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ABSTRACT 

 

 

SUPER-RESOLUTION SPECTRAL ESTIMATION METHODS FOR 

BURIED AND THROUGH-THE-WALL OBJECT DETECTION 
 

 

 Seeing the targets behind and inside visually opaque obstacles such as walls using 

microwave signals is considered as a powerful tool for a variety of applications in both 

military and commercial paradigms. 

 

 The ultimate goal in Through-the-Wall Object Detection (TWOD) and Buried Object 

Detection (BOD) systems is to achieve High Range Resolution (HRR). HRR provides the 

ability of resolving closely spaced targets in range, improves the accuracy of range 

estimates and aids in target recognition and classification. 

 

 HRR can be achieved using impulsive waveforms which use extremely narrow 

pulses, frequency modulated waveforms which increase the instantaneous bandwidth by 

applying frequency modulation to each transmitted pulse, stepped-frequency waveform, 

and signal processing techniques. 

  

 The range resolution of stepped-frequency and frequency modulated continuous 

wave (FMCW) radar systems is limited by the Inverse Fast Fourier Transform (IFFT) and 

Fast Fourier Transform (FFT), respectively. FFT provides poor range resolution for data 

with a small bandwidth and when the data size is small. On the other hand, it is well known 

that parametric spectral estimation methods provide super-resolved range profiles of the 

targets compared with FFT for the same frequency bandwidth. 

 

 This thesis studies the target detection and range extraction performance of ESPRIT, 

Root-MUSIC, Higher Order Yule-Walker, Minimum-Norm, Yule-Walker, and Least-

Squares methods in BOD and TWOD applications using synthetic stepped-frequency and 

FMCW radar signals and experimental stepped-frequency radar data.  



     

 

                               v 

 

ÖZET 

 

 

SUPER-RESOLUTION SPECTRAL ESTIMATION METHODS FOR 

BURIED AND THROUGH-THE-WALL OBJECT DETECTION 
 

 

 Mikrodalga sinyalleri kullanarak duvar gibi saydam olmayan engellerin arkasını ve 

içeriğini görüntülemek, askeri ve ticari  alanlardaki uygulamalar için  kuvvetli bir araç 

olarak görülmektedir. 

  

 Duvar Arkası Cisim Tespiti (DACT) ve Gömülü Cisim Tespiti (GCT) 

sistemlerindeki ana hedef, Yüksek Menzil Çözünürlüğü (YMÇ) sağlamaktır. YMÇ, menzil 

içerisinde birbirine yakın hedefleri ayırabilme kabiliyetini sağlar, menzil kestirimlerinin 

doğruluğunu arttırır ve hedef tanıma ve sınıflandırmaya yardımcı olur.    

 

 YMÇ, çok dar vurum kullanan dürtün dalgabiçimi, anlık bant genişliğini gönderilen 

herbir vuruma frekans kipleme uygulayarak arttıran frekans kipli dalgabiçimi, adım-

frekans dalgabiçimi ve sinyal işleme teknikleri kullanılarak elde edilebilir. 

  

 Adım frekans ve frekans kipli sürekli dalga (FKSD) radar sistemlerinin menzil 

çözünürlük kabiliyeti Ters Hızlı Fourier Dönüşümü (THFT) ve Hızlı Fourier Dönüşümü 

(HFT) ile sınırlıdır. HFT, küçük bant genişliğine sahip veriler için ve veri boyutu küçük 

olduğunda  düşük çözünürlük sağlar. Diğer yandan, parametrik spektral kestirim 

metodlarının, aynı frekans bant genişliğinde HFT ile kıyaslandığında, yüksek 

çözünülürlükte menzil profil kestirimi sağladığı bilinmektedir.   

  

 Bu tez çalışması ile DACT ve GCT uygulamalarında hedef tanıma ve menzil 

özütlemesi için ESPRIT, Root-MUSIC, Yüksek Dereceli Yule-Walker, En Küçük Norm, 

Yule Walker ve En Küçük Kareler metodlarının performanslarını sentetik adım-frekans ve 

FKSD radar sinyalleri ve deneysel adım frekans radar verileri kullanarak belirlemektir. 
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1.  INTRODUCTION 

 

 
1.1.  Motivation 

 

 The ability to “see” the targets behind and inside obstacles such as walls, doors, and 

other visually opaque materials, using microwave signals is considered as a powerful tool 

for a variety of applications in both military and commercial paradigms. Search-and-rescue 

workers, counter-terrorism and counter-intelligence agents encounter situations where they 

need to detect, locate, and identify building occupants and hidden objects from stand-off 

location. Specialized devices using electromagnetic waves can provide significant help in 

these applications[1-8]. 

 

 The ultimate goal in Through-the-Wall Object Detection (TWOD) and Burried 

Object Detection (BOD) systems is to achieve high range and cross range resolutions. High 

Range Resolution (HRR) capability is one of the key parameters in the radar system design 

which provides many advantages. It provides the ability of resolving closely spaced targets 

in range, improves the range accuracy, reduces the amount of clutter within the range cell, 

reduces multi-path, and aids in target recognition and classification.  HRR is also very 

useful in detection of targets with low radar cross sections (RCS) embedded in high clutter. 

It increases signal-to-clutter ratio (SCR) which makes targets with low RCS visible [9-13]. 

 

 HRR techniques can be grouped in four main categories: impulsive waveforms, 

intrapulse pulse compression techniques, interpulse pulse compression techniques, and 

signal processing techniques [9-13].  

 

 Impulsive waveforms achieve HRR via extremely narrow pulses (on the order of 

nanoseconds). Such a short pulse width can be obtained at very low power levels due to its 

stability problems, i.e., wide bandwidth and high power can not be achieved 

simultaneously. Also, the large instantaneous bandwidth imposes severe constraints on the 

analog to digital conversion process, which in turn degrades some other radar capabilities.  
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 Intrapulse pulse compression techniques increase the instantaneous bandwidth by 

applying either frequency or phase modulation to each transmitted signal instead of 

decreasing their time duration. Modulation is applied within individual pulses. Advantage 

of these techniques over impulsive waveforms is that they increase the bandwidth without 

decreasing the power level. Linear Frequency Modulation (LFM) technique is one of 

frequency coding techniques. 

 

 Stepped-frequency waveform can be viewed as an interpulse modulated pulse 

compression waveform in which modulation is applied across the pulses instead of within 

individual pulses. The key advantage of the stepped frequency method compared to other 

pulse compression techniques is that the HRR is achieved while still maintaining the 

instantaneous bandwidth of the receiver narrow, which increases sensitivity and provides 

jam-immunity. 

 

 The drawbacks of the impulsive waveforms can be eliminated using linear frequency 

modulated or stepped-frequency waveforms. However, the range resolution of stepped-

frequency and frequency modulated continuous wave (FMCW) radar systems is limited by 

the Inverse Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT), respectively. 

Although the FFT and IFFT are computationally-efficient, they provide poor range 

resolution for data with a small bandwidth and when the data size is small. Moreover, the 

range estimates have large bias. On the other hand, it is well known that parametric 

spectral estimation methods provide superresolved range profiles of the targets compared 

with conventional Fourier transform for the same frequency bandwidth. Of course, the 

computational complexity of the parametric methods is much larger than FFT and IFFT, 

but the recent developments in the digital signal processors and field programmable gate 

arrays makes it possible to implement parametric methods within real time. So, parametric 

spectral estimation methods can be viewed as the fourth technique of achieving HRR. 

 

 Motivation of this thesis is to investigate the potential use of the parametric spectral 

estimation methods for range extraction in frequency modulated continuous wave and 

stepped frequency radar systems for buried and through-the-wall object detection. 

Synthetic stepped-frequency and FMCW radar signals and experimental stepped-frequency 

radar data are used to study the performances of the Yule-Walker, Least-Squares, 
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Minimum-Norm, Higher-Order Yule-Walker, Root-MUSIC, and ESPRIT methods in BOD 

and TWOD applications.  

 

1.2.  Outline of the Thesis 

  

 The thesis is organized as follows: The most common terms used in the radar 

systems and pulse, stepped-frequency and frequency modulated continuous wave radar 

priciples are introduced in Chapter 2. 

 

 In Chapter 3, non-parametric and parametric spectral estimation methods are 

explained. 

 

 The performance of non-parametric and parametric spectral estimation methods for 

range extraction in stepped-frequency and FMCW radar systems is investigated in Chapter 

4. 

 

 Chapter 5 investigates the potential use of the parametric spectral estimation methods 

for range extraction in BOD and TWOD applications using experimental stepped-

frequency radar data.  

 

 Chapter 6 concludes the thesis emphasizing the super-resolving capability of 

parametric spectral estimation methods. 
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2.  RADARS 

 

 

2.1.  Radar Basics 

 

        Radar is an abbreviation for RAdio Detection And Ranging. Radar systems use 

special waveforms and directive antennas to transmit electromagnetic energy into a 

specific direction to search for targets. Targets in the search area reflect some of this 

energy back to the radar. These returns are then processed by the receiver to extract some 

target information, depending on the radar type. 

 

        Radars are most often classified by the types of waveforms they use, or by their 

functionality. Considering the waveforms, radars can be classified as Continuous Wave 

(CW) or Pulse Radars. Continuous Wave radars continuously emit electromagnetic energy 

whereas pulse radars transmit a train of pulses. Moreover, CW operation means that the 

radar transmits and receives at the same time while pulse radars transmits and receives in 

different time slots. Another classification is based on the functionality of the radars, which 

includes weather, early warning, over the horizon, ground penetrating, and through the 

wall radars where the last two ones are the subject of this thesis [9]. 

 

        This section will explain the terms that will be frequently used in the following 

chapters such as range, down-range resolution, cross-range resolution, high range 

resolution, monostatic and bistatic operation and radar cross section. 

 

2.1.1.  Range 

 

        Radars compute the target range, R, by measuring the time difference, t∆ , that is, the 

time it takes the radar signal to travel the two-way path between the target and the radar. 

The range is given as  

2
tcR ∆

=                                                                (2.1) 

where c is the speed, 3x108 m/sec.   
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2.1.2.  Down-Range Resolution 

 

        Down-range resolution, denoted as R∆ , describes the radars ability to distinguish 

targets that are close in down range as distinct objects. The down-range term is used for the 

distance in the line-of-sight direction of the radar as shown in figure 2.1. Radars are 

designed to operate between a minimum down-range Rmin , and a maximum down-range 

Rmax. The distance between Rmax and Rmin is divided into N range bins, each of width R∆ , 

i.e,  

N
RRR minmax −=∆                                                         (2.2) 

 

        Targets separated in down-range less than R∆  will be evaluated as a single target. So, 

down-range resolution is one of the most important design parameter for a radar system. 

Several techniques have been developed to improve the down-range resolution which can 

be employed both in hardware and software. Radars generally use pulse waveforms for 

extracting range. The shorter the pulse, the larger the bandwidth, and the more precise the 

range measurement is.  

 

        The effect of a short pulse can be obtained with a long pulse whose bandwidth has 

been increased by phase or frequency modulation. When passed through a matched filter, 

the output is a compressed pulse whose duration is approximately the reciprocal of the 

bandwidth of the modulated long pulse. This is called pulse compression and allows the 

resolution of a short pulse with the energy of a long pulse. CW waveform with frequency 

or phase modulation also can provide accurate range measurement. It is also possible to 

measure the range of a single target by comparing the phase difference between two or 

more CW frequencies (multi-frequency radar).  

 

        The methods explained so far depend on the radar hardware and should be decided 

before designing the radar. However, there are also some signal processing techniques that 

can be used to improve the down-range resolution without any or with some minor changes 

in radar hardware and they will be explained in detail in chapter three, implemented on 

synthetic radar return signals in chapter four and on real radar data in chapter five.   
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Figure 2.1.  Down-Range and Cross-Range directions 

 

 

2.1.3.  Cross-Range Resolution 

 

        Cross-range resolution, denoted as CR∆  and defined similar to downrange resolution, 

describes the radars ability to distinguish targets that are close in cross range as distinct 

objects. Cross-range direction is used for the direction that is perpendicular to the down-

range as shown in figure 2.1. Cross-range resolution is an important radar parameter, 

especially in radar imaging. Radars must have a good cross-range resolution to construct a 

two dimensional image of the scene illuminated by the radar.  

 

        The resolution in the cross range can only be achieved by varying the illumination 

over the field of view. It is necessary to make a set of linearly independent observations in 

the cross range direction to improve cross-range resolution. Sweeping the beam of the very 

narrow beam of antenna over the field of view is the preferred method. However, it is 

sometimes not feasible or possible to design very narrow beam antennas especially in 

wideband systems or at low frequencies.  

 

        Another method to vary illumination over the field of view is to move the radar taking 

data at different locations, and then synthesize an aperture to obtain cross-range resolution. 

Also, antenna array can be used to synthesize an aperture in cases where it is not desired or 

possible to move the antenna. An array where only one antenna transmits and all other 

receive simultaneously is called a real array and the array where only one antenna 

transmits and only one antenna receives and this transceiver pair is scanned from end to 

end is called synthetic array. Also, some signal processing techniques can be used together 

with the methods explained above, such as beamforming and high resolution spectral 

estimation methods, to improve the resolution in cross range.  
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2.1.4.  High Range Resolution 

 

        High Range Resolution (HRR) capability is one of the key parameters in the radar 

system design which provides many advantages. It provides the ability of resolving closely 

spaced targets in range, improves the range accuracy, reduces the amount of clutter within 

the range cell, reduces multi-path, and aids in target recognition and classification.  HRR is 

also very useful in detection of targets with low radar cross sections embedded in high 

clutter. It increases signal-to-clutter ratio which in turn makes targets with low RCS 

visible. 

 

        HRR techniques can be grouped in four main categories and they are explained in the 

following subsections [9-13]. 

 

2.1.4.1.  Impulsive Waveforms.  This technique achieves HRR via extremely narrow 

pulses (on the order of nanoseconds). The bandwidth of the waveform can be increased by 

shrinking the pulse width, which degrades the radar sensitivity. Such a short pulse width 

can be obtained at very low power levels due to its stability problems, i.e., wide bandwidth 

and high power can not be achieved simultaneously. Also, the large instantaneous 

bandwidth imposes severe constraints on the analog to digital conversion process, which in 

turn degrades some other radar capabilities.  

 

 

2.1.4.2. Intrapulse Pulse Compression Techniques.  These techniques increase the 

instantaneous bandwidth by applying either frequency or phase modulation to each 

transmitted signal instead of decreasing their time duration. Modulation is applied within 

individual pulses. Advantage of these techniques over impulsive waveforms is that they 

increase the bandwidth without decreasing the power level. Linear Frequency Modulation 

(LFM) technique is one of frequency coding techniques and it will be explained in detail in 

section 2.4. 
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2.1.4.3. Interpulse Pulse Compression Techniques.  Stepped frequency waveform can be 

viewed as an interpulse modulated pulse compression waveform in which modulation is 

applied across the pulses instead of within individual pulses. The key advantage of the 

stepped frequency method compared to other pulse compression techniques is that the 

range resolution is increased while still maintaining the instantaneous bandwidth of the 

receiver narrow, which increases sensitivity. Stepped frequency radar will be explained in 

detail in section 2.3. 

 

 

2.1.4.4. Signal Processing Techniques.  Range resolution can also be increased via signal 

processing techniques. A number of high resolution techniques have been developed which 

provide superior performance than classical methods. These techniques use high-resolution 

estimation methods to improve range resolution and they will be explained in detail in 

chapter three. 

 
 

2.1.5.  Bistatic and Monostatic Operation 

 

        A radar is called bistatic if it uses separate antennas for transmission and reception, 

and monostatic if it uses same antenna for transmission and reception. Pulsed radars can 

use same antenna for transmission and reception since different time slots are allocated for 

transmission and reception [9]. However, in CW operation, since CW radars transmits and 

receives at the same time, it is difficult to use same antenna to simultaneously transmit and 

receive because of the leakage between transmitter and receiver. Receiver sensitivity is set 

by the level of the transmitted signal that directly gets into the receiver. This situation is 

similar to that of someone shouting next to you while you are trying to hear someone else 

far away from you. Providing sufficient isolation over a wide frequency range is not 

possible, so the easiest method is to separate the transmit and receive antennas.  
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2.1.6. Radar Cross Section 

 

        Radar Cross Section (RCS) is defined as the amount of the power scattered from the 

target when target is illuminated by RF energy. RCS fluctuates depending on the 

frequency, aspect angle and polarization of the RF field.  

 

        Let iP  denote the power density of  a wave incident on a target that is is located at a 

range R from the radar.  The amount of power reflected from the target is 

 

iref PP σ=                                                             (2.3) 

 

where σ  denotes the RCS. Let recP  denote the power of the reflected waves at the 

receiving antenna. It follows that  

24 R
P

P ref
rec π

=                                                         (2.4) 

 

i

rec

P
PR24πσ =⇒                                                       (2.5) 

 

        And ensuring that the radar receive antenna is in the far field of the target, RCS is 

given as follows:  

 

i

rec
R P

PR
∞→

= lim4 2πσ                                                     (2.6) 

 

        Note that, in practice, the RCS is not a target-specific constant. Different targets may 

have similar RCS values since RCS fluctuates with aspect angle, frequency and 

polarization [9].  
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2.2. Pulse Radar 

 

        This section covers the block diagram, waveform, phase detector and important 

parameters of pulse radars. This chapter will also be used a basis while explaining other 

waveforms.  

 

        Pulse radars transmit and receive a train of modulated pulses. Range is extracted 

directly from the two-way time delay between a transmitted and received pulse. Carrier 

frequency (which depends on the design requirements and radar mission), pulse width 

(defines the range resolution), modulation (which improves range resolution), and the 

pulse repetition frequency (PRF) are the parameters used to characterize the pulse radar [9-

13]. Modulation enhances radar performance. The PRF must be chosen to avoid Doppler 

and range ambiguities as well as to maximize the average transmitted power. These 

parameters will not be explained in detail since pulse radar is not the main focus in the 

thesis. Instead, to construct a basis for the next sections, block diagram, waveform, and 

important parameters will be explained briefly.  

 

2.2.1. Block Diagram 

 

        Simplified block diagram of pulse radar is shown in figure 2.2. In this configuration, 

Coherent Oscillator (COHO) is used as a reference for the Phase Detector (PD). In 

transmitter side, COHO output is mixed with Stable Local Oscillator (STALO) output to 

produce the signal which will upconvert the baseband pulse to the frequency 

STALOCOHO ff +  . After filtering to eliminate the images and intermodulation products, the 

output of the mixer is amplified by the power amplifier, pulse modulated and transmitted. 

 

        In receive part, the received signal is downconverted to IFf , which is equal to COHOf , 

by mixing the received signal, which is at frequency STALOCOHO ff +  , with STALO. Then, 

the intermediate-frequeny (IF) signal is fed to the IF amplifier which has a bandwidth of 

inverse of pulse width whose output is IQ demodulated in phase detector using COHO 

signal to produce Inphase(I) and Quadrature(Q) signals. 
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Figure 2.2.  Block diagram of monostatic pulse radar 
 
 

        Bandpass and low pass analog filters in the radar diagram are used to suppress the 

unwanted intermodulation products of the mixers. Note that radar system does not add any 

phase ambiguity to the radar signal since the COHO and STALO are the Local Oscillators 

(LO) of both transmit and receive parts. Phase detector outputs are used to extract the 

phase difference between transmitted and received signals.  
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2.2.2.  Pulse Radar Waveform 

        Simplified representation of pulse radar waveform is shown in figure 2.3 and 2.4. 

 

τ

0f

Amplitude

time0f 0f 0f

 
Figure 2.3.  Pulse radar waveform 
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Figure 2.4. Pulse Radar Waveform 

 
 
        Pulse radar waveform can be written as  
 

)2cos()()( 0

1

0

tfnTtrectAts
N

n

π
τ∑

−

=

−
=                                         (2.7) 

 
 
        The Fourier pairs given below will be used to obtain the frequency spectrum of pulse 

radar waveform. 

)]()([
2
1})2({ 000 fffftfCosF ++−= δδπ                               (2.8) 

)(})({ ττ
τ

fSincAtrectAF =                                        (2.9) 

∫
+∞

∞−

−= ')'()'(})()({ dfffYfXtytxF                                (2.10) 
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Let 

∑
∞

−∞=

−
=

n

nTtrectAtg )()(
τ

                                              (2.11) 

 
Using complex exponential Fourier series, )(tg   can be written as 
 

⎟
⎠
⎞

⎜
⎝
⎛= ∑

∞

∞−= T
tnj

T
nSinc

T
Atg

n

πτπτ 2exp)()(                                 (2.12) 

 
It follows that the Fourier transform of )(tg  is 
 

)()()(
T
nf

T
nSinc

T
AfG

n

−= ∑
∞

∞−=

δτπτ                                      (2.13) 

 
Let 

∑
=

−
=

N

n

nTtrectAtf
0

)()(
τ

                                                (2.14) 

 
Then, the Fourier transform of )(tf  is 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∗= ∑

∞

∞−=

)()
2

()()(
T
nf

T
NSincfNTSincANfF

n
δττ                         (2.15) 

 
        The multiplication of F(f) by )2( 0tfCos π  shifts the spectrum given above by f0. 

Figure 2.5 shows the envelope of the amplitude spectrum of a coherent pulse train of finite 

length [9].                                                     

 
   ←→ || effB  

 
                                 frequencyfff ......../1/1........ 000 ττ +−  
 

Figure 2.5. Envelope of spectrum of pulse radar waveform 
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2.2.3.  Signal Flow & Phase Detector  

 

        Pulse radars transmit N pulses each of which has same duration and amplitude. Each 

pulse is transmitted at the same carrier frequency, COHOSTALO fff +=0 . 

 

        Let the transmitted pulse signal be  

 

)2()( 011 tfCosAts π=                                                (2.16) 

 

        If the range of the target to the radar is R, the signal received after a time delay of 

cR /2  is 

))/2(2()( 022 cRtfCosAts −= π                                      (2.17) 

 

Mixing the received signal with )2(2)( tfCosAts STALOSSTALO π=  , we have, 

 

        

}])/2()(2[42{
}])/2()(2[2{

)2(
}])/2()(2[22{2

)2()]/2()(2[2
)2()]/2(2[2)()(

2

2

2

2

022

cRfftftfCosAA
cRfftfCosAA

tfCosx
cRfftftfCosAA

tfCoscRtffCosAA
tfCoscRtfCosAAtsts

STALOCOHOSTALOCOHOS

STALOCOHOCOHOS

STALO

STALOCOHOSTALOCOHOS

STALOSTALOCOHOS

STALOSSTALO

+−++
+−=

+−+=
−+=

−=

πππ
ππ

π
πππ

ππ
ππ

 

(2.18) 

 

The second component, which is high frequency term is filtered out by a bandpass filter 

with center frequency at COHOf . Therefore, the output of the mixer is 

 

}])/2()(2[2{)( 23 cRfftfCosAAts STALOCOHOCOHOS +−= ππ                  (2.19) 

 

Then, )(3 ts  is mixed with )2(2)(, tfCosAts COHOCICOHO π=  and 

)2(2)(, tfSinAts COHOCQCOHO π=  and then low pass filtered to produce inphase and 

quadrature components at the output of phase detector. 
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Mixing )(3 ts  with )2(2)(, tfCosAts COHOCICOHO π= , we have, 

 

       
)2(

}])/2()(2[2{2)()( 2,3

tfCosx
cRfftfCosAAAtsts

COHO

STALOCOHOCOHOcSICOHO

π
ππ +−=

 

                              
}])/2()(2[4{

])/2()(2[

2

2

cRfftfCosAAA
cRffCosAAA

STALOCOHOCOHOcS

STALOCOHOcS

+−+
+=

ππ
π

           (2.20) 

 

The second component, which is high frequency term is filtered out by lowpass filter.  

 

])/2()(2[2 cRffCosAAAI STALOCOHOcS +=⇒ π  

])/2(2[ 0 cRfCosAI π=                                             (2.21) 

 

Mixing )(3 ts  with )2(2)(, tfSinAts COHOCQCOHO π= , we have, 

 

       
)2(

}])/2()(2[2{2)()( 2,3

tfSinx

cRfftfCosAAAtsts

COHO

STALOCOHOCOHOcSQCOHO

π

ππ +−=
 

                               
}])/2()(2[4{

])/2()(2[

2

2

cRfftfSinAAA
cRffSinAAA

STALOCOHOCOHOcS

STALOCOHOcS

+−+
+−=

ππ
π

          (2.22) 

 

The second component, which is high frequency term is filtered out by lowpass filter.  

 

])/2()(2[2 cRffSinAAAQ STALOCOHOcS +−=⇒ π  

])/2(2[ 0 cRfSinAQ π−=                                         (2.23) 

 

2.2.4. Important Parameters 
 
2.2.4.1. Instantaneous Bandwidth. Instantaneous bandwidth of the pulse radar is 

approximately equal to inverse of the pulse width.  

 

τ
1

=instB                                                             (2.24) 
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Analog-to-Digital Converter (ADC) sampling rate is determined according to 

instantaneous bandwidth and since the pulse radars use very short duration (on the order of 

nanoseconds) pulses, they require high sampling rates which degrades the radar 

performance. 

