indirect effect to the overall geometry. However, there are some

examples in literature, e.g. Thalmann et al.’s work enables usage of body fat as a

sizing parameter -i.e. a vector in downsampled space- and can generate new models

accordingly.

4.1.1. Skeletal lengths

Defining the vertical stretch of both the overall model and its subsets, there are

three main skeletal lengths defining the body. These are body height, leg length and

arm length. The measurement of these parts differs according to the application. Body

height is intuitively measured as the distance between the top and the bottom points

18

in the erect pose of the model. Leg length is defined as the distance between the crotch

and body bottom. And arm length is measured from the arm top which is located on

the joint between the shoulder and the arm, down to the wrist.

Applying a certain length is achieved by a vertical scaling that preserves the other

unchanged lengths. However, changing a body length displaces the vertices and this

forms a problem on the boundary regions. Therefore, the solution must both satisfy

the required length and segment connectivity.

Body height : New body top is calculated according to the new height. All vertices

except those of legs and arms are vertically scaled. Leg and arm vertices are then

translated according to their topmost vertices’ positions. Hand vertices are translated

according to the new wrist position.

Leg length: Scaling is applied to whole leg. As body height is not changed, body

vertices -except arms- that are not the members of the leg are also scaled to preserve

the height. Arm and hand vertices follow the same translation.

Arm length: Arm top remains constant, scaling is applied to the arm vertices.

Hand vertices are translated accordingly.

4.1.2. Outer body girths

These lengths are defined during the construction of the body models. However,

girths make up the core part of the body measurement standards and one should refer

to the standard metrics during the construction. We determine the body hulls at the

predefined girth positions and calculate the actual girths of the 3D model at these

positions. Then we compare these values to the standard metrics and calibrate the

model by scaling horizontally at these positions.

19

4.2. Calibration

To calibrate the target models’ girths according to the standard measurements

(see Table 4.2 and 4.3), we use the convex hull circumferences at girth positions. For

determining the convex hulls, a plane at the specific height for a girth is intersected

with the lines contained in the girth area. Intersection points form the set of points

whose convex hull will be determined.

Table 4.2. Dress measurement standards for the male body (in cm)

Size 44 46 48 50 52 54 56

Arm Length 63 63 64 64 64 64 65

Neck Girth 37 38 39 40 41 42 43

Bust Girth 88 92 96 100 104 108 112

Waist Girth 78 82 86 90 94 98 104

Table 4.3. Dress measurement standards for the female body (in cm)

Size 34 36 38 40 42 44 46 48 50 52

Arm Length 59 59 60 60 61 61 61 61 62 62

Neck Girth 34 35 36 37 38 39 40 41 42 43

Bust Girth 80 84 88 92 96 100 104 110 116 122

Under-bust Girth 65 70 75 80 85 90 95 100 105 110

Waist Girth 62 66 70 74 78 82 86 92 98 104

Hip Girth 86 90 94 98 102 106 110 116 122 128

The Graham scan algorithm [24] is often cited ([25], [26]) as the first ”computa-

tional geometry” algorithm. As the size of the geometric problem (namely, n = the

number of points in the set) increases, it achieves the optimal asymptotic efficiency of

O(n log n) time.

The algorithm starts by picking a point in the finite set S known to be a vertex

of the convex hull. We do this in O(n) time by selecting the rightmost point in the

20

set; that is, a point with the maximum x coordinate. Having selected this base point,

the algorithm then sorts the other points P in S by ”left”ness, the increasing counter-

clockwise (ccw) angle the line segment P0P makes with the x -axis. One example of

sorting is shown in Figure 4.1. The dashed red lines show the convex hull and the

dashed gray lines show the intermediate hulls during iteration.

Figure 4.1. Graham-scan convex hull algorithm a) ”left”ness check b) sorting (ccw) of

a set of points c) example iteration step

Proceeding to find out the hull, rest of the algorithm is an inductive incremental

procedure using a stack of points. At each stage, we save the vertex points for the

convex hull of all points already processed. We start with P0 and P1 on the stack.

Then at the k -th stage, we add the next point Pk, and compute how it alters the prior

convex hull. If new inner points are formed, they are removed from the hull. One

iteration step is depicted in Figure 4.1.c. Here, it is important to note that for each

point of S there is one push and at most one pop operation, giving a maximum of 2n

stack operations for the whole algorithm.

Finally we calculate the hull circumference by adding up the neighboring point

distances. These circumferences are compared to the given standard measurements and

the body model is horizontally scaled at the girth position according to the difference

between the given and calculated measurements. Calibration process and resulting

female models can be seen in Figure 4.3. Additionally, girths are made visible to help

as measurement guidelines in the 3D environment (see Figure 4.4).

21

Input: a set of points S = {P = (P.x, P.y)}

Select the rightmost point P_0 in S.

Sort S angularly about P_0 as a center.

For ties, discard the closer points.

Let P[N] be the sorted array of points.

Push P[0]=P_0 and P[1] onto a stack W.

while i < N // number of points

{

Let P_1 = the top point on W

Let P_2 = the second top point on W

if (P[i] is left of the line P_2 to P_1)

{

Push P[i] onto W

i++

}

else

Pop P_1 off the stack

}

Loop through W adding up the distance between consecutive elements

Output: the convex hull circumference

Figure 4.2. Pseudocode for convex hull circumference algorithm

22

(a) Female target models having dress size 34, 40,

46 and 52

(b) Calibration of target

model sized 52

Figure 4.3. Target models and calibration

Figure 4.4. Visible girths in the 3D environment

23

4.3. Segmentation Tool

Having determined the measurements to use, our body segmentation approach

becomes entirely based on the measurement areas. By measurement area, we mean a

set of vertices covering a certain length for a region-of-interest; such as neck area for

neck girth, arm area for arm length, or the whole body for body height. At this point,

intersecting (not containing) or neighboring areas form a problem of how to morph into

the corresponding ones in the target models. For instance, a discrete marking process

followed by a discrete morphing results in jagged meshes.

