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more than music. Our lessons inspired me also in scientific research.

With gratitude to my family for their love and support in all stages of my edu-

cation. I appreciate them for letting me free to take my own steps in life and dedicate

this thesis to them.

This study has been supported by TUBİTAK under project 107E021.
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ABSTRACT

FACIAL FEATURE TRACKING AND EXPRESSION

RECOGNITION FOR SIGN LANGUAGE

Extracting and tracking facial features in image sequences automatically is a

required first step in many applications including expression classification. When sign

language recognition is concerned, expressions imply non-manual gestures (head mo-

tion and facial expressions) used in that language. In this work, we aimed to classify

the most common non-manual gestures in Turkish Sign Language (TSL). This process

is done using two consecutive steps: First, automatic facial landmarking is performed

based on Multi-resolution Active Shape Models (MRASMs) on faces. The landmarks

are fitted in each frame using MRASMs for multiple views of faces, and the best fit-

ted shape which is most similar to the shape found in the preceding frame is chosen.

This way, temporal information is used for achieving consistency between consecutive

frames. When the found shape is not trusted, deformation of the tracked shape is

avoided by leaving that frame as empty and re-initializing the tracker. Afterwards,

the empty frames are filled using interpolation, and alpha-trimmed mean filtering is

performed on the landmark trajectories to eliminate the erroneous frames. Second, the

tracked landmarks are normalized and expression classification is done based on multi-

variate Continuous Hidden Markov Models (CHMMs). We collected a video database

of non-manual signs to experiment the proposed approach. Single view vs. multi-view

and person specific vs. generic MRASM trackers are compared both for tracking and

expression parts. Multi-view person-specific tracker seems to perform the best. It is

shown that the system tracks the landmarks robustly. For expression classification

part, proposed CHMM classifier is experimented on different training and test set se-

lections and the results are reported. We see that the classification performances of

distinct classes are very high.
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ÖZET

YÜZ ÖZNİTELİKLERİNİN TAKİBİ VE İŞARET DİLİ İÇİN

İFADE TANIMA

Bir imge dizisinde bulunan yüz öznitelik noktalarının otomatik olarak takip

edilmesi, ifade tanımayı da kapsayan birçok uygulamanın ilk adımıdır. İşaret dili

özelinde bakarsak, ifadeler hem duygusal ifade hem de baş hareketi içerebilen ele ait

olmayan işaretler olarak karşımıza çıkar. Bu çalışmada, Türk İşaret Dili’nde yaygın

olarak kullanılan ifadeleri tanımayı amaçladık. Önerdiğimiz sistem iki aşamadan oluş-

maktadır: İlkinde, imge dizisindeki her kare için, çok-yönlü (düz, sağa, sola, yukarı)

Çok-çözünürlüklü Aktif Şekil Modelleri (ÇÇAŞM) ile yüzdeki nirengi noktaları otomatik

olarak saptanır. Bulunan yönlerden şekli modele en iyi oturan ve önceki seçilen şekle

en yakın olan yönün şekli seçilir. Eğer seçilen şeklin güvenirliği, eşik değerinin altında

ise o kare boş bırakılır ve şekil başlangıç durumuna getirilir. Böylece takip edilen şeklin

dağılması önlenir ve sistemin gürbüz çalışması sağlanır. Boş bırakılan kareler interpo-

lasyon ile doldurulur ve hatalı sonuçları elemek için alpha-trim ortalama süzgeci kul-

lanılır. İkinci aşamada takip edilen noktalar normalize edilir ve çok değişkenli Sürekli

Saklı Markov Modelleri (SSMM) tabanlı sınıflandırıcıya girdi olarak verilir ve ifade

tanınması yapılır. Bulunan sonuçları sınayabilmek için ele ait olmayan ifadelerden

oluşan bir video veritabanı topladık. Hem takip hem tanıma kısımları için ÇÇAŞM

yöntemini tek-yön/çok-yön ve genel/kişiye-özel çeşitlemeleri ile çalıştırıp sonuçları karşı-

laştırdık. Çok-yönlü kişiye-özel takipçi en başarılı sonuçları vermektedir ve sistemin

gürbüz bir şekilde noktaları takip edebildiği gözlemlenmektedir. Sınıflandırma kısmı

için önerilen SSMM sınıflandırıcısını değişik eğitim ve test kümelerinde denedik. Bir-

birinden farklı sınıflar için başarı çok yüksek gözükmektedir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF SYMBOLS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1. Face Detection and Tracking . . . . . . . . . . . . . . . . . . . . 3

1.2.2. Facial Feature Extraction and Tracking . . . . . . . . . . . . . . 4

1.2.3. Facial Expression Recognition . . . . . . . . . . . . . . . . . . . 7

1.2.4. A Desired Expression Recognition System . . . . . . . . . . . . 11

1.2.5. Facial Expression Classification in the Scope of Sign Language

Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3. Approach and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. FACIAL FEATURE TRACKING . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1. A Review of Statistical Approaches for Shape Analysis and Tracking . 17

2.2. Statistical Analysis of Shapes . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1. Capturing Landmarks . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2. Shape Normalization . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.3. Modelling the Shape Variance with PCA . . . . . . . . . . . . . 21

2.3. Statistical Analysis of Appearance . . . . . . . . . . . . . . . . . . . . . 25

2.3.1. Gathering Intensity Values . . . . . . . . . . . . . . . . . . . . . 26

2.3.2. Texture Normalization . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.2.1. Texture Warping by Triangulation . . . . . . . . . . . 26

2.3.2.2. Photometric Normalization . . . . . . . . . . . . . . . 29



viii

2.3.3. Modelling the Texture Variance with Principal Component Anal-

ysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4. Modelling Both Shape and Appearance Variance . . . . . . . . . 31

2.4. Constructing the Active Shape Model . . . . . . . . . . . . . . . . . . . 32

2.5. Fitting a Shape to a Test Image . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1. Finding the Best Fit . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2. Constraining the Best Fit . . . . . . . . . . . . . . . . . . . . . 35

2.6. Multi-resolution Approach . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7. Data Refitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8. View-based ASM Modelling and Searching . . . . . . . . . . . . . . . . 37

2.9. Tracking in an Image Sequence . . . . . . . . . . . . . . . . . . . . . . 38

2.10. Postprocessing the Found Landmarks . . . . . . . . . . . . . . . . . . . 40

2.10.1. Interpolation of Empty Frames . . . . . . . . . . . . . . . . . . 40

2.10.2. Filtering the Landmarks Trajectories . . . . . . . . . . . . . . . 40

3. EXPRESSION RECOGNITION . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1. Expression Recognition based on Support Vector Machines . . . . . . . 41

3.1.1. Motion Feature Extraction . . . . . . . . . . . . . . . . . . . . . 41

3.1.2. Classification Using SVM . . . . . . . . . . . . . . . . . . . . . 43

3.2. Expression Recognition based on Hidden Markov Models . . . . . . . . 43

3.2.1. Feature Extraction: Normalization of Tracked Shape Sequences 43

3.2.2. Classification Using Hidden Markov Models . . . . . . . . . . . 44

3.2.2.1. Discrete Markov Processes . . . . . . . . . . . . . . . 45

3.2.2.2. Hidden Markov Models . . . . . . . . . . . . . . . . . 46

3.2.2.3. The Evaluation Problem . . . . . . . . . . . . . . . . . 47

3.2.2.4. The Training Problem . . . . . . . . . . . . . . . . . . 49

3.2.2.5. Continuous Observation Densities in HMMs . . . . . . 50

3.2.2.6. HMMs in Expression Recognition . . . . . . . . . . . . 51

4. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1. Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.1. The non-manual signs used in the database . . . . . . . . . . . 52

4.1.2. Properties of the Database . . . . . . . . . . . . . . . . . . . . . 53

4.1.3. Annotated Videos . . . . . . . . . . . . . . . . . . . . . . . . . 53



ix

4.1.4. Annotated Images . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2. Tracking Experiments and Results . . . . . . . . . . . . . . . . . . . . 57

4.2.1. Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.2. Statistical Analysis Results . . . . . . . . . . . . . . . . . . . . 58

4.2.2.1. Sufficient number of eigenvectors to describe most of

shape variance . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2.2. How does the shape change in the most significant

eigenvectors? . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2.3. Sufficient number of eigenvectors to describe most of

the combined variance . . . . . . . . . . . . . . . . . . 59

4.2.2.4. The effect of photometric normalization . . . . . . . . 59

4.2.2.5. How does the shape/appearance change in the most

significant eigenvectors? . . . . . . . . . . . . . . . . . . 60

4.2.2.6. The effect of training set selection on the principle vari-

ation modes . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3. Comparison of ASM and Multi-resolution ASM . . . . . . . . . 61

4.2.4. Tracking Results . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4.1. Tracking Performance of Each Class . . . . . . . . . . 64

4.2.4.2. Tracking Performance on Each Face Component . . . . 66

4.2.4.3. Comparison of Trackers . . . . . . . . . . . . . . . . . 66

4.2.4.4. Mean Error in a Video with Corresponding Landmarks 66

4.3. Expression Recognition Experiments and Results . . . . . . . . . . . . 69

4.3.1. Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1.1. Test I . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1.2. Test II . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1.3. Test III . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1.4. Test IV . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.2. Recognition Results . . . . . . . . . . . . . . . . . . . . . . . . . 72

5. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1. Remarks and Future Directions . . . . . . . . . . . . . . . . . . . . . . 79

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



x

LIST OF FIGURES

Figure 1.1. Sources of facial expressions . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2. The system flowchart . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.1. The phases in statistical analysis of shapes . . . . . . . . . . . . . 18

Figure 2.2. Feature points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.3. Shape Alignment Algorithm . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.4. Shape Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.5. Face Shape Alignment . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.6. Principal Component Analysis Algorithm . . . . . . . . . . . . . . 24

Figure 2.7. The phases in statistical analysis of textures . . . . . . . . . . . . 26

Figure 2.8. Normalization of face textures by triangulation . . . . . . . . . . . 26

Figure 2.9. Delaunay triangulation of a shape . . . . . . . . . . . . . . . . . . 27

Figure 2.10. Point mapping in triangles . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.11. Texture Warping Algorithm . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.12. Profiles of landmarks in a shape . . . . . . . . . . . . . . . . . . . 32

Figure 2.13. Profiles of landmarks in a more complicated shape . . . . . . . . . 32



xi

Figure 2.14. Intensities along the profiles around lips with the corresponding

gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Figure 2.15. Search along the sampled profile to find the best match . . . . . . 34

Figure 2.16. Constraining the best fit . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.17. Multi-resolution ASM Search Algorithm . . . . . . . . . . . . . . . 36

Figure 2.18. Multiple views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.19. The four selected views . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 2.20. Algorithm of Tracking Landmarks in Image Sequence . . . . . . . 39

Figure 2.21. Illustration of α-trimmed mean filtering . . . . . . . . . . . . . . . 40

Figure 3.1. Algorithm of Shape Sequence Normalization . . . . . . . . . . . . 44

Figure 3.2. Computation of forward and backwards variables . . . . . . . . . . 48

Figure 4.1. The classes of signs in the database . . . . . . . . . . . . . . . . . 54

Figure 4.2. The landmarks annotated in videos . . . . . . . . . . . . . . . . . 55

Figure 4.3. The landmarks annotated in images . . . . . . . . . . . . . . . . . 56

Figure 4.4. The four selected views . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.5. Data refitting comparison . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 4.6. Eigenvector contributions to the total variance in shape space . . . 59



xii

Figure 4.7. The variation in shape space . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.8. Eigenvector contributions to total variance in appearance space . . 60

Figure 4.9. The effect of photometric normalization . . . . . . . . . . . . . . . 60

Figure 4.10. The variation in combined shape and texture space . . . . . . . . 61

Figure 4.11. Comparison of ASM fit and MRASM fit . . . . . . . . . . . . . . . 62

Figure 4.12. Searching using Multi-resolution ASM . . . . . . . . . . . . . . . . 63

Figure 4.13. Tracking results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.14. The landmarks annotated in images . . . . . . . . . . . . . . . . . 64

Figure 4.15. Mean error for each class . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.16. Mean error for each component . . . . . . . . . . . . . . . . . . . 67

Figure 4.17. Mean error plot 1 with corresponding shapes . . . . . . . . . . . . 68

Figure 4.18. Mean error plot 2 with corresponding shapes . . . . . . . . . . . . 70

Figure 4.19. Mean error plot 3 with corresponding shapes . . . . . . . . . . . . 71



xiii

LIST OF TABLES

Table 1.1. Face Detection Techniques . . . . . . . . . . . . . . . . . . . . . . 4

Table 1.2. Categories of Facial Feature Extraction Techniques . . . . . . . . . 5