 
 
2.2.4.2.  Effective Bandwidth.  The effective bandwidth of the pulse radar is given by, 
 

τ
1

=effB                                                            (2.25) 

 
which is equal to instantaneous bandwidth. Range resolution of the radars is directly 

related to effective bandwidth. The larger the value of effective bandwidth, the higher the 

range resolution is and the more accurate the range measurement is.  

 

 

2.2.4.3.  Range Resolution.  Range resolution is determined from the overall system 

bandwidth. Therefore, the range resolution of the pulse radar is  

 

22
τc

B
cR

eff

==∆                                                      (2.26) 

 
 

2.2.4.4.  Maximum Unambiguous Range.  Once a pulse is transmitted from the radar, 

sufficient length of time must elapse to allow any echo signals to be received before the 

next pulse is transmitted. Therefore, the maximum range at which the targets are expected 

determines the rate at which the pulses are transmitted. If the pulse repetition frequency is 

too high, echo signals from some targets might arrive after the transmission of next pulse. 

Such echo signals are called multiple-time-around echo and they appear to be at a much 

shorter range than the actual and might cause false alarms if they were not known to be 

multiple-time-around echo. The range beyond which the targets are accepted as second-

time-around echo is called maximum unambiguous range [9]. The maximum unambiguous 

range of the pulse radar is  

2
cTRU =                                                            (2.27) 
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2.3. Stepped-Frequency Radar 

 

        Radars employing stepped-frequency waveform increase the frequency of successive 

pulses linearly in discrete steps. Stepped-frequency waveform can be viewed as an 

interpulse pulse compression technique in which modulation is applied across the pulses 

instead of within individual pulses. High range resolution capability of stepped-frequency 

radar is used to solve the difficult problem of detection of low-RCS targets in the presence 

of large clutter such as detection of cruise missiles and buried mines.  

 

        Stepped-frequency radar has a narrow instantaneous bandwidth (corresponding to 

individual pulse) and attains a large effective bandwidth (corresponding to frequency 

spread of pulses within a burst). As a result, the hardware requirements become less 

stringent. Lower-speed ADCs and slower processors can be used. The receiver bandwidth 

would be smaller, resulting in lower noise bandwidth and a higher signal-to-noise ratio. 

 

        Stepped-frequency waveform also provides some technical advantages. Being able to 

select frequencies gives radar the flexibility to change its range resolution, avoid 

transmitting on critical communication frequencies, and optimize its waveform to enhance 

the performance of signal processing algorithms.  

 

        CW operation also provides the radar some advantages. Since the frequency of the 

transmitted signal is known, it is possible to use narrowband detection techniques to 

improve signal to noise ratio and improve the ability to reject signals in adjacent bands 

(jam immunity). A sample of transmitted signals is sent to the receiver and used as a phase 

reference for the received signal. This allows radar to demodulate the received signal into 

inphase and quadrature components without any phase ambiguity and results in a coherent 

system which means that from frequency to frequency and sweep to sweep, the received 

signals from all of the stationary objects in the range can be added to improve system 

signal to noise ratio.  

 

        However, these advantages are obtained at the expense of longer operation time. It 

would require longer time to transmit, receive, and process of a group of pulses. Actually, 
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this could be a limiting factor in real time operation but, thanks to the development in high 

speed Direct Digital Synthesis (DDS) and digital receiver technologies, this does not seem 

to be a limiting factor any more.  

 

2.3.1. Block Diagram 

 

        Stepped-frequency radar waveform consists of a group of N coherent pulses whose 

frequencies are increased from pulse to pulse by a fixed frequency increment f∆ . The 

frequency of the thn pulse of the stepped frequency radar waveform can be written as  

 

1,...,1,0,0 −=∆+= Nnfnffn                                   (2.28) 

 

where STALOCOHO fff +=0   is the starting carrier frequency and f∆ is the frequency step 

size, that is, the change in frequency from pulse to pulse. The change in carrier frequency 

is achieved by the Stepped Frequency Synthesizer (SFS) which 

produces 1...1,0, −=∆= Nnfnfs . Figure 2.6 shows the block diagram of bistatic stepped-

frequency radar.   

 

        On the transmit side, first COHO and SFS frequencies are added in a mixer. The 

mixer output is filtered by an appropriate bandpass filter to suppress unwanted 

intermodulation products. After suppressing the LO leakage and high order 

intermodulation products, the sum of the two frequencies is up converted to RF by mixing 

with STALO. The resulting signal, consisting of the sum of the STALO, COHO, and SFS 

frequencies, is amplified and transmitted. Thus, the frequency of the thn  transmitted pulse 

within the burst of N pulses is given by 

 

1,...,1,0, −=∆++= Nnfnfff STALOCOHOn                         (2.29) 

 

        On the receive side, where the receiver is a three stage receiver, the received signal is 

amplified and down-converted to first IF, 1IFf , by mixing it with the STALO output, which 

is then band limited by a bandpass filter. In the second stage, the first IF signal is further 
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Figure 2.6.  Block diagram of a bistatic stepped-frequency continuous wave radar 
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down converted to second IF, 2IFf , by mixing it with the output of the SFS, which is then 

band limited by a bandpass filter with center frequency COHOf . At the last stage, the output 

of the second IF filter is down converted to baseband in phase detector. Phase detector 

mixes the IF signal with two 90° phase-shifted outputs from COHO, producing inphase 

and quadrature outputs which will be used to extract the phase difference between 

transmitted and received signals. 

 

2.3.2.  Stepped-Frequency Radar Waveform 

 

        The frequency of the thn pulse of the stepped frequency radar waveform was given as  

 

1,...1,0,0 −=∆+= Nnfnffn                                      (2.30)        

 

where STALOCOHO fff +=0 . Pictorial representation of stepped-frequency waveform is 

shown in figures 2.7 and 2.8. Each pulse has duration of τ  seconds. Group of N pulses is 

called as burst. The burst time, i.e., the time corresponding to transmission of N pulses, is 

called as coherent processing interval (CPI) [10].  

 

        Note that the frequency is constant within each pulse. So, its instantaneous bandwidth 

is approximately equal to the inverse of pulse width and since pulses do not have short 

time duration, instantaneous bandwidth of the radar is narrow.  
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Figure 2.7.  Stepped-frequency radar waveform 
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 Figure 2.8.  Stepped-frequency radar waveform 

 

        Stepped-frequency radar achieves high range resolution by processing N pulses, each 

of which has narrow instantaneous bandwidths, in a CPI, instead of using wideband, short 

duration pulses as in pulse radar. 

 
 
        Stepped-frequency waveform can be written as  
 
 

)2()(
1

0

tfCosnTtrectAts n

N

n

π
τ∑

−

=
⎟
⎠
⎞

⎜
⎝
⎛ −

=                                       (2.31) 

 
 
        Frequency spectrum of stepped-frequency waveform can be obtained using the 

Fourier transform pairs given in section 2.2.2.  A pictorial representation of the envelope of 

the spectrum of stepped-frequency radar pulses is shown in figure 2.9. Note that pulses 

have different carrier frequencies, low instantaneous bandwidths, and large effective 

bandwidth.  

 

ff ∆+00f
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Figure 2.9.  Envelope of spectrum of stepped-frequency waveform 
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2.3.3.  Signal Flow & Phase Detector  

 

        Let the transmitted signal be  

                                                 )2()( 1 tfCosAts nT π=  

                                                          ])(2[1 tfnffCosA STALOCOHO ∆++= π                   (2.32) 

 

        If the range of the target to the radar is R, the signal received after a time delay of 

cR /2  is 

])/2()(2[)( cRtfnffCosAts STALOCOHOnR −∆++= π  

     tfntftfCosA STALOCOHOn ∆++= πππ 222[  

])/2)((2 cRfnff STALOCOHO ∆++− π                        (2.33) 

 
Mixing the received signal with )2(2)( tfCosAts STALOSSTALO π=  yields 

 
        )2(])/2()(2[2)()( tfCoscRtfnffCosAAtsts STALOSTALOCOHOnSSTALOR ππ −∆++=      

                              ])/2)((222[ cRfnfftfntfCosAA STALOCOHOCOHOnS ∆++−∆+= πππ  

                                  tfntftfCosAA STALOCOHOnS ∆+++ πππ 242[                        

                                                       ])/2)((2 cRfnff STALOCOHO ∆++− π                       (2.34) 

                  

The second component, which is high frequency term is filtered out by a bandpass filter. 

Therefore, the first IF signal is 

 

])/2)((222[)(1 cRfnfftfntfCosAAts STALOCOHOCOHOnSIF ∆++−∆+= πππ          (2.35) 

 

Then, )(1 tsIF  is mixed with SFS output, )2(2)( tfnCosAts SFSSFS ∆= π , i.e.,  

 

)2(])/2)((222[2)()( 01 tfnCoscRfnftfntfCosAAAtsts COHOnSSFSSFSIF ∆∆+−∆+= ππππ  

                       ])/2)((22[ 0 cRfnftfCosAAA COHOnSSFS ∆+−= ππ  

                         tfntfCosAAA COHOnSSFS ∆++ ππ 42[ ])/2)((2 0 cRfnf ∆+− π  

                                              (2.36) 
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The second component, which is high frequency term is filtered out by a bandpass filter. 

Therefore, the second intermediate frequency signal is 

 

])/2)((22[ 02 cRfnftfCosAAAs COHOnSSFSIF ∆+−= ππ                    (2.37) 

 

Then, )(2 tsIF  is mixed with )2(2)(, tfCosAts COHOCICOHO π=  and 

)2(2)(, tfSinAts COHOCQCOHO π=  and then low pass filtered to produce inphase and 

quadrature components at the output of phase detector. 

 

Mixing )(2 tsIF  with )2(2)(, tfCosAts COHOCICOHO π=  yields 

 

)2(])/2)((22[2)()( 0,2 tfCoscRfnftfCosAAAAtsts COHOCOHOCnSSFSICOHOIF πππ ∆+−=  

                          ])/2()(2[ 0 cRfnfCosAAAA CnSSFS ∆+−= π  

                            }])/2()(2[4{ 0 cRfnftfCosAAAA COHOCnSSFS ∆+−+ ππ           (2.38) 

 

The second component, which is high frequency term is filtered out by lowpass filter.  

 

])/2()(2[ 0 cRfnfCosAAAAI CnSSFS ∆+−= π  

])/2()(2[ 0 cRfnfCosAI ∆+−= π                                  (2.39) 

 

Mixing )(2 tsIF  with )2(2)(, tfSinAts COHOCQCOHO π=  yields 

 

)2(])/2)((22[2)()( 0,2 tfSincRfnftfCosAAAAtsts COHOCOHOCnSSFSQCOHOIF πππ ∆+−=  

                           ])/2()(2[ 0 cRfnfSinAAAA CnSSFS ∆+−= π  

                              }])/2()(2[4{ 0 cRfnftfSinAAAA COHOCnSSFS ∆+−+ ππ              (2.40) 

 

The second component, which is high frequency term is filtered out by lowpass filter.  

])/2()(2[ 0 cRfnfSinAAAAQ CnSSFS ∆+= π  

])/2()(2[ 0 cRfnfSinAQ ∆+−= π                                  (2.41) 
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        Therefore, the output of IQ phase detector can be written as  

 
nj

n eAS φ−=                                                       (2.42) 

where 

c
Rfnfn

2)(2 0 ∆+= πφ                                             (2.43) 

and it can be expanded as 

c
Rfn

c
Rfn

2222 0 ∆+= ππφ                                       (2.44) 

 

        The first term represents a constant phase shift which is not any of practical 

significance. It is the second component that provides the desired range resolution which 

represents the phase shift due to the frequency rate of change multiplied by round-trip 

delay time [10]. This is also called as induced phase shift.  

 

2.3.4.  Important Parameters 
 
 
2.3.4.1.  Instantaneous Bandwidth.    Instantaneous bandwidth of the stepped-frequency 

waveform is the same as the pulse radar waveform and approximately equal to inverse of 

the pulse width.  

τ
1

=instB                                                            (2.45) 

 
        Note that the pulse width that is used in stepped frequency radar is much larger than 

that is used in pulse radar. Therefore, the instantaneous bandwidth of stepped frequency 

waveform is much smaller which enables the ADCs with low sampling rates to be used.  

 
 
2.3.4.2.  Effective Bandwidth.  The effective bandwidth of the stepped frequency 

waveform is given by, 

fNBeff ∆=                                                           (2.46) 
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        Since the range resolution of the radars is proportional to effective bandwidth, stepped 

frequency waveform provides high range resolution while keeping the instantaneous 

bandwidth small. 

 
 
2.3.4.3.  Range Resolution.  Output of IQ phase detector was shown to be 

 

c
Rfn

c
Rfn

2222 0 ∆+= ππφ                                        (2.47) 

 
 
        The second term in this expression, which is called as induced phase shift, can be 

written as 

 

nT
c
R

T
f

c
Rfnind

2222 ∆
=∆= ππφ                                    (2.48) 

 
The rate at which the phase changes is called induced frequency shift and given by 
 

c
R

T
ffind

2∆
=                                                        (2.49) 

Rewriting R in terms of indf  

indf
f

TcR
∆

=
2

                                                      (2.50) 

 

Taking the differential of both sides, we have, 

 

indf
f

TcR ∆
∆

=∆
2

                                                  (2.51) 

 

        The above equation expresses the range resolution in terms of frequency resolution. 

Since the frequency resolution obtained from DFT is 

 

TN
find

1
=∆                                                          (2.52) 

         



 

 

26
 

 

From equations (2.50) and (2.51), the range resolution is obtained as 

effB
c

fN
cR

22
=

∆
=∆                                                 (2.53) 

 

        Stepped frequency waveform increases the range resolution since it subdivides the 

conventional range bin into smaller parts [10].  

 
 

2.3.4.4.  Maximum Unambiguous Range.  Stepped-Frequency radar employing DFT 

achieves range resolution by the Fourier transform of the N samples from N pulses from a 

range bin. Fourier transform divides the maximum unambiguous range into N equal parts. 

Therefore, maximum unambiguous range of stepped frequency waveform is given as 

follows, 

f
cRNRU ∆

=∆=
2

.                                                     (2.54) 

 
 

        Stepped-frequency radar can not measure absolute ranges to individual scatterers. 

Any target within a range which is a multiple of unambiguous range will be folded into 

range profile causing range ambiguity [9]. For instance, if f∆ is 10 MHz, the unambiguous 

range is 15 meters and the targets at ranges 5 ( 10−UR ), 20( 102 −UR ) and 35( 103 −UR ) 

meters will be observed at the same location in the HRR profile. This range fold-over 

problem is similar to the fold-over problem that occurs when FFT is used to estimate the 

frequency spectrum [9]. For example, if the sampling rate is 1 kHz, a sine-wave tone at 

1200 Hz and 200 Hz will be observed at the same bin in the spectrum.  

 

        In order to avoid the range fold-over, f∆  and τ must be chosen such that  

URE
E
cf ≤≤∆ i.e,,

2
                                         (2.55) 

 

where E is the maximum target extent (maximum range the radar will detect targets) in 

meters. Also, note that the ratio of range bin to the maximum unambiguous range is  
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f
fc

c
R

c
U

∆=
∆

= τττ
2

22                                                   (2.56) 

 

        Therefore, f∆τ  plays an important role in the stepped frequency waveform design, 

and three cases for f∆τ will be explained in detail in next section. 

 

 

2.3.5. Signal Processing 

 

        As explained in section 2.2.1., the output of the second IF stage is down converted to 

baseband in phase detector. Phase detector mixes the IF signal with two 90° phase-shifted 

outputs from COHO, producing Inphase(I) and Quadrature(Q) outputs which will be used 

in signal processing to extract the HRR profile. When the radar transmits a pulse, the phase 

detector output is sampled, digitized, and stored. Samples from the I and Q channels form a 

complex sample consisting of real and imaginary components, i.e., jQIA += . The typical 

sampling rate is one complex sample per pulse width. Each complex sample is termed a 

range bin, as it represents the signal from a range window of length 2τc  where τ is the 

pulse width. The phase detector output for all range bins of interest due to all N pulses in a 

burst is collected prior to performing any processing [10]. 

 

        Complex samples from N frequency-stepped pulses are processed by taking their 

DFT, and these DFT coefficients represent resolution of range UR  into N subdivisions, 

each of width fNc ∆2 . The equation  

N
R

fN
c

fN
cR U=

∆
=

∆
=∆

τ
τ 2

2
                                              (2.57) 

 

implies that the range bin of 2τc is resolved in fN ∆τ parts with range resolution of 

fNc ∆2  [10]. 

 

        As explained in the last section, f∆τ  plays an important role in the stepped frequency 

waveform design and these are the three cases for f∆τ  [10]: 
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2.3.5.1. Case-1.  In this case the original range bin is equal to the unambiguous range 

window UR . The range bin of width 2τc  is resolved into N parts with an effective range 

resolution of Nc 2τ . This case can be used to detect stationary targets or rotating targets 

with no translational motion but it is unacceptable for detecting moving targets since the 

target and the clutter coexist in the range cell and there is no clutter-free space for moving 

targets. This case is shown in figure 2.10. 

 

Nc 2τ

UR
2τc

 
Figure 2.10.  Case-1 :  1=∆fτ  

 

 

2.3.5.1.  Case-2.  In this case, the range bin accommodates only a fraction of unambiguous 

range window. The range resolution, fNc ∆ττ 2 , is worse than the first case; however, 

there is a clutter free space available for detecting moving targets. This case is shown in 

figure 2.11. 

 

fNc ∆ττ 2

UR2τc
 

Figure 2.11.  Case-2 :  1<∆fτ  

 

 

2.3.5.2. Case-3.  In this case, the range bin is larger than the unambiguous range window, 

and, the range profile is aliased and fold-over will occur. Therefore, this case should be 

avoided.  
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        After eliminating the range fold-over problem by choosing appropriate values for f∆  

and τ , we have N complex samples from N frequency-stepped pulses that can be used for 

range extraction.  

 

        From equation (2.48), we have  

 

nT
c
R

T
f

c
Rfnind

2222 ∆
=∆= ππφ                                       (2.58) 

 

        The second term, which is the multiplication of the rate of change of frequency Tf∆  

with the round-trip time cR2 , represents a shift in frequency during the round-trip time. 

Thus, the range (or the round-trip time) is converted into a frequency shift (which is 

analogous to conversion of range to frequency in linear frequency-modulated CW radar as 

explained in section 2.4). Therefore, it is possible to resolve and measure the range by 

resolving the frequency, which can be done by taking the DFT of the received signal from 

N frequency-stepped pulses [10]. Since the range is measured by taking the DFT, the range 

measurement will have the same limitations as the frequency measurement by DFT. Thus, 

the range resolution ∆R is dependent on the frequency resolution. In order to improve the 

range resolution, high resolution spectral estimators which provide superior performance 

than DFT in frequency estimation can be used. High resolution spectral estimators will be 

explained in detail in chapter three and they will be tested using synthetic stepped-

frequency radar returns in chapter four and using real stepped-frequency radar returns in 

chapter five. 
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2.4. Frequency Modulated Continuous Wave (FMCW) Radar 

 

        Frequency modulated waveform is a widely used pulse-compression technique to 

achieve wide operating bandwidths. Among the modulation techniques, Linear Frequency 

Modulation (LFM) is the most commonly used one. LFM pulses are also called as chirp 

pulses. In the LFM, the frequency is swept linearly across the pulse width, either upward 

(up-chirp) or downward (down-chirp). Another way of sweeping the frequency is using 

two chirp signals, one having up, and the other down, called triangular LFM.  Frequency 

variation of up-chirp and triangular LFM can be seen in figures 2.12 and 2.13, respectively, 

and figure 2.14 shows the time variation of up-chirp LFM.   
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Figure 2.12.  Frequency variation of up-chirp LFM waveform  
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Figure 2.13.  Frequency variation of triangular LFM waveform  
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Figure 2.14.  Up-chirp LFM waveform 

 

2.4.1. Block Diagram 

 

        As explained in section 2.3., the frequencies of the pulses of the stepped-frequency 

radar are increased from pulse to pulse by a fixed frequency increment f∆ by the stepped 

frequency synthesizer (SFS). In FMCW radar, the frequency is swept linearly across the 

pulse width by a Sweep Frequency Generator (SFG). Block diagram of the bistatic FMCW 

radar is shown in figure 2.15.   

 

        On the transmit side, first STALO and SFG frequencies are added in a mixer. SFG 

output provides the frequency sweep in the FMCW waveform and STALO is used to 

upconvert the sweep waveform to RF. SFG output is a sweep signal where the frequency 

changes between 0f and 1f . The mixer output is filtered by an appropriate bandpass 

filter to suppress undesired intermodulation products. The resulting signal, consisting of 

the sum of the STALO and SFG frequencies, is amplified and transmitted. Note that a 

sample of the transmitted signal is fed through the receive part via coupler.  

 

        On the receive side, received signal is first band limited by a bandpass filter and then 

amplified by a Low Noise Amplifier. The output of the LNA is compared with the 

transmitted signal in the mixer. The output of the mixer is low pass filtered to eliminate 

images and intermodulation products. The output of the low pass filter is called the IF or 

beat signal.  
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Figure 2.15.  Block diagram of a bistatic FMCW radar 

 

2.4.2. Waveform 

 

        In this section, first, Frequency Modulation (FM) will be explained in order to make 

it easier to understand the LFM waveform, then, the time domain representation and 

spectrum of LFM waveform will be explained in detail. 

 

2.4.2.1.  Frequency Modulation.  Let iθ  denote the angle of the modulated carrier which is 

a function of the message signal. Thus, the angle modulated signal can be expressed as 

 

)]([)( tCosts iθ=                                                         (2.59) 

 

where the amplitude of the carrier is assumed to be unity.  
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The average frequency over an interval from t  to tt ∆+  is given by, 

 

t
tttf ii

t ∆
−∆+

=∆ π
θθ

2
)()(                                              (2.60) 

        Thus, the instantaneous frequency of the angle modulated signal can be written as 

follows: 

                                                    tti ftf ∆→∆= 0lim)(       

                                                            ⎥
⎦

⎤
⎢
⎣

⎡
∆
−∆+

= →∆ t
ttt ii

t π
θθ

2
)()(lim 0  

                                                            
dt

d iθ
π2
1

=                                                             (2.61) 

 

        Frequency modulation is a form of angle modulation in which the instantaneous 

frequency is varied linearly with the message signal, as shown by, 

 

)()( 0 tmkftf fi +=                                                   (2.62) 

 

where 0f  represents the frequency of the unmodulated carrier and fk  represents the 

frequency sensitivity of the modulator. So, the instantaneous frequency can be expressed as 

                          ∫=⇒=
t

ii
i

i dttf
dt
dtf

0

)(2
2
1)( πθθ
π

 

                                                                   ∫ +=
t

f dttmkf
0

0 ])([2π  

                              ∫+=
t

f dttmktf
0

0 )(22 ππ                            (2.63) 

        Therefore, the time domain representation of the frequency modulated signal is 

 

])(22[)(
0

0 ∫+=
t

f dttmktfCosts ππ                                   (2.64) 

         

         In the rest of this chapter, fk  is assumed to be unity. 
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2.4.2.2.  Linear Frequency Modulation.  In up-chirp LFM waveform, instantaneous 

frequency is increased linearly with the message signal where the message signal is  

 

    ttm α=)(                                                          (2.65) 

where 

TB=α                                                            (2.66) 

and B represents the bandwidth, and T represents the pulse width. 

 

        So, the transmitted up-chirp LFM signal can be written as, in time domain,  

)]
2

(22[

]22[

])(22[)(

2

0

0
0

0
0

ttfCos

dtttfCos

dttmtfCosts

t

t

T

αππ

αππ

ππ

+=

+=

+=

∫

∫

 

)
2

(2)(
2

0
ttfti απθ +=⇒                                                (2.67) 

 

Thus, the instantaneous frequency is  

 

tftf α+= 0)(                                                      (2.68) 

 

Transmitted up-chirp LFM signal can be expressed in complex notation by 

)2exp()exp()(

)]
2
1(2[exp)()(

0
2

2
0

tfjtj
T
trect

ttfj
T
trecttsT

παπ

απ

=

+=
 

)2exp()( 0 tfjts π=                                                           (2.69) 

where 

)exp()()( 2tj
T
trectts απ=                                              (2.70) 
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        The spectrum of the transmitted signal is determined from the envelope of s(t). Since 

the multiplication of s(t) with )2exp( 0 tfj π shifts the spectrum of s(t) by 0f , it is enough 

to find the spectrum of s(t) [9] .  