For that purpose, we require smooth boundary regions. Making use of the winged

edge polyhedron representation[27] and saving the geometry as a winged edge table, it

becomes a simple task to produce a vertex propagation. Using neighboring relations

saved in the data structure, it is possible to widen a set of selected vertices.

Figure 4.5. Winged edge polyhedron representation

To briefly explain the winged edge polyhedron representation, a simple figure (see

4.5) would be helpful. The representation is based on a table structure which contain

information based only on the edges of a geometry. We store this as an array of Edge

class instances. The class contains the following information: An edge is defined by its

start and end vertices, these are stored. It can be the edge of at most two faces in a

mesh. These are called the wings of the edge and they are stored as well. And finally,

we store neighboring edges contained in the wings by a clockwise order; left and right

wing’s edges are stored as predecessor and successor.

24

Table 4.4. Edge-based data stored in winged edge structure.

Edge Vertices Faces Left Traverse Right Traverse

Ea

Start End Left Right Pred Succ Pred Succ

vx vy F1 F2 Eb Ed Ee Ec

We also keep two more tables for vertices and faces. These tables contain very

simple information about these primitives. The vertex table has one entry for each

vertex which contains an edge that is incident to this vertex. The face table has one

entry for each face which contains an edge that is one of this face’s boundary edges.

Table 4.5. Vertex and Face-related data stored in winged edge structure.

Vertex Incident Edge Face Incident Edge

vx a F1 Ed

vy c F2 Ea

After storing the data structure in memory, the vertex and edge neighborhood

queries can be answered easily. Assume we want to find a 1 neighborhood of a vertex

v. Starting from the incident edge, we traverse the neighboring edges by using the

predecessor and successors of the incident edge. If v is the start of its incident edge

we add the end vertex to the stack, or vice versa. Again if v is the starter / ender, we

move on to the left traverse’s successor / right traverse’s predecessor -which contains

v- and add the other vertex to the stack and so on. Iteration stops if the vertex to be

pushed is already in the stack.

Assume a selected set of vertices V, and we want to find a 1 neighborhood of

this whole set. We start by assigning a membership value 1 to all members of the set.

We find the 1 neighborhood stacks of each member, and merge them. This gives us a

propagation of V. Assume we add the propagation into V and operate on this new set,

and so on. Consider each iteration stack as a new propagation depth. This helps us

define the boundary regions of a selected submesh, using decaying membership values

while propagating from the base set V.

25

Input: Vertex set V, vertex v

Define stack W

E = Incident edge of v

REPEAT

{

IF v is the start of I, v_pushed = the end v_e of E

ELSE v_pushed = the start v_s of E

IF v_pushed is in W terminate

ELSE push v_pushed onto W

IF v is the start of E, E = succ(left_trav(E))

ELSE E = pred(right_trav(E))

}

Figure 4.6. Pseudocode for propagation algorithm

At this point, we use the depth of propagation and assign decreasing weights to

vertices at a certain depth by Equation 4.1.

∀ v at depth d, wv = f(d, p) (4.1)

Here, the function f determining the weight assigned to a vertex is defined by two

parameters:

1. Depth of the vertex: Shortest graph distance to the selected set of base vertices.

2. Depth of the propagation: Maximum graph distance required.

It is assumed that the peak value of this formula is 1 when graph distance equals

to 0. Several mathematical functions are suitable for that matter. The act of the

function to morphing at boundary regions is similar to FCF’s in Kanai et al.’s work.

26

Figure 4.7. a) Weight functions according to vertex neighborhood. b), c) and d) a

propagation on a 3D model.

Figure 4.8 shows the effect of different functions on morphing.

Figure 4.8. Effect of different weight functions on boundary regions a) Linear

function w = (p − d)/p b) Square function w = (1 − d2/p2) c) Gaussian function

w = e−d2/2σ2

where σ = p · c and c is a constant

As we use middle density polyhedra in our work, human body is generally tri-

angulated best as a cylinder-like object in such densities. In Lazarus and Verroust’s

work[28], morphing of cylinder-like objects is studied. Their work focuses on shape

transformations which is mainly useful for animation purposes. However, the usage of

axes and associated disks in that work is similar to our choice of body areas around

measurement points.

We implemented a tool for marking these segments, and saving and loading them

as VRML files. The tool takes 3D models as input and enables defining submeshes

by picking the vertices. Vertices can be picked either in a per-vertex manner or by

rectangular selection. After a core set of vertices are defined for a body segment,

boundary regions can be defined by utilizing the vertex neighborhood and propagating

27

through the set of vertices.

Figure 4.9. The Segmentation Tool enables marking of body areas and saving them

as VRML files.

3D model marked with body segments are saved as VRML files, which is an open

standard for 3D virtual environments. We save this segmentation related part in a

comment section at the end of all geometry data inside the file. This way, the VRML

file remains usable by other software. Starting with a keyword ”AREAS”, we write

the number of elements in the first segment. Then for each member vertex, we write

the index of the first vertex which is a member of the segment, followed by the amount

of membership. We continue with the second segment data and so on. This structure

is deployed into the interpolation environment and utilized accordingly.

{ ... geometry data ...}

AREAS

181 360 0.063244 361 0.007369 362 0.00736345 ...

220 223 0.00743 224 0.0023362 225 0.0073696 ...

...

Segmentation data structure in VRML files.

Gaussian functions give the best visual results for marking boundary regions,

28

as body is modeled cylinder-like around morphing areas. Specifying our morphing

weights, or transition state, for a particular body area; we examine the problem of

morphing them in the next section.

4.4. Local Morphing

Given two sets of vectors S and T where each vector keeps the 3D coordinates

of a source mesh vertex, an in-between shape B(u) can be parametrically defined as a

linear combination of si and tj as follows:

S = {si | i = 1 . . . n}

T = {tj | j = 1 . . .m} m ≥ n (4.2)

µ = {(k, l) | sk ∈ S, tl ∈ T} (4.3)

B(u) = {sk + u · (tl − sk) | sk ∈ S, tl ∈ T, (k, l) ∈ µ} (4.4)

where µ is a mapping of models and u denotes the amount of morphing. However,

with the pre-assigned weights for the area member vertices, the equation becomes

B(u) = sk + u · wk · (tl − sk) (4.5)

Yet this equation is the straightforward morphing equation for one particular area.