Table 1.3. Some Facial Feature Extraction Techniques . . . . . . . . . . . . . 8

Table 1.4. Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . 10

Table 1.5. Properties of a Desired Recognizer . . . . . . . . . . . . . . . . . . 12

Table 1.6. Comparison of Referenced Recognizers . . . . . . . . . . . . . . . . 12

Table 4.1. Types of MRASM training . . . . . . . . . . . . . . . . . . . . . . 58

Table 4.2. Expression classification results . . . . . . . . . . . . . . . . . . . . 73

Table 4.3. Confusion matrices for test II . . . . . . . . . . . . . . . . . . . . . 74

Table 4.4. Confusion matrices for test III . . . . . . . . . . . . . . . . . . . . 75

Table 4.5. Confusion matrices for test IV . . . . . . . . . . . . . . . . . . . . 76



xiv

LIST OF SYMBOLS/ABBREVIATIONS

aij Probability of making a transition from state i to state j

A State transition matrix of a hidden Markov model

b Shape parameter vector

bj(m) Probability of observing the symbol om in state j

bg Texture parameter vector

b̂ Constrained shape parameter vector

b̂g Constrained texture parameter vector

B Observation matrix of a hidden Markov model

ct Normalizing coefficient

cO Selected class for observation sequence O

C Number of distinct non-manual gesture classes

Cj Covariance of gradients for jth landmark

Cg Texture covariance matrix

Cs Shape covariance matrix

dxmin Minimum displacement value in x direction

dxmax Maximum displacement value in x direction

dymin Minimum displacement value in y direction

dymax Maximum displacement value in y direction

ek kth significant eigenvector

E Matrix composed of eigenvectors

Ec Matrix composed of combined eigenvectors

Eg Matrix composed of texture eigenvectors

Es Matrix composed of shape eigenvectors

f Frame number

F Total number of frames

Fv Total number of frames in vth video

g Normalized texture vector

gij Gradient vector of pixel intensities along the profile of pij

gim Texture vector before photometric normalization



xv
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1. INTRODUCTION

There has been a growing interest in the field of extracting and tracking facial

features and understanding the expression of the subject especially in the last two

decades. The pioneering work of Ekman and Friesen [1] contributed considerably in

perspective of psychology discipline and this valuable work initiated the involvement

of the computer science community to analyze facial expressions in an automatic way

in the following years.

1.1. Motivation

Facial expression recognition is related to many sources in the human as seen in

Figure 1.1, which is modified from Fasel and Luettin’s survey [2] on automatic facial

expression. Sign language is one of these sources.

Figure 1.1. Sources of expressions (modified from [2])

One of the major application areas for a robust facial feature tracking and expres-

sion classification system is the sign language analysis. Sign language expressions are

composed of manual (hand gestures) and non-manual components (facial expressions,

head motion, pose and body movements). Some expressions are performed only using
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hand gestures whereas some facial expressions change the meaning of the accompa-

nying hand gestures. Therefore, a robust high-performance facial feature tracker and

facial-expression classifier is a required component in sign language recognition.

There are many other applications where facial feature tracking and expression

recognition are needed. An example of such a system is the improvement of driver

prudence and accident reduction. The driver’s face is tracked while she is driving and

she is warned if there seems to be an alerting fact that can result in an accident such

as sleepy eyes, yawning too much or looking out of the road.

Furthermore, with a facial feature tracker, it becomes possible to play a synthe-

sized avatar so that it imitates the expressions of the performer. The facial expression

of a subject can be synthesized on an avatar in instant messenger applications by only

sending facial features instead of sending the video of the face.

Human-Computer Interaction (HCI) systems may also be enriched by a facial

feature tracker. For a user who is incapable of using her hands, a facial expression

controller may be a solution to send limited commands to a computer.

In this work, we are interested in facial landmark tracking for sign language

recognition but the developed techniques may be adapted for other purposes.

1.2. Literature Review

There are tens of researchers dealing with the automatic facial feature tracking

and facial expression recognition problem and we examine some remarkable studies to

summarize the ongoing scientific research in these areas. Some surveys on the subject

are available, such as Fasel and Luettin’ review [2] of the ongoing research on automatic

facial expression analysis, Ong and Ganganath’s survey [3] of automatic sign language

analysis which mainly focuses on manual signs used in sign languages, and Pantie

and Rothkrantz’s work [4] that examines the state of the art approaches in automatic

analysis of facial expressions.
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Different approaches have been tried in facial expression analysis systems. Most

approaches include three distinct phases: First, before a facial expression can be ana-

lyzed, the face must be detected in a scene. This process is followed by the extraction

of the facial expression information from the video and localizing (in static images) or

tracking (in image sequences) these features under different poses, illumination, eth-

nicity, age and expression. The outputs of this process are given as the input for the

following stage, which is the recognition of the expression. This final step is a clas-

sification stage where the expression is classified into one of the predefined classes of

expressions.

1.2.1. Face Detection and Tracking

Face detection is the first stage which is desired to be automated. In most of the

research, face is already cropped and the analysis starts with feature extraction and

tracking. In the rest, automated face detectors are used. These can be classified mainly

into two classes: vision-based detection and detection using infrared (IR) cameras.

Spors and Rabenstein [5] use skin color detection and principal component anal-

ysis (PCA) based eye localization to locate the face for their tracking algorithm. To

reduce the computational complexity further, the eye detection and tracking task is

divided into two steps in their work. First the eye is localized. When the position of

the eyes is known, tracking is performed using a luminance-adapted block matching

technique.

Jordao et al. [6] and Ahlberg [7] use skin color detection followed by biggest blob

selection in their work.

On the other hand, Kapoor and Picard [8] prefer to use IR cameras for pupil

localization in their head nod and shake detection system. Similarly, Zhang and Ji’s

initializer [9] is based on IR cameras. An IR camera takes two images of the scene at

each frame where the pupils reflect in one of the pairs and all the other objects remain

the same. So, a simple subtraction of two images gives the location of the pupils.
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There are also free face detection software available to researchers for usage and

improvement. Most popular of these is the face detector of Open Source Computer

Vision Library (OpenCV), [10] which depends on Haar-like wavelet-based object de-

tection proposed by Viola and Jones in [11]. Another available software is the Machine

Perception Toolbox [12] which also works similarly.

The face detection systems discussed are summarized in Table 1.1.

Table 1.1. Face Detection Techniques

Vision Based Detection

Skin Color + PCA [5]

Skin Color + Biggest Blob [6, 7]

Haar-like Features [10, 12]

Detection Using IR Cameras IR Pupil Tracking [8, 9]

1.2.2. Facial Feature Extraction and Tracking

Numerous features have been applied to the facial expression recognition problem.

Image-based models rely on the pixel values of the whole image (holistic) or related

parts of the image (local). On the other hand, model-based approaches create a model

that best represents the face by using training images. Feature points are also used

as features to feed in the classifier or to play an avatar. Difference images are used to

find the eye coordinates from the image pairs gathered by IR cameras. In the initial

research done in this area, markers were used to analyze the facial data. In addition,

optical flow and motion models are also used in feature extraction and tracking. A

categorization of the related work is given in Table 1.2 to draw a mental map of the

approaches used. We describe each approach briefly:

It is seen that image-based and model-based approaches are more dominant in

the literature. As an image-based technique, Gabor wavelets are widely used in fa-

cial feature detection. Dubuisson et al. [14] apply triangulation to the magnitude of

the filtered image which is passed through the Gabor kernel. Then, they detect the

three boxes containing the facial features (eye regions and the mouth region) with a
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Table 1.2. Categories of Facial Feature Extraction Techniques

Holistic Methods Local Methods

Image-based

Gabor filters [13] Local Gabor filters [14]

Non-negative matrix factorization High gradient components [15]

(NMF) / Local NMF (LNMF) [16] Grayscale morphological filters [6]

Principal components [13, 17] Neural networks (pixel values) [18]

Model-based

AAM [7,19, 20]

ASM /Active contours [21, 22]

3D Deformable models

with optical flow [23]

3D Deformable Models /

PBVD [24,25]

Dense Optical Flow Region-based flow [15]

Motion Models Block matching [26]

Feature Point Feature point tracking [9, 15]

Tracking

Difference Images Holistic difference-images [8]

Marker-based Makeup/highlighted features [27]



6

classification of the regions laying in the convex envelope of the triangulation.

Gokturk et al. [23] create a 3D deformable model from stereo tracking and apply

PCA in their study. The resulting model approximates any generic shape as a linear

combination of shape basis vectors. The additional optical flow tracking computes the

translational displacement of every point.

Sebe et al. [24] use piecewise Bézier volume deformation (PBVD) tracker which

is developed by Tao and Huang [28]. This face tracker uses a model-based approach

where an explicit 3D wireframe model of the face is constructed. Cohen [25] also uses

this tracker to recognize facial expressions from video sequences using time information

in his thesis.

A novel approach is to use a cropped region and to apply neural network classi-

fication to the pixels within the cropped region as Franco and Treves [18] use in their

work.

Furrows play an important role in differentiating the expressions, so furrow detec-

tion is another valuable feature as Lien et al. [15] showed in their work. This approach

is mainly based on high gradient component detectors which work horizontally. They

also use dense flow sequences and feature points in the upper face.

The results of the research done by Calder et al. [29] give us an intuition about the

functionality of the principal component axes that come out from the sample expres-

sion set when they examine the dominating variance axes with Principal Component

Analysis (PCA).

Statistical approaches have three main stages: “capture”, “normalization” and

“statistical analysis”. In brief, in the capture part, one defines a certain number of

points (landmarks) on the contour of the object in question for shape and uses im-

age warping for texture. The following shape normalization is done using Procrustes

Analysis and texture normalization is done by removing global illumination effects be-
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tween frames. Finally, Principal Components Analysis (PCA) is performed to analyze

the variances between object shapes or textures and this information is also used for

synthesis. Active Shape Models (ASMs) and Active Appearance Models (AAMs) are

two widely used statistical approaches where both of them are proposed by Cootes et

al. in [21] and [19] respectively.

The AAM approach is used in facial feature tracking due to its ability in de-

tecting the desired features as the warped texture in each iteration of an AAM search

approaches to the fitted image. Ahlberg [7], and Abboud and Davoine [20] use AAM

in their work.

In addition, ASMs - which are the former version of the AAMs that only use

shape information and the intensity values along the profiles perpendicular to the

shape surface are also used to extract features such as the work done by Votsis et

al. [22].

Some chosen methods in facial feature extraction are given in Table 1.3.

1.2.3. Facial Expression Recognition

Although some works focus on feature extraction and do not involve classification

[5–7, 23, 26], the ideal facial expression analyzer needs a classifier. Various machine

learning algorithms are applied to the extracted facial features in this manner.

Kapoor and Picard [8] use Hidden Markov Models (HMMs) to classify the pupil

trajectories into one of the two classes they define which are head nodding and shaking.

Lien et al. [15] also prefer HMMs for classification of the extracted features to one of

the three action units (AUs) they choose. Their feature extraction method depends

on facial feature point tracking, dense flow tracking, and high gradient component

detection. Similarly, HMMs are used by Cohen [25] in his thesis to classify the facial

expressions performed by five subjects into one of the six universal expression classes.

These classes are happiness, anger, surprise, disgust, fear, sadness as discussed by
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Table 1.3. Some Facial Feature Extraction Techniques

Author(s) Method Comment

Calder et al. [29] PCA and LDA Gives important components

to identify expressions

Cootes et al. [19] Feature Points after AAM Fit Costly

Jordao et al. [6] Color-based Face detection and Heuristic Approach

Morphological filters to find eyes,

nose and mouth

Ahlberg [7] AAM fitting, following FACS chosen Encoded for MPEG-4

(1) jaw drop

(2) lip stretcher

(3) lip corner depressor

(4) upper lip raiser

(5) eyebrow lowerer

(6) outer eyebrow raiser

Lien et al. [15] Three approaches: feature tracking, Upper face only

dense optical flow, furrow detection

and tracking

Franco and Pixel values to feed in Needs a standard

Treves [18] Neural Network region of a face

Buciu and Pitas [16] PCA, NMF and LNMF The non-negative constraints are

imposed to be consistent with the

neurophysiological fact that the

neural firing rate is non-negative.
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Ekman and Friesen [1]. It is seen that HMMs are frequently chosen for classification

because of their good results in gesture (temporal data) recognition.

Zhang and Ji [9] use Dynamic Bayesian Networks in their research to find the

performed AU among 18 different AUs, where they rely on the feature points tracked

in image sequences.

Sebe et al. [24] experiment with different types of classifiers such as k-Nearest

Neighbor (kNN), Support Vector Machines (SVMs), Bayesian Networks and decision-

tree based classifiers in their work: Authentic Facial Expression Analysis. The out-

standing technique is the kNN, as they report.