∫

∫
∞

∞−

∞

∞−

−

−=

=

dtjwttj
T
trect

etswS jwt

)exp()exp()(

)()(

2πα
 

dtjwttj
T

T

)exp()
2

2exp(
22

2

−= ∫
−

πα                                       (2.71) 

Let 

TB /22' ππαα ==                                                   (2.72) 

 

changing the integration variable as 
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αβ ddtdtdwt
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we have 
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(2.74) 

where 
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Remembering bydefined,)(and)(,IntegralsFreshnelthe xCxS   

dxxCosC ∫=
β πβ
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2

)
2

()(                                                    (2.76) 

dxxSinS ∫=
β πβ
0

2

)
2

()(                                                    (2.77) 

The spectrum of s(t) can be written as follows: 
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Fresnel Integrals can be approximated by 

1;)
2

(1
2
1)(

2

>>+≅ βπβ
πβ

SinxC                                 (2.79) 

1;)
2

(1
2
1)(

2

>>+≅ βπβ
πβ

CosxS                                 (2.80) 

So, 

)()( 11 ββ CC −=−                                                           (2.81) 

)()( 11 ββ SS −=−                                                            (2.82) 

 

Therefore, S(w) can be written as  

 

[ ] [ ]{ })()()()()
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exp(
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)( 1212
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π SSjCCjwwS +++
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=                 (2.83) 

 

Replacing   παα 2'= , we have 
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         Figure 2.16 shows a typical plot of amplitude spectrum of LFM waveform [9]. 

 

 
Figure 2.16.  Amplitude spectrum of LFM waveform 

 

 

2.4.3. Signal Flow & Signal Processing 

 

        For the up-chirp waveform, the instantaneous frequency of the transmitted signal can 

be written as 

tftfT α+= 0)(                                            (2.85) 

 

where  TB=α . The transmitted signal travels to the target at distance R and returns after 

a time delay τ  where cR2=τ .  

 

 The instantaneous frequency of the received signal can be written as 

 

)()( 0 τα −+= tftfR                                                  (2.86) 
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 The beat frequency can be written as follows: 

 

c
R

T
Bfff RTb

2
==−= τα                                         (2.87) 

 

So, the range to the target is 

B
fTcR b

2
=                                                          (2.88) 

 

        The main task for finding the range is estimating the beat frequency, or frequencies if 

multiple targets are present, and distinguishing different beat frequencies that are close to 

each other. Classical methods employ Fourier Transform to find the beat frequencies. In 

section three, high resolution methods for estimating the beat frequency will be presented 

and they will be implemented and tested using synthetic FMCW radar returns and their 

performances will be compared in chapter four.  
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3.  SPECTRAL ESTIMATION METHODS 

 

 
Spectral estimation can be defined as estimating the distribution of total power over 

frequency bins of a finite-length record of a second-order stationary random process, i.e. 

finding the density of power in narrow spectral bands. Spectral estimation methods find 

application in many diverse fields such as speech processing, electromagnetics, 

communications, economics, medicine, meteorology, astronomy, radar and sonar systems.  

 

There are two approaches in spectral analysis: non-parametric and parametric 

methods. Non-parametric methods makes no assumption on data and uses basic definitions 

of Power Spectral Density (PSD) while parametric methods postulate some models for the 

data and find the parameters in the model. Parametric methods outperform the non-

parametric methods if data satisfies the assumed model, i.e. model postulated on data is 

appropriate, otherwise, non-parametric methods provide better spectral estimates than 

parametric methods. In cases where a priori knowledge about the signal is available, it may 

be better to use parametric methods to obtain better spectral estimates even when it is not 

easy or feasible to obtain large data set. 

 

This chapter will cover both the parametric and non-parametric methods and explain 

their advantages and disadvantages. Then, the methods explained in this chapter will be 

implemented and tested using synthetic stepped-frequency and FMCW radar returns in 

chapter four and experimental stepped-frequency radar data in chapter five.  

 

This chapter is organized as follows: section 3.1 covers the basic concepts that will 

be frequently used in following sections, non-parametric methods are explained section 

3.2, section 3.3 covers parametric methods for rational spectra and parametric methods for 

line spectra are explained in section 3.4.   

 

 This chapter is an improved summary of the first four chapters of [14].  Many proofs 

are added and the topics are associated with BOD and TWOD. Detailed information about 

the topics in this chapter can be obtained from [14].   
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 3.1.  Introduction 

 

3.1.1.  Energy Spectral Density  

 

Let { }...,2,1,0;)( ±±=nnx denote a deterministic discrete time data sequence which 

is obtained by sampling a continuous time signal. Assume )(nx  is a finite energy signal, 

i.e., 

∞<∑
∞

∞−=n

nx 2)(                                                       (3.1) 

 

Discrete Time Fourier Transform (DTFT) of { })(nx  is defined as  

 

∑
∞

∞−=

−=
n

jwnenxwX )()(                                                    (3.2) 

 

and the corresponding Inverse Discrete Time Fourier Transform (IDFT) is  

 

dwewXnx jwn∫
−

=
π

ππ
)(

2
1)(                                               (3.3) 

 

Energy Spectral Density, S(w), which represents the distribution of energy of the 

deterministic discrete time data sequence over frequencies is defined as follows 

 

∑
∞

∞−=

−=
k

jwkekwS )()( ρ                                                (3.4) 

 

where )(kρ is autocorrelation of the finite energy sequence )(nx which is defined by 

 

)()()( knxnxk
n

−= ∑
∞

∞−=

∗ρ                                              (3.5) 

 

Note that Fourier Transform is exists only for finite energy signals. 
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3.1.2.  Power Spectral Density 

 

Let the discrete time signal { }...,2,1,0;)( ±±=nnx  denote a sequence of random 

variables with zero mean, i.e. 

{ } 0)( =nxE                                                         (3.6) 

 

where { }•E  denotes the expectation operator (which finds the average of samples in )(nx ). 

 

The autocovariance sequence (ACS) of )(nx  is defined as  

 

{ })()()( knxnxEkr −= ∗                                            (3.7) 

 

where ∗ denotes the complex conjugate operator. Equation (3.6) and (3.7) imply that )(nx  

is a White Sense Stationary (WSS) sequence. 

 

ACS has the following useful properties : 

 

)()( krkr −= ∗                                                        (3.8) 
and 

kkrr ∀≥ )()0(                                                 (3.9) 
 

Let   

[ ])()2()1( mnxnxnx −−−= LmX                               (3.10) 

 

The covariance matrix of )(nx is defined as 

 

{ }m
H
mm XXR E=                                                                              (3.11) 
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where (.) H denotes the hermitian (complex conjugate transpose) operator.  

 

3.1.3.  First definition of Power Spectral Density 

 

 Power Spectral Density (PSD) is defined as the DTFT of the covariance sequence: 

 

∑
∞

∞−=

=
k

jwkekrw )()(φ                                               (3.14) 

 

which is similar to the ESD definition for the deterministic discrete time sequence. Also, 

from the inverse transform, we have, 

dwewkr jwk∫
−

=
π

π

φ
π

)(
2
1)(                                           (3.15) 

 

 Note that { } dwwrnxE ∫
−

==
π

π

φ
π

)(
2
1)0()( 2 . Since πφ 2/)()( wdw  is the 

infinitesimal power in the )2/,2/( dwwdww +− band and the total power in the signal can 

be calculated by integrating these infinitesimal contributions over ),( ππ− , )(wφ given by 

(3.14) can be named as power spectral density. 

 

3.1.4.  Second definition of Power Spectral Density 

 

 The second definition of the PSD is given by  
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 This definition is equivalent to first one under the assumption 

 

0)(1lim =∑
−=

∞→ krk
N

N

Nk
N                                          (3.17) 

which means{ })(kr  decays sufficiently fast. 

 

3.2. Non-Parametric Methods 

 

Two common nonparametric spectral estimators are correlogram and periodogram 

which are derived directly from the first and second definition of PSD. Periodogram and 

correlogram can provide high resolution spectral estimate if the data length is sufficiently 

large. It is observed that the variance of these estimators is high and does not decrease as 

the data length increases, which make these estimators poor spectral estimators. Blackman-

Tukey, Barlett, and Welch are some popular spectral estimators that will be explained in 

this chapter which has lower variance at the cost of reduced resolution. 

 

3.2.1. Periodogram 

 

 Periodogram relies on the second definition of the PSD. Dropping the expectation 

and truncating the infinite sum in the second definition of the PSD for{ }Nnnx ,...,2,1;)( =  

where{ })()1( Nxx L  are the samples of a discrete time WSS random process, periodogram 

spectral estimate is defined as follows: 
2

1
)(1)(ˆ ∑

=

−=
N

n

jwn
P enx

N
wφ                                          (3.18) 

 

3.2.2. Correlogram 

 

 Correlogram relies on the first definition of the PSD. For { }Nnnx ...,,1;)( =  where 

{ })()1( Nxx L  are the samples of a discrete time WSS random process, correlogram is 

defined as 

 



 44

∑
−

−−=

−=
1

)1(

)(ˆ)(ˆ
N
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jwk
C ekrwφ                                            (3.19) 

 

where )(ˆ kr  denotes the estimate of the autocovariance sequence. )(ˆ kr can be obtained in 

two standard  ways:   

 

3.2.2.1.  Unbiased ACS Estimator. 
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)(ˆ krU is called as unbiased ACS estimator since { } )()(ˆ krkrE U = , i.e.,  
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3.2.2.2.  Biased ACS Estimator. 

 

∑
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)(ˆ krb is called as biased ACS estimator since { } )()(ˆ krkrE b ≠ , i.e., 
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 Sample covariances with negative lags are obtained via the property of the 

autocovariance function  

1,1,0)(ˆ)(ˆ −==− ∗ Nkforkrkr L                                (3.22) 
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 Let )(ˆ wU
Cφ denote the correlogram estimate when unbiased ACS estimate is used in 

(3.19). 

 

 An interesting property which is worth to note is that     

)(ˆ)(ˆ ww b
CP φφ =                                                   (3.23) 

i.e., periodogram spectral estimate coincides with correlogram spectral estimate if biased 

ACS estimate is used in (3.19). 

 

 In order to prove the above claim consider an Linear Time Invariant (LTI) system 

with a transfer function  

)(1)( nx
N

nh =                                                  (3.24) 

where { })(),2(),1( Nxxx L  are the realizations of a random process for which we would 

like to find the spectral estimate )(ˆ wXφ . 

                                 
)(ne is chosen as white discrete time random process with unit variance, i.e, 0,)( ke kr δ=  

and wwe ∀= ,1)(φ ,     where,  

⎩
⎨
⎧ =

=
elsewhere
k

k ,1
0,0

0,δ                                              (3.25) 

So, we have, 

)()()( nxnhny ∗=  
22 )()()()( wHwHww ey ==⇒ φφ  

where 

∑ −= jwnenhwH )()(  

)(ˆ)(1)(
22 wenx

N
wH P

jwn φ==⇒ ∑ −  

)(ˆ)( ww Py φφ =⇒                                                  (3.26) 
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N

nh =)(ne  )(ny  



 46

Calculating the ACS of the output )(ny  for 0>k  
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Since )(ne is white, i.e., 
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)()( ww b

Cy φφ =⇒  

)(ˆ)(ˆ ww b
CP φφ =⇒  

 

 

3.2.3. Properties of Periodogram 

 

 This section covers the analysis of the statistical properties of periodogram and 

shows that the periodogram is a poor PSD estimator. Since the bias and variance are two 

important measures to characterize the quality of an estimator, we will derive expressions 

for the bias of periodogram in section 3.2.3.1 and variance of peridogram in section 

3.2.3.2. 

 

 



 47

3.2.3.1.  Bias Analysis of Periodogram 

 

 Standard bias ACS estimate given by the expression   
 

∑
+=

∗ −≤≤−=
N
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b Nkforknxnx
N

kr
1

10)()(1)(ˆ                      (3.27) 

 
will be used in the following derivations. Note that the negative lags will be calculated 

using the following property of covariance function given by (3.8)   

 
1...,,0,)(ˆ)(ˆ −==− ∗ Nkkrkr            

 
So, the periodogram estimate is given by (using the previous proof) 
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Therefore, we have, 
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For the positive lags, i.e., for 0≥k , we have 
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For the negative lags, i.e., for 0<k , we have 

)}(ˆ{(})(ˆ{ krEkrE bb −=
∗                                            (3.31) 

Replacing kk −=' , we have  

})'(ˆ({})(ˆ{ krEkrE bb ∗
=                                           (3.32) 
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Combining (3.30) and (3.33), we have, 
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N
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krE b                 (3.34) 

 

Combining (3.29) and (3.34), we have, 
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Define 
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where )(kwB  is called as the Bartlett window and it is shown in figure 3.1. 
 

 
Figure 3.1.  Bartlett window 
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Inserting (3.36) in (3.34), we get, 

 

{ } )()()(ˆ krkwkrE B
b =⇒                                          (3.37) 

 

So, (3.35) can be rewritten as 

 

{ } [ ] jwk
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∑= )()()(φ                                     (3.38) 

{ })()( krkwDTFT B=                                      (3.39) 
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and is called as Fejer Kernel and it is shown in figure 3.2. 
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Figure 3.2.  Normalized Fejer Kernel for N=35 

 

 It can be shown that 3-dB width of the main lobe of )(wWB is approximately N/2π  

in radians and 1/N in hertz. Note that )(wWB has a large main lobe, especially for small 

values of N, which will cause estimated spectrum to be smoothed (which is called 

smearing ). Two tones separated in frequency by less than 1/N will yield a broad peak 
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instead of two separate peaks. So, 1/N is the resolution limit of the periodogram. Our goal 

in the next sections will be finding some spectrum estimators which would provide better 

spectral resolution than periodogram with the same number of data.  

 

3.2.3.2.  Variance Analysis of Periodogram 

 

 Asymptotic variance of the periodogram PSD estimate will be derived to show that 

the poor statistical accuracy of periodogram. For the derivations in this section, first some 

basic concepts will be explained and then the variance of periodogram will be derived.  

 

If {e(n)} is a complex white noise sequence, it satisfies   
 

mnmeneE ,
2* ])()([ δσ=                                             (3.42) 

[ ] 0)()( =meneE                                                  (3.43) 

where 2σ  is the variance of e(n). 

 

 Equation (3.42) can be rewritten as, 
 
                          { }))]((Im))(([Re]))((Im))(([Re mejmenejneE −+    

                                  ]))((Im))((Im))((Re))((Re{[ menemeneE +=   

                                         ]}))((Im))((Re))((Re))((Im[ nemenemej ++            

                                  mn,
2δσ=                                                                                         (3.44) 

So, we have,                               

                           mnmenemeneE ,
2))]((Im))((Im))((Re))(([Re δσ=+                      (3.45) 

                          0))]((Re))((Im))((Re))(([Im =+ nememeneE                              (3.46) 
  

 
Equation (3.43) can be rewritten as, 
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So, we have,   

0))]((Im))((Im))((Re))(([Re =− menemeneE                           (3.48) 

0))]((Im))((Re))((Im))(([Re =+ nememeneE                           (3.49) 

 

Combining (3.45) and (3.48), we have, 
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Combining (3.45) and (3.48), we have, 

 

0))]((Im))(([Re =meneE                                            (3.52) 

0))]((Im))(([Re =nemeE                                            (3.53) 

  

  Asymptotic variance of periodogram estimate in the case of Gaussian complex white 

noise is given as  
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    We begin proof by expanding the expression on the left hand side of equation (3.54) 

 

{ }])()(ˆ[])()(ˆ[lim 2211 wwwwE x
p

xx
p

xN φφφφ −−∞→         

{ } )()()(ˆ)(ˆlim 2121 wwwwE xx
p

x
p

xN φφφφ += ∞→  

)(ˆlim)( 21 wEw p
xNx φφ ∞→−  

)(ˆlim)( 12 wEw p
xNx φφ ∞→−                                           (3.55) 
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So, we have, 
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Hence, in order to prove (3.54) we need to show 
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we have 

[ ] [ ]∑∑∑∑
= = =

−−−−

=

=
N

n

N

m

N

k

lkjwmnjw
N

l

p
x

p
x eelxkxmxnxE

N
wwE

1 1 1

)()(

1

**
221

21)()()()(1)(ˆ)(ˆ φφ  

(3.61) 
  

Using the property given for the jointly Gaussian complex random variables 
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the expression in the summation in equation (3.61) can be written as 
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Using (3.42) and (3.43), we have  
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Using (3.64), equation (3.61) can be written as 
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So, equation (3.68) can be written as 
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 Equation (3.72) is the proof of (3.59), hence the proof for the asymptotic variance of 

periodogram estimate is complete. 

 

 The expression given for the asymptotic variance of periodogram estimate means that 

even when N goes to infinity, variance does not die off and this is the main problem of 

periodogram spectral estimator. Several refined periodogram-based and window-based 

non-parametric spectral estimators have been developed to overcome the high statistical 

variability of the periodogram and they are presented in the following sections. 

 

3.2.4. Blackman-Tukey Method 

 

The poor statistical quality of the peridogram can be explained as arising from the 

poor accuracy of )(ˆ kr  in )(ˆ wCφ  for extreme lags and the large number of covariance 

estimation errors that are cumulatively summed up in )(ˆ wCφ . Both of the effects can be 

reduced by truncating the sum in the definition of )(ˆ wCφ .  Following this idea leads to the 

Blackman-Tukey spectral estimator is, which is given by, 
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where { })(kw  is an even function, i.e., )()( kwkw −= , 1)0( =w , 0)( =kw  for Mk > , and 

)(kw decays decays smoothly to zero with k, and  M<N.  Since )(kw weights the sample 

ACS, it is called as the lag window.  

 

Writing the Blackman-Tukey spectral estimator as a DTFT, we get,  
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Since the DTFT of the product of two sequences is equal to the convolution of their 

respective DTFTs, 
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So, high statistical variability of the periodogram is eliminated by windowing the 

sample ACS by an appropriate window. However, smoothing the spectral estimate by 

windowing decreases the resolution. The smaller the M, the narrower the { })(kw , the wider 

the )(wW , the smaller the variance and the lower the resolution. The results established by 

the analysis of )(ˆ wBTφ  show that the resolution of Blackman-Tukey spectral estimator is 

on the order of M1 , whereas it variance is on the order of NM . As can be seen, there is 

trade-off between resolution and variance and this should be considered while choosing the 

window length. 

 

Common Window Examples : 

 

The expressions for the common windows can be seen in the table 3.1. These 

windows satisfy )()( kwkw −= , 1)0( =w , and 0)( =kw  for Mk > .  
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for some α , where  10 ≤≤α  and α denotes the ratio of taper. 
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The following figures shows the time domain and frequency domain responses of the 

windows listed in table 3.1. 
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Figure 3.3.  Time and frequency domain response of Bartlett window 
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Figure 3.4.  Time and frequency domain response of Hamming Window 
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Figure 3.5.  Time and frequency domain response of Hanning Window 
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Figure 3.6.  Time and frequency domain response of Blackman Window 
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Figure 3.7.  Time and frequency domain response of Blackman-Harris Window 
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Figure 3.8.  Time and frequency domain response of Flat-top Window 
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Figure 3.9.  Time and frequency domain response of Parzen Window 

 

 



 59

20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Samples

A
m

pl
itu

de
Time Domain ( Bohman Window )

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-200

-150

-100

-50

0

50

Normalized Frequency 

M
ag

ni
tu

de
 (d

B
)

Frequency Domain  ( Bohman Window )

 
Figure 3.10.  Time and frequency domain response of Bohman Window 
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Figure 3.11.  Time and frequency domain response of Tukey Windows 

for 1and75.0,5.0,25.0,0=α  
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Figure 3.12.  Time and frequency domain response of Bartlett-Hanning Window 
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3.2.5.  Bartlett Method 

 

The idea of the Bartlett method is to reduce the variance of the periodogram by 

splitting up the N observations into MNL = groups, each group with length M, and then 

average the periodograms obtained from each group.  

 

Divide { }N1.......xx  into L non-overlapping groups as 
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Bartlett Method can be summarized as follows: First, we define each group as  
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Then, the periodogram estimate of each group is defined as 
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Bartlett Method computes the spectral estimate by 
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Bartlett method reduces the variance by a factor L. However, since the Bartlett 

method uses data segments of length M, the resolution is on the order of M1 , where it 

was originally N1 , thus leading a reduction in the resolution by a factor L. So, the same 
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trade-off in Blackman-Tukey method between resolution and variance exists also in 

Bartlett method.  

 

It may be interesting to relate the Bartlett method to the Blackman-Tukey method. 

Remembering the periodogram definition, the periodogram estimate of each group is 

defined as 
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where  )(ˆ kr b
i  is the biased ACS estimate of each group and calculated as follows: 
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The Bartlett spectral estimate can be written as 
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So, the Bartlet spectral estimate is given as 
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From equations (3.73) and (3.85), we see that Bartlett spectral estimate looks like 

Blackman-Tukey spectral estimate with rectangular window.  

 

Note that, Bartlett method uses fewer samples to form the ACS estimate, so, the 

variance of the Bartlett spectral estimate is higher than that of Blackman-Tukey method. 
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3.2.6. Welch Method 

 

Welch method is similar Bartlett method with the following differences: Blocks are 

allowed to overlap and each block is windowed prior to computation of periodogram.  

 

Welch method can be summarized as follows: First, we define the overlapping 

groups as 

SjMnnKjxnx j ≤≤≤≤+−= 1,1,])1[()(                     (3.86) 

Let )(nυ denote the window coefficients. Then, the windowed periodogram corresponding 

to )(nx j  is given as  
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Welch method computes the spectral estimate by averaging the windowed periodograms, 

i.e.,  
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Note that (j-1)K  in (3.86) is the starting point of the jth group. If  K=M, groups do 

not overlap, and we get a similar grouping used in Bartlett method. The recommended 

value for K in the Welch method is 2MK =  in which 50% overlap is obtained.  

 

Note that the overlapping the blocks increases the number of periodograms to be 

averaged and, hence, decreases the variance. Windowing provides control over the 

resolution/variance properties of the PSD estimate and decreases the correlation between 

the blocks, which leads to decraese in the variance.  
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It may be interesting to relate the Bartlett method to the Blackman-Tukey method. 
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So, the Welch spectral estimate can be written as 
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 As can be seen from equations (3.73) and (3.95), we see that Welch spectral 

estimator is an approximate of Blackman-Tukey spectral estimator. 
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3.3. Parametric Methods for Rational Spectra 

 

3.3.1. Introduction   

 

 The difference between the non-parametric methods explained in section 3.2 and the 

parametric methods that will be explained in this section is that non-parametric methods 

impose no assumption on the signal whereas the parametric methods postulate a model for 

the data estimates the parameters in the assumed model. It has been shown that, in cases 

where a priori knowledge about the signal is available, parametric methods achieve better 

spectral estimates than non-parametric methods do.  

 

Non-parametric methods are good spectral estimators if the data size, N, is 

sufficiently large. However, if the data size is small they can not provide high resolution 

spectral estimates. So, the question that will be answered in this and next section is how 

can we obtain a good estimate of spectrum if N is not large enough? Persimony principle 

states that better estimates can be obtained with fewer samples by using appropriate data 

models. So, the goal is finding good models for the signal. The procedure for the 

parametric methods can be summarized as follows : 

 

 
Figure 3.13.  Procedure for parametric methods 

 

 Only the class of continuous spectra will be considered in this section. Discrete 

spectra will be considered in section 3.4.  
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  Let )(xf  be a continuous function on the interval ].,[ ba  Weierstrass Approximation 

Theorem asserts that for any 0>ε , there exists a polynomial   
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         Weierstrass Approximation Theorem implicitly asserts that any PSD can be 

approximated by a rational PSD which is of the form  
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         Since 0)( ≥wφ , the expression above can be factored as 
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         Then, the rational PSD can be considered as filtering the white noise with zero mean 

and variance 2σ  by a filter whose transfer function is )(/)( wAwB . Therefore, the problem 

of estimating the PSD turns out to be estimating )(nh . 
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where  

)(
)(})({)(

wA
wBnhDTFTwH ==                                      (3.104) 

)()()( 2 wwHw ex φφ =⇒                                        (3.105) 

and 

wwe ∀= ,)( 2σφ                                              (3.106) 

 

 Consider the difference equation of the form: 
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Applying Z transform to both sides 
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)()()()( zBzEzAzX =⇒                                         (3.113) 

A signal satisfying )()()()( zBzEzAzX =  is called autoregressive moving average signal 

with order ),( qp , i.e., ).,( qpARMA   If 1)( =zA , i.e., 0=p , then x(n) is called moving 

average signal with order q , i.e., MA(q) ; x(n) is called autoregressive signal if q = 0 with 

order p, i.e., AR(p).  

 



 67

 Then, we will investigate the covariance structure of ARMA(p,q) process. Consider 

the difference equation of the form: 
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 Multiplying both side of equation (3.114) by )( knx −∗ and taking expectation yields 
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Combining (3.115) and (3.116), we get, 
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3.3.2. Autoregressive Signals 

 

 When the B-polynomial in equation (3.101) is equal to unity for all frequencies, we 

come up with a special class of ARMA signals. AR model is used to model spectra with 

narrow peaks by placing zeros of the A-polynomial in (3.101) close to the unit circle. So, 

AR signals are also called as all-pole signals. 

 

 Rewriting the difference equation in (3.114)  for AR signals yields 
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 Equation (3.120) means that it is possible to obtain x(n) from the past samples of 

x(n), that is why AR model is also called autoregressive model.  

 

 Two methods, Yule-Walker (YW) method and Least-Squares (LS) method, will be 

explained in detail for autoregressive spectral estimation.  

 

3.3.2.1. Yule – Walker Method.  From the covariance structure of ARMA(p,q) process, we 

have 
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 Combining (3.121) and (3.122) and writing for pk L,2,1,0=  in matrix notation 

yields 
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These equations are called the Yule-Walker or Normal equations. Let 
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and 
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Note that the pA  matrix is Hermitian ( H
pp AA = ) and  Toeplitz. 

