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ABSTRACT

INVENTORY POLICIES FOR AN ASSEMBLE-TO-ORDER

SYSTEM WITH JOINT DISCOUNT INCENTIVES

We consider an assemble-to-order system to meet all of the stationary stochastic

demand of a finished product in a periodic review setting. The finished product is

assembled using two subassemblies (components). The demand must be met either

by regular production or by using a faster but more expensive expedited mode. Com-

ponents have independent setup, production, holding and expediting costs. However

when both components fall short of demand they use the same expediting resource

(same plane, same supplier channel, same overtime shift in a factory, etc.) causing a

joint discount in unit expediting costs. This joint cost factor prevents solving of in-

ventory control problem of each component independently and increases the time and

space complexity of solving optimal inventory policy. We analyze models with and

without setup costs. We prove that the optimal policy of the model without setup cost

is a modified base stock policy, where target inventory for a component is a function of

the other component’s inventory level, both for a finite and an infinite horizon model.

Similarly the optimal policy of the single and two period model with positive setup

cost is a modified state dependent (s, S) policy, where (s, S) values of a component is

a function of the other component’s inventory level. Based on these results we develop

an algorithm, which decreases time complexity, for solving finite and infinite horizon

models in models without setup-costs optimally and in models with setup costs very

close to optimal results.
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ÖZET

ORTAK İNDİRİM TEŞVİĞİ OLAN SİPARİŞE GÖRE

MONTAJ SİSTEMİNDE ENVANTER POLİTİKALARI

Siparişe göre montaj yapan ve bitmiş bir ürüne olan bütün stokastik talebi

dönemsel gözden geçirme ortamında karşılayan bir sistem düşünülmektedir. Bitmiş

ürün iki altparçadan (komponent) oluşturulmaktadır. Talep ya normal üretimle ya da

hızlı tedarikle karşılanmaktadır . Komponentlerin bağımsız sabit, üretim, stok ve hızlı

tedarik masrafları vardır. Ama eğer iki komponentin stoğu da talebi karşılayamazsa

aynı hızlı tedarik kaynağı kullanılmaktadır (aynı uçak, aynı tedarikçi kanalı, aynı fab-

rikadaki gece mesaisi gibi). Aynı kaynağı paylaşarak kullanmak toplam hızlı tedarik

masraflarına belli bir indirim getirmektedir. Bu ortak indirim stok kontrol probleminin

her komponent için ayrı olarak en iyi şekilde çözülmesine engel olup en iyi çözümün

zaman ve yer karmaşıklığını arttırmaktadır. Sabit üretim masraflı ve masrafsız mod-

eller ayrı ayrı incelenmiştir. Sabit üretim masrafı olmayan, sonlu dönemli ve sonsuz

dönemli modellerde sabit stok hedefi politikasının gelişmiş bir versiyonunun en iyi poli-

tika olduğu kanıtlanmıştır (bu gelişmiş versiyonda sabit stok hedefi diğer komponentin

stoğunun bir fonksiyonu olmaktadır). Sabit üretim masrafı olan modelde ise tek ve

iki dönemde en iyi politikanın gene duruma bağlı bir gelişmiş (s, S) politikası olduğu

gösterilmiştir. Bu gelişmiş politikada her bir komponentin (s, S) değerleri diğer kom-

ponentin stoğunun fonksiyonu olarak ortaya çıkmıştır. Bu ispatlara dayanarak za-

man karmaşıklığı az bir algoritma geliştirilmiştir. Bu algoritma çok ve sonsuz dönemli

modellerde üretim masrafı yoksa en iyi, üretim masrafı varsa en iyiye yakın değerleri

bulmaktadır.
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1. INTRODUCTION

In sectors with high cost end products having uncertain demand and high vari-

ability of customer preferences, assemble to order (ATO) systems are both cost-efficient

and responsive. Automotive and hardware are examples of sectors with high-cost high

profit end products with high variability. PC manufacturer Dell is a popular example

for ATO systems offering high variability products and delivering products quickly [1].

Procuring or producing estimated demand regularly and having fast procurement chan-

nels for expediting unexpected demand boosts the efficiency of ATO systems. Huggins

and Olsen [2] give an example for a supplier of ATO system in automotive sector which

uses expediting frequently. We consider an ATO system to meet all of the stationary

stochastic demand of a finished product in a periodic review setting. The finished

product is assembled using two subassemblies (components). Inventory holding and

shortage costs of the components are incurred periodically in infinite horizon. All costs

are different and independent for each component except a common expediting dis-

count. This joint discount occurs when both components are out of stock and they are

ordered in an expedited mode at the same time. The shortage of the components are

handled by replenishing components in an expedited mode, which is a fast but expen-

sive way of procurement. Inspired by an expediting model setting defined in Huggins

and Olsen [2], each period has two phases:

1. In phase one, regular procurement decisions for components are made based on

expected demand. Regular procurement is cheaper than expediting. However its

relatively slow lead time prevents the decision maker waiting for the realization

of the period demand.

2. Once the period demand is realized, in order to meet unexpected high demand,

it is possible to use a form of expediting. Either using a faster and expensive

transportation method or using overtime production the required components

are procured until the end of the period. At the end of the period, all demand is

met.
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The only joint cost effect in our model is on the unit expediting costs of both compo-

nents. When both components are expedited, they are using the same resource. Either

they are put in the same plane or they are made in the same factory in a single over-

time shift. This common resource usage causes a discount per both component units

expedited. Had there been no such joint discount, both components would behave

independently based on their independent holding and expediting costs. This joint

discount gives an incentive for increasing the overall probability of both components

falling short of demand in the long run, thereby closing the difference between optimal

inventory levels of both components.

Using a dynamic programming technique of policy iteration, we investigate the

nature of optimal inventory policies. The results of policy iteration algorithm show

that, the optimal policies are between two extreme cases, based on the independent

component holding and expediting costs and joint expediting discount:

• Case 1: The joint expedition discount is insignificant and both components

behave independently as if there is no discount.

• Case 2: The expedition discount is very high and both components behave like

a single component.

For different cost parameters optimal policies are like in case 1 or in case 2 or in a

hybrid state somewhere between case 1 and 2.

During our computational tests on our most general model that involves setup

times, we observed that optimal results exhibit a modified (s, S) form: the s and

S parameters of a component do depend on the initial inventory level of the other

component. s1(x2),s2(x1), S1(x2), S2(x1) functions can be defined; for component i,

the optimal policy is to reach target inventory level Si(xj) when initial inventory xi of

component i is less than si(xj), where xj is the initial inventory of the other component

j. If xi is greater than si(xj) optimal policy is ”not to order”. We have analyzed the

model in order to prove optimality of the modified (s, S) policy. In a single period

model, we show that the model without setup costs is optimized by a modified base
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stock policy, which can be described only with S1(x2), S2(x1) functions. (If there are no

setup costs s1(x2),s2(x1) functions are set to zero.) We extend our results to the model

with setup costs and prove that the single period model with setup cost has modified

(s, S) policy as the optimal policy. Then we analyze the multiple period model and

prove that no-setup cost model has optimal modified base stock policy for finite and

infinite horizons and optimal cost function is always convex in the no-setup setting. In

the model with setup costs we prove that the two period model has optimal modified

(s, S) policy, based on the [K1K2]-convexity of the cost function. For more than two

periods we fail to prove that [K1K2]-convexity of the cost function is preserved. Hence

we continue our computational efforts to find counter examples.

Using policy iteration and exploiting modified form of (s, S) policies we develop a

tailor-cut policy iteration algorithm which has less time and space complexity compared

to the usual policy iteration algorithm, where we do not presume the optimal policy

has the s1(x2), s2(x1), S1(x2), S2(x1) form. For different test parameters optimal policy

results of these algorithms are usually the same, although few counter-examples are

found and reported.

To investigate whether the optimality of modified (s, S) policy depends on a lucky

selection of the parameters or a general behaviour of our problem, we analyze the opti-

mality conditions of the problem starting with the single period model. Single period

cost function is convex where the optimal policy has s1(x2), s2(x1), S1(x2), S2(x1) form.

Applying the optimal policy yields a [K1K2]-convex optimal cost function. We prove

that in two periods [K1K2]-convexity of the optimal cost function is preserved, given the

demand distribution is stationary and log-concave. Preservation of [K1K2]-convexity

of the cost function guarantees s1(x2), s2(x1), S1(x2), S2(x1) form of the optimal pol-

icy in two periods. For n periods (n > 2) and infinite horizon we fail to prove or

disprove that [K1K2]-convexity is preserved. Few of our computational tests have re-

sulted in counter-examples to this conjecture. However even with counter examples,

modified (s, S) policy (MOD) has reached the optimal solutions in most of the cases

(536 out of 576), spending only one fourth policy iteration time of the exact optimal

solution algorithm (OPT). X being number of possible inventory levels for each com-
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ponent and dmax being the maximum demand possible in a period, MOD has time

complexity O(log2(X) × X × (X − dmax)
2 × dmax), while OPT has time complexity

O(X2 × (X − dmax)
2 × dmax), which makes MOD an efficient heuristic. It can be ap-

plied in larger problems where time complexity of OPT is prohibitively large.

1.1. LITERATURE SURVEY

In [2], Huggins and Olsen consider a model where a manager must make two

inventory decisions during each period. At the beginning of the period the current

inventory level is known and the manager must then decide the target inventory level

for the regular production. After the regular production is determined, a stochastic

demand is realized. At this point the manager knows the inventory level at the begin-

ning of the expediting period, which is the difference between the inventory position

chosen for regular production and the demand. The manager must now decide whether

to run the overtime production and if it is run, the new level of inventory position.

However, backlogged demand is not allowed for the following period such that if the

inventory is negative then the decision becomes whether to just close the shortfall and

start the next day with zero units or if not, up-to what positive level to produce for

starting next period with some inventory. The inventory position chosen for overtime

becomes the starting inventory level for the next period, a holding cost is charged for

any positive inventory and the cycle continues. They show that optimal regular pro-

duction policy is (s, S) type and they also investigate the case where there are two

different expediting suppliers. Our problem setting is inspired by Huggins and Olsen,

however we consider an assembly system with joint expediting cost rather than a single

component as they do. Our results lead us to more general results in two dimensional

assembly settings rather than handling only expediting. Expediting literature involves

managing lead times in discrete [3, 4] or continuous time settings [4, 5]. Arslan and

her colleagues [4] use a make-to-order system for a supplier who can choose overtime

or subcontracting as a form of expediting. They have shown (s, S) policy is optimal

in their continuous and discrete time settings. Gallego and his colleagues propose a

solution where fixed leadtime can be converted when orders coming from an Erlang
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distribution reaches threshold limits. Lawson and Porteus [3] have shown that in a dis-

crete time multi stage inventory management system without setup costs ”top-down

base stock” policies are optimal. The focus on these works is managing lead times for

improving system performance, where we only deal with dual source supply problem

in a multi-item environment.

We show that in the single period model a modified (s, S) policy for 2 dimensions

is optimal. Scarf [6] has proved that (s, S) policies are optimal for periodic review

inventory control problems with convex holding and shortage costs and non-negative

setup costs. Our proof is based on Scarf’s proof. In his proof he assumed convex

costs per period and introduced the notion of K-convexity. Scarf’s [6] definition of

K-convexity is generalized to multi dimensions in Gallego and Sethi [7]. Our definition

of [K1K2]-convexity is a special case of this generalization, where a joint setup cost

component is missing from our definition of [K1K2]-convexity. Other references for

(s, S) policies are Veinott [8] and Zheng [9]. Veinott relaxed convexity assumption

to quasi-convexity. Zheng generalized the results of Scarf and Veinott to the infinite

horizon. A recent modified (s, S) policy result is due to Chao and Zipkin [10]. They

consider a model where regular production has zero setup cost if it is less than a

specified capacity. They are able to partially characterize the optimal policy using K-

convexity concept similar to our work. They propose a fast heuristic for finding optimal

or near optimal solutions as we have proposed modified (s, S) policy for multi period

model with setup costs, where we fail to characterize the optimal policy. However none

of these works is related with a multiple component (i.e., two dimensional in our case)

(s, S) policy in assemble-to-order system.

An in-depth review of inventory control problems in assemble-to-order systems

is given in Song and Zipkin [11]. There are two relevant works to our model [12, 13].

Benjaafar and Elhafsi [12] propose a continuous review model with m components,

which have exponential production processes with different rates. There are n different

classes of customers. Demand for each class occurs according to a different Poisson

process. Backorder costs or lost sales are also different for each class. Based on the

priority of customer class the decision maker may meet demand from inventory or
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make the customers with less priority wait. They have shown that the optimal policy

in their settings is a modified base stock policy where base stock levels depend on the

inventory of the other components, similar to the results in our discrete time setting

where there are no lead times between different production orders. The optimal policy

for accepting different customer classes is a function of inventory levels, where at lower

inventory levels one accepts only high priority classes (which have high lost sale or back

order costs). Feng, Ou and Zang [13] use the same settings as [12]. However instead

of different customer classes, they include to the model product pricing. The product

price has two levels, where higher price level decreases the expected demand, which

is a nonhomogeneous Poisson process. Assuming that it is always better to lever the

product price before switching the production of components, they yield same optimal

modified base stock policy where base stock levels depends on the inventory of the

other components. In the optimal price policy a higher inventory level again (j1, j2),

dominates a lower inventory level (i1, i2): the product price is always less than or

equal to the product price of lower inventory level. Contrary to these works [12, 13],

we have a periodic review model with zero component production lead times. In our

model allocation of finished products to different customer classes or control of demand

by levering the product price is not considered. No back orders or demand shortages

are allowed. Demand is always met by expediting of components. Special disjoint

expediting cost exists for expediting both components. However our model with no

setup costs yield same modified base stock policy, where base stock levels depend on

the inventory of the other components. Additionally we extend our work to model with

setup costs, which are not present in these works.

Joint replenishment problems have also joint cost structure depending on multi

items. Joint costs are based on fixed setup costs rather than unit costs. Major joint

setup cost charged once if there is an at least one item to be ordered. Each item has

also a specific additional minor setup cost which is charged when the related item

is ordered. As in our problem optimal joint replenishment policy can be found by

defining a Markov decision process [14], however if there are more than two items or

many different levels of inventory, decision space grows exponentially as in our problem.

In the joint setup cost literature the focus is on the simple heuristic policies rather than
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finding optimal policies. Policies can be continuous, where inventory levels of items

are monitored continuously [15, 16, 17, 18], or periodic where inventory levels of items

are checked periodically [19, 20, 21]. Can-order policy is one of the early proposed

continuous policies [15]. In can-order policies each item has three parameters: s,c and

S, where s < c < S. If inventory level of the item is below s than item must be ordered

up to level base stock level S. If inventory level of item is between s and c than the item

is ordered up to S, when there is another item that must be ordered. It is reported to

perform better than periodic review policies when major setup costs is relatively high

[16, 18]. One of the periodic review policies is P (s, S) proposed by Viswanathan [19].

In P (s, S) every t units of time all items are reviewed. Item i ordered upto Si level,

when its inventory level is below si. For calculation of (s, S) values only related minor

setup costs is considered. Nielsen and Larsen [17] have developed Q(s, S) policy which

is an extension P (s, S) policy in continuous setting, yielding better results. In joint

replenishment literature although there are policies where modified (s, S) policies are

used, there is no proposal about a policy where s, S levels depends on the inventory

level of the other component(s). Our work may be extended as a joint replenishment

problem for the future research.

1.2. PREVIEW

The thesis is organized as follows: Chapter 2 analyzes the optimal policy in a

single period model. Starting from zero initial inventory, no setup cost model it shows

that no-setup model has a convex cost function, building the form of optimal policy

as functions of components s1(x2), s2(x1), S1(x2), S2(x1), in the model with non-zero

initial inventory and setup costs.

Chapter 3 extends the results to multiple periods and shows no setup-cost model

preserves convexity of the optimal policy in finite and infinite horizons, proving the

optimal policy has S1(x2), S2(x1) form. In model with setup costs it shown optimal

policy preserves [K1K2]-convexity of cost function preserved in two periods, hence two

period model has modified (s, S) form of optimal policy. For more than two periods we

fail to prove that [K1K2]-convexity and thereby modified (s, S) form of optimal policy
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is preserved.

However we propose a heuristic (MOD) which is based on the assumption that the

optimal policy has modified (s, S) form in Chapter 4. Comparing the test results with

the exact optimal algorithm (OPT) and a simple heuristic ignoring joint expediting

costs (IND), MOD is shown to be an algorithm which is efficient both in accuracy and

time complexity.

In chapter 5 we give our conclusions and point to further research directions.
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2. SINGLE PERIOD MODEL

Inspired by an automotive industry problem, we consider an assembled compo-

nent consisting two subassemblies (components) that are bought from external sup-

pliers with unlimited capacity. The duration and the cost of the assembly process is

negligible and because of vast customer configuration preferences it is undesirable to

hold a finished product inventory. The situation is a typical assemble to order system

where a random demand is faced by the manufacturer (assembler) and components are

bought from different suppliers. The costs of the manufacturer are related with man-

aging the inventories of subassemblies and shortages. The shortage cost of the finished

product is so high that demand must be met at all times. The manufacturer makes

two sets of decisions, replenishment of components before the demand is revealed and

expedited replenishment at a higher unit cost after the demand is revealed. If both

component inventories fall short of demand, expediting them together is cheaper than

expediting each component separately. This might be because the components bought

together are sharing a transportation modality, for example. Regular replenishment

decisions are given at the beginning of the period, followed by demand realization. If

production falls short of demand, expedited replenishment decisions are given next.

Costs accrue and profits are collected at the end of the period.

The random demand is characterized by its probability density function, f and

cumulative distribution, F . Inventory holding costs are charged to the manufacturer.

Expediting cost includes only unit expedited cost for each component plus a discount if

two different unit components are expedited together. However even with this discount,

it is still cheaper to produce both components using regular replenishment (i.e., without

using expedition).