In the work of Franco and Treves [18], a rectangular region of the face that

involves one eye and half of the mouth and nose is cropped from the images. The

pixel values of this cropped rectangle are given as input to the neural networks (NN)

classifier for classification into one of neutral, happy, sad or surprised expressions.

In addition to analysis from image sequences, there is also work done on still

images. Buciu [30] applies discriminant non-negative matrix factorization (DNMF),

Abboud and Davoine apply decision tree based classifier [20], and Buciu and Pitas

[16] apply nearest neighbor using cosine similarity measure and maximum correlation

classifier to the images selected from Cohn-Kanade image database [31]. Dubuisson et

al. [14] also use the same database and perform two types of classification. A binary

classifier is used to distinguish between two confusing classes and a 6-class classifier is

used for general classification,

A brief summary and categorization of the classification approaches and their

results can be seen in Table 1.4.



10

Table 1.4. Classification Methods and Results

Author(s) Method # classes Extraction Test Cases Accuracy

Methods

Analysis from static images

Buciu [30] Discriminant NMF no info 234 CMU 82.85%

(DNMF) DB images [31] (max)

Dubuisson [17] Decision-Tree 6 PCA, LDA 345 samples 85.8%

Based Classifier

Franco and Neural Networks 4 (neutral, Clipping 14 subjects 84.5%

Treves [18] happy, sad, a region

surprise)

Abboud and no info about 6+1(neutral) Compared 108 test no info

Davoine [20] classification algorithm asymmetric images

bilinear 70 training

factorization images

to LDA CMU DB [31]

Buciu and Nearest neighbor using 6+1(neutral) no info 213 images in 81%

Pitas [16] cosine similarity measure (JAFFE) [32]

and maximum correlation 234 images in

classifier CMU DB [31]

Dubuisson Binary classifier (1) 6 PCA, LDA 120 images in 88%-92%

et al. [14] 6-expression classifier (2) FERET DB [33] (1)

550 images in 68%-75%

CMU DB [31] (2)

Analysis from facial image sequences

Kapoor and HMM for pupil 2 (head nod, IR pupil 110 sample 78.46%

Picard [8] trajectories head shake) tracking sequences

Sebe et al. [24] SVM, Bayesian networks, no classes Own DB (db1) Err. in pxl:

Decision-tree based and CMU 4.43 (db1)

classifier, kNN DB (db2) [31] 6.96 (db2)

Cohen [25] DP time alignment (1), 6 PCA 5 subjects 52%(1),

emotion specific HMM (2), 55%(2),

multi-level HMM (3) 58%(3)

Lien et al. [15] HMM 3 AUs Feature point > 260 image 85% (1,3)

tracking (1), dense sequences 93% (2)

flow tracking and 5000 images

(2), high gradient

component

detection (3)

Zhang and Dynamic Bayesian 6 Feature point - < 3 pxls in

Ji [9] Networks tracking points

˜97% in

classes
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1.2.4. A Desired Expression Recognition System

We explored the three main stages related to facial expression analysis in the pre-

vious subsections. But starting from a primitive tracker, a facial expression analyzer

system should have numerous capabilities to perform well on different conditions. In

other words, any age, ethnicity or outlook variance should be handled by the system.

In addition, the system should be robust in the presence of different illumination condi-

tions and partially occluded faces. Although special markers can make the analysis of

facial feature variations easier, a desired system should track faces without makeup or

markers. Subjects may appear with different poses to the camera or may change their

angles during the expressions, so, rigid head motions should be dealt with. Automa-

tion of face detection, facial feature extraction and expression classification are vital.

During the acquisition, there may be misleading or missing data, therefore inaccurate

facial expression data is also a problem. Classifying Facial Action Codes (FACS) would

also play a significant role since Ekman and Friesen [1] clarified their importance in uni-

versal facial expressions. Finally, the desired system should run in real time. All these

properties of a targeted recognizer (modified from the survey of Pantie and Rothkrantz

[4]) are summarized in Table 1.5.

After discussing the related work of the researchers, we give a comparison of the

referenced works in Table 1.6.

1.2.5. Facial Expression Classification in the Scope of Sign Language

Expressions

Sign language expressions are performed with the combination of manual (hand

gestures) and non-manual components (facial expressions, head motion and pose, body

movements). Some expressions are performed only using hand gestures whereas some

change the meaning where a facial expression accompanies hand gestures. For example,

in Turkish Sign Language (TSL), a sentence can be in positive, negative and question

clause forms if the hand gesture of the verb is accompanied by different non-manual

gestures as Zeshan [35] describes in her work on TSL. Thus; when we refer to sign
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Table 1.5. Properties of a Desired Recognizer

1 Subjects of any age, ethnicity and outlook

2 Deals with variation in lightning

3 Deals with partially occluded faces

4 No special markers/makeup required

5 Deals with rigid head motions

6 Automatic face detection

7 Automatic facial feature extraction

8 Deals with inaccurate facial expression data

9 Automatic facial expression classification

10 # interpretation categories

11 Classifying facial action codes

12 # facial action codes

13 Runs on real-time

Table 1.6. Comparison of Recognizers in the Scope of Properties in Table 1.5

Author(s) Characteristics of an ideal automated facial expression analyzer

1 2 3 4 5 6 7 8 9 10 11 12 13

Sobottka and Pitas [26] x x x o - x o x - - - - x

Gokturk et al. [23] x x x o o o o x - - - - x

Spors and Rabenstein [5] x x x o - o - - - - - - o

Kapoor and Picard [8] x x x o - x pupils x o 2 x x o

Jordao et al. [6] x x x o o o o x - - - - near

Ahlberg [7] x x x o o o o x - - - - near

Sebe et al. [24] - - x o o x o x o 4 x x x

Lien et al. [15] o o x o - x o x x x o 3 x

Cohen [25] x x x o o x o x o 6 o 12 x

Franco and Treves [18] - o x o x x o x o 4 x x x

Zhang and Ji [9] - - o o < 30o o o o o 6 o 18 o

Dubuisson et al. [14] - - - o x x o x o 6 x x x

Ari et al. [34] x x x o o o o x o 7 x x x

Legend: ’o’ means yes, ’x’ means no, ’-’ means not available or not known
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language expressions, we do imply that that they are composed of facial expressions

(e.g. happiness, sadness, anger) and/or head movements (e.g. head shaking, nodding).

In some parts of the text, the terms non-manual expression and facial sign are used

in a similar meaning.

Aran et al. [36] select their video database such that it involves some signs where

the manual gestures are the same but different facial expressions and head movements

occur.

Therefore, a robust high-performance facial feature tracker and facial-expression

classifier is a must in sign language recognition.

Most of the work done about sign language recognition focuses on hand gesture

recognition and lacks non-manual sign analysis. Ma and Gao [37] use only hand gestures

in their work on Chinese Sign Language classification. Similarly, Bowden et al. [38]

and Sagawa and Takeuchi [39] take only hand gestures into consideration in their sign

language interpreter and recognizer.

There are also systems that only require features to synthesize the signs using an

avatar. In [40], Zhao et al. use hand positions to visualize the words in their English

to American Sign Language translation system.

As stated, most of the research focuses on classifying expressions into one of

Ekman and Friesen’s [1] six universal expressions: happiness, anger, surprise, disgust,

fear, sadness. But in the scope of sign language, all of these expressions would not be

needed and smaller number of classes would be sufficient as Zeshan [35] states for TSL

where the robustness and speed of the system is very important.

1.3. Approach and Contributions

In [41], Keskin et al. proposed a Hidden Markov Model based real time hand

tracker that works with colored gloves. This system is capable of reconstructing 3D
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locations of the hand and 3D gesture recognition was established in real time.

Motivated from the previous work, Aran et al. [42] enhanced the gesture recog-

nizer such that it can classify the performed manual gesture into one of the seven signs

chosen from Turkish Sign Language (TSL). The user watches pre-recorded signs via

the user interface and tries to perform the selected sign. Interactive learning of the

signs is achieved by this method.

After identifying the need of non-manual gestures to classify a sign language word

correctly, Aran et al. integrated a facial expression and head movement tracker and

classifier in [36]. In this work, we chose 19 expressions from American Sign Language

where some expressions are the same in hand gestures but differ in head motions or

facial expressions. The purpose of the system was to distinguish these type of signs from

each other as well as identifying the performed sign. The classification of hand gestures

was near accurate but the non-manual gesture classification was working poorly. Thus,

it led to a deficiency in the the sign classification, especially in distinguishing between

similar classes.

We required a video database of facial signs on which proposed algorithms could

be tested in order to develop a distinct system that can deal with facial signs. The

databases open to researchers in the literature mostly involve static images. There exist

image sequences involving facial expressions but they lack head movements performed

with facial expression. To overcome this need, we introduced a video database of non-

manual signs selected from TSL in [43]. An appearance analysis of the facial signs

existing in the database and their classification from manually annotated landmarks

are given in this work as sample research showing how to use the database.

The contribution of this thesis falls in two parts which we will describe throughout

the thesis. First, we develop a multi-view facial landmark tracker that acts robustly in

image sequences. This tracker is an extension of Multi-resolution Active Shape Model

approach of Cootes et al. [21]. Secondly, we propose a facial sign recognizer that

interprets the facial landmark locations throughout the image sequence which depends
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on a Continuous Hidden Markov Model classifier. The flowchart of the proposed system

can be seen in Figure 1.2.

Figure 1.2. Flowchart of the proposed system

1.4. Outline of the Thesis

In this chapter, an introduction is made by describing the problem which is

the recognition of facial expressions and head movements (i.e. facial signs) and the
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motivation to solve this problem. Then, a detailed literature survey followed by our

approach and contributions is made.

Chapter 2 describes the mathematical details of the facial feature tracking in

sign videos. It starts with describing statistical analysis of shapes and appearance and

continues with the construction of Active Shape Models, and their extension to work

in multi-view and multi-resolution. The details of fitting a shape to an unseen image

and tracking these landmarks throughout the image sequence conclude this chapter.

In Chapter 3, the mathematical details of classifying the tracked facial landmarks

using Continuous HiddenMarkov Models is explained. This chapter gives a background

for Discrete and Continuous Hidden Markov Models and then explains the normaliza-

tion procedure of the facial landmark locations before giving as an input to the HMM

classifier.

Chapter 4 includes the experiments tested on a video database which is composed

of non-manual signs and presents the achieved results . Both tracking and classification

experiments are involved in this chapter.

Finally, a summary of the results obtained is given with related discussions and

future work in Chapter 5.
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2. FACIAL FEATURE TRACKING

2.1. A Review of Statistical Approaches for Shape Analysis and Tracking

Cootes et al. [21] introduced Active Shape Models (ASMs) which are used to fit

a shape to an unseen image where the shape deformation is done in two steps: First,

the landmarks are translated along the profiles perpendicular to landmark locations

where the new location gives the minimum gradient error between the fitted profile

and the mean profile that is calculated by averaging the profile gradients of all shapes

in training set. Secondly, the shape deformation is projected onto a new shape space

where the projected shape is similar to those in the training set. This way, the shape

is safely deformed and the irrelevant deformation of the shape is avoided. In [44],

Cootes and Taylor describe multi-resolution approach to ASMs which enhances the

performance of fitting both in time complexity and in accuracy. In Multi-resolution

ASM (MRASM), the image is downsampled into smaller dyadic sizes of the original

size and first fit is performed in the smaller sample. After each level, the fitted shape

is used as initial shape in the larger sample and the ASM search is done.

In [19], Cootes et al. introduced a new active model named as Active Appearance

Model (AAM). In AAMs, the intensity values of pixels in the convex hull of the land-

mark locations are taken into consideration instead of relying only on the landmark

profiles. A uniform warping followed by global illumination removal is performed to

normalize the objects and Principle Component Analysis (PCA) is done using these

samples. The fitting of the shape to an object is done by iteratively perturbing the

appearance such that each synthesized object of an iteration is closer to the target

image. AAMs are explored in detail by Stegmann [45] in his thesis where he shows

their usage in medical applications as well as facial feature fitting and tracking. He also

introduces an AAM toolbox in [46] open for researchers to experiment with AAMs.

There is a considerable difference between ASMs and AAMs in terms of time

complexity. In ASMs, only the pixels along the landmark profiles are used whereas all
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the pixels in the convex hull of the shape are used in AAMs. Additionally, warping the

convex hull to get equivalent number of pixels in each iteration is a time consuming

operation.

The applicability of these approaches to object segmentation and tracking led

researchers to investigate ASMs and AAMs in detail. An extension was the 3D active

models. Temporal information was taken into account and earlier 2D spatial models

were extended in order to use motion information through time. Hamarneh and Gus-

tavsson [47] introduced spatio-temporal shapes (ST-shapes) which are the 2D+time

extensions of ASMs. In [48], Mitchell et al. show the segmentation of volumetric car-

diac magnetic resonance (MR) images and echocardiographic temporal image sequences

using 3D AAM training and fitting.