  

 An important property of pA matrix that will be useful is that it is positive semi-

definite (p.s.d.)  for all p. In order to prove this property, first, note that if the matrix pA  is 

p.s.d., then,  0,0 ≠Ω∈∀> xxxAx p
pH    where pΩ  denotes the complex field with 

dimension  p.  
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)()(),( * jnxinxji −−=⇒ pB  
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pp AB =⇒ }{E  

 

Multiplying pA  matrix with Hy  from left and with y from right yields 

 

yByyAy pp
H }{EH=  

                 yxxy nn }{ HH E=  

                      )})(({ yxxy nn
HHE=  

               0}{ 2 ≥= yxnE                                        (3.127)    

Equation (3.127) is valid for any 0if, ≠Ω∈ yy p . Hence the proof. 

 

 The important result is that, for AR signals, Ap (autocovariance) matrix is positive 

semi-definite, i.e., 0≥pA . 

 

 Another important fact will be useful is that if a matrix is positive definite then it is 

non-singular. This property can be shown by proof  by contradiction.  

 

 Suppose there exists 00where0 =⇒=≠ xAxAxx H . However, we know 

that .0>xAx H This is a contradiction and the proof is complete. 
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 Next we will consider how to solve Yule-Walker equations. First solve for   

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

pa

a
a

M
2

1

a .  Omitting the first row of (3.123), we obtain, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

+−
+−−

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0

0
0

)0()2()1(

)2()0()1(
)1()1()0(

)(

)2(
)1(

2

1

MM

L

MOM

L

pa

a
a

rprpr

prrr
prrr

pr

r
r

                  (3.128) 

 

0=+⇔ aAy pp                                             (3.129) 

If pA  is invertable, 

pp yAa 1−−=                                                  (3.130) 

 

Note that pÂ is not invertable for any },,2,1,0;)(ˆ{ pkkr L= . 

 

 An important property to ensure the invertibility of the pÂ  matrix is that if 
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matrix is positive definite for any p and the solution is unique. 

 

 In order to prove this claim, remember the bygivenestimatorACSbiased  
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where negative lags for the ACS estimate are computed via the property  

1...,,1,0,)(ˆ)(ˆ −==− ∗ Nkkrkr  
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Notice that  

XXAp
HHN =                                                   (3.133) 

 

and the columns of  X  are arranged as 
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Note that 
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Also, notice that 

0})(,...,)1({)( ≠= Nxxifprank X  

and  

.definitepositiveisXX H  

 

So, the null space of  X  and  XX H  is empty, i.e., 

}0{)()( == XXX HNN  

So, 

invertableisXX H  

Hence,  

pÂ is invertable. 

 

 Yule-Walker method can be summarized as follows: First, find the biased ACS 

estimate, },2,1,0;)(ˆ{ pkkr L= . Then, solve for  pp yAa ˆˆˆ 1−−= . Then compute the noise 

power as     
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3.3.2.2.  Least – Squares Method.  If  x(n) is an autoregressive process of order p, then we 

have 
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 Interpreting e(n) as the prediction error, the problem of estimating the AR 

coefficients turns out to be a simple minimization problem where the cost function is  
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2Xax +=                                                                                     (3.138) 
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where, for pNNN +== 21 ,1 , and  
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 There are some common choices for N1 and N2. The methods will be given briefly 

and the details will be skipped. 

 

 Autocorrelation method assumes that data prior to x(1) and x(N) are to be zero and 

N1=1 and N2=N+p . 

 

 Covariance LS method assumes that  N1=p+1 and N2=N. Only the data that is 

explicitly available is used, no assumption about data outside the observed data segment. 

This choice removes the first and last p rows from X and x. 

  

 Pre-windowing method assumes that x(n)=0 for n<0 and use data up to x(N), so, 

N1=1 and N2=N. 

 

 Post-window method begins with N1=p+1 and assumes that data after N are equal to 

zero. 

 

 Although LS Method is more accurate than YW method, it may be unstable whereas 

Yule-Walker method has been guaranteed to be stable for medium or small N. For large N, 

the difference between Yule-Walker and LS autoregressive coefficient estimates are quiet 

small. 

 

 

3.3.3. Moving Average Signals 

 

 There is a limited interest in MA signals since MA model is appropriate to model 

spectrum which has sharp nulls and broad peaks which is rarely encountered in 

engineering and MA parameter estimation is a nonlinear parameter estimation problem. 

Since MA model will not be an useful tool for our application where we will observe 

narrow peaks, MA model will not be explained.   
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3.3.4. ARMA Signals 

 

 Neither AR (all-pole) nor MA(all-zero) model can model the spectra with sharp 

peaks and deep nulls. ARMA (pole-zero) model is an useful tool to model such spectra. 

Although there exists no reliable and statistically accurate algorithms, modified Yule-

Walker and two-stage least squares are the mostly used ARMA spectral estimators. 

 

3.3.4.1. Modified Yule-Walker Method.  This method is a two stage procedure where in 

the first stage, AR coefficients are obtained using equation (3.117) and in the second stage 

MA coefficients are computed using the AR coefficients computed in the first stage and 

ACS estimates. 

 

 Our goal in the first stage is to estimate the AR coefficients. A procedure similar to 

the solution YW equations will be followed in this stage. 

 

 From equation (3.117), we have 

qkforikrakr
p

i
i >=−+ ∑

=

0)()(
1

 

 

Rewriting gives,,2,1forformmatrixin)(3.117 Mqqqk +++= L  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+−−++

+−++
+−+

0

0
01

)()1()(

)2()1()2(
)1()()1(

1

MM

L

MOMM

L

L

pa

a

MpqrMprMqr

pqrqrqr
pqrqrqr

             (3.141) 

Rewriting (3.141) yields 
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 These equations are called Modified Yule Walker equations if M=p and over-

determined modified Yule Walker equations if M>p.  Replacing {r(k)}’s by the estimates 

yields  
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This system of p equations with p unknowns can be solved via 
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raR ˆˆmin )( 1
+

paa L                                                (3.145) 

 

where the last equation can be solved via least squares method, i.e., 
 

)ˆˆ()ˆˆ(ˆ 1 rRRRaLS
** −−=                                            (3.146) 

 

 

 It has been shown that the statistical accuracy of the AR coefficient estimates are 

good if the condition number of the matrix R̂  in (3.144) is small. So, M should be selected 

so as to make R̂  matrix reasonably well conditioned. In the case of narrowband signals, 

for slowly decaying covariance sequences, the columns of the R̂  matrix are nearly linearly 

dependent. Hence, the condition number R̂  is quite high, so, in such a case, M should be 

increased in order to lower the condition number to a reasonable level.  
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 Our goal in the second stage is to estimate the MA coefficients. The AR coefficients 

computed in the first stage will be used in this stage. 

 

 From the ARMA model, we have, 
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Replacing estimateswithvaluesACSandARltheoretica  yields 
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 Note that the numerator in (3.154) is not guaranteed to be positive for all w values, so 

this approach may lead to negative ARMA spectral estimates. 
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3.3.4.2. Two-Stage Least-Squares Method.  Recall the ARMA(p,q) model given in (3.107) 
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 Our goal is to find the p
kka 1}{ =  and q

kkb 1}{ = , hence the PSD. In the first stage, we 

assume that we are given e(n) and solve for AR and MA coefficients and in the second 

stage we find a reliable estimate of e(n).  

 

 Rewriting (3.107) in matrix notation yields 
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Rewriting (3.155) ),max(somefor,...,1for qpLNLn >+=  gives 

eθZz =+                                                     (3.156) 
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Assuming we know )}({ ne , (3.156) can be solved as  

)()(ˆ 1 zZZZθLS
** −−=                                            (3.159) 

 

However, )}({ ne are not known. They will be estimated as follows: 

 

 Recall the ARMA(p,q) model 
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zBzX =  

where 
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So, we have,  
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Assuming the ARMA model is minimum phase, C(z) can be written as 

 

......1)( 2
2

1
1 +++= −− zzzC αα                                      (3.160) 

 

where }{ kα can be obtained using YW or LS method from AR models. However, AR 

models can be solved via YW or LS only for finite orders, so we need to truncate the order 

to some constant K. Solving the truncated AR model via YW or LS method gives the e(n)  

which can be used in the first stage two estimate the AR and MA coefficients. 

 

 The spectral estimate is guaranteed to be positive for all frequencies, by construction. 

Because of the truncation of the AR model, the two-stage LS estimate is biased. The bias 

can be decrased by choosing K sufficiently large; however, K should not be too large with 

respect to N, otherwise, the accuracy of the θ̂  will decrease.  
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3.4.  Parametric Methods for Line Spectra 

 

3.4.1. Introduction 

 

 Parametric (model-based) methods considered in this section are primarily used for 

estimation of the parameters of sinusoidal signals observed in an additive white noise. 

Eigen analysis is used for partitioning the eigenvectors and eigenvalues, of the covariance 

matrix of a noisy signal, into two subspaces: noise and signal subspace. This 

decomposition forms the basis of the methods considered in this section.  

 

 In radar applications, we frequently encounter nearly sinusoidal components. So, a 

method that can model the spectra with sinusoids in noise will be valuable.  

 

 Let,  

Nnnenxny ...,,1,0,)()()( =+=                                (3.161) 

and let x(n) be the noise-free complex valued sinusoidal signal, i.e., 
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where p is the number of sinusoidal signals and }{},{},{ kkk w ϕα  are the amplitudes, 

angular frequencies and phases, respectively. 

 

We make the following assumptions for the data model in (3.162)  

 1)  0>kα  ;  ],[ ππ−∈kw  .  Otherwise, model ambiguity may come up since 

])(exp[])(exp[ πϕαϕα ++−=+ kkkkkk nwjnwj  

 2)  sk 'ϕ  are independent random variables with uniform distribution between    

               ππ and− . 

 3)  )}({ ne is complex-valued circular white noise with power 2σ , i.e., 
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3.4.1.1. Covariance Function & PSD.   Our goal is to find expressions for )(kry  

)(and wyφ for the signal model  
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  Several useful corollaries and their proofs will be given before proceeding with the 

details of the line spectral methods. First one and the mostly used corollary is given as 

follows: 

lk
jj lk eeE ,}{ δϕϕ =−                                               (3.163) 

  Following equations describe the proof of this claim.  

1}{, == − lk jj eeElkif ϕϕ                                                     (3.164) 
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  Another corollary that will often be used is given as follows: 
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2* )}()({ δα=−                                    (3.166) 

The proof of this claim is shown by directly replacing the expressions of the signals, i.e.,  
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  Finally, the expression of ACS of the noisy signal is given as  
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Notice that the proof of this claim uses the second corollary.      
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Using (3.166), we get,  
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From the definition of PSD,  
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 The PSD in (3.168) is depicted in figure 3.14. Noise floor is equal to noise power 
2
eσ and the magnitude of the impulses is ....,,12 2 pkwherek =πα  Because of its 

appearance, the PSD in (3.168) is called a discrete or line spectra.  
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Figure 3.14.  PSD of complex sinusoidal signals in noise 

 

  Our goal is to estimate the parameters 2},{},{},{ ekkkw σϕα  in the signal model. It 

should be noted that the parameter that should be primarily concentrated on is the 

frequencies of the sinusoids since the estimation of other parameters knowing frequencies 

is a simple linear regression problem, i.e.,  

 

 Define  
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kk e ϕαβ =                                                     (3.169) 

Therefore, (3.161) can be rewritten as  
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Rewriting (3.170) in matrix notation yields 
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(3.171) 

 

by foundreadilybecanand)0(,knownisifthatNote kkkβ ϕα >  

)(mag kk βα =                                                        (3.172) 

)(arg kk βϕ =                                                          (3.173) 
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Solving the minimization problem 
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by LS metod gives 

yAAAβLS
*1* )(ˆ −=                                               (3.175) 

 

 

 3.4.1.2. Models of Sinusoidal Signals in Noise.  Frequency estimation methods 

represented in this section rely on two different models for the noisy sinusoidal signal y(n). 

 

 The first model, ARMA model, is a very special form. All its poles and zeros are 

located on the unit circle. Also, its AR and MA parts are identical.  For the noisy sinusoidal 

signal model in (3.161), the ARMA model is given as 

  

)()()()( nezAnyzA =                                             (3.176) 

where 

∏
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 The second equality follows from the fact that  

 

0)()( =nxzA                                                (3.178) 

Since  

0)()1( 1 =− − nxze k
jwk                                        (3.179) 
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 Hence, )1( 1−− ze kjw  is an annihilating filter for the thk component of x(n). 

0)()( =nxzA  follows from the fact that any filter that has zeros at frequencies { }kw  is an 

annihilating filter for x(n) and the PSD of x(n) has p  spectral lines located at { } p
kkw 1= . 

 

 The second method is the covariance model. In order to explain the model, define 

the )(wa vector and A matrix as 

 

)1(]....1[)( )1(2 xmeeewa Twmjwjjw −−−−=                          (3.180) 

)()](...)()([ 21 pxmwawawa p=A                            (3.181) 

 

 The Vandermonde matrix A has the following rank property : 

jiwwpmprank ji ≠≠≥= forandif)(A                      (3.182) 

 

 This claim can be easily proved by contradiction. It is sufficient to show that first p 

rows are linearly independent, or, A is non-singular, i.e., it is invertable. Suppose A is not 

non-singular, i.e., there exists some mΩ∈β , where mΩ represents m- dimensional field, 

such that, 

 

0and0 ≠= βAβ                                              (3.183) 

where  

 

]...[ 1210 −= pβββββ                                            (3.184) 

Define 

1,...,1,0, −== piez ijw
i                                         (3.185) 

So, the multiplication of  β  with any column of A can be written as 

0.....)( 1
110 =+++= −
−

p
inii zzzP ββββ                                (3.186) 



 87

 Note that the polynomial )( izPβ has p distinct non-zero roots. However, )( izPβ is a 

polynomial of order (p-1) and it can have at most (p-1) non-zero roots. So, this is a 

contradiction, and hence the proof. 
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where 
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Tmnenenene )]1()1()([)(~ +−−=                                (3.189) 

 

The covariance matrix of )(~ ny  can be computed as  

 

})(~)(~{ * nynyE=R                                                                                        (3.190) 

})](~)(~)][(~)(~[{ *nenxnenxE ++= AA                                                      (3.191) 

)]}(~)(~)][(~)(~[{ *** nenxnenxE ++= AA                                                  (3.192) 
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IAPA 2* σ+=                                                                                          (3.194) 
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 As will be shown in the following sections, the eigenstructure of R contains complete 

information on the frequencies { }kw . 
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3.4.2. Higher Order Yule Walker Method 

 

 Higher Order Yule-Walker method is derived from the ARMA model of sinusoidal 

signal. If the polynomial A(z) in ARMA model is multiplied by )(zA  with degree L-p , 

then the higher order ARMA model for the sinusoidal data is given by 

 

 )(...)1()()(...)1()( 11 LnebnebneLnybnybny LL −++−+=−++−+        (3.196) 

)()()()( nezBnyzB =⇒                                            (3.197) 
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Rewriting (3.196) in matrix notation yields 

 

[ ] )(....)(
1

)(...)1()( LnebneLnynyny L −++=⎥
⎦

⎤
⎢
⎣

⎡
−−

b
                   (3.199) 

 

Multiplying (3.199) with [ ]TmLnyLny )(...)1( ** −−−− and taking the expectation leads 

to 
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Equation (3.200) can also be written as  
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 The equation (3.202) is similar to the Yule-Walker system of equations encountered 

in AR signals, so, this set of equations associated with the noisy sinusoidal signal model is 

said to form a HOYW system.   

 

 Replacing the theoretical covariances by the the sample covariances yields 
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Define Ψ as the mxL covariance matrix in HOYW system and similarly Ψ̂ as the 

approximate covariance matrix in (3.203), i.e., 
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and 
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It can be shown that 

pmLprank ≥= ,for)(Ψ                                      (3.206) 

On the other hand, the matrix Ψ̂  has full rank ( almost surely) 

),min()ˆ( Lmrank =Ψ                                            (3.207) 
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owing to the random errors in { })(ˆ kr .  Hence, the linear system (3.203) is expected to be 

ill-conditioned. So, any LS method that estimates the b̂ directly form (3.203) has very poor 

accuracy. A priori rank information can be used to overcome this difficulty. 

 

 Let  
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denote the Singular Value Decomposition (SVD) of Ψ̂ .  In (3.208), U is an m x m unitary 

matrix, V is an LxL unitary matrix and Σ  is and mxL diagonal matrix. 

 

 Since Ψ̂  is close to a rank-p matrix, 2Σ  should be close to zero. Hence, the best (in 

the Frobenius-norm sense) rank-p approximation of Ψ̂  is given by 

 

111p VΣUΨ =ˆ                                                   (3.209) 

 

So, the rank-truncated HOYW system of equations is 
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The pseudoinverse of pΨ̂ is given as 

 
*
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So, the Least Squares solution for the b̂  is 
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Note that the accuracy in the frequency estimates increases as L and M increases and 

ΨΨ p
ˆˆ =  for pL =  or .pm =  

 

 Then, form the polynomial, 
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 Frequency estimates can be obtained as the angular positions of the p roots of )(zB  

that are nearest to the unit circle. 

 

 

3.4.3. MUSIC  

 

 MUltiple SIgnal Classification (MUSIC) method is derived from the covariance 

model, IAPAR 2* σ+= , with m>p. The covariance matrix of the noisy signal can be 

written as the sum of the covariance matrices of signal and noise as  

 

IAPAR 2* σ+=  

nX RR +=                                                        (3.214) 

 

 Let mλλλ ≥≥≥ ....21  denote the eigenvalues of R, arranged in non-decreasing order, 

and let { }p1 ss ,...,  be the orthogonal eigenvectors associated with { }pλλ ,...,1  and 

{ }pmgg −,...,1  denote the orthogonal eigenvectors associated with { }mp λλ ,...,1+ .  Since 

 

prank =)( *APA                                               (3.215) 

 

 *APA has p strictly positive eigenvalues, and the remaining (m-p) eigenvalues all 

being equal to zero, 0....1 ===+ mp λλ . Now, consider the eigenvalue decomposition of 

the p x p covariance matrix XR where 
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Since the covariance matrix of the noisy signal is sum of the covariance matrices of signal 

and noise, the covariance matrix of the noisy signal can be expressed as  
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Using equation (3.217), the eigenvectors and the eigenvalues of the covariance matrix of 

the noisy signal can be partitioned into two disjoint subsets.   
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Figure 3.15.  Decomposition of the eigenvalues of a noisy signal into 
signal and noise eigenvalues 

 

 The set of eigenvectors { }p1 ss ,...,  associated with the p largest eigenvalues span the 

signal subspace and the eigenvectors { }pm1 gg −,...,  associated with the remaining (m-p) 

eigenvalues span the noise subspace.  

 

 Let  

(m x p)][ p21 s...ssS =                                            (3.218) 

and    
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Note that  
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where the last equality implies that 0* =GAPA . Since the AP is full rank, 

 

0* =GA                                                         (3.221) 

 

which means that the columns { }kg of G belong to the null space of *A  , i.e., 

 

)( *Agk N∈                                                      (3.222) 

 

Since the rank(A)=p, the dimension of null space of *A is (m-p) which is also the 

dimension of range space of G. From this observation and the fact that 0* =GA , it follows 

that 

 

)()( *AG NR =                                                  (3.223) 

 

which means that the the columns { }kg of G span both )(and)( *AG NR . Since S and G 

are orthogonal, by definition, 

 

0=GS*                                                        (3.224) 

 

So, we also have )()( *SG NR = ; hence, )()( ** AS NN = . Since R(A) and R(S) are 

orthogonal complements to )(and)( ** AS NN , we get, 

 

)()( AS RR =                                                    (3.225) 
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The subspaces )(and)( GS RR  are called the signal subspace and noise subspace, 

respectively. 

 

 From the result 0=GA* , it can be concluded that the frequency values { }p
kkw 1= are the 

only solutions of the equation 
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 MUSIC algorithm can be summarized as follows: First, compute the sample 

covariance matrix estimate by 
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and the find its eigendecomposition. Let GS ˆandˆ denote the matrices, constructed from 

the  the eigenvectors { }p1 s,...,s ˆˆ  and { }pm1 g,...,g −ˆˆ  of R̂ , defined similarly to S and G.             

Then, frequency estimates can be determined as the locations of the p highest peaks of the    

function    
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 It can be shown that the accuracy of the MUSIC frequency estimates increases with 

increasing m. However, the computational complexity also increases with m. If 

computational complexity is not a problem, m may be chosen as large as possible, but not 

to close to N, in order to allow a reliable estimation of R̂ . However, if m takes large 

values, spurious frequency estimates may occur. Several modified MUSIC methods have 

been developed to overcome this problem but they will not be explained in this study. 
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3.4.4. Root-MUSIC 

 

 Root-MUSIC method facilitates the same ideas with MUSIC and differs only in the 

second step of the MUSIC algoritm. The main advantage of Root-MUSIC over MUSIC is 

its lower computational complexity.  

 

 Root-MUSIC algorithm can be summarized as follows: First compute the sample 

covariance matrix estimate by 

∑
=

=
N

mn
nyny

N
R )(~)(~1ˆ *                                             (3.229) 

 

and the find its eigendecomposition. Let GS ˆandˆ denote the matrices, constructed from 

the  the eigenvectors { }p1 s,...,s ˆˆ  and { }pm1 g,...,g −ˆˆ  of R̂ , defined similarly to S and G.              

Then, frequency estimates can be determined as the the angular positions of the p roots of 

the equation 

0)(ˆˆ)( *1 =− zazaT GG                                             (3.230)         

 

which are located nearest to the unit circle. 

 

3.4.5. Min-Norm Method 

 

 Minimum norm method uses only one vector from the range space of Ĝ to achieve 

some computational saving without sacrificing too much accuracy.  

 

  Let  

⎥
⎦

⎤
⎢
⎣

⎡
ĝ
1

                                                         (3.231) 

 

be the vector in )ˆ(GR with the minimum Euclidean norm.  
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 Spectral Min-Norm method finds the frequency estimates as the locations of the p 

highest peaks in the pseudospectrum 

2

*

ˆ
1

)(

1

⎥
⎦

⎤
⎢
⎣

⎡
g

wa

                                                 (3.232) 

 

 

 Root Min-Norm method estimates the frequencies can be as the angular positions of 

the p roots of the polynomial  

⎥
⎦

⎤
⎢
⎣

⎡−

g
aT

ˆ
1

)( 1z                                                    (3.233) 

that are closest to the unit circle.   

 

 

 The procedure of finding the vector [ ]Tĝ1  is described as follows: 

 

 Partition the matrix Ŝ as 

1}
1}ˆ

*

−⎥
⎦

⎤
⎢
⎣

⎡
=

mS
α

S                                                (3.234) 

Since [ ] )ˆ(ˆ1 Gg RT ∈ , it must satisfy 

0
ˆ
1ˆ * =⎥
⎦

⎤
⎢
⎣

⎡
g

S                                                     (3.235) 

which can be rewritten as 

 

αgS −=ˆ*                                                     (3.236) 
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The minimum-norm solution to (3.236) is  

 

αSSSg 1)(ˆ −−= *                                                (3.237) 

 

assuming that the inverse exists. Note that 

 
*ˆˆ ααSSSSI +== **                                             (3.238) 

 

and also that one eigenvalue of *ααI − is equal to 21 α− and the remaining (p-1) 

eigenvalues of *ααI −  are equal to one. Hence, the inverse in equation (3.237) exists if 

and only if  

12 ≠α                                                        (3.239) 

 

If this condition is not satisfied, there will be no vector of the form [ ]Tĝ1 in )ˆ(GR . 

 

 Under the condition 12 ≠α , since  

*ααSSI += *                                                 (3.240) 
*ααISS −=⇒ *                                                (3.241) 

1*1 )()( −− −=⇒ ααISS *                                         (3.242) 

αααIαSS 1*1 )()( −− −=⇒ *                                     (3.243) 

)1(
)( 2

1

α
ααSS

−
=⇒ −*                                          (3.244) 

 

Using (3.244) and (3.237),  ĝ  can be computed by 

 

)1(
ˆ

2α
αSg

−
−=                                                (3.245) 

 

which expresses ĝ  as a function of elements of Ŝ . 
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 Min-Norm method achieves the MUSIC’s performance at a reduced computational 

cost. Moreover, there is empirical evidence that the use of minimum-norm vector in 

)ˆ(GR in the form of [ ]Tĝ1 decreases the risk of spurious frequency estimates, as 

compared to MUSIC. 

