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ABSTRACT

CLOSED-LOOP ACTUATOR AND SENSOR LOCATION

SELECTION STRATEGIES FOR FLEXIBLE

STRUCTURES

Vibration suppression in flexible structures such as beams and plates, space shut-

tles, large antennas is a common engineering problem studied by many researchers.

Exposed to periodic external disturbances, a flexible structure vibrates. These vibra-

tions need to be eliminated or reduced to a certain level through control forces applied

by the actuators. The control forces are determined by a controller using the feedback

of the vibrations measured via the sensors. Most often the number of actuators and

sensors is limited. Hence, one has to find the best actuator and sensor locations to

achieve the maximum vibration suppression.

In this thesis, the problem of finding the optimal actuator and sensor locations

for vibration control of a flexible structure is studied. An iterative search strategy is

used, where the closed-loop criteria are selected as the optimization metric. During

each iteration a controller (an approximate H∞-coprime controller or a low-authority

H∞-controller) is designed or alternatively a quasi-controller method (the residual de-

formations norm minimization) is used, which does not directly calculate a controller

but obtains some norms that instead approximate the closed-loop behavior well.

In the case of applications with controllers, the controller design is simplified

by introducing simple approximate Algebraic Riccati Equation (ARE) solutions and

their derivatives, which are obtained by converting the state space descriptions of the

physical system with signal weights into state space representations with decoupled

block diagonal state matrices. Hence, based on such approximate solutions, it is pos-

sible to design computationally less complex coprime controllers and low-authority
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H∞-controllers with less computational effort.

Since for a gradient based search technique, the partial derivatives of the closed-

loop criteria are required, Finite Element sensitivity analysis is utilized. First, the

partial derivatives of the mass, stiffness and electromechanical coupling matrices are

defined. Then, the partial derivatives of the open-loop and controller matrices are

introduced.

For plates with piezoelectric actuator and sensor pairs, the minimization pro-

cedure is enriched with constrained techniques, where Finite Element discretization

is done automatically at each iteration regarding the constraints. The modified con-

strained optimization technique is based on Zoutendijk’s method of feasible directions

and introduces constraints to avoid a mesh generation of badly scaled finite elements.
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ÖZET

ESNEK YAPILARDA UYGULAYICI VE

ALGILAYICILARIN EN İYİ YERLEŞİMİ İÇİN KAPALI

ÇEVRİM STRATEJİLERİ

Kirişler, plaklar, uzay mekikleri, büyük boyutlu antenler gibi esnek yapıların

titreşimlerinin sönümlenmesi pek çok araştırmacının üzerinde yoğunlaştığı bir konudur.

Peryodik zorlamalara maruz kalan bu tür esnek yapılar titreşirler ve bu titreşimler

uygulayıcılar tarafından tatbik edilen kontrol kuvvetleri ile ya tamamen ya da kısmen

sönümlenmek istenir. Sensörler tarafından ölçülen titreşimler denetimciye geri beslenir.

Denetimci de kontrol girdilerini tayin eder. Çoğunlukla uygulayıcı ve sensörlerin sayısı

sınırlıdır ve mevcut uygulayıcı ile sensörlerin yerleri değiştikçe sönümlenen titreşim

düzeyi de farklılılık gösterir. Bu yüzden maksimum titreşim sönümlenmesi için uygu-

layıcı ve sensörlerin olabilecek en iyi yerleşimi bulunmalıdır.

Bu tezde, esnek yapıların titreşim kontrolü için uygulayıcı ve sensörlerin en ideal

yerleşimi problemi incelenmektedir. Optimizasyon kriteri olarak kapalı çevrim kriter-

lerin uygulandığı iteratif bir arama stratejisi geliştirilmiştir. İterasyonlar sırasında ya

bir H∞ coprime denetimci ya da düşük otorite H∞ denetimci veyahut kapalı çevrime

alternatif olarak kontrolcü eşdeğeri bir yapı (artık gerilmelerin normlarının minimiza-

syonu metodunda) kullanılır. Bu eşdeğer kontrolcü tam olarak bir denetimci tasarımını

ve hesaplanmasını gerektirmemesine rağmen kapalı çevrim sistemin normlarına yakın

sayılabilecek bir bilgi verebilmektedir.

Kapalı çevrim optimizasyon uygulamalarında denetimci dizaynından önce fizik-

sel sistemin sinyal filtrelerini içeren durum uzayı modelleri, kipsel (modal) durum

uzayı formlarına sokulur. Bu formlara dönüşüm için uygun kordinat transformasyon

vektörleri bulunmuştur. Böylece yaklaşık ama daha basit Cebirsel Riccati Denklemi
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(ARE) çözümleri ve de çözümlere ait türevleri geliştirmek mümkün olmuştur. Basit

yaklaşık çözümler kullanılması ile ise daha az kompleks coprime ve düşük otoriteli H∞

denetimcilerinin hem de daha az bilgisayar performansına ihtiyaç duyarak tasarlanması

sağlanmıştır.

Düşüm (gradyen) bilgisine dayalı en iyiyi arama tekniklerinde kapalı çevrim

kriterlerin kısmi türevleri gerekmektedir. Bu türevler Sonlu Elemanlar Yönteminde

Hassasiyet (Sensitivite) Analizi kullanılarak hesaplanmıştır. Önce kütle, rijitlik ve

elektomekanik bağlaşım matrislerinin kısmi türevleri tanımlanır. Sonra da açık çevrim

sistem ve kontolcü matrislerine ait türevler bulunur.

Piezoelektrik uygulayıcı ve sensörlerlere sahip plaklar için de her iterasyonda

otomatik olarak tatbik edilen Sonlu Elemanlar Tekniği ile uyumlu, “sınırlı” optimiza-

syon metodu geliştirilmiştir. Söz konusu sınırlı optimizasyon yöntemi Zoutendijk’in

olası yönler metoduna dayanmaktadır ve kötü ölçekli sonlu elemanlardan oluşan ağları

(mesh) engelleyen kısıtlamaları her iterasyon için ayrı ayrı hesaplayabilmektedir.
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1. INTRODUCTION

Beams and plates vibrate under periodic loading and the levels of motions are

strongly amplified at resonance frequencies. The vibrations can be suppressed by pas-

sive methods, where the system is redesigned and sometimes passive absorbers are

added. Another possibility is to apply control forces through an actuator which is

determined by a controller. The information about how much the structure displaces

is fed back to the controller by a sensor. The latter approach, called active control or

closed-loop control, raises another question about the locations for the actuators and

sensors. Since the vibration suppression levels vary at different locations of actuators

and sensors, finding the best locations invokes interest of many researchers of differ-

ent disciplines. This thesis deals mainly with closed-loop optimal actuator and sensor

placement for flexible structures. Specifically, examples are given on beams and plates.

Beams and plates belong to a special type of structures called flexible structures.

Exposed to external uncontrolled forces flexible structures deform in such a way that

the structure can become afunctional or hazardous for other neighboring parts. Sens-

ing the deformations and applying the control forces it is possible to eliminate these

deformations to a certain limit. However, since limited number of actuators is avail-

able in most applications, it is rarely possible to eliminate the deformations produced

by the external disturbances. Hence, the resulting deformations are called residual

deformations [2].

The amount of the residual deformations depends on type, number and locations

of actuators/sensors. If the type and the number of actuators and sensors are given, the

main purpose is to find the optimal actuator and sensor locations, where the residual

deformations are at minimum. Generally, the determination of the number, the type

and the location of actuators and sensors is a stage of the control system design. This

step is called input and output selection.
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If a system is exposed to external disturbances w and there are certain restric-

tions on the performance outputs z, input/output selection problem becomes selecting

suitable plant inputs u and suitable measured output y (see Figure 1.1). Every com-

bination of u and y is an input/output set. For different types of plants ranging from

G

z w

y u

K

Figure 1.1. General control configuration

the chemical distillation columns to the acoustic noise cancelation systems in airplanes,

this problem has a wide application field in both industry and academia. Hence, the

problem of finding the best suitable combinations of inputs and outputs is given dif-

ferent names such as best allocation problem, optimal location selections or simple

input/output selection.

Since people of different specialization areas have different attitudes towards the

optimal location selection problem, the problem can be categorized in many different

ways. One may group according to the optimization methods, whereas another one

may prefer to group according to the selection criteria.

However, since the scientists who deal with the vibration suppression problem

have a control engineering background, they simply divide the method according to

whether the selection criterion includes a controller synthesis or not. The approaches

in which a controller is designed are called methods with closed-loop criteria. On the

other hand, if the method does not require a controller design or does not give any

information about the closed-loop behavior of the system, it is said to be an open-loop

one.

Best location selection strategies without any controller design may achieve the

results much faster. However, if the system of concern is to be combined with a
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controller, its results can deviate too much from the real case. Conversely, methods

with controllers do not reflect the phenomenon of lack of information about the closed-

loop behavior, though they might take longer computation times. Hence, different

input/output selection approaches have different advantages. Generally, a placement

method may not have all the desired properties. A designer has to decide which

optimization criteria best fit the needs and has to select the most useful criteria for his

or her purposes.

Selecting a suitable optimization metric depends heavily on the physical system.

The more information about the system is known, the more appropriate optimal ac-

tuator and sensor location selection approach can be chosen. Hence, an investigation

about the physical system may bring certain advantages in optimization part. If the

system possesses some certain characteristics, they might involved in any stage of the

minimization procedure to simplify calculations, to decrease computation cost, to re-

duce the complexity of the controller, to increase the accuracy in results, etc. Some

properties of flexible structures (e.g. diagonally dominant Gramians) can make a simple

controller design and modal reduction possible.

The modelling of the physical structure is another issue one cannot neglect in an

optimization procedure since the model might impose limitations on the optimization

method. For some modelling methods, the optimization techniques can be easily im-

plemented, whereas for some other modelling types the desired optimization technique

might be totally useless. For instance, if it requires too much effort to take the an-

alytical gradient of the objective function or the numerical gradient that is obtained

by finite differentiating is not accurate enough, one should probably prefer a heuristic

method without gradient such as simulated annealing or genetic algorithms.

1.1. Problem Statement

The problem of I/O selection can be applied to many structures. However, the

main goal in this thesis is to locate the optimal locations of collocated actuators and

sensor pairs for a given structure combined with a set of piezoelectric patches.
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For finding the best location, closed-loop criteria are preferred since in most

applications there is need for a controller. However, not all types of controllers are

searched. For the given structure and disturbances, which act at fixed points, a certain

class of controllers (e.g. H∞-controllers) is chosen before initiating the optimization

procedure.

Figure 1.2. Beam with piezoelectric actuator and sensors

Figure 1.3. Plate with piezoelectric actuator and sensors

1.2. Approaches

In this thesis, two types of optimization algorithms are used for the minimization

of an objective function:
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• Unconstrained gradient based minimization (in cases with only limitations on the

bounds of design variables).

• Method of feasible directions, shortly MFD, (in cases of more complicated con-

straints such as multiple piezoelectric (PZT) actuators which may not overlap

each other).

Both techniques use the backtracking line search for step size selection. In MFD, the

backtracking is modified such that constraints are also checked.

Both open- and closed-loop objective functions are selected as the optimization

criteria as follows:

• Some sort of H∞-norm in the method of minimization of the norm of the residual

deformations (MNRD). This norm is calculated without designing a controller,

hence, can be regarded as the open-loop criterion. In fact, it gives enough informa-

tion about the closed-loop behavior of the generalized plant without calculating

a stable controller.

• Closed-loop H2-norm with the design of a coprime controller.

• Closed-loop H2-norm with the design of a low-authority H∞-controller.

For modelling of the flexible structures, the following steps are taken:

• Finite Element Method (FEM) is used to discretize the structures with actuator

and sensor pairs.

• Sensitivity analysis is utilized for taking the partial derivatives of the FEM mass,

stiffness, and electromechanical coupling (in cases of PZT patches) matrices, the

partial derivatives of resonance frequencies and mode shapes.

• The generalized plant is obtained. If required, it is converted into the first modal

state space representation with the introduced coordinate transformation.

Controller design strategies can be the following ones:
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• The normalized coprime controller for the right lower part of the generalized

plant.

• The low-authority H∞-controller.

1.3. Research Objectives and Contributions

The main goal of this thesis is to design a gradient based optimal location selection

method for flexible structures, which improves upon the currently available closed-loop

criteria based techniques. The work is motivated by the following facts:

• In a gradient based technique, mostly open-loop criteria are selected to avoid

taking the gradient of the controller matrices.

• Most of the current closed-loop criteria based techniques use simple continuous

models of the structures, which render their methods applicable to structures of

resulting from a finite element discretization, since for discrete models it is more

complicated to find analytical gradients of the objective function.

• The state space form of flexible structures can be converted into modal models

where the modes are decoupled. For such cases, the controller matrices can be

obtained much simpler with introducing diagonally dominant ARE solutions.

To begin with, one of the contributions of this thesis is the modal models with

use of frequency weights in the controller design stage. Although the physical systems

show certain characteristics of flexible structures, their model becomes not decoupled

if their physical plant is augmented with the signal weightings. In the current work, a

useful but simple idea is introduced to convert the augmented generalized plant into

a state space representation with a block diagonal state matrix. Theorem 2.6.1 states

that the state space representation of the generalized plant of a flexible structure can

be converted to a modal state space realization.

Gawronski [3] augments the plants only with smooth filters, the slope of the

transfer function of which is small when compared with the slope of the transfer function

of the structure at resonance frequencies. In fact, the plant is not augmented, but
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scaled to have the same system norms with that of the generalized plant. However, a

different technique is applied without any restriction on the filters. Unlike the other

modal representation techniques given in [3], the approach in this thesis does not give

any limitation for the signal weights.

The new modal form of the generalized plant leads to further simplifications in

the controller design stage. With block diagonal modal form of the augmented plant, a

coprime controller design strategy is introduced in the thesis. Theorem 4.2.4 provides

ARE solutions for this new coprime controller design. This controller design method is

inspired by the work of Hiramoto et al. [1]. They design their coprime controller in the

same fashion as done in the current thesis. However, they have obtained a controller

for the un-augmented plant and assumed zero-damping, whereas the controller that is

implemented in this study considers the damping, and is augmented with weightings.

Additionally, not only coprime controllers but also low-authority H∞-controllers

are designed with the ARE solutions (Lemma 4.3.1 and Theorem 4.3.2). The results

with this H∞-controller are again promising. It should be emphasized that this con-

troller is also for the generalized plant. According to the introduced Theorem 2.6.1,

the state space representation of the generalized plant of a flexible is converted to

one of the modal forms so that the individual physical and signal modes can be dealt

separately. Lemma 4.2.1 and Lemma 4.2.2 give the physical and filter entries of the

controllability and observability Gramians, which are diagonal for flexible structures.

Corollary 4.2.3 restates that the Gramians can be split into physical and filter parts.

The H2-norm is smooth and has some nice definitions in terms of frequency-

independent functions such that their partial derivatives are not rare in literature.

However, the closed-loop H2-norm is not much preferred since it may be difficult and

cumbersome to take the partial derivatives of controller matrices. In this thesis, partial

derivatives of controller matrices are introduced. For this purpose, the partial deriva-

tives of element matrices are defined, which result from Finite Element discretezation.

Then, Lemmas 5.7.1 and 5.8.1 are introduced, which state how to compute the partial

derivatives ARE solutions.
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For beams and plates with point and piezoelectric actuator/sensor pairs a gradient

based optimization technique is developed, which uses the closed-loop H2-norm as the

objective function. Conditional constraints are introduced through Definitions 3.4.2,

3.4.3 and 3.4.4 so that overlapping of piezoelectric patches and badly scaled finite

elements are prevented.

1.4. Thesis Overview

Chapter 2 starts with a literature survey and preliminaries on different topics such

as flexible structures, piezoelectric material, finite element modelling. In Section 2.1,

the flexible structures are explained in detail. In Section 2.2, the basic constitutive

theory of the piezoelectricity and piezoelectric equations are given since flexible struc-

tures with piezoelectric actuator and sensor pairs are dealt with throughout the thesis.

Section 2.3 introduces the Finite Element Method. In the remaining part of Chapter 2,

the principles that are used to convert the generalized plant into the first modal state

space form are introduced. Section 2.4 covers the first modal state space representa-

tion of the physical structure. In Section 2.5, the signal weightings are explained. In

Section 2.6, the generalized plant with weightings is put into the modal state space

form.

Chapter 3 provides a detailed literature review on different input/output selection

criteria. Different methods for various types of plants such as chemical, mechanical, etc.

are grouped in Section 3.1. Section 3.2 introduces some preliminaries for a gradient-

based optimization. Sections 3.3 and 3.5 briefly explains the steps for the unconstrained

and constrained minimization. Section 3.4 describes constraints which are necessary

for optimization with piezoelectric actuator and sensor pairs.

In Chapter 4, the developed controller design strategies are introduced. In Sec-

tion 4.1 different controller design strategies such as Hiramoto’s coprime controllers,

H∞-controllers, MNRD-controllers are mentioned. In Subsection 4.1.5 the calcula-

tion of the MNRD-value is explained. Section 4.2 deals with the improved coprime

controller design. In Section 4.3, the new low-authority controller is given.
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Chapter 5 gives how the partial derivatives of finite element matrices, ARE so-

lutions, open-loop generalized plant and control matrices are obtained. Sections 5.1

and 5.3 explain the partial derivatives of the mass, stiffness and piezoelectric coupling

matrices. Sections 5.2 and 5.4 introduce remeshing strategies for structures combined

with point and piezoelectric actuator and sensor pairs, respectively. Section 5.5 gives

the mode shape and eigenvector derivatives. In Section 5.6, the partial derivatives

of open-loop generalized plants are mentioned. Sections 5.7 and 5.8 provide the par-

tial derivatives of the ARE solutions for the coprime and low-authority controllers,

respectively. Section 5.11 describes how to obtain the derivative of the MNRD-value.

Section 5.9 gives the partial derivative of the disturbance attenuation factor γmin for

the modified coprime controllers. In Sections 5.6 and 5.10, the partial derivatives of

state space description of the generalized plant and of the closed-loop matrices are

defined, which result from Finite Element discretezation.

In Chapter 6, design examples are presented to illustrate the proposed optimal

locations selection techniques. Section 6.1 gives a comprehensive example of a beam

with collocated point actuator and sensor pairs. Sections 6.2 through 6.5 deal with

different examples of beams and plates with both point and piezoelectric actuator and

sensor pairs.
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2. MODELLING OF FLEXIBLE STRUCTURES

2.1. Flexible Structures

A linear system, which is excited by periodic forces and has low resonance fre-

quencies as its significant vibration modes, is called a flexible structure. This is the

definition mostly used in mechanical and civil engineering [3].

Whereas in control engineering, linear systems, which are exposed to harmonic

signal at certain frequencies, amplify the input signals strongly and have nearly uncor-

related modes are referred to as flexible structures.

According to Gawronski [3], a flexible structure is defined to posses the following

specific properties:

• It has to be a linear system.

• It has to be finite-dimensional.

• It has to be controllable and observable.

• Its poles have to be complex with small real parts.

• Its poles have to be non-clustered.

Considering the structures based on this set of descriptions, Gawronski [3] derived many

useful modal properties of flexible structures such as modal controllability and observ-

ability Gramians, modal norms, low-authority modal LQG, H2 and H∞-controllers,

etc.

Aerospace structures, active earthquake-damping devices of sky scrapers, active

vibrations suppression devices, most machinery with beam-plate-like parts can be ex-

amples of flexible structures.

Even though some of the restrictions for flexible structures are violated, the modal
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approach developed by Gawronski [3] can be applied to many linear systems.

The linear second order differential equations are preferred by structural engi-

neers, whereas the first order state space models are used in control engineering. In

state space representation, the states describe the dynamics, which is represented by

the system degrees of freedom, and the velocities.

For both equations of motion and state space representation the most common

coordinates are the nodal and the modal coordinates. Nodal coordinates are described

by displacements and velocities of selected points on the structures. These locations

are referred to as nodes. Modal coordinates are given in terms of displacements and

velocities of natural modes.

2.1.1. Nodal Models for Second-Order Structural Models

In engineering, one starts an analysis of a physical system most often by modeling

them in physical coordinates. These models are described as nodal models since they

are derived in nodal coordinates, in terms of nodal quantities such as displacements

and velocities. A structure in nodal model is given as

Mq̈ + Cdq̇ + Kq = fw. (2.1)

Equation (2.1) is a second order matrix differential equation, which is obtained from

a discretizetion method such as Finite Element Method. In (2.1), M, Cd, K, q and

fw denote the mass matrix, the damping matrix, the stiffness matrix, the vector of

displacements at the nodes and the applied force vector, respectively.

2.1.2. Modal Models for Second-Order Structural Models

If a second order nodal model is at hand, a corresponding modal model can

be obtained by a coordinate transformation. The system given by Equation (2.1) is

exposed to a harmonic force and its resulting solution is hence harmonic also: q =
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φejωt. Applying this harmonic solution to Equation (2.1) without damping (C = 0)

and in free vibration case (no force, fw = 0), will give the frequency equation

det
(
K − ω2M

)
= 0. (2.2)

Equation (2.2) is satisfied for the set ω1, ω2, . . . , ωi, . . . , ωN , where ωi is referred to as

the natural frequency of the ith mode. Since Equation (2.2) dates back to a eigenvalue

problem, there exists a corresponding set of eigenfunctions such as φ1, φ2, . . . , φi, . . . ,

φN , where φi is called the ith mode shape. Using the natural frequencies and the mode

shapes, the following matrices are defined:

Ω :=





ω1 0 . . . . . . . . . 0

0 ω2 0 . . . . . . 0

0 0 ω3 0 . . . 0
...

...

0 . . . . . 0 ωN−1 0

0 . . . . . . . 0 ωN





, (2.3)

Φ := [φ1 φ2 . . . φN ] . (2.4)

The matrices in Equations (2.3) and (2.4) are called matrix of natural frequencies and

modal matrix, respectively. The modal matrix Φ diagonalizes the mass matrix M and

the stiffness matrix K as

Mm = ΦTMΦ,

Km = ΦTKΦ.

Furthermore, if proportional damping is assumed, the damping matrix can also be

diagonalized as

Cd
m = ΦTCdΦ.
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Defining the modal coordinate qm as

q := Φqm, (2.5)

one needs to left-multiply Equation (2.1) by ΦT to obtain

ΦTMΦq̈m + ΦTCdΦq̇m + ΦTKΦqm = ΦTfw,

which is multiplied by the inverse of the modal mass matrix Mm so that the modal

model is achieved in the form

q̈m + 2ΥΩ q̇m + Ω2 qm = bwfw, (2.6)

where

Ω2 := Mm
−1Km,

Υ := 1/2Mm
−1/2Km

−1/2Cm,

bw := Mm
−1Φ.

Equation (2.6) gives the N modes in matrix form. Each mode can be represented

independently since they are uncoupled as

q̈mi + 2ζiωi q̇mi + ω2
i qmi = bwifwi, ∀ i = 1 : N.

2.1.3. State Space Modal Models

The modal state space representation of a flexible structure is given by the triple

(Am,Bm,Cm) and the state vector x, which are

Am = diag (Ami) ,
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Bm =
[

BT
m1 BT

m1 . . . BT
mn

]T
,

Cm =
[

Cm1 Cm2 . . . Cmn

]
,

x =
[

x1 x2 . . . xn

]T
.

Each block Ami, Bmi and Cmi has the dimensions 2×2, 2×Nu and Ns×2, respectively.

The number of actuators in the system is given by Nu, and Ns denotes the number of

sensors. The state vector is given by x. The Ami blocks and the corresponding state

vectors can be given in four different forms as in [3]

Ami =



 0 ωi

−ωi −2ζiωi



 , (2.7)

Ami =



 −ζiωi ωi

−ωi −ζiωi



 , (2.8)

Ami =



 0 1

−ω2
i −2ζiωi



 , (2.9)

Ami =



 −ζiωi + jωi

√
1 − ζ2

i 0

0 −ζiωi − jωi

√
1 − ζ2

i



 , (2.10)

xi =



 qmi

q̇mi/ωi



 , (2.11)

xi =



 qmi

qmoi



 , (2.12)

xi =



 qmi

q̇mi



 , (2.13)

xi =



 qmi − jqmoi

qmi + jqmoi



 , where qmoi = ζiqmi + q̇mi/ωi. (2.14)

Since the triple (Am,Bm,Cm) is decoupled, each mode’s state space representation
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can be given by the corresponding ith block (Ami,Bmi,Cmi) as

ẋi = Ami xi + Bmi u,

y = Cmi xi.

2.2. Piezoelectricity

Piezoelectricity has been frequently studied for control and disturbance sensing

of flexible structures in different areas such as aerospace engineering, electrical engi-

neering, precision engineering and mechatronics [4]. Piezoelectric materials are widely

preferred as electromechanical converter parts of devices such as ultrasonic genera-

tors, filters, sensors and actuators. In this study, piezoelectric materials are used as

actuators and sensors for active vibration control of beams and plates.

The piezoelectric materials can be incorporated into a structure, either by em-

bedding them as laminates, or mounting them onto the surface of the structure. The

piezoelectric actuators and sensors are assumed to be perfectly bonded to the struc-

ture. The actuators and sensors can be continuous over the entire structure or can be

placed on some specific locations.

First, constitutive theory of piezoelectricity and piezoelectric equations are given.

Then, Finite Element models of piezoelectric materials are derived, when basic FEM

concepts are introduced for non-piezoelectric media.

2.2.1. Constitutive Theory of Piezoelectricity

Piezoelectricity is the linear interaction between mechanical and electrical systems

[5]. It is first discovered by Curie brothers in 1880. Their studies on thermal-electrical

effects of crystal symmetry have led them to further investigate the electromechanical

interaction.
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Figure 2.1. The piezoelectric effect on a single piezo disc

To illustrate the piezoelectric effect, consider a cylinder made of a piezoelectric

material of a certain length without any voltage or stress applied initially as shown in

Figure 2.1 (a). Whenever a force is applied to the ends of the cylinder, the resulting

deformation produces a voltage at the two electrodes placed at the two surfaces of the

cylinder. The polarity of the resulting voltage depends on the loading mode. If the

forces act in a way such that there is a tension on the cylinder, the resulting voltage

is of the same magnitude but of a different sign than in the case when a pressure is

applied as shown in Figure 2.1 (b) and (c). Since this effect is discovered first, it is

called the direct piezoelectric effect. The piezoelectric materials exhibit also the reverse

piezoelectric effect. If a DC voltage is applied to the electrodes, the cylinder contracts

(Figure 2.1 (d)). When the same voltage is applied to the opposite electrodes of the

piezoelectric material, the cylinder will extend (Figure 2.1 (e)). When an AC voltage is

applied to the electrodes, the piezo cylinder will extend and contract at the frequency

of the AC voltage.

Some examples of materials which show high piezoelectric properties are quartz

(see Figure 2.2), Rochelle salt, tourmaline and lithium sulphate. These naturally piezo-

electric materials have specific directions, the so-called Polar Axis, at which they show

the piezoelectric effect.

Piezoelectric effect can also be added to some ferroelectric substances such as
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Figure 2.2. Natural quartz

barium titanate, lead meta-niobate and lead zirconate titanate through sintering from

crystalline powder, which are made of cells consisting of dipoles. As shown in Figure

2.3 (a), the dipoles in the ceramic are of arbitrary direction when no voltage is applied.