Furthermore, appearance models considering the color information in RGB, YUV

and HSI color spaces were examined by Koschan et al. [49].

In this chapter, we explore 2D MRASMs and show how to extend them to work

in multiple views of faces and use them for tracking facial landmarks.

2.2. Statistical Analysis of Shapes

The statistical analysis of shapes consists of three distinct steps which are capture,

normalization and PCA (Principle Component Analysis) as shown in Figure 2.1.

Figure 2.1. The phases in statistical analysis of shapes
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2.2.1. Capturing Landmarks

We first gather a sample set of N images where each image involves a face and

then we decide on L feature points (landmarks) which are common in all faces in this

set such as the points shown in Figure 2.2.

Figure 2.2. Selected feature points

We manually annotate these L selected landmarks in each image and create the

sample shape space Φs containing shapes si where

si = (x1, y1, x2, y2, . . . , xL, yL) , i = 1, . . . , N

is a shape containing the coordinates of the landmarks in that image.

2.2.2. Shape Normalization

We want to model the variability using PCA which is an eigen-analysis of shape

dispersions in 2L-dimensional space. Applying PCA to non-normalized landmark loca-

tions would lead to unexpected results. Since shape definition should be independent

of similarity transformations (translation, scaling and rotation), one can see that shape

alignment is crucial to overcome PCA defects. The normalization is done using Pro-

crustes Analysis which has the following steps as Cootes and Taylor describe in [44]:
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1 - Choose the first shape as the reference (estimate of the mean) shape;

2 - Align all remaining shapes to it;

3 - Recalculate the mean shape from all;

4 - Repeat steps 2-3 until the mean shape converges.

Figure 2.3. Shape Alignment Algorithm

In step 2 in Figure 2.3, the aligned shape is translated, scaled and rotated to best

match the reference shape. To align a shape si in Φs to the reference shape sref , si is

mapped to ŝi such that the distance between ŝi and sref is minimized. Let the distance

be,

d2
ref,̂i
= (ŝi − sref )TWTW (ŝi − sref ) (2.1)

where W is chosen to be a diagonal matrix that involves the reliability values of

landmarks with a mean value of 1.

For the jth landmark in si, the following similarity transformation is used





x̂ij

ŷij



 =





scos(θ) −ssin(θ)
ssin(θ) scos(θ)









xij

yij



+





tx

ty



 (2.2)

Eq. 2.2 can be rewritten as follows:





x̂ij

ŷij



 =





xij −yij 1 0
yij xij 0 1





















scos(θ)

ssin(θ)

tx

ty

















(2.3)

Then, this equation can be written for all points (by adding rows to the formula above
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for other landmarks) and the following form can be achieved:

si = Az (2.4)

where the dimensions of si, A and z are 2L × 1, 2L× 4 and 4× 1 respectively.

Since there will not be a unique solution due to the fact that the number of

observations is more than the number of unknowns, least squares approach is applied

by integrating Eq. 2.4 into Eq. 2.1, and solve to find z and the similarity parameters

needed to align si to sref .

z = (ATWTWA)−1ATWTWsref (2.5)

IfW is taken as identity matrix I for simplicity, Eq. 2.5 becomes

z = A+sref (2.6)

where A+ is the pseudo-inverse of A.

Alignment of a shape onto the reference shape is illustrated in Figure 2.4.

When faces in sign language videos are considered, rotation carries vital infor-

mation that we would like to retain in the model, so that its removal is excluded in

shape normalization. Thus, the parameters are found by removing the rotation infor-

mation from Eq. 2.2 and deriving the rest of the equations in a similar way. A sample

alignment of facial landmarks is shown in Figure 2.5.

2.2.3. Modelling the Shape Variance with Principal Component Analysis

There exists a redundancy stemming from inter-point correlations in the shape

space as Stegmann states in his thesis work [45]. A classical statistical method for
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Figure 2.4. Alignment of si on sref

Figure 2.5. Alignment of facial landmarks in si on sref
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eliminating such redundancy is the Principal Component Analysis (PCA) which is in-

vented by Pearson [50] and based on his work, introduced in [51] by Harold Hotelling.

PCA is a vector space transform often used to reduce multidimensional data sets to

lower dimensions for analysis as described in detail in the Principle Component Anal-

ysis book of Joliffe [52]. Depending on the field of application, it is also named the

discrete Karhunen-Loève transform, the Hotelling transform or proper orthogonal de-

composition (POD).

The main motivation in using PCA is the dimensionality reduction where most

of the total variance (e.g. 95%) can be represented using a small number of orthogonal

basis vectors. But, conversely, PCA will enable us to synthesize new shapes which are

similar to those in the sample space. Indeed, this will be very useful when we need to

re-synthesize the fitted shape to a new one which is more reasonable (i.e. more similar

to the training shapes) and avoid modeling non-relevant shape variations.

Applying PCA to the normalized shape space Φs gives us the major principles

containing the most variation in the space in question. In other words, PCA can be

seen as an eigen-analysis of normalized shape space. The PCA steps applied to the

normalized shapes are given in the algorithm in Figure 2.6.

s̄ =
1

N

N
∑

i=1

si (2.7)

Q =
[

s1 − s̄ s2 − s̄ · · · sN − s̄
]

2L×N
(2.8)

Cs =
1

N
QTQ (2.9)

Csek = λkek (2.10)
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Require All shapes si, i = 1, 2, . . . , N are normalized

Compute the mean shape s̄ using Eq. 2.7;

Form the N × 2L matrix Q as defined in Eq. 2.8;
if N < 2× L then
Q⇐ QT ;
end if

Compute the covariance matrix Cs using Eq. 2.9;

Decompose Cs to its eigenvectors ek and eigenvalues λk satisfying Eq. 2.10;

if N < 2× L then
for k = 1 to K do

ek ⇐ Qek ;
ek ⇐ ek/||ek|| (normalization);
end for

end if

Figure 2.6. Principal Component Analysis Algorithm
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Any shape s can also be described using all eigenvectors in a lossless way and the

coefficients of eigenvectors form the parameter vector b.

s = s̄+Erb (2.11)

b = ETr (s− s̄) (2.12)

where

Er =
[

e1 . . . er

]

, r = min(2L,N)

As stated earlier, the motivation behind applying PCA is to reduce the dimension

and useK < r eigenvectors, yet preserving the most of the variation. K is chosen where

it satisfies

K
∑

k=1

λk ≥ 0.95×
r
∑

k=1

λk

Let λ1, . . . , λk be the first K eigenvectors. Then using b̂ = (b1, . . . , bK), we can

synthesize ŝ which is an estimate of s that is similar to the shapes in Φs.

ŝ = s̄+EKb̂ (2.13)

b̂ = ETK(s− s̄) (2.14)

2.3. Statistical Analysis of Appearance

To synthesize a complete image of an object or structure, we must model both

its shape and its texture (the pattern of intensity or color within the object region) as

Cootes and Taylor [44] states. The phases of appearance analysis can be seen in Figure

2.7.
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Figure 2.7. The phases in statistical analysis of textures

2.3.1. Gathering Intensity Values

Let a face texture be the intensity values (grayscale or colored) of pixels that

reside in the convex hull of the face shape. So, the face textures are gathered when

the landmarks are annotated in each face image. Different face textures can be seen

on the left of Figure 2.8. Let Φg be the space of sample training textures.

Figure 2.8. Normalization of face textures by triangulation matching

2.3.2. Texture Normalization

2.3.2.1. Texture Warping by Triangulation. To build a statistical model of texture

variations in the training set, the number of pixels should be the same for each sample
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texture vector that is taken into consideration. In order to satisfy this, each face image

is warped to the mean shape by using Delaunay triangulation as seen in Figure 2.8.

Let T be the Delaunay triangulation of the mean shape s̄ and t be a triangle of T as

illustrated in Figure 2.9.

Figure 2.9. Delaunay triangulation of a shape

And let t′ be the target triangle for t as shown in Figure 2.10.

Figure 2.10. Point mapping in triangles

So, we can write

αv1 + βv2+ γv3 = pj (2.15)

α+ β + γ = 1 (2.16)

where pj involves the coordinates of the point, and vk, k = 1, 2, 3 are the vertices of

the triangle.

Then, the detailed steps of the warping algorithm are constructed as in Figure

2.11.



28

Choose s̄ as reference shape sref and triangulate it using Delaunay triagulation T ;

for each triangle t ∈ T do
for each pixel j ∈ t do
Find the blending values α, β and γ satisfying Eq. 2.15 and Eq. 2.16.;

Save the corresponding blending parameters;

end for

end for

for each texture i in Φg, i = 1, . . . , N do

Use the same triangulation T to triangulate this shape;

for each pixel j in sref do

Find the triangle it belongs to in shape i, thus the three vertices which will

be necessary for describing the interior points;

Retrieve the stored blending parameters belonging to this point, insert them

to Eq. 2.15 with the vertices found in the previous part;

Find the coordinates of intensity value which is mapped to coordinate j (Bi-

linear interpolation may be used [45]);

Set the new pixel value;

end for

end for

Figure 2.11. Texture Warping Algorithm
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As a result of the texture alignment (warping), the dimension (number) of texture

pixels is equalized in all samples.

2.3.2.2. Photometric Normalization. To minimize the effect of global lightning vari-

ation, each texture gim in Φg is normalized by applying a scale α and an offset β as

described in [44],

g = (gim − β1)/α (2.17)

Let ḡ be the mean of the normalized Φg so that the sum of elements of g is zero

and the variance is unity. Then, α and β are chosen as

α = gim.ḡ, β = gim.1/n (2.18)

where n is the number of elements in gim. In practice, ḡ is initialized as the mean

texture vector. Then, the normalization process is done by normalizing the textures

and re-estimating the mean from them for a few iterations. This step is called the

removal of global illumination.

2.3.3. Modelling the Texture Variance with Principal Component Analysis

Similar to the modelling of shape variance previously, we can model the texture

variation using PCA. Remember that n is the number of elements in any texture vector,

then we construct the covariance matrix as follows

ḡ =
1

N

N
∑

i=1

gi (2.19)

Qg =
[

g1 − ḡ g2 − ḡ · · · gN − ḡ
]

n×N
(2.20)

Cg =
1

N
QTgQg (2.21)
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and decompose it to its eigenvalues as follows:

Cgek = λkek (2.22)

The PCA algorithm described in Figure 2.6 holds for texture analysis where the

length of the vectors is n instead of 2L. The alternative calculation included in the

algorithm may decrease calculation time when there are fewer samples than vector

length because we have generally n≫ N in practice [45].

Any texture g can be described using all eigenvectors in a lossless way and the

coefficients of eigenvectors form the parameter vector bg.

g = ḡ +Erbg (2.23)

bg = E
T
r (g− ḡ) (2.24)

where

Er =
[

e1 . . . er

]

, r = min(n,N)

As in shape analysis, k most significant eigenvectors describing most of the total

variation can be retained. Then using b̂g = (b1, . . . , bK), we can synthesize ĝ with

fewer parameters which is an estimate of g.

ĝ = ḡ +EKb̂g (2.25)

b̂g = E
T
K(g − ḡ) (2.26)
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2.3.4. Modelling Both Shape and Appearance Variance

It was seen that a sample can be reconstructed using model parameters of shape

bs, and texture bg . To remove the correlation between shape and texture parame-

ters and to make the model more compact, an additional PCA is performed on the

concatenated parameters b which can be written as

b =





Wsbs

bg



 =





WsE
T
s (s− s̄)

ETg (g − ḡ)



 (2.27)

where the subscripts s and g in E imply shape and texture eigenvectors respectively.

Ws is used to make the units in shape (point locations) and texture (intensity values)

commensurate and is calculated as Ws = rI where r
2 is the ratio of total intensity

variation to the total shape variation.

A further PCA is applied to b vectors to give

b = Ecc (2.28)

where Ec are the eigenvectors and c holds the appearance parameters that controls

both shape and texture in a single vector. From the linear nature of the model, it is

possible to get shape and texture data as follows:

s = s̄+EsW
−1
s Ecsc (2.29)

g = ḡ +EgEcgc (2.30)

where

Ec =





Ecs

Ecg




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2.4. Constructing the Active Shape Model

Let pij be the j
th landmark in the ith shape, such that pij = (xij, yij). gij is the

gradient of pixel intensities along the profile of pij as in Figure 2.12. The gradient

is calculated by taking the difference of consecutive intensities. A more complicated

shape and the profiles of its landmarks are given in Figure 2.13.