 

3.4.6. ESPRIT 

 

 In the covariance model, a(w) vector and A matrix was given as  

 

)1(]....1[)( )1(2 xmeeewa Twmjwjjw −−−−=                          (3.246) 

)()](...)()([ 21 pxmwawawa p=A                            (3.247) 

 

Define  

AAIA 1m1 ofrows1)m(first.,.,)1(]0[ −−= − eixpm                 (3.248) 

AAIA 1m2 ofrows1)m(last.,.,)1(]0[ −−= − eixpm                 (3.249) 

 

where 1mI −  is the identity matrix of dimension )1()1( −− mxm  and the matrices 

]0[ 1mI − and ]0[ 1mI − are of dimension mxm )1( − . It can be verified that  

 

DAA 12 =                                                       (3.250) 

 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−

−

pjw

jw

e

e

0

01

OD                                            (3.251) 

 

is a unitary matrix, so the transformation in (3.250) is a rotation. ESPRIT ( Estimation of 

Signal Parameters via Rotational Invariance Techniques) relies on the rotational 

transformation.  
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Let  

 
2

1121 ........... σλλλλλλ ====>≥≥≥ ++ mppp                           (3.252) 

 

denote the eigenvalues of R and }{ p21 s,...,s,s  denote the corresponding signal 

eigenvectors.  

 

 Define 

)(][ pxmp21 s...ssS =                                           (3.253) 

and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

pλ

λ

0

01

OΛ                                                (3.254) 

  

So, we have, 

ΛSSR =                                                      (3.255) 

 

Rewriting (3.255) yields 

SIAPARS )( 2* σ+=  

SISAPARS 2* σ+=  

ΛSSISAPA =+ 2* σ  

)( 2* IΛSSAPA σ−=  

ΛSSAPA =*  
1ΛSAPAS −= )( *  

)( 1* −= ΛSPAAS                                              (3.256)                   

 

where 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

2

2
1

0

0

σλ

σλ

p

OΛ                                        (3.257) 
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Similarly, define  

SIS 1m1 ]0[ −=                                                   (3.258) 

SIS 1m2 ]0[ −=                                                   (3.259) 

 

From (3.256), we have 

CAS =                                                         (3.260) 

where 
1* −= ΛSPAC                                                  (3.261) 

 

 Note that S and A have full column rank, hence, C must be non-singular. Similar to 

(3.250), we can conclude that 

CAS 22 =                                                          (3.262)              

CDA1 )(=                                                     (3.263) 

 CDCS1
1−=                                                   (3.264) 

φS1=                                                             (3.265) 

where 

CDCφ 1−=                                                     (3.266) 

 

 As proven in the covariance model, the Vandermonde matrix A has full rank which 

implies that the matrices 21 AA and have full column rank. Also note that 21 SS and also 

have full column rank. So, the matrix φ  is given uniquely by the equation  

 

211 SSSSφ ** 1
1)( −=                                                (3.267) 

 

 which expresses φ  as a function of some quantities that can be estimated from the 

available samples.  

 

 The matrices φ  and D , where CDCφ 1−=  and C is any nonsingular matrix, have 

the same eigenvalues. (φ  is said to be related to D by a similarity transformation.) 
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 The proof of the previous claim can easily be shown considering the equation  

0)( 11 =−=−=− −− CIDCCIDCIφ λλλ  

which is is equivalent to 

0=− ID λ  

which implies that φ  and D have same eigenvalues.  

 

 ESPRIT uses the previous claim to find the frequency estimates. Since D is given as 

})exp()...exp({ 1 pjwjwdiag −−=D , finding the eigenvalues of φ  (which are also the 

eigenvalues of D ) will give us the frequency estimates, i.e., frequency estimates 

{ } p
kkw 1= can be obtained as )arg( kv−  where { } p

kkv 1=  are the eigenvalues of the matrix φ . 

 

 The two ways of obtaining φ  by solving the linear system of equations  

 

21 SφS =                                                       (3.268) 

 

are Least Squares(LS) and Total Least Squares(TLS) methods and computing the 

frequency estimates using LS and TLS are explained in the following subsections.  

 

 

3.4.6.1.  LS ESPRIT Solution.  Algorithm of the solution of the ESPRIT method by Least 

Squares method can be summarized as follows : 

 

 i.    Compute the sample covariance matrix 

∑
=

=
N

mn
nyny

N
R )(~)(~1ˆ *                                             (3.269) 

 ii.   Compute the eigendecomposition of R̂  

 iii.  Estimate the number of sinusoids in the noisy signal (find p̂ ). 
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 iv.  Construct the Ŝ  matrix from the eigenvectors and obtain the 21 SS ˆandˆ        

               matrices 

 v.   Solve the linear system of equations  

21 SφS ˆˆˆ =                                                        (3.270) 

               by LS method, i.e., compute φ̂  by 

2111 SS)SS(φ ˆˆˆˆˆ 1 ** −=                                               (3.271) 

 vi.  Compute the eigendecomposition of φ̂ .  

        vii.  Compute the frequency estimates as 

pkvw kk ˆ,...,2,1,)arg( =−= ,                                   (3.272) 

                where { } p
kkv ˆ

1=  are the eigenvalues of φ̂ . 

 

 

3.4.6.2.  TLS ESPRIT Solution.  Algorithm of the solution of the ESPRIT method by Total 

Least Squares method can be summarized as follows : 

 

 i.    Compute the sample covariance matrix using (3.269). 

 ii.   Compute the eigendecomposition of R̂  

 iii.  Estimate the number of sinusoids in the noisy signal (find p̂ ). 

 iv.  Construct the Ŝ matrix from the eigenvectors and obtain the 21 SS ˆandˆ  

                 matrices. 

 v.   Compute the eigendecomposition 

*0]ˆˆ[ˆ
ˆ

EΛESS
S
S

21
2

1 =⎥
⎦

⎤
⎢
⎣

⎡
*

*

                                          (3.273) 

 vi.  Partition the E matrix into pxp ˆˆ submatrices as 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

EE
EE

E                                                  (3.274) 
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 vii. Compute the eigenvalues of the matrix Ψ , where 

1−−= 2212 EEΨ                                                   (3.275) 

   viii. Compute the frequency estimates as 

pkw kk ˆ,...,2,1,)arg( =−= γ                                       (3.276) 

                where  { } p
kk
ˆ

1=γ  are the eigenvalues of Ψ . 

 

 

 It has been empirically observed that TLS-ESPRIT solution can achieve better finite-

sample accuracy than LS-ESPRIT. 

 

 ESPRIT has a similar statistical accuracy to that of HOYW, MUSIC, Root-MUSIC 

and Min-Norm. However, in most cases, ESPRIT can provide more accurate frequency 

estimates than these methods can and it has no problem with spurious frequency estimates. 

Moreover, ESPRIT has lower computational complexity. All these considerations make the 

ESPRIT as the first choice in any frequency estimation application. 

 

3.4.7. Smoothing Process 

 

 The previously described methods derive their frequency estimates utilizing the 

eigenstructure of the sample covariance matrix. In radar applications, since the reflection 

coefficients of the targets have constant values and do not change from measurement to 

measurement, the signals are coherent. Since the eigenanalysis-based methods do not work 

properly when the signals are coherent, a decorrelation process is required to eliminate 

problems encountered with coherent signals. 

 

 Consider the application of the eigenanalysis-based methods for finding the high 

range resolution profile of the stepped frequency radar. As shown in figure 3.16, the 

received signal is divided L overlapping subarrays each of with length M. Note that using 

smoothing techniques decreases the effective bandwith from )( 01 ffN −− to )( 01 ffM −−  
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which, in turn decreases the resolution. In spite of this disadvantage, eigenanalysis-based 

methods employing smoothing process can achieve much better performance than 

conventional FFT techniques. 

 

0f 2f1f Mf1−Mf 1+Mf 2−Nf 1−Nf

0y
1y

2y
1−My

My
1+My

2−Ny
1−Ny

1y

2y
3y

Ly  
Figure 3.16.  Subarray Arrangement 

 

 The vector ky  representing the thk subarray, where Lk ...,,2,1= , can be written as 

 

kk exDAy += − )1(k                                              (3.277) 

 

where  ke denotes the vector of additive white gaussian noise at the thk subarray and, and D 

denotes the p x p diagonal matrix expressed as 

 

)}2exp(,...,)2exp(),2exp({ 21 pfjfjfj τπτπτπ ∆−∆−∆−=D           (3.278) 

 

where f∆  is the sampling frequency separation and τ is the two way time delay.  
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 The covariance matrix of the thk subarray is given by 

 
*
kkk yyR =                                                                   (3.279) 

)()( 11 xDAxDA )(k)(k −−=                                       (3.280) 

IADxxDA 2*)1(*)1( )( σ+= −− kk                              (3.281) 

 

 

3.4.7.1.  Spatial Smoothing Process (SSP).  This method uses the SSPR  as the covariance 

matrix where SSPR  is the sample mean of the subarray covariance matrices [15], i.e., 

 

∑
=

=
L

kL 1

1
kSSP RR                                                 (3.282) 

 

 

3.4.7.2.  Modified Spatial Smoothing Process (MSSP).  This method uses the uses MSSPR  

as the covariance matrix [16], where,  

 

∑
=

+=
L

k

*

L 1

)(
2
1 JRJRR kkMSSP                                      (3.283) 

and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

01

10
NJ                                                  (3.284) 

is the so called reversal matrix. 

 

 It should be noted that, in both techniques, there exists a trade-off when choosing L 

and M. If M is increased, effective bandwidth and resolution increases but decorrelation 

performance decreases. If L is increased, decorrelation performance increases but effective 

bandwidth and resolution decreases. Therefore, M and L should be chosen depending on 

the application. Both of these techniques will be implemented in chapter four and five and 

their performance will be compared.  
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3.4.8.  Model Order Estimation 

 

 One of the key steps in the parametric methods is the accurate and consistent 

estimation of the number of signals, the so called model order.  In radar applications, our 

goal is to estimate the number of high energy scattering centers. Among the model order 

estimation methods in the literature, Akaike information criterion (AIC) [17] and minimum 

description length (MDL) [18] are the frequently used methods. Since it has been shown 

that MDL outperforms AIC, especially for noisy signals [18],  MDL will be used as model 

order estimation tool in this study.  

 

3.4.8.1.  Minimum Description Length Principle.  Due to the random errors in the 

covariance matrix estimate, R̂ , its eigenvalues will be perturbed and from their true values 

and the true multiplicity of the minimum eigenvalue may not be evident. MDL is a popular 

approach for model order estimation. It determines the underlying eigenvalue multiplicity 

to determine number of signals. The estimate of number of signals p̂  is given by the value 

of k for which the following MDL function is minimized : 

 

)12(
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ˆ1

log)()( 1

1
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⎟⎟
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⎞
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⎝
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∏

∑
kPkkPNkPkMDL

kPkP

i
i

kP

i
i

λ

λ
                (3.285) 

 

where P is the upper bound for the model order, N is the number of observations, iλ̂  are 

the eigenvaues of covariance matrix. The estimated model order is computed via 

 

)(minargˆ
}1,...,1,0{

kMDLp
Pk −∈

=                                    (3.286) 
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4.  RESOLVING CAPABILITY  of  SUPER-RESOLUTION 

METHODS : SIMULATION STUDY 
 

 

4.1. Introduction 

 

 It was noted that HRR provides the ability of resolving closely spaced targets in 

range, improves the range accuracy, reduces the amount of clutter within the range cell, 

reduces multi-path, and aids in target recognition and classification.  HRR is very helpful 

in detection of targets with low radar cross sections embedded in high clutter. It increases 

signal-to-clutter ratio which, in turn, makes targets with low RCS visible. Therefore, it is 

crucial to enhance the range resolution. However, in practice, the frequency bandwidth of a 

radar is limited by several factors, and the range profiles obtained by IFFT often result in a 

limited range resolution. 

 

 This chapter investigates the resolving capability of super-resolution spectral 

estimation methods explained in chapter three using synthetic radar returns of stepped- 

frequency and linear frequency modulated continuous wave radars explained in chapter 

two. First, signal models for returns form targets for the stepped-frequency and linear 

frequency modulated continuous wave radars are given. Secondly, super-resolution 

spectral estimation methods explained in detail in chapter three are implemented on 

synthetic signals. Finally, the results are compared. In this chapter, “super-resolving 

capability” is used as the super-resolution spectral estimation methods’ ability to find the 

target ranges and distinguish the two closely separated targets. 

 

4.2.  Stepped-Frequency Radar Signal Model 

 

 As explained in detail in section 2.3.3., the frequency of the thn pulse of the stepped- 

frequency radar is given as 

 

1,...1,0,0 −=∆+= Nnfnffn                                      (4.1)                   
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where STALOCOHO fff +=0 . So, the transmitted signal can be expressed as  

 

)2()( 1 tfCosAts nT π=  

])(2[1 tfnffCosA STALOCOHO ∆++= π                (4.2) 

 

 Assuming a point scatterer at range R, the received signal after a two-way time delay 

of cR /2  is given as 

 

])/2(2[)( cRtfCosAts nnR −= π                                        (4.3) 

 

 After down-conversion, quadrature demodulation and low-pass filtering, in-phase 

and quadrature signals at the output of phase detector are given as (see section 2.3.3. for 

details ) 

 

])/2()(2[)( 0 cRfnfCosAnI n ∆+= π                                 (4.4) 

])/2()(2[)( 0 cRfnfSinAnQ n ∆+−= π                               (4.5) 

 

where 

1,...,1,0 −= Nn                                                     (4.6) 

 

and N represents the total number of steps in the stepped-frequency waveform, and nA  

depends on frequency, RCS of target, antenna gain and range attenuation. For the sake of 

simplicity, nA will be assumed to be independent of frequency and A will be used instead 

of nA . Therefore, the received signal from a point scatterer at range R in complex notation 

is 

 

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛∆+−=

c
RfnfAnsR

2)(2exp)( 0π                                   (4.7) 

 

 Now, assume d targets located at ranges dRRR ...,, 21 . So, the total received signal can 

be expressed as 
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∑
= ⎭

⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛∆+−=

d

k

k
kR c

RfnfAns
1

0
2)(2exp)( π                               (4.8) 

 

and the in-phase and quadrature voltages at the output of phase detector are given as  

 

∑
=

∆+=
d

k
kk cRfnfCosAnI

1
0 ])/2()(2[)( π                              (4.9) 

∑
=

∆+−=
d

k
kk cRfnfSinAnQ

1
0 ])/2()(2[)( π                          (4.10) 

 

for 1,...,1,0 −= Nn . 

 

 Equations (4.9) and (4.10) are used to generate the synthetic signals representing 

stepped-frequency radar returns from d  targets located at ranges dRRR ...,, 21 . 

 

 Super-resolution spectral estimation methods are normally used to estimate the power 

spectral density from the time-domain observations, i.e, they are transformations from 

time-domain to frequency-domain. However, in stepped-frequency radar application, they 

will be used to estimate range profile from frequency-domain data, i.e., they will be used 

as a transformation from frequency-domain to spatial-domain.  

 

 The aim of this chapter is to show that high resolution spectral estimators explained 

in chapter three can achieve better down-range resolution than IFFT. In order to compare 

the performance of high resolution spectral estimators and IFFT, synthetic stepped- 

frequency radar returns from several targets will be generated using (4.9) and (4.10), white 

Gaussian distributed noise will be added to returnsignal to obtain different SNR ratio, and 

the noisy return signals will be processed by all the spectral estimation methods.  
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4.3. Comparison of IFFT and Super-Resolution Spectral Estimators 

        for Stepped-Frequency Radar 

 

 For the following simulations, the parameters of the stepped-frequency waveform 

and the signal processing algorithms will be given in the tables for each case. Except the 

parameters given in the tables, 0f will be set to 1 GHz although it has any importance 

since we have assumed that the magnitude of the scatterers are independent of frequency. 

 

4.3.1. Yule-Walker Method vs. IFFT 

 

Table 4.1.  Parameters for simulation shown in figure 4.1 

N f∆  R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR 
256 10 

MHz 
5.86 
cm 

2 m 
100 

3 m 
100 

5 m 
100 

6 m 
100 

7 m 
100 

11 m 
100 

50 
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Figure 4.1.  Comparison of Yule-Walker method and IFFT 

 

 Figure 4.1 show that Yule-Walker method provides narrower peaks at the target 

locations than IFFT. Also note that Yule-Walker range profile has higher signal-to-clutter 

ratio (SCR) than IFFT range profile. 

 

Table 4.2.  Parameters for simulation shown in figure 4.2 

N f∆  R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR 
256 10 

MHz 
5.86 
cm 

2 m 
100 

3 m 
100 

5 m 
100 

6 m 
100 

7 m 
100 

11 m 
100 

10 
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Figure 4.2.  Comparison of Yule-Walker method and IFFT  

 

 Figure 4.2 shows that Yule-Walker method provides much sharper peaks at the target 

locations even in the low SNR case than IFFT and its range profile has higher SCR than 

range profile obtained via IFFT.  

 

Table 4.3.  Parameters for simulation shown in figure 4.3 

N f∆  R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR 
128 10 

MHz 
11.72 

cm 
2 m 
100 

2.2 m 
100 

2.4 m 
100 

6 m 
100 

10 m 
100 

40 
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Figure 4.3.  Comparison of Yule-Walker method and IFFT 

 

 Figure 4.3 illustrates that Yule-Walker method can resolve closely separated targets, 

however, IFFT can not. Yule-Walker range profile has three separate peaks at 2, 2.2, and 

2.4 meters and three closely spaced targets can be distinguished but IFFT range profile has 

one broad peak, thus, it can not resolve the three closely spaced targets. Note that the range 

resolution obtained via the IFFT is 11.72 cm and the distance between the closely spaced 
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targets is 20 cm, however, because of the smearing problem of periodogram explained in 

section 3.2.3.1, IFFT could not resolve the targets with separation higher than its 

resolution.   

 

Table 4.4.  Parameters for simulation shown in figure 4.4 

N f∆  R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR 
128 10 

MHz 
11.72 

cm 
2 m 
100 

2.2 m 
100 

2.4 m 
100 

6 m 
100 

10 m 
100 

10 
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Figure 4.4.  Comparison of Yule-Walker method and IFFT 

 

 Yule-Walker method outperforms the IFFT in terms of range resolution and accuracy 

even in low SNR case as shown in figure 4.4. Yule-Walker can resolve closely spaced 

targets even low SNR case. 

 

4.3.2.  Least Squares Method vs. IFFT 

 

Table 4.5.  Parameters for simulation shown in figure 4.5 

N f∆  R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR 
256 10 

MHz 
5.86 
cm 

2 m 
100 

3 m 
100 

5 m 
100 

6 m 
100 

7 m 
100 

11 m 
100 

50 
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Figure 4.5.  Comparison of least-squares method and IFFT 

 

Table 4.6.  Parameters for simulation shown in figure 4.6 

N f∆  R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR 
128 10 
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11.72 

cm 
2 m 
100 

3 m 
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5 m 
100 

6 m 
100 

7 m 
100 
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Figure 4.6.  Comparison of least-squares method and IFFT 

 

 Figures 4.5 and 4.6, LS method provides sharper peaks at the target locations even in 

low SNR case. Also, note that range profile obtained from the LS method has lower 

variance, which improves the image quality when it is used in radar imaging.  

 

Table 4.7.  Parameters for simulation shown in figure 4.7 

N f∆  R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR 
128 10 

MHz 
11.72 

cm 
2 m 
100 

2.2 m 
100 

2.4 m 
100 

6 m 
100 

10 m 
100 

50 
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Figure 4.7.  Comparison of least-squares method and IFFT 

 

Table 4.8.  Parameters for simulation shown in figure 4.8 
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Figure 4.8.  Comparison of least-squares method and IFFT 

 

 Figures 4.7 and 4.8 shows the performance of LS method to resolve closely separated 

targets both in high and low SNR case. When the SNR is high, LS can resolve three 

closely separated targets whereas IFFT can not. When the SNR is lower, LS can resolve 

two of the three targets.  

 

 Figures in this section show that LS method achieves better range resolution than 

IFFT. LS range profile has low variance, and it higher SCR and these advantages can be 

utilized in radar imaging, target identification and classification. 
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 The previous sections showed that AR modeling is a good model to find the range 

profile of stepped-frequency radar. Same simulations have been carried out for ARMA 

model using modified Yule-Walker and two-stage least-squares methods explained in 

section 3.3.4.1 and 3.3.4.2, respectively, however, they did not provide stable and reliable 

range profiles. It has been observed that the choice of over-determination, M, in modified 

Yule-Walker method and the choice of AR model order truncation, K, in two-stage least-

squares method and the choice of AR and MA model orders in both methods greatly affect 

the estimated range profile. Actually, this is not an unexpected situation since the ARMA 

model that is used to model spectra with narrow peaks and deep nulls is not appropriate for 

the stepped-frequency radar return signals where we only have narrow peaks. So, the 

simulation results of the modified Yule-Walker and two-stage least-squares methods will 

not be presented.  

 

 Sections 4.3.1 and 4.3.2 have provided the comparison of IFFT with parametric 

methods for rational spectra that are explained in section 3.3. Following sections present 

the results of the implementation of parametric methods for line spectra explained in 

section 3.4 and the comparison of each method with IFFT is presented.  

 

4.3.3.  Higher-Order Yule-Walker Method vs. IFFT 

 

Table 4.9.  Parameters for simulation shown in figure 4.9 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 50 11.72 

cm 
0.5 m
100 

1.5 m
100 

2.8 m
100 

4.5 m
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Figure 4.9.  Comparison of HOYW method and IFFT 
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Table 4.10.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.9 

0.4962     1.4999 2.8028 4.5017 5.7003 7.1989 

 

 

Table 4.11.  Parameters for simulation shown in figure 4.10 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 
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Figure 4.10.  Comparison of HOYW method and IFFT 

Table 4.12.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.10 

0.5324     1.4972 2.8146 4.5059 5.7041 7.1776 

 

 Figures 4.9 and 4.10 illustrates that HOYW method can detect the ranges of the 

targets very accurately even in the very low SNR case. 

 

 

Table 4.13.  Parameters for simulation shown in figure 4.11 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 50 11.72 

cm 
1.4 m 
100 

1.45 
100 

1.5 m 
100 

4 m 
100 

4.1 m 
100 

4.2 m 
100 

50 
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Figure 4.11.  Comparison of HOYW method and IFFT 

 

Table 4.14.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.11 

1.3125     0.8401 4.7251 3.9303 4.1046 4.2724 

 

Table 4.15.  Parameters for simulation shown in figure 4.12 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
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Figure 4.12.  Comparison of HOYW method and IFFT 

Table 4.16.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.12 

0.8420    4.7272 5.0403 3.9296 4.1117 4.2746 
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 Figures 4.11 and 4.12 show that, for the chosen M and L values, HOYW method may 

result in false alarms. Following figures show the effect of choice of M and L in the 

performance of HOYW method. Note that HOYW can resolve the last three closely spaced 

targets that can not be resolved by IFFT. 

 

Table 4.17.  Parameters for simulation shown in figure 4.13 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
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Figure 4.13.  Comparison of HOYW method and IFFT 

Table 4.18.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.13 

1.3181     1.4480 1.5788 3.9296 4.0993 4.2704 

 

 

Table 4.19.  Parameters for simulation shown in figure 4.14 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
40 40 11.72 

cm 
1.4 m 
100 

1.45 
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Figure 4.14.  Comparison of HOYW method and IFFT 

Table 4.20.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.14 

1.3195    1.4525 1.5831 3.9321 4.0983 4.2680 

 

 Figures 4.13 and 4.14 show that when M and L are chosen as 40, and keeping the 

radar parameters and targets’ ranges and RCS values same, HOYW can resolve all the 

targets and estimates the target ranges even in low SNR case. This illustrates the sensitivity 

of HOYW method to the choice of M and L.  

 

Table 4.21.  Parameters for simulation shown in figure 4.15 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
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Figure 4.15.  Comparison of HOYW method and IFFT 
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Table 4.22.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.15 

1.3195     1.4424 1.5795 3.8882 3.9935 4.0988 

 

 

Table 4.23.  Parameters for simulation shown in figure 4.16 

N f∆  M L R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
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Figure 4.16.  Comparison of HOYW method and IFFT 

Table 4.24.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.16 

1.3266     3.3817 1.4424 3.8926 3.9975 4.1008 

 

 In figures 4.15 and 4.16, only the RCS value of the second targets is changed. 

Although the second target is expected to be detected when it has higher RCS value, the 

simulations yield the opposite result. It can be concluded that HOYW method is very 

sensitive not only to M and L values but also to the target locations and RCS values. Note 

that using 40 as M and L values provided correct range estimates. On the other hand, also 

note that HOYW can resolve the last three targets whereas IFFT can not, i.e., HOYW 

method provides better range resolution than IFFT. So, a combined technique that uses 

HOYW method together with IFFT can achieve better range resolution and lower false 

alarms. 
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4.3.4. Root-MUSIC vs. IFFT 

 

Table 4.25.  Parameters for simulation shown in figure 4.17 

N f∆  M MSSP R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 
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20 NO 11.72 
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Figure 4.17.  Comparison of Root-MUSIC method and IFFT 

Table 4.26.  Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.17 

0.5053     1.4975 2.8012 4.4982 5.6564 7.1974 

    
 

Table 4.27.  Parameters for simulation shown in figure 4.18 

N f∆  M MSSP R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 
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Figure 4.18.  Comparison of Root-MUSIC method and IFFT 
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Table 4.28.  Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.18 

0.4799     1.5046 2.7977   4.4865 5.7152 7.1857 

 

 Figures 4.17 and 4.18 shows that Root-MUSIC method can detect the ranges of the 

targets very accurately even in the very low SNR case. 