For vertices that are shared by areas more than one, we must specify an equation of

combining these weight values and using them on the morphed vertex. Several different

equations are examined for this purpose. One should notice that these equations are

crucial together with the choice of area selection. If all areas have vertices with members

weighing at the peak value (1.0, for our implementation), boundary regions become

undefined; unless some spatial parameters are considered, such as distance. This is not

the case for our present work, we assign decaying weights to the outer area members,

which defines our boundary regions.

At this point, vertex-neighborhood graph becomes important. In different trian-

29

gulations, same member vertices become nearer or further neighbors and this affects

the assigned weights. This problem is depicted in Figure 4.10.

Figure 4.10. At left triangulation, topmost vertex is distance-1 neighbor of the

bottom vertex; at right triangulation, it becomes distance-2 neighbor.

For obtaining smooth boundary regions, the morphing equation for shared ver-

tices becomes important. One restriction is that we require all vertices to morph

completely to the corresponding ones at the target mesh, when the morphing param-

eter u equals 1. In order to achieve a complete morphing at boundary regions with

vertices that are not complete members of (i.e. having a weight value 1 for) any area,

we use the weighted mean of the morphing functions. Given Mj , the subsets of target

models with weight assignments, the morphing equation becomes:

Mj = {(wkj, sk) | sk ∈ S}

B(u)′ = sk + (tl − sk)

∑

ujwkj
∑

wkj
| sk ∈ Mj , j = 1 . . . n (4.6)

where uj denotes the amount of morphing for the jth subset.

This equation provides a complete morph for vertices that are not complete mem-

bers of any area. Nevertheless, for a vertex that is the element of only one area, our

requirement is still not satisfied. In that case, we discard the weight of the vertex and

only use the morphing parameter. That is, the equation becomes the same as 4.4. This

is a rare case though, as whole body is marked with anthropometric areas which are

continuous by definition.

30

5. IMAGE SYNTHESIS

We create a sophisticated 2D image of the final models with raytracing. This

part of work came out of the restriction that a study on 3D garment modeling could

not be realized in the possible timeline and therefore we decided to keep the garments

as image files that store necessary information. Otherwise, the study would lead to

soft-body modeling combined with a 3D dressing simulation using the created human

body. Nevertheless, in this section, we will basically go over the background of 3D to

2D image synthesis and justify our approach for that matter.

5.1. Rendering

Rendering is the process of synthesizing an image from a 3D environment. The

environment is a description of three dimensional objects in a defined language or data

structure. It may contain geometry, viewpoint, texture, lighting, and shading informa-

tion. There are mainly two rendering techniques, Scanline Rendering and Raytracing.

Scanline rendering is the preferred method for generating most computer graph-

ics in motion pictures. It is also the method used by video games and most sci-

entific/engineering visualization software (usually via OpenGL). Currently, scanline

algorithms have been widely and cheaply implemented in hardware.

For rendering photorealistic scenes, raytracing is the dominant method.

5.1.1. Raytracing

Raytracing is a technique for generating an image by tracing the path of light

through pixels in an image plane. The technique is capable of producing a high degree

of photorealism; usually higher than that of typical scanline rendering methods, but

at a greater computational cost. However this computational cost can be reduced by

acceleration techniques.

31

For each screen pixel, an imaginary ray is cast from the camera into the scene.

Intersections between the ray and scene objects are compared and the closest one to

the camera is used to color the pixel, making hidden surface removal implicit.

If the object is reflective or transparent/refractive, a second ray is cast (or bounced

off the object) to find out what the object is reflecting or letting show through. We

omit casting second rays as we have one object in the scene. Rays can also be cast

towards light sources to determine shadows.

Figure 5.1. A visualization of the raytracing process

In our case, we have only one primitive, the whole body mesh. As the body mesh

consists of triangles only, we reduce the problem to two main issues. First, finding the

intersecting triangle. Second, finding the exact intersecting point inside that triangle.

For triangle intersection problem, we use 3D spatial subdivision as an acceleration

technique. Spatial subdivision techniques offer an efficient means of identifying the

objects which are near the path of a ray. We use octrees for this purpose. And for

locating the exact coordinate of intersection, we use a barycentric coordinate based

linear system.

32

5.2. Raytracing with Acceleration by Octrees

We create a 2D image of the resulting 3D model by raytracing accelerated by

octree-based spatial subdivision. Rays are traced for only the first intersection, because

the specular property of body skin is omitted. During raytracing, marked points on the

3D model are also marked in the 2D image for further use in the dressing environment

(refer to chapter 6).

Octrees are hierarchical data structures used for efficiently indexing data asso-

ciated with points in three-space and have been applied to problems such as hidden

surface elimination and computation of 3D digital convex hulls. They are introduced

into ray-tracing by Glassner [29]. They are constructed by recursively subdividing

rectangular volumes into eight subordinate octants until the resulting leaf volumes, or

voxels, meet some criterion for simplicity. We use a depth limit for that purpose. We

define the bounding box and then subdivide recursively until the depth limit is reached.

Figure 5.2. Octree built on polygon existence in 3D space

After we have the octree as a data structure in the memory, we start shooting

rays as we move along the resulting image. The leaves of the octree which intersect

with the shooting ray are pushed onto a testing stack. Then all the leaves in that stack

are searched for the closest intersecting mesh. As seen in Figure 5.3, all the tested

33

leaves are candidates for containing the actual intersection. The acceleration works by

finding the candidate leaves in O(log n) time instead of traversing the whole structure

in O(n).

Figure 5.3. 2D representation of a ray shooting iteration using octrees

Having found the intersection, we calculate the light intensity at that point,

mainly by the difference between the current light vector and the surface normal at

the point of intersection. However, we do not have the surface normal directly at

hand, therefore we use the barycentric coordinates of the point inside the containing

polygon, to calculate the normal. Simply, the normal is a weighted sum of normals at

the corners. We have the normal values in hand as we use them in drawing in the 3D

OpenGL environment.