In this chapter, we consider a single period model to gain insight about the

characteristics of the problem.In Section 2.1 we introduce assumptions and the notation

of the model. We derive expected costs and the optimality conditions for the model in

Section 2.2. In this derivation, the setup costs are excluded from the cost function and
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it is assumed all components have zero starting inventory for the sake of simplicity.

The special case where each component behaves independently is analyzed first, which

results in the newsvendor problem. Having analyzed the single component single period

model, optimality conditions of the two component single period model are derived.

The optimal policies derived from the cost function without setup costs and

zero initial inventory (Section 2.3) are extended to the model with non-zero initial

inventories in Section 2.4. Setup costs are included in the model of Section 2.5. The

form of optimal policy for single period is fully analyzed.

2.1. Single Period Model: Notation and Assumptions

We consider a single period assembly model with two components. There is

no inventory of the finished product. Components are assembled upon observing the

demand. The lead time for assembly is assumed to be negligible. Related costs are

holding costs h1, h2 and unit production costs c1, c2 of each component and joint

expediting cost e(x1, x2) for x1,x2 missing units of components, respectively.

Random demand d must be met either by regular production or expedition. Thus

minimal cost cid is a sunk cost for all situations, where inventory holding costs of

regularly replenished components and the extra charge of expediting costs add to this

sunk cost. Holding and expediting costs may be readjusted to include unit production

costs, eliminating regular production costs in the model description. There is no salvage

value for positive ending inventories of components.

It is assumed that holding costs hi(xi) are non-negative, non-decreasing in xi

with hi(0) = 0 and limxi→∞hi(xi) = ∞. Furthermore e(x1, x2) is non-negative and

non-decreasing in x1 and x2 with e(0, 0) = 0 and limxi→∞e(xi, x3−i) = ∞. For later

reference, the assumptions are labelled as follows:

1. Demand d is a random variable with pdf f , cdf F and a finite mean.

2. e(x1, x2) ≥
∑2

i=1 hixi
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3. e(x1, x2) is non-negative and non-decreasing in x1, x2 with e(0, 0) = 0

and limxi→∞e(xi, x3−i) = ∞.

4. hi(xi) is non-negative, non-decreasing in xi with hi(0) = 0

and limxi→∞hi(xi) = ∞, for i = 1, 2.

5. When both items are expedited (i.e., x1, x2 > 0 ) then e(x1, x2) ≤ e(x1, 0) +

e(0, x2)

6. The discount on joint expediting cost function e(x1, 0) + e(0, x2) − e(x1, x2) is

not greater than the expediting cost any component expedited single-handedly:

e(x1, 0)+e(0, x2)−e(x1, x2) < e(x1, 0) and e(x1, 0)+e(0, x2)−e(x1, x2) < e(0, x2).

In this problem there are two state variables representing the inventory level at

the beginning of regular time and at the end of the period just before expediting.

Accordingly there are two decision variables presenting chosen inventory position for

regular production and expedited production.

The notation is given in Table 2.1. Inventory of component i just before expedit-

ing is given by the balancing equation:

x̃i = yi − d

We assume that no backorders are allowed, hence :

yi ≥ x+
i ỹi ≥ x̃+

i

where x+ denotes max(0, x). The initial inventory is non-negative :

xi ≥ 0
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Table 2.1. Notation

i index for components i = 1, 2

ci regular ordering cost per unit i(embedded in adjusted holding

and expediting costs)

Ki regular fixed order cost of component i

yi target inventory position chosen for regular production of unit i

ỹi target inventory position chosen after expediting unit i

xi inventory of unit i at the start

x̃i inventory of unit i before expediting

d random demand variable for product during the single period

f(d) probability density function of demand in continuous domain.

F (d) cumulative density function of demand in continuous domain.

e(x1, x2) adjusted expediting (overtime) cost function for amount of xi

hi(xi) adjusted holding cost function for excess inventory amount of xi

αd unit expediting discount when two components are expedited together.

2.2. Expected Cost Function for Single Period Model

For a two component problem let π be an admissible policy with variables

(x1, x2, y1, y2, x̃1, x̃2, ỹ1, ỹ2)

where xi are the starting inventory, yi are regular replenishment quantities, x̃i are

inventory levels just after demand is realized and ỹi are expedited quantity decisions.

Let Π be the set of all admissible policies. The cost function is given as follows:

g(x1, x2, y1, y2, x̃1, x̃2, ỹ1, ỹ2) =

2
∑

i=1

[Kiδ(yi − xi) + hi(ỹi)] + e(ỹ1 − x̃1, ỹ2 − x̃2)
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Where δ(x) is defined as δ(x) = 1 if x > 0 and δ(x) = 0 otherwise. The related

expediting cost function e(a, b) is:

e(a, b) = e1a
+ + e2b

+ − min(a+, b+)αd(e1 + e2)

where e1, e2 are unit expediting costs for individual components and αd is the expediting

discount if two units are expedited together. The related expected policy cost function

is:

gπ(x1, x2) = Ed(g(x1, y1π, x̃1π, ỹ1π, x2, y2π, x̃2π, ỹ2π))

The optimal expected cost function is minimum of all admissible policies π ∈ Π.

There will be no salvage value for the end inventory. At the end of the period,

stock components will be discarded. Since there is no need to expedite more than the

demand in this case, optimal expediting policy is only covering shortages:

ỹ∗
i = (x̃i)

+

where x̃i = yi − d.

Using the optimal expediting policy and taking expectation, we may rewrite g

which does not include ỹi and x̃i:

g(x1, x2, y1, y2) = Ed

[

2
∑

i=1

[Kiδ(yi − xi) + hi(yi − d)+] + e[(d − y1)
+, (d − y2)

+]

]

The optimal expected policy cost function becomes:

g∗(x1, x2) = min
y1≥x1,y2≥x2

g(x1, x2, y1, y2) (2.1)
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2.3. Optimal Policies in Single Period Model without Setup Costs and

Initial Inventory

We start by assuming that setup costs Ki = 0, i = 1, 2 and beginning of period

inventories as zero, x1 = x2 = 0. In this case the cost function reduces to:

g(0, 0, y1, y2) = Ed

[

2
∑

i=1

[hi(yi − d)+] + e[(d − y1)
+, (d − y2)

+]

]

(2.2)

Taking the expectation in (2.2) and eliminating the + operator we have,

for y1 ≤ y2:

g(0, 0, y1, y2) =

∫ y1

0

[h1(y1 − u) + h2(y2 − u)] f(u)du +

∫ y2

y1

[e1(u − y1) + h2(y2 − u)] f(u)du +

∫ ∞

y2

[(e1 + e2)(1 − αd)(u − y2) + e2(y2 − y1)] f(u)du (2.3)

for y1 > y2:

g(0, 0, y1, y2) =

∫ y2

0

[h1(y1 − u) + h2(y2 − u)] f(u)du +

∫ y1

y2

[h1(y1 − u) + e2(u − y2)] f(u)du +

∫ ∞

y1

[(e1 + e2)(1 − αd)(u − y1) + e2(y1 − y2)] f(u)du (2.4)

If the expediting discount αd = 0 then problem can be solved for each component

separately (dropping the subscript i), which results in the newsvendor critical ratio

solution:

F (y∗) =
e

(h + e)
(2.5)
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2.3.1. Two component Single Period Model

We start the evaluation of two component model by taking each component sep-

arately. Ignoring the combined expediting discount:

yo
i = F−1

(

ei

hi + ei

)

i = 1, 2 (2.6)

Using equation 2.6 we can find minimum and maximum of the optimal stock levels.

Based on yo
1, y

o
2 values we may find the optimum joint stock levels y∗

1, y
∗
2.

Proposition 2.1 Let yo
1, y

o
2 be optimum stock levels of component 1 and 2, when αd =

0. Then optimal inventory decisions (y∗
1, y

∗
2) are characterized as follows:

y∗
1 = yo

1, y∗
2 = F−1

(

e2 − αd(e1 + e2)

h2 + e2 − αd(e1 + e2)

)

for e1

h1+e1

< e2−αd(e1+e2)
h2+e2−αd(e1+e2)

y∗
2 = yo

2, y∗
1 = F−1

(

e1 − αd(e1 + e2)

h1 + e1 − αd(e1 + e2)

)

for e2

h2+e2

< e1−αd(e1+e2)
h1+e2−αd(e1+e2)

y∗
1 = y∗

2 = F−1

(

(e1 + e2)(1 − αd)

h1 + h2 + (e1 + e2)(1 − αd)

)

otherwise (2.7)

Proof: Without loss of generality assume yo
1 ≤ yo

2. There are two possibilities:

1. Optimal stock levels of components are different: y∗
1 < y∗

2,

2. or they are equal: y∗
1 = y∗

2

We will assume case 1 first and extend our results to case 2. If the first order conditions

are satisfied, the convexity of cost function guarantees the optimality of (y∗
1, y

∗
2). Taking

partial derivatives of (2.3) we have:

∂g

∂y1
= h1 [F (y1) − F (0)] − e1 [F (y2) − F (y1)] − e1 [1 − F (y2)]

= (h1 + e1)F (y1) − e1
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and

∂g

∂y2
= h2 [F (y1) − F (0)] + h2 [F (y2) − F (y1)] − (e2 − αd(e1 + e2)) [1 − F (y2)]

= (h2 + e2 − αd(e1 + e2))F (y2) − (e2 − αd(e1 + e2))

By setting the derivatives to zero we get:

F (y∗
1) =

e1

h1 + e1

(2.8)

F (y∗
2) =

e2 − αd(e1 + e2)

h2 + e2 − αd(e1 + e2)
(2.9)

The optimality conditions for the component with lower optimal stock level y∗
1 is its

independent solution found from (2.6). The expediting discount affects only component

with greater optimal level. The optimal stock level decreases because the effective

expediting cost decreases (2.9).

Equations (2.8) and (2.9) are only valid when e1

h1+e1

< e2−αd(e1+e2)
h2+e2−αd(e1+e2)

. If e2

h2+e2

<

e1−αd(e1+e2)
h1+e1−αd(e1+e2)

then

F (y∗
2) =

e2

h2 + e2
(2.10)

F (y∗
1) =

e1 − αd(e1 + e2)

h1 + e1 − αd(e1 + e2)
(2.11)

However there are cases, where neither e1

h1+e1

< e2−αd(e1+e2)
h2+e2−αd(e1+e2)

nor e2

h2+e2

<

e1−αd(e1+e2)
h1+e1−αd(e1+e2)

can be satisfied. Our initial assumption is that optimum stock lev-

els are different (either y∗
1 < y∗

2 or y∗
2 < y∗

1). W.L.O.G. assume e1

h1+e1

< e2

h2+e2

and

e1

h1+e1

> e2−αd(e1+e2)
h2+e2−αd(e1+e2)

, which is mathematically possible. In this case if y∗
1 < y∗

2 is

true, then y∗
1 and y∗

2 must be calculated according to the equations (2.8) and (2.9),

yielding the result y∗
1 > y∗

2. If y∗
1 > y∗

2 is true, then y∗
1 and y∗

2 must be calculated

according to the equations (2.10) and (2.11), yielding the result y∗
2 > y∗

1. Hence our

initial assumption that y∗
1 6= y∗

2 is false. Two components behave like a single com-
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ponent and their optimal inventory levels are equal: y∗
1 = y∗

2. Then the cost function

becomes:

g(0, 0, y1, y1) =

∫ y1

0

[(h1 + h2)(y1 − u)] f(u)du +

∫ ∞

y1

[(e1 + e2)(1 − αd)(u − y1)] f(u)du

and y∗
1 is calculated by the equation :

F (y∗
1) =

(e1 + e2)(1 − αd)

h1 + (e1 + e2)(1 − αd)
(2.12)

To complete the proof we need to show convexity of (2.3) for which the Hessian is given

as:

H =





(e1 + h1)f(y1) 0

0 h2 + e2 − αd(e1 + e2)f(y2)





which is positive definite as long as h2 + e2 > αd(e1 + e2). Our initial Assumption 6

includes e2 > αd(e1 + e2), satisfying this inequality. For a general proof which does not

require this assumption please refer to Appendix A.

2.4. Optimal Policies in Single Period Model with Positive Initial

Inventory and no Setup Costs

For the problem with zero initial inventories we have single unique optimum

inventory level : (y∗
1, y

∗
2) as characterized in Proposition 2.1. However this targeting

may not be a possible action when there are positive initial inventories y∗
1 or y∗

2.

The problem is similar to minimizing (2.2) except the constraints on y1 and y2 :

min
y1≥x1,y2≥x1

g(x1, x2, y1, y2) = Ed

[
∑2

i=1[hi(yi − d)+] + e[(d − y1)
+, (d − y2)

+]
]

(2.13)
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With new initial inventory constraints the set of possible target inventory levels

has been reduced from (y1, y2) ∈ ℜ2 to (y1, y2) ∈ {(y1, y2)|y1 ≥ x1, y1 ≥ x2}.

For investigating the optimal inventory level of this restricted solution set, it is

helpful to determine possible actions. From initial inventory levels (x1, x2), possible

target inventory levels (y1, y2) can be reached with four different actions :

1. Stay at the current inventory position (y1 = x1, y2 = x2).

This action is optimal when expected holding costs of ordering any component is

more than the expected expediting costs of covering demand.

2. Order only component 1 (y1 > x1, y2 = x2). When x2 is sufficiently large

then ordering only component 1 is a reasonable action.

3. Order only component 2 (y1 = x1, y2 > x2). When x1 is sufficiently large

then ordering only component 2 is a reasonable action.

4. Order both components (y1 > x1, y2 > x2). This action is reasonable when

demand is sufficiently large with respect to x1 and x2. This action is optimal for

zero initial inventory case (x1 = 0, x2 = 0), unless marginal expediting costs are

more than marginal holding costs.

Consider action 2, where only component 1 is ordered. Target inventory level

of component 2 is fixed at the initial inventory level (y2 = x2). The expected cost

function is g(x1, x2, y1, y2 = x2), which is also a convex function and has a minimum.

Let y∗
1(x2) be expected cost minimizer function given x1 = 0 and y2 = x2.

y∗
1(x2) = argminy1

{g(0, x2, y1, y2 = x2)}.

Depending on the value of x1 the optimal inventory level of component 1 for action 2

is the maximum of x1 and y∗
1(x2).

Similarly, the optimal target inventory level of component 2 in action 3 (y1 = x1)

is the related expected cost minimizer, which is the maximum of x2 and y∗
2(x1) =

argminy2
{g(x1, 0, y1 = x1, y2)}. For graphical interpretation of y∗

1(x2) and y∗
2(x1) func-

tions please see Figures 2.1 and 2.2 . Please note that y∗
1(x2) and y∗

2(x1) functions are
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Figure 2.1. g(0, 0, y1, y2) function

one dimensional functions which are shown in top view of Figure 2.2(b).

The optimal ordering decisions are characterized in Proposition 2.2. Let y∗
1(x1, x2)

and y∗
2(x1, x2) be the optimal inventory levels satisfying initial inventory constraints.

Proposition 2.2 Given the initial inventory levels (x1, x2) optimal target inventory

levels (y∗
1(x1, x2), y

∗
2(x1, x2)) are :

(i) If x1 ≤ y∗
1, x2 ≤ y∗

2

y∗
1(x1, x2) = y∗

1

y∗
2(x1, x2) = y∗

2

where y∗
1 and y∗

2 are given as in Proposition 2.1.
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Figure 2.2. y∗
1(x2) and y∗

2(x1) functions: minimum values of g(0, 0, y1, y2) at fixed x1

and x2 (a), their projection on y1 − y2 axis (top view of (a)) yield y∗
1(x2) and y∗

2(x1)

functions (b)

(ii) If x1 > y∗
1, x2 ≤ y∗

2

y∗
1(x1, x2) = x1

y∗
2(x1, x2) = max(y∗

2(x1), x2)

(iii) If x1 ≤ y∗
1, x2 > y∗

2

y∗
1(x1, x2) = max(y∗

1(x2), x1)

y∗
2(x1, x2) = x2

(iv) If x1 > y∗
1, x2 > y∗

2, then at least one of the following equations is true:

y∗
1(x1, x2) = max(y∗

1(x2), x1)

y∗
2(x1, x2) = max(y∗

2(x1), x2)

There is no possibility of y∗
1(x1, x2) > x1 and y∗

2(x1, x2) > x2 at the same time.
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Proof:

(i) For x1 ≤ y∗
1, x2 ≤ y∗

2, the minimum (y∗
1, y

∗
2) is accessible and this is the unique

minimizer of the function.

(ii) For x1 ≥ y∗
1, x2 ≤ y∗

2, assume there exists z = (z1, z2) such that z1 > x1, z2 ≥ x2

and g(x1, x2, z1, z2) < g(x1, x2, x1, y
∗
2(x1, x2)). By the convexity of g:

g(0, 0, λy∗
1+(1−λ)z1, λy∗

2+(1−λ)z2) ≤ λg(0, 0, y∗
1, y

∗
2)+(1−λ)g(0, 0, z1, z2) (2.14)

By the definition of (y∗
1, y

∗
2), g(0, 0, y∗

1, y
∗
2) ≤ g(0, 0, λy∗

1+(1−λ)z1, λy∗
2+(1−λ)z2).