Figure 2.12. Profiles of landmarks in a shape

Figure 2.13. Profiles of landmarks in a a more complicated shape

To illustrate, the intensity values of the red channel on the profiles of lips in Figure

2.13 and the corresponding gradient values are given in Figure 2.14. The grayscale

image on the left shows the intensity values for each point profile in each row. The bar

graphs in each row on the right corresponds to the intensity change (gradient values)

for that point. Since there are 16 landmarks on lips, Figure 2.14 includes 16 rows. It
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is seen that nearly all of the points are selected where there is considerable change in

the intensity values (i.e. the points are selected on edges).

Figure 2.14. Intensities along the profiles around lips with the corresponding gradients

Then we calculate ḡj as the mean gradient vector and Cj as the covariance of

gradients for each landmark. Thus a single Active Shape Model (ASM) is composed

of particular s̄, EK , λk, ḡj and Cj (k = 1, . . . , K and j = 1, . . . , L).

2.5. Fitting a Shape to a Test Image

The initialization is done by detecting the face using OpenCV’s face detector [10]

and s̄ is placed on the found face. Then, the shape is iteratively perturbed along the

profile until convergence. Each iteration involves two steps as follows:
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2.5.1. Finding the Best Fit

Let us say n is the profile width (length of the model mean vector ḡj) and m is

the search width (length of the sampled profile gradient vector) as in Figure 2.12 where

m > n.

For each landmark, we find the best fit along the profile where the best profile

gradient ĝj gives the minimum Mahalanobis distance with the model, i.e. the term

(ĝj − ḡj)TC−1j (ĝj − ḡj) (2.31)

is minimized.

For example, let the sampled profile have gradient values as shown in Figure 2.15.

If the model has mean value ḡj as given in the figure, the best fit will be 2 units far

along the profile to the current landmark location as seen as gray colored bar in the

lowest plot of Figure 2.15. Remember that Cj is also required to calculate the cost of

fit but it is not shown in the figure.

It is also seen from Figure 2.15 that there are a total of m − n + 1 candidate
locations for best fit along each profile.

Figure 2.15. Search along the sampled profile and the best fit location
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2.5.2. Constraining the Best Fit

The best fit is constrained by finding the approximate shape parameters b̂ using

Eq. 2.26 and constraining each coefficient bk satisfying −3
√
λk ≥ bk ≤ 3

√
λk for

k = 1, . . . , K . That is, if the value is out of the allowed limits, then it is changed to

the nearest allowed value. This way, the fitted shape avoids deformation and will be

similar to the ones in Φs. In Figure 2.16, it is clear that the deformation of the shape

is avoided where the best fit (on the left) and the corresponding constrained shape (on

the right) in an ASM iteration are shown.

Figure 2.16. Best fit is constrained by projecting b back to b̂ using Eq. 2.26.

2.6. Multi-resolution Approach

In the multi-resolution approach, instead of using a single level ASM search, a

model is created for each level of the image pyramid where the original size images are

in the lowest level and higher models involve sub-sampled images. The search is first

done at the highest level and the found shape is passed to the lower level as the initial

shape for that level. So a rough estimate is found with less computational cost in the

highest level and fine-tuned at each level it goes through. This procedure is called

Multi-resolution ASM (MRASM).

Let l be the current level of the multi-resolution pyramid, lmax be the top level

number, Nmax be the maximum number of iterations allowed at each level, r be the
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convergence ratio that shows the ratio of landmarks staying unchanged after an iter-

ation (proportion of points found within (n − 1)/4 units of current position) and r′

the accepted convergence ratio that is sufficient to stop the search. The full MRASM

search algorithm becomes as given in Figure 2.17.

l⇐ lmax (i.e. choose top level) ;
Initialize the shape ;

while l ≥ 0 do
if l 6= lmax then
Scale the shape coordinates by 2 for consistency at this new level ;

end if

(asm-1) Find the best fit as explained in Subsection 2.5.1 ;

(asm-2) Constrain the best fit as explained in Subsection 2.5.2 ;

if not (r > r
′

or Nmax iterations are performed in this level ) then

return to step (asm-1) in this loop ;

end if

l ⇐ l− 1 ;
end while

Figure 2.17. Multi-resolution ASM Search Algorithm

2.7. Data Refitting

Since Φs is gathered by clicking feature points manually, the training set is error-

prone to human mistakes. To reduce this bias, data refitting is performed. So, a model

is trained using Φs, which involves the shapes gathered manually. Then, for each image

in the training set, MRASM search is performed but the shape is initialized by using

the ground truth shape instead of initializing with the mean shape. Thus each shape

is refitted using this model. Finally, a new model is trained by using the fitted shapes

as described in the work of Gross et al. [53].
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2.8. View-based ASM Modelling and Searching

Cootes et al. [54] extended AAMs by training view-based models in their work.

The main motivation here is to group the samples with the same view (gaze or pose)

in the same set and interpret the facial expression variations with fewer eigenvectors

instead of interpreting the head pose change variations. Since there is head motion in

addition to facial expressions in sign videos, a single view model is not sufficient for

handling all views of the face and we extend ASMs to work in multiple views. When

the subject changes the head pose, some components of the face such as eyebrows and

eyes have considerably different gradient changes on the contours as seen in Figure

2.18. For example, the end of the eyebrows is completely occluded in the rightmost

image and the intensity change in the eye region that is near to nose varies among

different views.

Figure 2.18. Left eye and eyebrow in different views

So, the training set is divided into W subsets and a different model is trained

for each view where W = 4 and the views vi (i = 1, 2, 3, 4) are frontal, left, right and

upwards views in our case. Sample images are shown in Figure 2.19.

Figure 2.19. The four selected views

The search in an image is done using each model and the best fitting model is

selected such that it gives the minimum root mean square error with the model. That
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is, root mean square error is similarity metric for us to decide on a model view.

Formally, if ḡvi,p is the concatenated vector of the mean profile gradients ḡj ,

j = 1, . . . , L of view vi, and gvi,p is the concatenated vector of found profile gradients

using this model, then

vbest = argmin
vi

E(gvi,p, ḡvi,p) (2.32)

where E(x,y) is the root mean square error between x and y calculated as

E(x,y) =

√

√

√

√

n
∑

i

(xi − yi)2

n
(2.33)

Let us simply denote E(gvi,p, ḡvi,p) as rmsg,vi for further usage.

2.9. Tracking in an Image Sequence

In a still image where there is no temporal information, we simply selected the

model giving the minimum error. When time is also introduced and we have image

sequences instead of still images, we may want the tracked shape to be consistent

through the frames. Although we find the best fit, the fitted shape may not be an

acceptable result. So there are two important rules as follows:

1. If the search results are not acceptable, leave the frame as empty.

2. If there are many accepted search results, choose the one that most resembles the

accepted shape in the preceding frame.

Let rmst,vi,f be the root mean square error between shapes in the f
th frame found

with the vthi model and the immediate preceding accepted frame, where f = 2, . . . , F . If

the previous frame is already accepted as a valid fit, then the most previously accepted

frame number is f − 1. This metric informs us about the change in shape in the given
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interval and is calculated by modifying Eq. 2.33 for the shape vectors in question.

We assume that the first frame is frontal, so we start with a single view MRASM

search for f = 1. Then the algorithm is given in Figure 2.20.

Initialize the face shape

Apply MRASM search for frontal view and fit the face shape where f = 1 ;

for f = 2 to F do

Set the previously found shape as initial shape ;

for each view vi (frontal, left, right, upwards) do

Apply MRASM search with the corresponding model ;

end for

Eliminate the models whose rmsg,vi is above a threshold ;

if no model remains then

Mark this frame as empty (not found) ;

else

Accept the shape fitted by the model giving the minimum rmst,vi,f ;

end if

end for

Figure 2.20. Algorithm of Tracking Landmarks in Image Sequence

The threshold used in Figure 2.20 can be automatically generated from the fitted

shape in the first frame since the subject is assumed to start in neutral face and the

MRASM search is relied on to fit the face. The threshold selection is important in

tracking. The higher the threshold value, the more frames are rejected and left empty.

So, the tracking remains stable and can not catch changes. On the other hand, it the

threshold value is selected low, fewer searches will be rejected and thus, the shape can

diverge far from the actual face shape.
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2.10. Postprocessing the Found Landmarks

2.10.1. Interpolation of Empty Frames

Some frames are left empty for the untrusted MRASM searches during the track-

ing algorithm. These empty frames are filled by interpolation. For any empty frame

fj with found frames fi and fk where i < j < k, its shape sj is found as

sj =
(fk − fj)si + (fj − fi)sk

fk − fi
(2.34)

2.10.2. Filtering the Landmarks Trajectories

In some of the frames, the tracker is error-prone to spiky changes. So, α-trimmed

mean filter is applied to eliminate the spikes encountered during tracking. In addition,

it smoothes the trajectories. Suppose that each landmark trajectory throughout time

is put in a vector forming a temporal signal. Then, a window of length 5 is traversed

through this temporal vector, the lowest and the highest values are excluded and the

mean of the remaining three values is taken as the filtered value in our case. In Figure

2.21, a signal including a spiky peak and valley errors is given with the filtered values.

It is clearly seen that the spikes are eliminated and the signal is smoothed.

Figure 2.21. Illustration of α-trimmed mean filtering
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3. EXPRESSION RECOGNITION

In the previous chapter, we have trackedL facial landmarks in each frame of a sign

video. As described in Chapter 1, an ideal system should also classify these landmark

motions to any of the expression classes in question. Remember that expression is

used for non-manual/facial signs in our case, and it does not imply merely a facial

expression; it may also involve head pose changes (head movements).

For classifying the performed non-manual sign, Hidden Markov Models (HMMs)

are used with the normalized landmark locations as features. We start with sum-

marizing our prior expression classification work based on Support Vector Machines.

Afterwards, the details of the feature extraction and the HMM classification investi-

gated in this thesis are given.

3.1. Expression Recognition based on Support Vector Machines

In the joint work with Aslı Uyar [34], we explored expression recognition that

consists of two sub-stages which are motion feature extraction and classification using

Support Vector Machines (SVMs). The extracted coordinates of facial landmarks in

consecutive frames of the video sequences are used to evaluate the maximum displace-

ment values for each feature point in four directions x+, x−, y+ and y− across the entire

image sequence.

3.1.1. Motion Feature Extraction

Displacement based and time independent motion feature vector is used as the

input to the SVM classifier. The motion feature vector includes information about both

the magnitude and the direction of motion for each landmark. We find the maximum

displacement of landmarks where peak location for each landmark may be in different

frames.
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Let Vi be the ith video composed of consecutively tracked shapes as follows

Vi =
[

si1, s
i
2, · · · siF

]

(3.1)

where

sif =
(

xi,1f y
i,1
f xi,2f y

i,2
f · · · xi,Lf yi,Lf

)

(3.2)

is the set of tracked landmarks in the f th frame of ith video. Note that, the notation of

indices for a point coordinate is modified to enable showing video, frame and landmark

number in a single notation.

For each video, the initial frame (i.e. si1) is chosen as the reference frame and the

displacements of the landmarks between each frame and the reference frame have been

measured.

Then, the maximum displacement values of each landmark in four directions have

been chosen as the motion features.

dxi,lmax = max
f

{

xi,lf − xi,l1
}

dxi,lmin = min
f

{

xi,lf − x
i,l
1

}

dyi,lmax = max
f

{

yi,lf − yi,l1
}

dyi,lmin = min
f

{

yi,lf − yi,l1
}

The output of this process is a single motion vector zi for each video.

zi =
(

dxi,1max · · · dxi,Lmax dxi,1min · · · dxi,Lmin dyi,1max · · · dyi,Lmax dyi,1min · · · dyi,Lmin
)

(3.3)
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3.1.2. Classification Using SVM

Because of the superior classification performance and its ability to deal with

high dimensional input data, SVM was chosen as the classifier in this prior study for

facial expression recognition. A brief definition of SVM is given below:

Given a set of training data pairs (xi, yi), yi ∈ {+1,−1}, the aim of the SVM
classifier is to estimate a decision function by constructing the optimal separating

hyperplane in the feature space [55]. The key idea of SVM is to map the original input

space into a higher dimensional feature space in order to achieve a linear solution. This

mapping is done using kernel functions. Final decision function is in the form:

f(x) =

(

∑

i

αiyiK(xi · x) + b
)

(3.4)

where K(xi · x) is the Kernel transformation. The training samples whose Lagrange
coefficients αi are non-zero are called support vectors (SV) and the decision function is

defined by only these vectors.

3.2. Expression Recognition based on Hidden Markov Models

In this study, we explore the classification of non-manual signs that is composed

of two stages: normalization of tracked landmarks in the image sequences and classifi-

cation based on Hidden Markov Models (HMMs).