Barycentric coordinates provide a way to parameterize a triangle in terms of two

variables, b1 and b2. To derive an algorithm for intersecting a ray with a triangle, we

insert the parametric ray equation into the triangle equation.

o(r) + d(r)t = (1 − b1 − b2)p0 + b1p1 + b2p2 (5.1)

where p0, p1 and p2 are the corners of the triangle.

34

Following the technique described by Möller and Trumbore [30], we use the short-

hand notation E1 = p1 − p0, E2 = p2 − p0, and T = o(r) − p0. To obtain both the

barycentric coordinates of the intersection point and the distance along the ray, we

solve the linear system:

[

d(r) E1 E2

]

t

b1

b2

= T (5.2)

Input: a ray R

Find the voxels intersecting with R

Initiate t = ray position of intersection, with

a sufficiently large number L indicating "no intersection".

Loop through the voxels, starting from the closest voxel to ray origin.

{

Loop through the triangles inside the voxel

If there is an intersection < t, update t

}

If t < L, calculate illumination at that point.

Figure 5.4. Pseudocode for octree intersection algorithm

5.3. Illumination

After obtaining the point of intersection, we calculate the illumination at that

point. Surface illumination calculation is done by using local diffuse illumination. In

this method, surface normal, position of light and camera coordinates are taken into

account. An ambient term is also added to simulate global diffuse illumination. Since

specularity of the body skin is ignorable, specular reflection is discarded. Additionally,

35

in order to have a lighting similar to the 3D environment, more than one light source

is used. Illumination is calculated by Equation 5.3.

Figure 5.5. Rays used in illumination calculation

I = KAIA +
n

∑

i

KD(N • Li)Ii (5.3)

In this equation, KA and KD denote the effective amount of ambient and diffuse light

intensities on the scene. We take KA = 0.3 and KD = 0.8 in our current implementation.

Computing the surface normal N at the exact intersecting point is straightfor-

ward. We use the barycentric coordinates found by the equation 7.2, and put normal

values instead of point coordinates.

N = (1 − b1 − b2)n0 + b1n1 + b2n2 (5.4)

5.4. Anti-aliasing

In signal processing, the result of under-sampling a high frequency function is

aliasing, where low frequency errors that aren’t present in the original function appear.

Geometry is one of the biggest causes of aliasing in rendered images. When projected

onto the image plane, an object’s boundary introduces a step function, where the image

function’s value discontinuously jumps from one value to another.

In raytracing, using only the intersection points in the final image results in

aliased edges. We implemented super-sampling using a uniform and a stratified jittered

pattern for anti-aliased edges. Results of these two patterns are considerably different

36

at small scale windows. As seen in Appendix A, best results arise from super-sampling

with jittered patterns. A stratified jittered pattern turns aliasing from the uniform

pattern into high-frequency noise while still maintaining the benefits of stratification.

The experiment also proves the claim that uniform super sampling may keep or even

exacerbate aliasing.

Figure 5.6. One pixel is divided into 16 subpixels. Rays are shot by a a) uniform

pattern, using central coordinates b) stratified jittered pattern, using randomly

chosen coordinates inside the subpixel squares.

In uniform super-sampling, a pixel is divided into the specified number of sub-

pixels and rays are shot to these subpixels’ central coordinates. The more the pixel is

divided, the more information is collected from the geometry and projected onto the

image. This idea is the same in jittered patterns, the only difference is that, for each

subpixel a random coordinate inside it is used, not the central coordinate. The random

pattern is expected to turn aliasing into a less objectionable distortion to human eye,

which is the case for our virtual world with a mere human model.

After first pass of ray tracing, aliased edges of the image are found by defining

a maximum intensity threshold for neighboring pixels. Pixels with neighbors having

highly differentiated intensities are divided into specified number of subpixels, and a

ray is shot through each. This time the overall color is determined as the average

of all these subpixel colors. The number of subpixels is proportional to the render

resolution. Specific numbers give sufficient results for specific resolutions. For our case,

a three by three subdivision gave out satisfactory anti-aliasing results. The results of

experimentations are discussed in the following section.

37

5.4.1. Experimentation

We made several experiments on anti-aliasing for the best visual results. First row

shows the aliased pixels found according to the given intensity difference thresholds.

Second row shows the images with anti-aliasing applied by 3x3 uniform patterns. Third

row shows the images with anti-aliasing applied by 3x3 stratified jittered patterns. See

how aliased pixels are found with higher thresholds and the patterns behave on the

overall image.

Aliased pixels

IDT = 0.1 IDT = 0.15 IDT = 0.25

3x3 Uniform Pattern

3x3 Stratified Jittered

Pattern

38

6. APPLICATION: VIRTUAL DRESSING ROOM

Virtual Dressing Room (Original - Turkish: Sanal Giyim) is an application

which combines our body modeling approach with an overall dressing environment

personalized by making use of face photographs. Face photographs are processed to

appear smoothly in the resulting synthetic body image. The whole procedure is ex-

plained in the following section.

6.1. Overall Interface

We present a step-by-step, user-friendly interface for the program, so that a novice

user can easily find its way through it, ending up with a personalized human model of

his or hers, on which he or she may virtually try clothes.

In the first step, recently loaded files are presented to the user, in which we save

several properties of our personalization process for a specific body. If the user does not

a load a file, then gender selection is required. After these steps, the user is introduced

to the 3D model of the selected gender interpolated to normal measures (Figure 6.1).

Normal measures differ for male and female models. Following steps are the main

personalization functions.

6.1.1. Body Personalization

This part of the program consists of a 3D OpenGL environment and common

GUI elements such as sliders and textboxes. We mainly apply our body modeling

approach at this part, presenting a real-time interactive modeling screen. The window

enables the user to either enter his / her body measurements -which can be taken by

simple measurement tools- or adjust a suitable geometry using body girth sliders.