It is possible to multiply this equation by λ for any λ ∈ (0, 1) and add to equation

2.14 :

g(0, 0, λy∗
1 + (1 − λ)z1, λy∗

2 + (1 − λ)z2) + λg(0, 0, y∗
1, y

∗
2)

≤ λg(0, 0, y∗
1, y

∗
2) + (1 − λ)g(0, 0, z1, z2) + λg(0, 0, x1, λy∗

2 + (1 − λ)z2)

After algebraic manipulation and dividing by (1 − λ) equation simplifies to :

g(0, 0, λy∗
1 + (1 − λ)z1, λy∗

2 + (1 − λ)z2) ≤ g(0, 0, z1, z2)

Let λ0 be the value satisfying:

x1 = λ0y
∗
1 + (1 − λ0)z1

Note that g(0, 0, x1, λy∗
2+(1−λ)z2) = g(x1, x2, x1, λy∗

2+(1−λ)z2) and g(0, 0, z1, z2) =

g(x1, x2, z1, z2) for the model without setup costs. Resulting equation is :

g(x1, x2, x1, λ0y
∗
2 + (1 − λ0)z2) ≤ g(x1, x2, z1, z2)

By definition g(x1, x2, x1, y
∗
2(x1, x2)) ≤ g(x1, x2, x1, λy∗

2 +(1−λ)z2), for λ ∈ (0, 1),

by transitivity g(x1, x2, x1, y
∗
2(x1, x2)) ≤ g(0, 0, z1, z2) = g(x1, x2, z1, z2) which
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contradicts the initial assumption about z.

Hence y∗
1(x1, x2) can only be x1, and y∗

2(x1, x2) the related function minimizer

max(y∗
2(x1), x2).

(iii) For x1 ≤ y∗
1, x2 ≥ y∗

2, similar to the previous case assume the existence of z =

(z1, z2) such that z1 ≥ x1, z2 > x2 and g(x1, x2, z1, z2) < g(x1, x2, y
∗
1(x1, x2), x2).

Take the linear combination of y∗ and z where x2 = λy∗
2 + (1 − λ). It can be

shown that g(x1, x2, y
∗
1 + (1 − λ)z1, x2) ≤ g(x1, x2, z1, z2) using convexity. By

definition g(x1, x2, y
∗
1(x1, x2), x2) ≤ g(x1, x2, y

∗
1 + (1 − λ)z1, x2) which disproves

the existence of z. Hence y∗
2(x1, x2) can only be x2, and y∗

1(x1, x2) the related

function minimizer max(y∗
1(x2), x1).

(iv) For x1 ≥ y∗
1, x2 ≥ y∗

2, similar to the previous cases assume the existence of

z = (z1, z2) such that z1 > x1, z2 > x2 and further assume g(x1, x2, z1, z2) <

g(x1, x2, y
∗
1(x1, x2), y

∗
2(x1, x2)). In order to show a contradiction it necessary to

take a linear combination of z and y∗. Depending on the relative positions of the

y∗, x and z different linear combinations are selected. There are three different

cases, by comparing (z2 − y∗
2)/(z1 − y∗

1) with (x2 − y∗
2)/(x1 − y∗

1):

• If (z2−y∗
2)/(z1−y∗

1) > (x2−y∗
2)/(x1−y∗

1), then there is a linear combination

of (z1, z2) and (y∗
1, y

∗
2), where x1 = λy∗

1 + (1 − λ)z1.

g(x1, x2, x1, y
∗
1 + (1− λ)z1) ≤ g(x1, x2, z1, z2) by the convexity. The function

g(x1, x2, x1, y
∗
2(x1, x2)) ≤ g(x1, x2, x1, y

∗
2 + (1 − λ)z2) by definition, which

leads to a contradiction.

• If (z2−y∗
2)/(z1−y∗

1) < (x2−y∗
2)/(x1−y∗

1), then there is a linear combination

of (z1, z2) and (y∗
1, y

∗
2), where x2 = λy∗

2 + (1 − λ)z2.

g(x1, x2, y
∗
1 + (1− λ)z1, x2) ≤ g(x1, x2, z1, z2) by the convexity. The function

g(x1, x2, x1, y
∗
2(x1, x2)) ≤ g(x1, x2, y

∗
1 + (1 − λ)z1, x2) by definition, which

leads to a contradiction.

• If (z2−y∗
2)/(z1−y∗

1) = (x2−y∗
2)/(x1−y∗

1), then there is a linear combination

of (z1, z2) and (y∗
1, y

∗
2), where x = λy∗ + (1 − λ)z.

g(x1, x2, x1, x2) ≤ g(x1, x2, z1, z2) by the convexity. By the definition:

g(x1, x2, y
∗
1(x1, x2), y

∗
2(x1, x2)) ≤ g(x1, x2, x1, x2) , which leads to a contra-

diction.

For all possible different positions of z, its existence is contradicted. Hence



23

y∗
1(x1, x2) > x1 and y∗

2(x1, x2) > x2 at the same time is not possible. Either

y∗
1(x1, x2) = x1 or y∗

2(x1, x2) = x2 or both.

2.4.1. Optimal Policy when Ordering only One Component Type

In the previous section we have defined y∗
1(x2) and y∗

2(x1) functions giving the

optimal target inventory level of a component depending on the other component,

where ordering only one component is possible. We now characterize these functions.

Assume the component that can be ordered has zero initial inventory.

Proposition 2.3 If it is not possible to order component i in the optimal solution

(y∗
i (xi, xj) = xi), then the optimal order policy y∗

j for the other component j is, given

xj=0 :

y∗
j (xi) = y′

j, for xi ≤ y′
j

y∗
j (xi) = xi, for y′

j < xi < yo
j

y∗
j (xi) = yo

j , for xi ≥ yo
j

where yo
j and y′

j are defined as :

yo
j = F−1

(

ej

hj + ej

)

y′
j = F−1

(

ej − αd(ei + ej)

hj + ej − αd(ei + ej)

)

, for

(

ej − αd(ei + ej)

hj + ej − αd(ei + ej)

)

> 0

y′
j = 0, for

(

ej − αd(ei + ej)

hj + ej − αd(ei + ej)

)

≤ 0

Proof: W.L.O.G. say it is not possible to order component 1. Then the only component

1 policy available is to stay at the same level y1 = x1. Depending on the inventory
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level y2 of the component 2, the cost function is:

g(x1, 0, x1, y2) =

∫ y2

0

[h1(x1 − u) + h2(y2 − u)] f(u)du +

∫ x1

y2

[h1(x1 − u) + e2(u − y2)] f(u)du +

∫ ∞

x1

[(e1 + e2)(1 − αd)(u − x1) + e2(x1 − y2)] f(u)du

for y2 ≤ x1.

g(x1, 0, x1, y2) =

∫ x1

0

[h1(x1 − u) + h2(y2 − u)] f(u)du +

∫ y2

x1

[e1(u − x1) + h2(u − y2)] f(u)du +

∫ ∞

x1

[(e1 + e2)(1 − αd)(u − y2) + e2(y2 − x1)] f(u)du

for y2 > x1. First derivatives with respect to y2 are :

∂g(x1, 0, x1, y2)

∂y2
= h2 [F (y2) − F (0)] + e2 [F (x1) − F (y2)] − (e2 [1 − F (y2)]

= (h2 + e2)F (y2) − e2

for y2 ≤ x1.

∂g(x1, x2, x1, y2)

∂y2
= h2 [F (x1) − F (0)] + h2 [F (y2) − F (x1)] −

(e2 − αd(e1 + e2)) [1 − F (y2)]

= (h2 + e2 − αd(e1 + e2))F (y2) − (e2 − αd(e1 + e2))

for y2 > x1.

There are three possibilities for the optimal inventory level y∗
2 :

If y∗
2 < x1 then y∗

2 = yo
2, where F (yo

2) = e2

h2+e2

.

If y∗
2 > x1 then y∗

2 = y′
2, where F (y′

2) = e2−αd(e1+e2)
h2+e2−αd(e1+e2)

.
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Figure 2.3. g(x1, 0, x1, x2) in two different cases

e2

h2+e2

≥ e2−αd(e1+e2)
h2+e2−αd(e1+e2)

because subtracting same non-negative values both from nu-

merator and denominator of a fraction, where numerator is less than the denominator

decreases the value of the fraction. F (yo
2) ≥ F (y′

2), hence yo
2 ≥ y′

2.

Depending on the value of x1:

If x1 ≤ y′
2 then y∗

2 = y′
2 (Figure 2.3a).

If x1 ≥ yo
2 then y∗

2 = yo
2 (Figure 2.3b).

There is a gap between y′
2 and yo

2. If x1 is in this gap, (y′
2 < x1 < yo

2), then the

third possibility occurs: y∗
2 = x1, to verify the optimality of this possibility, we have to

take left and right sided derivatives.

∂g(x1, 0, x1, x
−
1 )

∂y2
= (h2 + e2)F (x−

1 ) − e2 (2.15)

x1 < yo
2 =⇒ (h2 + e2)F (x−

1 ) − e2 < 0

∂g(x1, 0, x1, x
+
1 )

∂y2
= (h2 + e2 − αd(e1 + e2))F (x−

1 ) − (e2 − αd(e1 + e2)) − e2 > 0(2.16)

y′
2 < x1 =⇒ (h2 + e2)F (x+

1 ) − e2 > 0
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Figure 2.4. g(x1, 0, x1, x2) when y′
2 < x1 < yo

2

Left and right side derivatives confirm the optimality of y∗
2 = x1, given y′

2 < x1 < yo
2

(Figure 2.4).

Using Proposition 2.3 we may draw optimal ”order only component 1” graph

(Figure 2.5(a)) and ”optimal order only component 2” graph (Figure 2.5(b)).

How Figure 2.5(a) and 2.5(b) come together depends on whether y∗
1 > y∗

2, y∗
2 > y∗

1

or y∗
2 = y∗

1. W.L.O.G we will show the cases where y∗
1 ≤ y∗

2.

1. Case 1 : Optimal Stock Levels of components are different y∗
1 < y∗

2

Two graphs intersect at the optimal inventory policy point. (yo
1, y

′
2)(Figure 2.6).

2. Case 2 : Optimal Stock Levels of components are equal y∗
1 = y∗

2

With y′
2 ≤ yo

1, there is no guarantee that two graphs do connect at (y′
1, y

′
2).

However they do connect at the yo point, which is the inverse of the cumulative

function F at the harmonic average of F (y′
2) and F (yo

1).

yo = F−1

(

(e1 + e2)(1 − αd)

h1 + h2 + (e1 + e2)(1 − αd)

)

(2.17)

(yo, yo) is the optimal policy. Please note although there are many points where
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Figure 2.6. Optimal policy when stock levels are different



28

0 10 20 30 40 50 60
0

10

20

30

40

50

60

x
1

x 2

Optimal policy if y
1
* =y

2
*

y
2
*(x

1
)

y
1
*(x

2
)

Figure 2.7. Optimal policy when stock levels are equal

y∗
1(x2) and y∗

2(x1) function intersects in Figure 2.7, (yo, yo) is a unique point,

which gives minimum value of convex g(0, 0, yo, yo) function.

For y∗
1 ≥ y∗

2, it is only necessary to replace x1 and x2 axes of the graphs.

With the help of order only one component graphs it is possible to fully charac-

terize the optimal policy in Theorem 2.1.

Theorem 2.1 For single period model with two components, non-negative initial in-

ventory and no setup costs the optimal policy is generalized base stock policy S1(x2), S2(x1).

Functions S1(x2) and S2(x1) determine optimal target inventory levels y∗
1(x1, x2) and

y∗
2(x1, x2) given as:

y∗
1(x1, x2) = max(x1, S1(x2))

y∗
2(x1, x2) = max(x2, S2(x1))

(2.18)
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where

S1(x2) =







y∗
1 for x2 ≤ y∗

2

y∗
1(x2) for x2 > y∗

2

, S2(x1) =







y∗
2 for x1 ≤ y∗

1

y∗
2(x1) for x1 > y∗

1

Proof: It is necessary to check that the functions cover all cases.

For x1 ≤ y∗
1, x2 ≤ y∗

2 the optimal policy is (y∗
1, y

∗
2) by Proposition 2.1.

y∗
1(x1, x2) = max(x1, S1(x2)) = max(x1, y

∗
1) = y∗

1

y∗
2(x1, x2) = max(x2, S2(x1)) = max(x2, y

∗
2) = y∗

2

For x1 > y∗
1, x2 ≤ y∗

2 the optimal policy is (x1, y
∗
2(x1)) by Proposition 2.3.

y∗
1(x1, x2) = max(x1, S1(x2)) = max(x1, y

∗
1) = x1

y∗
2(x1, x2) = max(x2, S2(x1)) = max(x2, y

∗
2(x1)) = y∗

2(x1)

For x1 ≤ y∗
1, x2 > y∗

2 the optimal policy is (y∗
1(x2), x2) by Proposition 2.3.

y∗
1(x1, x2) = max(x1, S1(x2)) = max(x1, y

∗
1(x2)) = y∗

1(x2)

y∗
2(x1, x2) = max(x2, S2(x1)) = max(x2, y

∗
2) = x2

For x1 > y∗
1, x2 > y∗

2 there are further subcases :

If x1 > y∗
1(x2), x2 > y∗

2(x1) the optimal policy is (x1, x2) by Proposition 2.3.

y∗
1(x1, x2) = max(x1, S1(x2)) = max(x1, y

∗
1(x2)) = x1

y∗
2(x1, x2) = max(x2, S2(x1)) = max(x2, y

∗
2(x1)) = x2
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If x1 > y∗
1(x2), x2 ≤ y∗

2(x1) the optimal policy is (x1, y
∗
2(x1)) by Proposition 2.3.

y∗
1(x1, x2) = max(x1, S1(x2)) = max(x1, y

∗
1(x2)) = x1

y∗
2(x1, x2) = max(x2, S2(x1)) = max(x2, y

∗
2(x1)) = y∗

2(x1)

If x1 ≤ y∗
1(x2), x2 > y∗

2(x1) the optimal policy is (y∗
1(x2), x2) by Proposition 2.3.

y∗
1(x1, x2) = max(x1, S1(x2)) = max(x1, y

∗
1(x2)) = y∗

1(x2)

y∗
2(x1, x2) = max(x2, S2(x1)) = max(x2, y

∗
2(x1)) = x2

The convexity of cost function prevents the possibility x1 < y∗
1(x2), x2 < y∗

2(x1) for the

case x1 > y∗
1, x2 > y∗

2.

2.5. Optimal Policies with Setup Costs

In this section we introduce setup costs K1 and K2 of ordering components into

the model. In addition to the assumptions of Section 2.1, it is assumed that e(x1, x2) ≥
∑2

i=1 αKiδ(xi) for x1, x2 ≥ 0; provided that the fixed costs associated with expediting

are at least as those associated with performing regular production in the next period.

The expected cost function is now given as :

min
y1≥x1,y2≥x1

g(x1, x2, y1, y2) = K1δ(y1 − x1)
+ + K2δ(y2 − x2)

+ + (2.19)

Ed

[

2
∑

i=1

[hi(yi − d)+] + e[(d − y1)
+, (d − y2)

+]

]

When setup costs are introduced, the cost function is not necessarily convex

anymore. However, if the action is staying at the current inventory position (i.e.,

y1 = x1 and y2 = x2) then (2.19) reduces to Equation (2.13) of Section 2.4. Once again

we have four different types of possible actions.

1. Stay at the current inventory position.
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2. Order only component 1.

3. Order only component 2.

4. Order both components.

Assume it is not optimal to order component 1. Without setup costs, optimal

inventory policy for the other component 2 would be y∗
2(x1) if x2 ≤ y∗

2(x1). For x2 >

y∗
2(x2) it would be also optimal not to order component 2 (Section 2.4.1). However

with the introduction of the setup cost K2, this base stock policy is not optimal for

some x2 ≤ y∗
2(x1), which satisfies the following equation:

g(x1, x2, x1, x2) < K2 + g(x1, y
∗
2(x1), x1, y

∗
2(x1)) (2.20)

Proposition 2.4 If it is impossible to order component i in the optimal solution, then

the optimal inventory policy y∗
j (xi, xj) for the other component j is:

y∗
j (xi, xj) =







y∗
j (xi) for xj < yo

j (xi)

xj for xj ≥ yo
j (xi)

where yo
j (xi) is defined as the positive inventory level satisfying the following equation:

g(xi, xj , xi, y
o
j (xi)) = Kj + g(xi, y

∗
j (xi), xi, y

∗
j (xi)) (2.21)

If there is no positive yo
j (xi) satisfying equation (2.21), yo

j (xi) is set to zero.

Proof: W.L.O.G. assume it is impossible to order component 1. For x2 < y∗
2(x1) opti-

mum cost of the type 3 action (order only component 2 policy) is g(x1, y
∗
2(x1), x1, y

∗
2(x1))+

K2. If g(x1, x2, x1, x2) < g(x1, y
∗
2(x1), x1, y

∗
2(x1)) + K2 this action is dominated by type

1 action (do not order any components policy). The convexity of the cost function

guarantees a unique yo
2(x1) value, where for x2 < yo

2(x1) type action 1 dominates type

3 action and for x2 ≥ yo
2(x1) vice versa. If there exists no positive x2 value which
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Figure 2.8. Break even point y0 at crossection x1 = y1 (a) top view (b) side view

satisfies g(x1, x2, x1, x2) ≥ g(x1, y
∗
2(x1), x1, y

∗
2(x1)) + K2 then yo

2(x1) is set 0, indicating

best action for all levels of x2 inventory is not to order component 2.

Figure 2.8 shows the break-even point y0 = yo
2(x1) at the crossection of y1 = x1

indicated by dots in both Figure 2.8 (a) and (b). y2 = y∗
2(x1) is optimal target inventory

level for component 2. As shown in the expected cost function graph at the right

figure (Figure 2.8(b)), for inventory level y0 ordering minimum cost of ordering new

components and paying K2 is equal to not ordering anything. The convexity of the

cost function guarantees for any x2 < y0 it is economical to order component 2. Where

for x2 > y0 not ordering policy is better.

Define the break-even functions with respect to y∗
2(x1), and y∗

1(x2):

yo
2(x1) = {y2|y2 < y∗

2(x1), g(x1, y2, x1, y2) + K2 = g(x1, y
∗
2(x1), x1, y

∗
2(x1))}

yo
1(x2) = {y1|y1 < y∗

1(x2), g(y1, x2, y1, x2) + K1 = g(y∗
2(x1), x2, y

∗
2(x1), x2)}
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Figure 2.9. Break even lines for setup costs

With these functions also drawn in x1,x2 axis (Figure 2.9), we may identify the

areas where action 2 (order only component 1) and 3 (order only component 2), dom-

inates 1 action 4 (do not order anything) and vice versa. The action of optimal policy

may not be dominated by any other available action. Using domination rules we may

identify optimal actions for different areas depending on the initial inventory levels.