3.2.1. Feature Extraction: Normalization of Tracked Shape Sequences

The tracked landmarks found in videos are inconsistent because the scales and

positions of the faces in different videos vary. For example, the subject in the ith video

may be nearer to the camera, whereas jth video involves a subject performing the sign

far from the camera. In order to achieve consistency, a normalization of shape sequences

given in Eq. 3.1 should be performed as described in Figure 3.1. Briefly, the first shape
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of a video is translated to the origin and scaled to unity with a transformation and this

transformation is applied to all remaining frames in the same video.

for each video Vi do

Compute the mean of the first shape si1 as follows ;

mx =

(

∑

l

xi,l1

)

/L , my =

(

∑

l

yi,l1

)

/L

Compute the Frobenius Form [45] as follows ;

r =

√

∑

l

(xi,l1 −mx)2 + (yi,l1 −my)2

Find the transformation T that translates si1 to the origin and the scaling S

that scales it to unit shape and the unified transformation matrix A;

A = ST , where T =











1 0 -mx

0 1 -my

0 0 1











and S =











1/r 0 0

0 1/r 0

0 0 1











for f = 1 to F do

Transform sif to s
′i
f using A ;

end for

Form the normalized video V
′i from the transformed shapes ;

end for

Figure 3.1. Algorithm of Shape Sequence Normalization

3.2.2. Classification Using Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical model in which the modeled

system is assumed to be a Markov process with unknown parameters, and the ob-
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jective is to determine the hidden parameters from the observable parameters. The

extracted model parameters can then be used to perform further analysis, for example

for classification of sequential data.

In [56], Rabiner emphasizes the outstanding reasons why hidden Markov modeling

has become increasingly popular in the last decades: First, the models are very rich

in mathematical structure and hence can form the theoretical basis for use in a wide

range of applications. Secondly, the models, when applied properly, work very well

in practice for several important applications. Alpaydin [57] states that the HMM

is a mature technology and HMMs are applied to various sequence recognition tasks

such as commercial speech recognition systems in actual use (Rabiner and Juang [58],

Jelinek [59]), real-time manual gesture recognition systems (Keskin et al. [41], Aran et

al. [42]) and non-manual gesture recognition systems (Kapoor and Picard [8]).

3.2.2.1. Discrete Markov Processes . Let a system have N distinct states forming S =

{S1, . . . , SN}. At each time step t, the system is assumed to be in one of the states, that
is qt, where qt ∈ {s1, s2, . . . , sN}. We assume that only the current state determines
the probability distribution for the next state (first order Markovian property) and the

transition probability aij from Si to Sj under this assumption can be given as:

aij ≡ P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N (3.5)

satisfying

aij ≥ 0 and
N
∑

j=1

aij = 1 (3.6)

The transition probabilities form matrix A = [aij] which is an N × N matrix.
Notice that, aij values show the inner transitions and the initial probabilities are not

given yet. We define πi as the probability that the sequence starts with Si and Π = [πi]
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is a vector composed of initial probabilities satisfying

N
∑

i=1

πi = 1 (3.7)

3.2.2.2. Hidden Markov Models. Let M be the number of distinct observations which

form the set O = {o1, o2, . . . , oM}. In an observable Markov model, S ≡ O, i.e. we
observe the states and we get an observation sequence that is a sequence of states. But

in a Hidden Markov Model (HMM), the states are not observable and we observe om

when the system is in Sj with a probability of

bj(m) ≡ P (Ot = om|qt = Sj) (3.8)

where Ot is the observation we get at time t.

N and M are implicitly defined in other parameters, so the model is defined as

Θ = (A,B,Π). In HMMs, there are three main problems as follows:

1. The Evaluation Problem: Given a model Θ and a sequence of observations

O = {O1O2 . . .OT}, what is the probability that the observations are generated
by the model, P (O|Θ)?

2. The Decoding Problem: Given a model Θ and a sequence of observations

O = {O1O2 . . .OT}, what is the most likely state sequence in the model that
produced the observations?

3. The Learning Problem: Given a model Θ and a sequence of observations

O = {O1O2 . . .OT}, how should we adjust the model parameters (A,B,Π), in
order to maximize P (O|Θ)?

In expression recognition, we need to solve the first and the third problems which

can be called also as recognition and training using HMMs.
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3.2.2.3. The Evaluation Problem. For a sequence classification problem, one is inter-

ested in evaluating the probability of any given observation sequence,O = {O1O2...OT},
given an HMM model, Θ. We can evaluate P (O|Θ) by trying all possible state se-
quences as:

P (O|Θ) =
∑

all possible Q

P (O,Q|Θ) (3.9)

However, this is not practical because there are NT possible state sequences [57].

There is an efficient way of solving this problem based on the idea of dividing the

observation sequence into two parts: the first one lasting from time 1 until time t, and

the second one from time t + 1 until time T . This approach is called the forward-

backward procedure.

The probability, or the likelihood, P (O|Θ) can be calculated in terms of only the
forward variable as follows:

P (O|Θ) =
N
∑

i=1

αT (i) (3.10)

where T is the end of sequence and αT (i) is the forward variable, that is is the proba-

bility of observing the sequence {O1 . . . OT} and being in state i at time T , given the
model Θ. The forward variable can be recursively calculated by going forward in time:

α1(j) = πjbj(O1) (3.11)

αt(j) =

[

N
∑

i=1

αt−1(i)aij

]

bj(Ot) (3.12)

The likelihood of an observation can also be calculated in terms of both the

forward and backward variables:
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P (O|Θ) =
N
∑

i=1

αt(i)βt(i) (3.13)

where the backward variable, βt(i) is defined as the probability of observing the partial

sequence {Ot+1 . . . OT} given that we are in state i at time t and the model is Θ. The
backward variable can be recursively computed by going backwards:

βT (i) = 1 (3.14)

βt(i) =
N
∑

j=1

βt+1(j)aijbj(Ot+1) (3.15)

The recursion steps of calculating forward and backward variables given in Eq.

3.12 and Eq. 3.15 are illustrated in Figure 3.2a and Figure 3.2b, recursively [57].

(a) (b)

Figure 3.2. Computation of forward variable, αt(j) and backward variable, βt(i).

When T is large, the computation of the forward variable will lead to an under-

flow when we want to implement this procedure because recursively multiplying small

probabilities will exceed the precision range of the machine. To avoid this, a normal-

ization is performed at each time step. The normalizing coefficient, ct is calculated as

follows:
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ct =
1

∑N

i=1 αt(i)
(3.16)

α̂t(i) = ctαt(i) (3.17)

We also normalize βt(i) values similarly. The computation of P (O|Θ) must be
modified conveniently since α̂t(i) and β̂t(i) values are already scaled. P (O|Θ) can be
calculated via the normalizing coefficients. However, due to the precision problem,

we can only implement this procedure by calculating the logarithm of P as Rabiner

explains in [56]:

log(P (O|Θ)) = −
T
∑

t=1

logct (3.18)

3.2.2.4. The Training Problem. The second problem is the training (learning) problem

which we need to solve for recognition of facial expressions. Maximum likelihood is used

where we would like to get Θ∗ that maximizes the likelihood of the training sequences.

The approach explained here is an Expectation Maximization (EM) procedure called

the Baum-Welch algorithm. We start by defining two new variables: ξt(i, j) as the

probability of being in state i at time t and in state j at time t+1, given the observation

sequence O and the model Θ; and γt(i) as the probability of being in state i at time t,

given the model Θ.

ξt(i, j) ≡ P (qt = Si, qt+1 = Sj|O,Θ) (3.19)

ξt(i, j) =
αt(i)aijbj(Ot+1)βt+1(j)

∑

k

∑

l αt(k)aklbl(Ot+1)βt+1(l)
(3.20)
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γt(i) ≡ P (qt = Si|O,Θ) (3.21)

γt(i) =
αt(i)βt(i)

∑N

j=1 αt(j)βt(j)
=
αt(i)βt(i)

P (O|Θ) =
N
∑

j=1

ξt(i, j) (3.22)

EM procedure iteratively calls two steps, called the E-step and the M-step. In

the E-step, γt(i) and ξt(i, j) are calculated from the current model parameters Θ =

(A,B,Π) using Eq. 3.20 and Eq. 3.22. In the M-step, Θ is recalculated from these

variables until the likelihood converges. If there are V sequences (videos) each with Fv

observations (frames) in our training set, the elements of A, B and Π are re-estimated

in the M-step using the following equations:

âij =

∑V

v=1

∑Fv−1
t=1 ξ

v
t (i, j)

∑V

v=1

∑Fv−1
t=1 γ

v
t (i)

(3.23)

b̂j(m) =

∑V

v=1

∑Fv−1
t=1 γ

v
t (j)1(O

v
t = om)

∑V

v=1

∑Fv−1
t=1 γ

v
t (j)

(3.24)

π̂i =

∑V

v=1 γ
v
t (i)

V
(3.25)

3.2.2.5. Continuous Observation Densities in HMMs. In the discussion of HMMs, we

assumed discrete observations modeled as a multinomial. But, if the inputs are contin-

uous as the normalized landmark sequences in our case, one possibility is to discretize

them (e.q. to motion vectors) and use these discrete observations. A vector quan-

tizer that quantizes the motion of a landmark between each frame to one of the eight

directions (right, up-right, up, up-left, etc.) can be a solution to discretize the land-

mark behaviours. A better way of quantization is to cluster the motion directions

into K discrete observations using unsupervised clustering methods, such as K-means

clustering.

Instead of quantizing the continuous observations into discrete ones, the trajecto-

ries of the landmarks can be assumed as normally distributed (or linear combinations of

normal distributions) and we can model them using mixture of multivariate Gaussians.
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Let there be K Gaussians used, which can be thought as the soft versions of K-means.

Then, the probability of the component k in state i at time t given the model can be

computed by:

γt(i, k) =
αt(i)βt(i)wikN(Ot;µik,Σik)

bi(Ot)P (O|Θ)
(3.26)

where wik values are the weights of Gaussians. The calculated probabilities above will

sum up to the the probability of being in state i at time t, given Θ as:

γt(i) =

K
∑

k=1

γt(i, k) (3.27)

For a sample, the M-step equations in this case will be:

µ̂ik =

∑V

v=1

∑Fv
t=1 γt(i, k)Ot

∑V

v=1

∑Fv
t=1 γt(i, k)

(3.28)

Σ̂ik =

∑V

v=1

∑Fv
t=1 γt(i, k)(OtO

T
t − µ̂ikµ̂Tik)

∑V

v=1

∑Fv
t=1 γt(i, k)

(3.29)

3.2.2.6. HMMs in Expression Recognition. As explained in the normalization of tracked

facial landmarks, the samples in the training set are frame sequences where each frame

is a vector consisting of normalized landmark locations. So, we use Continuous Hidden

Markov Models (CHMM) with multivariate samples.

Let there be C different expression classes that we want to recognize in our

application. First, a model Θc is trained from the training set of each class. Then,

when a new observation O comes, the class which is giving the maximum likelihood is

assigned as its class, that is cO.

cO = argmax
c

P (O|Θc) (3.30)



52

4. EXPERIMENTS AND RESULTS

4.1. Database

Since the aim of this thesis is to classify the most common non-manual signs

(head motion and facial expressions) in Turkish Sign Language (TSL), we collected a

video database of non-manual signs to experiment the proposed approach and compare

it with the other types of Multi-resolution Active Shape Model (MRASM) trackers.

The non-manual signs which are frequently used in TSL and those changing the

meaning of the performed sign considerably are selected as the sign classes in the

database. There are also additional signs which we use in daily life during speaking.

This database was collected and first presented in 2007 [43]. The database involves 11

(6 female, 5 male) different subjects performing 8 different classes of signs each.

4.1.1. The non-manual signs used in the database

Some of the selected signs involve only head motion or facial expressions and

some involve both. So, we use sign and expression terms to refer to a class we use in

the database. The database is formed of the following 8 different classes of signs:

1. Neutral : The neutral state of the face. The subject neither moves his/her face

nor makes any facial expressions.

2. Head L-R: Shaking the head to right and left sides. The initial side varies among

subjects, and the shaking continues about 3-5 times. This sign is frequently used

for negation in TSL.

3. Head Up: Raise the head upwards while simultaneously raising the eyebrows.

This sign is also frequently used for negation in TSL.

4. Head F : Head is moved forward accompanied with raised eyebrows. This sign is

used to change the sentence into a question form in TSL. It resembles the surprise

expression used in daily life.
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5. Sadness: Lips turned down, eyebrows down. It is used to show sadness, e.g.

when apologizing. Some subjects also move their head downwards.

6. Head U-D : Nodding head up and down continuously. Frequently used for agree-

ment.

7. Happiness: Lips turned up. Subject smiles.

8. Happy U-D : Head U-D + Happiness. The preceding two classes are performed

together. It is introduced to be a challenge for the classifier in successfully dis-

tinguishing this confusing class with the two preceding ones.

In Figure 4.1, some frames captured from different sign classes can be seen.

4.1.2. Properties of the Database

• It involves 11 different subjects (6 female, 5 male).
• Each subject performs 5 repetitions for each of 8 classes. So there are a total
number of 440 videos in the database.