In the presence of an electric field, the dipoles are aligned (Figure 2.3 (b)). Keeping

the ferroelectric material in the electric field, the ceramic is heated to a temperature

higher than the Curie point and cooled slowly down to the room temperature (Figure

2.3 (c)). So the ferroelectric material becomes a piezoelectric one [6].
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Figure 2.3. Schematic representation of electric dipole elements

2.2.2. Piezoelectric Equations

Consider a piezoelectric X-cut circular plate of cross sectional area A, and thick-

ness l in Figure 2.2. When V is the voltage applied through the electrodes on the two

surfaces of the piezo disc, V is the integral of the electric field E1
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V =

∫ l

x=0

E1 dx,

where the subindex “1” denotes the X-direction in Figure 2.2. For such a disc, T1 and

S1 are the resultant stress and strain in the X-direction, respectively. Since both the

applied electric field and the resultant deformation are directed perpendicular to the

faces, this type of vibration mode is known as the Longitudinal Effect. The piezoelectric

constitutive relation for the disc is given by a pair of equations

S1 = sET1 + dE1, (2.15)

D1 = ǫTE1 + d T1, (2.16)

where D1 is the electric displacement, sE is the elastic compliance coefficient, d is the

piezoelectric constant and ǫT is the dielectric constant. The suffix E in sE means that

the elastic compliance sE gives the relationship between the strain S1 and the stress T1,

while the electric field E1 is kept constant. Similarly, the superscript T in the dielectric

constant ǫT means that T1 is kept constant. The same notation and approach is valid

for all other constants in the coupled piezoelectric equations, which will follow. In

Equations (2.15) and (2.16) the strain S1 and the electric displacement D1 are both

functions of the stress T1 and the electric field E1, which are the independent variables

in the equations. Hence, this type of piezoelectric relation is called (T,E) type. The

piezoelectric equations can be expressed in terms of other independent variables as well

as in Table 2.1. From Equations (2.15), (2.16) and Table 2.1 it can be easily seen that

Table 2.1. Other types of fundamental piezoelectric relations

Independent Variables Piezoelectric Relation

S,D
T = cDS − hD

E = −hS + βsD

T,D
S = sDT + gD

E = −gT + βT D

S,E
T = cES − eE

D = eS + ǫsE
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the coefficients d, h, g and e are the coupling coefficients, which relate the electrical

properties such as electric field and electric displacement to the mechanical properties

such as stress and strain and vice versa. For example, d gives the strain caused by the

applied electric field in the reverse piezoelectric effect or in the direct piezoelectricity it

gives the electric displacement resulting from the stress. The coupling coefficient d has

the unit m/V . Another example is the piezoelectric pressure constant g. It represents

the electric field produced by the unit stress applied to a piezoelectric material or the

strain caused by a unit electric displacement. The pressure constant g has the unit

Vm/N .

The other coefficients with suffixes, cD, sD, cE, are the primary constants. They

relate the properties of the same group, e.g. elastic stiffness coefficient cD gives the

relationship between strain and stress. All of the constants, whether they are primary

or coupling coefficients, can be expressed in terms of others [5, 7, 8, 9, 10, 11].

2.3. Finite Element Method

The Finite Element Method (FEM) is a widely used approximate solution tech-

nique to solve boundary value problems. The method is based on the idea of dividing

the solution domain into smaller subregions, the finite elements, and of obtaining an

approximate solution for the overall domain. With the advances in computer technol-

ogy, the method is been used successfully in many areas of engineering ranging from

deformation and stress analysis of automotive, aircraft, aerospace, and building to field

analysis of heat flux, fluid mechanics, and magnetic flux problems.

In FEM, the approximate solution is obtained in steps. First, the solution region,

that corresponds a geometry of a structure in vibration analysis, is discretized into

smaller subregions. These smaller subregions, the finite elements, are assigned nodes,

in terms of which the displacement field of the structure will be expressed. The number

of nodes, the degree of freedom (DOF) at nodes is selected according to the general

suggestions for finite elements and according to the experience of the engineer who

solves the problem. To give an example, for flexural vibrations of thin plates, each
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node is assigned three DOFs, whereas two DOFs are enough for in plane vibrations of

structures. Although a finite element assigned two nodes for its starting and ending

points, the numbers of nodes can be increased for more accurate results if the engineer

wishes. The functions which are used to approximate the solution in the finite elements,

the shape functions, are generated. This initial procedure is called mesh generation.

In the second step, the element stiffness and mass matrices are calculated. These

matrices arise when the governing equations, which describe the physical system’s

dynamic equilibrium in vibration analysis, are reformulated by using approximate so-

lutions in terms of the nodes and the shape functions. The unknown quantities are the

values of the displacements and rotations at the nodes.

In the third step, the element matrices are assembled to obtain the global mass

and stiffness matrices. When boundary conditions are applied and the constraints are

taken into account, the contribution of some of the nodes needs to be eliminated from

the global matrices.

In the remaining steps, the values of the variables at the nodes can be determined,

strains and stresses may be calculated, or an error estimation might be done [12, 13].

According to the goals of this thesis, modelling of the flexible structures and their

state space equations are necessary. Before introducing them, global mass, stiffness

and electromechanical coupling matrices have to be defined. In the following sections,

finite element mass, stiffness and piezoelectric coupling matrices, the shape functions

for beam and plate elements are derived based on the information given in literature

[14, 15, 16, 17, 13, 18].

2.3.1. Finite Element Matrices of Beams

To derive the interpolation functions and the finite element matrices for beam

elements a finite element with dimensions shown in Figure 2.4 is taken. The element

has two nodes at its ends and each node has two degrees of freedom (DOFs) v and
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∂v/∂x. The node at ξ = −1 has the DOFs v1 and (∂v/∂x)1. Similarly, the translational

DOF and the rotational DOF at the node at ξ = 1 are v2 and (∂v/∂x)2, respectively.

1 2 x, ξ

ξ = −1
ξ = 1

x = ax = −a

z

v

2a

py

Figure 2.4. Geometry of a single beam element

Using standard finite element procedure, the hermite displacement functions are

derived as

Nb(ξ) :=
[
N1(ξ) aN2(ξ) N3(ξ) aN4(ξ)

]
, (2.17)

where

N1(ξ) :=
1

4

(
2 − 3ξ + ξ3

)
,

N2(ξ) :=
1

4

(
1 − ξ − ξ2 + ξ3

)
,

N3(ξ) :=
1

4

(
2 + 3ξ − ξ3

)
, (2.18)

N4(ξ) :=
1

4

(
−1 − ξ + ξ2 + ξ3

)
.

By describing

w e :=
[
v1 θz1 v2 θz2

]
,

and letting θz1 :=

(
dv

dx

)

1

and θz2 :=

(
dv

dx

)

2

, the kinetic energy of the beam finite

element is given by

Te =
1

2
ẇ e M e ẇ e ,
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and the element inertia or mass matrix is expressed as

Me := ρAa

∫ +1

−1

Nb(ξ)T Nb(ξ) dξ. (2.19)

The potential energy of the beam element is given as

Ue =
1

2
w e K e w e . (2.20)

The element stiffness matrix is defined as

K e :=
EIz
a3

∫ +1

−1

Nb
′′(ξ)

T
Nb

′′(ξ) dξ. (2.21)

2.3.2. Finite Element Matrices of Plates

1

3

z, w

2a

4

2

y, η

x, ξ
2b

Figure 2.5. Geometry of a rectangular element. ξ = x/a, η = y/b

Figure 2.5 shows a rectangular element with four nodal points 1, 2, 3 and 4 at

each corner. At each node the component of displacement normal to the plane of the

plate, w, and the two rotations θx := ∂w/∂y and θy := −∂w/∂x are set as degrees of
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freedom. In terms of the local coordinates (ξ, η), the nodal rotational displacements

are expressed as

θx =
1

b

∂w

∂η
, θy = −1

a

∂w

∂ξ
. (2.22)

Similar to the beam element calculations, one tries to obtain a shape function to

express the displacements and the DOFs at the four nodes, which are given by

w e :=
[
w1 θx1 θy1 · · · w4 θx4 θy4

]T
. (2.23)

The displacement of the plate element can be given in terms of nodal DOFs as

w = Np(ξ, η) we , (2.24)

where

Np :=
[

N1(ξ, η) N2(ξ, η) N3(ξ, η) N4(ξ, η)
]
we

and

Ni(ξ, η) :=





1
8
(1 + ξiξ)(1 + ηiη)(2 + ξiξ + ηiη − ξ2 − η2)

b
8
(1 + ξiξ)(ηi + η)(η2 − 1)

a
8
(ξi + ξ)(ξ2 − 1)(1 + ηiη)





T

, ∀ i = 1 : 4. (2.25)

In Equation (2.25) (ξi, ηi) are the coordinates of the node i. This element is commonly

referred to as the ACM element [14], since it is given the initials of the researches who

successfully used it. Here

ξ1 = −1, ξ2 = 1, ξ3 = 1, ξ4 = −1,

η1 = −1, η2 = −1, η3 = 1, η4 = 1



24

as can easily be seen from Figure 2.5.

The kinetic energy of the plate element can be expressed as

Te =
1

2
ẇe

T Me ẇe , (2.26)

where

Me :=

∫

Ae

ρh Np
T Np dA

= ρhab

∫ +1

−1

∫ +1

−1

Np(ξ, η)T Np(ξ, η) dξ dη (2.27)

is the element inertia matrix. The potential energy of the plate element is given as

Ue =
1

2
wT

e K e w e .

The element stiffness matrix K e is given by

K e := ab

∫ 1

−1

∫ 1

−1

h3

12
BT

D B dξ dη,

where

B :=

[
∂2

∂x2

∂2

∂y2
2
∂2

∂x∂y

]T

Np =

[
1

a2

∂2

∂ξ2

1

b2
∂2

∂η2

2

ab

∂2

∂ξ∂η

]T

Np (2.28)

and

D = E





1

1 − ν2

ν

1 − ν2
0

ν

1 − ν2

1

1 − ν2
0

0 0
1

2 (1 + ν)




. (2.29)

In Equation (2.29) E and ν are Young modulus and Poisson’s ratio, respectively.
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2.3.3. Finite Element Matrices of Piezoelectric Materials

For finite element discretization of piezoelectric materials, the (ε, E)-type piezo-

electric constitutive equations

σij = cEijklεkl + elijEl, (2.30)

Di = eiklεkl + ǫεilEl (2.31)

are used, where the definitions of the variables are given in Table 2.2.

Table 2.2. The definition of the variables of Equations (2.30) and (2.31)

Tensor notation Matrix notation Definition

σij σ stress

εkl ε strain

cE
ijkl c the elastic stiffness constant

elji e the piezoelectric coupling coefficient

El E the electric field

Di D the electric displacement

ǫε
il ǫ permittivity

When performing finite element discretization of a structure with piezoelectric

materials, the coupling matrices and the electrical stiffness matrix come out in addition

to the usual mass and stiffness matrices due to the coupled electrical and mechanical

behavior of piezoelectric material.

The coupling terms are the element electrical-mechanical coupling stiffness matrix

Kuφ and the element mechanical-electrical coupling stiffness matrix Kφu. The electrical

stiffness term is the element dielectric stiffness matrix Kφφ. They are given by

Kuφ :=

∫

V

BTeTA dV, (2.32)

Kφu :=

∫

V

ATeB dV, (2.33)
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Kφφ :=

∫

V

ATǫA dV, (2.34)

where V is the volume of the element, A :=
[
−∂/∂x −∂/∂y −∂/∂z

]T
is the

derivative operator between electrical charge and electric potential, B is the deriva-

tive operator between strain and the generalized nodal displacements given by Equa-

tion (2.28). It can be seen from Equation (2.32) and Equation (2.33) that Kuφ = Kφu
T

[18].

The element mass matrix Muu and the element mechanical stiffness matrix Kuu

are the same as those of beams and plates. For calculating Muu and Kuu, the ele-

ment is treated as if it were not an electromechanically coupled element and had only

mechanical behavior.

As piezoelectric materials have two coupled equations, the finite element equa-

tions for them will also consist of two coupled equations, one for mechanical and one

for electrical behavior of the element [19]. Their coupled equations of motions are

Muu δ̈ + Kuu δ −Kuφ φ = fw, (2.35)

Kφu δ + Kφφ φ = −fq, (2.36)

where fw is the vector of applied mechanical forces, fq is the vector of applied electrical

charges, δ is the vector of generalized nodal displacements, φ is the vector of electrical

potentials. After substituting Equation (2.36) into Equation (2.35), one obtains

Muu δ̈ + K∗ δ = fw − KuφKφφ
−1fq, (2.37)

where

K∗ := Kuu + KuφKφφ
−1Kφu. (2.38)

Since the internal DOFs, φ, of the system are eliminated, this substitution operation
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is called static condensation of φ.

For sensors one assumes that the converse piezoelectric effect, shown in Fig-

ure 2.1 (d), is negligible, the voltage and the electrical charge sensed from the piezo-

electric sensor are

φs = −Kφφ
−1Kφusδs, (2.39)

fq s = −Kφusδs. (2.40)

Once Equations (2.39) and (2.40) are at hand, one can use electric potential as an

input to the element rather than electrical charge using the equation

Muu δ̈ + K∗ δ = fw −Kuφ φa, (2.41)

since electrical charge can be measured only indirectly. In Equations (2.39) to (2.41),

subscript s denotes sensors and a denotes actuators.

In the following subsections Equations (2.32) to (2.34) are solved for their open

forms for piezoelectric beam and piezoelectric plate elements. Since Equation (2.41)

can be used for any type of finite element of piezoelectric material, the solved elec-

tromechanical matrices can be inserted into that equation.

2.3.4. Piezoelectric Beam Element

The (S,E)-type piezoelectric constitutive equations were given by (2.30) and

(2.31). The open form of Equations (2.30) and (2.31) for the piezoelectric beam are

σ1 = c11ε1 − e31E3, (2.42)

D1 = e31ε1 − ǫ33E3. (2.43)

For the piezoelectric beam element, the open forms of Equations (2.32) to (2.34) are
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solved to give

Kuφ =





0

e31bpzt

0

−e31bpzt




,

Kφu =
[

0 e31bpzt 0 −e31bpzt

]
,

Kφφ =
2abpztǫ33
hpzt

,

where bpzt is the thickness of the piezoelectric beam element along the y-direction.

2.3.5. Piezoelectric Plate Element

For the piezoelectric plate, the open form of Equations (2.30) and (2.31) are






σ1

σ2

σ6





=





c11 c12 0

c12 c22 0

0 0 c66










ε1

ε2

ε6





−





0 0 e31

0 0 e32

0 0 0










E1

E2

E3





,






D1

D2

D6





=





0 0 0

0 0 0

e31 e32 0










ε1

ε2

ε6





−





ǫ11 0 0

0 ǫ22 0

0 0 ǫ33










E1

E2

E3





.

For the piezoelectric plate element, the open forms of Equations (2.32) to (2.34) are

solved to be give

Kuφ =
[

0 apzte32 bpzte31 0 apzte32 −bpzte31 ...

... 0 −apzte32 −bpzte31 0 −apzte32 bpzte31

]T
,

Kφu =
[

0 apzte32 bpzte31 0 apzte32 −bpzte31 ...

... 0 −apzte32 −bpzte31 0 −apzte32 bpzte31

]
,

Kφφ =
4apztbpztǫ33

hpzt

,
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where apzt and bpzt are half of the element length of the piezoelectric plate element

along the x- and the y-directions, respectively.

2.3.6. Assembly and Application of Boundary Conditions

After the element matrices are calculated, they need to be assembled to obtain

the global finite element mass and stiffness matrices. The assembly procedure can

be done with the aid of computer for any number of elements. However, it must be

done on a systematic basis since the assembly affects the condition number of the global

finite element matrices. In most cases, the assembled finite element matrices are sparse

matrices with its entries on the diagonal bands. The correct order of numbering of the

nodes, the DOFs and the elements gives the banded structure of these matrices. For

beams, the assembly process is much simpler than that for plates. Beams are one-

dimensional and 4 × 4 element matrices are just added considering the fact that each

neighboring element has one vertical and one rotational DOFs as common. For plates,

the assembly process is more complicated.

For a 2D plate, each node has three DOFs, namely w, θx and θy. Hence, each

node is represented by three numbers. The numbering of nodes is started at the left

lower corner, and the nodes to the right are numbered first. The same strategy is used

for element numbering.

The global matrices of the plate model have to reflect the contributions of individ-

ual DOFs each element matrix has. When the finite element matrices are assembled,

the contribution of the DOFs must be preserved. For this purpose, a destination vec-

tor for each element is created. The destination vector consists simply of the DOF

numbers of each element.

DOF numbers of the local element nodes in the order 1, 2, 3, and 4 in Figure 2.6

are selected as the destination vector
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D̂i =





DOFs of Local Node 1

DOFs of Local Node 2

DOFs of Local Node 3

DOFs of Local Node 4





T

.

Local Node 2Local Node 1

Local Node 4 Local Node 3

ξ

η

Figure 2.6. Local element

Using the destination vectors, the local element matrices are added to the global

matrices as

Mdi,dj
= Mdi,dj

+mi,j,

Kdi,dj
= Kdi,dj

+ ki,j,

where i, j = 1, 2, . . . , 12. The entries of the global matrices M and K at the dth
i row

and dth
j column are described by Mdi,dj

and Kdi,dj
, respectively. The entries of the local

finite element matrices Me and Ke at row i and column j are denoted by mi,j and ki,j,

respectively. The ith and jth entries of the destination vector D̂i for the local element

are given by di and dj, respectively.

When the procedure is completed for all of the elements of the structure, the
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global matrices M and K are obtained as banded matrices. If there are other global

matrices such as those arising from the piezoelectric materials in the structure, they

can be calculated in a similar way. After the global matrices are obtained, the next

step is the application of the boundary conditions.

Using the global matrices, the equation of motion of the structure can be written

as

M bc δ̈ + K bc δ = fw bc + fu bc , (2.44)

where M bc, K bc, fw bc and fu bc are the global matrices obtained after applying the

boundary conditions.

2.4. Model of the Structure

Before incorporating the signal weights into the generalized plant, the state space

representation of the flexible structure in Figure 2.7 needs to be obtained. The state

space model of the physical plant can be given in one of the four modal forms (2.7)

through (2.10) [3]. In this thesis, the first modal form is preferred. Since one of the

objectives of this thesis is to obtain approximate ARE solutions in the coprime and

H∞-controller design parts and the first modal state space representation is the most

suitable for this purpose, the physical plant is converted to that form.

Generalized plant

Controller

ym u

z =



























em

um

d

n



























= w

Figure 2.7. The generalized control configuration
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To obtain a state space representation like in Equation (2.7), first, the equation

of motion of the flexible structure with point actuators and sensors must be given in

nodal form as

Mq̈ + Cdq̇ + Kq = Lwd + Luu,

z = Czqq + Czvq̇, (2.45)

y = Cyqq + Cyvq̇,

where q is the vector of displacements, d and u are the vectors of disturbances and

control inputs acting on the nodes, respectively. The Ny × 1 output vector is denoted

by y. The matrix Lu of dimensions N ×Nu, is a function of the point actuators where

N and Nu denote the degree of freedom of the structure and the number of point

actuators, respectively.

The measured output displacement matrix Cyq has the dimensions Nr ×N , and

Cyv is the Nr × N measured output velocity matrix. The performance output vector

of dimensions Nz × 1 is denoted by z, where Czq and Czv are performance output

displacement and performance output velocity matrices, respectively.

If only rate sensors are installed and are collocated with actuators, no displace-

ment is measured, Cyq = 0, and Cyv becomes

Cyv = LT
u .

Assuming proportional damping and following the procedure in [3], Equation (2.45)

can be transformed to the equation of motion in the modal coordinates as

q̈m + 2ΥΩq̇m + Ω2qm = Lw,md + Lu,mu,

z = Czq,mqm + Czv,mq̇m, (2.46)

y = Cyv,mq̇m.
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In Equations (2.46), the newly defined variables are Lw,m := ΦTLw, Lu,m := ΦTLu,

Czv,m := CzvΦ, Czq,m := CzqΦ, Cyv,m := CyvΦ and Υ := diag (ζ1, ζ2, . . . ζN), where

Ω, Φ and qm are the matrix of natural frequencies in (2.3), the mode shape matrix in

(2.4) and the modal displacement vector in (2.5), respectively.

Equation (2.46) is obtained from the modal Equation (2.45) for point actuator

and sensor pairs. Since throughout the thesis the piezoelectric patches are also used

for actuating and sensing purposes, their nodal equations need to be converted to

Equation (2.45). This is done easily by defining new variables for Equation (2.44) and

by adding a proportional damping matrix C to Equation (2.44). Letting M := Muu bc,

K := K∗
bc, q := δ, fwbc = Lwd, and Lu := −Kuφbc Lp, where Lp transforms the

actuator and sensor input to inputs at the corresponding DOFs, one may have the

second order ordinary differential equation for structures with piezoelectric patches.

The state space realization of Equations (2.46) is

˙̂x = Âx̂ + B̂1d + B̂2u,

z = Ĉ1x̂, (2.47)

y = Ĉ2x̂,

where x̂ :=
[
qm

T q̇T
m

]T
,

Â :=



 0 I

Ω2 2ΥΩ



 , B̂1 :=



 0

Lw,m



 , B̂2 :=



 0

Lu,m



 ,

Ĉ1 :=



 Czq,m 0

0 Czv,m



 , Ĉ2 :=
[

0 Cyv,m

]
.

The state space representation in (2.47) can be converted to the third modal form in

Equation (2.9) by the coordinate transformation x3 = Rx̂, where

R := [t1 t2] . (2.48)
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In Expression (2.48) t1 and t2 are

t1 :=





1 0 . . . . . . . . . . . . 0

0 0 . . . . . . . . . . . . 0

0 1 0 . . . . . . . . . . 0

0 0 0 . . . . . . . . . . 0
...

...

0 . . . . . . . . . . 0 1 0

0 . . . . . . . . . . 0 0 0

0 . . . . . . . . . . . . 0 1

0 . . . . . . . . . . . . 0 0





, t2 :=





0 0 . . . . . . . . . . . . 0

1 0 . . . . . . . . . . . . 0

0 0 0 . . . . . . . . . . 0

0 1 0 . . . . . . . . . . 0
...

...

0 . . . . . . . . . . 0 0 0

0 . . . . . . . . . . 0 1 0

0 . . . . . . . . . . . . 0 0

0 . . . . . . . . . . . . 0 1





.

The coordinate transformation which is used to obtain the state space realization of

the structure in the first modal form is x1 = R31x3, where

R31 := diag







 1 0

0 ω1



 ,



 1 0

0 ω2



 , · · · ,



 1 0

0 ωN







 . (2.49)

The total coordinate transformation xm = R31Rx̂ can be used to convert the state

space realization in Equation (2.47) to the first modal form





R̂−1ÂR̂ B̂1R̂ B̂2R̂

R̂−1Ĉ1 0 0

R̂−1Ĉ2 0 0



 =:





Am Bm1 Bm2

Cm1 0 0

Cm2 0 0



 ,

where R̂ := R31 R and the state matrix

Am = diag







 0 ω1

−ω1 −2ζ1ω1



 , · · · ,



 0 ωN

−ωN −2ζNωN







 . (2.50)
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2.5. Signal Weightings

Most often in control engineering, it is necessary to emphasize some of the desired

control objectives, and also some re-scalings of the inputs and outputs are required.

This is done by using the signal weightings as shown in Figure 2.8. Some measurement

noise may also be modeled by signal weights.

Plant

Wdist

Controller
ym u

z =



























em

um

d

n



























= w

Wsn

Wer

Win

Generalized Plant

y+
+

Figure 2.8. The weighted generalized plant with the controller

In Figure 2.8, each system (Wdist,Wsn,Wer,Win and Plant) has its own state

space realization. If these subsystems are interconnected, the generalized plant in

Figure 2.8 has the state space representation

ẋg = Agxg + Bg1
w + Bg2

u,

z = Cg1
xg + Dg11

w + Dg12
u, (2.51)

y = Cg2
xg + Dg21

w + Dg22
u,

where w, z and y are [dT nT]T, [em
T um

T]T and ym, respectively.

In Equation (2.51), Ag, Bg1, Bg2, Cg1, Cg2, Dg11, Dg12, Dg21 and Dg22 are
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Ag =





Am Bm1Cw 0 0 0

0 Aw 0 0 0

BzCm1 BzDm11Cw Az 0 0

0 0 0 Au 0

0 0 0 0 As





, (2.52)

Bg1
=



 (Bm1Dw)T 0 BT
w 0 (BzDm11Dw)T

0 0 0 0 Bs
T




T

, (2.53)

Bg2
=

[
Bm2

T 0 (BzDm12)
T Bu

T 0
]T
, (2.54)

Cg1
=



 0 0 0 Cu 0

DzCm1 DzDm11Cw Cz 0 0



 , (2.55)

Cg2
= −

[
Cm2 Dm21Cw 0 0 Cs

]
, (2.56)

Dg11
=



 0 0

DzDm11Dw 0



 , (2.57)

Dg12
=



 Du

DzDm12



 , (2.58)

Dg21
= −

[
Dm21Dw Ds

]
, (2.59)

Dg22
= −Dm22. (2.60)

2.6. Obtaining Modal Models of the Generalized Plant

Hiramoto et al. [1] design their controller for the physical plant and neglect damp-

ing. Since the aim is to design a coprime controller for the shaped plant without ne-

glecting the modal damping, it is necessary to put the generalized plant into a modal

state space form, where the state matrix is block diagonal and each mode can be dealt

individually.

Theorem 2.6.1. By the coordinate transformation x = Zxg, the state space repre-

sentation of the generalized plant in Equation (2.51), in which the physical system is
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given in one of the four modal forms (2.7) through (2.10), can be converted to the space

realization

A := Z−1AgZ, B1 := Bg1
Z, B2 := Bg2

Z,

C1 := Z−1Cg1
, D11 := Dg11

, D12 := Dg12
, (2.61)

C2 := Z−1Cg2
, D21 := Dg21

, D22 := Dg22
,

where

A := blockdiag
(

Am, Aw, Az, Au, As

)
, (2.62)

and Z := X−1Xg, X and Xg being the eigenvectors of the state matrices A and Ag,

respectively.

Proof. Since the eigenvalues of the global state matrices in Equations (2.52) and (2.62)

are equal, there exists a single diagonal eigenvalue matrix Λ for both of the state

matrices in Equations (2.52) and (2.62) which obey

Ag = XgΛXg
−1,

A = XΛX−1,

where

Λ = diag (λ1, λ2, . . . λi, . . . λn) .

Using the coordinate transformation Z the global state matrix Ag can be put into a

block diagonal form in (2.62).

The block diagonal form of the state matrix in (2.62) will make it possible to

obtain simple and diagonally dominant solutions of the Algebraic Riccati Equations

(ARE’s) in the controller synthesis step.
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2.7. Model Reduction

As the DOFs of a physical system increase, the dynamic analysis of that system

becomes numerically more difficult and takes more computation time. Also the order

of the controller is dependent on the order of the structure. In fact, the order of

the controller is higher than the order of the physical plant since most controllers are

designed using signal weights to scale inputs and outputs of the plant and to emphasize

the control objectives. Hence, to reduce computation costs, some of the states (modes)

can be left whose contribution are small (in terms of system norms such as H2 or H∞)

in comparison to others.

Mainly, the methods are categorized into two groups of truncation and residual-

ization techniques. These methods for order reduction can be found in various books

[3, 20, 21, 22, 23]. Among the methods described in these references, the reduction

through truncation will be applied for model reduction purposes throughout the thesis.