It is easier to detect optimal actions in these specific areas:

(i) For (x1, x2), where x1 < yo
1(x2), x2 < yo

2(x1), it is better to order component

1 rather than not to order anything: x1 < yo
1(x2) ⇒ g(x1, x2, y

∗
1(x2), x2) <

g(x1, x2, x1, x2). We go to the better target inventory (y∗
1(x2), x2). For this pol-

icy to be optimal, best action at (y∗
1(x2), x2) must be of type 4 (do not order

anything). However at this point it is better to order component 2 rather than

not to order component 2: x2 < yo
2(y

∗
1(x2)) ⇒ g(y∗

1(x2), x2, y
∗
1(x2), y

∗
2(y

∗
1(x2))) <

1An action dominates another action if it’s expected cost is less than the other.
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Figure 2.10. Optimal policies with undetermined areas

g(y∗
1(x2), x2, y

∗
1(x2), x2). Ordering both components to level (y∗

1, y
∗
2) is the best

policy.

(ii) For x1 < yo
1(x2), x2 > y∗

2(x1), ordering component 2 is not economical, because

x2 is above the related optimum level y∗
2(x1), however ordering component 1 is

economical because x1 is below the related break even level yo
1(x2). Best policy

is ordering component 1.

(iii) For x1 > y∗
1(x2), x2 < yo

2(x1) , ordering component 1 is not economical, because

x1 is above the related optimum level y∗
1(x2), however ordering component 2 is

economical because x2 is below the related break even level yo
2(x1). Best policy

is ordering component 2.

(iv) For x1 > yo
1(x2), x2 > y∗

2(x1), ordering component 2 is not economical, because

x2 is above the related optimum level y∗
2(x1). Ordering component 1 is also not

economical because x1 is above the related break even level yo
1(x1). Best policy

is to stay at the level (x1, x2).

For x1 > y∗
1(x2), x2 > yo

2(x1), ordering component 1 is not economical, because
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x1 is above the related optimum level y∗
1(x2). Ordering component 2 is also not

economical because x2 is below the related break even level yo
2(x1). Best policy

is to stay at the level (x1, x2).

There are only three areas where the optimal policy is not defined yet (Figure 2.10).

These areas require further analysis and we take different points at each area

(Figure 2.11) :

1. point A (a1, a2)

a2 < yo
2(a1) suggests ordering component 2 is better than staying at a2 level.

Ordering only component 2 policy leads to point A∗(a1, y
∗
2(a1)). However a1 <

yo
1(y

∗
2(a1)) which shows it is better to order both components rather than ordering

only component 2. If a1 would be more than yo
1(y

∗
2(a1)) which is the break even

level when only component 2 is ordered, ordering only component 2 would be

better. The area of point A is shared between order only component 2 and order

both components policies.

2. point B (b1, b2)

b1 < yo
1(b2) suggests ordering component 1 is better than staying at b1 level.

Ordering only component 2 policy leads to point B∗(y∗
1(b2), b2). b2 > yo

2(y
∗
1(b2))

which shows it is better to order only component 2 rather than ordering both. If b2

would be less than yo
2(y

∗
1(b2)) which is the break even level when only component

2 is ordered, ordering only component 2 would be better. The area of point B is

shared between order only component 1 and order both components policies.

3. point C (c1, c2)

c1 > yo
1(c2) suggests ordering only component 1 is worse than staying at c1 level.

c2 > yo
2(c1) suggests ordering only component 2 is worse than staying at c2 level.

However it may be still better ordering both components. Because the facts that

g(c1, c2, c1, c2, ) + K1 > g(c1, c2, y
o
1(c2), c2, ) and

g(c1, c2, c1, c2, ) + K2 > g(c1, c2, c1, y
o
2(c1)) do not guarantee

g(c1, c2, c1, c2, ) + K1 + K2 > g(c1, c2, y
∗
1, y

∗
2). By drawing the contour line for

points in this area which satisfy g(x1, x2, x1, x2) + K1 + K2 = g(x1, x2, y
∗
1, y

∗
2) we
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Figure 2.11. Optimal policies in sample areas

find that best policy for point C is ordering both components, by the convexity of

the cost function. The area of point C is shared between order both components

and stay at the level policies.

Let yo∗ = (yo∗
1 , yo∗

2 ) the point where yo
1(x1) intersects y∗

1(x2), let y∗o = (y∗o
1 , y∗o

2 )

the point where y∗
1(x2) intersects yo

2(x1).

yo∗
1 = yo

1(y
o∗
2 ), yo∗

2 = y∗
2(y

o∗
1 ) (2.22)

y∗o
1 = y∗

1(y
∗o
2 ), y∗o

2 = yo
2(y

∗o
2 )

These points are decisive for determining optimal policies in undetermined areas.

Order both components area is extended from x2 < yo
2(x1) to x2 < y∗o

2 , for x1 < yo
1(y

∗o
2 ),

from x1 < yo
1(x2) to x1 < yo∗

1 , for x2 < yo
2(y

o∗
1 ) and to a curve between (yo

1(y
∗o
2 ), y∗o

2 ),

(yo∗
1 , yo

2(y
o∗
1 )) points (Figure 2.12).

Having determined the boundaries of the policy areas we may show them on the

policy map (Figure 2.13).

The optimal single period policy can be characterized in following theorem.
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Theorem 2.2 The optimal policy has the form (s1(x2), S1(x2), s2(x1), S2(x1)) which is

defined as :

For all inventory level tuples (x1, x2):

Order (S1(x2) − x1) units of component 1, if x1 < s1(x2).

Order (S2(x1) − x2) units of component 2, if x2 < s2(x1).

Si(xj) is the function of the optimal target inventory level of component i, given the

current inventory level xi of the component i is less than the control function si(xj)

for i = 1, 2, j 6= i. If current inventory level of component i is greater than or equal to

si(xj), then the best policy is not to order component i.

The s1(x2), s2(x1), S1(x2), S2(x1) functions can be defined as :

s1(x2) =



















yo∗
1 , for x2 ≤ yo∗

2

yc
1(x2), for yo∗

2 ≤ x2 ≤ y∗o
2

yo
1(x2), for x2 > y∗o

2

where yc
1(x2) is a function defined as :

yc
1(x2) = {x1|g(x1, x2, x1, x2) + K1 + K2 = g(y∗

1, y
∗
2, y

∗
1, y

∗
2, x1 < y∗

1)}

for yo∗
2 ≤ x2 ≤ y∗o

2 .

s2(x1) =



















y∗o
2 , for x1 ≤ y∗o

1

yc
2(x1), for y∗o

1 ≤ x1 ≤ yo∗
1

yo
2(x1), for x1 > yo∗

1

where yc
2(x1) is a function defined as :

yc
2(x1) = {x2|g(x1, x2, x1, x2) + K1 + K2 = g(y∗

1, y
∗
2, y

∗
1, y

∗
2), x2 < y∗

2}
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for y∗o
1 ≤ x1 ≤ yo∗

1 .

S1(x2) =







y∗
1, for x2 ≤ y∗o

2

y∗
1(x2), for x2 > y∗o

2

S2(x1) =







y∗
2, for x1 ≤ yo∗

1

y∗
2(x1), for x1 > yo∗

1

Proof: For any (x1, x2) < (y∗
1, y

∗
2) the upper bound cost of the optimal policy is

g(0, 0, y∗
1, y

∗
2)+K1+K2. Because for any inventory position it is always possible to order

up to (y∗
1, y

∗
2). If g(x1, x2, x1, x2) ≤ g(x1, x2, y

∗
1, y

∗
2) + K1 + K2 then action 4 (staying)

is the best alternative. By the convexity of the cost function, the inventory positions

where action 4 is optimal, are in an area which is limited by the boundary functions

yc
2(x1), y

c
1(x2), where yc

2(x1) is the inverse function of yc
1(x2). For any (x1, x2) < (y∗

1, y
∗
2),

where x2 < yc
2(x1) or x1 < yc

1(x2), a better alternative is ordering only one component

if g(x1, x2, y
∗
1(x2), x2)+K1 < g(x1, x2, y

∗
1, y

∗
2)+K1+K2 or g(x1, x2, y

∗x1, y
∗
2(x1))+K2 <

g(x1, x2, y
∗
1, y

∗
2) + K1 + K2. According to the previous proofs the optimality of actions

2 and 3 (order only one component actions) can be checked using yo
1(x2) and yo

1(x2)

functions. For any (x1, x2) where x1 > y∗
1 or x2 > y∗

2, ordering both components is not

possible anymore. The decision is made between action 4 (staying) and actions 2,3,

using yo
1(x2) and yo

1(x2) functions.

By combining yo
1(x2), y

o
1(x2), y

c
2(x1) and yc

1(x2) functions it is possible to char-

acterize s1(x2), s2(x1) order decision functions and their respective target inventory

functions S1(x2), S2(x1).

Please note than in our example Figure 2.14, S1(x2) function is not continuous,

as s1(x2),s2(x1),S2(x1) functions are continuous.

However this does not affect the continuity of the cost function g(0, x2, S1(x2), x2).

Based on the optimal policies, expected cost is characterized as :

1. Order both components area
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Figure 2.14. s1, s2, S1, S2 functions

Optimal policy cost is g(0, 0, y∗
1, y

∗
2) + K1 + K2 for all points belonging to this

area.

2. Order component 1 only area

Optimal policy cost is g(0, x2, y
∗
1(x2), x2) + K1 for all points (x1, x2) belonging to

this area.

3. Order component 2 only area

Optimal policy cost is g(x1, 0, x1, y
∗
2(x1)) + K2 for all points (x1, x2) belonging to

this area.

4. Do not order anything area

Optimal policy cost is g(x1, x2, x1, x2) for all points (x1, x2), belonging to this

area.

The resulting cost function is not a convex function anymore. The differences

between the optimal policy cost function and the convex cost function where the policy

is not to order anything can be seen in Figures 2.15 and 2.16.

The optimal policy cost function is not a convex function. It is a K2−convex

function. The properties of K2−convex function will be introduced in the next chapter.
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3. MULTIPLE PERIOD MODEL

3.1. Model Definition

In this chapter, we consider a model in which transactions continue for N periods.

We introduce time period index n and time discount factor α into the notation (table

3.1).

Table 3.1. Notation in Multi Period model

yin inventory position chosen for regular production of unit i at period n

ỹin inventory position chosen after expediting of unit i at period n

xin inventory of unit i at the start of period n

x̃in inventory of unit i before expediting in period n

dn random demand for the end-product during period n

hr
in(xi) adjusted holding cost function for excess inventory amount of xi

at the end of period n

α time discount for costs occurring in the next period.

In the multi-period model procured components which are not used at end of the

period may be used in the following periods, except last period. The definition of the

adjusted holding cost changes to:

hr
in(xi) = hi(xi) + (1 − α)cixi for all n = 1, 2, · · · , N − 1

hr
in(xi) = hi(xi) + cixi only for n = N

We do not lose the excess inventory at the end of period, but we charge a extra holding

cost for the excess inventory, that could be produced at the next period.

From now on hi will be used instead of hr
in except the last period. The single

period solution in Chapter 2 is valid for the last period. We refer to the cost of the
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last period as g1(x11, x21, y11, y21). We count the period from the last one to the first

one. Last period has index number 1, first period has index number N .

We may replace x̃in and ỹin using inventory balancing equations :

x̃in = yin − dn

ỹin = x̃+
in

These equations imply that it is not possible to expedite more than needed at the

current period. This is probably optimal when there is no setup cost. With setup costs

it is not necessarily optimal. For a single component model where it is allowed to order

more than needed ỹin ≥ x̃+
in, to meet also the demand for the next period d(n−1) by

expedition for avoiding regular production setup cost in the next period, you may refer

to Huggins and Olsen[2]. Inventory balancing equations for period transitions are :

xi(n−1) = yin − dn, for n = 2 · · ·N

3.2. Expected Cost Function for the Multi Period Model

The cost function, gn(x1n, x2n, y1n, y2n) for n periods is :

Edn

[

2
∑

i=1

[Kiδ(yin − xin) + hi(yin − dn)+] + e((dn − y1n)+, (dn − y2n)+)+

αgn−1((y1n − dn)
+, (y2n − dn)+, y1(n−1), y2(n−1))

]

, for n ≥ 2

Last period n = 1 is defined as :

g1(x11, x21, y11, y21) =

Ed1

[

2
∑

i=1

[Kiδ(yi1 − xi1) + hr
i1(yi1 − d1)] + e((d1 − y11)

+, (d1 − y21)
+)

]
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Similarly the optimal policy cost function is :

g∗
n(x1n, x2n) = miny∗

1n
≥x1n,y∗

2n
≥x2n

Edn

[

2
∑

i=1

[Kiδ(y
∗
in − xin) + hi(y

∗
in − dn)+]+

e((dn − y∗
1n)+, (dn − y∗

2n)+) +

αg∗
n−1((y

∗
1n − dn)

+, (y∗
2n − dn)

+)
]

, for n ≥ 2

and

g∗
1(x11, x21) = miny∗

11
≥x11,y∗

21
≥x21

Ed1

[

2
∑

i=1

[Kiδ(y
∗
i1 − xi1) + hr

i1(y
∗
i1 − d1)

+]+

e((d1 − y∗
11)

+, (d1 − y∗
21)

+)
]

Please note if setup costs are zero, the costs related only with the nth period are

convex holding and expediting costs. In Section 3.3 we cover the case with zero setup

costs and use the convexity of non setup costs at the nth period.

3.3. Optimal Policies in Multi Period Model with Positive Initial

Inventory and no Setup Costs

When setup costs are zero, the cost function, gn(x1n, x2n, y1n, y2n) for n periods

is :

Edn

[

2
∑

i=1

[hi(yin − dn)+] + e((dn − y1n)+, (dn − y2n)+)+

αgn−1((y1n − dn)
+, (y2n − dn)+, y1(n−1), y2(n−1))

]

, for n ≥ 2

Last period n = 1 is defined as :

g1(x11, x21, y11, y21) = Ed1

[

2
∑

i=1

[hr
i1(yi1 − d1)] + e((d1 − y11)

+, (d1 − y21)
+)

]
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Figure 3.1. Optimal policy map for no setup model

Similarly the optimal policy cost function is :

g∗
n(x1n, x2n) = miny∗

1n
≥x1n,y∗

2n
≥x2n

Edn

[

2
∑

i=1

[hi(y
∗
in − dn)+]+

e((dn − y∗
1n)+, (dn − y∗

2n)
+) +

αg∗
n−1((y

∗
1n − dn)+, (y∗

2n − dn)+)
]

, for n ≥ 2

and

g∗
1(x11, x21) = min

y∗

11
≥x11,y∗

21
≥x21

Ed1

[

2
∑

i=1

[hr
i1(y

∗
i1 − d1)

+] + e((d1 − y∗
11)

+, (d1 − y∗
21)

+)

]

(3.1)

The optimal policy for the model with no setup costs in n periods is a modified

base stock policy, given that the optimal cost function for n−1 periods is convex. This

can be proven by an induction based on convexity. The initial step starts with the last

period of the model (with index number n=1), which is a single period model analyzed

in Section 2.4. The optimal policy map is shown in Figure 3.1.
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Proposition 3.1 Let n = 1 be the last period of the multi-period model. Let y∗
11(x21)

and y∗
21(x11) be functions giving minimum of the cost function at given initial inventory

of x21 and x11 respectively.

y∗
11(x21) = argminy11

{g1(0, 0, y11, x21)}

y∗
21(x11) = argminy21

{g1(0, 0, x11, y21)}

Then g1(0, 0, y
∗
11(x21), x21) and g1(0, 0, x11, y

∗
21(x11)) are convex functions.

Proof: Assume g1(0, 0, y
∗
11(x21), x21) is not convex. Then there exists at least three

points (a1, a2), (b1, b2), (c1, c2), where y∗
11(a2) = a1, y∗

11(b2) = b1, y∗
11(c2) = c1, b2 =

λa2 + (1 − λ)c2 for λ ∈ (0, 1) and :

g1(0, 0, b1, b2) > λg1(0, 0, a1, a2) + (1 − λ)g1(0, 0, c1, c2)

However λg1(0, 0, a1, a2) + (1 − λ)g1(0, 0, c1, c2) ≥ g1(0, 0, λa1 + (1 − λ)c1, b2) by the

convexity of g1(.) and g1(0, 0, λa1 + (1 − λ)c1, b2) ≥ g1(0, 0, b1, b2) by the definition

of b1 as b1 = y∗
11(b2) = argminy11

{g1(0, 0, y11, b2)}, which disproves the existence of

at least three points violating the convexity of g1(0, 0, y
∗
11(x21), x21) functions. Hence

g1(0, 0, y
∗
11(x21), x21) is convex.

The convexity of g1(0, 0, x11, y
∗
21(x11)) is proven in a similar way by contradiction.

Proposition 3.2 The single period optimal policy cost function g∗
1(x11, x21) is convex.

Proof: We have to show that the single period optimal policy cost function is convex.

The domain of the function consists of four areas. If they are taken as separate domains:

1. Order both components area

The value of the optimal policy cost function in the ”order both components”

domain is constant. So it is convex.
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2. Order component 1 only area

In x2 direction the value of the optimal policy cost function is constant. In x1

direction the function takes the values of g1(0, x21, y
∗
11(x21), x21), which is equal to

g1(0, 0, y
∗
11(x21), x21), for all points (x1, x2) belonging to this area. The convexity

of g1(0, 0, y
∗
11(x21), x21) is proven in Proposition 3.1. The optimal policy cost

function is convex, if only area 2 is taken as the domain.