39

(a) Female model (b) Male model

Figure 6.1. Initial models with normal measures in Sanal Giyim

Figure 6.2. Sanal Giyim - Body Personalization

40

6.1.2. Face Personalization

After having a reasonable geometric replication of the body, we present the face

photograph wizard. This part is also divided into steps, starting with the load of an

existing frontal face photograph, which is a JPEG or BMP file.

Initially, neck points are marked on the face photograph. There are two purposes

of this marking: One is to provide the skin - garment separation on the image, so that

part of garment does not appear on the resulting image. The other is to resize the

head image correctly so that it adjusts to the body render.

After the neck marking process we apply a background extraction so that the face

and hair are separated from the background. The seed for the extraction is calculated

as the average color of an n × n pixel neighborhood. Central pixel is chosen randomly

with the only constraint that it is in the background, and n is specified by the resolution

of the image. For a meaningful pixel neighborhood to represent the background color,

n should be much smaller than the resolution parameters -i.e. width and height-, but

large enough to tolerate noises. The color-spatial differentiation is depicted in Figure

6.3.

Figure 6.3. Color-spatial differentiation for background extraction

Another parameter for the extraction is the color-spatial distance threshold. We

define a differentiation cube in this space, centered around the seed with threshold

41

distance as half-width. The pixels outside this cube are marked as background and the

ones inside it are marked as foreground. We extract the background with a scanline

boundary filling on the image, starting from the seed.

Input: Image pixels, Seed position (x_s,y_s) on image

Push (x_s,y_s) onto stack W

While Stack is not empty

{

Pop Stack (retrieve coordinates x,y)

Mark current run y by iterating on x until foreground is hit

To left: Push unfilled pixels before above/below border pixels

--> new above/below seeds

To right: Push unfilled pixels after above/below border pixels

--> new above/below seeds

}

Figure 6.4. Pseudocode for background extraction algorithm

(a) Neck Marking (b) Background Extraction

Figure 6.5. Two steps of the Photograph Wizard

Finally, we present a skin color selection interface, to make the user select a pixel

neighborhood in the same manner that the background sample was selected in the

background extraction step. When the user selects an area in the photograph to be

the skin color sample, we form a preview render with that color. The user can change

42

the skin color and reproduce the render several times until the color matching of the

render and the photograph is satisfactory. At this preview frame, we also present a

simple GUI giving the ability to move the neck mark points indirectly, so that the face

is directly and therefore correctly placed and rescaled on the body image.

Figure 6.6. Sanal Giyim - Preview render and face positioning

6.1.2.1. Scaling. We apply a two-pass scaling method for resizing images. We employ

the algorithm in adjusting the size of face and garment images. Scaling is applied to

32-bit pixels, consisting of a 24-bit RGB channel plus an 8-bit Alpha channel.

The procedure creates a new output buffer according to the required scale, either

smaller or larger than the original image. The image is first scaled vertically and then

horizontally, using the pre-determined filters. Best results are obtained with bilinear

filters. A scaling process is shown in Figure 6.7.

When finally the user is satisfied with the preview, a full body render is performed

in the virtual dressing room. And once the render is complete, the user’s selection of

available products from the website appears on the right pane. At this point, the

selected size and color of an item in the list can be ”tried on” by downloading the

garment itself and the alpha channels.

Garment images are located on the server where website is located. Original

43

Figure 6.7. 2-Pass scaling of a dress image. Original image is on the left. Scaling is

applied first vertically (middle), then horizontally (right).

images and their alpha channels reside in separate folders, sharing the same name

defining the color and size of the garment. When that specific color and size is selected

and a try-on request is triggered from the application, an FTP request is sent to the

server for those files and download begins. When all three files are downloaded, they

are loaded into the program according to the data saved at the comment section (i.e.

COM marker) of JPEG files. We use libjpeg[31] for this purpose, which supports

writing data to marker sections in JPEG files.

Figure 6.8. Sanal Giyim - The Dressing Room

We apply multilayered dressing by using a two step process:

44

• Rendering arms to a second render layer : That is simply because we present the

side and rear views of the 3D body in the dressing room and enable dressing in

these views, too. In these views, arms should be visible on top of the garment

parts which are touching the torso.

• Marking the arms as a second alpha layer in garments: This completes the mul-

tilayered dressing together with the previous step. We mark out the arm section

in the garment image and save as a second alpha layer. Inside the dressing room,

after body arms are rendered to the second layer, we place garment’s arms sec-

tion on top of this second render layer. Note that another colored image of the

garment is not required, just saving the arms section separately is a sufficient

action.

A dressing process is depicted in Figure 6.9. On top left, the original render layer

is shown. The other layers are built upon the render layer gradually. In painting order:

The original rescaled garment layer, second render layer and second garment layer are

drawn.

Figure 6.9. The multilayered dressing process

Besides body related multilayering, there is also a layering scheme for the gar-

ments. Required functionality is to preserve the real life dressing order. For example,

wearing underwears first, then shirts / pants, and so on. We developed a flexible

layering for that purpose, where new layers can easily be added to the system. The

layers are drawn on top of each other, whereas at one layer, garments are drawn in the

45

wearing order specified by the user. Currently there are eight layers defined:

• Underwear

• Tank tops, Slips

• Shirts, Skirts, Pants

• Jackets, Cardigans

• Belts, Jewelry

• Coats

• Scarves, Shawls

• Shoes, Bags, Slippers

6.2. Garment Preparation

As mentioned in section 3.1, we parameterized our model using the EN 13402

standard, which is a dress measurement based human body parametrization. We im-

plemented a small tool for both entering a specific garment’s measurement information

and also marking the garment for application use.

Figure 6.10. A sample screen from the Garment Measurement Tool.

The fitting of a garment image to a body render has three main aspects.

• The real-world fitting constraints: This is the algebraic actualization of garment

stretching properties and body girths. If a garment’s specified stretching part

46

stretches in a range of smin −smax, then the body on which it is tried should have

a girth value higher than smin and lower than smax at that part.