2.7.1. Modal Truncation

Let

P :=



 A B

C D





be a state space representation of a stable system. For n modes, the corresponding

modal state vector x with the dimensions N = 2n × 1 can be partitioned into the

retained states xr and the truncated states xt. If k modes are truncated, then r = 2k

and l = 2(n−k). The state vector x and the corresponding modal state space matrices

A, B, C can be given in the partitioned form as

x =



 xr

xt



 , A =



 Ar 0

0 At



 , B =



 Br

Bt



 , C =
[

Cr Ct

]
, (2.63)
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where A is in one of the modal forms as (2.7) through (2.10). The truncated model

has the state space realization as

Pr =



 Ar Br

Cr D



 .

The state space matrices Ar, Br and Cr can also be achieved by the operation

Ar = LALT, Br = LB, Cr = CLT,

where L =
[

I2k 0
]
. This reduction is said to be modal model reduction since the

state matrix A is one of the four modal forms [3, 24].

Theorem 2.7.1 (Skogestad and Postlethwaite [20]). The difference between the full-

and reduced-order models is

P− Pr =

n∑

i=r+1

Ci Bi

s− ω2
i

, (2.64)

where r is the number of truncated states, ωi is the ith natural frequency of the system

P. The ith modal input and output matrices Bi and Ci are of dimensions 2 ×Nu and

Ns × 2, respectively. The number of inputs and outputs are described by Nu and Ns,

respectively.

Proof. If the state space realization P is given in one of the modal forms (2.7) through

(2.10), the state matrix A can be diagonalized such that

A = diag
(
ω2

1, ω2
1, . . . ω2

n, ω2
n

)
,

B =
[

BT
1 BT

1 . . . BT
n

]T
,

C =
[

C1 C2 . . . Cn

]
,

If the natural frequencies are ordered as ω2
1 < ω2

2 < . . . and first r states are retained,
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then the truncated system in (2.63) has the state space realization

At = diag
(
ω2

r+1, ω2
r+1, . . . ω2

n, ω2
n

)
,

Bt =
[

BT
r+1 BT

r+2 . . . BT
n

]T
,

Ct =
[

Cr+1 Cr+2 . . . Cn

]
,

for which the transfer function is given by Equation (2.64).

Remark. Note that the difference (the error between the full-order and truncated

models) depends on both the residues CiBi and the distance of ω2
i from the imaginary

axis. For flexible structures, however, the error of the mode decreases monotonically

as the index i increases. That is, the faster the mode is, the smaller is ratio between

CiBi and ω2
i [3, 20, 24].
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3. OPTIMIZATION AND I/O SELECTION

3.1. Review on Different I/O Selection Criteria

The optimal location selection techniques can be roughly grouped into two main

categories. First type of methods uses closed-loop objective criteria, whereas second

group selects open-loop optimization metric without designing a feedback controller.

The latter can be preferred in some cases where a controller design stage takes much

computation time. However, open-loop criteria based approach may exhibit great

deviations, when the controller is added to the system.

Beside this simple categorization of the actuator and sensor location selection

methods, all of the methods are desired to posses some certain properties for a successful

optimal placement.

3.1.1. Desired Properties of Input/Output Selection Methods

According to the review paper [25], an input/output selection method should

have the following desired properties.

Well-founded: The selection technique must give the relation between the mea-

sured outputs y and the control inputs u clearly. If one applies the method to a physical

application, the change in both the system input variables u and the controller input

variables y should affect the control goals.

Efficient: As the number of the inputs u and the outputs y increases, the number

of the candidate input/output sets increases more rapidly. Hence, the selection method

is desired to solve the best location selection problems quickly.

Effective: An input/output selection method is said to be effective if the com-

binations, for which the control goals cannot be obtained, are eliminated. These com-
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binations are called nonviable input/output sets.

Generally Applicable: An input/output selection method is desired to be ap-

plicable to every control problem which can be put into the general control configuration

in Figure 1.1.

Rigorous: Viable input/output sets must be determined rigorously. The more

rigorous the selection method is, the less is the number of available viable sets. For

instance, a selection technique for choosing robustly stable candidates is said to be

more rigorous than a method for obtaining nominal stable plants.

Quantitative: A qualitative input/output method gives only a binary answer

about viability of an input/output set. It says only “yes, the configuration is viable”

or “no, this set is not viable” whereas a quantitative approach can include information

about the strength of a corresponding candidate set. This property is extremely desired

since otherwise one cannot compare the candidate input/output sets.

Controller independent: The input/output selection method can identify some

sets as viable for which, however, there is not any controller meeting the initial control

specifications. Such methods require a check for the existence of controllers and are

therefore controller dependent.

Direct: For the selection of the optimal location of actuators and sensors there

could be an infinite number of combinations. In such problems an exhaustive candidate

by candidate search becomes not doable. Therefore, the search method is desired to be

direct so that it obtains the best location directly without dealing with each candidate.

3.1.2. Different I/O Selection Criteria

In the review paper [25], many input/output selection methods are discussed and

grouped in different ways.
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3.1.2.1. State Controllability and State Observability. Consider Figure 1.1, in which

the plant G consists of four blocks as

G :=



 Gzw Gzu

Gyw Gyu



 .

The plant G is finite-dimensional, linear, time-invariant and continuous time. The

lower right part of the plant G is denoted by Gyu and has the state space description

ẋ = Ax + Bu, (3.1)

y = Cx + Du. (3.2)

The dynamic system (3.1) or the pair (A,B) is state controllable if, for any given

initial state x0, any time te > 0, any final state xe there exists an input u(t) such that

x(te) = xe.

The dynamic system (3.1) and (3.2) or the pair (C,A) is state observable if, for

any time te > 0, the initial state x0 can be determined from the time history of the

input u(t) and the output y(t) in the interval [0, te].

These are basic definitions of state controllability and state observability. Al-

though some modified versions are also introduced which exhibit a quantitative nature,

the state controllability and the state observability are both ”binary” properties of a

physical system. That is, a system is state controllable or not. These properties of a

system can be checked in various ways such as controllability/observability Gramians,

matrices, etc. [20, 21].

A naive and simple approach for input/output selection is to accept configurations

which are both state controllable and state observable. However, in literature there

are few optimal selection methods based on this simple idea. Quantitative measures

of controllability and observability are preferred since they can give more information

for comparing the different combinations of actuator and sensor locations.
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Among the techniques, which are used for checking controllability and observ-

ability, Gramians can serve as a more rigorous quantitative measure.

For optimal actuator and sensor location selection, Georges [26] defines transient

controllability and observability Gramians at a time T as

Wc(C, T ) =

∫ T

0

eAtBBTeATt dt,

Wo(C, T ) =

∫ T

0

eATtCTCeAt dt.

Optimal sensor location is the solution of a integer programming problem of the form

max
ci,j∈{0,1},∀ i=1:p,j∈{S}

λ(Wo(C, T )) (3.3)

subject to
∑

j∈S

ci,j = 1, ∀ i = 1 : p, (3.4)

where λ(Wo(C, T )) is the minimum eigenvalue of the transient observability Gramian

Wo(C, T ) at a time T . The (i, j)th element of the output matrix C is denoted by ci,j.

The configuration of sensor locations is given by ci,j . The number of sensors is p, and

S is the set of indices corresponding to states which can be measured.

According to Equation (3.3) the best sensor location is the configuration which

maximizes the minimum eigenvalue of Wo(C, T ) at the time T . This configuration

corresponds to the case where the output energy is at maximum for the given state.

For optimal actuator location selection a similar Gramian based technique is

introduced. The energy to reach a given state has to be minimized by minimizing the

maximum eigenvalue of Wc(C, T )−1, the inverse of the controllability Gramian at a

time T .

min
bi,j∈{0,1},i∈{A},∀ j=1:m

λ
(
Wc(B, T )−1

)
(3.5)

⇔
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max
bi,j∈{0,1},i∈{A},∀ j=1:m

λ (Wc(B, T )) (3.6)

subject to
∑

i∈A

bi,j = 1, ∀ j = 1 : m (3.7)

In (3.5), λ(Wc(B, T )) is the maximum eigenvalue of the inverse of the transient con-

trollability Gramian Wc(B, T ) at a time T . The (i, j)th element of the input matrix

B is denoted by bi,j, which gives configuration of the actuator locations. The number

of actuators is given by m, and A is the set of indices corresponding to states which

can be actuated.

Hać and Liu [27] have dealt with optimal placement of actuators and sensors of

flexible structures which are exposed to external transient and persistent disturbances.

They have developed certain criteria which contain some measures of controllability and

observability Gramians. They provide some Gramian based energy expressions which

are result of their criteria designed to obtain a balance between the global response of

the system and response of the weakest controlled/observed mode.

Hać and Liu [27] model continuous systems by the general wave equation [28]

M(P )
∂2w(P, t)

∂t2
+ 2ζ [M(P )L]1/2

[
∂w(P, t)

∂t

]
+ L[w(P, t)] = F (P, t), (3.8)

where w(P, t) is the displacement of the structure as a function of spatial variable

P ∈ D and time t. The domain over which the wave equation is valid is denoted by

D and F (P, t) describes the external forces. The linear differential operator for the

spatial variable P is L, and M(P ) gives the mass distribution. There are p point force

actuators located at points Pj (j = 1, 2, . . . , p).

Introducing the modal coordinates, Equation (3.8) can be replaced by the set of

ordinary differential equations

η̈i + 2ζωiη̇i + ω2
i ηi =

p∑

j=1

φi(Pj)fj(t), ∀ i = 1 : n. (3.9)
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The state space representation of Equation (3.9) reads as

ẋ = Ax + Bu,

yd = Cdx, or

yυ = Cυx,

where the state vector x, the input vector u, the state matrix A, the input matrix B,

the displacement output matrix Cd and the velocity output matrix Cυ are

x =
[
η̇1 ω1η1 . . . η̇n ωnηn

]T
,

u =
[
f1 f2 . . . fp

]T
,

A = diag (Ai) , Ai =



 −2ζiωi −ωi

ωi 0



 ,

B =





Φ1(P1) . . . Φ1(Pp)

0 . . . 0
...

...
...

Φn(P1) . . . Φn(Pp)

0 . . . 0





,

Cd =





0 Φ1(P1)/ω1 . . . 0 Φn(P1)ω

0 Φ1(P2)/ω1 . . . 0 Φn(P2)ω
...

...
...

...

0 Φ1(Pr)/ω1 . . . 0 Φn(Pr)ω




,

Cυ =





0 Φ1(P1)/ω1 . . . 0 Φn(P1)ω

0 Φ1(P2)/ω1 . . . 0 Φn(P2)ω
...

...
...

...

0 Φ1(Pr)/ω1 . . . 0 Φn(Pr)ω




,

respectively.

Using the state space model, Hać and Liu [27] discuss transient and persistent

disturbance cases. In both of them the control energy to bring the system to the
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desired states can be expressed in terms of controllability Gramian Lc. Since the

flexible structures exhibit small damping rations (ζi << 1 ∀ i = 1 : n) and have well

separated resonance frequencies, the controllability Gramian has a simple diagonal

form. “Well separated natural frequencies” means that the frequency response of the

ith mode at the ith resonance frequency is always much higher than the frequency

responses of other modes at the ith resonance frequency [3]. In this case, the diagonal

blocks of Lc become

Lii = diag

(
βii

4ζiωi

,
βii

4ζiωi

)
, where βij =

p∑

q=1

Φi(Pq)Φj(Pq).

Since the same or similar controllability and energy expressions appear for flexible

structures exposed to both persistent and transient disturbances, a single actuator

placement criterion can be proposed as

PI ′ =

(
2

n∑

i=1

Ei

)
n

√√√√
n∏

i=1

(Ei), where Ei = βii/4ζiωi. (3.10)

The performance index (3.10) is chosen according to simulations the authors [27]

have made and is said to give a good balance between the importance of all modes.

The first term of the optimization index (3.10) describes the total energy of the system,

which is dominated by lower order modes. As the order of modes gets higher, the energy

decreases. The second term in Equation (3.10) under the root sign gives a ellipsoid

volume in an n dimensional space. This term vanishes when some high frequency

modes become uncontrollable.

For sensor location selection a similar approach is used where observability Gramian

is considered. Diagonally dominant observability Gramians are obtained for both tran-

sient and persistent disturbance cases. Finally a global optimal sensor location selection

index, similar to that in Equation (3.10), is introduced.

Another study about optimal actuator and sensor location selection, which uses
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controllability and observability Gramians, is the paper of Gawronski and Lim [29].

According to their definition, a flexible structure is a finite dimensional, controllable

and observable linear system with small damping and complex poles. They derive

some structural properties of flexible structures in modal and balanced coordinates.

In balanced representation, the controllability and observability Gramians are equal,

and diagonal entries of them are Hankel singular values which give a measure for

controllability and observability.

The controllability Gramian Lc and observability Gramian Lo are the results of

the Lyapunov equations

ALc + LcA
T + BBT = 0,

ATLo + LoA + CTC = 0.

If the state matrix A is stable, the resulting Gramians are positive definite. The state

space realization of the system is said to be balanced if the controllability Gramian

and the observability Gramian are equal and digonal, where the diagonal entries are

the square of the Hankel singular values as

Lc = Lo = Γ2, Γ = diag(γ1, γ2, . . . , γn), γi ≥ 1, ∀ i = 1 : n,

where γi is the ith Hankel singular value of the system.

If the system of concern fulfils the requirements of being a flexible structure, the

following assumptions can be made which are used in the optimal actuator and sensor

selection by means of Gramians:

In modal coordinates the controllability and observability Gramians are diago-

nally dominant such that off-diagonal terms can be neglected. Hence, they become

Lc
∼= diag(Lci), Lci

∼= lciI2, Lo
∼= diag(Loi), Loi

∼= loiI2,
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where the product of the Gramians (Lc and Lo) gives the Hankel singular values

LcLo
∼= Γ4 = diag(γ4

1 , γ
4
2 , . . . , γ

4
n). (3.11)

Given a modal state space representation with matrices (Am,Bm,Cm), the balanced

representation with matrices (Ab,Bb,Cb) can be obtained as

(Ab,Bb,Cb) ∼= (Am,R
−1
mbBm,CmRmb),

where

Rmb = diag(Rmb i),

Rmb i = riI2, ∀ i = 1 : n2,

ri =

(
lci
loi

)1/4

.

Given the natural modes φi (∀ i = 1 : n2) of a flexible structure in modal coordinates,

the balanced modes φbi are obtained as

φbi
∼= riφi, ∀ i = 1 : n2.

The balanced state matrix for a flexible structure has the form

Ab
∼= diag(Abi), ∀ i = 1 : n2,

Abi =



 −ζi ωi

−ωi −ζiωi



 .

The actuator and sensor placement technique is developed according to balanced real-

izations of flexible structures. Gawronski and Lim [29] obtain a relationship between

Hankel singular values and actuator/sensor locations in balanced coordinates. Using

the balanced representation of flexible structures they define root mean square (r.m.s)

law of Hankel singular values, which says that the squares of the Hankel singular values



50

of a structure with multiple actuator and sensors are approximately the r.m.s sum of

squares of Hankel singular values of structures with a single actuator and sensor pair

as

γ2
k
∼=
(

p∑

i=1

q∑

j=1

γ4
k(i, j)

)1/2

, ∀ k = 1 : n2, (3.12)

where p, q and γk(i, j) are the number of actuators, the number of sensors and the

Hankel singular value of kth balanced mode for the ith actuator and jth sensor, respec-

tively.

The next step is to derive a placement strategy. Since actuator location selection,

sensor location selection and joint actuator and sensor selection problems are similar,

for simplicity the authors [29] handle the actuator placement only. Equation (3.12)

becomes then

γ4
k
∼=

p∑

i=1

γ4
k(i).

The placement index σ2
k(i) of the ith actuator at the kth mode is defined as

σ2
k(i) =

γ4
k(i)

γ4(N)
, σ2

k(i) ≤ 1, where γ4(N) =

n2∑

k=1

N∑

i=1

γ4
k(i).

The global coefficient for N candidate locations is denoted by γ4
k(i). It gives the

contribution of each Hankel singular value γk(i) for all candidates of actuators and all

modes.

The controllability and observability of the kth mode is measured in terms of kth

modal index σ2
mk, which equals to

σ2
mk(p) =

p∑

i=1

σ2
k(i), σ2

mk ≤ 1, ∀ k = 1 : n2.
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The ith actuator index is defined to give the controllability and observability properties

of the ith actuator as

σ2
a(i) =

n2∑

k=1

σ2
k(i), σ2

a ≤ 1, ∀ i = 1 : p.

The actuators with small index σ2
a(i) are to be removed. The controllability and

observability of modes with small index σ2
mk should be eliminated or improved by

changing the position of the actuator and the sensor location.

3.1.2.2. Right Half Plane Zeros. A multi-variable system with the transfer function

G(s) has its zeros zi as the values of s where G(s) loses rank. For SISO systems, G(s)

has the rank one, and at zeros zi the rank of the system reduces to zero. Hence, for

a SISO system G(zi) = 0. The general definition of zeros is given by Skogestad and

Postlethwaite [20] as follows:

If the rank of the system G(s) at zi is less than the normal rank of G(s), zi is

a zero of G(s). For nz zeros of the system G(s), the associated zero polynomial is

expressed as z(s) =
∑nz

i=2(s− zi).

Multivariable zeros are called transmission zeros in literature [30, 31]. Zeros

can be computed either from transfer functions or state space realizations. In the

former, the transfer function which corresponds to a minimal realization of the system

is obtained. The minors of the order r are generated, where r is the nominal rank of

the transfer function G(s). The greatest common divisor of all the numerators of the

minors is the zero polynomial z(s). If one needs to compute zeros from state space

description of the system, the following state space equations must be achieved:

P (s)



 x

u



 =



 0

y



 , where P (s) =



 sI −A −B

C D



 . (3.13)

The zeros are the values of s at which the matrix P (s) in Equation (3.13) has zero

output for some non-zero input. At zeros the rank of P (s) is smaller than the normal
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rank of P (s). Zeros are the non-trivial solutions of the problem

(ziIg − M)



 xzi

uzi



 = 0, (3.14)

M =



 A B

C D



 , Ig =



 I 0

0 0



 .

Right Half Plane zeros limit the closed-loop performance for both SISO and

MIMO control systems. For a SISO single DOF control system setup, the performance

measure is given in terms of magnitude bounds on the sensitivity function S(s) =

1/(1+P (s)K(s)). That is, |S(s)| needs to be small at low frequencies for good enough

disturbance rejection properties, and the bandwidth should be as large as possible.

However, the presence of RHP-zeros causes the bandwidth to be smaller. For MIMO

systems, the phenomena of RHP-zeros are similar and even more severe. Skogestad

and Postlethwaite [20], Zhou et al. [21], Freudenberg and Looze [32], Sidi [33], Havre

and Skogestad[34] study the performance limitations because of RHP-zeros by using

different performance specifications. Holt and Morari [35], Morari et al. [36] discuss

the effect of RHP-zeros on the achievable closed-loop performance by introducing a

new tool called zero directions, which can be used to evaluate the feasibility of different

decouplers, inverse-based controllers of the form C(s) = P−1(s)K(s). (See [31] for

more details.)

Since the open-loop RHP-zeros of a system play an important role in the perfor-

mance of the closed-loop system, a simple input/output selection criterion would reject

the actuator and sensor configurations where RHP-zeros cause the performance limi-

tations to decrease under a desired level. Hovd and Skogestad [37] use this principal

as a part of their selection criteria of the manipulated and measured variables for their

chemical plant.

Maghami and Joshi [38] develop an optimal actuator and sensor location selection
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technique for large-order flexible space structure, where the placement of actuators and

sensors is optimized in order to move the zeros in right-half-plane to the left-half-plane.

3.1.2.3. Input-Output Controllability. A plant P is said to be input/output control-

lable if a desired performance level can be obtained. That is, the performance outputs,

which consist of both physical deformations of the system and outputs, can be kept

under certain limits, in the presence of bounded uncertainties, references, disturbances

and measurement and sensor noises.

There are different measures of input/output controllability of a plant. Most of

them are based on singular value decomposition (SVD). Given a complex l×m matrix

P , the singular value decomposition of P has the form

P =
[
U1 U2

]

︸ ︷︷ ︸
U



 Σ1 0

0 0





︸ ︷︷ ︸
Σ



 V H
1

V H
2



 ,

︸ ︷︷ ︸
V H

(3.15)

where U and V are the unitary matrices of dimensions of l× l and m×m, which form

orthonormal bases for the column space of P and the row space of P , respectively. Σ1

is diagonal matrix of the dimension k = min(l,m) and consists of real nonnegative

singular values σi, which are found as

σi(P ) =
√
λi(PHP ), ∀ i = 1 : k. (3.16)

The input direction U1 and the output direction V1 are related to nonzero singular

values and are therefore described as the most important directions.

Using the general definition of singular value decomposition, Euclidean condition

number κ and pseudo inverse P † of a complex matrix P are given as

κ(P ) =
σ(P )

σ(P )
,
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P † =
r∑

i=1

1

σi(P )
ViU

H
i .

3.1.2.4. The Minimum Singular Value. The frequency dependent minimum singular

value σ(P ) of a plant P can be used for input/output selection purposes. Generally,

actuator and sensor configurations with a large σ(P ) are preferred. The reasons can

be summarized as follows:

• According to [20], a MIMO system which has as many inputs as outputs is in-

put/output uncontrollable if σ(P (jω)) = 0 ∀ ω. In case of σ(P ) = 0, not all of

the outputs of the plant can be controlled independently.

• Another reason is the presence of input magnitude limitations. In such cases,

Morari [39] suggests to choose combinations with large σ(P ) to improve the track-

ing following (r) and disturbance rejection (d) properties of a plant.

3.1.2.5. The Maximum Singular Value. Most of the input/output controllability mea-

sures are applied to physical plants such as P in Figure 3.1. However, the maximum

singular value σ may be used as a measure for a generalized plant G in general control

configurations (see Figure 1.1).

r

-

K

∆

P

Pd

v

yp
+

d

+

+

+

+

+

+

Figure 3.1. Input/output Controllability

The transfer function P (s) in Figure 3.1 gives the contribution of the control

inputs to the outputs of the system. The other transfer function Pd(s) describes the

effect of disturbances on the system. The deformations or the outputs become yP =

Pu+Pdd. For perfect control, u = P †Pd. So, the closed error e = r−yP = Mdd+Mvv.

Generally it is desired to select control inputs and sensor measurements in such a
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combination that σ(Md) and σ(Mv) are kept as small as possible in the frequency

range of concern. This idea can also be applied to the general control configuration in

Figure 1.1.

Arabyan et al. [2] deal with the physical plant P (s). They obtain an expression

for the residual deformation of the system. Maximum singular value of this expression

needs to be kept small according to their best location selection criteria. The actuator

and sensor location with the smallest residual deformation is the best place for the

point actuators.

3.1.2.6. The Condition Number. The condition number is defined as the ratio between

the maximum singular value and the minimum singular value

κ(P ) =
σ(P )

σ(P )
.

General idea for optimal input/output selection is to choose the actuator sensor con-

figuration which results in the smallest condition number of the corresponding plant

or system.

Morari [39] deals with plants which are shown in Figure 3.1 and finds out that

plants with smaller condition numbers are more robust to unstructured multiplicative

uncertainty. Similar statements can be found in the book of Skogestad and Postleth-

waite [20].

Modified types of condition numbers also appear in different papers of scientists.

Skogestad and Morari [40] define the following expression as the disturbance condition

number

κdk
(P, Pd) =

‖P−1Pdk
‖2

‖Pdk
‖2

σ(P ),

where 1 6 κdk
(P, Pd) 6 κ(P ), dk is the kth disturbance in Figure 3.1, Pdk

is the kth
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column of Pd and ‖.‖2 denotes the Euclidean 2-norm. Input/output sets with smaller

disturbance condition numbers (κdk
(P, Pd)’s) are preferred due to less input magnitude

required to reject the disturbance in the desired kth direction.

Another type of condition number, which is very similar to the input distur-

bance number κdk
(P, Pd), is the input disturbance alignment introduced by Cao and

Rossiter [41] and is given as

ηdk
(P, Pd) =

‖PP †Pdk
‖2

‖Pdk
‖2

,

where 0 6 ηdk
(P, Pd) 6 1. Input/output configurations, the input disturbance align-

ments of which are close to one, have good disturbance rejection properties.

3.1.2.7. The Relative Gain Array. Another well known input/output controllability

measure is the relative gain array (RGA), which is defined as

Λ(P (jω)) = P (jω). ∗ (P−1(jω))T, (3.17)

where “.∗” describes element by element matrix multiplication. Equation (3.17) is

defined for square matrices. For nonsquare plants, the ordinary inverse can be replaced

with preudo inverse. RGA is firstly used by Bristol [42]. He introduced this quantity

to measure the interactions in decentralized control systems.

The general selection criterion is to reject plants with large RGA elements, since

RGA is a measure of interactions in decentralized control systems, and such plants are

difficult to be controlled.

Furthermore, studies of Hovd and Skogestad [43] and Skogestad and Morari [44]

propose that systems with large RGA are sensitive to input multiplicative uncertainties

if a plant-inverting controller is applied to the plant.
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3.1.2.8. Efficiency of Manipulation and Estimation. In input/output selection the ob-

jective is to find the best position of actuators and sensors. In fact, the location selec-

tion of actuators and sensors can be dealt with separately. The problem of actuator

positioning is to find the configuration of actuators at which the actuators, with lim-

ited energy, can manipulate the system as desired. In efficiency of manipulation, an

input set dependent cost function is minimized in terms of the input energy. Similar to

that for sensor location selection, an output set dependent cost function is minimized

(efficiency of estimation). If the cost function, which is to be minimized, depends on

both input and output sets, the two objectives, (optimum actuator location selection

and optimum sensor location selection), can be considered as a single one. This is the

joint efficiency of manipulation and estimation.

3.1.2.9. Efficiency of Manipulation. Al-Sulaiman and Zaman [45] design a full state

feedback controller by pole placement for each actuator combination and then evaluate

the cost function

Ju =

∫ te

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt

for the time interval [0, te], where Q = QT ≥ 0 and R = RT ≥ 0 are weights. The

actuator combination, which results in the smallest Ju, is the best placement for a

specified input set.

Cao, Biss and Perkins [46] deal with bonded input selection for nonlinear systems.

In their work the cost function takes the form

Ju =

∫ te

0

(
(z(t) − zr)

TQ(z(t) − zr)
)

dt, (3.18)

where zr is the reference value set for the controlled variables z, and Q is the positive

definite weighting matrix that consists of diagonal entries only.
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3.1.2.10. Efficiency of Estimation. In the efficiency of estimation, the cost function

Jy to be minimized is an integral which includes some functions of measurements

(sensor outputs). Morari and Stephanopoulos [47] want to minimize errors in the

measurements.

3.1.2.11. Joint Efficiency of Manipulation and Estimation. For joint efficiency of ma-

nipulation and estimation Norris and Skelton [48] use a cost function in the linear

quadratic Gaussian control form as

Juy = E

(∫ ∞

0

(
z(t)TQz(t) + u(t)TRu(t)

)
dt

)
, (3.19)

where z = Fx and E(.) is the expectation operator. Mellefont and Sargent [49] use a

cost function similar to LQG cost function (3.19) for online switching between actuator

configurations.

3.2. Gradient Based Optimization Techniques

Generally, in descent methods, one tries to produce a minimizing sequence x(k), k =

1, 2, 3, . . . such that

x(k+1) = x(k) + t(k)∆x(k),

where t(k) > 0 is a scalar quantity that is called step size or step length at the kth

iteration, and ∆x(k) ∈ Rn is search direction. Since f(x(k+1)) < f(x(k)) is always valid

except the optimal location x
(k)
opt, these techniques are called descent methods. In a

general descent method, a starting point x(0) ∈ dom f (which means that the initial

point lies in the domain of the objective function) is chosen and the following steps are

repeated for each iteration until the desired optimal point is reached.