3. Order component 2 only area

Similar to order component 1 area, the optimal cost function is convex.

4. Do not order anything area

The optimal policy cost function is equal to g1 which is convex.

The function is convex in all areas, if only one area is declared as the function domain.

For all points a, b, c in a single area, where c = λa + (1 − λ)b and a > b we may claim

convexity. To show the convexity of the optimal policy cost function, in the union of

all areas, we need to show that convexity applies for any a, b, c in different areas. We

will show here only an example where a is in area 1, b is in area 4, and c is in area 2

(figure 3.2).

To prove by contradiction, we assume that there exists at least one c, for a ≤ b,

where c = λaa + (1 − λa)b, for λa ∈ (0, 1) such that:

g1(c1, c2, y
∗
11(c2), y

∗
21(c1)) > λag1(a1, a2, y

∗
11(a2), y

∗
21(a1)) + (3.2)

(1 − λa)g1(b1, b2, y
∗
11(b2), y

∗
2(b1))

We know the optimal policy for all points a in area 1 is (y∗
11, y

∗
21), for all points c

in area 2 is ordering only component 2, and for all points b in area 4 is to stay at the
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Figure 3.2. Sample proof of convexity

level.

g1(c1, c2, y
∗
11(c2), y

∗
21(c1)) = g1(0, 0, y

∗
11(c2), c2) (3.3)

g1(a1, a2, y
∗
11(a2), y

∗
21(a1)) = g1(0, 0, y

∗
11, y

∗
21)

g1(b1, b2, y
∗
11(b2), y

∗
21(b1)) = g1(0, 0, b1, b2)

Substituting equations 3.3 in 3.2:

g1(0, 0, y
∗
11(c2), c2) > λag1(0, 0, y

∗
11, y

∗
21) + (3.4)

(1 − λa)g1(0, 0, b1, b2)

Since g1(0, 0, b1, b2) is greater than or equal to g1(0, 0, y
∗
11(b2), b2), (y∗

11(b2), b2),
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being the minimum point of the optimal cost function where y21 = b2, then RHS of

equation 3.4 is greater than:

λag1(0, 0, y
∗
11, y

∗
21) + (1 − λa)g1(0, 0, b1, b2) (3.5)

≥ λag1(0, 0, y
∗
11, y

∗
21) + (1 − λa)g1(0, 0, y

∗
11(b2), b2)

Our initial assumption is that c is in area 2 and a linear combination of a in area 1 and

b in area 4. c2 can be defined as: c2 = λaa21 + (1 − λa)b2. Being in area 2, c2 is also a

linear combination of y∗
21 and b2, because (y∗

11, y
∗
21) determines the boundary between

area 1 and 2: c2 = λyy
∗
21 + (1 − λy)b2. Furthermore λy > λa, because y∗

21 is closer to

c2, than a2 coordinate of any point a in area 1.

Please recall that y∗
11 = y∗

11(y
∗
21). By the convexity of g1(0, 0, y

∗
11(y21), y21):

λyg1(0, 0, y
∗
11, y

∗
21) + (1 − λy)g1(0, 0, y

∗
11(b2), b2) (3.6)

≥ g1(0, 0, y
∗
11(c2), c2)

λa < λy and g1(0, 0, y
∗
11(b2), b2) ≥ g1(0, 0, y

∗
11, y

∗
21), leads to the following inequality :

λyg1(0, 0, y
∗
11, y

∗
21) + (1 − λy)g1(0, 0, y

∗
11(b2), b2) (3.7)

< λag1(0, 0, y
∗
11, y

∗
21) + (1 − λa)g1(0, 0, y

∗
11(b2), b2)

g1(0, 0, y
∗
11(c2), c2) is less than or equal to LHS of equation 3.6, which is less than RHS of

equation 3.7. However in equation 3.4, g1(0, 0, y
∗
11(c2), c2) is more than RHS of equation

3.7 which leads to a contradiction. This contradiction proves the convexity g∗
1 function

Theorem 3.1 If g∗
n−1(x1n−1, x2n−1) is a convex function then g∗

n(x1n, x2n) is also a

convex function. Optimal policy for n periods is a generalized base stock policy, where

functions S1n(x2n) and S2n(x1n) determine optimal target inventory levels y∗
1n(x1n, x2n)
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and y∗
2n(x1n, x2n).

y∗
1n(x1n, x2n) = max(x1n, S1n(x2n))

y∗
2n(x1n, x2n) = max(x2n, S2n(x1n))

(3.8)

Let (y∗
1n, y∗

2n) be the point which minimizes the gn(0, 0, y1n, y2n) function.

(y∗
1n, y

∗
2n) = argmin(y1n,y2n){gn(0, 0, y1n, y2n)}

Let y∗
1n(x2n), y∗

2n(x1n) be the functions minimizers at given x2n and x1n respectively:

y∗
1n(x2n) = argmin(y1n){gn(0, 0, y1n, x2n)}

y∗
2n(x1n) = argmin(y2n){gn(0, 0, x1n, y2n)}

Then S1n(x2n) and S2n(x1n) are characterized as :

S1n(x2n) =







y∗
1n for x2n ≤ y∗

2n

y∗
1n(x2n) for x2n > y∗

2n

, S2n(x1n) =







= y∗
2n for x1n ≤ y∗

1n

y∗
2n(x1n) for x1n > y∗

1n

Proof: gn(0, 0, y1n, y2n) includes expectation of holding, expediting costs at period n

and g∗
n−1(x1n−1, x2n−1) given that the optimal policy is applied in n − 1 periods. If

g∗
n−1(x1n−1, x2n−1) is convex, since remaining components of nth period cost function

are convex and their expectation over demand d then all cost functions are convex

and their expectation over demand d is also convex. Hence gn(0, 0, y1n, y2n) is convex.

Using this convexity the results of Proposition 2.2 can be proven for (y∗
1n, y

∗
2n) point

and y∗
1n(x2n), y∗

2n(x1n) functions. Resulting optimal cost function g∗
n(x1n, x2n) is convex

which can be proven similar to Proposition 3.2
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3.4. [K1K2]-convexity

When there are positive setup costs K1 and K2, we claim the optimal policy is

a modified (s, S) policy as in the single period model. The optimality of the modified

(s, S) policy for the nth period is related with the [K1K2]-convexity of the optimal cost

function in the n − 1 th period.

To show [K1K2]−convexity of the optimal policy cost function in the single period

is an essential step for claiming (s1(x2), S1(x2), s2(x1), S2(x1)) policy is also optimal in

multi periods.

A two dimensional function f(x1,x2) is [K1, K2]-convex, if the following rule holds:

For any a = (a1, a2), b = (b1, b2), c = (c1, c2) in the domain of function f, where c

equals λa + (1 − λ)b, for λ ∈ [0, 1] and a ≤ b:

f(c) ≤ λg(a) + (1 − λ)[f(b) +

2
∑

i=1

δ(bi − ai)Ki] (3.9)

where δ(a) = 1, for a > 0 and δ(a) = 0, for a ≤ 0.

[K1, K2]-convex functions have following properties [7]:

1. If f is [n1, n2]-convex it is also [m1, m2]-convex, where m1 ≥ n1, m2 ≥ n2. Thus a

convex function f is [n1, n2]-convex, for n1, n2 ∈ R+.

2. If f is [n1, n2]-convex, g is [m1, m2]-convex, Function h which is defined as h =

af + bg, for a, b ∈ R+ is [an1 + bm1, an2 + bm2]-convex.

3. If f is [K1, K2]-convex, and R=(r1, r2) is random vector, such that E[(x−r)] < ∞

for all x then E[(x − r)] is also [K1, K2]-convex.

Proposition 3.3 The single period optimal policy cost function is [K1, K2]-convex.
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Proof: The domain of the function consists of four areas:

1. Order both components area

The value of the optimal policy cost function in the ”order both components”

domain is constant. So it is convex.

2. Order component 1 only area

In x2 direction the value of the optimal policy cost function is constant. In x1

direction the function takes the values of g(0, x2, y
∗
1(x2), x2) + K1 for all points

(x1, x2), belonging to this area. The convexity of the optimal policy cost function

depends on g which is a convex function (Section 2.3.1). The optimal policy cost

function is convex.

3. Order component 2 only area

Similar to order component 1 area the optimal cost function is convex.

4. Do not order anything area

The optimal policy cost function is equal to g which is convex.

The function is convex in all areas, if only one area is declared as the function domain.

For all points a, b, c in a single area, where c = λa + (1 − λ)b and a > b we may claim

[K1, K2]-convexity. To show the [K1, K2]-convexity of the optimal policy cost function,

in the union of all areas, we need to show that 3.9 applies for any a, b, c in different

areas. We will show here only an example where a is in area 1, b is in area 4, and c is

in area 2 (figure 3.3).

To prove equation 3.9 by contradiction, we assume the reverse of this statement.

There exist at least one c, for a ≤ b, where c = λa + (1 − λ)b such that:

g(c1, c2, y
∗
1(c2), y

∗
2(c1)) > λg(a∗

1, a
∗
2, y

∗
1(a2), y

∗
2(a1)) + (3.10)

(1 − λ)[g(b∗1, b
∗
2, y

∗
1(b2), y

∗
2(b1)) +

2
∑

i=1

δ(yi(b2−i) − yi(a2−i))Ki]
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Figure 3.3. Sample proof of [K1K2]-convexity

We know the optimal policy for all points a in area 1 is (y∗
1, y

∗
2), for all points c

in area 2 is ordering only component 2, and for all points b in area 4 is to stay at the

level.

g(c1, c2, y
∗
1(c2), y

∗
2(c1)) = g(c1, c2, y

∗
1(c2), c2) (3.11)

g(a1, a2, y
∗
1(a2), y

∗
2(a1)) = g(y∗

1, y
∗
2, y

∗
1, y

∗
2) + K1 + K2

g(b1, b2, y
∗
1(b2), y

∗
2(b1)) = g(b1, b2, b1, b2)

Substituting equations 3.11 in 3.10:

g(c1, c2, y
∗
1(c2), c2) > λ[g(y∗

1, y
∗
2, y

∗
1, y

∗
2) + K1 + K2] + (3.12)

(1 − λ)[g(b1, b2, b1, b2) + K1 + K2]
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g(b1, b2, b1, b2) is more than or equal to g(y∗
1, y

∗
2, y

∗
1, y

∗
2), (y∗

1, y
∗
2), being the mini-

mum point of the optimal cost function. Taking the RHS of equation 3.12 :

λ[g(y∗
1, y

∗
2, y

∗
1, y

∗
2) + K1 + K2] + (1 − λ)[g(b1, b2, b1, b2) + K1 + K2] (3.13)

≥ g(y∗
1, y

∗
2, y

∗
1, y

∗
2) + K1 + K2

For all points c in area 2, g(c1, c2, y
∗
1(c2), c2) is strictly less than g(y∗

1, y
∗
2, y

∗
1, y

∗
2) +

K1 + K2, otherwise ordering both components would be better than ordering only

component 1 and c would be in area 1. By the transitivity :

λg(y∗
1, y

∗
2, y

∗
1, y

∗
2) + (1 − λ)g(b1, b2, b1, b2) + K1 + K2 (3.14)

> g(c1, c2, y
∗
1(c2), c2)

Which contradicts with equation 3.12 and completes the proof of the [K1K2]-convexity

in this case. Hence the cost function satisfies for λ ∈ [0, 1] :

g(c1, c2, y
∗
1(c2), y2(c1)

∗) ≤ λg(a1, a2, y
∗
1(a2), y

∗
2(a1)) + (3.15)

(1 − λ)[g(b1, b2, y
∗
1(b2), y

∗
2(b1)) +

2
∑

i=1

δ(yi(b3−i) − yi(a3−i))Ki]

3.5. Optimal Policy in the Two Period Model

In the previous section we have shown that the modified (s, S) policy is the

optimal policy in single period model. We claim it is also optimal for two period

model. The optimality of the modified (s, S) policy depends on the [K1K2]-convexity

of the cost function. To be able to understand whether [K1K2]-convexity is preserved

in two periods we have to show that if the last period cost function is [K1K2]-convex

then the first period optimal cost function is also [K1K2]-convex. The optimal policy
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cost function in two period model is defined as :

g∗
2(x12, x22) = miny∗

12
≥x12,y∗

22
≥x12

Ed2

[

2
∑

i=1

[Kiδ(y
∗
i2 − xi2) + hi(y

∗
i2 − d2)

+]+

e((d2 − y∗
12)

+, (d2 − y∗
22)

+) +

αg∗
1((y

∗
12 − d2)

+, (y∗
22 − d2)

+)
]

To find the optimal policy we start with the policy cost function where only action

4 (do not order policy) is used at the second period and optimal policy is used in the

first period, which is defined as go
2 cost function.

go
2(x12, x22, x12, x22) = Ed2

[

2
∑

i=1

[hi(xi2 − d2)
+]+

e((d2 − x12)
+, (d2 − x22)

+) +

αg∗
1((x11 − d2)

+, (x21 − d2)
+)
]

The [K1K2]-convexity of g∗
1(x11, x21) is proven in the previous section. The re-

maining part of the go
2(x12, x22, x12, x22) is convex. Sum of a convex and [K1K2]-convex

function is again a [K1K2]-convex function, and this in preserved under expectation,

hence go
2(x12, x22, x12, x22) is a [K1K2]-convex function.

The [K1K2]-convexity of two period model guarantees the optimality of the mod-

ified (s, S) policy. s12, s22, S12, S22 functions for the second period can be identified.

Four areas of the optimal policy are identified using these functions:

1. Order both components area

If x12 < s12(x22) and x22 < s22(x12) both components are ordered. S12(x22) =

y∗
12, S22(x12) = y∗

22. The optimal cost in this area is constant: g∗
2(x12, x22) =

g∗
2(y

∗
12, y

∗
22) + K1 + K2.

2. Order component 1 only area
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Figure 3.4. s1, s2, S1, S2 functions for n = 2

If x12 < s12(x22) and x22 ≥ s22(x12) only component one is ordered S12(x22) =

y∗
12(x22). The optimal cost in this area is : g∗

2(x12, x22) = g∗
2(y

∗
12(x22), x22) + K1.

3. Order component 2 only area

If x12 ≥ s12(x22) and x22 < s22(x12) only component two is ordered S22(x12) =

y∗
22(x12). The optimal cost in this area is : g∗

2(x12, x22) = g∗
2(x12, y

∗
22(x12)) + K2.

4. Do not order anything area

If x12 ≥ s12(x22) and x22 ≥ s22(x12) no components are ordered. The optimal

cost in this area is : g∗
2(x12, x22) = g2(x12, x22, x12, x22).

For n periods (n > 2), it would be possible to claim modified (s, S) policy as the

optimal policy if [K1K2]-convexity of the optimal two period policy g∗
2 could be proven.

In this proof it is necessary to show g∗
2(y

∗
12(x22), x22) is K2-convex and g∗

2(x12, y
∗
22(x12))

is K1-convex. We fail to show any proof or disproof for this proposition. In numerical

test results we are able to show some counter examples showing that modified (s, S)

policy is not optimal for all infinite horizon multi-period models.
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4. ALGORITHMS AND COMPUTATIONAL RESULTS

In this chapter, we report our computational experience with the most general

version of the problem: two-component assemble-to-order problem with positive setup

costs. We are interested in discounted infinite horizon costs and formulate the problem

as a Markov Decision Process.

The computational work presented in this chapter has two objectives:

• Is the modified (s, S) policy as conjectured at the end of Chapter 3 indeed op-

timal? This cannot be answered in positive using a computational study but a

counter-example will answer it in the negative.

• Even if the modified (s, S) policy is not optimal, it might be a reasonable heuristic

for the overall problem. A computational study with a wide range of parameters

can shed light into this.

4.1. Defining the Model as a Markov Decision Process

The infinite horizon model can be defined as a Markov Decision Process (MDP).

Depending on the target inventory level decisions, the system moves among inventory

levels randomly at each stage (period). Multi-dimensional inventory levels can be

described as different states. Decision depends only on the last state visited, and each

decision incurs rewards (costs). MDPs can be solved using policy iteration and value

iteration methods. For more information about MDPs and related solution methods;

policy iteration and value iteration, please refer to Puterman [22]. For the MDP

formulation of our problem, notation in Table 4.1 is used.

The Markov state of the model is defined as the inventory levels of components

before expediting H = {(x1, x2)|x1, x2 ∈ [−dmax,∞)}, where dmax is the possible maxi-

mum demand at a period. Possible actions are target inventory levels before expediting:

A = {(y1, y2)|y1, y2 ∈ [0,∞)}. Possible actions of the state (x1, x2) is all inventory lev-
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Table 4.1. MDP Notation

H : set of all states in MDP

A : set of all possible actions

A(h) : set of all possible actions available to state h

T : transition matrix

R : reward matrix

els equal or above A(x1, x2) = {(y1, y2)|y1 ≥ x+
1 , y2 ≥ x+

2 }. Transition matrix T has

|H| × |A| × |H| elements. The probabilities in T are defined as :

T ((x1, x2), (y1, y2), (y1 − d, y2 − d)) =







Pr(d) for y1 ≥ x+
1 , y2 ≥ x+

2

0 otherwise

Reward matrix R has |H| × |A| elements. Setup, expediting and holding costs related

with states are defined as negative rewards:

R((x1, x2), (y1, y2)) =

−

(

2
∑

i=1

Kiδ(yi − xi) + Ed[
2
∑

i=1

hi(yi − d)+ + e((y1 − d)−, (y2 − d)−)]

)

for y1 ≥ x+
1 , y2 ≥ x+

2

For actions (y1, y2) /∈ A((x1, x2)), R((x1, x2), (y1, y2)) = −M , where M is sufficiently

large number prohibiting selection of impossible actions.