• Fitting levels : We specified seven fitting levels for all kinds of garments. These

levels are determined by the measurement areas and fit garments’ vertically in-

variant points. This is, answering the question ”When dressed, which part of

a garment stays invariant according to the body?”. A shirt fits to the shoulder

but stretches down in the torso, or a bikini bottom fits to the crotch but can

stretch up to different heights on the hip. The resulting fitting levels are namely

neck, shoulders, bust, under-bust, waist, crotch and feet. These are represented

as radio buttons in the GUI.

• Unit transformation between the garment’s image world to the body’s 3D world :

For the coordinate transformation, a reference point must be supplied for both

worlds to be merged in a new environment. First we specify a 3D-to-metric trans-

formation by using the metrics of a standard size-34 female (or size-46 male)

model and its corresponding 3D replica. The 3D model can only be determined

proportionally given the standards of a reference model. Providing the propor-

tions as a whole, one metric is sufficient for the transformation. Second, we specify

a garment’s actual metrics between two points at the fitting position by simply

measuring. This metric indication enables the affine transformation of these two

worlds in a new environment. We present the pixel distance to the user and

enable the entering of cm data, so that we have the pixel ↔ cm transformation.

Once the data are specified and previewed on the pre-rendered body images, they

can be saved at the comment section of the JPEG files. By doing this, we both keep the

garment files usable as images and do not require a separate place like file or database

to store these values.

As we employ multilayer dressing, another issue is the determination of alpha

channels. We do not employ the common image file formats with 8-bit alpha channels

such as PNG, TGA or TIFF, but rather use a different approach, saving alpha chan-

nels as separate JPEG files, too. This method enables a flexible layering scheme and

simplifies the garment preparation process.

47

7. EVALUATION

Our method is evaluated at three main phases. Initially, a smoothness measure

is employed for the in-between shapes. It is followed by the computational cost of

real-time morphing. Finally, for the image synthesis phase, the acceleration effect of

octree-based spatial subdivision and the optimum anti-aliasing scheme are discussed.

7.1. Smoothness Measure for Morphed Objects

Laplacian coordinate representation is a stable scheme and is used for several

purposes in graphics applications. Mesh smoothing and transformation invariant mor-

phing are some examples. It is based on the center of mass of the neighboring vertices.

v̄i =
1

n
·

n
∑

j

vj (7.1)

A polygonal mesh can be smoothed by moving all of its vertices to their Laplacian

Figure 7.1. a) A vertex (red) and its neighborhood ring (white). b) In Laplacian

coordinates, a vertex is represented by the difference to the centroid of its neighbors

coordinates. Therefore, roughness - R of a mesh or a vertex set is measured by the sum

of distances between original vertices and their Laplacian coordinates. As the vertex

count does not change, arithmetic mean - average can also be used.

R(V) =
n

∑

i

|v̄i − vi| (7.2)

48

In Figure 7.2, a smoothness measurement process is shown on a cylindrical object.

Initially, a deformed shape is obtained by extruding the middle segment of this object,

as shown in 7.2(a). Afterwards, a smoothing process is applied to this deformed shape

at each step. As seen in (7.2(f)), the final shape is visually acceptable and considerably

smooth. This is the required effect for an outcoming human body shape. Therefore,

Laplacian distances can be used for evaluating the smoothness of a morphed human

body shape.

Figure 7.2(g) shows the average Laplacian distance values versus sample shapes

in smoothing order. They are labeled ”Roughness”, being the inverse of smoothness

as a measure. As mentioned earlier, we apply local morphing on marked segments

of the human body. These segments have to be marked around the anthropometri-

cally determined positions. Additionally, core vertex sets forming the segment should

not interfere with each other, to achieve separate interpolation. However, the regions

between neighboring segments should be smooth during interpolation. During the

marking process, we define these boundary regions with vertex set propagations. Best

propagation depth for marked segments are found by evaluating the smoothness mea-

sure. Smoothness values are recorded at each interpolation step, and these values are

compared for different propagation depths.

Figures 7.3, 7.4 and 7.5 show the roughness vs interpolation values, for specific

segments and their propagations. Two neighboring segments are marked with increas-

ing propagations of their core vertex sets. The effect of each propagation is represented

with a separate color. Notice how roughness curves take smaller values and therefore

smoothness increases for each case, as propagation depth grows.

7.2. Computational Cost of Morphing

Using the straightforward weighted morphing formulation (4.5), it is obvious

that the computational cost increases linearly with vertex or polygon count. This

means that the algorithm runs in O(n) complexity where n represents the vertex count.

Furthermore, the morphing equation which uses the average mean of the multipliers

49

(a) R = 0.0201896 (b) R = 0.0133217 (c) R = 0.00959175

(d) R = 0.00734621 (e) R = 0.00596873 (f) R = 0.00514077

0,000

0,005

0,010

0,015

0,020

0,025

a b c d e f
Sample Objects

Roughness - R

(g) Roughness of smoothed sample objects

Figure 7.2. Average Laplacian distances of a model (a-f) that is smoothed at each

step, and the graph depicting the decrease in roughness, justifying the correctness of

the measure

50

(a) u = 0.25 (b) u = 0.5 (c) u = 0.75 (d) u = 1.0

Interpolation of Underbust segment with propagation = 0

(e) u = 0.25 (f) u = 0.5 (g) u = 0.75 (h) u = 1.0

Interpolation of Underbust segment with propagation = 1

(i) u = 0.25 (j) u = 0.5 (k) u = 0.75 (l) u = 1.0

Interpolation of Underbust segment with propagation = 2

0,00100

0,00102

0,00104

0,00106

0,00108

0,00110

0,00112

0,00114

0,00116

0,00118

0,00120

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95
Interpolation Parameter - u

Roughness - R

Propagation = 0
Propagation = 1
Propagation = 2

(m) Roughness vs Interpolation for Underbust segment with corresponding propagation depths