1. Determine the descent direction ∆x(k) for the kth iteration.

2. Choose a positive step size t(k) (Line search step).
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3. Obtain the next iteration’s point x(k+1) = x(k) + t(k)∆x(k).

If the negative gradient of the objective function f(x(k)) is selected as the search di-

rection ∆x(k) = −∇f(x(k)), the corresponding unconstrained minimization technique

is called gradient descent method.

In the second step of an descent method (line search), there are two options

available for step size selection:

• Exact line search: Step length t (dropping the superscript (k) for a simpler no-

tation) is determined such that

t = argmin(s≥0)f
(
x(k) + s∆x(k)

)
.

• Backtracking line search: Step size is chosen inexact, but “enough” to minimize

f . Step size t is selected by the following way: Given a descent direction ∆x(k),

with α̂ ∈ (0, 0.5), β̂ ∈ (0, 1) and t := 1. Take the step size t := β̂t as long as

f(x(k) + ∆x(k)) > f(x(k)) + α̂ t∇f(x(k))T ∆x(k) [50].

3.2.1. Constraints on Optimization Variables

In structural optimization it is common to formulate a minimization problem

with constraints. The constraints may be functions of the design variables since there

are physical limitations for these quantities (e.g. the dimensions of the strucutre may

not exceed some value) or some specifications which are desired for certain engineering

purposes.

Basically, an optimization problem with ne numbers of equality constraints and

ng numbers of inequality constraints can be given as

minimize f(x)

subject to hi(x) = 0, ∀ i = 1 : ne,
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gj(x) ≥ 0, ∀ j = 1 : ng,

where x describes the design variables such as the x- or/and y-coordinates of the actu-

ator and sensor pairs [51, 52]. In cases with point actuator and sensors, the constraints

may become simple bound limitations. That is, the actuator coordinate must be posi-

tive (lower limit) or less than the total length of the structure (upper limit). In these

situations, the constraints may be eliminated since one can select a shorter step size

not to exceed the limits.

However, if one uses piezoelectric pathes for actuating and sensing purposes, the

need for constraints may become inevitable.

3.2.2. Zoutendik’s Method of Feasible Directions

For unconstrained minimization it is usually enough to take the negative of the

gradient of the optimization function as the search direction. Even in the presence of

upper and lower bound constraints, taking shorter step sizes will allow the use of the

gradient of the optimization metric. Whenever there are more complicated constraints,

the gradient based search methods must be modified in such a way that their search

direction is always feasible. That is, a small move in that direction may not violate

any of the constraints.

Zoutendik’s Method of Feasible Directions is one of the simplest approaches for

constrained nonlinear programming. The basic idea of the technique is to make the

current direction feasible by solving another direction-finding problem [51]:

min − ᾱ

subject to ST
∇gj(x) + θjᾱ ≤ 0, ∀ j = 1 : p,

ST
∇f(x) + ᾱ ≤ 0,

− 1 ≤ si ≤ 1, ∀ i = 1 : n,
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where S, ∇gi, ∇f , p and θj are the search direction, the gradient of ith constraint, the

gradient of the objective function, the number of active constraints and the weight for

jth constraint, respectively. If at the end of the current iteration a constraint is hit,

that constraint is said to be active, and the search direction in the next iteration must

be decided as the solution of the direction-finding problem.

3.2.3. Closed-loop H2-norm as Optimization Function

Let

Pc :=



 Ac Bc

Cc Dc



 (3.20)

be the state space realization of the closed-loop system, where Ac is Hurwitz. That

means, the real parts of all the eigenvalues of state matrix Ac is in the left half-plane

(R(s) < 0) so that Pc is stable.

For the optimal location selection, the square of the H2-norm of the closed-loop

system is selected as the optimization criterion J , which can be given as

J = ‖Gzw‖2
2 = trace

(
CcLcC

T
c

)
. (3.21)

In Equation (3.21) Lc is the Controllability Gramian of the closed-loop system and

satisfies the Lyapunov equation

AcLc + LcA
T
c + BcB

T
c = 0. (3.22)

Denoting the location of the ith actuator/sensor pair by the coordinate ξi
a, the partial

derivatives of Equation (3.21) can be obtained as

∂J

∂ξi
a

= trace

(
∂Cc

∂ξi
a

LcCcT + Cc

∂Lc

∂ξi
a

CcT + CcLc

∂CcT

∂ξi
a

)
, (3.23)
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where ∂Ac/∂ξ
i
a and ∂Cc/∂ξ

i
a are the derivatives of the state matrix and the perfor-

mance output matrix of the closed-loop system with respect to ξi
a, respectively.

By differentiating (3.22) with respect to the actuator/sensor locations ξi
a from

i = 1 to Nu, ∂Lc/∂ξ
i
a is achieved from

AcY + YAT
c + Qc = 0,

where Y :=
∂Lc

∂ξi
a

and Qc :=
∂Ac

∂ξi
a

Lc + Lc

∂Ac
T

∂ξi
a

+
∂Bc

∂ξi
a

Bc
T + Bc

∂Bc
T

∂ξi
a

.

Since the optimization function J is partially differentiable with respect to the

locations ξi
a, different gradient based techniques can be applied for the optimal place-

ment problem. Among these techniques gradient descent method can be easily applied

to obtain the optimal locations [50, 53, 54].

In calculation of the derivative of the optimization metric J , one needs the partial

derivatives of the state matrices Ac,Bc,Cc of the closed-loop system with respect to

actuator/sensor locations ξi
a. Since these partial derivatives require open forms of

controller matrices, which are introduced in upcoming chapters, the closed-loop state

space matrix derivatives will be given in a separate chapter later in this thesi.

3.3. Steps of Unconstrained Optimization Procedure

A gradient based unconstrained optimization is utilized for the closed-loop opti-

mal location selection of point actuator and sensor pairs. Although there are lower and

upper bounds for the coordinates of actuator and sensor locations, violation of these

constraints can be prevented by simply selecting smaller step sizes. The optimization

procedure is made up of the following steps:

1. Required Data: The disturbance locations, the boundary conditions and the di-

mensions of the structure are given.

2. Initial Guess: The initial guesses (ξ1
a . . . ξ

Nu
a ) are selected, where the objective
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function and its gradient will be evaluated. To be used in step size selection,

some optimization parameters are chosen.

3. The physical structure modeling : The structure is modeled and put into the first

modal state space form with the matrices Am, Bm1, Bm2, Cm1, Cm2, Dm11,

Dm12, Dm21, Dm22. The partial derivatives of the state space matrices are taken

with respect to the current actuator and sensor locations.

4. The generalized plant : For the given signal weightings the state space matrices of

the shaped plant are obtained. If the improved coprime controller or the improved

low-authority H∞-controller is selected, using the coordinate transformation the

generalized plant is put into the first modal form with block diagonal state matrix.

The state space matrices are A, B1, B2, C1, C2, D11, D12, D21, D22. However,

if MNRD approach is used, the generalized plant is not diagonalized since MNRD

does not require ARE solutions.

5. Controller Synthesis and Closed-loop System: This step is skipped if MNRD-value

is selected as the optimization metric. In the case of the improved coprime con-

troller or the improved low-authority H∞-controller, the corresponding ARE’s are

solved. Then, the closed-loop state space matrices Ac, Bc, Cc, Dc are calculated.

6. Objective Function and its Gradient : In the case of MNRD-controller, the square

of the optimistic H2-norm is set as the objective function J . The function value

and the gradient of J with respect to actuator and sensor locations are calculated

at the current point. If a controller is used, the square of the closed-loop H2-norm

is selected as J .

7. The New Actuator and Sensor Locations: Using gradient of J , the search direction

of the kth iteration is established as s(k) = ∆x(k)/‖∆x(k)‖, where ∆x(k) is given

in Equation (3.24). The next iteration’s points become x(k+1) = x(k) + t s(k), with

t being the step size. The step size t is chosen according to the backtracking line

search technique in [50]. If the difference ‖x(k+1) − x(k)‖ < ǫ, the optimization

procedure is stopped. Otherwise, the procedure is returned to the second step

with the next actuator and sensor points.

The negative gradient of the objective function J is defined as
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∆x(k) := −
[
∂J

∂ξ1
a

, · · · , ∂J

∂ξNu
a

]T

, (3.24)

where
∂J

∂ξi
a

is the partial derivative of the objective function J with respect to ith

actuator and sensor pair.

3.4. Constraints for the Multiple Piezoelectric Actuator and Sensor Pairs

In the case of point actuator and sensor pairs, there exist only lower and upper

bounds for the actuator and sensor locations. That is, the coordinates of the actua-

tor/sensor locations must be greater than zero (lower bound) and less than the length

of the beam or the plate (upper bound). Whenever these constraints are violated,

decreasing step size will enable to avoid these types of constraints.

However in the case of the PZT actuator and sensor pairs, expressing the con-

straints in linear inequalities will simplify the optimization formulation.

In this study two groups of constraints are given. The constraints of the first

group are bound constraints, which are used to limit the optimization variable to a

range between a lower and an upper value. For instance, the x-coordinate of PZT pair

must between 0×L and (L− 2a)×L, where 2a and L are the length of the PZT pair

and the length of the plate, respectively.

The bound constraints may not be violated in any case. All of them are given

as gb
j (x) < 0, for j = 1 : 2 × nc × na, where na are and the number of actuator and

sensor pairs, respectively. The number nc describes the coordinates a single pair has.

For beams, nc becomes one, and for plates two.

However, there is a need for another group of constraints, which will be valid

only for some predefined conditions. To give an example, if two adjacent piezoelectric

actuator and sensor pair become too close, the finite element between them might have

unwanted dimensions. That is, its length can be much larger than its width (see Figure
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3.4). If the second actuator is on the right of the first actuator (i.e., the x-coordinate

of the actuator B is greater than the x-coordinate of the actuator A), the constraint

xB − xA >
2a

3
,

where 2a is the length of the actuators A and B, may be utilized to avoid unwanted

dimensions. This constraint prevents the length of any finite element to be less than
2a

3
. If the second actuator is on the left of the first actuator (i.e., the x-coordinate of the

actuator B is less than the x-coordinate of the actuator A), the constraint changes to

xA − xB >
2a

3
.

Such a group of constraints, which are implemented in the optimization algorithm for

multiple of PZT patches, are called conditional constraints.

Three types of conditional constraints are defined. The first type is required for

preventing the disturbances acting on an unwanted location, i.e. too close to a side or

corner of a PZT pair. The second type of conditional constraints is used to prevent

distorted, badly scaled finite elements between two PZT pairs, whereas the third type

is required for preventing PZT pairs to overlap each other.

3.4.1. Lower and Upper Bound Constraints

For a plate with two actuator and sensor pairs, the lower and upper bounds on

the coordinates of the PZT patches are given by the definition below:

Definition 3.4.1 (Bound type constraints). The constraints, which must be satisfied

so that the PZT patches are inside the feasible domain, are

gb
1 (x) = −x1 + ǫ < 0, (3.25)

gb
2 (x) = x1 + 2a− ǫ < 0, (3.26)

gb
3 (x) = −y1 + ǫ < 0, (3.27)
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gb
4 (x) = y1 + 2b− ǫ < 0, (3.28)

gb
5 (x) = −x2 + ǫ < 0, (3.29)

gb
6 (x) = x2 + 2a− ǫ < 0, (3.30)

gb
7 (x) = −y2 + ǫ < 0, (3.31)

gb
8 (x) = y2 + 2b− ǫ < 0, (3.32)

where 2a and 2b are the length and width of the piezoelectric patches, respectively. As

ǫ a small number may be selected such as 0.01. The coordinates of the left lower node

of the PZT pairs are given by x = [x1, y1, x2, y2]
T. The inequalities on gb

1 (x), gb
3 (x),

gb
5 (x) and gb

7 (x) are lower bounds on x1, y1, x2 and y2, respectively. The inequalities

gb
2 (x), gb

4 (x), gb
6 (x) and gb

8 (x) are upper bounds on x1, y1, x2 and y2, respectively.

3.4.2. First Type of Conditional Constraints

These constraints are necessary to prevent configurations of badly scaled finite

elements such as those in Figures 3.2 and 3.3. The constraints are given by the following

definition:

Definition 3.4.2 (First type of conditional constraints). First type of conditional con-

straints, which must be satisfied so that the disturbance does not become too close to

the corners or sides of a PZT pair, are given by

gd
k1

(x) = cj − dj +
lj
pj
< 0, (3.33)

gd
k2

(x) = −cj + dj −
lj
pj
< 0, (3.34)

gd
k2

(x) = cj − dj +
lj
pj

+ lj < 0, (3.35)

gd
k4

(x) = −cj + dj +
lj
pj
< 0, (3.36)

where dj and lj denote the x-coordinate or the y-coordinate of the disturbance and the

length 2a or the width 2b, respectively. The term pj is a constant such as 2 or 3, and

cj describes the x- or y-coordinate of the first or second PZT patch.
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The values of quantities in (3.33) through (3.36) are given in Table 3.1 for the

four possible combinations, and Table 3.2 shows how the indices of gd
kj

change for the

combinations shown in Table 3.1.

Table 3.1. Values of cj, dj, lj, pj

j cj dj lj pj

1 x1 xd 2a px

2 y1 yd 2b py

3 x2 xd 2a px

4 y2 yd 2b py

Table 3.2. Indices j and kj for constraints gd
kj

j 1 2 3 4

kj 4j − 3 4j − 2 4j − 1 4j

The conditional statement (i.e. the conditions at which the constraints are re-

quired) can be expressed mathematically as follows:

If dj −
lj
pj

< cj and cj < dj ,

then gd
k1

and gd
k2

must be valid,

else if cj +
lj
pj
< dj,

then gp
2 must be valid.

else if cj > dj,

the constraint gd
k4

must be valid.

For the case shown in Figure 3.2, where the disturbance acts on a PZT actuator

and sensor pair, the constraints gd
k1

and gd
k2

must be satisfied, otherwise the disturbance

may act at a point too close to the sides or corners of the PZT pair. Figure 3.3 gives

the case where there is a disturbance close to the lower right side of a PZT pair and

the constraint gd
k3

must be valid.
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disturbance at (xd, yd)

Figure 3.2. Example for the first type of conditional constraints (disturbance on the

actuator and sensor)

disturbance at (xd, yd)

Figure 3.3. Example for the first type of conditional constraints (disturbance outside

the actuator and sensor)
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3.4.3. Second Type of Conditional Constraints

These constraints are used to prevent combinations at which there are finite

elements of bad aspect ratios if two PZT pairs become too close to each other as in

Figure 3.4.

A

B

Figure 3.4. Example for the second type of conditional constraints

Definition 3.4.3 (Second type of constraint). The conditional constraints, which are

required to prevent one PZT pair to get too close to another one, are expressed as

gp
1 (x) =−x2 + (x1 + 2a) +

2a

px
< 0, (3.37)

gp
2 (x) =−x1 + (x2 + 2a) +

2a

px
< 0, (3.38)

gp
3 (x) = −y2 + (y1 + 2b) +

2b

py
< 0, (3.39)

gp
4 (x) = −y1 + (y2 + 2b) +

2b

py
< 0, (3.40)

where the PZT pairs are of dimensions 2a× 2b, and the terms
2a

px
and

2n

py
are used to

limit the difference between two PZT pairs in the x- and y-directions, respectively. As

px and py constants such as 2 or 3 may be selected.
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If the left lower corner of the PZT pair labeled as B in Figure 3.4 has the co-

ordinates (x2, y2) and the PZT pair A is the first actuator and sensor pair with the

coordinates (x1, y1), then the constraints gp
1 must be satisfied. However, if A is the

second PZT pair, gp
2 must be valid. That is the convention used in the constrained

optimization part of the thesis. In the same manner, the conditional constraints gp
3

and gp
4 are defined for the y-directions.

The conditional statement can be expressed mathematically as follows:

If x2 − (x1 + 2a) 6= 0 and x1 + 2a < x2,

gp
1 must be satisfied,

else if x1 − (x2 + 2a) 6= 0 and x2 + 2a < x1,

then gp
2 must be valid.

Similarly, if y2 − (y1 + 2b) 6= 0 and y1 + 2b < y2,

gp
3 must be satisfied,

else if y1 − (y2 + 2b) 6= 0 and y2 + 2b < y1,

then gp
4 must be satisfied.

3.4.4. Third Type of Conditional Constraints

To avoid overlapping of PZT pairs, which are shown in Figures 3.5(a) through

3.5(d), some constraints must be used, which are given by the Definition 3.4.4.

Definition 3.4.4 (Third type constraints). If (x1 < x2 < x1 + 2a or x2 < x1 < x2 + 2a)

and (y1 < y2 < y1 + 2b or y2 < y1 < y2 + 2b), then there is a collocation of PZT patches,

and at least one of the constraints given in (3.41) through (3.44) must be satisfied.

Third type conditional constraints are

go
1 (x) = −x2 + x1 + 2a+

2a

nx

< 0, (3.41)

go
2 (x) = x2 + 2a− x1 +

2a

nx

< 0, (3.42)

go
3 (x) = −y2 + y1 + 2b+

2b

ny

< 0, (3.43)
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go
4 (x) = y2 + 2b− y1 +

2b

ny
< 0, (3.44)

where nx and ny are some constants such as 2, 3 and 4, which are used to determine

how far the x- and y- coordinates of the two PZT pairs should be.

(x2 + 2a, y2)

(x1 + 2a, y1)

(x1, y1 + 2b)

(x1, y1)

(x2, y2)

(x2 + 2a, y2 + 2b)(x2, y2 + 2b)

(a) Overlap case one:

x1 < x2 < x1 + 2a and

y1 < y2 < y1 + 2b

(x1 + 2a, y1 + 2b)

(x1 + 2a, y1)

(x1, y1 + 2b)

(x1, y1)

(x2, y2)

(x2 + 2a, y2 + 2b)

(x2 + 2a, y2)

(b) Overlap case two:

x2 < x1 < x2 + 2a and

y1 < y2 < y1 + 2b

(x2 + 2a, y2)

(x1, y1 + 2b)

(x1, y1)

(x2, y2)

(c) Overlap case three:

x1 < x2 < x1 + 2a and

y2 < y1 < y2 + 2b

(x1 + 2a, y1)(x1, y1)

(x2, y2) (x2 + 2a, y2)

(d) Overlap case four:

x2 < x1 < x2 + 2a and

y2 < y1 < y2 + 2b

Figure 3.5. Overlap cases

3.5. Steps of Constrained Optimization

If there exist only lower and upper limits for the design variables, an uncon-

strained optimization may be utilized. (Simply taking shorter step size will prevent



72

violation of constraints if the optimal solution lies always interior the design space.)

However, if the optimum is allowed to be on the constraint boundaries or the constraints

are too complicated and cannot be expressed simply; a constrained minimization pro-

cedure is required which considers the constraints in the direction selection part of the

optimization. Hence, a constrained minimization procedure must be utilized. In this

study, Zoutendijk’s method of feasible directions is used for problems with complicated

constraints.

The constrained minimization procedure is performed using the following steps:

1. Required Data: The disturbance locations, the boundary conditions and the di-

mensions of the structure are given. Constraints are obtained to prevent of over-

lapping of actuators and sensors or to prevent badly scaled elements from finite

element discretization. Some optimization parameters are chosen to be used in

step size selection, in controller design stage, in the determination of active con-

straints.

2. Initial Guess: The initial locations of PZT pairs (x(1) =
[
ξ1
x . . . ξ

Nu
x , ξ1

y . . . ξ
Nu
y

]
)

are selected. For the first iteration k = 1, the constraints gj(x
(k)), ∀ j = 1 : m

are evaluated. If any of them is violated, then another point is selected until all

of the constraints are satisfied.

3. (a) The physical structure modeling : The structure is modeled and put into

the first modal state space form with matrices Am, Bm1, Bm2, Cm1, Cm2,

Dm11, Dm12, Dm21, Dm22. The partial derivatives of them are taken with

respect to the current actuator and sensor locations.

(b) The generalized plant : For the given signal weightings the state space ma-

trices of the shaped plant are obtained. If the improved coprime controller

or the low-authority H∞-controller is selected, using the coordinate trans-

formation the generalized plant is put into the first modal form with block

diagonal state matrix. The obtained state space matrices are A, B1, B2,

C1, C2, D11, D12, D21, D22. However, if MNRD approach is used, the

generalized plant is not diagonalized since MNRD does not require ARE

solutions.
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(c) Controller Synthesis and Closed-loop System: This step is skipped if MNRD-

value is selected as the optimization metric. In the case of the improved

coprime controller or the improved low-authority H∞-controller, the corre-

sponding ARE’s are solved. Then, the closed-loop state space matrices Ac,

Bc, Cc, Dc are calculated.

(d) Objective Function and its Gradient : In the case of MNRD-controller, the

square of the optimistic H2-norm is set as the objective function J . The

function value and the gradient of J with respect to actuator and sensor

locations are calculated at the current point. If a controller is used, the

square of the closed-loop H2-norm is selected as J .

4. Constraint Check : For the kth iteration all of the constraints are evaluated to test

whether any constraint is active or not. That is, if for the constraints j = 1 : p,

gj

(
x(k)
)
< ǫz (ǫz being a small number), these p constraints are said to be active.

If none of them is active, and the current point is an interior feasible location,

then the gradient of the objective function is selected as the search direction and

is normalized as s(k) = ∆x(k)/‖∆x(k)‖, where ∆x(k) is given in Equation (3.24).

Otherwise the search direction is obtained in Step 5.

5. (a) Making the search direction feasible: If there are active constraints in the it-

eration k, then the search direction is selected as the solution of the following

sub-optimization problem:

min − ᾱ

subject to s(k) T
∇gj

(
x(k)
)

+ θjᾱ ≤ 0, ∀ j = 1 : p,

s(k) T
∇f
(
x(k)
)

+ ᾱ ≤ 0,

− 1 ≤ s
(k)
i ≤ 1, ∀ i = 1 : n,

where s
(k)
i is the ith component of s(k), p is the number of active constraints.

(b) Termination due to α∗: If ᾱ∗ ≤ ǫ1, then the optimization is terminated at

this point. Otherwise, the search direction is selected as the solution of the

previous sub-optimization problem.

6. Next Point Check and New Locations Selection: If the next point x(k+1) is ob-
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tained as x(k+1) = x(k) + t s(k), with t being the step size, the next point must

be both feasible and “better”. The term “better” describes a point, the function

value of which is less than that of the previous iteration.

Hence, for the kth iteration all of the constraints are evaluated gj

(
x(k)
)

for j =

1 : ng, ng being the number of constraints. If any constraint is not satisfied, the

step size must be reduced until none of the constraints is violated. On the other

hand, to minimize the objective function “enough” (to obtain a “better” next

point), the step size must reduced as well. Therefore, the ordinary backtracking

line search given in [50] is modified to select a proper step size t, which fulfills

both the feasibility requirement and the requirement that f
(
x(k+1)

)
< f

(
x(k)
)
,

as follows:

Initially α̂ ∈ (0, 0.5) and β̂ ∈ (0, 1) are selected, and the iterations start with

t := 1. The step size is taken t := β̂t as long as there are any constraint violations

or f
(
x(k+1)

)
> f

(
x(k)
)

+ α̂ t∇f
(
x(k)
)T

s(k). However, during the step size

reduction, care must be taken to avoid combinations shown in Figure 3.6. Any

combinations similar to those given in Figures 3.7 are acceptable. In other words,

step size must be reduced in such a way that the number of finite elements of a

PZT pair shall not change in any iteration due to finite element discretization.

7. Termination of the optimization: If

∣∣∣∣
f(x(k+1))−f(x(k))

f(x(k))

∣∣∣∣ ≤ ǫ2 and
∥∥x(k+1) − x(k)

∥∥ ≤
ǫ3, the optimization procedure is stopped. Otherwise, the procedure is returned

to the second step with the next actuator and sensor points.

8. Next Point Selection: If the step size t achieved in the iteration k is not too small

(e.g. t > 10−8), then it is jumped to the next iteration with k = k + 1.

(x1, y1)
k+1

(x2, y2)
k+1

x

y

Figure 3.6. Case: y
(k+1)
2 < y

(k+1)
1 < y

(k+1)
2 + 2b

In Figure 3.6, the next actuator sensor location x(k+1) results in a finite element
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mesh, due to which the PZT groups need to be divided into more elements. The PZT

groups are aimed to consist of the same number of finite elements in each iteration.

Hence, such combinations must be avoided by simply calculating values of step sizes

at which the configurations similar to those depicted in Figures 3.7 are obtained. As

an example, the values

t0 =
y

(k+1)
2 − y

(k+1)
1 + 2b

s
(k)
2 − s

(k)
4

, t1 =
y

(k+1)
2 − y

(k+1)
1 + b

s
(k)
2 − s

(k)
4

, t2 =
y

(k+1)
2 − y

(k+1)
1

s
(k)
2 − s

(k)
4

enable one to obtain configurations in Figures 3.7.

(x1, y1)
k+1

(x2, y2)
k+1

x

y

(a) Step size selected for letting

y
(k+1)
1 + b = y

(k+1)
2

(x1, y1)
k+1 (x2, y2)

k+1

x

y

(b) Step size selected for letting

y
(k+1)
1 = y

(k+1)
2

(x1, y1)
k+1

(x2, y2)
k+1

x

y

(c) Step size selected for letting

y
(k+1)
1 − b = y

(k+1)
2

(x1, y1)
k+1

(x2, y2)
k+1

x

y

(d) Step size selected for letting

y
(k+1)
1 − 2b = y

(k+1)
2

Figure 3.7. Correct step size selection
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4. CLOSED-LOOP I/O SELECTION

4.1. Existing Controller Design Strategies for I/O Selection

Since most controller design methods are time consuming, the closed-loop location

selection problem becomes computationally complex. Therefore, most optimal location

selection methods try to bypass the controller design step. Hence, if one desires to apply

a closed-loop location selection method, the controller design part should not take much

computation time.

For this purpose Hiramoto et al. [1] have suggested a simple controller design

procedure. They obtain a coprime controller for the right lower part of the physical

plant by manipulating the corresponding generalized ARE’s such that they have a

predefined simple solution. The robust coprime controller design Hiramoto et al. [1]

have developed is a modified version of the robust stabilization of coprime factors

[20, 22].

A second choice for a less time consuming controller might be a low-authority

H∞-controller for a flexible structe [3].

Another possibility to overcome the time consuming nature of the controller syn-

thesis is the MNRD approach given by Arabyan et al. [55]. They design a H∞-controller

for which the stability is not required.

All of these three controllers have certain disadvantages. The controller given

by Hiramoto et al. [1] is designed for a plant without any signal weights and assumes

zero-damping. The H∞-controller given in [3] is applicable to plants only with simple

input/output filters. For MNRD-controller the partial derivatives of MNRD-values are

not defined so that a gradient-based search is not utilized [55].
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α I

Ka
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K∞
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w1

+

+

+

+

Figure 4.1. Closed-loop System with Pyu and H∞ Controller [1]

4.1.1. The Controller Used by Hiramoto et al. [1]

The robust coprime controller Hiramoto et al. [1] have developed in their work

is a modified version of the robust stabilization of coprime factors [20, 22].