4.2. Policy Iteration Algorithms

4.2.1. Implementation Details

In our algorithms policy iteration method is used for finding optimal inventory

levels. Kevin Murphy’s MDP toolbox written for MATLAB is used [23]. Some of the

functions are modified for decreasing time and space complexity of algorithms: For X
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Table 4.2. Space Complexity of Tests

Number of

Possible Demand Levels 9

Possible Inventory Levels 33

Possible Target Inv. Levels 25

States 1089

Actions 625

Reward Matrix Elements 680625

Transition Matrix Elements 741200625

possible levels of inventory levels and Y possible levels of target inventory levels for

each component, X2 states, and Y 2 actions are required. Then reward matrix R has

X2 × Y 2 elements and transition matrix T has X4 × Y 2 elements. Total numbers in

tests are shown in Table 4.2. In algorithms transition matrix T is not created. Required

iteration values for each possible policy of each state is calculated dynamically using

possible demand levels, decreasing space complexity to O(X2×Y 2) to the size of reward

matrix R.

4.2.2. Algorithm Details

Three different algorithms are implemented for finding or approximating the op-

timal policy. The main difference between algorithms is in selection of possible actions

for each state during the policy iteration state:

1. Optimal Inventory Policy (OPT): This algorithm scans all available policies

for each state, which makes O(Y 2) different policies for each of X2 states. This

is the slowest algorithm but it is guaranteed to find the optimal solution.

2. Independent Single Component Policy (IND): This algorithm assumes the

joint expediting discount αd is negligible and finds independent optimal policies

for each single component. It solves single component model for each of two

components scanning only O(Y ) possible policies for possible X states of each
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component. It is the fastest of three algorithms but looses accuracy if the discount

αd is significant. It is used as a fast heuristic which provides an upper-bound to

benchmark other algorithms.

3. Best Modified (s, S) Policy (MOD): It assumes optimal policy for infinite

horizon model is an (s1(x2), s2(x1), S1(x2), S2(x1)) policy, as in Theorem 2.2. If

this assumption is true then instead of scanning best actions for each of all X2

states at each iteration step, only states related with s1(x2), s2(x1) functions can

be checked, which are at least 4×X states and have O(log2(X)×X) complexity in

the worst case. MOD starts with initial (s10(x2), S10(x2), s20(x1), S20(x1)) vectors.

Let s1, S1, s2, S2 be policy parameters calculated in IND. Initially vectors are set

as:

s10(x2) = s1,S10(x2) = S1 for all x2

s20(x1) = s2,S20(x1) = S2 for all x1

Initial policy for each state (x1, x2) is to order S10(x2) − x1 units of component

1, if x1 < s10(x2) and to order S20(x1) − x2 units of component 2, if x2 <

s20(x1). At each policy iteration step n, it is necessary to check the values of

s1n(x2), s2n(x1) functions. For each inventory level x1, optimal action for states

(x1, s2n−1(x2)−1) and (x1, s2n−1(x2)) are checked. If optimal component 2 action

for (x1, s2n−1(x2)−1) is ordering component 2; y∗
2n(x1, s2n−1(x1)−1) > s2n−1(x2)−

1 and optimal component 2 action for (x1, s2n−1(x2)−1) is not to order component

2; y∗
2n(x1, s2n−1(x2)) = s2n−1(x2)) then, s2n(x1) = s2n−1(x1). If both optimal

policies are order component 2 then s2n(x1) > s2n−1(x1), state (x1, s2n−1(x2) + 1)

is checked with state (x1, s2n−1(x2)) and search for s2n(x1) goes to the states with

higher component 2 inventory levels. If both optimal policies are not to order then

s2n(x1) < s2n−1(x1), state (x1, s2n−1(x2) − 1) is checked with (x1, s2n−1(x2)) and

search s2n(x1) goes to the states with lower component 2 inventory levels. Checks

end when one of checked adjacent states has different optimal policy. Search for

s2n(x1) may be implemented using bisection for O(log2 X) time complexity. In
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the tests we have implemented search sequentially because, number of inventory

levels are small. S2n(x1) is set to optimal order quantity found. S2n(x1) =

y∗
2n(x1, s2n(x1)). Having searched s2n(x1) for each x1 same process is applied

for searching s1n(x2) function value for each x2. Number of states checked for

determining optimal policy in an iteration has O(log2(X) × X) complexity.

4.3. Test Settings

We have taken 576 different test runs for identifying the behaviour of the optimal

policy (OPT), the single item policy (IND) and the modified s, S heuristic (MOD).

4.3.1. Demand Distribution

The demand varies between 0 and 8 in discrete steps. In all cases average demand

is taken as 4. Three different demand distributions are used:

1. Uniform demand : Each demand has equal probability p = 0.1111. This distrib-

ution has maximal variance.

2. Discrete Normal demand with high variance: Demand is normally distributed

with mean 4 and standard deviation 2. This distribution has relatively high

variance.

3. Discrete Normal demand with low variance: Demand is normally distributed with

mean 4 and standard deviation 1.2. This distribution has relatively low variance.

Demand probabilities for each distribution are shown in Table 4.3

4.3.2. Test Parameters

The values taken by the parameters during the tests are shown in Table 4.4. There

are a total of 192 combinations. For the sake of simplicity, expediting costs, holding

costs and joint expediting discount factor is varied using adjusted costs. The full list

of all test parameters including exact expediting costs, holding costs, and joint sale
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Table 4.3. Probability for Demands

Demand Uniform Normal High Normal Low

0 0.11111 0.02763 0.00129

1 0.11111 0.06628 0.01461

2 0.11111 0.12383 0.08291

3 0.11111 0.18017 0.23495

4 0.11111 0.20416 0.33249

5 0.11111 0.18017 0.23495

6 0.11111 0.12383 0.08291

7 0.11111 0.06628 0.01461

8 0.11111 0.02763 0.00129

discount factor values are given in Appendix B. Please note that the joint expediting

discount rate αd can have quite high values as 0.775, 0.6. These high values have been

taken for finding examples where limn→∞g∗
n(x1n, x2n) is not [K1K2]−convex, hence,

modified (s, S) policy is not the optimal policy for n > 2.

4.4. Test Results

4.4.1. Policy Costs

In the results, the average optimal cost of all tests are the highest for the uni-

form distribution demand. Second highest is normal distribution with high variance.

Normal distribution with low variance has the lowest optimal long run cost. Demand

distributions with higher variances have higher uncertainty and higher expected costs.

IND ignores joint expediting discounts and deviates from optimal solution about 5-8

percent on the average. The deviation is higher in demand distribution with higher

variances. Average costs of MOD is very close to the optimal policy. In all tests

with different demand distributions less than 0.5% average deviation is observed. The

maximum deviation observed is between 97− 120% for IND. Maximum deviation also

increases with the variance of demand. The maximum deviation of MOD from the
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Table 4.4. Parameter Values Tested

Parameter Values

K1 50, 200

K2 150

e1 5, 15

e2 10, 20, 30

h1 1.5, 2.5

h2 0.5, 1

αd 0.775, 0.6, 0.425, 0.25

optimal solution shows no similar pattern. However maximum deviation observed for

MOD is less than 19% which is quite encouraging for a heuristic (Table 4.5).

Table 4.5. Test Results: Average and Maximum Deviation from the Optimal

Uniform Distribution High Variance Normal Low Variance Normal

pol. OPT IND MOD OPT IND MOD OPT IND MOD

cost 239.56 254.39 240.08 223.84 236.52 224.67 210.51 220.39 210.99

avg.% 0 7.55 0.25 0 6.61 0.4 0 5.41 0.25

max.% 0 119.89 18.63 0 108.23 14.06 0 97.82 15.8

In most of the tests, MOD gives the optimal policy cost. In some tests it can

not converge to the optimal solution 2 . And in some cases it can not converge to any

policy and stops after an iteration limit is breached. However the last policy before

the stopping criteria is met can still be very close to the optimal result. (Table 4.6). In

all cases where modified policy can not converge to the optimal solution the optimal

cost function is not [K1K2]−convex. The average deviation of suboptimal results can

be seen in Table 4.7. One remarkable observation is about the assumption that joint

expediting discount is less than any single unit expediting cost (αd(e1 + e2) < e1 and

αd(e1 + e2) < e2). MOD always found optimal solutions in the tests obeying this

2If the policy cost is approximately 0.1% close to the optimal cost, the policy is considered optimal.
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assumption.

Table 4.6. Test Results: Convergence of MOD

Uniform Distribution High Variance Normal Low Variance Normal

Opt. Subopt. can’t Opt. Subopt. can’t Opt. Subopt. can’t

Results Results Conv. Results Results Conv. Results Results Conv.

179 13 2 174 18 3 183 9 12

Table 4.7. Suboptimal Results for MOD

Uniform Distribution High Variance Normal Low Variance Normal

Subopt. Average Subopt. Average Subopt. Average

Results Difference Results Difference Results Difference

13 3.71% 18 4.30% 9 5.45%

4.4.2. Time Performance

Average total time performances of algorithms are given in Table 4.8. In this

table the durations related with MOD test, where policy iteration technique can only

be stopped with limiting number of iterations, are excluded from average times. IND

has the best performance. OPT takes about 80 − 95% longer than IND. MOD takes

20 − 30% longer than IND. Combined with very accurate results close to OPT, MOD

gives a trade-off between time and accuracy. Time performance can be analyzed in

Table 4.8. Average Total Time Performance of Algorithms in Seconds and their

Deviation from Best

Uniform Distribution High Variance Normal Low Variance Normal

Policy time dev. time dev. time dev.

OPT 49.94 80.94% 51.71 83.89% 54.06 94.11%

MOD 35.41 28.30% 34.26 21.83% 34.76 24.81%

IND 27.6 0.00% 28.12 0.00% 27.85 0.00%
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more detail. Regarding the time performance, the algorithms can be separated into

three main stages:

1. Preparation of the Reward Matrix : For the policy iteration technique and for

calculating long run cost of the policy it is necessary to define the reward matrix.

Calculating the reward matrix and determining the initial policy is done in this

stage. The time cost of determining initial policy is negligible so it is added to

this stage.

2. Policy iteration : In the optimal algorithm and the modified (s, S) algorithm

better policies are yielded in this stage. Independent single policy algorithm is

fixed as the initial policy which is optimal policy for each component ignoring

joint expediting discount. Therefore independent single policy algorithm do not

consume time at this stage.

3. Calculation of total costs : Using reward matrix and final policy yielded in stage

2, long run cost of the system is calculated and the results are printed in the files.

Detailed time values are shown in Table 4.9. During reward matrix preparation

and calculation of average long run costs, all algorithms have approximately same time

values, because the algorithms are similar at these stages. IND algorithm has advantage

over other algorithms because it omits multi-component policy iteration stage at the

cost of suboptimal solutions. MOD policy, which assumes that the optimal policy

has s1(x1), s2(x2), S1(x1), S2(x2) form, benefits from much faster policy iteration stage.

However it might yield suboptimal results if this assumption is not true.

Table 4.9. Average Time Distribution of Algorithms in Seconds

Uniform Distribution High Variance Normal Low Variance Normal

Policy rew. pol. calc. rew. pol. calc. rew. pol. calc.

OPT 21.33 22.31 6.30 21.34 23.97 6.40 22.01 25.37 6.67

MOD 21.91 6.60 6.90 21.04 6.91 6.30 21.51 6.83 6.42

IND 21.31 0.00 6.29 21.61 0.00 6.51 21.46 0.00 6.39
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5. CONCLUSION

We have investigated a two component assemble-to-order model with joint ex-

pediting discount. In the model without setup costs, we have fully characterized the

optimal policy as a modified base stock policy for single and multiple periods, where

target inventory levels S1(x2) and S2(x1) are functions of other component’s inventory

level. The optimality of the modified base stock policy depends on the convexity of the

optimal cost function, which is preserved when new periods are added to the model.

In the model with setup costs, we proved that the optimal policy is a modified

(s, S) policy for single and two periods: Policy parameters s1(x2), s2(x1), S1(x2), S2(x1)

are functions of other component’s inventory levels. Optimality of modified policy

depends on the [K1K2]-convexity of the optimal cost function. However, for more

than two periods, [K1K2]-convexity is not guaranteed. But in most of our test cases

in infinite horizon we have observed that the optimal policy has the modified (s, S)

form. Thus we have developed an algorithm exploiting the modified (s, S) structure of

the optimal policy (MOD), which has less time complexity than exact optimal policy

algorithm OPT.

In the model without setup costs, it is proven that, MOD gives exact optimal

solutions in less time than OPT. However this is not guaranteed in the model with setup

costs. In setup cost settings to compare MOD’s accuracy and time performance we

have compared it with OPT and IND, which is a simple heuristic completely ignoring

effects of joint expediting discount. Accuracy of MOD is very close to the optimal

solutions of OPT and time performance of MOD is only 20 − 30% greater than IND,

where as OPT spends at least 80% more time than IND. In most of the cases MOD

can find the optimal solution (536 out of 576), although there are counter-examples

that MOD is not the optimal policy algorithm. However in the tests where total joint

expediting discount is less than any single unit expediting cost (e1 > αd(e1 + e2) and

e2 > αd(e1 + e2)), no counter-examples disproving optimality of MOD can be found.

MOD can be proposed as an efficient heuristic not only for our setting but also for other
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assemble-to-order systems with joint costs and convex single period cost functions.

As a managerial insight we have observed that independent single optimal inven-

tory control policies of components may deviate from joint optimal inventory policy

significantly. In our examples even a small incentive in joint expediting cost may totally

change target optimal inventory level of a component depending on the holding and

expediting cost of the other component. In a system with more than 100 components

it may be impossible to find the overall optimal policy, even with the approximation

algorithm we have proposed. However, for improving the performances of independent

single optimal policies, state dependent (s, S) policies may be used where states may

summarize the overall performance of the system (number of components in shortage,

number of expediting flights planned, number of orders pending etc.). Future research

may be directed in two ways : Number of components in the system may be increased.

In order to decrease the dimensional complexity of more than two components, the in-

teraction of only selected significant components may be investigated. Other research

direction is to investigate different joint interaction effects on costs other than unit

expediting cost; joint setup cost, joint holding and procurement incentives or disincen-

tives. Algorithms based on modified (s, S) policy may find near optimal or optimal

solutions in different joint cost structures with less time complexity, provided that

single period cost of the models are convex.
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APPENDIX A: CONVEXITY OF THE EXPECTED COST

In the initial assumptions, it is assumed that joint expediting discount is always

less than any unit expediting cost; e1 > αd(e1+e2) and e2 > αd(e1+e2). However in the

tests values violating this assumption are used. The question is whether convexity of

the single period cost function can be claimed without this assumption. The convexity

of single period model depends on the convexity of the holding cost and the expediting

cost. Since the cost function is the sum of holding and expediting costs, if each of these

cost components are convex then the sum of convex functions is convex and expectation

preserves convexity.

The convexity of the holding cost can be proven relatively easily. The function hi(xi)

which is defined as: hi(xi) = hixi for xi > 0, hi(xi) = 0 for xi ≥ 0 is convex because

linear and constant functions are convex.

The convexity of expediting cost requires some work. Let x = (x1, x2). If x1 ≤ 0

or x2 ≤ 0 then the expediting function e(x1, x2) acts like the holding cost function.

The non-trivial proof is where x1 > 0 and x2 > 0.

Say we have x,y,z ∈ R
2 where y is the linear combination of x and y:

y = λx + (1 − λ)z for 0 < λ < 1

We need to prove : e(y) ≤ λe(x) + (1 − λ)e(z).

e(y) = e(y1, y2) = e1y1 + e2y2 − min(y1, y2)αd(e1 + e2)

e(x) = e(x1, x2) = e1x1 + e2x2 − min(x1, x2)αd(e1 + e2) (A.1)

e(z) = e(z1, z2) = e1z1 + e2z2 − min(z1, z2)αd(e1 + e2) (A.2)
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Substituting we have:

e(y) = e1(λx1 + (1 − λ)z1) + e2(λx2 + (1 − λ)z2) −

min(λx1 + (1 − λ)z1, λx2 + (1 − λ)z2)αd(e1 + e2) (A.3)

that needs to be less than or equal to : λe(x) + (1 − λ)e(z) which is expanded as:

= λ[e1x1 + e2x2 − min(x1, x2)αd(e1 + e2)] +

(1 − λ)[e1z1 + e2z2 − min(z1, z2)αd(e1 + e2)]

= e1(λx1 + (1 − λ)z1) + e2(λx2 + (1 − λ)z2) −

[min(λx1, λx2) + min((1 − λ)z1, (1 − λ)z2)]αd(e1 + e2) (A.4)

Then the condition (A.3) ≤ (A.4) simplifies to:

min(λx1 + (1 − λ)z1, λx2 + (1 − λ)z2) ≥

min(λx1, λx2) + min((1 − λ)z1, (1 − λ)z2) (A.5)

Without loss of generality if x1 ≤ x2 and z1 ≤ z2 the LHS and RHS are equal.