• Each video lasts about 1-2 seconds.
• Philips SPC900NC web cam is used with choice of 640×480 resolution and 30
fps.

• The recording is done in a room eliminated from sunlight and illuminated by
using daylight halogen and fluorescent lights.

• The videos are compressed with “Indeo 5.10” video codec.
• Each video starts in neutral state, the sign is performed and again ends in neutral
state.

• No subjects have beard, moustache or eyeglasses.
• There is no occlusion or motion blur.

4.1.3. Annotated Videos

In order to satisfy different experiments on the database, a preferably large num-

ber of facial landmarks are chosen for manual annotation. The selected 60 points can

be seen in Figure 4.2. Due to the difficulty in manually annotating these landmarks
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Figure 4.1. 8 different non-manual sign classes are used in the database
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in all frames, only 3 repetitions of 4 classes (Head L-R, Head Up, Head F, Happiness)

performed by 4 subjects (2 male, 2 female) are annotated in the database. So, there

are a total of 48 annotated videos. In total 2880 (48 videos × 60 average frames per
video) frames are annotated.

Figure 4.2. 60 facial landmarks are selected for ground truth in the videos.

4.1.4. Annotated Images

Experimentally, it was observed that more landmarks would lead to better ASM

tracking. Thus, we increased the landmarks and 116 feature points (eyes: 24, eyebrows:

28, eye lids: 14, wrinkles below eyes: 14, nose peak: 5, lips: 16, chin: 15) were selected

for annotation in each frame as seen in Figure 4.3.

For each of the 4 subjects that we selected for video annotation in the previous

subsection, random frames were captured from all videos (8 different classes of signs)

and approximately 60 of these frames (30 frontal, 10 upwards, 10 left and 10 right)

were selected for annotation. Sample frames are seen in Figure 4.4.
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Figure 4.3. 116 facial landmarks are selected for ground truth in the captured images.

Figure 4.4. About 60 frames were selected from 4 different subjects and each set is

divided into one of the 4 different views (frontal, upwards, left or right).
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4.2. Tracking Experiments and Results

4.2.1. Experiment Setup

Since there exists human bias in the manual annotation of the landmarks, data

refitting is performed on the training set. That is; a one level ASM model is trained

from the training set. Then, for each sample in the training set, the annotated shape

is set as the initial shape and one level person specific ASM fitting is performed on

this sample. The new locations of the landmarks are accepted as the ground truth and

the model used for further testing is trained from these locations. For example, for

a subject with 35 frontal training images, the mean Euclidean distance between the

ground truth and the best fit landmark locations for each image before data refitting

and after data refitting are shown in Figure 4.5. The mean Euclidean distance of all

images decreased from 2.13 to 1.73 pixels when data refitting is applied.

Figure 4.5. Data refitting comparison

Afterwards, in order to compare the multi-view vs. single view and person specific

vs. generic MRASM (Multi-resolution ASM) tracking, we abbreviated 4 different types

of MRASM training as in Table 4.1:
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Table 4.1. Types of MRASM training

Person specific Generic

Multi-view M-view P-s (Type I) M-view G (Type II)

Single view S-view P-s (Type III) S-view G (Type IV)

In multi-view training, a different model for each of the views (frontal, upwards,

left and right) was trained whereas a single model is trained from all views combined

together in the single-view approach. In the person-specific approach, the subject is

known and tracked using its own model. But in the generic approach, a unified model is

trained from all subjects and this model is used for tracking landmarks of any subject.

4.2.2. Statistical Analysis Results

4.2.2.1. Sufficient number of eigenvectors to describe most of shape variance. We first

determine the number of eigenvectors to be retained: Figure 4.6 shows the variance

retained versus the number of eigenvectors. A small number of (15-20) eigenvectors

(about 8-10% of all eigenvectors) seemed to be enough to describe 95% of the total

shape variation in the training data set. One expects to have fewer eigenvectors when

only one view (e.g. frontal) is used instead of all views, but the plots in Figure 4.6

show that when a percent of total variation is considered, the sufficient number of

eigenvectors depends on the distribution of the variation along the eigenvectors of the

used sample set. In other words, when we use 95% of the total variation in all views

where the variation in head movement dominates the sample set, we may lose facial

expression changes such as smiling. But the multi-view approach (dividing the sample

set into similar subsets) enables us to model these changes better.

4.2.2.2. How does the shape change in the most significant eigenvectors?. Figure 4.7

shows the variation of the shape along the most significant three eigenvectors. The

most variation was along the left to right head shaking when we analyzed all training

shapes. Other significant movements were head nodding and orientation with a surprise
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(a) (b)

Figure 4.6. Eigenvector contributions to the total variance in shape space (a) if a

generic frontal model is used and (b) if a generic single (unified) view model is used.

expression as seen in Figure 4.7.

Figure 4.7. The variation along the most significant 3 eigenvectors in the shape space

4.2.2.3. Sufficient number of eigenvectors to describe most of the combined variance.

When shape and texture data are analyzed together, 82 eigenvectors were sufficient to

describe 95% of the total variation as seen in Figure 4.8.

4.2.2.4. The effect of photometric normalization. In Figure 4.9, the effect of reducing

global illumination by photometric normalization is shown. It is clearly seen that the

illumination variation in the normalized images below is less than the corresponding
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Figure 4.8. Eigenvector contributions to the total variance in appearance space

original images above. Especially, the skin color of the subject with the 3rd and 4th

faces from left seems to change considerably.

Figure 4.9. The effect of photometric normalization (original textures above and

corresponding normalized ones below)

4.2.2.5. How does the shape/appearance change in the most significant eigenvectors?.

The variation in the significant eigenvectors in this combined model can be seen in Fig-

ure 4.10. The analysis results show that the person specific texture properties, left to

right head shaking and happiness vs. sadness dominated the total variance in the data
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set. Also notice that, there is no significant illumination variance observed in Figure

4.10 as a result of photometric normalization.

Figure 4.10. The variation along the most significant 5 eigenvectors in the combined

shape and texture space

4.2.2.6. The effect of training set selection on the principle variation modes. In [43],

the distinction between the eigenvectors was clearer and more interpretable since the

training images included 11 subjects instead of 4 subjects. The more the number of

training subjects are used, the better the distinction of appearance between eigenvec-

tors is achieved and the better analysis is done in terms of observing head movement

and facial expression changes. This fact shows the importance of training set selection

when one wants to interpret the appearance values.

4.2.3. Comparison of ASM and Multi-resolution ASM

In Figure 4.11, the face shapes which are found by regular (only 1-level) ASM

search after 30 iterations and by 3-level MRASM search after a maximum of 5 iterations

allowed in each level are shown. Convergence ratio is taken as 0.9. m and n are chosen
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as (17,13,13) and (13,9,9) for each level l (l = 0, 1, 2) respectively. It is seen in the

figure that multi-resolution increases the performance. MRASM search can fit well

where ASM converges to local minima. Furthermore, MRASM search with the choices

described above was two times faster than the regular ASM search.

Figure 4.11. Comparison of ASM fit and MRASM fit

An example search using MRASM is shown in Figure 4.12 where 5 iterations are

performed at each level. The sizes of the images in level 2 and level 1 are quarter and

half of the the original images in level 0 respectively. But they are scaled to the same

size in the figure for illustration. It is seen that the shape is roughly fitted in the top

level and fine tuned in the following levels.

4.2.4. Tracking Results

Sample tracking results with person specific multi-view tracker can be seen in

Figure 4.13 where the index on the top right stands for the frame number in that

video.

Due to the difficulty in reporting all of the tracking results of different types of
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Figure 4.12. Searching using Multi-resolution ASM

(a) (b)

Figure 4.13. Found landmarks in a video that belongs to (a) 2nd class and (b) 3rd class
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experiments given in Table 4.1 visually, we take the landmarks in annotated video

frames as the ground-truth data and report the Euclidean distance between annotated

landmarks and the tracked landmarks as the error metric. But, there is inconsistency

between the 60 ground truth landmarks per frame (Section 4.1.3) and the 116 tracked

landmarks which are found by MRASM tracker that is trained from annotated images

(Section 4.1.4). So, we formed a mapping from ground truth and tracked data to the

new 52 feature points which are seen in Figure 4.14 to make the landmarks comparable.

In addition, each sequence of annotated and tracked shapes is re-sampled to 60 frames

so as to equalize the frame length and be able to take the average of the error in that

frame over many samples. A total of 48 videos (4 subjects, 4 classes, 3 repetitions per

class) are analyzed and different types of resulting errors are reported in the following

subsections. All the Euclidean distances (errors) are in pixels where each frame has a

resolution of 640 × 480 pixels.

Figure 4.14. Common 52 facial landmarks are selected in order to compare ground

truth and tracked landmarks.

4.2.4.1. Tracking Performance of Each Class. In Figure 4.15, the mean error found by

four different tracking approaches (Table 4.1) is plotted for each class. When all classes

are considered, it is observed that the multi-view person specific tracker performs the

best. Especially, it is the only one that can track the landmarks in Head Up sign.
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(a) (b)

(c) (d)

Figure 4.15. Mean Euclidean distance between ground truth and tracked landmarks

for each class which are (a) Head L-R, (b) Head Up, (c) Head F, and (d) Happiness.
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4.2.4.2. Tracking Performance on Each Face Component. Similarly, mean error for

each component of the face is plotted in Figure 4.16. The reported components are

left/right eye, left/right eyebrow, lips, chin and nose tip of the face of the subject as

shown in Figure 4.14. It is seen that multi-view person specific tracking outperforms

all other trackers in all components. We observed that lips are the most difficult

component to track because they are the most deformable part of the face and the

intensity contrast between the skin color and lips color is not very high and varies

among subjects.

4.2.4.3. Comparison of Trackers . It can be said that person specific tracking performs

better than the generic approaches. The multi-view approach in person specific tracking

increases the performance whereas it results in a decrease in the generic approach.

4.2.4.4. Mean Error in a Video with Corresponding Landmarks. As mentioned earlier,

the mapping from 116 tracked landmarks and from 60 ground truth landmarks to 52

new landmarks is done approximately. When the error plots are considered with the

corresponding tracking results visually, it can be said that 2-3 pixels of mean Eu-

clidean distance comes from this approximation. It mainly stems from the fact that

the annotators were different for ground truth videos and training images.

Furthermore, a user interface that eases the video annotation by copying and

pasting landmarks between consecutive frames and then dragging them is implemented

and used. As a drawback of this convenient facility, the locations of the landmarks

remain constant where they should change in some frames. So, the ground truth data

includes not exactly but roughly correct locations of landmarks.

In order to show this, the annotated and finely tracked shapes are given for

selected frames of the same video file with the corresponding error plot in Figure 4.17.

It can be observed that the tracked shape in Figure 4.17b is clearly more accurate than

the annotated shape in Figure 4.17a. The error in Figure 4.17c reflects this discrepancy.



67

(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.16. Mean Euclidean distance between ground truth and tracked landmarks

in each frame for each component. Components are (a) left eye, (b) right eye, (c) left

eyebrow, (d) right eyebrow, (e) lips, (f) chin and (g) nose tip of the subject.
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(a) (b)

(c)

Figure 4.17. (a) The ground truth landmarks, (b) the tracked landmarks with

M-view P-s tracker and (c) corresponding error plot.
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As described in Chapter 2, the frames are left empty and then interpolated if

the best fitted shape is not accepted as valid. By this method, the tracker can be

re-initialized and thus, the correct landmark locations can be re-caught after a few

frames. In Figure 4.18 and Figure 4.19, it can be observed that the single view person

specific tracker stays unchanged for a few frames, then tracks the landmarks again.

Furthermore, the difference between ground truth landmarks and correctly tracked

landmarks can be seen from the sub-figures (a) and (b) in both figures.

4.3. Expression Recognition Experiments and Results

4.3.1. Experiment Setup

We performed the classification experiments using the multi-variate continuous

HMM classifier [60]. The number of Gaussians and the number of hidden states are

taken as 2 and 6, respectively. We prepared the following sets for our experiments

where each shape sequence (video) is normalized:

• Φ1:4: Involves 7 classes and 5 repetitions for 4 subjects found with the tracker.
All classes except Neutral are included. (140 samples)

• Φgt: Involves 4 subjects and 3 repetitions for each of 4 classes in the ground truth
data. The classes are Head L-R, Head Up, Head F and Happiness. (48 samples)

Then we designed four tests on these sets:

4.3.1.1. Test I. Use 2 repetitions for each class of each subject in Φgt for training and

the remaining one repetition for testing. Cross validation is performed by leaving one

repetition out . (32 training samples, 16 test samples)

4.3.1.2. Test II. Use 3 repetitions of each class of each subject in Φ1:4 for training and

the remaining 2 repetitions for testing by leave-two-repetitions-out cross validation. (84

training samples, 56 test samples)
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(a) (b)

(c)

(d)

Figure 4.18. (a) The ground truth landmarks, (b) the tracked landmarks with

multi-view generic tracker, (c) the tracked landmarks with single view person specific

tracker, and (d) corresponding error plot for a video in Head F class.
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(a) (b)

(c)

(d)

Figure 4.19. (a) The ground truth landmarks, (b) the tracked landmarks with

multi-view generic tracker, (c) the tracked landmarks with single view generic tracker,

and (d) corresponding error plot for a video in Head Up class.