Figure 7.3. Smoothness measurement for Underbust segment interpolated separately

51

(a) u = 0.25 (b) u = 0.5 (c) u = 0.75 (d) u = 1.0

Interpolation of Waist segment with propagation = 0

(e) u = 0.25 (f) u = 0.5 (g) u = 0.75 (h) u = 1.0

Interpolation of Waist segment with propagation = 1

(i) u = 0.25 (j) u = 0.5 (k) u = 0.75 (l) u = 1.0

Interpolation of Waist segment with propagation = 2

0,00100

0,00102

0,00104

0,00106

0,00108

0,00110

0,00112

0,00114

0,00116

0,00118

0,00120

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95
Interpolation Parameter - u

Roughness - R ����������� 	
����������� 	 ������������ 	 �
(m) Roughness vs Interpolation for Waist segment with corresponding propagation depths

Figure 7.4. Smoothness measurement for Waist segment interpolated separately

52

(a) u = 0.25 (b) u = 0.5 (c) u = 0.75 (d) u = 1.0

Interpolation of Waist and Underbust segment together with propagations = 0

(e) u = 0.25 (f) u = 0.5 (g) u = 0.75 (h) u = 1.0

Interpolation of Waist and Underbust segment together with propagations = 1

(i) u = 0.25 (j) u = 0.5 (k) u = 0.75 (l) u = 1.0

Interpolation of Waist and Underbust segment together with propagations = 2

0,00100

0,00102

0,00104

0,00106

0,00108

0,00110

0,00112

0,00114

0,00116

0,00118

0,00120

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 0,75 0,80 0,85 0,90 0,95

Interpolation Parameter - u

Roughness - R ���������� � ����������� � ����������� � �
(m) Roughness vs Interpolation for Waist and Underbust segment together with

corresponding propagation depths

Figure 7.5. Smoothness measurement for Waist and Underbust segment interpolated

together

53

(4.6) adds only a constant computation per vertex, since the number of areas used are

determined by a constant segmentation of the body.

Most of the computational time is accounted for vertex normal calculations in the

3D OpenGL environment. A vertex normal calculation contains the averaging of the

face normals which contain that vertex as a corner. A face normal calculation is made

by two subtractions and a cross-product. For a 15k polygon model, this calculation

slows down the process considerably. Therefore, normal calculations are made each

time a local shape morphing is finished.

7.3. Acceleration of Octrees

Several depth values for constructing the octrees are tried for accelerating the

ray-tracing process. Small depths remain insufficient for acceleration and larger depths

increase the number of tested volume leaves, making no improvement on computational

time. Figure 7.6 shows the effect of several octree depths on total rendering time in

seconds. As seen on the graph, depth 5 octree provides the shortest rendering time

among others.

24,565
14,701 13,299 14,391 18,787

218,464

67,948

0,0

50,0

100,0

150,0

200,0

250,0

1 2 3 4 5 6 7

Octree depth

Rendering time (sec)

Figure 7.6. Rendering time versus Octree depth graph

54

7.4. Optimum anti-aliasing scheme

Aliased pixels are found by comparing the maximum intensity difference between

the pixel and its 1-neighbors with a pre-determined threshold. This threshold deter-

mines the number of subdivided and re-processed pixels, affecting both the overall

computational time and the quality of the resulting image.

Figure 7.7 shows the number of processed pixels before and after anti-aliasing

pass determined by the given thresholds, on the same graph. The number of pixels

remaining aliased after anti-aliasing are determined by a constant IDT, which is taken

0.2. This is for enabling comparison between different given thresholds and evaluating

the improvement by the given threshold.

As seen on the graph, threshold values 0.1, 0.15 and 0.2 have nearly equal aliasing

after processing on the first rendered image. Their processing time is quite different

though, directly proportional to the number of pixels accounted for being aliased.

Hence an IDT value around 0.2 is proved sufficient for determining the aliased pixels.

0

2000

4000

6000

8000

10000

12000

0,1 0,15 0,2 0,25 0,3

�������� !�""�#��$� %&#��&'()
Before Anti-aliasing
After Anti-aliasing

Number of aliased pixels

Figure 7.7. Number of aliased pixels before and after anti-aliasing versus IDT graph

55

8. CONCLUSIONS

We have developed en interpolation based 3D human body modeling environment

and a virtual dressing application. Our evaluations have shown that anthropometric

segmentation of the human body allows local control of the interpolation and enables

better modeling.

Since human body has a smooth shape, created shapes by using local control

should be smooth as well. For evaluating the smoothness of the in-between shapes,

average distance between vertices and their Laplacian representations are used. Several

measurements are taken with different vertex propagations of body segments. Measure-

ments indicate that smoother in-between shapes are formed when vertex propagation

is deeper. This is because the smooth characteristic of the Gaussian function that is

used in assigning weights to the vertices affects the shape more when propagation is

deeper.

Several octree depths are tried for raytracing and the optimum depth is found

by comparing the rendering time. Tests show that there is an optimum depth for a

specific raytracing setup with the same camera coordinates and mesh. Deepening the

octree does not improve rendering time after optimum point. Additionally, tests with

different IDT values for anti-aliasing show that there is an optimum threshold value

for a specific raytracing setup. However, aliased pixels remain after subpixel rendering.

For better anti-aliasing results and smoother images, computational cost increases.

Short term future work includes further acceleration of raytracing by experi-

menting with other spatial subdivision methods. Raytracing and anti-aliasing could

also be implemented in an adaptive manner, which could save additional time. Long

term future work includes creating skeleton-based animatable replicas by using the

local control method. Facial replication can also be implemented in 3D, by analyzing

photographs and further 3D deformation.

56

REFERENCES

1. Brett Allen, Brian Curless, and Zoran Popović. The space of human body shapes:

reconstruction and parameterization from range scans. In SIGGRAPH ’03: ACM

SIGGRAPH 2003 Papers, pages 587–594, New York, NY, USA, 2003. ACM.

2. W-S. Lee, J. Gu, and N. Magnenat-Thalmann. Generating animatable 3D virtual

humans from photographs. In M. Gross and F. R. A. Hopgood, editors, Computer

Graphics Forum (Eurographics 2000), volume 19(3), 2000.