The non-trivial case is , if x1 > x2 and z2 > z1. For this case define a and b as :

a = x1 − x2 , b = z2 − z1. Both a and b are greater than 0. Replacing x1 and z2 with

x2 + a and z1 + b:

min(λ(x2 + a) + (1 − λ)z1, λx2 + (1 − λ)(z1 + b) ≥

min(λ(x2 + a), λx2) + min((1 − λ)z1, (1 − λ)(z1 + b))

min(λ(x2 + a) + (1 − λ)z1, λx2 + (1 − λ)(z1 + b) ≥ λx2 + (1 − λ)z1

λx2 + (1 − λ)z1 + min(λa, (1 − λ)b) ≥ λx2 + (1 − λ)z1
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Then

min(λa, (1 − λ)b) ≥ 0

which is true for 0 < λ < 1.
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APPENDIX B: TEST PARAMETERS

For calculating test parameters unit regular production cost c1, c2 are taken as

10 and 5. These parameters are embedded in the model by adjusting h1, h2, e1, e2, αd

parameters. Actual values of h1, h2, e1, e2, αd and their adjusted values are for each test

run is listed here.
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Table B.1: Test Runs

Test No K1 K2 ae1 ae2 ah1 ah2 aαd e1 e2 h1 h2 αd

1 50 150 5 10 1.5 0.5 0.775 15 15 1 0.25 0.387

2 50 150 5 10 1.5 0.5 0.6 15 15 1 0.25 0.3

3 50 150 5 10 1.5 0.5 0.425 15 15 1 0.25 0.212

4 50 150 5 10 1.5 0.5 0.25 15 15 1 0.25 0.125

5 50 150 5 10 1.5 1 0.775 15 15 1 0.75 0.387

6 50 150 5 10 1.5 1 0.6 15 15 1 0.75 0.3

7 50 150 5 10 1.5 1 0.425 15 15 1 0.75 0.212

8 50 150 5 10 1.5 1 0.25 15 15 1 0.75 0.125

9 50 150 5 10 2.5 0.5 0.775 15 15 2 0.25 0.387

10 50 150 5 10 2.5 0.5 0.6 15 15 2 0.25 0.3

11 50 150 5 10 2.5 0.5 0.425 15 15 2 0.25 0.212

12 50 150 5 10 2.5 0.5 0.25 15 15 2 0.25 0.125

13 50 150 5 10 2.5 1 0.775 15 15 2 0.75 0.387

14 50 150 5 10 2.5 1 0.6 15 15 2 0.75 0.3

15 50 150 5 10 2.5 1 0.425 15 15 2 0.75 0.212

16 50 150 5 10 2.5 1 0.25 15 15 2 0.75 0.125

17 50 150 5 20 1.5 0.5 0.775 15 25 1 0.25 0.484

18 50 150 5 20 1.5 0.5 0.6 15 25 1 0.25 0.375

19 50 150 5 20 1.5 0.5 0.425 15 25 1 0.25 0.266

20 50 150 5 20 1.5 0.5 0.25 15 25 1 0.25 0.156

21 50 150 5 20 1.5 1 0.775 15 25 1 0.75 0.484

22 50 150 5 20 1.5 1 0.6 15 25 1 0.75 0.375

23 50 150 5 20 1.5 1 0.425 15 25 1 0.75 0.266

24 50 150 5 20 1.5 1 0.25 15 25 1 0.75 0.156

25 50 150 5 20 2.5 0.5 0.775 15 25 2 0.25 0.484

26 50 150 5 20 2.5 0.5 0.6 15 25 2 0.25 0.375

27 50 150 5 20 2.5 0.5 0.425 15 25 2 0.25 0.266

Continued on next page
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Test No K1 K2 ae1 ae2 ah1 ah2 aαd e1 e2 h1 h2 αd

28 50 150 5 20 2.5 0.5 0.25 15 25 2 0.25 0.156

29 50 150 5 20 2.5 1 0.775 15 25 2 0.75 0.484

30 50 150 5 20 2.5 1 0.6 15 25 2 0.75 0.375

31 50 150 5 20 2.5 1 0.425 15 25 2 0.75 0.266

32 50 150 5 20 2.5 1 0.25 15 25 2 0.75 0.156

33 50 150 5 30 1.5 0.5 0.775 15 35 1 0.25 0.542

34 50 150 5 30 1.5 0.5 0.6 15 35 1 0.25 0.42

35 50 150 5 30 1.5 0.5 0.425 15 35 1 0.25 0.297

36 50 150 5 30 1.5 0.5 0.25 15 35 1 0.25 0.175

37 50 150 5 30 1.5 1 0.775 15 35 1 0.75 0.542

38 50 150 5 30 1.5 1 0.6 15 35 1 0.75 0.42

39 50 150 5 30 1.5 1 0.425 15 35 1 0.75 0.297

40 50 150 5 30 1.5 1 0.25 15 35 1 0.75 0.175

41 50 150 5 30 2.5 0.5 0.775 15 35 2 0.25 0.542

42 50 150 5 30 2.5 0.5 0.6 15 35 2 0.25 0.42

43 50 150 5 30 2.5 0.5 0.425 15 35 2 0.25 0.297

44 50 150 5 30 2.5 0.5 0.25 15 35 2 0.25 0.175

45 50 150 5 30 2.5 1 0.775 15 35 2 0.75 0.542

46 50 150 5 30 2.5 1 0.6 15 35 2 0.75 0.42

47 50 150 5 30 2.5 1 0.425 15 35 2 0.75 0.297

48 50 150 5 30 2.5 1 0.25 15 35 2 0.75 0.175

49 50 150 15 10 1.5 0.5 0.775 25 15 1 0.25 0.484

50 50 150 15 10 1.5 0.5 0.6 25 15 1 0.25 0.375

51 50 150 15 10 1.5 0.5 0.425 25 15 1 0.25 0.266

52 50 150 15 10 1.5 0.5 0.25 25 15 1 0.25 0.156

53 50 150 15 10 1.5 1 0.775 25 15 1 0.75 0.484

54 50 150 15 10 1.5 1 0.6 25 15 1 0.75 0.375

55 50 150 15 10 1.5 1 0.425 25 15 1 0.75 0.266

56 50 150 15 10 1.5 1 0.25 25 15 1 0.75 0.156

Continued on next page
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Test No K1 K2 ae1 ae2 ah1 ah2 aαd e1 e2 h1 h2 αd

57 50 150 15 10 2.5 0.5 0.775 25 15 2 0.25 0.484

58 50 150 15 10 2.5 0.5 0.6 25 15 2 0.25 0.375

59 50 150 15 10 2.5 0.5 0.425 25 15 2 0.25 0.266

60 50 150 15 10 2.5 0.5 0.25 25 15 2 0.25 0.156

61 50 150 15 10 2.5 1 0.775 25 15 2 0.75 0.484

62 50 150 15 10 2.5 1 0.6 25 15 2 0.75 0.375

63 50 150 15 10 2.5 1 0.425 25 15 2 0.75 0.266

64 50 150 15 10 2.5 1 0.25 25 15 2 0.75 0.156

65 50 150 15 20 1.5 0.5 0.775 25 25 1 0.25 0.542

66 50 150 15 20 1.5 0.5 0.6 25 25 1 0.25 0.42

67 50 150 15 20 1.5 0.5 0.425 25 25 1 0.25 0.297

68 50 150 15 20 1.5 0.5 0.25 25 25 1 0.25 0.175

69 50 150 15 20 1.5 1 0.775 25 25 1 0.75 0.542

70 50 150 15 20 1.5 1 0.6 25 25 1 0.75 0.42

71 50 150 15 20 1.5 1 0.425 25 25 1 0.75 0.297

72 50 150 15 20 1.5 1 0.25 25 25 1 0.75 0.175

73 50 150 15 20 2.5 0.5 0.775 25 25 2 0.25 0.542

74 50 150 15 20 2.5 0.5 0.6 25 25 2 0.25 0.42

75 50 150 15 20 2.5 0.5 0.425 25 25 2 0.25 0.297

76 50 150 15 20 2.5 0.5 0.25 25 25 2 0.25 0.175

77 50 150 15 20 2.5 1 0.775 25 25 2 0.75 0.542

78 50 150 15 20 2.5 1 0.6 25 25 2 0.75 0.42

79 50 150 15 20 2.5 1 0.425 25 25 2 0.75 0.297

80 50 150 15 20 2.5 1 0.25 25 25 2 0.75 0.175

81 50 150 15 30 1.5 0.5 0.775 25 35 1 0.25 0.581

82 50 150 15 30 1.5 0.5 0.6 25 35 1 0.25 0.45

83 50 150 15 30 1.5 0.5 0.425 25 35 1 0.25 0.319

84 50 150 15 30 1.5 0.5 0.25 25 35 1 0.25 0.188

85 50 150 15 30 1.5 1 0.775 25 35 1 0.75 0.581

Continued on next page
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Test No K1 K2 ae1 ae2 ah1 ah2 aαd e1 e2 h1 h2 αd

86 50 150 15 30 1.5 1 0.6 25 35 1 0.75 0.45

87 50 150 15 30 1.5 1 0.425 25 35 1 0.75 0.319

88 50 150 15 30 1.5 1 0.25 25 35 1 0.75 0.188

89 50 150 15 30 2.5 0.5 0.775 25 35 2 0.25 0.581

90 50 150 15 30 2.5 0.5 0.6 25 35 2 0.25 0.45

91 50 150 15 30 2.5 0.5 0.425 25 35 2 0.25 0.319

92 50 150 15 30 2.5 0.5 0.25 25 35 2 0.25 0.188

93 50 150 15 30 2.5 1 0.775 25 35 2 0.75 0.581

94 50 150 15 30 2.5 1 0.6 25 35 2 0.75 0.45

95 50 150 15 30 2.5 1 0.425 25 35 2 0.75 0.319

96 50 150 15 30 2.5 1 0.25 25 35 2 0.75 0.188

97 200 150 5 10 1.5 0.5 0.775 15 15 1 0.25 0.387

98 200 150 5 10 1.5 0.5 0.6 15 15 1 0.25 0.3

99 200 150 5 10 1.5 0.5 0.425 15 15 1 0.25 0.212

100 200 150 5 10 1.5 0.5 0.25 15 15 1 0.25 0.125

101 200 150 5 10 1.5 1 0.775 15 15 1 0.75 0.387

102 200 150 5 10 1.5 1 0.6 15 15 1 0.75 0.3

103 200 150 5 10 1.5 1 0.425 15 15 1 0.75 0.212

104 200 150 5 10 1.5 1 0.25 15 15 1 0.75 0.125

105 200 150 5 10 2.5 0.5 0.775 15 15 2 0.25 0.387

106 200 150 5 10 2.5 0.5 0.6 15 15 2 0.25 0.3

107 200 150 5 10 2.5 0.5 0.425 15 15 2 0.25 0.212

108 200 150 5 10 2.5 0.5 0.25 15 15 2 0.25 0.125

109 200 150 5 10 2.5 1 0.775 15 15 2 0.75 0.387

110 200 150 5 10 2.5 1 0.6 15 15 2 0.75 0.3

111 200 150 5 10 2.5 1 0.425 15 15 2 0.75 0.212

112 200 150 5 10 2.5 1 0.25 15 15 2 0.75 0.125

113 200 150 5 20 1.5 0.5 0.775 15 25 1 0.25 0.484

114 200 150 5 20 1.5 0.5 0.6 15 25 1 0.25 0.375

Continued on next page
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Test No K1 K2 ae1 ae2 ah1 ah2 aαd e1 e2 h1 h2 αd

115 200 150 5 20 1.5 0.5 0.425 15 25 1 0.25 0.266

116 200 150 5 20 1.5 0.5 0.25 15 25 1 0.25 0.156

117 200 150 5 20 1.5 1 0.775 15 25 1 0.75 0.484

118 200 150 5 20 1.5 1 0.6 15 25 1 0.75 0.375

119 200 150 5 20 1.5 1 0.425 15 25 1 0.75 0.266

120 200 150 5 20 1.5 1 0.25 15 25 1 0.75 0.156

121 200 150 5 20 2.5 0.5 0.775 15 25 2 0.25 0.484

122 200 150 5 20 2.5 0.5 0.6 15 25 2 0.25 0.375

123 200 150 5 20 2.5 0.5 0.425 15 25 2 0.25 0.266

124 200 150 5 20 2.5 0.5 0.25 15 25 2 0.25 0.156

125 200 150 5 20 2.5 1 0.775 15 25 2 0.75 0.484

126 200 150 5 20 2.5 1 0.6 15 25 2 0.75 0.375

127 200 150 5 20 2.5 1 0.425 15 25 2 0.75 0.266

128 200 150 5 20 2.5 1 0.25 15 25 2 0.75 0.156

129 200 150 5 30 1.5 0.5 0.775 15 35 1 0.25 0.542

130 200 150 5 30 1.5 0.5 0.6 15 35 1 0.25 0.42

131 200 150 5 30 1.5 0.5 0.425 15 35 1 0.25 0.297

132 200 150 5 30 1.5 0.5 0.25 15 35 1 0.25 0.175

133 200 150 5 30 1.5 1 0.775 15 35 1 0.75 0.542

134 200 150 5 30 1.5 1 0.6 15 35 1 0.75 0.42

135 200 150 5 30 1.5 1 0.425 15 35 1 0.75 0.297

136 200 150 5 30 1.5 1 0.25 15 35 1 0.75 0.175

137 200 150 5 30 2.5 0.5 0.775 15 35 2 0.25 0.542

138 200 150 5 30 2.5 0.5 0.6 15 35 2 0.25 0.42

139 200 150 5 30 2.5 0.5 0.425 15 35 2 0.25 0.297

140 200 150 5 30 2.5 0.5 0.25 15 35 2 0.25 0.175

141 200 150 5 30 2.5 1 0.775 15 35 2 0.75 0.542

142 200 150 5 30 2.5 1 0.6 15 35 2 0.75 0.42

143 200 150 5 30 2.5 1 0.425 15 35 2 0.75 0.297

Continued on next page
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Test No K1 K2 ae1 ae2 ah1 ah2 aαd e1 e2 h1 h2 αd

144 200 150 5 30 2.5 1 0.25 15 35 2 0.75 0.175

145 200 150 15 10 1.5 0.5 0.775 25 15 1 0.25 0.484

146 200 150 15 10 1.5 0.5 0.6 25 15 1 0.25 0.375

147 200 150 15 10 1.5 0.5 0.425 25 15 1 0.25 0.266

148 200 150 15 10 1.5 0.5 0.25 25 15 1 0.25 0.156

149 200 150 15 10 1.5 1 0.775 25 15 1 0.75 0.484

150 200 150 15 10 1.5 1 0.6 25 15 1 0.75 0.375

151 200 150 15 10 1.5 1 0.425 25 15 1 0.75 0.266

152 200 150 15 10 1.5 1 0.25 25 15 1 0.75 0.156

153 200 150 15 10 2.5 0.5 0.775 25 15 2 0.25 0.484

154 200 150 15 10 2.5 0.5 0.6 25 15 2 0.25 0.375

155 200 150 15 10 2.5 0.5 0.425 25 15 2 0.25 0.266

156 200 150 15 10 2.5 0.5 0.25 25 15 2 0.25 0.156

157 200 150 15 10 2.5 1 0.775 25 15 2 0.75 0.484

158 200 150 15 10 2.5 1 0.6 25 15 2 0.75 0.375

159 200 150 15 10 2.5 1 0.425 25 15 2 0.75 0.266

160 200 150 15 10 2.5 1 0.25 25 15 2 0.75 0.156

161 200 150 15 20 1.5 0.5 0.775 25 25 1 0.25 0.542

162 200 150 15 20 1.5 0.5 0.6 25 25 1 0.25 0.42

163 200 150 15 20 1.5 0.5 0.425 25 25 1 0.25 0.297

164 200 150 15 20 1.5 0.5 0.25 25 25 1 0.25 0.175

165 200 150 15 20 1.5 1 0.775 25 25 1 0.75 0.542

166 200 150 15 20 1.5 1 0.6 25 25 1 0.75 0.42

167 200 150 15 20 1.5 1 0.425 25 25 1 0.75 0.297

168 200 150 15 20 1.5 1 0.25 25 25 1 0.75 0.175

169 200 150 15 20 2.5 0.5 0.775 25 25 2 0.25 0.542

170 200 150 15 20 2.5 0.5 0.6 25 25 2 0.25 0.42

171 200 150 15 20 2.5 0.5 0.425 25 25 2 0.25 0.297

172 200 150 15 20 2.5 0.5 0.25 25 25 2 0.25 0.175

Continued on next page
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Test No K1 K2 ae1 ae2 ah1 ah2 aαd e1 e2 h1 h2 αd

173 200 150 15 20 2.5 1 0.775 25 25 2 0.75 0.542

174 200 150 15 20 2.5 1 0.6 25 25 2 0.75 0.42

175 200 150 15 20 2.5 1 0.425 25 25 2 0.75 0.297

176 200 150 15 20 2.5 1 0.25 25 25 2 0.75 0.175

177 200 150 15 30 1.5 0.5 0.775 25 35 1 0.25 0.581

178 200 150 15 30 1.5 0.5 0.6 25 35 1 0.25 0.45

179 200 150 15 30 1.5 0.5 0.425 25 35 1 0.25 0.319

180 200 150 15 30 1.5 0.5 0.25 25 35 1 0.25 0.188

181 200 150 15 30 1.5 1 0.775 25 35 1 0.75 0.581

182 200 150 15 30 1.5 1 0.6 25 35 1 0.75 0.45

183 200 150 15 30 1.5 1 0.425 25 35 1 0.75 0.319

184 200 150 15 30 1.5 1 0.25 25 35 1 0.75 0.188

185 200 150 15 30 2.5 0.5 0.775 25 35 2 0.25 0.581

186 200 150 15 30 2.5 0.5 0.6 25 35 2 0.25 0.45

187 200 150 15 30 2.5 0.5 0.425 25 35 2 0.25 0.319

188 200 150 15 30 2.5 0.5 0.25 25 35 2 0.25 0.188

189 200 150 15 30 2.5 1 0.775 25 35 2 0.75 0.581

190 200 150 15 30 2.5 1 0.6 25 35 2 0.75 0.45

191 200 150 15 30 2.5 1 0.425 25 35 2 0.75 0.319

192 200 150 15 30 2.5 1 0.25 25 35 2 0.75 0.188
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APPENDIX C: TEST RESULTS

There different algorithms OPT, IND and MOD have been tested in the tests.