Definition 4.1.1 (Mcfarlane and Glover [56]). For a state space realization

P :=



 A B

C D



 ,

there exists a controller Kp which guarantees the inequality

∥∥∥∥∥∥



 Kp

I



 (I− PKp)
−1 M−1

p

∥∥∥∥∥∥
∞

≤ γ, (4.1)

where Mp comes from the normalized left coprime of the plant P = M−1
p Np. The state

space representation of the controller Kp reads as

AKp := A + BFp + γ2(GT
p)−1TCT(C + DFp), (4.2)

BKp := γ2(GT
p)−1TCT, (4.3)

CKp := BTS, (4.4)

DKp := −DT, (4.5)
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where Fp and Gp are

Fp := −U−1(DTC + BTS), (4.6)

Gp := (1 − γ2)I + ST. (4.7)

In (4.6) and (4.7), S and T are the unique positive definite solutions of the ARE’s

(A −BU−1DTC)TS + S(A −BU−1DTC) − SBU−1BTS + CTR−1C = 0,

(A −BU−1DTC)T + T(A− BU−1DTC)T − TCTR−1CT + BU−1BT = 0,

respectively, where

R : = I + DDT,

U : = I + DTD.

Hiramoto et al. [1] augment the plant Pyu as Pa = αPyu and obtain a feedback

controller Ka (see Figure 4.1), where α serves as a design parameter, and β is used to

obtain suboptimal controller by selecting β slightly greater than one. For improving

disturbance rejection properties of the controller, one should increase α. However, to

obtain the robustness of the closed-loop system, α should be kept as small as possible.

Hence, there is a tradeoff for this parameter as discussed detailed in Hiramoto et al. [1].

In Figure 4.1, Pyu has the state space realization

Pyu =



 A B2

C2 0



 . (4.8)

The controller that is used in the optimization part of [1] is K∞ = αKa, and Ka is

obtained by solving the ARE’s of the augmented plant Pa

ATS + SA − α2SB2B2
TS + C2

TC2 = 0, (4.9)
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AT + TAT − TC2
TC2T + α2B2B2

T = 0. (4.10)

Lemma 4.1.2 (Hiramoto et al. [1]). If the damping of the system in (4.8) is neglected

and the rate sensors are collocated by the actuators, then ARE’s in (4.9) and (4.10)

have the solutions

S :=
Ω2

α
, (4.11)

T := αΩ−2, (4.12)

where Ω is given by Equation (2.3) and its square consists of the squares of the natural

frequencies as

Ω2 = diag
(
ω2

1, ω
2
1, ω

2
2, ω

2
2, . . . , ω

2
N , ω

2
N

)
.

Proof. In Equations (4.9) and (4.10), A is in the first modal form as in Equation (2.7).

If ζi = 0 from i = 1 to i = N , the terms AT+TAT and ATS + SA become zero. Since

sensors are collocated with actuators and measure rates, the output matrix becomes

C2 = B2
TΩ2. Therefore, the diagonal positive-definite matrices

S = diag (s1, s1, s2, s2, . . . , sN , sN) , (4.13)

T = diag (t1, t1, t2, t2, . . . , tN , tN) , (4.14)

can be assumed as the solutions of (4.9) and (4.10), which are equal to (4.11) and

(4.12), respectively.

If the new defined variables are inserted, the state space representation of the

controller Ka in Equation (4.2) takes the following form:

AKa
:= A +

α(2β2 − 1)

1 − β2
B2B2

TΩ2, (4.15)

BKa
:=

αβ2

1 − β2
B2, (4.16)
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CKa
:= B2

TΩ2. (4.17)

The controller K∞ in Figure 4.1 is obtained by choosing the parameters α > 0 and

β > 1. With the controller K∞, the state space realization of the closed-loop system

Gzw can be given as

ẋc = Acxc + Bcw, (4.18)

zc = Ccxc, (4.19)

with

xc =



 x

xc



 , Ac =



 A αB2CKa

BKa
C2 AKa



 ,

Bc =



 B2

0



 , Cc =
[

C1 αD12CKa

]
.

The closed-loop system Gzw includes open-loop plant and controller matrices which

are functions of the configuration of the actuators and sensors (Lu).

To obtain (4.13) and (4.14), Hiramoto et al. [1] neglect the modal damping for

all modes and solve the simplified ARE’s (4.9) and (4.10) for zero-damping state space

matrices. However, in this study the damping is kept, new signal weights are added to

the generalized plant, and it is still possible to obtain diagonal ARE solutions, which

lead to simple but more efficient coprime controller design. The developed approach is

given in Section 4.2.

4.1.2. H∞-Controller

In H∞-control, the overall control objective is to minimize the H∞-norm of the

transfer function from the inputs w to the outputs z, which are shown in Figure 4.2. In

other words, the controller design problem is to find a stabilizing controller Kc which
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(b) Signal weights in the general control configuration

Figure 4.2. The generalized control configuration and the weighted generalized plant

with the controller

minimizes

‖Fl(P,Kc)‖∞ = sup
ω
σ (Fl(P,Kc)(jω)) , (4.20)

where σ denotes the maximum singular value, Fl(P,Kc) is the lower linear fractional

transformation of P and Kc. The transformation Fl(P,Kc) is a closed-loop transfer

function from w to z which is

Fl(P,Kc) = P11 + P12Kc(I −P22Kc)
−1P21.
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In Figure 4.2, Kc is the controller, P is the generalized plant (including the

weighting transfer functions), which is shown in the dashed box in Figure 4.2. The

generalized plant P has the state-space realization

P =





A B1 B2

C1 D11 D12

C2 D21 D22




. (4.21)

In practice, it is usually not necessary to obtain an optimal controller for the

H∞-problem, and it is often computationally and theoretically simpler to design a

suboptimal one. Let γmin be the minimum value of ‖Fl(P,Kc)‖∞ over a stabilizing

controller Kc. Then, the H∞-suboptimal control problem becomes: given a γ > γmin,

find all stabilizing controllers Kc such that

‖Fl(P,Kc)‖∞ < γ. (4.22)

In Figure 4.2, d is the force disturbance acting on some of the DOFs of the model given

in the problem configuration, em is the error output of the system, a is the actuator

noise, n is the sensor noise, u is the controller output, um is the actual control input

to the plant, y is the piezoelectric sensor output from the plant, and ym is the actual

piezoelectric sensor output fed back into the controller which includes some noise [20].

The following assumptions must hold in order to be able to design an H∞-

controller [20]:

1. (A,B2) is stabilizable, and (C2,A) is detectable.

2. D12 and D21 have full rank.

3.



 A − jωI B2

C1 D12



 has full column rank for all ω.

4.



 A − jωI B1

C2 D21



 has full row rank for all ω.
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5. D11 = 0 and D22 = 0.

The third and fourth assumptions may be replaced with the following ones, if one

finds them more convenient:

3. DT
12C = 0 and B1D

T
12 = 0

4. (A,B1) is stabilizable, and (C1,A) is detectable.

With these assumptions, for the generalized plant in Figure 4.2 there exists a

stabilizing controller Kc(s) such that ‖Fl(P,Kc)‖∞ < γ if and only if [20]

(i) X∞ ≥ 0 is a solution to the algebraic Riccati equation

ATX∞ + X∞A + CT
1 C1 + X∞

(
γ−2B1B

T
1 −B2B

T
2

)
X∞ = 0 (4.23)

such that Re λi

[
A +

(
γ−2B1B

T
1 − B2B

T
2

)
X∞

]
< 0, ∀i; and

(ii) Y∞ ≥ 0 is a solution to the algebraic Riccati equation

AY∞ + Y∞AT + B1B1
T + Y∞

(
γ−2CT

1 C1 − CT
2 C2

)
Y∞ = 0 (4.24)

such that Re λi

[
A + Y∞

(
γ−2CT

1 C1 −CT
2 C2

)]
< 0, ∀i; and

(iii) ρ (X∞Y∞) < γ2.

All such controllers are then given by Kc = Fl(KQc
,Qc), where

KQc
(s) =





A∞ −Z∞L∞ Z∞B2

F∞ 0 I

−C2 I 0




, (4.25)

F∞ = −BT
2 X∞,

L∞ = −Y∞,C
T
2 ,

Z∞ =
(
I − γ−2Y∞X∞

)−1
,
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A∞ = A + γ−2B1B
T
1 X∞ + B2F∞ + Z∞L∞C2

and Qc(s) is any stable proper transfer function such that ‖Qc‖∞ < γ. If Qc(s) = 0,

the resulting controller is the central controller.

4.1.3. The Low-Authority H∞-Controller

The control forces which act on structures can be categorized into tracking forces

and damping forces. The tracking forces are of high amplitude and used to track

a reference input whereas damping forces suppress vibrations of the structures and

have limited magnitude. Hence, controllers can be divided into high-authority and

low-authority controllers [24].

When a low-authority H∞-controller is to be designed for a flexible structure,

some of the properties of flexible structures can be used to obtain diagonal solutions for

the ARE’s. With these diagonal ARE solutions, it is possible to obtain a low-authority

H∞-controller. Below, a methodology is given which is developed by Gawronski [3, 24]

to derive diagonal ARE solutions for Equations (4.23) and (4.24).

For a state space realization

P :=



 A B

C D



 ,

the Gramians are used to express the controllability and observability properties of a

system P qualitatively and are defined as [57]

Wc(t) =

∫ t

0

eAtBBTeATt dt,

Wo(t) =

∫ t

0

eAtCTCeATt dt.

The exact (full) controllability and observability Gramians are obtained alternatively
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from the Lyapunov equations

ALc + LcA
T + BBT = 0, (4.26)

ATLo + LoA + CTC = 0, (4.27)

where A is Hurwitz.

Lemma 4.1.3 (Gawronski [3]). If P is given in one of the modal coordinates (such as

expressions (2.7), (2.8) or (2.9)), the controllability and observability Gramians can be

approximated by

Lc
∼= diag (lci I2) , lci > 0, ∀ i = N, (4.28)

Lc
∼= diag (lci I2) , lci > 0, ∀ i = N, (4.29)

where I2, 2 × N , lci and loi are the 2 × 2 identity matrix, the number of states P has,

the ith mode’s controllability and observability Gramians, respectively.

Proof. If P is given in the first modal coordinate (2.7) and is inserted into Equa-

tions (4.26) and (4.27), one can inspect that

lim
ζ→0

lc ij <∞, for i 6= j,

lim
ζ→0

lo ij <∞, for i 6= j,

while

lim
ζ→0

lc ii → ∞,

lim
ζ→0

lo ii → ∞.

Thus, for small damping the controllability and observability Gramians in modal co-

ordinates are diagonally dominant.
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The diagonally dominant Gramians (4.28) and (4.29) are very useful for solving

ARE’s approximately. Further properties are introduced to simplify some terms in

Equations (4.23) and (4.24).

Lemma 4.1.4 (Gawronski [3]). If for a controllable and observable flexible structure

there exists r0 > 0 such that

‖X∞‖2 ≤ r0, (4.30)

‖Y∞‖2 ≤ r0, (4.31)

where X∞ and Y∞ are solutions of ARE’s (4.23) and (4.24), then the resulting con-

troller is said to be of low-authority.

If the state space representation P of a flexible structure is converted into the

first or second modal form (Equation (2.7) or (2.8)), the controllability and observ-

ability Gramians are diagonally dominant, and off-diagonal terms are negligibly small

according to Lemma 4.1.3. Hence, the terms BBT and CTC become

BBT ∼= −Lc

(
A + AT

)
, (4.32)

CTC ∼= −Lo

(
A + AT

)
. (4.33)

If only ith mode is considered and the state matrix A is in the second modal form,

Equations (4.32) and (4.33) become

BiB
T
i

∼= −lci
(
Ai + AT

i

)
= lci 2ζiωi I2, ∀ i = 1 : N, (4.34)

CT
i Ci

∼= −loi

(
Ai + AT

i

)
= loi 2ζiωi I2, ∀ i = 1 : N, (4.35)

where ζi, ωi and I2 are the modal damping coefficient for the ith mode, the ith natural

frequency and the 2 × 2 identity matrix, respectively. In Equations (4.34) and (4.35),

Bi and Ci are the ith two-row block of B and the ith two-column block of C, respectively.
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Proof. If expressions in (4.28) and (4.29) are inserted into (4.26) and (4.27), Equa-

tions (4.32) and (4.33) are obtained.

For the positive semidefinite BBT and CTC one may obtain that

(
bib

T
j

)2 ≤
(
bib

T
i

) (
bjb

T
j

)
, (4.36)

(
cTi cj

)2 ≤
(
cTi ci

) (
cTj cj

)
, (4.37)

which means that off-diagonal terms are always less than the geometric means of the

corresponding diagonal entries. Hence, if the state matrix is in the first or second modal

form, and there exists a value r0 such that ‖X∞‖2 ≤ r0 and ‖Y∞‖2 ≤ r0, then the

off-diagonal terms of BBT and CTC do not affect the closed-loop eigenvalues. So, the

off-diagonal terms can be set equal to zero, and the diagonal terms can be calculated

from Gramians as in (4.34) and (4.35).

Lemma 4.1.5 (Gawronski [3]). If the state space matrices are expressed in terms of

modal coordinates, for a low-authority H∞-controller design case the solutions of ARE’s

in Equations (4.23) and (4.24) become diagonally dominant as

X∞
∼= diag (x∞i I2) , ∀ i = 1 : N, (4.38)

Y∞
∼= diag (y∞i I2) , ∀ i = 1 : N. (4.39)

Proof. If the state space realization of the structure is in one of the modal forms, the

solutions of Equations (4.23) and (4.24) tend to be diagonally dominant (similar to

Lemma 4.1.3).

Lemma 4.1.6 (Gawronski [3]). If the state space realization P of a flexible structure is

in one of the modal coordinates, then ARE’s (4.23) and (4.24) reduce to the quadratic

equations

κcix
2
i∞ + x∞i − wo1i

∼= 0, ∀ i = 1 : N, (4.40)

κeiy
2
i∞ + y∞i − wc1i

∼= 0, ∀ i = 1 : N, (4.41)
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where

κci = lc2i −
lc1i

γ2
, (4.42)

κei = lo2i −
lo1i

γ2
(4.43)

and lc1i, lc2i are the ith diagonal components of the controllability Gramians of the pair

(A,B1) and of the pair (A,B2), respectively. Similarly, lo1i and lo2i are the ith diagonal

components of the observability Gramians of the pair (C1,A) and of the pair (C2,A),

respectively.

Proof. Since A is in the first or second modal form, BBT and CTC in Equations (4.23)

and (4.24) are replaced by the expressions in (4.34) and (4.35). Then, Equations (4.23)

and (4.24) reduce to Equations (4.40) and (4.41), respectively, if the solutions of

ARE’s (4.23) and (4.24) are assumed to be diagonally dominant as in (4.38) and

(4.39).

Gawronski [3, 24] makes use of properties of flexible structures and low-authority

controllers. He decouples the ARE’s in (4.23) and (4.24) into their modes and converts

them to simple quadratic equations. These simple quadratic equations provide diag-

onal solutions for ARE’s. However, they are valid only for physical plants in modal

coordinates but not for the state space representations of the generalized plant since

the state matrices are no longer in modal forms after the filters are incorporated into

the physical model.

4.1.4. Norm Minimization of Residual Deformations (MNRD)

Arabyan and Chemiskian [58, 55, 59] obtain an “optimistic value” for the lower

limit of deformation suppression instead of the exact level of residual deformation

that is obtained as the disturbance attenuation factor in H∞-control. By introducing

the optimistic value they perform investigation of each individual input/output set

much faster, since the H∞-design computation takes much more time. Although the
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calculation of toptimistic does not include any closed-loop stability requirement, they

use it as a best location selection criterion. They denote the optimistic value as the

residual deformation and their method as the minimization of residual deformations

(MNRD).

Theorem 4.1.7 (Arabyan et al. [2]). Let

G =



 G11 G12

G21 G22



 (4.44)

be a stable state space realization which is shown in Figure 4.3. For G, a controller K

can be designed. If closed-loop stability is not required, then the optimistic lower limit

is a lower bound for the actual residual deformation and is defined as

toptimistic = sup
ω
σ
(
G11 − G12G

−L
12 G11G

−R
21 G21

)
. (4.45)

Proof. Consider the closed-loop transfer function Tzw between w and z in Figure 4.3,

which can be given as

‖Tzw‖∞ = ‖Fl (P,KI) ‖∞ = sup
ω
σ (Fl (P,KI) (jω)) . (4.46)

The feedback controller KI in Figure 4.3 is given in the form of Youla parametrization

as

KI = Q
[
I + QG

′

22

]−1

. (4.47)

In Figure 4.3, if G
′

22 = G22, the signal that is fed back to the controller parameter Q

is −G21w. Since one wants to minimize the performance outputs z, the control input

u is required to be u = −G−L
12 G11w. In the case of no model mismatch (G

′

22 = G22),

this can be achieved if the controller parameter Q in Figure 4.3 has the expression

Q = G−L
12 G11G

−R
21 , (4.48)
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Figure 4.3. Internal Model Control Configuration

where G−L, G−R are the left inverse and the right inverse of the system G, respectively.

If (4.47) and (4.48) are inserted into (4.46), Equation (4.45) is obtained.

Definition 4.1.8 (Arabyan and Chemiskian [55]). The controller which is required to

obtain the optimistic value in (4.45) can be given as

KI = Q [I + QG22]
−1 , (4.49)

where Q = G−L
12 G11G

−R
21 .

Remark. According to [55, 58, 59] the parameter Q in the expression of the controller

KI may not always be real rational and stable. To achieve a stabilizing controller KI,

Q needs to be replaced by Q̂ ∈ RH∞. So, the difference between the actual vibration

suppression level and the optimistic lower limit can be given as the approximation

min
Q̂∈RH∞

‖G12

(
Q − Q̂

)
G21‖∞. (4.50)

The approximation (4.50) is solved according to Nehari’s theorem [21, 30, 23]. How-

ever, it takes more time than solving the Riccati equations resulting from H∞-control

problem.

Theorem 4.1.9 (Arabyan and Chemiskian [55]). The minimum norm of residual de-
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formations (MNRD), given by (4.45), can be computed alternatively by the theorem

in [2] as

toptimistic = z∗ = sup
ω
σ
(
G11 − U12U

H
12G11V21V

H
21

)
, (4.51)

where U12 and V12 result from the singular value decomposition of G12(jω) and

G21(jω)

G12(jω) = [U12(jω) u12(jω)]



 Σ12(ω) 0

0 0



 [V12(jω) v12(jω)]H , (4.52)

G21(jω) = [U21(jω) u21(jω)]



 Σ21(ω) 0

0 0



 [V21(jω) v21(jω)]H . (4.53)

Proof. Consider the performance outputs in Figure 4.3, which are

z = G11w + G12u, (4.54)

where u = −QG12w. To minimize z, Q can be selected as Q = G+
12G11G

+
21. Using

singular value decomposition (4.52) and (4.53), the pseudo inverses of G12 and G21

become

G+
12 = V12Σ

−1
12U

H
12, (4.55)

G+
21 = V21Σ

−1
21U

H
21. (4.56)

Hence, z becomes

z = G11w − G12G12G
+
12G11G

+
21G21w

=
(
G11 − U12U

H
12G11V21V

H
21

)
w.



92

So, the transfer function from w to z becomes G11−U12U
H
12G11V21V

H
21, the H∞-norm

of which can be given by (4.51).

To find the optimal actuator and sensor location using MNRD-technique, the

performance outputs z of the general plant in Figure 4.3 can be given in terms of

transfer functions G12 and G11 as

z = G11w + G12(Lu)u, (4.57)

where G12 is the transfer function which gives the contribution of the point or piezo-

electric actuators to z, and G11 gives the contribution of external disturbances w.

The objective is to minimize z in terms of Lu, which gives the best combination

of actuator and sensor pairs as

z∗ (L∗
u) = min

Lu

‖z∗ (Lu) ‖2.

For the configuration Lu, the residual deformation is given as

z∗ (Lu) = min
u

‖G11w + G12u‖2,

= ‖G11w + z∗u‖2,

where z∗u = min
u

‖G12u‖2. Since u = −QG21 w and Q = G−L
12 G11G

−R
21 , z∗u becomes

z∗u = ‖G12G
−L
12 G11G

−R
21 G21w‖2.

Hence, the residual deformation for the configuration Lu can be stated as

z∗ (Lu) =
∥∥(G11 − G12G

−L
12 G11 G−R

21 G21

)
w
∥∥

2

= σ
(
G11 − G12G

−L
12 G11 G−R

21 G21

)
‖w‖2

≤ σ
(
G11 − G12G

−L
12 G11 G−R

21 G21

)
,
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which is equal to the optimistic deformation in Equation (4.45).

The location L∗
u where the MNRD is at minimum can be taken as the best

locations for actuator placement [60].

Remark. If there is no restriction on the inputs, z consists of only deformations.

Generally, it is not possible to eliminate deformations comprised of m DOFs completely

by means of a relatively small number of actuators. The deformations that cannot be

eliminated are called residual deformations.

4.1.5. Calculation of MNRD-value

One can choose the optimistic value for the lower limit of deformation suppression

(MNRD-value) as the closed-loop optimization metric. Usually, it is very close to the

real disturbance attenuation factor γ of an H∞-control problem, but its computation

time is shorter. For this purpose state space representation in Equation (2.51) can be

partitioned, without converting the global plant into modal form, as





Ag Bg1 Bg2

Cg1 Dg11 Bg12

Cg2 Dg21 Bg22




=:



 Pg11 Pg12

Pg21 Pg22



 .

Hence, MNRD-value can be calculated as

toptimistic = sup
ω
σ (Tzw(jω)) , (4.58)

where σ (Tzw) is defined as

σ (Tzw) =
√
λmax (T∗

zw Tzw)

and
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Tzw = Pg11 − Pg12 P−L
g12 Pg11 P−R

g21 Pg21.

The transfer functions P−L
g12 and P−R

g21 are defined as

P−L
g12 =

(
P∼

g12Pg12

)−1
P∼

g12,

P−R
g21 = P∼

g21

(
Pg21P

∼
g21

)−1
,

where conjugate system of Pg12 and Pg21 are given as

P∼
g12 = −BT

g2

(
jωI + AT

g

)−1
CT

g2 + DT
g12,

P∼
g21 = −BT

g1

(
jωI + AT

g

)−1
CT

g2 + DT
g21,

respectively.

The calculation of the MNRD-value in Equation (4.58) requires a selection of the

supremum out of infinitely many frequencies. However, since the static gain is expected

to be zero at infinity and the maximum singular values at very high frequency do

not contribute, a ω-vector of frequencies which ranges from 10−1 to 104 including the

resonance frequencies of the physical system can be used to determine the frequency

at which the maximum singular value is the supremum. Mostly this range is divided

into 300 to 1000 number of frequency points. This gives fairly well resolution for

optimization purposes. If simply dividing this range from 10−1 to 104 does not provide

a good resolution, the interval halving method [51] can be utilized for that purpose.

Using MNRD-controller principle, it is also possible to calculate the closed-loop

H2-norm square approximately. The definition of the H2-norm of the transfer func-

tion Tzw is as

‖Tzw‖2
2 =

1

2π

∫ ∞

−∞

trace (T∗
zw (ω)Tzw (ω)) dω, (4.59)

=
1

2π

∫ ∞

−∞

n∑

i=1

σ2
i (Tzw (ω)) dω. (4.60)
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The integrals in (4.59) and (4.60) can be computed by the Matlab commands quadl

and quadgk numerically, which are written based on some adaptive quadrature inte-

gration techniques [61, 62].

4.2. The Improved Coprime Controller

In this section, a controller design method is proposed which improves over Hi-

ramoto et al. [1]’s design. The approximate solutions of Equations (4.9) and (4.10)

can be determined using the following property: The controllability and observability

Gramians of diagonally dominant state matrices are also diagonally dominant and their

off-diagonal terms can be neglected [3]. Hence, for state space realizations in one of

the modal forms [3], one can solve the generalized ARE in Equations (4.9) and (4.10)

approximately.

Lemma 4.2.1. Assuming that the controllability and observability Gramians Lc and

Lo of the stable generalized plant in (2.61) are diagonally dominant, their diagonal

entries for “physical modes” are

lci ∼=
‖Bi‖2

2

4ζiωi

, ∀i = 1 : Np, (4.61)

loi
∼= ‖Ci‖2

2

4ζiωi

, ∀i = 1 : Np, (4.62)

where Bi and Ci are the ith mode’s contribution of the input matrix B1 or B2 and of

the output matrix C1 or C2, respectively.

Proof. The generalized plant has N modes. The first Np modes are the physical modes

and the remaining Nw modes relate to the signal weights. For the ith mode (from i = 1

to N), the Lyapunov equations simplify to

lci
(
Ai + AT

i

)
+ BiB

T
i = 0, (4.63)

loi

(
Ai + AT

i

)
+ CT

i Ci = 0, (4.64)
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where

Ai =



 0 ωi

−ωi −2ζiωi



 ,

BiB
T
i =



 0 0

0 ‖Bi‖2
2



 , ‖Bi‖2
2 =

(
b2i,1 + b2i,2 + . . .+ b2i,Nu

)
,

CT
i Ci =



 0 0

0 ‖Ci‖2
2



 , ‖Ci‖2
2 =

(
c2i,1 + c2i,2 + . . .+ c2i,Ns

)
.

In (4.63) and (4.64), Bi is the ith mode’s contribution to the input matrix B, which is

B =





0 b1,1 0 b2,1 · · · 0 bi,1 · · · 0 bNp,1 · · ·
0 b1,2 0 b2,2 · · · 0 bi,2 · · · 0 bNp,2 · · ·
...

...
...

...

0 b1,Nu
0 b2,Nu

· · · 0 bi,Nu
· · · 0 bNp,Nu

· · ·





T

, (4.65)

and Ci is the ith mode’s contribution to the output matrix C, which is given as

C =





0 c1,1 0 c2,1 · · · 0 ci,1 · · · 0 cN,1 · · ·
0 c1,2 0 c2,2 · · · 0 ci,2 · · · 0 cN,2 · · ·
...

...
...

...

0 c1,Ns
0 c2,Ns

· · · 0 ci,Ns
· · · 0 cNp,Ns

· · ·




. (4.66)

So, if Ai, Bi and Ci are inserted into Equations (4.63) and (4.64), the approximate

controllability and observability Gramians for the ith mode become (4.61) and (4.62).

Lemma 4.2.2. Assuming that the controllability and observability Gramians Lc and

Lo of the stable generalized plant in (2.61) are diagonally dominant, their diagonal

entries for Nw “weighting modes” from i = Np + 1 to Np +Nw are

lwci
∼= −bib

T
i

2ai
, ∀ i = Np + 1 : N,
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lwoi
∼= −cT

i ci

2ai

, ∀ i = Np + 1 : N,

where bi and ci are the ith mode’s contribution of the input matrix B1 or B2 and of

the output matrix C1 or C2, respectively.

Proof. For each of the Nw modes from i = Np + 1 to N , which are concerned with

signal weights, the Lyapunov equations simplify to

lwci
(
ai + aT

i

)
+ bib

T
i = 0, (4.67)

lwoi

(
ai + aT

i

)
+ cT

i ci = 0, (4.68)

where ai is scalar and is the ith mode’s contribution to the global block diagonalized

state matrix A. In (4.67) and (4.68), bib
T
i and cT

i ci are

bib
T
i = ‖bi‖2

2 =
(
b2i1 + b2i2 + . . .+ b2iNu

)
,

cT
i ci = ‖ci‖2

2 =
(
c2i1 + c2i2 + . . .+ c2iNs

)
,

and bi is the ith mode’s contribution to the input matrix

B =





· · · bNp+1,1 bNp+2,1 · · · bi,1 · · · bNp+Nw,1

· · · bNp+1,2 bNp+2,2 · · · bi,2 · · · bNp+Nw,2

...
...