3. Hyewon Seo and Nadia Magnenat-Thalmann. An automatic modeling of human

bodies from sizing parameters. In I3D ’03: Proceedings of the 2003 symposium on

Interactive 3D graphics, pages 19–26, New York, NY, USA, 2003. ACM.

4. Ferdi Scheepers, Richard E. Parent, Wayne E. Carlson, and Stephen F. May.

Anatomy-based modeling of the human musculature. In SIGGRAPH ’97: Pro-

ceedings of the 24th annual conference on Computer graphics and interactive tech-

niques, pages 163–172, New York, NY, USA, 1997. ACM Press/Addison-Wesley

Publishing Co.

5. Jianhua Shen and Daniel Thalmann. Interactive shape design using metaballs and

splines. In Implicit Surfaces’95, pages 187–196, Grenoble, France, 1995.

6. Adrian Hilton, Daniel Beresford, Thomas Gentils, Raymond Smith, and Wei Sun.

Virtual people: Capturing human models to populate virtual worlds. In CA ’99:

Proceedings of the Computer Animation, page 174, Washington, DC, USA, 1999.

IEEE Computer Society.

7. Hee-Deok Yang and Seong-Whan Lee. Reconstructing 3d human body pose from

stereo image sequences using hierarchical human body model learning. In ICPR

’06: Proceedings of the 18th International Conference on Pattern Recognition,

pages 1004–1007, Washington, DC, USA, 2006. IEEE Computer Society.

57

8. B. Rosenhahn and R. Klette. Geometric algebra for pose estimation and surface

morphing in human motion estimation. pages 583–596, 2004.

9. K.M. Robinette, H.A.M. Daanen, and E. Paquet. The caesar project: a 3-d surface

anthropometry survey. In Second International Conference on 3-D Digital Imaging

and Modeling, pages 380–386, 1999.

10. Anthropometric modeling programs-a survey. IEEE Comput. Graph. Appl.,

2(9):17–25, 1982.

11. Zouhour Ben Azouz, Marc Rioux, Chang Shu, and Richard Lepage. Characterizing

human shape variation using 3d anthropometric data. Vis. Comput., 22(5):302–

314, 2006.

12. Hyewon Seo, Frederic Cordier, and Nadia Magnenat-Thalmann. Synthesizing ani-

matable body models with parameterized shape modifications. In SCA ’03: Pro-

ceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer ani-

mation, pages 120–125, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics

Association.

13. Mustafa Kasap and Nadia Magnenat-Thalmann. Parameterized human body

model for real-time applications. In CW ’07: Proceedings of the 2007 Interna-

tional Conference on Cyberworlds, pages 160–167, Washington, DC, USA, 2007.

IEEE Computer Society.

14. Alan H. Barr. Global and local deformations of solid primitives. SIGGRAPH

Comput. Graph., 18(3):21–30, 1984.

15. Thomas W. Sederberg and Scott R. Parry. Free-form deformation of solid geometric

models. SIGGRAPH Comput. Graph., 20(4):151–160, 1986.

16. Brett Allen, Brian Curless, and Zoran Popović. Articulated body deformation from

range scan data. ACM Trans. Graph., 21(3):612–619, 2002.

58

17. Volker Blanz and Thomas Vetter. A morphable model for the synthesis of 3d

faces. In SIGGRAPH ’99: Proceedings of the 26th annual conference on Computer

graphics and interactive techniques, pages 187–194, New York, NY, USA, 1999.

ACM Press/Addison-Wesley Publishing Co.

18. R.E. Parent J.R. Kent and W.E. Carlson. Establishing correspondences by topo-

logical merging: A new approach to 3d shape transformation. pages 271–278, San

Francisco, Calif., June 1991. Graphics Interface, Morgan Kaufmann.

19. Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery,

and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In SIGGRAPH

’95: Proceedings of the 22nd annual conference on Computer graphics and inter-

active techniques, pages 173–182, New York, NY, USA, 1995. ACM.

20. Douglas DeCarlo and Jean Gallier. Topological evolution of surfaces. In GI ’96:

Proceedings of the conference on Graphics interface ’96, pages 194–203, Toronto,

Ont., Canada, Canada, 1996. Canadian Information Processing Society.

21. Hiromasa Suzuki Takashi Kanai and Fumihiko Kimura. Three-dimensional geomet-

ric metamorphosis based on harmonic maps. The Visual Computer, 14(4):166–176,

October 1998.

22. Marc Alexa. Local control for mesh morphing. In SMI ’01: Proceedings of the In-

ternational Conference on Shape Modeling & Applications, page 209, Washington,

DC, USA, 2001. IEEE Computer Society.

23. Takashi Kanai, Hiromasa Suzuki, Jun Mitani, and Fumihiko Kimura. Interactive

mesh fusion based on local 3d metamorphosis. In Proceedings of the 1999 conference

on Graphics interface ’99, pages 148–156, San Francisco, CA, USA, 1999. Morgan

Kaufmann Publishers Inc.

24. R.L. Graham. An efficient algorithm for determining the convex hull of a finite

planar set. IPL, 1:132–133, 1972.

59

25. Franco P. Preparata and Michael Ian Shamos. Computational Geometry - An

Introduction. Springer, 1985.

26. Joseph O’Rourke. Computational Geometry in C, chapter 3, ”Convex Hulls in 2D”.

Cambridge University Press, New York, NY, USA, 1998.

27. Bruce G. Baumgart. Winged edge polyhedron representation. Technical report,

Stanford, CA, USA, 1972.

28. Francis Lazarus and Anne Verroust. Metamorphosis of cylinder-like objects. The

Journal of Visualization and Computer Animation, 8(3):131–146, 1997. ISSN 1049-

8907.

29. Glassner A.S. Space subdivision for fast ray tracing. Computer Graphics and

Applications, IEEE, 4(10):15–22, Oct. 1984.

30. Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle intersection.

Journal of graphics tools, 2(1):21–28, 1997.

31. Independent JPEG Group.