 

Table 4.29.  Parameters for simulation shown in figure 4.19 

N f∆  M MSSP R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 
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Figure 4.19.  Comparison of Root-MUSIC method and IFFT 

 

Table 4.30.  Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.19 

1.3136     1.4499 1.5866   3.9199 6.4950 4.2876 

 

 

Table 4.31.  Parameters for simulation shown in figure 4.20 

N f∆  M MSSP R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
20 YES 11.72 

cm 
1.4 m 
100 

1.45 
100 

1.5 m 
100 

4 m 
100 

4.1 m 
100 
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50 
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Figure 4.20.  Comparison of Root-MUSIC method and IFFT 

Table 4.32.  Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.20 

1.3105    1.4486 1.5865   3.9151 4.1023 4.2866 

 

  As can be seen from figures 4.19 and 4.20, using modified spatial smoothing 

technique improves the accuracy of range estimates. Note that Root-MUSIC method 

achieves much better range resolution than IFFT. Also note that Root-MUSIC can resolve 

very closely spaced targets where the distance between the targets are less than the range 

resolution of the IFFT. 

 

Table 4.33.  Parameters for simulation shown in figure 4.21 

N f∆  M MSSP R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
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Figure 4.21.  Comparison of Root-MUSIC method and IFFT 
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Table 4.34.  Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.21 

1.2931    7.1122 1.6018   3.8801 3.9992 4.1202 

 

 

Table 4.35.  Parameters for simulation shown in figure 4.22 

N f∆  M MSSP R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 
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Figure 4.22.  Comparison of Root-MUSIC method and IFFT 

Table 4.36.  Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.22 

1.2962     1.4515 1.6071   3.8866 4.0041 4.1257 

 

 

 Figures 4.21 and 4.22 show that MSSP technique improves the accuracy of Root-

MUSIC range estimates and decreases the number of false alarms. Note that in all cases, 

Root-MUSIC achieves much better range-resolution than IFFT. It has been observed that a 

method that combines Root-MUSIC and IFFT can increase the range resolution and 

decrease the false alarms.  
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4.3.5.  Minimum-Norm Method vs. IFFT 

 

Table 4.37.  Parameters for simulation shown in figure 4.23 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 
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Figure 4.23.  Comparison of Min-Norm method and IFFT 

Table 4.38.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.23 

0.5011     1.5001 2.7984 4.5023 5.6992 7.1986 

 

 

Table 4.39.  Parameters for simulation shown in figure 4.24 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
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Figure 4.24.  Comparison of Min-Norm method and IFFT 
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Table 4.40.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.24 

0.4990     1.4897 2.7680 4.4663 5.7009 7.1941 

 

 

 Figures 4.23 and 4.24 illustrates that Minimum-Norm method can find the ranges of 

the targets very accurately even in the very low SNR case. 

  

Table 4.41.  Parameters for simulation shown in figure 4.25 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
100 

1.45 
100 

1.5 m 
100 

4 m 
100 

4.1 m 
100 

4.2 m 
100 

50 

 

0 5 10 15
-70

-60

-50

-40

-30

-20

-10

0

10

20

Down-Range Relative Distance (meters) 

D
ow

n-
R

an
ge

 P
ro

fil
e 

( d
B

 )

Minimum-Norm vs. IFFT

IFFT
Min-Norm

 
Figure 4.25.  Comparison of Min-Norm method and IFFT 

Table 4.42.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.25 

1.3190    1.4585 1.5956 3.9300 4.1026 4.2714 

 

 

Table 4.43.  Parameters for simulation shown in figure 4.26 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
100 

1.45 
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Figure 4.26.  Comparison of Min-Norm method and IFFT 

Table 4.44.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.26 

1.3145     1.4511 1.5854 3.9352 4.1381 4.2756 

 

 

 From figures 4.25 and 4.26, it can be concluded that Minimum-Norm can detect the 

closely separated targets accurately even in low SNR case.  Note that IFFT results have 

one broad peak for the first three very closely separated targets and two peaks for the 

second closely separated three targets whereas Minimum-Norm can resolve all the closely 

separated targets very accurately even in low SNR case.  

 

Table 4.45.  Parameters for simulation shown in figure 4.27 
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Figure 4.27.  Comparison of Min-Norm method and IFFT 
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Table 4.46.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.27 

1.3093    3.3798 1.5928 3.8890 4.0095 4.1298 

 

 

Table 4.47.  Parameters for simulation shown in figure 4.28 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
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Figure 4.28.  Comparison of Min-Norm method and IFFT 

Table 4.48.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.28 

1.3103     4.6356 1.5900 3.9002 4.0205 4.1465 

 

 

 As can be seen from the figures 4.27 and 4.28, Minimum-Norm method can detect 

the closely separated targets which have very different RCS values accurately even in low 

SNR case. However, note that Minimum-Norm method gives wrong estimate for the 

second target in both SNR values. It can be concluded that the range resolution of 

Minimum-Norm method is better than IFFT but when the targets that have very different 

RCS values are very close to each other, Minimum-Norm method may give false alarms. 

In order to reduce false alarms, IFFT and Minimum norm method can be used together. 

 

 In the next case, modified spatial smoothing processing technique will be 

implemented to reduce the false alarms for the same radar and target parameters.  
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Table 4.49.  Parameters for simulation shown in figure 4.29 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
1000 

1.45 
1 

1.5 m 
1000 

4 m 
1000 

4.1 m 
1 

4.2 m 
1 

50 
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Figure 4.29.  Comparison of Min-Norm method and IFFT 

Table 4.50.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.29 

1.3100     1.4503 1.5916 3.8932 4.0110 4.1286 

 

 

Table 4.51.  Parameters for simulation shown in figure 4.30 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
1000 

1.45 
1 

1.5 m 
1000 

4 m 
1000 

4.1 m 
1 

4.2 m 
1 

20 
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Figure 4.30.  Comparison of Min-Norm method and IFFT 

Table 4.52.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.30 

1.3183     1.4658 1.5956 3.8837 3.9988 4.1170 
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 As can be seen from figures 4.29 and 4.30, applying modified spatial smoothing 

processing technique eliminates the false alarms. So, Minimum-Norm method, when 

implemented together with MSSP, can provide high range resolution and reliable range 

estimates. 

 

 

4.3.6.  LS-ESPRIT vs. IFFT 

 

Table 4.53.  Parameters for simulation shown in figure 4.31 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
0.5 m 
100 

1.5 m 
100 

2.8 m 
100 

4.5 m 
100 

5.7 m 
100 

7.2 m 
100 

50 
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Figure 4.31.  Comparison of LS-ESPRIT method and IFFT 

Table 4.54.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.31 

0.5023     1.5008 2.7985 4.5021 5.6987 7.1966 

 

 

Table 4.55.  Parameters for simulation shown in figure 4.32 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
0.5 m 
100 

1.5 m 
100 

2.8 m 
100 

4.5 m 
100 

5.7 m 
100 

7.2 m 
100 

1 
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Figure 4.32.  Comparison of LS-ESPRIT method and IFFT 

Table 4.56.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.32 

0.4990     1.4897 2.7680 4.4663 5.7009 7.1941 

 

 Figures 4.31 and 4.32 shows that LS-ESPRIT method provides very accurate range 

estimates even for very low SNR values.  

 

Table 4.57.  Parameters for simulation shown in figure 4.33 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
100 

1.45 
100 

1.5 m 
100 

4 m 
100 

4.1 m 
100 

4.2 m 
100 

50 
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Figure 4.33.  Comparison of LS-ESPRIT method and IFFT 

Table 4.58.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.33 

1.3177     1.4540 1.5899 3.9347 4.0995 4.2655 
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Table 4.59.  Parameters for simulation shown in figure 4.34 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
100 

1.45 
100 

1.5 m 
100 

4 m 
100 

4.1 m 
100 

4.2 m 
100 

20 
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Figure 4.34.  Comparison of LS-ESPRIT method and IFFT 

Table 4.60.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.34 

1.3192     1.4578 1.5950 3.9327 4.1007 4.2674 

 

 

 From figures 4.33 and 4.34, it can be concluded that TLS-ESPRIT can detect the 

closely separated targets accurately even in low SNR case.  Note that IFFT results have 

one broad peak for the first three very closely separated targets and two peaks for the 

second closely separated three targets whereas TLS-ESPRIT can resolve all the closely 

separated targets very accurately even in low SNR case.  

 

Table 4.61.  Parameters for simulation shown in figure 4.35 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
1000 

1.45 
1 

1.5 m 
1000 

4 m 
1000 

4.1 m 
1 

4.2 m 
1 

50 
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Figure 4.35.  Comparison of LS-ESPRIT method and IFFT 

Table 4.62.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.35 

1.3085     1.4490 1.5910 3.8895 4.0083 4.1290 

 

 

Table 4.63.  Parameters for simulation shown in figure 4.36 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
1000 

1.45 
1 

1.5 m 
1000 

4 m 
1000 

4.1 m 
1 

4.2 m 
1 

20 
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Figure 4.36.  Comparison of LS-ESPRIT method and IFFT 

Table 4.64.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.36 

1.3066     1.4416 1.5887 3.9334 4.0586 4.2515 

 

 

 From figures 4.35 and 4.36, it can be seen that LS-ESPRIT can detect the closely 

separated targets which have very different radar cross sections very accurately even in 
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low SNR case. Note that IFFT results have one broad peak for the last three targets that 

have RCS values of 1000, 1, and 1 and two peaks for the first three targets that have RCS 

values of 1000, 1, and 1000. Note that this case is a similar to the scenario where the there 

is a small hidden object just beneath the wall or a small buried object with small RCS just 

under the surface. LS-ESPRIT can resolve closely separated targets with very different 

RCS values, however, because of smearing, IFFT can not resolve them. 

 

4.3.7.  TLS-ESPRIT vs. IFFT 

 

Table 4.65.  Parameters for simulation shown in figure 4.37 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
0.5 m 
100 

1.5 m 
100 

2.8 m 
100 

4.5 m 
100 

5.7 m 
100 

7.2 m 
100 

50 
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Figure 4.37.  Comparison of TLS-ESPRIT method and IFFT 

Table 4.66.  Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.37 

0.5026 1.5009 2.7985 4.5021 5.6986 7.1966 

 

 

Table 4.67.  Parameters for simulation shown in figure 4.38 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
0.5 m 
100 

1.5 m 
100 

2.8 m 
100 

4.5 m 
100 

5.7 m 
100 

7.2 m 
100 

1 
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Figure 4.38.  Comparison of TLS-ESPRIT method and IFFT 

Table 4.68.  Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.38 

0.4736     1.5009 2.7954 4.5085 5.7801 7.2303 

 

 From figures 4.37 and 4.38, it can be seen that TLS-ESPRIT can detect the ranges of 

the targets very accurately even in the very low SNR case. 

 

 

Table 4.69.  Parameters for simulation shown in figure 4.39 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
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Figure 4.39.  Comparison of TLS-ESPRIT method and IFFT 

Table 4.70.  Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.39 

1.3179     1.4540 1.5897 3.9349 4.1002 4.2657 
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Table 4.71.  Parameters for simulation shown in figure 4.40 

-N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
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100 
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100 
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100 
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100 
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Figure 4.40.  Comparison of TLS-ESPRIT method and IFFT 

Table 4.72.  Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.40 

1.3248     1.4622 1.5960 3.9390 4.1437 4.2628 

 

 

 From figures 4.39 and 4.40, it can be concluded that TLS-ESPRIT can detect the 

closely separated targets accurately even in low SNR case.  Note that IFFT results have 

one broad peak for the first three very closely separated targets and two peaks for the 

second closely separated three targets whereas TLS-ESPRIT can resolve all the closely 

separated targets very accurately even in low SNR case.  

 

 

Table 4.73.  Parameters for simulation shown in figure 4.41 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
1000 

1.45  
1 

1.5 m 
1000 

4 m 
1000 

4.1 m 
1 

4.2 m 
1 

50 
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Figure 4.41.  Comparison of TLS-ESPRIT method and IFFT 

Table 4.74.  Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.41 

1.3087     1.4493 1.5910 3.8895 4.0083 4.1290 

 

 

Table 4.75.  Parameters for simulation shown in figure 4.42 

N f∆  M R∆  Target Ranges ( kR ) & RCSs ( kA ) SNR
128 10 

MHz 
50 11.72 

cm 
1.4 m 
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1.45  
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1000 

4 m 
1000 

4.1 m 
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4.2 m 
1 
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Figure 4.42.  Comparison of TLS-ESPRIT method and IFFT 

Table 4.76.  Estimated TLS-ESPRIT ranges (in meters) in simulation shown in figure 4.42 

1.3072     1.4417 1.5877 3.7594 3.9616 4.0818 

 
 

 From figures 4.41 and 4.42, it can be concluded that TLS-ESPRIT can detect the 

closely separated targets which have very different radar cross sections very accurately 
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even in low SNR case. Note that IFFT results have one broad peak for the last three targets 

that have RCS values of 1000, 1, and 1 and two peaks for the first three targets that have 

RCS values of 1000, 1, and 1000. TLS-ESPRIT can resolve closely separated targets with 

very different RCS values, however, because of smearing, IFFT can not resolve them. 

 

 

4.4. Linear Frequency Modulated Continuous Wave Radar Signal Model 

  

  As explained in section 2.4.2., the transmitted up-chirp LFM signal can be expressed 

in complex notation by 

 

)]
2
1(2[exp)()( 2

0 ttfj
T
trecttsT απ +=                                 (4.11) 

Ttttfj ≤≤+= 0,)]
2
1(2[exp 2

0 απ                         (4.12) 

 

where TB=α  and 0f  is the chirp start frequency. Assuming a point scatterer at range R, 

the received signal can be written as 

 

}])(
2
1)([2{exp)( 2

0 τατπ −+−= ttfjAtsR                              (4.13) 

 

where A depends on target RCS, antenna gain, and range attenuation, and two way time 

delay τ is given as 

 

c
R2

=τ                                                           (4.14) 

 

 As explained in detail in block diagram of FMCW radar, the received signal is mixed 

with a replica of the transmitted signal and then low-pass filtered. The output of low-pass 

filter can be written as 

 

]22[exp)( 2
00 ταπταπτπ −+= tfAts                                 (4.15) 
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 Substituting cR2=τ  and arranging the terms yield  

 

⎭
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⎧
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⎞

⎜
⎝
⎛=

cT
BRf

c
Rt

cT
RBAts πππ 2224exp)( 00                          (4.16) 

 

 Now, assume d targets located at ranges dRRR ...,, 21 . So, the total received signal can 

be expressed as 

 

∑
=

−+−=
d

k
kkkR ttfjAts

1

2
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2
1)([2{exp)( τατπ                        (4.17) 

 

 Therefore, the total signal at the output of the low-pass filter is 
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 This expression will be used to generate the synthetic signals representing FMCW 

radar returns from d  targets located at ranges dRRR ...,, 21 . 

 

 In section 2.4.3., it was shown that  

 

B
fTcR b

2
=                                                      (4.19) 

 

which means that the range is proportional to the beat frequency. Therefore, proper 

sampling of the low-pass filter output and finding the peaks in the spectrum gives us the 

target ranges. The methods explained in chapter three will be used to find the spectrum of 

the output of the low-pass filter, and the ranges, with high resolution.  
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4.5.  Comparison of  Periodogram and High-Resolution Spectral Estimators for 

Linear Frequency Modulated Continuous Wave Radar 

 

 For the following simulations, the parameters of the linear frequency modulated 

continuous radar waveform, target ranges and radar cross sections, and the signal 

processing methods will be given in the tables for each case. 

 

4.5.1.  Yule-Walker Method vs. Periodogram 

 

Table 4.77.  Parameters for simulation shown in figure 4.43 

N BW T R∆  Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR 
600 1.5 

GHz 
10  

mSec 
10 
cm 

2 
100 

3 
100 

5 
100 

7 
100 

10 
100 

11 
100 

50 
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Figure 4.43.  Comparison of Yule-Walker method and periodogram 

 

 Figure 4.43 shows that Yule-Walker method provides narrower peaks at the target 

locations. Also note that Yule-Walker range profile has higher signal-to-clutter ratio (SCR) 

than the range profile obtained via periodogram. 

 

Table 4.78.  Parameters for simulation shown in figure 4.44 

N BW T R∆  Target Ranges ( kR ) (meters)  & RCSs ( kA ) SNR 
600 1.5 

GHz 
10  

mSec 
10 
cm 

2 
100 

3 
100 

5 
100 

7 
100 

10 
100 

11 
100 

1 
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Figure 4.44.  Comparison of Yule-Walker method and periodogram 

 

  Figure 4.44 shows that Yule-Walker method provides much sharper peaks at the 

target locations even in the very low SNR case than periodogram and its range profile has 

higher SCR than range profile obtained via periodogram. 

 
Table 4.79.  Parameters for simulation shown in figure 4.45 

N BW T R∆  Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR 
600 1.5 

GHz 
10  

mSec 
10 
cm 

2 
100 
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100 
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Figure 4.45.  Comparison of Yule-Walker method and periodogram 

 
 

Table 4.80.  Parameters for simulation shown in figure 4.46 

N BW T R∆  Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR 
600 1.5 

GHz 
10  

mSec 
10 
cm 

2 
100 

2.1 
100 

7 
100 

7.2 
100 

10 
100 

11 
100 

1 
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Figure 4.46.  Comparison of Yule-Walker method and periodogram 

 
  Figures 4.45 and 4.46 show that Yule-Walker method provides much sharper peaks 

at the target locations even when the SNR is very low and the targets are close to each 

other and its range profile has higher SCR than range profile obtained via periodogram. 

 

Table 4.81.  Parameters for simulation shown in figure 4.47 

N BW T R∆  Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR 
600 1.5 

GHz 
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Figure 4.47.  Comparison of Yule-Walker method and periodogram 

 
 

Table 4.82.  Parameters for simulation shown in figure 4.48 

N BW T R∆  Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR 
600 1.5 

GHz 
10  

mSec 
10 
cm 

2  
100 

2.1  
10 

7  
100 

7.2 
10 

10 
100 

11 
100 

5 
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Figure 4.48.  Comparison of Yule-Walker method and periodogram 

 
  Figures 4.47 and 4.48 show that neither Yule-Walker method nor periodogram can 

resolve the close targets with very different RCS values. However, note that Yule-Walker 

method provides much sharper peaks at the target locations even when the SNR is very 

low and the targets are close to each other and its range profile has higher SCR than range 

profile obtained via periodogram. 

 

4.5.2. Least-Squares Method vs. Periodogram 

 

Table 4.83.  Parameters for simulation shown in figure 4.49 

N BW T R∆  Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR 
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Figure 4.49.  Comparison of least-squares method and periodogram 
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Table 4.84.  Parameters for simulation shown in figure 4.50 

N BW T R∆  Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR 
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Figure 4.50.  Comparison of least-squares method and periodogram 

 

  Figures 4.49 and 4.50 show that least-squares method provides much sharper peaks at 

the target locations even in the very low SNR case than periodogram and its range profile 

has higher SCR than range profile obtained via periodogram. 

 
 

Table 4.85.  Parameters for simulation shown in figure 4.51 
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Figure 4.51.  Comparison of least-squares method and periodogram 
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Table 4.86.  Parameters for simulation shown in figure 4.52 
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Figure 4.52.  Comparison of least-squares method and periodogram 

 

 Figures 4.51 and 4.52 show that Yule-Walker method provides much sharper peaks 

at the target locations even when the SNR is very low and the targets are close to each 

other and its range profile has higher SCR than range profile obtained via periodogram. 

 

 

Table 4.87.  Parameters for simulation shown in figure 4.53 
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Figure 4.53.  Comparison of least-squares method and periodogram 
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Table 4.88.  Parameters for simulation shown in figure 4.54 
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Figure 4.54.  Comparison of least-squares method and periodogram 

 

  Figures 4.53 and 4.54 show that least-squares method can provide much better range 

profiles than periodogram. Note that least-squares method can resolve the close targets 

with very different RCS values and provide much sharper peaks at the target locations even 

when the SNR is low and the targets are close to each other and its range profile has higher 

SCR than range profile obtained via periodogram. 

 

 

4.5.3. Higher-Order Yule-Walker Method vs. Periodogram 

 

Table 4.89.  Parameters for simulation shown in figure 4.55 
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Figure 4.55.  Comparison of HOYW method and periodogram 

Table 4.90.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.55 

2.0034    3.0050 5.0084 7.0116 10.0168 11.0183 

 

 

Table 4.91.  Parameters for simulation shown in figure 4.56 
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Figure 4.56.  Comparison of HOYW method and periodogram 

Table 4.92.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.56 

2.0049     3.0030 5.0065 7.0098 10.0212 11.0230 

 

  

 Figures 4.55 and 4.56 show that HOYW method can find the target ranges very 

accurately even when the SNR is very low. 
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Table 4.93.  Parameters for simulation shown in figure 4.57 

N BW T M L R∆ Target Ranges ( kR ) (meters) & RCSs ( kA ) SNR
600 1.5 

GHz 
10 

mSec 
50 50 10 

cm 
2  

120 
2.1  
120 

7  
120 

7.2  
120 

10  
120 

11  
120 

50 

 

0 5 10 15

-15

-10

-5

0

5

10

15

20

25

Down-Range Distance (meters) 

D
ow

n-
R

an
ge

 P
ro

fil
e 

( d
B

 )

HOYW Method vs. Periodogram

Periodogram
HOYW

 
Figure 4.57.  Comparison of HOYW method and periodogram 

Table 4.94.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.57 

2.0021     2.1046 7.0115 7.2122 10.0168 11.0182 

 

 

 

Table 4.95.  Parameters for simulation shown in figure 4.58 
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Figure 4.58.  Comparison of HOYW method and periodogram 
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Table 4.96.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.58 

2.0185     2.0986 7.0142 7.2093 10.0152 11.0186 

 

 

 Figures 4.57 and 4.58 show that HOYW method can find the target ranges very 

accurately even when the targets are close to each other and the SNR is very low. 

 

 

 

Table 4.97.  Parameters for simulation shown in figure 4.59 
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Figure 4.59.  Comparison of HOYW method and periodogram 

Table 4.98.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.59 

2.0003     2.0049 7.0046 7.0248 10.0165 10.1172 

 

 

 

Table 4.99.  Parameters for simulation shown in figure 4.60 
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Figure 4.60.  Comparison of HOYW method and periodogram 

Table 4.100.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.60 

2.0000     2.0130 7.0166 7.0666 10.0145 10.1183 

 

 

 Figures 4.59 and 4.60 show that HOYW method can provide much better range 

resolution than periodogram. Note that the range resolution of the periodogram method is 

10 cm which means that periodogram method can not distinguish targets that are separated 

less than 0.1 meter. Tables 4.97 and 4.98 show that HOYW method can resolve targets 

even when the distance between targets is 0.001 meter where SNR is 50 and tables 4.99 

and 4.100 show that HOYW method can resolve targets even when the distance between 

targets is 0.01 meter where SNR is 10. Also note that the range accuracy of HOYW 

method is better than periodogram. 

 

 

Table 4.101.  Parameters for simulation shown in figure 4.61 
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Figure 4.61.  Comparison of HOYW method and periodogram 

 

Table 4.102.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.61 

2.0024     2.0046 7.0099 7.0139 10.0118 10.0325 

 

 

Table 4.103.  Parameters for simulation shown in figure 4.62 
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Figure 4.62.  Comparison of HOYW method and periodogram 

Table 4.104.  Estimated HOYW ranges (in meters) in simulation shown in figure 4.62 

2.0020     2.0468 7.0050 7.0297 10.0144 10.0597 

 

 Figures 4.61 and 4.62 show that HOYW method can provide much better range 

resolution even when the targets that have very different RCS values are so close. 
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4.5.4. Root-MUSIC vs. Periodogram 

 

Table 4.105.  Parameters for simulation shown in figure 4.63 
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Figure 4.63.  Comparison of Root-MUSIC method and periodogram 

Table 4.106. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.63 

2.0040     3.0050 5.0084 7.0117 10.0167 11.0184 

 

 

Table 4.107.  Parameters for simulation shown in figure 4.64 

N BW T M MSSP R∆ Target Ranges( kR )(meters)  & RCSs( kA ) SNR
600 1.5 

GHz 
10 
mS

50 NO 10 
cm 

2  
120 

3  
120 

5  
120

7  
120 

10  
120 

11  
120 

7 

 

0 5 10 15
-5

0

5

10

15

20

25

Down-Range Distance (meters) 

D
ow

n-
R

an
ge

 P
ro

fil
e 

( d
B

 )

Root-MUSIC Method vs. Periodogram

Periodogram
Root-MUSIC

 
Figure 4.64.  Comparison of Root-MUSIC method and periodogram 
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Table 4.108. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.64 

2.0061     3.0063 5.0090 7.0124 10.0173 11.0049 

 

 Figures 4.63 and 4.64 show that Root-MUSIC method can find the target ranges very 

accurately even when the SNR is very low. 
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Figure 4.65.  Comparison of Root-MUSIC method and periodogram 

Table 4.110. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.65 

2.0039     2.0119 7.0117 7.0619 10.0167 11.0183 

 

 Figures 4.65 shows that Root-MUSIC method can find the target ranges very 

accurately when SNR is high. Note that Root-MUSIC method can resolve the targets that 

are separated by 1 cm where the range resolution that can be achieved via periodogram is 

10 cm and the periodogram range profile has one broad peak instead of two narrow peaks 

for the first and second two targets.   