...
...

· · · bNp+1,Nu
bNp+2,Nu

· · · bi,Nu
· · · bNp+Nw,Ns





T

,

and ci is the ith mode’s contribution to the output matrix

C =





· · · cNp+1,1 cNp+2,1 · · · ci,1 · · · cNp+Nw,1

· · · cNp+1,2 cNp+2,2 · · · ci,2 · · · cNp+Nw,2

...
...

...
...

· · · cNp+1,Ns
cNp+2,Ns

· · · ci,Ns
· · · cNp+Nw,Ns




.
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The first 2 × Np entries of the diagonal approximate Gramians are calculated from

Equations (4.61) and (4.62). The remaining Nw entries of the Gramians are calculated

from Equations (4.67) and (4.68).

Corollary 4.2.3. The controllability and observability Gramians of the weighted gen-

eralized plant, which is stable, can be approximately given as

Lc = diag
(
lc1, lc1, lc2, lc2, . . . , lcNp

, lcNp
, lwc1, l

w
c2, . . . , l

w
cNw

)
, (4.69)

Lo = diag
(
lo1, lo1, lo2, lo2, . . . , loNp

, loNp
, lwo1, l

w
o2, . . . , l

w
oNw

)
. (4.70)

Proof. Proofs of Lemmas 4.2.1 and 4.2.2 give how the approximate Gramians are cal-

culated for physical and weighting modes, respectively. The controllability and observ-

ability Gramians of the generalized plant are simply

Lc =
[

Lp
c Lw

c

]
,

Lo =
[

Lp
o Lw

o

]
,

where

Lp
c = diag (lci, lci) , Lw

c = diag (lwci) ,

Lp
o = diag (loi, loi) , Lw

o = diag (lwoi) ,

since the state space matrices in (2.61) can be partitioned as

A =:



 Am 0

0 Âw



 ,

B1 =:
[

B̂T
m1 B̂T

w1

]T
,

B2 =:
[

B̂T
m2 B̂T

w2

]T
,

C1 =:
[

Ĉm1 Ĉw1

]
,

C2 =:
[

Ĉm2 Ĉw2

]
,
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where

Âw := blockdiag
(

Aw, Az, Au, As

)
.

Theorem 4.2.4. If the solutions of ARE’s (4.9) and (4.10) are assumed to be of the

form

S = diag (s1, s1, s2, s2, . . . , sN , sN) ,

T = diag (t1, t1, t2, t2, . . . , tN , tN) ,

then the ith entries can be calculated from equations

s2
iα

2lci + si − loi = 0,

t2i loi + ti − α2lci = 0.

Since the solutions of Equations (4.9) and (4.10) must be positive definite (si > 0 and

ti > 0), the positive solutions of the scalar quadratic equations

si =
−1 +

√
1 + 4α2lciloi

2α2lci
, (4.71)

ti =
−1 +

√
1 + 4α2lciloi

2loi
, (4.72)

are taken as the diagonally dominant solutions of the control and filter ARE’s.

Proof. If only ith mode is considered and indices of B2 and C2 are leaved by letting

B := B2 and C := C2, ARE’s (4.9) and (4.10) become

AT
i siI2 + siI2Ai − α2siI2BiB

T
i siI2 + CT

i Ci = 0,

AitiI2 + tiI2A
T
i − tiI2C

T
i CitiI2 + α2BiB

T
i = 0,
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which can be expressed as

si

(
AT

i + Ai

)
− α2s2

i BiB
T
i + CT

i Ci = 0, (4.73)

ti
(
Ai + AT

i

)
− t2i C

T
i Ci + α2BiB

T
i = 0. (4.74)

Since it is clear from Equations (4.63) and (4.64) that

BiB
T
i = −lci

(
Ai + AT

i

)
,

CT
i Ci = −loi

(
Ai + AT

i

)
,

where

Ai + AT
i =



 0 0

0 −4ζiωi



 ,

Equations (4.73) and (4.74) become scalar quadratic equations of si and ti.

Remark. The solutions of Equations (4.73) and (4.74) for the weighting modes from

Np + 1 to N = Np + Nw have the same expressions as si and ti in Equations (4.71)

and (4.72). Hence, once the Gramians in Equations (4.69) and (4.70) are calculated,

the solutions of ARE’s for the generalized plant can be obtained directly from Equa-

tions (4.71) and (4.72).

The controller K∞ in Figure 4.1 is obtained by solving the ARE’s (4.9) and (4.10)

approximately and by choosing the parameters α > 0, β > 1. With the controller K∞,

the state space realization of the closed-loop system Gzw is

ẋc = Acxc + Bcw, (4.75)

zc = Ccxc, (4.76)

where
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xc :=
[

xT xKa

T

]T
, Ac :=



 A B2CKa

BKa
C2 AKa



 ,

Bc :=
[

B1
T BKa

D21

]T
,Cc :=

[
C1 D12CKa

]
.

The state space matrices AKa
, BKa

and CKa
of the controller in Figure 4.1 can be

given as

AKa
:= A − α2B2B2

TS + (βγmin)
2 (W−1

)T
TC2

TC2,

BKa
:= (βγmin)

2 (W−1
)T

TC2
T, (4.77)

CKa
:= α2B2

TS,

with W :=
(
1 − (βγmin)2

)
I + ST, γmin := (I + λmax (ST))1/2 .

In (4.77), λmax (.) is the maximum eigenvalue. The closed-loop system Gzw includes

open-loop plant and controller matrices which are functions of the configuration of the

actuators and sensors [63].

4.3. The Improved Low-Authority H∞-Controller

In Subsection 4.1.2, the general H∞-control design framework was mentioned.

This controller design strategy can be applied to any physical system in nature ranging

from an highly maneuverable war plane to a simple spring mass system.

For the flexible structures another H∞-control design (the low-authority H∞-

control design) given in Subsection 4.1.3 can be preferred if it takes less computation

time without any significant changes in the values of the objective functions, but the

design of a low-authority H∞-controller given in [3] is limited to certain types of fre-

quency weights.

In Section 4.2, a useful and simpler coprime controller design strategy is intro-
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duced, which handles a more general class of systems and frequency weights. Using

the principles given in [3], the improved coprime controller design method mentioned

in Section 4.2 will be extended to the general H∞-control design framework.

For this purpose, first, the signal weights in Figures 2.7 and 2.8 are added to the

physical system which is given in the first modal state space form. The obtained gen-

eralized plant is diagonalized by the procedure introduced in Section 2.6 and converted

to the block diagonal form as in (2.61).

4.3.1. Low-Authority H∞-Controllers for Generalized Plants

The assumptions given in Subsection 4.1.2 must be valid before designing the

improved low-authority H∞-controller. Furthermore, although D12 and D21 are

D12 =



 Du

DzDm12



 ,

D21 = −
[

Dm21Dw Ds

]
,

where Dm12 = 0 and Dm21 = 0, D12 and D21 matrices are assumed to be DT
12 =

D21 =
[

0 I
]

for simplicity [30, 64]. These assumptions can be achieved by scaling

of u and y as

ũ := Suu, (4.78)

ỹ := Syy, (4.79)

and by nonsingular unitary transformations of w and z as

w̃ := Tww, (4.80)

z̃ := Tzz. (4.81)

The resulting generalized plant has the state space representation
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Ã := A, B̃1 := B1T
H
w, B̃2 := B2Su

−1,

C̃1 := TzC1, D̃11 := TzD11T
H
w, D̃12 := TzD12Su

−1, (4.82)

C̃2 := SyC2, D̃21 := SyD21T
H
w, D̃22 := SyD22Su

−1.

Lemma 4.3.1. For the generalized plant (4.82), the ARE’s (4.23) and (4.24) associ-

ated with the H∞-controller design can be reduced to simple quadratic equations (4.40)

and (4.41), which are introduced by Gawronski [3] for the physical plant of a flexible

structure.

Proof. The transformations Tw, Tz, Su and Sy are diagonal and scale only the input

and output matrices. The state matrix is still block diagonal, since Ã = A. Therefore,

as stated in Corollary 4.2.3, the approximate Gramians (4.69) and (4.70) are obtained

for the realization in Equation (4.82) such that (4.40) and (4.41) become valid for state

space representation of the generalized plant.

Remark. Lemma 4.3.1 states that Equations (4.40) and (4.41), which are derived only

for the physical plant [3], are also valid for a generalized plant with signal weightings

so that the low-authority assumption given by Gawronski [3] is applicable to the plant

in (4.82). Therefore, the diagonal versions of the Control Algebraic Riccati Equation

(CARE) and the Filter Algebraic Riccati Equation (FARE) in (4.40) and (4.41) are

allowed to be used, which have diagonal solutions

x∞i =
βc − 1

2κc

, (4.83)

y∞i =
βe − 1

2κe

, (4.84)

where

βc =
√

1 + 4lo1κc,

βe =
√

1 + 4lc1κe
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and κc and κe are defined in Equations (4.42) and (4.43). In (4.83) and (4.84) x∞i and

y∞i are ith diagonal component of X∞ and Y∞, respectively.

4.3.2. Controller Matrices for Generalized Plants

Theorem 4.3.2. The low-authority controller design which is introduced by Gawron-

ski [3] for a physical plant of a flexible structure is also applicable to a generalized plant

with signal filtering if the state space representation of the generalized plant is converted

to one of the modal forms using Theorem 2.6.1.

Proof. In the H∞-controller design given by [30, 64], Dm12 = 0 and Dm21 = 0. That

can be achieved by the transformations (4.78) through (4.81), and the generalized plant

can be converted to the scaled generalized plant in (4.82). According Lemma 4.3.1,

ARE’s for the plant (4.82) can be solved as quadratic equations. Using again the trans-

formations (4.78) through (4.81), the controller (4.85) can be given for the generalized

plant.

The H∞-norm can be computed by a simple bisection algorithm. In the bisection

method, disturbance attenuation factor γ is minimized in successive iterations at each

of which all of the assumptions are checked. If γmin is achieved, then this value and the

corresponding approximate CARE and FARE solutions are used to obtain the central

H∞-controller that is given by Equation (4.25). Using ARE solutions (4.83) and (4.84),

a low-authority H∞ controller is designed for the scaled plant in Equation (4.82). The

controller matrices are

ÃK = Ã∞,

B̃K =
[
−Z̃∞L̃∞ Z̃∞B̃2

]
,

C̃K =



 F̃∞

−C̃2



 ,
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where

Ã∞ = Ã + γ−2B̃1B̃
T
1X∞ + B̃2F̃∞ + Z̃∞L̃∞C̃2,

F̃∞ = −B̃T
2X∞,

L̃∞ = −Y∞, C̃
T
2 ,

Z̃∞ =
(
I− γ−2Y∞X∞

)−1
.

The designed controller can be converted to the coordinates, in terms of which

the generalized plant is expressed, as

AK = ÃK,

BK = B̃KSy, (4.85)

CK = Su
−1C̃K.
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5. PARTIAL DERIVATIVES OF CLOSED-LOOP STATE

SPACE MATRICES

For an optimization using gradient of closed-loop criteria, partial derivatives of

both open-loop state space matrices and controller matrices are required. For this

purpose, partial derivatives of finite element matrices are defined in this chapter.

5.1. Partial Derivatives of FE Matrices for Point Actuator/Sensor Pairs

If FEM is applied, the optimization function J for optimal location selection

becomes a function of the global mass and stiffness matrices, the natural frequencies

and the modes shapes. The natural frequencies and mode shapes are not differen-

tiable. In order to overcome this limitation, the discrete nature of eigenvalues (natural

frequencies) and eigenvectors (mode shapes) one may employ sensitivity analysis [52].

x1

xi

xi+1

xi+2

Element 1

L

Element i

Element i + 1

Element i + 2 Element N

Figure 5.1. Typical beam with finite elements

For the sensitivity analysis the derivatives of the global Finite Element mass and

stiffness matrices with respect to the design variables must be defined. In our case, the

design parameter can be selected as the distance of the point actuator and sensor pair

from the left end of the beam. When FEM is applied, the point actuator and sensor

pair may be considered as settled in one of the nodes between two adjacent finite

elements. Therefore, taking the derivative of the finite element with respect to that

node of the actuator, will give the derivatives of the Finite Element mass and stiffness

matrices, which are in turn summed up to obtain the derivative of the global Finite

Elements as in summing up all of the element matrices to build the global matrices.
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The following strategy is developed to obtain the derivatives of the element ma-

trices. The coordinate of the right node and the coordinate of the left node of the ith

element pair is described as xi−1 and xi, respectively, then the length of the ith element

can be expressed as (see Figure 5.1)

li = xi − xi−1. (5.1)

If the coordinate of the left end, xi, of the beam element is chosen as the design

parameter p, the partial derivatives of the element stiffness matrices of all elements

must be taken with respect to that node only. For this purpose, consider the stiffness

and mass matrix of the element i in Figure 5.1

Ke =
2EI

l2i





6 3li −6 3li

3li 2l2i −3li l2i

−6 −3li 6 −3li

3li l2i −3li 2l2i




,

Me =
ρAli
420





156 22li 54 −13li

22li 4li
2 13li −3li

2

54 13li 156 −22li

−13li −3li
2 −22li 4li

2




.

The partial derivatives of the stiffness and mass matrices with respect to xi, which is

the the design variable p, are

∂Te

∂p
=
∂Te

∂xi
=
∂Te

∂li

∂li
∂xi

,

where Te is Ke or Me, and the partial derivatives of them are

∂Ke

∂li
=

2EI

li
4





−18 −6li 18 −6li

−6li −2li
2 6li −li2

18 6li −18 6li

−6li −li2 6li −2li
2




,
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∂Me

∂li
=

ρA

420





156 44li 54 −26li

44li 12li
2 26li −9li

2

54 26li 156 −44li

−26li −9li
2 −44li 12 li

2




.

Since the lengths of the elements can be given in terms of global coordinates xi from

i = 1 to N as in Equation (5.1), the partial derivatives with respect to xi can be

expressed as

∂Te

∂xi
=

∂Te

∂li

∂li
∂xi︸︷︷︸

1

,

∂Tei+1

∂xi
=

∂Tei+1

∂li+1

∂li+2

∂xi︸ ︷︷ ︸
−1

,

∂Tei+2

∂xi
=

∂Tei+2

∂li+2

∂li+2

dxi︸ ︷︷ ︸
0

,

where Te is Ke or Me. The lengths of the elements i, i + 1 and i+ 2 are li, li+1 and

li+2, respectively.

The ith element with a actuator and sensor pair at its end (right node) and the

neighboring (i+1)th element have partial derivatives with respect to the design variable

p = xi. All other elements have no contributions. Hence, for N elements with N + 1

nodes, the partial derivatives of element lengths lj with respect to coordinates of each

node xi can be given by (5.2) where the ith-row gives the partial derivatives of the

element lengths with respect to the ith node.

After the element matrix derivatives are calculated, the next step is the assembly

procedure of the element matrix derivatives. For beams, the partial derivatives with

respect to a single coordinate are required. However, for plates, in addition to the

partial derivatives with respect to xi, the derivatives with respect to yi have to be

calculated in the same manner.
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∂lj
∂xi

=

l1 l2 . . . lj . . . lN
︷ ︸︸ ︷



0 0 . . . . . . . . . . . . . . . . . 0

1 −1 0 . . . . . . . . . . . . . 0

0 1 −1 0 . . . . . . . . . . 0

0 0 1 −1 0 . . . . . . . . 0
...

...

0 . . . . . . . . . 0 1 −1 0 0

0 . . . . . . . . . . . 0 1 −1 0

0 . . . . . . . . . . . . . 0 1 −1

0 . . . . . . . . . . . . . . . . . 0 0





(5.2)

5.2. Remeshing Policy for Structures with Point Actuator and Sensors

In FEM, a structure is divided into a certain number of elements. However, in the

developed optimization algorithm the number, the length and the absolute coordinates

of the finite elements may change during iterations since the locations of point forces,

which should coincide with the nodes of finite elements, change at each iteration.

One way of achieving this consistency is to accept an initial mesh with finite

elements of equal length and to divide an element with forces on it into two or more

elements such that the force acts on the node between two adjacent elements during

an iteration.

In Figure 5.2 (a), the calculated location of the ith actuator is somewhere between

the nodes of the element j. Due to the continuity requirement in FEM, this is not

allowed. Hence, to be consistent with the finite element theory, one may simply divide

the corresponding element into two elements as in Figure 5.2 (b). The point force is then

located at the node between these two neighboring elements, and the number of finite

elements is increased by one. In each iteration the positions of the singular forces,
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ξi

a

jth element(a)

ξi

a

jth element

(b) ui

ui

(j + 1)th element

Figure 5.2. Dividing finite elements during an iteration

x

y

Fdisturbance

Fc

Figure 5.3. Dividing plate finite elements during an iteration

which are either the actuator forces or the disturbances, are checked and the finite

element mesh is re-considered. Hence, if one proposes to have Ne number of elements,

this number may be increased by the number of the point forces that are acting on the

system. The maximum finite elements in some iterations can be Ne + Nw + 2, where

there are Nw disturbances and two actuators.

In Figure 5.3, the same remeshing strategy is given for plates. The collocated

point actuator and sensor pair may not act on an element. Hence, the corresponding



111

element is divided into four elements.

5.3. Partial Derivatives of FE Matrices for PZT Actuator/Sensor Pairs

For structures combined with PZT patches, the total length of the collocated

piezoelectric actuator and sensor pair is constant during iterations, but not the coor-

dinates of the most left and the most right nodes. As the coordinate of the left node

of the first piezoelectric patch xk changes (see Figure 5.4), the lengths Lk−1, Lk, Lk+n

and Lk+n+1 have partial derivatives with respect to xk, where the actuator and sensor

pair consists of n piezoelectric patches. Hence, similar to the case with point actua-

tors and sensors the partial derivatives of the mass, stiffness and piezoelectric coupling

matrices can be given in terms of the partial derivatives of the length of each element

with respect to the starting coordinate of PZT pair as

∂Te

∂xi
=
∂Te

∂li

∂li
∂p
,

where Te can be the element stiffness matrix Ke or the element mass matrix Me or

one of the PZT element matrices such as Kuφ, Kφu and Kφφ.

xk

Lk−1 Lk Lk+1 Lk+n−1 Lk+n

xk+n = xk + L

Lk+n+1

xk+1

xk+n+1

Figure 5.4. Beam finite elements with PZT patches

For PZT patches, ∂li
∂p

is replaced by Lp, which is

Lp = Li
p + Lf

p

Li
p =

[
0 . . . 0

∂

∂p
Lk−1

∂

∂p
Lk−1 0 . . . 0

]

Lf
p =

[
0 . . . 0

∂

∂p
Lk+n

∂

∂p
Lk+n+1 0 . . . 0

]
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where ∂
∂p
Lk−1 = ∂

∂p
Lk+n = 1 and ∂

∂p
Lk−1 = ∂

∂p
Lk+n+1 = −1. The vectors Li

p and Lf
p

are vectors of partial derivatives of individual lengths of elements with respect to the

initial and final coordinates of the PZT pairs, respectively, as shown in Figure 5.4.

The coordinate of the node, with respect to which the partial derivatives of the FE

matrices are to be solved, is given by p. The vector Lp is an 1×N vector of the partial

derivatives
∂li
∂p

for i = 1 : N . Hence, the partial derivative of an element matrix Te

with respect to a design variable becomes

∂Te

∂xi
=
∂Te

∂li
Lp

i .

If the element matrix derivatives calculated, the derivatives of global matrices are

obtained in the usual assembly procedure.

The overall procedure for calculating the global matrix derivatives for plates is

similar. For plates, there is the y-coordinate as the second coordinate, which is inde-

pendent from the x-coordinate. Hence, repeating the procedure for the y-coordinate

of the starting point of the actuator and sensor pair gives the partial derivatives with

respect to that coordinate.

5.4. Remeshing Policy for Structures with PZT Actuator/Sensor Pairs

Unlike the case of point actuators and sensors, where the structures are initially

divided into elements of equal lengths, the beams with PZT pairs are divided into two

regions of PZT parts and non-PZT parts. Before discretizing the structure, the largest

allowed sizes of non-PZT and PZT elements are determined (ln and lp). All of the

non-PZT elements must be smaller than that prescribed size ln. None of the elements

of PZT pairs may be greater than lp.

First non-PZT Region L Second non-PZT Region

Figure 5.5. Non-PZT and PZT parts of the beam
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Then, the non-PZT regions are divided into finite elements. If there are distur-

bances in that region, the elements around the disturbances may have different lengths

as shown in Figure 5.6. After this is repeated for every non-PZT part, the PZT regions

are discretized as well.

non-PZT region

Fdisturbance

Figure 5.6. Non-PZT part of the beam

To let the point disturbances coincide with the nodes in PZT parts, a strategy is

used to better adapt finite elements to the acting disturbances (see Figure 5.7). The

parts of the beam with piezoelectric actuator and sensor pair are divided into more

finite elements than parts without PZT pairs, and the coordinate of the node, which

is closest to the disturbance, is replaced with the coordinate of the disturbance. The

main concern is to let the PZT pathes to consist of the same number of finite elements

at each iteration.

Fdisturbance

(a)

xk L

Fdisturbance

(b)

xk L

Figure 5.7. Dividing beam finite elements with PZT patches during an iteration

The given discretization procedure can be extended to the plates by simply in-

troducing the y-coordinate.
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5.5. Partial Derivatives of Mode Shapes and Natural Frequencies

When the mass matrix M and the stiffness matrix K are calculated and the partial

derivatives of them with respect to a design parameter p is defined, it is possible to

calculate partial derivatives of the mode shapes and of the natural frequencies with

respect to the design parameter p. Their partial derivatives are

∂ω2
r

∂p
= uT

r

(
∂K

∂p
− ω2

r

∂M

∂p

)
ur, ∀ r = 1 : n, (5.3)

∂ur

∂p
=

m∑

j=1

crjuj , ∀ r = 1 : n, (5.4)

where K and M are global stiffness and mass matices, respectively. The rth eigenvector

or mode shape for the eigenvalue problem (K − ω2
rM)ur = 0 is denoted by ur. The

coefficient crj is calculated as follows [52, 53, 54, 65, 66]:

crj =






(
∂K

∂p
− ω2

r

∂M

∂p

)

ωr − ωj
if r 6= j,

−1

2
(ur)

T ∂M

∂p
ur if r = j.

(5.5)

The partial derivatives of natural frequencies and mode shapes defined by Equa-

tions (5.3), (5.4) and (5.5) are valid for distinct values of natural frequencies with

proportional damping. However, different methodologies are also found in literature

for calculating the partial derivatives of natural frequencies and mode shapes of a sys-

tem with nonproportional damping and/or repeated eigenvalues. Friswell [67] extends

the partial derivative calculation to nonproportionally damped system. The papers

[68, 69, 70, 71] give different but similar techniques to compute repeated eigenvalue-

eigenvectors. The higher order derivatives of natural frequencies and mode shapes can

also be calculated according to [72].
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5.6. Partial Derivatives of State Space Matrices of Generalized Plant

With the derivatives of the natural frequencies in (5.3) and of the mode shapes

in (5.4), it is possible to obtain the partial derivatives of the state matrices of the

closed-loop system described in Equations (4.75). The closed-loop system matrices in

(4.75) include the open-loop generalized plant in (2.61) and the controller matrices

(4.77). Since the controller matrices are functions of the generalized plant in (2.61),

the gradient calculation, which is necessary for the optimization part, requires the

derivatives of open-loop state space matrices A, B1, B2, C1, C2, D11, D12, D21 and

D22. Their partial derivatives are

∂A

∂ξi
a

= diag

(
∂Am

∂ξi
a

,
∂Aw

∂ξi
a

,
∂Az

∂ξi
a

,
∂Au

∂ξi
a

,
∂As

∂ξi
a

)
, (5.6)

∂B1

∂ξi
a

=
∂Bg1

∂ξi
a

Z + Bg1

∂Z

∂ξi
a

, (5.7)

∂B2

∂ξi
a

=
∂Bg2

∂ξi
a

Z + Bg2

∂Z

∂ξi
a

, (5.8)

∂C1

∂ξi
a

= Z−1∂Cg1

∂ξi
a

+
∂Z−1

∂ξi
a

Cg1, (5.9)

∂C2

∂ξi
a

= Z−1∂Cg2

∂ξi
a

+
∂Z−1

∂ξi
a

Cg2, (5.10)

∂D11

∂ξi
a

=
∂Dg11

∂ξi
a

, (5.11)

∂D12

∂ξi
a

=
∂Dg12

∂ξi
a

, (5.12)

∂D21

∂ξi
a

=
∂Dg21

∂ξi
a

, (5.13)

∂D22

∂ξi
a

=
∂Dg22

∂ξi
a

, (5.14)

where
∂Z

∂ξi
a

is the derivative of the coordinate transformation Z that is used to diago-

nalize global state matrix Ag in Equation (2.61) and is given by

∂Z

∂ξi
a

=
∂X

∂ξi
a

X̂−1 + X
∂X̂−1

∂ξi
a

, (5.15)

with
∂X̂−1

∂ξi
a

= −X̂−1∂X

∂ξi
a

X̂−1. (5.16)
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∂Z

∂ξi
a

can be assumed to be zero since its contribution to the derivatives to the state

space matrices of the generalized plant is of very low level. Hence, matrices from (5.7)

to (5.14) can be calculated simpler.

The partial derivatives of the matrices from (5.7) to (5.14) include the derivatives

of the state space matrices of the physical plant in the first modal form. Since the nodes

of the elements vary, the signal weightings do not change; their contributions to the

partial derivatives of the generalized plant vanish. The derivatives of the matrices Am,

Bm1, Bm2, Cm1, Cm2, Dm11, Dm12, Dm21 and Dm22 of the physical plant are

∂Am

∂ξi
a

= diag








0

∂ωi

∂ξi
a

−∂ωi

∂ξi
a

−2ζi
∂ωi

∂ξi
a







 , (5.17)

∂Bm1

∂ξi
a

=
∂B̂1

∂ξi
a

R̂ + B̂1

∂R̂

∂ξi
a

, (5.18)

∂Bm2

∂ξi
a

=
∂B̂2

∂ξi
a

R̂ + B̂2

∂R̂

∂ξi
a

, (5.19)

∂Cm1

∂ξi
a

=
∂R̂−1

∂ξi
a

Ĉ1 + R̂−1∂Ĉ1

∂ξi
a

, (5.20)

∂Cm2

∂ξi
a

=
∂R̂−1

∂ξi
a

Ĉ2 + R̂−1∂Ĉ2

∂ξi
a

, (5.21)

∂Dm12

∂ξi
a

=
∂D̂12

∂ξi
a

, (5.22)

where the partial derivative of the coordinate transformation R̂ and of its inverse R̂−1

can be given as

∂R̂

∂ξi
a

=
∂R31

∂ξi
a

R . (5.23)

In (5.23), R31 and R are the coordinate transformations given in (2.49) and (2.48),

respectively. The partial derivatives of R31 and R are

∂R31

∂ξi
a

= diag








0 0

0
∂ω1

∂ξi
a



 ,




0 0

0
∂ω2

∂ξi
a



 , · · · ,




0 0

0
∂ωN

∂ξi
a







 (5.24)
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and

∂R̂−1

∂ξi
a

= −R̂−1∂R̂

∂ξi
a

R̂−1. (5.25)

The derivatives of the matrices B̂1, B̂2, Ĉ1, Ĉ2, D̂12 are

∂B̂1

∂ξi
a

=




0

∂ΦT

∂ξi
a

Lw



 ,
∂B̂2

∂ξi
a

=




0

∂ΦT

∂ξi
a

Lu



 ,

∂Ĉ1

∂ξi
a

=

[
Czq

∂Φ

∂ξi
a

0

]
,

∂Ĉ2

∂ξi
a

=

[
0 Cyv

∂Φ

∂ξi
a

]
,

∂D̂12

∂ξi
a

=
∂D12

∂ξi
a

= 0.