There there different demand distributions: uniform, normal with high variance and

normal with low variance. For test specific h1, h2, e1, e2, αd parameters please refer to

the table in Appendix B. Find the parameter row, having the same test number.
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

1 135.60 169.36 135.60 135.60 156.58 135.60 135.60 147.27 135.60

2 161.99 170.17 161.99 150.98 157.54 150.98 142.29 147.74 142.29

3 168.06 171.00 168.06 156.02 158.51 156.02 146.27 148.21 146.27

4 171.17 171.81 171.17 158.96 159.46 158.96 148.38 148.68 148.38

5 135.60 201.20 135.60 135.60 187.29 135.60 135.60 175.87 135.60

6 188.12 203.00 190.33 175.15 188.66 175.15 165.24 176.88 165.24

7 198.18 204.81 198.18 184.12 190.05 184.12 173.38 177.90 173.38

8 204.84 206.61 204.84 189.22 191.42 189.22 177.23 178.92 177.23

9 135.60 190.42 135.60 135.60 170.29 135.60 135.60 157.59 135.60

10 184.28 191.80 184.28 166.24 171.67 166.24 153.33 158.05 153.33

11 190.85 193.20 190.85 171.84 173.07 171.84 156.91 158.52 156.91

12 194.20 194.59 194.20 174.17 174.44 174.17 158.34 158.99 158.34

13 135.60 219.76 135.60 135.60 200.43 135.60 135.60 186.18 135.60

14 207.94 222.69 207.94 189.64 202.35 194.77 177.94 187.19 182.35

15 220.32 225.66 220.32 199.31 204.29 199.31 183.90 188.22 183.90

16 227.22 228.59 227.22 205.10 206.21 205.10 187.59 189.23 187.59

17 160.91 173.08 165.33 150.20 160.13 150.20 141.44 150.48 141.44

18 170.04 173.84 170.04 157.72 161.05 157.72 147.39 150.86 147.39

19 173.55 174.60 173.55 161.10 161.97 161.10 149.60 151.24 149.60

20 175.04 175.36 175.04 162.50 162.90 162.50 151.26 151.63 151.26

21 185.91 211.53 185.91 173.58 194.66 185.73 164.06 180.75 164.06

22 201.74 212.66 201.74 186.77 196.05 186.77 175.35 181.75 175.35

23 209.33 213.78 209.33 193.68 197.43 193.68 180.44 182.74 180.44

24 213.58 214.91 213.58 197.84 198.82 197.84 182.80 183.75 182.80

25 182.86 194.75 186.55 165.52 173.86 165.52 152.63 160.79 152.63

26 192.89 195.94 192.89 173.09 175.20 173.09 157.79 161.17 157.79

Continued on next page
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

27 196.56 197.14 196.56 176.57 176.54 176.57 159.55 161.55 159.55

28 198.43 198.34 198.43 177.89 177.89 177.89 161.21 161.94 161.21

29 205.51 233.33 205.51 187.80 207.82 193.68 175.82 191.06 203.61

30 224.22 234.86 224.22 202.67 209.75 202.67 186.20 192.06 186.20

31 232.28 236.39 232.28 208.91 211.67 208.91 190.25 193.06 190.25

32 236.52 237.93 236.52 213.32 213.62 213.32 192.61 194.06 192.61

33 166.66 176.01 166.66 155.26 163.25 155.26 145.46 150.68 145.46

34 173.29 176.45 173.29 160.90 163.82 160.90 149.46 151.21 149.46

35 175.44 176.89 175.44 162.92 164.39 162.92 151.78 151.75 151.78

36 177.17 177.33 177.17 164.79 164.96 164.79 152.28 152.28 152.28

37 195.96 213.05 203.36 181.54 197.24 181.54 171.50 184.76 171.50

38 208.88 214.62 208.88 193.57 198.92 193.57 180.22 185.50 180.22

39 214.86 216.21 214.86 198.86 200.61 198.86 183.54 186.26 183.54

40 217.14 217.78 217.14 201.60 202.29 201.60 186.32 187.01 186.32

41 189.42 199.61 189.42 170.66 178.83 170.66 156.17 160.99 156.17

42 196.31 200.05 196.31 176.29 179.40 176.29 159.42 161.52 159.42

43 198.82 200.49 198.82 178.32 179.98 178.32 161.74 162.06 161.74

44 200.56 200.93 200.56 180.19 180.55 180.19 162.59 162.59 162.59

45 217.23 234.12 217.23 197.18 209.49 197.18 182.31 195.07 182.31

46 231.90 236.26 231.90 208.55 211.92 208.55 190.03 195.82 190.03

47 237.79 238.42 237.79 214.22 214.37 214.22 193.35 196.57 193.35

48 240.56 240.56 240.56 216.93 216.80 216.93 196.59 197.32 196.59

49 166.17 183.68 166.17 156.84 172.53 156.84 147.05 158.90 147.05

50 178.29 183.97 178.82 166.37 173.06 166.37 153.96 159.16 153.96

51 182.97 184.27 182.97 171.09 173.59 171.09 158.13 159.42 158.13

52 184.82 184.56 184.82 173.69 174.13 173.69 159.23 159.68 159.23

Continued on next page
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

53 187.05 218.44 187.05 177.11 204.08 192.31 168.17 188.88 181.44

54 207.82 219.06 207.82 192.74 204.84 192.74 179.71 189.38 179.71

55 216.57 219.69 216.57 201.56 205.60 201.56 186.35 189.87 186.35

56 219.99 220.32 219.99 205.70 206.36 205.70 189.65 190.37 189.65

57 194.98 217.79 194.98 179.00 195.25 190.74 161.35 170.42 161.35

58 210.74 218.79 210.74 190.15 196.34 190.15 168.91 171.13 168.91

59 217.42 219.80 217.42 195.54 197.42 195.54 171.68 171.85 171.68

60 220.58 220.82 220.58 198.15 198.51 198.15 172.57 172.57 172.57

61 209.65 250.49 209.65 196.89 225.88 196.89 181.05 198.69 193.73

62 239.02 252.29 239.02 215.90 227.40 222.50 195.59 200.02 195.59

63 249.55 254.09 249.55 224.75 228.91 224.75 200.60 201.36 200.60

64 254.81 255.90 254.81 229.80 230.44 229.80 202.70 202.70 202.70

65 173.42 187.31 173.42 163.13 175.90 163.13 151.67 162.11 151.67

66 182.75 187.56 183.04 170.96 176.44 170.96 158.14 162.28 158.14

67 186.01 187.83 186.01 175.04 176.98 175.04 160.44 162.46 160.44

68 187.94 188.09 187.94 177.00 177.51 177.00 162.31 162.63 162.31

69 201.79 226.69 239.38 186.95 211.35 202.92 175.52 193.74 186.86

70 216.24 227.10 216.24 201.02 212.14 208.02 185.83 194.23 185.83

71 223.54 227.52 223.54 207.74 212.94 207.74 191.46 194.71 191.46

72 227.18 227.93 227.18 212.93 213.72 212.93 194.37 195.19 194.37

73 204.93 221.63 215.06 185.92 198.59 196.02 166.37 174.05 171.51

74 217.00 222.56 217.00 195.46 199.68 198.75 171.54 174.58 171.54

75 222.07 223.48 222.07 199.34 200.79 199.34 173.92 175.11 173.92

76 224.20 224.41 224.20 201.64 201.88 201.64 175.94 175.65 175.94

77 228.31 259.86 228.31 207.91 233.00 207.91 189.95 203.81 189.95

78 249.03 261.19 249.03 224.15 234.58 224.15 200.70 205.07 200.70

Continued on next page
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

79 257.60 262.54 257.60 232.68 236.18 232.68 204.81 206.34 204.81

80 262.62 263.88 262.62 236.96 237.76 236.96 207.64 207.60 207.64

81 178.60 189.47 182.95 166.59 178.28 173.93 154.11 162.76 154.11

82 185.47 189.58 185.47 173.64 178.63 173.64 159.62 162.98 159.62

83 188.00 189.69 188.00 177.02 178.99 177.02 162.05 163.21 162.05

84 189.33 189.80 189.33 178.99 179.34 178.99 162.91 163.43 162.91

85 208.21 229.67 226.61 193.04 214.77 193.04 179.93 197.42 179.93

86 221.56 230.20 221.56 205.90 215.67 205.90 190.31 197.73 190.31

87 227.12 230.74 227.12 212.81 216.57 212.81 194.49 198.04 194.49

88 230.25 231.27 230.25 216.48 217.47 216.48 197.39 198.34 197.39

89 210.84 224.73 210.84 190.37 201.75 190.37 169.06 174.24 169.06

90 220.78 225.30 220.78 198.26 202.48 198.26 173.11 174.93 173.11

91 224.04 225.86 224.04 201.52 203.22 201.52 175.83 175.61 175.83

92 226.31 226.42 226.31 203.93 203.96 203.93 176.30 176.30 176.30

93 239.48 261.66 239.48 216.44 235.79 246.86 195.80 208.04 195.80

94 254.95 263.39 254.95 230.28 237.62 230.28 203.68 209.00 203.68

95 262.37 265.11 262.37 236.69 239.46 236.69 207.84 209.97 207.84

96 266.07 266.83 266.07 240.71 241.29 240.71 210.90 210.93 210.90

97 135.60 234.55 135.60 135.60 222.14 135.60 135.60 215.30 135.60

98 220.41 235.26 220.41 212.10 222.82 212.10 206.99 215.63 206.99

99 231.63 235.98 231.63 221.44 223.51 221.44 214.70 215.97 214.70

100 235.72 236.69 235.72 224.14 224.20 224.14 216.23 216.29 216.23

101 135.60 255.11 135.60 135.60 246.09 135.60 135.60 244.88 135.60

102 240.00 259.34 240.00 231.03 248.71 231.03 225.23 245.54 225.23

103 257.79 263.62 257.79 244.69 251.36 244.69 237.06 246.21 237.06

104 267.07 267.85 267.07 252.00 253.98 252.00 242.84 246.86 242.84

Continued on next page
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

105 135.60 263.86 135.60 135.60 250.05 135.60 135.60 241.74 135.60

106 240.00 264.83 240.00 240.00 251.06 240.00 240.00 242.22 240.00

107 262.34 265.81 262.34 249.59 252.07 249.59 240.16 242.71 240.16

108 266.29 266.78 266.29 252.67 253.07 252.67 242.63 243.19 242.63

109 135.60 298.17 135.60 135.60 282.36 135.60 135.60 268.24 135.60

110 240.00 299.57 240.00 240.00 283.42 240.00 240.00 269.74 240.00

111 291.95 300.99 291.95 275.30 284.49 275.30 265.56 271.26 265.56

112 300.74 302.38 300.74 282.33 285.54 282.33 271.20 272.76 271.20

113 225.60 238.75 225.60 210.11 226.10 210.11 205.23 218.93 205.23

114 233.87 239.30 233.87 223.95 226.66 223.95 216.35 219.08 216.35

115 237.94 239.85 237.94 226.62 227.21 226.62 218.23 219.22 218.23

116 240.32 240.40 240.32 227.80 227.77 227.80 219.22 219.37 219.22

117 225.60 276.88 225.60 225.60 260.57 225.60 225.60 250.92 225.60

118 263.18 277.86 263.18 249.36 261.60 249.36 240.93 251.30 240.93

119 272.82 278.85 272.82 257.10 262.63 257.10 247.60 251.68 247.60

120 276.98 279.84 276.98 261.51 263.67 261.51 249.57 252.06 249.57

121 225.60 268.57 225.60 225.60 254.56 225.60 225.60 245.77 225.60

122 264.82 269.26 264.82 251.57 255.31 251.57 241.69 245.98 241.69

123 268.63 269.95 268.63 254.86 256.06 254.86 244.32 246.19 244.32

124 270.51 270.65 270.51 256.52 256.82 256.52 245.69 246.40 245.69

125 225.60 309.64 225.60 225.60 290.91 225.60 225.60 275.37 225.60

126 297.34 310.10 297.34 279.39 291.71 279.39 269.19 276.35 269.19

127 306.36 310.57 306.36 286.85 292.51 286.85 275.39 277.33 275.39

128 309.99 311.04 309.99 291.77 293.32 291.77 278.80 278.31 278.80

129 229.68 241.85 229.68 220.24 228.95 220.24 213.77 219.54 213.77

130 237.67 242.04 237.67 226.66 229.22 226.66 218.20 219.74 218.20

Continued on next page
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

131 240.75 242.23 240.75 228.63 229.48 228.63 219.73 219.95 219.73

132 242.59 242.42 242.59 229.77 229.75 229.77 220.20 220.16 220.20

133 253.53 278.64 253.53 241.67 258.26 241.67 234.81 252.22 234.81

134 272.14 280.02 272.14 256.74 260.69 256.74 247.05 252.97 247.05

135 278.26 281.41 278.26 262.91 263.13 262.91 250.31 253.72 250.31

136 281.23 282.79 281.23 265.56 265.56 265.56 253.55 254.47 253.55

137 260.72 272.00 260.72 247.90 257.96 247.90 238.98 246.27 238.98

138 268.57 272.26 268.57 254.62 258.30 254.62 244.26 246.57 244.26

139 270.88 272.52 270.88 257.12 258.64 257.12 246.18 246.86 246.18

140 272.37 272.78 272.37 258.58 258.98 258.58 247.12 247.15 247.12

141 288.05 312.32 288.05 272.11 293.73 272.11 263.01 280.98 263.01

142 306.30 312.97 306.30 286.45 294.78 286.45 275.61 281.35 275.61

143 311.04 313.63 311.04 292.43 295.83 292.43 279.55 281.72 279.55

144 313.25 314.29 313.25 295.13 296.87 295.13 282.84 282.09 282.84

145 225.60 261.90 225.60 210.11 243.64 210.11 205.23 232.91 205.23

146 239.99 262.31 239.99 228.83 244.26 238.90 220.10 233.17 230.48

147 251.86 262.73 258.08 237.85 244.88 237.85 227.36 233.43 227.36

148 258.94 263.15 258.94 244.95 245.51 244.95 233.32 233.69 233.32

149 225.60 268.57 225.60 225.60 274.51 225.60 225.60 261.22 225.60

150 263.81 275.64 263.81 249.97 275.51 249.97 241.55 262.10 241.55

151 279.80 282.71 279.80 262.08 276.51 262.08 251.10 262.97 251.10

152 289.09 289.85 289.09 271.36 277.52 271.36 257.83 263.85 257.83

153 225.60 309.43 225.60 225.60 287.01 225.60 225.60 268.57 225.60

154 284.88 310.15 284.88 268.88 288.06 268.88 257.70 269.14 257.70

155 301.25 310.88 301.25 281.65 289.12 281.65 264.99 269.70 264.99

156 309.13 311.62 309.13 287.52 290.18 287.52 268.83 270.28 268.83

Continued on next page
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

157 225.60 338.90 225.60 225.60 319.96 225.60 225.60 295.56 225.60

158 303.59 341.14 303.59 285.18 320.93 285.18 274.15 297.04 274.15

159 326.27 343.39 326.27 303.99 321.89 313.00 289.61 298.51 289.54

160 342.23 345.66 342.23 315.13 322.86 315.13 296.57 300.00 296.57

161 231.56 265.74 231.56 221.28 247.51 221.28 214.66 236.29 214.66

162 251.56 266.07 251.22 237.15 248.02 237.15 226.88 236.43 226.88

163 261.19 266.41 261.19 246.93 248.54 246.93 235.20 236.56 235.20

164 265.59 266.74 265.59 248.87 249.05 248.87 236.27 236.69 236.27

165 253.53 302.07 253.90 241.67 274.38 241.82 234.81 268.59 234.62

166 278.62 303.25 278.62 261.32 277.07 261.32 250.55 268.89 250.55

167 291.70 304.43 291.70 274.30 279.79 274.30 259.96 269.18 259.96

168 301.43 305.60 301.43 280.75 282.49 280.75 265.54 269.48 265.54

169 271.76 314.15 273.49 258.22 291.80 258.22 250.51 272.79 250.51

170 300.49 314.60 300.49 281.23 292.54 281.23 264.79 273.04 264.79

171 311.25 315.04 311.25 289.75 293.28 289.75 269.81 273.29 269.81

172 315.44 315.49 315.44 293.23 294.02 293.23 272.52 273.55 272.52

173 287.68 352.03 287.68 273.02 328.24 273.02 263.74 302.55 263.74

174 324.88 352.97 324.88 302.44 329.01 302.55 288.33 303.53 288.33

175 347.11 353.92 347.11 317.53 329.78 317.53 298.77 304.52 298.77

176 353.42 354.85 353.42 326.76 330.55 326.76 306.25 305.50 306.25

177 240.58 268.26 240.39 229.33 250.30 229.55 220.48 237.00 221.65

178 257.71 268.36 257.71 245.02 250.53 245.02 232.29 237.17 232.29

179 265.48 268.47 265.48 249.42 250.77 249.42 237.00 237.34 237.00

180 267.86 268.57 267.86 250.75 251.01 250.75 237.75 237.51 237.75

181 264.46 304.09 264.46 250.51 287.45 253.36 242.01 268.57 244.64

182 287.67 305.60 287.67 269.76 288.09 269.76 256.67 269.53 256.67

Continued on next page
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Table C.1: Test Results

Uniform Distribution High Variance Normal Low Variance Normal

Test Opt. Ind. Mod. Opt. Ind. Mod. Opt. Ind. Mod.

183 301.08 307.11 301.08 280.32 288.72 280.32 265.33 270.49 265.33

184 307.04 308.63 307.04 285.80 289.35 285.80 269.50 271.46 269.50

185 285.61 316.75 285.61 269.48 295.11 269.48 258.09 273.34 258.09

186 308.56 316.95 308.56 286.90 295.45 286.90 268.26 273.66 268.26

187 315.20 317.15 315.20 293.33 295.80 293.33 272.43 273.99 272.43

188 317.32 317.35 317.32 295.33 296.14 295.33 274.38 274.31 274.38

189 304.43 354.35 304.43 285.79 331.69 285.79 274.65 307.93 274.65

190 340.37 355.56 340.37 313.12 332.56 313.12 296.23 308.35 296.23

191 353.46 356.77 353.46 326.32 333.43 326.32 306.02 308.78 306.02

192 357.82 357.97 357.82 332.38 334.30 332.38 308.54 309.20 308.54
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