 

Table 4.111.  Parameters for simulation shown in figure 4.66 
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Figure 4.66.  Comparison of Root-MUSIC method and periodogram 

Table 4.112. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.66 

2.0133     12.4266 7.0139 7.1155 10.0157 11.0192 

 

 As can be seen from figure 4.66, Root-MUSIC method can yield false alarms when 

the SNR is low and the targets are too close.  

 

Table 4.113.  Parameters for simulation shown in figure 4.67 
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Figure 4.67.  Comparison of Root-MUSIC method and periodogram 

Table 4.114. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.67 

1.9909     2.0451 7.0108 7.1115 10.0176 11.0190 
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 Figure 4.67 and table 4.114 show that the false alarm ratio of the Root-MUSIC 

method can be decreased using spatial smoothing techniques. Note that Root-MUSIC 

method implemented together with spatial smoothing techniques can achieve much better 

range resolution and very accurate range estimates than periodogram even when the SNR 

is low. 
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Figure 4.68.  Comparison of Root-MUSIC method and periodogram 

Table 4.116. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.68 

2.0034     2.0544 7.0117 7.1117 10.0167  11.0184 

 

 

Table 4.117.  Parameters for simulation shown in figure 4.68 
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Figure 4.69.  Comparison of Root-MUSIC method and periodogram 

Table 4.118. Estimated Root-MUSIC ranges (in meters) in simulation shown in figure 4.68 

1.9927     2.0763 7.0324 7.1427 10.0138 11.0201 

 

 Figures 4.68 and 4.69 show that Root-MUSIC method implemented together with 

spatial smoothing techniques can resolve targets that are close to each other and have very 

different RCS values. 

 

4.5.5.  Minimum-Norm Method vs. Periodogram 
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Figure 4.70.  Comparison of Minimum-Norm method and periodogram 
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Table 4.120.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.70 

2.0033  3.0050 5.0084 7.0117 10.0167 11.0184    

 

 

Table 4.121.  Parameters for simulation shown in figure 4.71 
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Figure 4.71.  Comparison of Minimum-Norm method and periodogram 

Table 4.122.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.71 

2.0056   3.0074 5.0094 7.0129 10.0194 11.0167    

 

 

 Figures 4.70 and 4.71 show that Minimum-Norm method can find the target ranges 

very accurately even when the SNR is very low. 

 

 

Table 4.123.  Parameters for simulation shown in figure 4.72 
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Figure 4.72.  Comparison of Minimum-Norm method and periodogram 

Table 4.124.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.72 

2.0027   2.0075 7.0115 7.0216 10.0167 10.1168    

 

 Figure 4.72 shows that Minimum-Norm method can resolve the targets with 5 mm 

separation whereas periodogram can barely resolve targets with 10 cm separation. So, it is 

obvious that Minimum-Norm method provides much better range resolution than 

periodogram. 

 

 

Table 4.125.  Parameters for simulation shown in figure 4.73 
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Figure 4.73.  Comparison of Minimum-Norm method and periodogram 
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Table 4.126.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.73 

2.0001   2.0265 7.0168 7.0537 10.0169 10.1160   

 

 Figure 4.73 shows that Minimum-Norm method can provide much better range 

resolution and much more accurate range estimates than periodogram even when the SNR 

is very low. 

 

 

Table 4.127.  Parameters for simulation shown in figure 4.74 
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Figure 4.74.  Comparison of Minimum-Norm method and periodogram 

Table 4.128.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.74 

2.0032  2.0184 7.0116 7.0322 10.0167 10.1168   

 

 

Table 4.129.  Parameters for simulation shown in figure 4.75 
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Figure 4.75.  Comparison of Minimum-Norm method and periodogram 

Table 4.130.  Estimated Min-Norm ranges (in meters) in simulation shown in figure 4.75 

2.0035   2.0987 7.0116 7.1022 10.0166 10.5241   

 

 Figures 4.74 and 4.75 show that Minimum-Norm method can resolve close targets 

that have very different RCS values. Note that Minimum-Norm method could resolve the 

first two targets with separation 8 cm whereas periodogram could not resolve the last two 

targets with separation 50 cm.  

 

4.5.6.  LS-ESPRIT vs. Periodogram 

 

Table 4.131.  Parameters for simulation shown in figure 4.76 
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Figure 4.76.  Comparison of LS-ESPRIT method and periodogram 
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Table 4.132.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.76 

2.0033   3.0050 5.0083 7.0117 10.0167 11.0184   

 

 

Table 4.133.  Parameters for simulation shown in figure 4.77 
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Figure 4.77.  Comparison of LS-ESPRIT method and periodogram 

Table 4.134.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.77 

2.0033   3.0050 5.0083 7.0117 10.0167 11.0184   

 
 
  Figures 4.76 and 4.77 show that LS-ESPRIT method can find the target ranges very 

accurately even when the SNR is very low. 

 
 
 

Table 4.135.  Parameters for simulation shown in figure 4.78 
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Figure 4.78.  Comparison of LS-ESPRIT method and periodogram 

Table 4.136.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.78 

    2.0047  2.0105    7.0123 7.0204 10.0167 10.0668 

 
 
 

Table 4.137.  Parameters for simulation shown in figure 4.79 
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Figure 4.79.  Comparison of LS-ESPRIT method and periodogram 

Table 4.138.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.79 

    1.9998  2.0253 7.0134 7.0608 10.0165 10.0665 

 
 
  Figures 4.78 and 4.79 show that LS-ESPRIT method can find the target ranges very 

accurately even when the SNR is very low and the targets are very close. Note that 

periodogram can resolve any close pairs. 
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Table 4.139.  Parameters for simulation shown in figure 4.80 
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Figure 4.80.  Comparison of LS-ESPRIT method and periodogram 

Table 4.140.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.80 

    2.0033  2.0052 7.0114 7.0156 10.0167 10.0668 

 
 
 

Table 4.141.  Parameters for simulation shown in figure 4.81 
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Figure 4.81.  Comparison of LS-ESPRIT method and periodogram 

Table 4.142.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.81 

    2.0033  2.0052 7.0114 7.0156 10.0167 10.0668 
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  Figures 4.80 and 4.81 show that spatial smoothing techniques increases the accuracy 

of the LS-ESPRIT method. Note that the false alarms are eliminated by modified spatial 

smoothing processing.  

 

 
Table 4.143.  Parameters for simulation shown in figure 4.82 
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Figure 4.82.  Comparison of LS-ESPRIT method and periodogram 

Table 4.144.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.82 

    2.0033  2.0131 7.0116 7.0325 10.0167 10.0668 

 
 
 

Table 4.145.  Parameters for simulation shown in figure 4.83 
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Figure 4.83.  Comparison of LS-ESPRIT method and periodogram 

Table 4.146.  Estimated LS-ESPRIT ranges (in meters) in simulation shown in figure 4.83 

    2.0031  2.0646 7.0125 7.0866 10.0163 10.1176 

 
 
  Figures 4.82 and 4.83 show that LS-ESPRIT can resolve the close targets with very 

different RCS values even when the SNR is low. 

 
4.5.7. TLS-ESPRIT vs. Periodogram 

 

Table 4.147.  Parameters for simulation shown in figure 4.84 
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Figure 4.84.  Comparison of TLS-ESPRIT method and periodogram 
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Table 4.148.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.84 

    2.0033  3.0050 5.0084 7.0117 10.0167 11.0184 

 

 

Table 4.149.  Parameters for simulation shown in figure 4.85 
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Figure 4.85.  Comparison of TLS-ESPRIT method and periodogram 

Table 4.150.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.85 

   2.0018    3.0053 5.0120 7.0108 10.0159 11.0174 

 

  Figures 4.84 and 4.85 show that TLS-ESPRIT method can find the target ranges very 

accurately even when the SNR is very low. 

 

 

Table 4.151.  Parameters for simulation shown in figure 4.86 
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Figure 4.86.  Comparison of TLS-ESPRIT method and periodogram 

Table 4.152.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.86 

   2.0018    3.0053 5.0120 7.0108 10.0159 11.0174 

 

 

Table 4.153.  Parameters for simulation shown in figure 4.87 
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Figure 4.87.  Comparison of TLS-ESPRIT method and periodogram 

Table 4.154.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.87 

    2.0068  2.0487 7.0063 7.0356 10.0167 10.1168 

 

  Figures 4.86 and 4.87 show that TLS-ESPRIT method can find the target ranges very 

accurately even when the SNR is very low and the targets are so close to each other. Note 

that in both case TLS-ESPRIT method provides much better range estimates than 
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periodogram. Also, it is observed that TLS-ESPRIT method can resolve closer targets than 

LS-ESPRIT method. LS-ESPRIT method could resolve targets with separation 5 mm when 

SNR is 50 and 2 cm when SNR is 10 whereas TLS-ESPRIT method can resolve targets 

with separation 3 mm when SNR is 50 and 1.5 cm when SNR is 10.  

 

Table 4.155.  Parameters for simulation shown in figure 4.88 
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Figure 4.88.  Comparison of TLS-ESPRIT method and periodogram 

Table 4.156.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.88 

    2.0043  14.3711 6.9950 7.0133 10.0167 10.1169 

 

 

Table 4.157.  Parameters for simulation shown in figure 4.89 
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Figure 4.89.  Comparison of TLS-ESPRIT method and periodogram 

Table 4.158.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.89 

    2.0016  2.0047 7.0118 7.0145 10.0167 10.1169 

 

  Figures 4.88 and 4.89 show that spatial smoothing techniques increases the accuracy 

of the TLS-ESPRIT method. Note that the false alarms are eliminated by modified spatial 

smoothing processing. 

 

Table 4.159.  Parameters for simulation shown in figure 4.90 
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Figure 4.90.  Comparison of TLS-ESPRIT method and periodogram 

Table 4.160.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.90 

    2.0032  2.0066 7.0117 7.0227 10.0167 10.1168 
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Table 4.161.  Parameters for simulation shown in figure 4.91 
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Figure 4.91.  Comparison of TLS-ESPRIT method and periodogram 

 

Table 4.162.  Estimated TLS-ESPRIT ranges(in meters) in simulation shown in figure 4.91 

    2.0030  2.0439 7.0119 7.0669 10.0161 10.1463 

 

  Figures 4.90 and 4.91 show that TLS-ESPRIT can resolve the close targets with very 

different RCS values even when the SNR is low. Note that TLS-ESPRIT can resolve closer 

targets compared with LS-ESPRIT. 
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5.  RESOLVING CAPABILITY  of  SUPER-RESOLUTION 

METHODS : EXPERIMENTAL STUDY 

 

 
 This chapter investigates the resolving capability of super-resolution spectral 

estimation methods explained in chapter three using experimental stepped-frequency radar 

data for buried and through-the-wall object detection. First, the experimental setup will be 

explained. Then, the resolving capability of super-resolution spectral estimation methods 

will be tested using different sets of experimental data. 

 

5.1. Experimental Setup 

 

 Field experiments have been performed at the laboratory of National Institute of 

Electronics and Cryptology using HP-8753 vector network analyzer. This vector network 

analyzer works as an SFCW radar. Top and front views of the experimental field are 

shown in figures 5.1 and 5.2, respectively. The wall is realized using a pool filled with 

ordinary soil.    

 

 

Figure 5.1.  Top view of experimental field 
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Figure 5.2.  Front view of experimental field 

 

 Four metallic plates whose dimensions are given in table 5.1 are used as targets. 

 

Table 5.1.  Dimensions of the targets 

Target Width (cm) Length (cm)
M 34 100 
A 5 59 
B 3 59 
C 2 59 

 

 

 Two co-axial cables with length 2 meters are used to connect the network analyzer 

ports to antennas.  The antennas used in the experiments are double ridged waveguide horn 

antennas which operate in 1-18 GHz frequency band. Two-port calibration was performed 

at the co-axial cable ends before the tests.   
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 In order to investigate the effect of frequency band of operation and bandwidth of 

stepped frequency radar waveform on signal processing algorithms, test were performed at 

different bandwidths and frequencies. Table 5.2 shows the bandwidths used in the tests and 

corresponding frequency bands. 

 

Table 5.2.  Bandwidths and frequency bands used in the experiments 

Bandwidth Frequency Band 
500 MHz 1 – 1.5 GHz 
750 MHz 1 – 1.75 GHz 

1 GHz 1 - 2 GHz 
1.5 GHz 1 – 2.5 GHz 
2 GHz 1 - 3 GHz 

2.5 GHz 1 – 3.5 GHz 
3 GHz  1 - 4 GHz 

   

 

 Different number of points which corresponds to the number of steps in the stepped-

frequency radar waveform were used to collect data during the tests. HP-8753 network 

analyzer provides 26, 51, 101, 201, 401, 801, 1601 as options for the number of points. 

Since increasing the number of steps in the stepped-frequency radar waveform increases 

the un-ambiguous range if the bandwidth is kept constant and the walls of the test field are 

covered with absorbers, only 26, 51, 101, and 201 points were used during the tests.  

 

 Since stepped-frequency radar uses continuous waveforms, in order to reduce the 

leakage from transmitter to receiver, bistatic operation was chosen for radar and 21s  

parameter data are collected using network analyzer. In order to automate the data 

collection process, a simple software was developed in LabWindows/CVI. The software 

controls the network analyzer and stores the 21s  data for each bandwidth, target, and target 

position using HP-IB bus. The graphical user interface(GUI) of the program is shown in 

figure 5.3. The user can select the s-parameter, number of points and frequency bandwidth 

(or start and stop frequencies) via the GUI. The “MEASURE” button takes measurement 

according to selected parameters, “SAVE--DATA” button saves the s-parameter data in a 

text file and “SAVE--SCREEN” button saves the current screen.  The graphs in the GUI 

shows the in-phase and quadrature data in linear scale and the magnitude of the spectrum 

in logarithmic scale.  
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Figure 5.3.  GUI of the program used for automated data collection 

 

 Frequency band of operation is an important parameter for the stepped frequency 

radar. It is known that the attenuation constant of the radio frequency signals increases as 

the frequency increases. We also know that the range resolution of the stepped-frequency 

radar increases with bandwidth. So, we should find a region in the spectrum where we 

minimize the attenuation and maximize the bandwidth. As can be seen from figure 5.3, the 

magnitude of the inphase and quadrature signals decreases drastically after 3 GHz and 

drops to zero about 4 GHz. Also, since the antennas used in the experiments operates in 1-

18 GHz frequency band, the magnitude of the inphase and quadrature signals decreases 

also below 1 GHz because of antenna. So, the tests are performed in the frequency band of 

1-4 GHz. Also, many tests were performed using another network analyzer up to 18 GHz, 

however, because of the reasons explained above, they did not provide satisfactory results.        
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5.2. Super-resolution Spectral Estimators for Through-the-Wall  

Object Detection 

 

 In order to investigate the performance of super-resolution spectral estimators for 

through-the-wall object detection, different sets of experimental data have been taken using 

network analyzer. Targets and their position are changed during experiments. Tests are 

numerated according to the targets used in the experiments and their locations. Targets 

used in each case and their corresponding locations are shown in tables 5.3 and 5.4. Figure 

5.4 shows the locations of the targets in the experimental setup.  

 

Table 5.3.  Targets and their locations in TWOD experiments 

Case Target Location 
0 - - 
1 M 1 
2 M 2 
3 M 5 
4 A 1 
5 A 2 
6 A 3 
7 A 4 
8 A 5 
9 B 1 
10 B 2 
11 B 3 
12 B 4 
13 B 5 
14 C 1 
15 C 2 
16 C 3 
17 C 4 
18 C 5 

 

 

 Data collected in cases 1-18 shown in table 5.3 will be used to test the accuracy of 

super-resolution spectral estimation methods explained in chapter three. In case-0, there is 

any target in the field and this case corresponds to the background measurement.   
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Table 5.4.  Targets and their locations in TWOD experiments 

Case Target-1 Location-1 Target-2 Location-2 
19 M 5 A 1 
20 M 5 A 2 
21 M 5 A 3 
22 M 5 B 1 
23 M 5 B 2 
24 M 5 B 3 
25 A 5 B 1 
26 A 5 B 2 
27 A 5 B 3 
28 A 5 C 1 
29 A 5 C 2 
30 A 5 C 3 

 

 

 Data collected in cases 19-30 shown in table 5.4 will be used to test the resolving 

capability of super-resolution spectral estimation methods. In case-19, target-M is at 

location-5 and target-A is at location-1.  

 

 

 

Figure 5.4.  Target locations in the TWOD experiments 

 

 Following sections will investigate the performance of super-resolution spectral 

estimators in TWOD application and compare their performance with classically used 

periodogram method. 
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5.2.1.  Comparison of Yule-Walker Method and Periodogram for TWOD 

 

 Several simulations were carried out to investigate the performance of AR modeling 

using Yule-Walker method for TWOD application. Note that the parameters of the 

stepped- frequency radar waveform (bandwidth and number of points) and the case 

numbers are shown in the figures.  
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Figure 5.5.  Comparison of Yule-Walker method and periodogram for TWOD (Case-0) 
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Figure 5.6.  Comparison of Yule-Walker method and periodogram for TWOD (Case-1) 

 

 Figure 5.6 shows that Yule-Walker method provides narrower peak at the target 

location. Also note that the Signal-to-Clutter Ratio (SCR) of the Yule-Walker range profile 

is higher than the SCR of the periodogram range profile. 
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Figure 5.7.  Comparison of Yule-Walker method and periodogram for TWOD (Case-2) 
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Figure 5.8.  Comparison of Yule-Walker method and periodogram for TWOD (Case-3) 

 

 Note that both methods find the target location accurately. However, it is obvious that 

Yule-Walker range profile is better than periodogram range profile. 
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Figure 5.9.  Comparison of Yule-Walker method and periodogram for TWOD (Case-15) 
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Figure 5.10.  Comparison of Yule-Walker method and periodogram for TWOD (Case-17) 

 

 Figures 5.9 and 5.10 show that Yule-Walker method provides much better range 

profiles than periodogram method even when the target has small RCS value. In figure 

5.10, Yule-Walker range profile has a small but sharp peak at target location; however, 

periodogram range profile has several broad peaks around target location and the target is 

not resolved.  
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Figure 5.11.  Comparison of Yule-Walker method and periodogram for TWOD (Case-20) 

 

 In case-20, target-M is in location-5 and target-B is in location-2, and as can be seen 

from the figure 5.11, Yule-Walker method can resolve them better than periodogram. Note 

that Yule-Walker method range profile has sharper peaks at target locations. Second 

highest peak in figure 5.11 corresponds to target-M and the peak on left of it corresponds 

to the target-B.  
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5.2.2. Comparison of Least-Squares Method and Periodogram for TWOD 
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Figure 5.12.  Comparison of Least-Squares method and periodogram for TWOD (Case-2) 
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Figure 5.13.  Comparison of Least-Squares method and periodogram for TWOD (Case-6) 
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Figure 5.14.  Comparison of Least-Squares method and periodogram for TWOD (Case-12) 
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 Figures 5.12-14 show that Least-Squares method provides better range profiles than 

periodogram method even for the small targets. Note that Least-Squares range profiles 

have sharper peaks at target locations and higher SCR. 
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Figure 5.15.  Comparison of Least-Squares method and periodogram for TWOD (Case-20) 

 

 In case-20, target-M is in location-5 and target-B is in location-2, and as can be seen 

from figure 5.15, Yule-Walker method can resolve them better than periodogram. Note 

that Yule-Walker method range profile has sharper peaks at target locations. Second 

highest peak in figure 5.11 corresponds to target-M and the peak on left of it corresponds 

to the target-B.   

 

5.2.3.  Comparison of Line Spectra Methods and Periodogram for TWOD 

 

This section covers the performance analysis of line spectral estimators explained in 

detail in section 3.4 in TWOD application. The parameters of the stepped-frequency radar 

and the target locations are given in the figures. Data collected for the case given in figure 

is processed using the line spectral estimators and the corresponding range estimates are 

given in tables below the corresponding figures. In tables, the columns named as “Target-

i” represents the range estimates for the thi  target and the column named as “Difference” 

represents the distance between the range estimates of the targets. 
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Figure 5.16.  Comparison of line spectral estimators and periodogram for TWOD (Case-1) 

Table 5.5.  Range estimates of line spectral estimators (Case-1) 

Case-1 Target-1 Target-2 Difference 
HOYW Method     2.4144     2.9659 0.5515 

Min-Norm Method     2.4158     2.9669 0.5511 
LS-ESPRIT     2.4157     2.9665 0.5508 

TLS-ESPRIT     2.4157     2.9665 0.5508 
Root-MUSIC Method     2.4181     2.9705 0.5524 
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Figure 5.17.  Comparison of Line spectral estimators and periodogram for TWOD (Case-2) 

Table 5.6.  Range estimates of line spectral estimators (Case-2) 

Case-2 Target-1 Target-2 Difference 
Difference 
(in case-1) Displacement 

HOYW Method     2.4160     3.0907 0.6747       0.5515      0.1232 
Min-Norm Method     2.4151     3.0946 0.6795       0.5511      0.1284 

LS-ESPRIT     2.4147     3.0950 0.6803       0.5513      0.1290 
TLS-ESPRIT     2.4147     3.0950 0.6803       0.5513      0.1290 
Root-MUSIC     2.4162    3.0920 0.6758       0.5524      0.1234 
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Figure 5.18.  Comparison of line spectral estimators and periodogram for TWOD (Case-3) 

 

Table 5.7.  Range estimates of line spectral estimators (Case-3) 

Case-3 Target-1 Target-2 Difference 
Difference 
(in case-1) Displacement 

HOYW Method     2.4144 3.3123 0.8979 0.5515 0.3464 
Min-Norm Method     2.4150 3.3101 0.8951 0.5511 0.3440 

LS-ESPRIT     2.4146 3.3105 0.8959 0.5513 0.3446 
TLS-ESPRIT     2.4145 3.3105 0.8960 0.5513 0.3447 
Root-MUSIC     2.4167 3.3165 0.8998 0.5524 0.3474 

 

 Figures 5.16-18 and tables 5.5-7 show that all the line spectral estimators can find the 

target ranges and they provide very similar range estimates.  
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Figure 5.19.  Comparison of line spectral estimators and periodogram for TWOD (Case-4) 
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Table 5.8.  Range estimates of line spectral estimators (Case-4) 

Case-4 Target-1 Target-2 Difference 
HOYW Method 2.4130 2.9508 0.5378 

Min-Norm Method 2.4137 2.9276 0.5139 
LS-ESPRIT 2.4145 2.9109 0.4964 

TLS-ESPRIT 2.4145 2.9109 0.4964 
Root-MUSIC 2.4152 2.9720 0.5568 

 

 In case-4, target-A is at location-1. Since the highest peak in the spectrum 

corresponds to the front side of the wall and the distance between front side of the wall and 

the location-1, which corresponds to the back side of the wall, is 34 cm, it is obvious that 

ESPRIT solutions provide the most accurate range estimates.   
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Figure 5.20.  Comparison of line spectral estimators and periodogram for TWOD (Case-5) 

 

Table 5.9.  Range estimates of line spectral estimators (Case-5) 

Case-5 Target-1 Target-2 Difference 
Difference 

(case-4) Displacement 
HOYW Method 2.4170 3.0874 0.6704 0.5378 0.1326 

Min-Norm Method 2.4145 3.0724 0.6579 0.5139 0.1440 
LS-ESPRIT 2.4141 3.0633 0.6492 0.4964 0.1528 

TLS-ESPRIT 2.4140 3.0634 0.6494 0.4964 0.1530 
Root-MUSIC 2.4157 3.0850 0.6693 0.5568 0.1125 

 

 In case-5, the actual difference between the front side of the wall and the location-2 is 

50 cm. Table 5.9 shows that ESPRIT solutions provide the most accurate range estimates 

even for the smaller target. Also note that ESPRIT solutions find the displacement of 

target-2 between case-4 and case-5, which is 16 cm, very accurately. 
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Figure 5.21.  Comparison of line spectral estimators and periodogram for TWOD (Case-6) 

Table 5.10.  Range estimates of line spectral estimators (Case-6) 

Case-6 
 Target-1 Target-2 Difference 

Difference 
(in case-5) Displacement 

HOYW Method 2.4124 3.1915 0.7791 0.6704 0.1087 
Min-Norm Method 2.4186 3.1569 0.7383 0.6579 0.0804 

LS-ESPRIT 2.4190 3.1532 0.7342 0.6492 0.0850 
TLS-ESPRIT 2.4190 3.1532 0.7342 0.6494 0.0848 
Root-MUSIC 2.4172 3.1135 0.6963 0.6693 0.0270 

 

 Figure 5.21 and table 5.10 shows that all line spectral estimators can find the target 

ranges whereas it is not possible to determine the number of targets and the positions form 

the periodogram range profile. We can conclude that line spectral estimators outperform 

periodogram method even for small targets. Also note that the ESPRIT solutions and Min-

Norm method find the displacement of target-2 between case-5 and case-6, which is 8 cm, 

very accurately.  
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Figure 5.22.  Comparison of line spectral estimators and periodogram for TWOD (Case-1) 
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Table 5.11.  Range estimates of line spectral estimators (Case-1) 

Case-1 (Small BW,N) Target-1 Target-2 Difference 
HOYW Method 2.3302 3.0878 0.7576 

Min-Norm Method 2.5638 3.0674 0.5036 
LS-ESPRIT 2.5827 3.0577 0.4750 

TLS-ESPRIT 2.5826 3.0579 0.4753 
Root-MUSIC 2.5590 3.1341 0.5751 

 

 Figure 5.22 and table 5.11 shows the range profile and range estimates, respectively, 

for the data with 26 points and 500 MHz stepped-frequency radar bandwidth. It is not 

possible to determine the number of targets and the target positions from the periodogram 

range profile.  