5.7. ARE Derivatives for the Improved Coprime Controller

To obtain the gradient of the objective function, the derivatives of the solutions

of ARE’s (4.9) and (4.10) are also required. The partial derivatives of the solutions

of an ARE are calculated by finding the solutions of the derivatives of the ARE with

respect to design parameter.

Lemma 5.7.1. Given the ARE’s (4.9) and (4.10), and assuming that the partial

derivatives of S and T, the solutions of (4.9) and (4.10), are diagonally dominant

as

∂S

∂p
= diag

(
∂s1

∂p
, . . . ,

∂sN

∂p

)
,

∂T

∂p
= diag

(
∂t1
∂p

, . . . ,
∂tN
∂p

)
,

then the ith mode’s entries ∂si

∂p
and ∂ti

∂p
are calculated from

(
1 + 2α2silci

)
4ζiωi

∂si

∂p
+ si

∂

∂p
(4ζiωi)

+ α2s2
i

∂

∂p

((
B2iB

T
2 i

)
(2,2)

)
− ∂

∂p

((
CT

2 iC2i

)
(2,2)

)
= 0,

(5.26)
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(1 + 2tiloi)4ζiωi
∂ti
∂p

+ ti
∂

∂p
(4ζiωi)

+ t2i
∂

∂p

((
CT

2 iC2i

)
(2,2)

)
− α2 ∂

∂p

((
B2iB

T
2 i

)
(2,2)

)
= 0,

(5.27)

where the partial derivatives of
(
B2iB

T
2 i

)
(2,2)

and
(
CT

2 iC2i

)
(2,2)

are

∂

∂p

((
B2iB

T
2 i

)
2,2

)
=
∂

∂p
‖B2i‖2

2

=2

(
bi1
∂bi1
∂p

+ bi2
∂bi2
∂p

+ · · · + biNu

∂biNu

∂p

)
,

∂

∂p

((
CT

2 iC2i

)
2,2

)
=
∂

∂p
‖C2i‖2

2

=2

(
c1i
∂c1i

∂p
+ c2i

∂c2i

∂p
+ · · · + biNu

∂cNui

∂p

)
.

Proof. The derivatives of ARE’s (4.9) and (4.10) with respect to design parameters p,

which are the coordinates of the actuator/sensor pairs (ξ1
a . . . ξ

Nu
a ), are

(
AT − α2SB2B

T
2

) ∂S
∂p

+
∂S

∂p

(
A − α2SBT

2B2

)
+ QS = 0, (5.28)

(
A − TCT

2C2

) ∂T
∂p

+
∂T

∂p

(
AT −TCT

2C2

)
+ PT = 0, (5.29)

where QS and PT are

QS =
∂AT

∂p
S + S

∂A

∂p
− α2S

∂B2

∂p
BT

2S−α2SB2

∂BT
2

∂p
S

+
∂CT

2

∂p
C2 + CT

2

∂C2

∂p

and

PT =
∂A

∂p
T + T

∂AT

∂p
−T

∂B2

∂p
BT

2T−TB2

∂BT
2

∂p
T

+α2∂C
T
2

∂p
C2 + α2CT

2

∂C2

∂p
,

respectively.
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Equations (5.28) and (5.29) are Lyapunov equations and their solutions are ob-

tained in the same manner as in Equations (4.9) and (4.10). Since the system equations

of the generalized plant are put into the first modal state space representation, Equa-

tions (5.28) and (5.29) can be solved for each mode separately. For the ith mode, they

are (5.26) and (5.27). In Equations (5.26) and (5.27), the only unknown quantities are

∂si

∂p
and ∂ti

∂p
and hence can be found immediately.

5.8. ARE Derivatives for the Low-Authority H∞-Controller

Lemma 5.8.1. If the solutions of ARE’s in (4.23) and (4.24) can be approximated

by diagonal solutions as X∞ = diag (x∞i) and Y∞ = diag (y∞i) so that the partial

derivatives of X∞ and Y∞ are also diagonally dominant as

∂X∞

∂p
= diag

(
∂x∞i

∂p

)
, ∀ i = 1 : N,

∂Y∞

∂p
= diag

(
∂y∞i

∂p

)
, ∀ i = 1 : N,

then for the ith mode
∂x∞i

∂p
and

∂y∞i

∂p
are given by

∂x∞i

∂p
=

(QX∞
)i

4ζiωi [1 + 2x∞i (γ−2lc1i + lc2i)]
(5.30)

and

∂y∞i

∂p
=

(QY∞
)i

4ζiωi [1 + 2y∞i (γ
−2lo1i + lo2i)]

, (5.31)

where (QX∞
)i and (QY∞

)i are

(QX∞
)i = x∞

2
i

(
∂

∂p

(
γ−2B1iB

T
1 i

)
(2,2)

− ∂

∂p

(
B2iB

T
2 i

)
(2,2)

)

− x∞i

∂

∂p
(4ζiωi) +

∂

∂p

(
CT

1 iC1i

)
(2,2)
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and

(QY∞
)i = y∞

2
i

(
∂

∂p

(
γ−2CT

1 iC1i

)
(2,2)

− ∂

∂p

(
CT

2 iC2i

)
(2,2)

)

− y∞i

∂

∂p
(4ζiωi) +

∂

∂p

(
B1iB

T
1 i

)
(2,2)

,

respectively.

Proof. The ARE’s in (4.23) and (4.24) have the partial derivatives with respect to a

design variable p as

[
AT + X∞

(
γ−2B1B

T
1 − B2B

T
2

)] ∂X∞

∂p
+

∂X∞

∂p

[
A +

(
γ−2B1B

T
1 − B2B

T
2

)
X∞

]
+ QX∞

= 0

(5.32)

and

∂Y∞

∂p

[
AT +

(
γ−2CT

1C1 − CT
2C2

)
Y∞

]
+

[
A + Y∞

(
γ−2CT

1C1 − CT
2C2

)] ∂Y∞

∂p
+ QY∞

= 0,

(5.33)

respectively, where QX∞
and QY∞

are

QY∞
=
∂A

∂p
Y∞+Y∞

∂AT

∂p
+
∂B1B

T
1

∂p

+ Y∞

(
γ−2∂C

T
1B1

∂p
− ∂CT

2C2

∂p

)
Y∞,

QX∞
=
∂AT

∂p
X∞+X∞

∂A

∂p
+
∂CT

1C1

∂p

+ X∞

(
γ−2∂B1B

T
1

∂p
− ∂B2B

T
2

∂p

)
X∞.

Equations (5.32) and (5.33) are Lyapunov equations. Since the generalized plant is

given in the first modal state space representation, Equations (5.32) and (5.33) can
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be solved for each mode separately. For the ith mode, they become (5.30) and (5.31),

from which ∂x∞i

∂p
and ∂y∞i

∂p
are to be calculated.

5.9. Partial Derivative of γmin for the Improved Coprime Controller

For taking the partial derivative of the closed-loop matrix Ac in Equation (4.75)

with respect to the design parameter p, the partial derivative of γmin in Equation (4.77)

is also required, which is given as

∂γmin

∂p
=

1

2
√

I + λmax (ST)

∂

∂p
λmax (ST) ,

where

∂

∂p
λmax (ST) = uT

k

∂ST

∂p
uk,

k is the index of the maximum eigenvalue of ST as

λmax = λk = max
i
λi (ST) , ∀ i = 1 : Np,

and uk is the kth eigenvector of ST.

The distinct eigenvalue derivative of
∂

∂p
λmax (.) is taken according to [52, 53], and

it is assumed that eigenvalues are always distinct as the design parameter p changes.

If this is violated during iterations, the optimization procedure may be stopped.

5.10. Partial Derivatives of the Closed-loop Matrices

When the partial derivatives of the open-loop state space matrices and the con-

troller matrices are obtained, the closed-loop matrices and their partial derivatives



122

are



 Acl Bcl

Ccl Dcl



 =





A B2CK B1 + B2DKD21

BKC2 AK BKD21

C1 + D12DKC2 D12CK D11 + D12DKD21





and

∂Acl

∂p
=





∂A

∂p

∂B2

∂p
CK + B2

∂CK

∂p
∂BK

∂p
C2 + BK

∂C2

∂p

∂AK

∂p



 ,

∂Bcl

∂p
=





∂B1

∂p
+
∂B2

∂p
DKD21 + B2

∂DK

∂p
D21 + B2DK

∂D21

∂p
∂BK

∂p
D21 + BK

∂D21

∂p



 ,

∂Ccl

∂p
=

[
∂C1

∂p
+
∂D12

∂p
DKC2 + D12

∂DK

∂p
C2

+D12DK

∂C2

∂p

D12

∂p
CK + D12

∂CK

∂

]
,

∂Dcl

∂p
=

[
D11

∂p
+

D12

∂p
DKD21 + D12

DK

∂p
D21 + D12DK

D21

∂p

]
,

respectively.

Partial derivatives of the open-loop state space matrices are introduced in Sec-

tion 5.6.

Partial derivatives of the state space matrices for the improved coprime controller

and the low-authority H∞-controller are given in Subsections 5.10.1 and 5.10.2.

5.10.1. Partial Derivatives of the Improved Coprime Controller Matrices

Partial derivatives of the improved coprime controller matrices with respect to a

design variable p are
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∂AKa

∂p
=

∂A

∂p
− α2

(
∂

∂p
B2B

T
2S + B2

∂

∂p
BT

2S + B2B
T
2

∂S

∂p

)

+2β2γmin
∂γmin

∂p

(
W−1

)T
TCT

2C2

+ (βγmin)
2

(
∂ (W−1)

T

∂p
TCT

2C2 +
(
W−1

)T ∂T

∂p
C2

TC2

+
(
W−1

)T
T
∂CT

2

∂p
C2 +

(
W−1

)T
TCT

2

∂C2

∂p

)
,

∂BKa

∂p
= 2β2γmin

∂γmin

∂p

(
W−1

)T
TCT

2 + (βγmin)2

(
∂ (W−1)

T

∂p
TCT

2 +

(
W−1

)T ∂T

∂p
C2

T +
(
W−1

)T
T
∂CT

2

∂p

)
,

∂CKa

∂p
= α2

(
∂BT

2

∂p
S + BT

2

∂S

∂p

)
,

where

∂W

∂p
= −2β2γmin

∂γmin

∂p
I +

∂S

∂p
T + S

∂T

∂p
,

∂ (W−1)
T

∂p
= −

(
W−1

)T
(
∂W

∂p

)T (
W−1

)T
.

The partial derivatives of the ARE solutions S and T are given in Subsection 5.7.

5.10.2. Partial Derivatives of the Improved Low-Authority H∞-Controller

Matrices

The partial derivatives of the low-authority H∞-controller matrices are

∂AK

∂p
=

∂Ã

∂p
+ γ−2

(
∂B̃1

∂p
B̃T

1X∞ + B̃1

∂B̃T
1

∂p
X∞ + B̃1B̃

T
1

∂X∞

∂p

)

+
∂B̃2

∂p
F̃∞ + B̃2

∂F̃∞

∂p
+
∂Z̃∞

∂p
L̃∞C̃2 + Z̃∞

∂L̃∞

∂p
C̃2 + Z̃∞L̃∞

∂C̃2

∂p
,

∂BK

∂p
=

[
−∂Z̃∞

∂p
L̃∞ − Z̃∞

∂L̃∞

∂p

∂Z̃∞

∂p
B̃2 + Z̃∞

∂B̃2

∂p

]
Sy,
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∂CK

∂p
= Su

−1





∂F̃∞

∂p

−∂C̃2

∂p



 , (5.34)

where the partial derivatives of F̃∞, L̃∞ and Z̃∞ are

∂F̃∞

∂p
= −∂B̃

T
2

∂p
X∞ − B̃T

2

∂X∞

∂p
,

∂L̃∞

∂p
= −∂Y∞

∂p
C̃T

2 − Y∞
∂C̃T

2

∂p
,

∂Z̃∞

∂p
= γ−2

(
I − γ−2Y∞X∞

)−1
(
∂Y∞

∂p
X∞

+Y∞
∂X∞

∂p

)(
I− γ−2Y∞X∞

)−1
. (5.35)

The partial derivatives of the generalized plant in (4.82) are

∂Ã

∂p
=
∂A

∂p
,

∂B̃1

∂p
=
∂B1

∂p
Tw

H,
∂B̃2

∂p
=
∂B2

∂p
Su

−1,

∂C̃1

∂p
= Tz

∂C1

∂p
,

∂D̃11

∂p
= Tz

∂D11

∂p
TH

w,
∂D̃12

∂p
= Tz

∂D12

∂p
Su

−1, (5.36)

∂C̃2

∂p
= Sy

∂C2

∂p
,

∂D̃21

∂p
= Sy

∂D21

∂p
TH

w,
∂D̃22

∂p
= Sy

∂D22

∂p
Su

−1.

The partial derivatives of the CARE and FARE solutions X∞ and Y∞ in Equations

(5.34) and (5.35) are introduced in Section 5.8.

5.11. Partial Derivatives of MNRD-value

The partial derivative of the square of the closed-loop H2-norm with MNRD-

controller can be obtained by differentiating (4.59) or (4.60) as

∂ ‖Tzw‖2
2

∂p
=

1

2π

∫ ∞

−∞

trace

(
∂T∗

zw (ω)

∂p
Tzw (ω) + T∗

zw (ω)
∂Tzw (ω)

∂p

)
dω,

=
1

2π

∫ ∞

−∞

n∑

i=1

2 σi (Tzw (ω))
∂σi (Tzw (ω))

∂p
dω.
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Similar to the calculation of the optimistic H2-norm in Subsection 4.1.5,
∂‖Tzw‖2

2

∂p
can

be computed numerically by the Matlab commands quadl and quadgk.

The partial derivative of the ith singular value with respect to p is

∂

∂p
σi (Tzw) =

1

2σi (Tzw)

∂

∂p
λi (T

∗
zwTzw) ,

where

∂

∂p
λi (T

∗
zwTzw) = uT

i

(
∂T∗

zw

∂p
Tzw + T∗

zw

∂Tzw

∂p

)
ui,

and ui is the ith eigenvector of T∗
zwTzw. The partial derivative of Tzw is simply defined

as

∂Tzw

∂p
=
∂P11

∂p
− ∂P12

∂p
P−L

12 P11P
−R
21 P21 − P12

∂P−L
12

∂p
P11P

−R
21 P21

− P12P
−L
12

∂P11

∂p
P−R

21 P21 − P12P
−L
12 P11

∂P−R
21

∂p
P21 − P12P

−L
12 P11P

−R
21

∂P21

∂p
.

By letting Θ and Ξ as

Θ := (jωI− Ag)
−1 ,

Ξ :=
(
jωI− AT

g

)−1
,

the partial derivatives of P11, P12 and P21 become

∂P11

∂p
=
∂Cg1

∂p
ΘBg1 + Cg1

∂Θ

∂p
Bg1 + C1gΘ

∂Bg1

∂p
+
∂Dg11

∂p
,

∂P12

∂p
=
∂Cg1

∂p
ΘBg2 + Cg1

∂Θ

∂p
Bg2 + Cg1Θ

∂Bg2

∂p
+
∂Dg12

∂p
,

∂P21

∂p
=
∂Cg2

∂p
ΘBg1 + Cg2

∂Θ

∂p
Bg1 + Cg2Θ

∂Bg1

∂p
+
∂Dg21

∂p
,

where
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∂Ξ

∂p
= −Ξ

(
∂AT

g

∂p

)

Ξ,

∂Θ

∂p
= −Θ

(
−∂Ag

∂p

)
Θ.

By letting PΘ
12 := (P∼

12P12)
−1 and PΘ

21 := (P21P
∼
21)

−1 , the partial derivatives of

P−L
12 and P−R

21 become

∂P−L
12

∂p
=

∂PΘ
12

∂p
P∼

12 + PΘ
12

∂P∼
12

∂p
,

∂P−R
21

∂p
=

∂P∼
21

∂p
PΘ

21 + P∼
21

∂PΘ
21

∂p
,

where

∂PΘ
12

∂p
= −PΘ

12

(
∂P∼

12

∂p
P12 + P∼

12

∂P12

∂p

)
PΘ

12,

∂PΘ
21

∂p
= −PΘ

21

(
∂P21

∂p
P∼

21 + P21,
∂P∼

21

∂p

)
PΘ

21,

∂P∼
12

∂p
= −

∂BT
g2

∂p
ΞCT

g1 −BT
g2

∂Ξ

∂p
CT

g1 −BT
g2Ξ

∂CT
g1

∂p
+
∂DT

12

∂p
,

∂P∼
21

∂p
= −

∂BT
g1

∂p
ΞCT

g2 −BT
g1

∂Ξ

∂p
CT

g2 −BT
g1Ξ

∂CT
g2

∂p
+
∂DT

21

∂p
.
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6. EXAMPLES FOR OPTIMAL ACTUATOR AND

SENSOR LOCATION SELECTION

6.1. Beam Design Example with Point Actuator/Sensor Pairs

Consider the simply supported beam in Figure 6.1, where ξ and ψ are the hor-

ξw

ξ1

a

u1

d

ψ

ξ

ξ2

a u2

L

Figure 6.1. Simply supported beam with two point control forces and a single

disturbance

izontal coordinate and the vertical deflection, respectively. The inputs w(t) and ui(t)

with i = 1, 2 are the single disturbance and the two point actuator forces, respectively.

The disturbance is located at ξw. The control forces from the first and the second

actuators are acting at horizontal positions ξi
a for i = 1, 2. Since the rate sensors are

collocated, they are at the same location as the actuators. The boundary conditions

for the simply supported beam are given in Table 6.1.

Table 6.1. The boundary conditions for the simply supported beam

Deflection at the left end ψ(0, t) = 0

Deflection at the right end ψ(L, t) = 0

Moment at the left end
∂2ψ(0, t)

∂ξ2
= 0

Moment at the right end
∂2ψ(L, t)

∂ξ2
= 0

The terms EI, ρ and S denote the flexural density, the density and cross section
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area of the beam respectively. Their values are selected as: E = 1 Pa, I = 1 m−4,

ρ = 1 kg m−3, S = 1 m2. The single disturbance is located at the point ξw = 0.35L and

the initial places of the actuators are ξ1
a = 0.25L, ξ2

a = 0.65L. The parameters required

for the controller design step are α = 100, β = 1.02. The performance outputs are

described by the vector z = [ψ(ξ1
a), ψ(ξ2

a), ψ(ξw), u1, u2]
T
. The damping for each mode

is ζ = 0.001.

Assumed modes method is used to discretize the problem. The number of modes

are taken as N = 10. The equation of motion is

EI
∂4ψ(ξ, t)

∂ξ4
+ ρS

∂2ψ(ξ, t)

∂t2
= w(t)δ(ξ − ξw) +

2∑

i=1

ui(t)δ(ξ − ξi
a). (6.1)

With the assumed modes approach, Equation (6.1) can be solved by assuming the

vertical displacement ψ(ξ, t) to be

ψ(ξ, t) =
N∑

i=1

qi(t) ϕi(ξ), (6.2)

ϕi(ξ) =

√
2

L
sin

iπξ

L
, (6.3)

where qi(t) and ϕi(ξ) are the modal displacements and the normalized mode shapes,

respectively.

If (6.2) and (6.3) are inserted in Equation (6.1), and modal analysis is done, the

discrete equation is obtained as

q̈m + Ω2qm = Lwd + Luu, (6.4)

where qm, Ω, w, u are

qm = [q1, q2, . . . , qN ]T ,

Ω = diag (ω1, ω2, . . . , ωN) ,
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d = [w(t)] ,

u =
[
u1(t), u2(t)

]
.T

The matrices Lw, Lu and the natural frequencies are

Lw =
[
ϕ1(ξw) ϕ2(ξw) . . . ϕN(ξw)

]T
,

Lu =



 ϕ1(ξ
1
a) ϕ2(ξ

1
a) . . . ϕN(ξ1

a)

ϕ1(ξ
2
a) ϕ2(ξ

2
a) . . . ϕN(ξ2

a)




T

,

ωi = (iπ)2

√
EI

ρSL4
, ∀ i = 1 : N,

respectively.

Equation (6.2) is similar to the first equation in (2.46). If the assumed modal

damping of ζ = 0.001 is added, Equation (6.2) includes the term 2ΥΩq̇m just as in

(2.46), where Υ = diag (ζ1, ζ2, . . . ζN). Then, y and z become

y =



 ψ̇(ξ1
a)

ψ̇(ξ2
a)



 =

=Lu︷ ︸︸ ︷

 φ1(ξ
1
a) φ1(ξ

1
a) . . . φN(ξ1

a)

φ1(ξ
2
a) φ1(ξ

2
a) . . . φN(ξ2

a)









q̇1(t)

q̇1(t)
...

q̇N (t)




, (6.5)

z =





ψ(ξ1
a)

ψξ2
a)

ψξw)

u1

u2





=





φ1(ξ
1
a) φ1(ξ

1
a) . . . φN(ξ1

a)

φ1(ξ
2
a) φ1(ξ

2
a) . . . φN(ξ2

a)

φ1(ξw) φ1(ξw) . . . φN(ξw)

0 0 . . . 0

0 0 . . . 0









q1(t)

q1(t)

q3(t)
...

qN(t)





+





0 0

0 0

1 0

0 1







 u1(t)

u2(t)



 .

(6.6)
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If the state vector is given as x̂ =
[
qm(t)T q̇m(t)T

]T
, the state space representation is

obtained as

˙̂x =



 0 I

−Ω2 2ΥΩq̇m





︸ ︷︷ ︸
Â

x̂ +



 0

Lw





︸ ︷︷ ︸
B̂1

d +



 0

Lu





︸ ︷︷ ︸
B̂2

u,

z =





Lu
T 0

Lw
T 0

0 0

0 0





︸ ︷︷ ︸
Ĉ1

x̂ +





0 0

0 0

I 0

0 I





︸ ︷︷ ︸
D̂12

u, (6.7)

y =
[

0 LuT
]

︸ ︷︷ ︸
Ĉ2

x̂,

which is the same as Equation (2.47). Using the coordinate transformation xm =

R31Rx̂ with R31 in (2.49) and R in (2.48), the state space matrices Am1, Bm1,

Cm1 in the third modal form can be calculated (matrices (6.8)). Using the signal

Table 6.2. Signal weightings for beams with point actuators/sensors

Disturbance Weight Wdist
10

0.03s+ 1

Sensor Noise Weight Wsn
1

105

Performance Output Weight Wer 1

Control Input Weight Win
1

25

weights in Table 6.2, the generalized plant is obtained. Tables 6.3 and 6.4 give exact

and diagonally dominant controllability and observability Gramians of the generalized

plant, respectively. Table 6.5 compares the exact CARE and FARE solutions with

diagonally dominant ones, which are calculated from Equations (4.71) and (4.72). In

Tables 6.3, 6.4 and 6.5, exact Gramians and exact ARE solutions are square matrices.

However, since they are diagonally dominant, their diagonal entries are compared with

values, which are obtained according to the methods introduced in this study.



blockdiag

Am1
=

︷ ︸︸ ︷



0 9.8696

−9.8696 −0.0197

0 39.4784

−39.4784 −0.0790

0 88.8264

−88.8264 −0.1777

0 157.9137

−157.9137 −0.3158

0 246.7401

−246.7401 −0.4935

0 355.3058

−355.3058 −0.7106

0 483.6106

−483.6106 −0.9672

0 631.6547

−631.6547 −1.2633

0 799.4380

−799.4380 −1.5989

0 986.9604

−986.9604 −1.9739





,

[

B1m1 B2m1

]
=

︷ ︸︸ ︷



0 0 0

0.1277 0.1013 0.1277

0 0 0

0.0290 0.0358 −0.0290

0 0 0

−0.0025 0.0113 −0.0025

0 0 0

−0.0085 0.0000 0.0085

0 0 0

−0.0041 −0.0041 −0.0041

0 0 0

0.0012 −0.0040 −0.0012

0 0 0

0.0029 −0.0021 0.0029

0 0 0

0.0013 −0.0000 −0.0013

0 0 0

−0.0008 0.0013 −0.0008

0 0 0

−0.0014 0.0014 0.0014





,

[

C1m1
T C2m1

T

]
=

︷ ︸︸ ︷



1 1.2601 1.2601 0 0

0 0 0 9.8696 12.4364

1.4142 −1.1441 1.1441 0 0

0 0 0 55.8309 −45.1682

1 −0.2212 −0.2212 0 0

0 0 0 88.8264 −19.6512

0 1.3450 −1.3450 0 0

0 0 0 0 212.3934

−1 −1 −1 0 0

0 0 0 −246.7401 −246.7401

−1.4142 −0.4370 0.4370 0 0

0 0 0 −502.4782 −155.2743

−1 1.3968 1.3968 0 0

0 0 0 −483.6106 675.5084

−0 −0.8313 0.8313 0 0

0 0 0 −0 −525.0654

1 −0.6420 −0.6420 0 0

0 0 0 799.4380 −513.2708

1.4142 1.4142 −1.4142 0 0

0 0 0 1395.7728 1395.7728





(6.8)
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Table 6.3. Comparison of exact and diagonal controllability Gramians

Controllability Gramians

for the pair (A,B1) for the pair (A,B2)

Exact Diagonal Exact Diagonal

Physical Modes from 1 to 2 ×Np

37.960867057 38.002235112 0.672928630 0.672928630

38.002235112 38.002235112 0.672928630 0.672928630

0.221364906 0.221801717 0.013444969 0.013444969

0.221801717 0.221801717 0.013444969 0.013444969

0.000215508 0.000215792 0.000374167 0.000374167

0.000215792 0.000215792 0.000374167 0.000374167

0.000489904 0.000490298 0.000114848 0.000114848

0.000490298 0.000490298 0.000114848 0.000114848

0.000029829 0.000029845 0.000033285 0.000033285

0.000029845 0.000029845 0.000033285 0.000033285

0.000000929 0.000000929 0.000012212 0.000012212

0.000000929 0.000000929 0.000012212 0.000012212

0.000002039 0.000002040 0.000006523 0.000006523

0.000002040 0.000002040 0.000006523 0.000006523

0.000000190 0.000000190 0.000000685 0.000000685

0.000000190 0.000000190 0.000000685 0.000000685

0.000000035 0.000000035 0.000000691 0.000000691

0.000000035 0.000000035 0.000000691 0.000000691

0.000000059 0.000000059 0.000001040 0.000001040

0.000000059 0.000000059 0.000001040 0.000001040

Signal Weight Mode

5.023035733 5.023035733 0.000000000 0.000000000
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Table 6.4. Comparison of exact and diagonal observability Gramians

Observability Gramians

for the pair (C1,A) for the pair (C2,A)

Exact Diagonal Exact Diagonal

Physical Modes from 1 to 2 ×Np

105.768859550 105.768436477 6385.104178775 6385.104178775

105.768436477 105.768436477 6385.104178775 6385.104178775

29.244158841 29.244041865 32658.688690963 32658.688690963

29.244041865 29.244041865 32658.688690963 32658.688690963

3.089990333 3.089977973 23293.478752352 23293.478752352

3.089977973 3.089977973 23293.478752352 23293.478752352

5.727889883 5.727866972 71417.128357314 71417.128357314

5.727866972 5.727866972 71417.128357314 71417.128357314

3.039647668 3.039635509 123370.055013618 123370.055013618

3.039635509 3.039635509 123370.055013618 123370.055013618

1.676004035 1.675997331 194617.219635262 194617.219635262

1.675997331 1.675997331 194617.219635262 194617.219635262

2.534132049 2.534121912 356790.564668366 356790.564668366

2.534121912 2.534121912 356790.564668366 356790.564668366

0.546964813 0.546962625 109115.662614320 109115.662614320

0.546962625 0.546962625 109115.662614320 109115.662614320

0.570537331 0.570535049 282244.518007481 282244.518007481

0.570535049 0.570535049 282244.518007481 282244.518007481

1.519823834 1.519817755 986960.440108941 986960.440108942

1.519817755 1.519817755 986960.440108941 986960.440108942

Signal Weight Mode

0.000034378 0.000034378 0.018009699 0.018009699
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Table 6.5. Comparison of exact and diagonal ARE solutions

ARE solutions

CARE FARE

Exact Diagonal Exact Diagonal

Physical Modes from 1 to 2 ×Np

0.973948238 0.974016611 1.026447863 1.026519921

0.964826213 0.974016611 1.016834125 1.026519921

15.549453178 15.581736146 0.064014178 0.064147081

15.386421584 15.581736146 0.063343008 0.064147081

76.037720356 78.767846682 0.012214061 0.012652605

76.503568937 78.767846682 0.012288891 0.012652605

246.864452683 248.932295078 0.003969901 0.004003154

246.903607877 248.932295078 0.003970530 0.004003154

599.812132295 607.306501573 0.001618290 0.001638509

600.491869182 607.306501573 0.001620123 0.001638509

1237.977434456 1258.333989375 0.000776790 0.000789563

1242.017117567 1258.333989375 0.000779325 0.000789563

2307.051272207 2331.139347259 0.000421768 0.000426172

2309.048596506 2331.139347259 0.000422133 0.000426172

3753.984103348 3917.597090254 0.000235816 0.000246094

3764.284656080 3917.597090254 0.000236463 0.000246094

6174.582300492 6319.062558022 0.000151171 0.000154708

6192.361426401 6319.062558022 0.000151606 0.000154708

9609.137563640 9692.958249637 0.000101271 0.000102154

9639.461867987 9692.958249637 0.000101591 0.000102154

Signal Weight Mode

0.004290010 0.000000000 0.000000000 0.000000000
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FEM is also used to model the beam. If the beam is divided into elements

as in Figure 6.2, the global mass and stiffness matrices are obtained for the initial

locations of the actuator and sensor pairs. After the assembly procedure, the boundary

conditions are applied, and the equations of motions are derived. If the state space

description in the first modal form and the derivatives of the state space matrices of

this representation are achieved, the signal weightings need to be introduced to obtain

the generalized plant and its derivatives. The initial number of finite elements is chosen

as Ne = 10, and similar to the continuous model case first N = 10 modes are taken.