72

4.3.1.3. Test III. Use all samples of 3 subjects in Φ1:4 for training and test on the

unseen subject. It is performed 4 times by leaving each subject out for testing, that is

leave-one-subject-out cross validation. (105 training samples, 35 test samples)

4.3.1.4. Test IV. 3 repetitions are selected from Φgt for training and testing is done

on the remaining 2 repetitions in Φ1:4. (48 training samples, 32 test samples)

The tests are done using all the trackers given in Table 4.1 and the results are

described in the following subsection.

4.3.2. Recognition Results

The accuracy results found for each test and with each tracker type are given in

Table 4.2.

It is observed that continuous HMM classifier accurately classifies the ground

truth videos into the correct classes when 4 classes are considered (Test I). Additionally,

training with ground truth data and testing on the unseen videos can be performed

with 100% success rate when we use the multi-view person specific tracker (Test IV).

If the number of classes is increased to 7, the best accuracy when we use some of

the repetitions for training and the remaining ones for testing is about 85% (Test II).

When the testing is done on an unseen subject where the tracker is trained from the

other subjects, we can achieve 73% accuracy (Test III). In all cases, multi-view person

specific tracker results seem to be the most reliable ones. But, in the absence of the

subject information (i.e. when we need a generic tracker), multi-viewMRASM tracking

results seem to be near to the best results achieved.

In addition, the confusion matrices (in percentage) for each test are given in

Tables 4.3, 4.4 and 4.5. The confusion matrix for the first test is not given because the

accuracy is 100%.
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Table 4.2. Expression classification results

Test no # classes # training samples # test samples Tracker type Accuracy (%)

I 4 32 16 Ground truth 100.00

II 7 84 56

M-view P-s 84.82

M-view G 83.57

S-view P-s 81.79

S-view G 73.93

III 7 105 35

M-view P-s 72.86

M-view G 68.57

S-view P-s 64.29

S-view G 53.57

IV 4 48 32

M-view P-s 100.00

M-view G 93.75

S-view P-s 93.75

S-view G 87.50

An important result which is observed in confusion matrices is that Happy U-D

is misclassified as Head U-D in some of the videos. This shows that the head motion

dominates the classification decision and the classifier may be incapable of catching

the change in facial expression in the existence of large head movements. In addition,

only the perimeter of the lips includes landmarks and there are no landmarks inside

the lips. This decreases the interpretability of the emotional expression when the head

also moves because the area, perimeter length or other properties of lips vary among

subjects and it may not be clear that the mouth is open or not. If Happy U-D and

Head U-D classes were considered as the same class in the outputs, the best accuracy

would be 92% and 81%, for tests II and III, respectively.

Moreover, Sadness seems to be a difficult class to correctly classify. This mainly

results from the fact that the performance of sadness varies among subjects. Some

of them also move their head in addition to turning down the lips. This movement

confuses the classifier.
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Table 4.3. Confusion matrices for test II found with (a) multi-view person specific, (b)

multi-view generic, (c) single view person specific and (d) single view generic trackers.

(a)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 100.0 0 0 0 0 0 0

Head Up 0 100.0 0 0 0 0 0

Head F 0 0 98.75 0 0 0 1.25

Sadness 7.5 0 0 56.25 21.25 5.0 10.0

Head U-D 0 0 0 0 95.0 0 5.0

Happiness 6.25 0 0 1.25 0 83.75 8.75

Happy U-D 1.25 0 0 0 38.75 0 60.0

(b)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 98.75 0 0 0 0 0 1.25

Head Up 0 97.5 0 0 2.5 0 0

Head F 0 6.25 91.75 0 0 2.5 0

Sadness 3.75 0 5.0 52.5 22.5 5.0 11.25

Head U-D 0 3.75 0 0 93.75 0 2.5

Happiness 0 0 5.0 0 0 90.0 5.0

Happy U-D 1.25 5.0 0 0 32.5 0 61.25

(c)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 100.0 0 0 0 0 0 0

Head Up 1.25 90.0 0 0 0 8.75 0

Head F 0 0 95.0 5 0 0 0

Sadness 11.25 0 2.5 48.75 22.5 5 10

Head U-D 0 0 0 0 93.75 0 6.25

Happiness 11.25 0 0 1.25 0 83.75 3.75

Happy U-D 1.25 0 0 0 37.5 0 61.25

(d)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 95.0 0 0 0 2.5 0 2.5

Head Up 0 95.0 0 0 0 5.0 0

Head F 0 7.5 87.5 5.0 0 0 0

Sadness 16.25 1.25 0 32.5 17.5 8.75 23.75

Head U-D 0 18.75 0 0 71.25 0 10.0

Happiness 7.5 0 0 1.25 0 81.25 10.0

Happy U-D 1.25 12.5 3.75 0 27.5 0 55.0
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Table 4.4. Confusion matrices for test III found with (a) multi-view person specific,

(b) multi-view generic, (c) single view person specific and (d) single view generic

trackers.

(a)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 100.0 0 0 0 0 0 0

Head Up 0 100.0 0 0 0 0 0

Head F 0 0 80.0 15.0 0 0 5.0

Sadness 10.0 0 0 55.0 15.0 5.0 15.0

Head U-D 0 0 0 0 95.0 0 5.0

Happiness 25.0 0 0 10.0 0 60.0 5.0

Happy U-D 25.0 0 0 5.0 50.0 0 20.0

(b)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 100.0 0 0 0 0 0 0

Head Up 0 75.0 0 0 25.0 0 0

Head F 0 20.0 75.0 5.0 0 0 0

Sadness 5.0 0 5.0 55.0 5.0 5.0 25.0

Head U-D 0 0 0 0 100.0 0 0

Happiness 15.0 15.0 5.0 0 0 60.0 5.0

Happy U-D 25.0 0 15.0 0 45.0 0 15.0

(c)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 100.0 0 0 0 0 0 0

Head Up 5.0 90.0 0 0 0 5.0 0

Head F 5.0 5.0 75.0 5.0 10.0 0 0

Sadness 50.0 0 0 15.0 10.0 5.0 20.0

Head U-D 0 0 0 0 90.0 0 10.0

Happiness 30.0 0 0 5.0 0 60.0 5.0

Happy U-D 25.0 0 0 5.0 50.0 0 20.0

(d)

Head L-R Head Up Head F Sadness Head U-D Happiness Happy U-D

Head L-R 95.0 0 0 0 0 0 5.0

Head Up 0 75.0 0 0 10.0 5.0 10.0

Head F 0 15.0 60.0 5.0 10.0 5.0 5.0

Sadness 40.0 0 0 20.0 5.0 10.0 25.0

Head U-D 5.0 25.0 5.0 0 60.0 0 5.0

Happiness 25.0 0 5.0 15.0 0 55.0 0

Happy U-D 25.0 25.0 15.0 0 25.0 0 10.0
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Table 4.5. Confusion matrices for test IV found with (a) multi-view person specific,

(b) multi-view generic, (c) single view person specific and (d) single view generic

trackers.

(a)

Head L-R Head Up Head F Happiness

Head L-R 100.0 0 0 0

Head Up 0 100.0 0 0

Head F 0 0 100.0 0

Happiness 0 0 0 100.0

(b)

Head L-R Head Up Head F Happiness

Head L-R 100.0 0 0 0

Head Up 0 75.0 25.0 0

Head F 0 0 100.0 0

Happiness 0 0 0 100.0

(c)

Head L-R Head Up Head F Happiness

Head L-R 100.0 0 0 0

Head Up 0 87.5 0 12.5

Head F 0 0 100.0 0

Happiness 12.5 0 0 87.5

(d)

Head L-R Head Up Head F Happiness

Head L-R 87.5 0 12.5 0

Head Up 0 75.0 12.5 12.5

Head F 0 0 100.0 0

Happiness 12.5 0 0 87.5
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When compared to our previous joint-work with Asli Uyar [34], the proposed

CHMM-based classifier performs better than the previously proposed SVM-based clas-

sifier. This result is achieved by comparing the ground truth classification accuracies of

both studies because other tests are not convenient for comparison. The higher perfor-

mance of CHMM approach is two-fold we suppose: First, the feature extraction by nor-

malization of landmark locations increased the information about the performed sign

instead of using maximum displacement vectors. Second, HMMs are widely accepted

for their power in classifying sequential data as in image sequences of non-manual

gestures, where the length of each sample is not to be normalized.
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5. CONCLUSIONS

In this study, we investigated facial feature tracking in image sequences, and

recognition of the performed non-manual gestures which are composed of head move-

ments or facial expressions. Multi-resolution Active Shape Models (MRASM) are ex-

tended to handle multiple views of faces for finding facial landmarks automatically. In

addition, temporal information is used while tracking in image sequences. The tracked

facial landmark sequences are normalized and given as input to the expression classifier,

which is based on the multivariate Continuous Hidden Markov Model.

The contribution of this thesis is the improvement of MRASM searching such

that the landmarks are fitted in each frame using MRASMs for multiple views of faces,

and the best fitted shape which is most similar to the shape found in the preceding

frame is chosen. This way, temporal information is used for achieving consistency

between consecutive frames. When the found shape is not trusted, deformation of

the tracked shape is avoided by leaving that frame as empty and re-initializing the

tracker. Afterwards, the empty frames are filled using interpolation, and α-trimmed

mean filtering is performed on the landmark trajectories to eliminate the erroneous

frames. Another contribution is that a complete non-manual gesture recognition system

is developed, where the tracked landmarks are classified into one of the non-manual

gestures based on CHMM classifier.

The proposed system is experimented on a database consisting of most common

non-manual signs in Turkish Sign Language. In this database, we collected 5 repetitions

from 11 (6 female, 5 male) different subjects for 8 different classes of non-manual signs.

Due to the difficulty of collecting ground truth of all subjects by manually annotating

landmarks in frame sequences, we selected 3 repetitions of 4 classes from 4 subjects (2

female, 2 male) and annotated them for further comparison.

Multi-view vs. single view and person specific vs. generic approaches are analyzed

by implementing these variations of MRASM trackers and performing the classification
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using the tracking results of each approach. It is shown that the proposed technique

of using temporal information while tracking increased the robustness of the system.

Shape deformation is avoided throughout the frames and the tracker is able to catch

the correct locations of landmarks by re-initialization if the found shape is not trusted.

The system was able to attain best results with the proposed multi-view MRASM

approach. The worst recognition rates found with this approach were 72.86% and

68.57% for person specific and generic approaches, respectively, when the training is

done using three subjects, and leaving the remaining subject for testing. When the

testing is done on an unseen video of a subject, whose other repetitions are involved

in the training set, the accuracy was about 85%. It is seen that the tracker may

be confused when distinguishing between classes with the same head movement but

different facial expressions. But instead of including all classes, if the classes in question

are decreased to cover only non-relevant classes, the system is able to recognize all, i.e.

it works with 100% performance.

5.1. Remarks and Future Directions

The multi-resolution approach is seen as a crucial component of a facial landmark

tracker since the active models are very sensitive to initialization and converge to local

minima if only one resolution is used.

We used four different views, namely frontal, left, right, and upwards for extend-

ing MRASM approach for multiple views. All samples of the subjects are manually

divided into four subsets concerning these views. A better way of doing this would be

clustering the sample space into subsets using an unsupervised clustering method, such

as k-means. This way, the clustering would divide the training set better and would

not need to be done manually on training sets different than ours.

As discussed, person specific training and tracking performs considerably better

than the generic approach. So, the usability of the application can be improved such

that a new user would train the tracker for herself easily via a user-friendly interface.

This way, we eliminate adding the user’s samples to the database and training the



80

tracker from scratch.

Last but not least, working in real-time is a significant property of an expression

recognizer. Unfortunately, the implementation of the proposed system does not work

in real-time and needs to be improved. Currently, each MRASM search takes about

3-4 seconds. Mature modules of the current MATLAB implementation should be opti-

mized and written using C to increase speed. Another addition should be to use fewer

landmarks for higher levels of MRASM and increase them by upsampling in the lower

dimensions. We hope to make it run on real time. Additionally, the system should

be adapted to work with a hand gesture recognizer concurrently which is needed to

recognize whole sign language words instead of only recognizing the non-manual com-

ponents.
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