 

 For 500 MHz stepped-frequency radar bandwidth, periodogram method has 30 cm 

range resolution which is too high for TWOD application. However, note that even when 

the number of points and the bandwidth is very small, line spectral estimators can find the 

target ranges. This means that using line spectral estimators as radar signal processing tool 

instead of periodogram relaxes the constraints on stepped-frequency radar waveform. First, 

less number of steps in the stepped-frequency radar waveform will be required to achieve 

desired range resolution which decreases the operation time and complexity. Secondly, 

bandwidth of stepped-frequency radar waveform can be decreased which in turn decreases 

the cost of the system and improves the performance.  
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Figure 5.23.  Comparison of line spectral estimators and periodogram for TWOD (Case-2) 
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Table 5.12.  Range estimates of line spectral estimators (Case-2) 

Case-2 (Small BW,N) Target-1 Target-2 Difference 
Difference 
(in case-1) Displacement 

HOYW Method 2.3805 3.2335 0.8530 0.7576 0.0954 
Min-Norm Method 2.5147 3.1654 0.6507 0.5036 0.1471 

LS-ESPRIT 2.5149 3.1618 0.6469 0.4750 0.1719 
TLS-ESPRIT 2.5149 3.1618 0.6469 0.4753 0.1716 
Root-MUSIC 2.4603 3.2468 0.7865 0.5751 0.2114 

 

 Figure 5.23 and table 5.12 show that line spectral estimators can find the target 

ranges even for very small bandwidth and number of points whereas periodogram can 

provide any information about the targets. Also note that the most accurate estimate of the 

displacement of target-2 between case-1 and case-2, which is 16 cm, and the distance 

between target-1 and target-2 in case-2 are provided by ESPRIT solutions.  

 

0 1 2 3 4 5 6

-35

-30

-25

-20

-15

Down-Range Relative Distance (meters) 

D
ow

n-
R

an
ge

 P
ro

fil
e 

( d
B

 )

Line Spectral Methods vs. Periodogram ( BW=500 MHz,  N=26 )

Case-0,  Periodogram
Case-3,  Periodogram
Case-3,  TLS-ESPRIT

 
Figure 5.24.  Comparison of line spectral estimators and periodogram for TWOD (Case-3) 

 

Table 5.13.  Range estimates of line spectral estimators (Case-3) 

Case-3 (Small BW,N) Target-1 Target-2 Difference 
HOYW Method 2.4936 3.4029 0.9093 

Min-Norm Method 2.5157 3.3909 0.8752 
LS-ESPRIT 2.5550 3.3919 0.8369 

TLS-ESPRIT 2.5546 3.3923 0.8377 
Root-MUSIC 2.5296 3.4173 0.8877 

 

 Table 5.13 shows that the ESPRIT solutions provide the best estimate of the distance 

between target-1 and target-2 in case 3. 
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Figure 5.25. Comparison of line spectral estimators and periodogram for TWOD (Case-19) 

 

Table 5.14.  Range estimates of line spectral estimators (Case-19) 

Case-19 (Small BW,N) Target-1 Target-2 Target-3
Difference 

(Betw. 1&2)
Difference 

(Betw. 1&3) 
Difference 

(Betw. 2&3)
HOYW Method 2.3784 3.1131 3.5176 0.7347 1.1392 0.4045 

Min-Norm Method 2.3976 3.1135 3.5133 0.7159 1.1157 0.3998 
LS-ESPRIT 2.4078 3.1049 3.499 0.6971 1.0912 0.3941 

TLS-ESPRIT 2.4075 3.1048 3.4994 0.6973 1.0919 0.3946 
Root-MUSIC 2.3975 3.1219 3.523 0.7244 1.1255 0.4011 

 

 

 In case-19, target-M is at location-5 and target-A is at location-1. Note that it is not 

possible to detect the presence of three targets from the periodogram range profile shown 

in figure 5.25 while line spectral estimators provide consistent range estimates for three 

targets.  
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Figure 5.26. Comparison of line spectral estimators and periodogram for TWOD (Case-20) 
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Table 5.15.  Range estimates of line spectral estimators (Case-20) 

Case-20 
( Small BW, N ) 

 

Target-
1 
 

Target-
2 
 

Target-
3 
 

Difference 
(Betw. 
1&2) 

Difference 
(Betw. 1&2 
in case 19-

small) 
Displacement

 
HOYW Method 2.3529 3.0586 3.4974 0.7057 0.7347 -0.0290 

Min-Norm Method 2.3746 3.2087 3.6518 0.8341 0.7159 0.1182 
LS-ESPRIT 2.3769 3.2028 3.6407 0.8259 0.6971 0.1288 

TLS-ESPRIT 2.3765 3.2017 3.6404 0.8252 0.6973 0.1279 
Root-MUSIC 2.3861 3.2793 3.721 0.8932 0.7244 0.1688 

 

 

 It is not possible to detect the presence of three targets also from the periodogram 

range profile shown in figure 5.26 while line spectral estimators provide consistent range 

estimates for three target.  

 

 So, from figures 5.22-26, we can conclude that line spectral estimators achieve much 

better range resolution than periodogram even when the number of points and the 

bandwidth of the stepped-frequency radar waveform are small.   

 

 Furthermore, from figures 5.16-26 and tables 5.5-15, we can conclude that ESPRIT 

provides better range estimates among the line spectral estimators for TWOD application. 

 

 

5.3. Super-resolution Spectral Estimators for Buried   

Object Detection 

 

 

 In order to investigate the performance of super-resolution spectral estimators for 

buried object detection, different sets of experimental data have been taken using network 

analyzer. Targets and their position are changed during experiments. Tests are numerated 

according to the targets used in the experiments and their locations. Targets used in each 

case and their corresponding locations are shown in tables 5.16 and 5.17. Figure 5.27 

shows the locations of the targets in the experimental setup. 
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Table 5.16.  Targets and their locations in BOD experiments 

Case Target Location 
1 A 1 
2 A 2 
3 A 3 
4 A 4 
5 B 1 
6 B 2 
7 B 3 
8 B 4 
9 C 1 

10 C 2 
11 C 3 
12 C 4 

 

Table 5.17.  Targets and their locations in BOD experiments 

Case Target-1 Location -1 Target -2 Location -2 
13 A 4 A 1 
14 A 4 A 2 
15 A 4 A 3 
16 A 4 B 1 
17 A 4 B 2 
18 A 4 B 3 
19 A 4 C 1 
20 A 4 C 2 
21 A 4 C 3 
22 B 4 B 1 
23 B 4 B 2 
24 B 4 B 3 
25 B 4 C 1 
26 B 4 C 2 
27 B 4 C 3 

 

 Data collected in cases 1-12 shown in table 5.16 will be used to test the accuracy of 

super-resolution spectral estimation methods explained in chapter three. Similar to 

through-the-wall experiments, case-0 represents the scenario where there is any target in 

the field and this case corresponds to the background measurement. 
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 Data collected in cases 13-27 shown in table 5.17 will be used to test the resolving 

capability of super-resolution spectral estimation methods.  
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Loc-2 :
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11 cm
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33 cm

 
Figure 5.27.  Target locations in the BOD experiments 

 

 

 Following sections will investigate the performance of super-resolution spectral 

estimators in TWOD application and compare their performance with classically used 

periodogram method. 

 

 

5.3.1.Comparison of Yule-Walker Method and Periodogram for BOD 

 

 Several simulations were carried out to investigate the performance of AR modeling 

using Yule-Walker method for BOD application. Note that the parameters of the stepped- 

frequency radar waveform (bandwidth and number of points) and the case numbers are 

shown in the figures. 
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Figure 5.28.  Comparison of Yule-Walker method and periodogram for BOD (Case-2) 
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Figure 5.29.  Comparison of Yule-Walker method and periodogram for BOD (Case-3) 
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Figure 5.30.  Comparison of Yule-Walker method and periodogram for BOD (Case-4) 

 

 Figures 5.28-30 show that Yule-Walker method provides narrower peaks at target 

locations. Also note that the Signal-to-Clutter Ratio (SCR) of the Yule-Walker range 

profile is higher than the SCR of the periodogram range profile. 
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Figure 5.31.  Comparison of Yule-Walker method and periodogram for BOD (Case-11) 
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 Figure 5.31 shows that Yule-Walker method provides much better range profile than 

periodogram method even when the target has small RCS value. Note that range profiles in 

figures 5.31 and 5.28 have peaks at the same locations with different magnitudes because 

of the difference in the RCS values of the targets.  
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Figure 5.32.  Comparison of Yule-Walker method and periodogram for BOD (Case-17) 

 

 The locations of the highest three peaks in both range profiles shown in figure 5.32 

corresponds to the target positions where the highest peak represents the front side of the 

wall, the second highest peak represents the target-B and the third highest peak represents 

the target-A which is beneath the back side of the wall. Note that Yule-Walker method 

provides sharper peaks at the target locations.   
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Figure 5.33.  Comparison of Yule-Walker method and periodogram for BOD (Case-18) 
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 The difference between case-17 and case-18 is that the location of target-B is 

changed from location two to three and this is obvious from figures 5.32 and 5.33. It is 

obvious that Yule-Walker method provides better range profiles than periodogram.  
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Figure 5.34.  Comparison of Yule-Walker method and periodogram for BOD (Case-21) 

 

 The difference between case-18 and case-21 is that the target-B in case-18 is changed 

with target-C which has smaller RCS value and we expect to see smaller peak for target-C. 

However, it is interesting to note that the peak which represents target-C in figure 5.34 has 

larger peak value than the peak which represents target-C in figure 5.33. Note that Yule-

Walker provides better range profile also for case-21.  
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Figure 5.35.  Comparison of Yule-Walker method and periodogram for BOD (Case-27) 

 

 Figure 5.35 shows that Yule-Walker provides better range profiles even when the 

close targets have small RCS values.  
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5.3.2. Comparison of Least-Squares Method and Periodogram for BOD 
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Figure 5.36.  Comparison of Least-Squares method and periodogram for BOD (Case-2) 
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Figure 5.37.  Comparison of Least-Squares method and periodogram for BOD (Case-3) 
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Figure 5.38.  Comparison of Least-Squares method and periodogram for BOD (Case-4) 
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 Figures 5.36-38 show that Least-Squares method provides better range profiles than 

periodogram method even for the small targets. Note that Least-Squares range profiles 

have sharper peaks at target locations and higher SCR. 
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Figure 5.39.  Comparison of Least-Squares method and periodogram for BOD (Case-11) 

 

 Figure 5.39 shows that Least-Squares method provides better range profiles than 

periodogram method even for the targets with small RCS values. 
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Figure 5.40.  Comparison of Least-Squares method and periodogram for BOD (Case-17) 

 

 Figure 5.40 shows that Least-Squares method provides sharper peaks at target 

locations.  

 

 Moreover, after comparative analysis of Yule-Walker and LS methods, it has been 

observed that Yule-Walker method provides better and more reliable range profiles than 

LS method for BOD application. 
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5.3.3.  Comparison of Line Spectra Methods and Periodogram for BOD 

 

 This section covers the performance analysis of line spectral estimators explained in 

detail in section 3.4 in BOD application. The parameters of the stepped-frequency radar 

and the target locations are given in the figures. Data collected for the case given in figure 

is processed using the line spectral estimators and the corresponding range estimates are 

given in tables below the corresponding figures. 
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Figure 5.41. Comparison of line spectral estimators and periodogram for BOD (Case-2) 

Table 5.18.  Range estimates of line spectral estimators (Case-2) 

Case-2 Target-1 Target-2 Difference 
HOYW Method 2.4102 2.5701 0.1599 

Min-Norm Method 2.4089 2.5598 0.1509 
LS-ESPRIT 2.4109 2.555 0.1441 

TLS-ESPRIT 2.4109 2.555 0.1441 
Root-MUSIC 2.4111 2.5752 0.1641 
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Figure 5.42. Comparison of line spectral estimators and periodogram for BOD (Case-3) 
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Table 5.19.  Range estimates of line spectral estimators (Case-3) 

Case-3 Target-1 Target-2 Difference 
HOYW Method 2.4166 2.7526 0.3360 

Min-Norm Method 2.4158 2.7464 0.3306 
LS-ESPRIT 2.4152 2.7456 0.3304 

TLS-ESPRIT 2.4152 2.7456 0.3304 
Root-MUSIC 2.4191 2.7689 0.3498 
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Figure 5.43. Comparison of line spectral estimators and periodogram for BOD (Case-4) 

 

Table 5.20.  Range estimates of line spectral estimators (Case-4) 

Case-4 Target-1 Target-2 Difference 
HOYW Method 2.4153 2.8759 0.4606 

Min-Norm Method 2.4162 2.8778 0.4616 
LS-ESPRIT 2.4161 2.8751 0.4590 

TLS-ESPRIT 2.4161 2.8751 0.4590 
Root-MUSIC 2.4151 2.8664 0.4513 

 

 

 Figures 5.41-43 and tables 5.18-20 show that all the line spectral estimation methods 

find the ranges of the targets. Note that ESPRIT solutions provide the most accurate range 

estimates.  
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Figure 5.44. Comparison of line spectral estimators and periodogram for BOD (Case-2) 

Table 5.21.  Range estimates of line spectral estimators (Case-2) 

Case-2 (Small BW, N) Target-1 Target-2 Difference 
HOYW Method 2.3032 2.6068 0.3036 

Min-Norm Method 2.2831 2.624 0.3409 
LS-ESPRIT 2.2885 2.6106 0.3221 

TLS-ESPRIT 2.2881 2.611 0.3229 
Root-MUSIC 2.2686 2.5989 0.3303 
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Figure 5.45. Comparison of line spectral estimators and periodogram for BOD (Case-3) 

 

Table 5.22.  Range estimates of line spectral estimators (Case-3) 

Case-3 (Small BW,N) Target-1 Target-2 Difference 
HOYW Method 2.4208 2.8902 0.4694 

Min-Norm Method 2.389 2.8739 0.4849 
LS-ESPRIT 2.3973 2.8485 0.4512 

TLS-ESPRIT 2.397 2.8487 0.4517 
Root-MUSIC 2.4011 2.8917 0.4906 
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Figure 5.46. Comparison of line spectral estimators and periodogram for BOD (Case-3) 

 

Table 5.23.  Range estimates of line spectral estimators (Case-4) 

Case-4 (Small BW, N) Target-1 Target-2 Difference 
HOYW Method 2.394 3.0151 0.6211 

Min-Norm Method 2.3825 3.0372 0.6547 
LS-ESPRIT 2.3905 3.0133 0.6228 

TLS-ESPRIT 2.3904 3.0134 0.6230 
Root-MUSIC 2.3754 3.0341 0.6587 

 

 

 Figures 5.44-46 and tables 5.21-23 show the range profile and range estimates, 

respectively, for the data with 26 points and 500 MHz stepped-frequency radar bandwidth. 

It is not possible to determine the number of targets and the target positions from the 

periodogram range profile. However, note that even when the number of points and the 

bandwidth is very small, line spectral estimators can find the target ranges. 

 

 The advantages explained in TWOD application are also valid in BOD application, 

i.e, less number of steps in the stepped-frequency radar waveform will be required to 

achieve desired range resolution which decreases the operation time and complexity, and 

smaller bandwidths can be used to achieve desired range resolution which in turn decreases 

the cost of the system and improves the performance.  

 

 Even for smaller bandwidth and number of points, ESPRIT has provided the most 

accurate range estimates among the line spectral estimators. Note that the ESPRIT range 

estimates have the minimum range estimation error in all cases. 
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Figure 5.47. Comparison of line spectral estimators and periodogram for BOD (Case-17) 

 

Table 5.24.  Range estimates of line spectral estimators (Case-17) 

Case-17 Target-1 Target-2 Target-3 
Difference 

(Betw. 1&2) 
Difference 

(Betw. 1&3) 
Difference 

(Betw. 2&3) 
HOYW Method 2.3759 2.4436 2.5971 0.0677 0.2212 0.1535 

Min-Norm Method 2.3858 2.4608 2.6122 0.0750 0.2264 0.1514 
LS-ESPRIT 2.3897 2.467 2.6182 0.0773 0.2285 0.1512 

TLS-ESPRIT 2.3897 2.467 2.6183 0.0773 0.2286 0.1513 
Root-MUSIC 2.4108 2.6217 3.0682 0.2109 0.6574 0.4465 

 

 In case-17, target-A is at location-4 and target-B is at location-2. As can be seen from 

table 5.24 and figure 5.47, most of the line spectral estimators resolve the closely placed 

targets; however, periodogram method does not provide enough resolution to resolve them.  
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Figure 5.48. Comparison of line spectral estimators and periodogram for BOD (Case-18) 
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Table 5.25.  Range estimates of line spectral estimators (Case-18) 

Case-18 Target-1 Target-2 Target-3 
Difference 

(Betw. 1&2) 
Difference 

(Betw. 1&3) 
Difference 

(Betw. 2&3)
HOYW Method 2.4141 2.7147 3.0532 0.3006 0.6391 0.3385 

Min-Norm Method 2.4134 2.718 2.9634 0.3046 0.5500 0.2454 
LS-ESPRIT 2.4148 2.7114 2.9202 0.2966 0.5054 0.2088 

TLS-ESPRIT 2.4148 2.7114 2.9203 0.2966 0.5055 0.2089 
Root-MUSIC 2.4099 2.7109 3.0216 0.3010 0.6117 0.3107 

 

0 1 2 3 4 5 6
-60

-50

-40

-30

-20

-10

Down-Range Relative Distance (meters) 

D
ow

n-
R

an
ge

 P
ro

fil
e 

( d
B

 )

Line Spectral Methods vs. Periodogram ( BW=500 MHz,  N=26 )

Case-0,  Periodogram
Case-17,  Periodogram
Case-17,  TLS-ESPRIT

 
Figure 5.49. Comparison of line spectral estimators and periodogram for BOD (Case-17) 

Table 5.26.  Range estimates of line spectral estimators (Case-17) 

Case-17 (Small BW, N) Target-1 Target-2 Target-3 
Difference 

(Betw. 1&2) 
Difference 

(Betw. 1&3) 
Difference 

(Betw. 2&3)
HOYW Method 2.2538 2.56 3.0459 0.3062 0.7921 0.4859 

Min-Norm Method 2.2257 2.5369 3.2225 0.3112 0.9968 0.6856 
LS-ESPRIT 2.2317 2.5383 3.2146 0.3066 0.9829 0.6763 

TLS-ESPRIT 2.2317 2.5383 3.2147 0.3066 0.9830 0.6764 
Root-MUSIC 2.2317 2.5448 3.2326 0.3131 1.0009 0.6878 
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Figure 5.50. Comparison of line spectral estimators and periodogram for BOD (Case-18) 
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Table 5.27.  Range estimates of line spectral estimators (Case-18) 

Case-18 (Small BW, N) Target-1 Target-2 Target-3 
Difference 

(Betw. 1&2) 
Difference 

(Betw. 1&3) 
Difference 

(Betw. 2&3)
HOYW Method 2.2867 2.611 3.127 0.3243 0.8403 0.516 

Min-Norm Method 2.3608 2.7318 3.0852 0.3710 0.7244 0.3534 
LS-ESPRIT 2.3852 2.7636 3.0555 0.3784 0.6703 0.2919 

TLS-ESPRIT 2.3843 2.7637 3.0563 0.3794 0.6720 0.2926 
Root-MUSIC 2.2491 2.5844 3.2298 0.3353 0.9807 0.6454 

 

 

 Figures 5.47-50 and tables 5.24-27 show that periodogram method provides very 

poor range profiles and can not resolve closely separated targets when the number of points 

and bandwidth are very small whereas line spectral estimators resolve the closely separated 

targets even when the number of points and bandwidth are very small. 
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Figure 5.51. Comparison of line spectral estimators and periodogram for BOD (Case-21) 

 

Table 5.28.  Range estimates of line spectral estimators (Case-21) 

Case-21 Target-1 Target-2 Target-3 
Difference 

(Betw. 1&2) 
Difference 

(Betw. 1&3) 
Difference 

(Betw. 2&3)
HOYW Method 2.4141 2.7189 3.0754 0.3048 0.6613 0.3565 

Min-Norm Method 2.4131 2.7199 2.9416 0.3068 0.5285 0.2217 
LS-ESPRIT 2.4144 2.7086 2.9084 0.2942 0.4940 0.1998 

TLS-ESPRIT 2.4144 2.7085 2.9085 0.2941 0.4941 0.2 
Root-MUSIC 2.409 2.7077 2.9989 0.2987 0.5899 0.2912 
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Figure 5.52. Comparison of line spectral estimators and periodogram for BOD (Case-21) 

 

Table 5.29.  Range estimates of line spectral estimators (Case-21) 

Case-21 (Small BW, N) Target-1 Target-2 Target-3 
Difference 

(Betw. 1&2) 
Difference 

(Betw. 1&3) 
Difference 

(Betw. 2&3)
HOYW Method 2.2898 2.603 3.1338 0.3132 0.8440 0.5308 

Min-Norm Method 2.3764 2.836 3.0887 0.4596 0.7123 0.2527 
LS-ESPRIT 2.3833 2.8399 3.0296 0.4566 0.6463 0.1897 

TLS-ESPRIT 2.3827 2.8391 3.031 0.4564 0.6483 0.1919 
Root-MUSIC 2.256 2.6213 3.2135 0.3653 0.9575 0.5922 

 

 

 Figures 5.51 and 5.52 and tables 5.28 and 5.29 show that line spectral estimators 

resolve the closely separated targets even when the number of points and bandwidth are 

very small and the difference between the RCS values of the targets increases.  

 

 From the figures and tables in this section, it can be concluded that line spectral 

estimators provide consistent and high resolution range estimates even when the number of 

points and bandwidth are very small and the targets have different RCS values. These 

experiments show that using line spectral estimators as range estimator tool in BOD 

applications provides important advantages. Since less number of steps will be required to 

achieve desired range resolution, processing time will decrease. Moreover, since smaller 

bandwidth will be sufficient, cost of the stepped-frequency radar system will decrease and 

it will be possible to use narrowband components in the radar system which in turn 

improve the performance.  
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6. CONCLUSIONS 
 
 
 This study has explored the target detection and range extraction performance of 

parametric and non-parametric methods in through-the-wall and buried object detection 

applications using synthetic stepped-frequency and FMCW radar signals and experimental 

stepped-frequency radar data. Range estimates of the parametric methods are compared 

with non-parametric methods.  

 

 The synthetic and experimental data are processed via ESPRIT, Root-MUSIC, 

Higher Order Yule-Walker, Minimum-Norm, Yule-Walker, and Least-Squares methods 

and their performance are compared with the conventional periodogram. The results show 

that all the parametric methods provide much better range profiles than non-parametric 

methods.  

 

 When Yule-Walker and Least-Squares methods are compared with periodogram, it is 

observed that they provide much narrower peaks at the target locations and their range 

profiles have higher signal-to-clutter ratio. The simulations and experimental results show 

that Yule-Walker and Least-Squares methods can resolve the targets that are closer than 

the resolution limit imposed by FFT processing. 

 

 When ESPRIT, Root-MUSIC, Higher Order Yule-Walker and Minimum-Norm 

methods are compared with periodogram, it can be concluded that all the line spectral 

estimators provide much better range resolution than periodogram even when the SNR is 

low, the data size is small, targets are too close and targets have very different RCS values.  

 

 Experimental and simulative resolution studies showed that ESPRIT can distinguish 

close targets with better resolution than the other methods. Also, it is worth to note that 

total least squares solution of ESPRIT provided better range estimates than least squares 

solution. The worst resolution capability and the range estimates were demonstrated by 

Root-MUSIC. Also, Min-Norm method outperformed the HOYW method.  

 

 Also, the performance of spatial smoothing techniques was analyzed using synthetic 

and experimental data and it is observed that modified spatial smoothing processing 
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performs better than spatial smoothing processing. Also, line spectral estimators’ range 

estimates had large bias when any decorrelation process was performed. These 

observations show that the radar data should be preprocessed by spatial smoothing 

techniques in order to decorrelate the individual signals and improve the accuracy of the 

range estimates.  

 

 To sum up, experimental and simulative results show that using parametric spectral 

estimators as radar signal processing tool relaxes the constraints on stepped-frequency 

radar waveform. First, less number of steps in the stepped-frequency radar waveform will 

be required to achieve desired range resolution, which decreases the operation time and 

system complexity. Secondly, bandwidth of stepped-frequency radar waveform can be 

decreased which in turn decreases the cost of the system and improves the performance. 

For future work, these algorithms can be implemented in digital signal processors or field 

programmable gate arrays and portable stepped-frequency radar can be implemented.  
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