ξw

ξ1
a

u1

d

ψ

ξ

ξ2
a u2

L

finite elements

Figure 6.2. Simply supported beam with two point control forces and a single

disturbance (FEM)

6.1.1. Optimal Actuator and Sensor Locations for ξw = 0.35L

The single disturbance is located at the point ξw = 0.35L, and the initial places

of the actuators are ξ1
a = 0.25L, ξ2

a = 0.65L.

The signal weightings of the generalized plant (in Figure 2.8) have the transfer

functions in Table 6.2.

The resulting optimal actuator and sensor locations can be seen in Figure 6.3.

Starting from the initial locations (0.25L, 0.65L), in nearly 55 iterations, the actua-

tor/sensor pairs (ξ1
a, ξ

2
a) converge to the final locations (0.35L, 0.35L). The objective

function J = H2
2 converges to its minimum also, as can be seen in Figure 6.4.
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To verify the obtained results, the H2-norm on the whole domain of the beam

is calculated and the variation of J with the change in the actuator coordinates ξ1
a

and ξ2
a is plotted in Figures 6.5 and 6.6. As can be seen in Figures 6.5 and 6.6, there

are actuator/sensor locations pairs (ξ1
a, ξ

2
a)’s, for which the H2-norms are equivalent or

very close.

Figures 6.7 and 6.8 show the results obtained by the formulation given in Hi-

ramoto et al. [1]. That is, the damping is neglected, and the disturbance input and

the sensor noise weightings are not present. The optimal locations in Figure 6.7 and

the square of the closed-loop H2-norm in Figure 6.8, which are obtained with the Hi-

ramoto et al. [1]’s formulation, are different than those achieved in Figures 6.3 and 6.4.

Because of possibility of including weights and damping in the methods introduced in

this thesis, the new methodology should provide more realistic results.

6.1.2. Effect of the Design Parameter α and the Filter Coefficient CWw

To see the effect of the signal weightings on the resulting optimal actuator/sensor

locations, some parametric studies are done. For simulations in Figures 6.9 through

6.12, the initial points are ξ1
a = 0.35L and ξ1

a = 0.65L. The disturbance force is located

at ξw = 0.5L. The signal weigtings and the parameter α, which are used for the

simulations in Figures from 6.9 to 6.12, are listed in Table 6.6.

Table 6.6. The signal weigthings used for simulations in Figures 6.9 to 6.12

Figures 6.9, 6.10 Figures 6.11, 6.12

α αc
1 1

Wdist
10

0.03s+ 1

10

CWws+ 1
2

Win
1

25

1

25

Wer 1 1

Wsn
1

105

1

105

1αc values: 0.015, 0.02, 0.025, 0.03, 0.03, 0.04, 0.045, 0.05, 0.06, 0.075, 0.1, 0.15, 0.2, 0.5, 1.
2CWw values: 0.01, 0.02, 0.03, 0.06, 0.09, 0.12, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.
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In Figures 6.9 to 6.12, the minimized optimization metric J and the optimal

actuator/sensor locations (ξ1
a, ξ

2
a) are plotted versus the changing the parameter α and

the coefficient CWw of a low pass filter, which is interconnected to the physical plant.

In Figure 6.9, as α increases, the square of the closed-loop H2-norm at the optimal

actuator and sensor location decreases. Since the H2-norm is the norm of the closed-

loop transfer function between the disturbance inputs and the performance outputs, for

disturbance rejection purposes α needs to be selected larger as mentioned in Hiramoto

et al. [1]. Figure 6.10 shows the variance of the optimal actuator and sensor location

with α.

In Figures 6.11 and 6.12, α is kept constant, but the coefficient CWw of the

disturbance input weight is changed. As CWw increases, the minimized optimization

function decreases. That is, as there are less disturbances acting in higher frequencies,

the closed-loop H2-norm decreases at the optimal actuator and sensor location.

6.1.3. Effect of Disturbance Weights

To further illustrate the effect of signal weights, the bandpass filter

Wdist =
16s2

s4 + 5.657s3 + 3125s2 + 8794s+ 2.4176

is applied as the disturbance input filter. This second order Butterworth filter is shown

in Figure 6.17 and is used to stop all modes other than the second one.

If the bandpass filter in Figure 6.17 is selected as the disturbance input filter,

the optimal locations converge to the points (0.25L, 0.25L). The location 0.25L is one

of the antinodes of the second mode of a simply supported beam, as can be seen in

Figure 6.18. If the simply supported beam is excited only at its second mode, the

maximum deflections occur at the points 0.25L and 0.75L, and the point 0.50L becomes

a node where the deflections vanish. The optimal locations in the Butterworth filter

example seem to reflect this phenomenon correctly, and the optimal locations converge
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to points 0.25L or 0.75L, but not the point 0.35L, where the disturbance is acting.

This result shows that the optimization technique introduced in the study can be can

effectively handle the plants shaped with different signal weightings. However, the

formulation given in Hiramoto et al. [1] does not consider the signal weightings in the

controller design stage.

6.1.4. The Optimal Actuator and Sensor Locations for ξw = [0.35L, 0.45L]

One another advantage of the developed approach is the possibility of using dif-

ferent signal weightings for different channels. This is demonstrated by four cases.

In case one, both of the disturbances are applied the input signal weighting,

Wdist = 10
0.03s+1

, which is given in Table (6.2). In this case the optimal locations of

the collocated actuator and sensor pairs converge to locations where the disturbance

inputs act.

In case two, the signal weight for the disturbance input at ξw = 0.35L is kept,

whereas the bandpass filter in Figure 6.17 is used for the disturbance input at ξw =

0.45L. The obtained optimal locations are to be seen in Figure 6.22.

In case three, the bandpass filter is applied to the disturbance input at ξw = 0.35L,

and the input at ξw = 0.45L is filtered with the low pass filter (see Figure 6.24). In this

case, both of the optimal locations converge to the point 0.45L, whereas the optimal

locations approach the point 0.35L in case two.

In case four, the bandpass filter is applied to both of the disturbance inputs

(ξw = 0.35L, ξw = 0.45L). Similar to the example given in Subsection 6.1.3, the

optimal locations converge to the first antinode of the second mode of the simply

supported beam as can be in Figure 6.26.

If the disturbances act at different frequencies, the improved coprime controller

takes this into account, whereas the controller used by Hiramoto et al. [1] cannot.
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[ξ1
a = 0.35L, ξ1

a = 0.35L]
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Figure 6.15. Control effort impulse response of the beam with actuators at initial

locations [ξ1
a = 0.25L, ξ1

a = 0.65L]
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Figure 6.16. Control effort impulse response of the beam with actuators at final

locations [ξ1
a = 0.35L, ξ1

a = 0.35L]
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Figure 6.19. Iterations and the minimized H2
2 with the bandpass filter
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Figure 6.20. The actuator/sensor locations (case one)
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Figure 6.21. Iterations and the minimized H2
2 (case one)
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Figure 6.22. The actuator/sensor locations (case two)
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Figure 6.23. Iterations and the minimized H2
2 (case two)
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Figure 6.24. The actuator/sensor locations (case three)
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Figure 6.27. The actuator/sensor locations (case four)
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6.2. Plate Design Example with Point Actuator/Sensor Pair

Another example is a simply supported rectangular plate which is exposed to a

single point disturbance located at ξx
w = 0.5L1 and ξy

w = 0.8L2. The lengths in the

x- and y-directions are L1 = 2.4 m and L2 = 2.4 m, respectively. The thickness z is

0.005 m. The Young modulus E, the density ρ and the poisson ratio ν are 21×1010 Pa,

7800 kgm−3 and 0.3, respectively.

The initial guess for the actuator and sensor location is ξx
a = 0.25L1, ξ

y
a = 0.65L2.

The parameters required for the controller design step are α = 105, β = 2. The

performance outputs are described by the vector z = [ψ(ξx
a , ξ

x
a), ψ(ξx

w, ξ
x
w),u]T.

The plate is initially divided into 7 × 7 finite elements. After the boundary

conditions are applied, a system with several hundreds of DOFs results. First 50

modes are taken, and each mode is assumed to have the same damping ζ = 0.001. The

signal weightings that are used for the plate are given in Table 6.7.

Table 6.7. Signal weightings for plates with point actuators/sensors

Disturbance Weight Wdist
10

0.03s+ 1

Sensor Noise Weight Wsn
1

105

Performance Output Weight Wer 105

Control Input Weight Win
1

25

Figures 6.28 and 6.29 show the optimal locations (i.e., the coordinates of the

point actuator and sensor pair in the x- and y-directions) and the minimized objective

function, which is the square of the closed-loop H2-norm, respectively.

To interpret the results, Figures 6.30 and 6.31 are plotted, which are surface and

contour plots, respectively. In those figures, the two axis are the x- and y-coordinates

of the point actuator and sensor pairs.
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6.3. Beam with Piezoelectric Actuator/Sensor Pairs

A simply supported beam is exposed to a single disturbance located at ξw =

0.35L. Its length L is 1 m. It is divided into 10 finite elements initially, and the

piezoelectric actuator/sensor pairs are about 0.1 m long. The Young modulus E, the

density ρ, the thickness and the width of the beam are 7×1010 Pa, 7850 kg m−3, 0.010 m

and 0.005 m, respectively.

The piezoelectric actuator and sensors pairs have a thickness of 0.002 m and posses

the following material properties: E = 6.3 × 109 Pa, ρ = 7500 kg m−3, e31 = −12,

ǫ33 = 0.7. As design parameter α = 104 and β = 2 are chosen.

Figures 6.32 and 6.33 show the optimal locations (i.e., the x-coordinates of the

two actuator and sensor pairs) and the minimized objective function, which is the

square of the closed-loop H2-norm, respectively.

Figures 6.30 and 6.31 are surface and contour plots, respectively, at which the

two axes describe the coordinates of the two actuator and sensor pairs.

Table 6.8. Signal weightings for beams with PZT pairs

Disturbance Weight Wdist
10

0.03s+ 1

Sensor Noise Weight Wsn
1

105

Performance Output Weight Wer 103

Control Input Weight Win
1

25

As the signal weightings, the values in Table 6.8 are selected. The optimal loca-

tions obtained using these signal weigthings are given in Figures 6.36 and 6.37.

If one compares Figure 6.32 with Figure 6.36 and Figure 6.33 with Figure 6.37,

the effects of the signal weigthings are to be seen. The values of the minimized objective

functions are different, and the obtained optimal locations are not the same.



158

0 2 4 6 8 10 12
1

1.5

2

2.5

3

3.5
x 10

−3

Iteration number

C
lo

se
d
-l
o
o
p
H

2
-n

o
rm

sq
u
a
re

Figure 6.32. Square of the closed-loop H2-norm of the beam vs iterations

0 2 4 6 8 10 12
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iteration number

P
Z

T
 A

ct
/S

en
s.

 P
ai

r 
Lo

ca
tio

ns

 

 

ξ
a
1

ξ
a
2

Figure 6.33. Collocated PZT actuator/sensor locations of a simply supported beam

vs iterations



159

0
0.2

0.4
0.6

0.8

0.2

0.4

0.6

0.8

1
0

0.002

0.004

0.006

0.008

0.01

0.012

 

ξ
a
1ξ

a
2

 

2

3

4

5

6

7

8

9

10

11
x 10

−3

Figure 6.34. The minimized J = H2
2 versus PZT actuator locations (surface plot)

0.0012119

0.001432

0.001432

0.
00

14
32

0.0020659
0.0020659

0.
00

20
65

9

0.0020659
0.0020659

0.
00

20
65

9

0.
00

27
07

7

0.0027077 0.0027077

0.0027077

0.0027077

0.0027077

0.0027077

0.
00

27
07

7
0.

00
32

75
2

0.
00

32
75

2

0.0032752

0.0032752

0.0032752

0.0032752

0.
00

43
78

0.004378

0.004378

ξ
a
1

ξ a2

0.1 0.2 0.3 0.4 0.5 0.6

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Figure 6.35. The minimized J = H2
2 versus PZT actuator locations (contour plot)



160

0 5 10 15 20 25
5

6

7

8

9

10

11

12

13

14
x 10

4

Iteration number

C
lo

se
d
-l
o
o
p
H

2
-n

o
rm

sq
u
a
re

Figure 6.36. Square of the closed-loop H2-norm of the beam vs iterations (with signal
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6.4. Plate with a Single PZT Pair

To further illustrate the optimization methods, consider a simply supported plate

combined with a single collocated piezoelectric actuator and sensor pair. The material

properties and dimensions of both the plate and its piezoelectric patch are given in

Tables 6.9 and 6.10.

Table 6.9. Material properties and the dimensions of the plate

Dimensions

Length in x-direction 2.4 m

Length in y-direction 2.4 m

Thickness 5 mm

Material properties

Young modulus 21 × 1010 N m−2

Density 7800 kgm−3

Poisson ratio 0.3
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Figure 6.38. Dimensions of the plate with PZT actuator and sensor pair
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Table 6.10. Material properties and the dimensions of the PZT patches

Dimensions

2a (length in x-direction) 0.24 m

2b (length in y-direction) 0.24 m

Thickness 3 mm

Material properties

Young modulus 9 × 1010 N m−2

Density 7500 kgm−3

e31 −5.2

e32 5.2

c11 1.4 × 1011 N m−2

c12 7.8 × 1010 N m−2

c22 1.4 × 1011 N m−2

c66 3.9 × 109 N m−2

ǫ11 0.7

ǫ22 0.6

ǫ33 0.75

The plate model is restricted to consist of minimum six finite elements in both

directions. That is, the length of any element in x-direction may not be larger than
2.4

6
m. The same argument is valid also for the y-direction. Another restriction is made

about the number of the PZT elements. At each iteration, PZT patch should consist of

2× 2 = 4 elements as shown in Figure 6.38. The modal damping for both piezoelectric

and plate material is taken as 0.001. Since the physical plant is given in modal state

space description, first 10 modes are considered. The plate is simply supported at the

line ξx = 0 m and ξx = 2.4 m.

For the controller design or MNRD calculations the frequency weights in Ta-

ble 6.11 are used. The single disturbance is located at the point ξx
w = 0.5L, ξy

w = 0.5L,

and the initial places of the actuators are ξx
a = 0.25L, ξy

a = 0.25L, where L = 2.4 m.

The performance outputs are described by the vector z = [ψ(ξx
a , ξ

y
a), ψ(ξx

w, ξ
y
w), u]T.
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Table 6.11. Signal weightings for plates with PZT patches

Disturbance Weight Wdist
10

0.02s+ 1

Sensor Noise Weight Wsn
1

105

Performance Output Weight Wer 10

Control Input Weight Win
1

25

The bound constraints for the example are given as

gb
1 (x) =−ξx

a + 0.01L < 0,

gb
2 (x) =+ξx

a + 0.89L < 0,

gb
3 (x) =−ξy

a + 0.01L < 0,

gb
4 (x) =+ξy

a + 0.89L < 0,

where x = [ξx
a , ξ

y
a]

T, gb
1 (x) and gb

3 (x) are lower bounds on ξx
a and ξy

a , respectively.

The constraints gb
2 (x) and gb

4 (x) are upper bounds on ξx
a and ξy

a, respectively. In

addition to the upper and lower limits, conditional constraints of the first type, which

are described in Section 3.4, are used. These constraints prevent the disturbance to

act at a point, which is too close to a side or corner of an element. They are

gd
1 (x) = ξx

a − ξx
w +

2a

3
< 0,

gd
2 (x) = −ξx

a + ξx
w − 2a

3
< 0,

gd
3 (x) = ξx

a − ξx
w +

2a

3
+ 2a < 0,

gd
4 (x) = −ξx

a + ξx
w +

2a

3
< 0,

gd
5 (x) = ξy

a − ξy
w +

2b

3
< 0,

gd
6 (x) = −ξy

a + ξy
w − 2b

3
< 0,

gd
7 (x) = ξy

a − ξy
w +

2b

3
+ 2b < 0,

gd
8 (x) = −ξy

a + ξy
w +

2b

3
< 0.
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6.5. Plate with Double PZT Pairs

Another piezoelectric actuator and sensor pair is added to the simply supported

plate, which is shown in Figure 6.38. The dimensions and material properties of the

plate and the piezoelectric patches are given as in Tables 6.9 and 6.10. As filters, the

signal weightings in Table 6.11 are used.

The bound constraints for this example with two pair of actuators and sensors

are given as

gb
1 (x) =−ξx

a1
+ 0.01L < 0,

gb
2 (x) =+ξx

a1
+ 0.89L < 0,

gb
3 (x) =−ξy

a1
+ 0.01L < 0,

gb
4 (x) =+ξy

a1
+ 0.89L < 0,

gb
5 (x) =−ξx

a2
+ 0.01L < 0,

gb
6 (x) =+ξx

a2
+ 0.89L < 0,

gb
7 (x) =−ξy

a2
+ 0.01L < 0,

gb
8 (x) =+ξy

a1
+ 0.89L < 0,

where x =
[
ξx
a1
, ξy

a1
, ξx

a2
, ξy

a2

]T
and gb

1 (x) and gb
3 (x) are lower bounds on ξx

a1
and ξy

a1
,

respectively. The constraints gb
5 (x) and gb

7 (x) are lower bounds on ξx
a2

and ξy
a2

, respec-

tively. The constraints gb
2 (x) and gb

4 (x) are upper bounds on ξx
a1

and ξy
a1

, respectively.

The constraints gb
6 (x) and gb

8 (x) are upper bounds on ξx
a2

and ξy
a2

, respectively.

In addition to the upper and lower bounds on optimization variables, the first,

second and third types of conditional constraints, which are described in Section 3.4,

are applied to this example. The second and third type of conditional constraints are

required whenever there are more than one PZT patch.
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Figure 6.49. Optimization with improved coprime controller
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7. CONCLUSIONS AND FUTURE WORK

In this thesis, closed-loop optimal location selection methods are developed for

actuator and sensor pairs in flexible structures. Either improved coprime controllers

or low-authority H∞-controllers are used. Therefore, the optimal location selection

strategy is said to be closed-loop. Alternatively, MNRD method is utilized for a quasi

closed-loop selection criterion. Examples for simply supported beams and plates with

point and piezoelectric actuator/sensor pairs are given to demonstrate the effectiveness

of the developed approach. The closed-loop H2-norm is successfully being used as the

optimization metric.

Simple diagonally dominant ARE solutions are introduced that reduce the com-

putation time of the optimization pertaining to the design of the controller. Using a

coordinate transformation, the state matrix of the generalized plant is block diagonal-

ized so that each mode can be dealt individually. This enables one to assume that the

solutions of the generalized algebraic Riccati equations are in the diagonal form. Then,

it becomes possible to solve the ARE’s in closed form based on quadratic equations.

By resorting to the approach introduced in Hiramoto et al. [1], a coprime H∞

controller is designed. However, in contrast to Hiramoto et al. [1], modal dampings

are not neglected, and the signal weights are incorporated into ARE solutions. Par-

tial derivatives of the closed-loop system are derived for a gradient based optimization

procedure. The derivatives of the closed-loop system include not only the derivatives

of the open-loop system, but also the derivatives of the ARE’s. Hence, differentiating

the ARE’s, Lyapunov equations are obtained. Approximate solutions of the Lyapunov

equations are calculated in the same fashion as those of the ARE’s. When the neces-

sary derivatives are available, the gradient of the optimization metric is obtained, the

optimal actuator and sensor locations are found through an unconstrained nonlinear

optimization algorithm.

The developed unconstrained optimization technique with improved coprime con-
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troller has several advantages over the methods in literature:

• It uses the generalized plant with signal weights.

• The control and filter ARE’s and their derivatives are solved approximately by

reducing them to simple quadratic equations. In the iterations of the optimal

locations selection procedure, solving these quadratic equations consumes less

time compared to solving the ARE’s fully.

• Hiramoto et al. [1] neglect the damping altogether, whereas the developed tech-

nique uses modal dampings.

• The optimization is done using a closed-loop selection criterion. That is, the

objective function is the square of the H2-norm of the closed-loop generalized

plant with the designed controller.

• Closed-loop objectives are incorporated to actuator/sensor location procedure,

through addition of signal weights and formation of a generalized plant.

• Signal weights are not limited to smooth filters as in the case of generalized plant

with modal coordinates in [3, 24]. Gawronski [3, 24] use simple smooth filter to

keep the modal diagonal form of the plant. However, in the developed technique,

it is possible to use more sophisticated and less smooth filters.

Besides the improved coprime controller, a low-authority H∞-controller design

procedure is developed. Using the same diagonalization technique for the generalized

plant, the central and filter ARE’s are solved approximately. Their partial derivatives

with respect to design parameters are obtained approximately as well. Since the sim-

ulation results in the given examples are promising, the low-authority H∞-controller

design which takes less computation time for optimization might be a preferable option.

As another alternative to coprime and H∞-controllers, MNRD is used, which

makes it possible to compute the closed-loop norms approximately without designing

a controller. MNRD may give results closer to those obtained with improved coprime

and H∞-controllers. Hence, it is useful for showing the closed-loop behavior of a

generalized plant. Although disturbance attenuation factors achieved by MNRD are in

general smaller than those achieved by H∞-controllers, for moderate action and low-
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authority control cases, where the control inputs are for vibration suppression and not

for reference tracking, the MNRD values (H2-norms of closed-loop system with MNRD-

controllers) are quite close to the values obtained by the coprime and H∞-controllers.

FEM has been used to model the flexible structures with collocated point and

piezoelectric actuator and sensor pairs. To obtain the gradient of the objective function

with respect to design parameters, the partial derivatives of the FE matrices are defined,

sensitivity analysis and eigenvalue-eigenvector perturbation theory are used, and the

partial derivatives of the closed-loop state space matrices are derived.

In the case of piezoelectric actuator and sensor pairs, method of feasible directions

has been utilized and some conditional constraints are defined so that any overlap of

PZT patches or badly scaled finite elements are prevented. The constrained optimiza-

tion technique makes it possible to find the best locations of the piezoelectric actuator

and sensor pairs in plates. This technique is useful for applying multiple piezoelectric

patches on beams and plates.

The following points are worth to investigating as future work:

• Approximate low-authority H∞-controllers for nominal plant are designed. The

next step could be to develop the controller design strategy for robust control.

An optimal location selection with robust controllers might invoke interests more.

• Approximate CARE and FARE solutions are introduced for the generalized plant

with signal weights. Different types of uncertainties may be incorporated into the

generalized plant and approximate ARE solutions for that plant can be calculated.

• For the minimization, only first derivative information is used throughout the

thesis. If second derivatives of closed-loop state space matrices are calculated, it

is possible to apply optimization techniques with second order derivatives.

• In the thesis, a singular value based strategy in frequency domain is suggested to

take the partial derivative of closed-loop H∞-norm. However, methodologies that

are frequency independent can be developed to calculate the sensitivities of the

closed-loop H∞-norm, since calculation of values for each frequency may increase
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computation time.

• In this thesis, the ARE solutions in diagonal form are successfully used for se-

lecting the best actuator and sensor locations. To further exercise the suggested

controller designs with approximate diagonal ARE solutions, improved coprime

controllers and low-authority H∞-controllers can be designed for the Feedback

Twin Rotor MIMO system (TRMS) [73].

• Although only the optimal actuator and sensor locations are considered in the

thesis, structures have different parameters and dimensions which might need to

be optimized. The developed technique can be applied for selection of different

parameters such as thicknesses, diameters, weights, material constants, etc. as

well.

• Since the introduced best I/O location selection technique does not guarantee that

the results are globally optimum, it may need to be repeated with different initial

points to validate that the obtained results are the global minima. However, it

can be utilized as a sub-search algorithm of a global optimization technique or

developed into a global optimization technique.

• During iterations of the optimal location selection the FE part of the code dis-

cretizes the flexible structure automatically. Although as elements, usual beam

and plate elements are selected, different types of finite elements and different

meshing policies can also be used and structures of more complicated geometries

can be handled.

• Using implicit function theorem, Giesy and Lim [74, 75] has taken the partial

derivatives of the closed-loop H∞-norm using singular value perturbations based

on the works of [76] and [77]. Pandey et al. [78] has developed a technique for

computing the optimal H∞-norm faster, which uses the gradient of the H∞-norm.

Burchett and Costello [79] calculate the first and second partial derivatives of the

closed-loop H∞-norm with respect to feedback gains and design iteratively a

PID controller for the Feedback TRMS. The eigenvalue-eigenvector perturbation

theory can be used to calculate partial derivatives of H∞-norms with respect

to actuator and sensor locations if appropriate assumptions and limitations are

given correctly.
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