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ABSTRACT

QUASI-LPV MODELING AND CONTROL OF TWIN ROTOR

MULTIPLE INPUT MULTIPLE OUTPUT SYSTEM

The aim of this thesis is to design a Linear Parameter Varying (LPV) controller for

Twin Rotor Multiple Input Multiple Output System (TRMS) which has highly nonlinear

and cross coupled mathematical model, using Linear Matrix Inequalities (LMIs). The quasi-

LPV model of TRMS is written by considering the nonlinearities in the mathematical model

as time varying parameters. In this way, Linear Fractional Transformation (LFT) form of

the model is obtained. LMI condition for the existence of the controller and stability of the

desired closed loop system are developed as indicated in the literature using the LFT form

of the model. Developed LMIs conditions are solved for decision variables and the LPV

controller for TRMS is obtained.

The simulation is performed for different modes. In results, it is seen that simulation

of the LPV controller with the nonlinear TRMS yields excellent results for different modes,

in spite of nonlinearity and cross coupling in the model.
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ÖZET

SANKİ-DPD MODELLEMESİ VE İKİZ MOTORLU ÇOK

GİRDİLİ ÇOK ÇIKTILI SİSTEM KONTROLÜ

Bu tezin amacı, Doğrusal Matris Eşitsizliklerini (DME) çözerek, çapraz ilişkili doğrusal

olmayan matematiksel modele sahip İkiz Motorlu Çok Girdili Çok Çıktılı Sistem (İMÇS)

için Doğrusal Parametre Değişeni (DPD) kontrolcüsü tasarlamaktır. Sistemin matematiksel

modelinde doğrusal olmayan terimleri zamanla değişen parametreler olarak kabul ederek,

sistemin sanki-(DPD) modeli yazıldı. Böylelikle, modelin Doğrusal Kesirli Dönüşüm (DKD)

formu elde edildi. Bu form kullanılarak, kontrolcünün varolma durumu ve kapalısistemin

dengede olma durumu literatürde belirtildiği gibi DME cinsinden oluşturuldu. Oluşturulan

DME karar verilecek değişkenler için çözülerek DPD kontrolcüsü elde edildi.

Farklı durumlar icin similasyon yapıldı. Sonuçlarda şu görüldü ki, modeldeki çapraz

ilişkili ve doğrusal olmayan terimlere rağmen, İMÇS doğrusal olmayan modeli DDP kon-

trolcüsüyle farklı durumlar için similasyonda mükemmel sonuçlar verdi.
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1. INTRODUCTION

1.1. Twin Rotor Multiple Input Multiple Output System

Twin Rotor Multiple Input Multiple Output System (TRMS) is a laboratory set-up

which is developed by Feedback Instruments Limited for control experiments.

Figure 1.1. Overview of TRMS

TRMS, as shown on the Figure 1.1 [1], has two propellers which are driven by d.c.

motors. Propellers are joined by beam and they are perpendicular to each other. Joined

beam can rotate freely in the horizontal and vertical planes by changing the input voltage

of the d.c motors. Pendulum counterweight hanging from the beam is used to balance the

system in steady state.

With highly non-linear dynamics and cross coupling between its two axes, TRMS is

one of the challenging engineering problem. It is similar to a real helicopter in some ways.

For example, it has a strong cross coupling between main and tail rotor, as helicopter.

However, TRMS and helicopter have many differences. The main differences are listed on

the Table 1.1 [1].
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Table 1.1. Main Differences Between TRMS and Helicopter

Properties TRMS Helicopter

Location of pivot point Midway between two rotors Main rotor head

Vertical control Speed control of main rotor Pitch angle of main rotor blades

Horizontal control Speed control of tail rotor Pitch angle of tail rotor blades

1.1.1. TRMS Mechanical Unit Description

The Mechanical Unit of the TRMS (except the base and the tower) consists of the

following elements:

• Main Rotor -enables vertical thrust control

• Tail Rotor -enables horizontal thrust control

• Counter Balance -counter weight for the main rotor

The figure 1.2 [1] illustrates the Mechanical Unit of the TRMS

Figure 1.2. Mechanical Unit of TRMS
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1.1.2. TRMS Electrical Unit Description

Apart from mechanical units, the electrical unit plays an important role for TRMS

control. It allows to transfer the measured signals to the PC and control signal application.

The system consist of three main elements:

• PC with a clocked control algorithm

• A \ D and D \ A converters - serving as an interface between the PC and external

environment

• Encoders

The encoders measure the relative position. This is an important point to be taken

into consideration in the TRMS applications.

The control system diagram is illustrated in figure 1.3 [1].

Figure 1.3. Control System Diagram

1.2. Linear Matrix Inequalities (LMIs)

The analysis of the system and the synthesis of the controller discussed in this thesis

are based on the Linear Matrix Inequalities (LMIs). Firstly, the sign definiteness of the

matrices should be considered to express the LMIs. The sign definiteness of the matrices

are not expressed as the same for scalar values.
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A matrix A = AT ∈ Rn×n is said to be [10]

• Positive Definite if xT Ax > 0, ∀x ∈ Rn, x 6= 0

• Negative Definite if xT Ax < 0, ∀x ∈ Rn, x 6= 0

• Positive Semi-Definite if xT Ax ≥ 0, ∀x ∈ Rn, x 6= 0

• Negative Semi-Definite if xT Ax ≤ 0, ∀x ∈ Rn, x 6= 0

The sign definiteness can be also expressed by the eigenvalue(λ) of the matrix. A matrix

A = AT ∈ Rn×n is said to be [10]

• Positive Definite if and only if λi > 0, ∀i = 1 : n

• Negative Definite if and only if λi < 0, ∀i = 1 : n

• Positive Semi-Definite if and only if λi ≥ 0, ∀i = 1 : n

• Negative Semi-Definite if and only if λi ≤ 0, ∀i = 1 : n

From now on, we will use the symbols Â,º,≺,¹ to express the sign of a matrix.

Consider the real symmetric matrices F0, · · · , Fm ∈ Rn×n and the decision variables

x1, · · · , xm ∈ Rn. A linear matrix inequality is an expression of the form [7]

F (x) := F0 + x1F1 + · · ·+ xmFm Â 0

The set of finite linear matrix inequalities can be expressed as a system of linear

matrix inequalities in one inequality.

F1(x) > 0, · · · , Fk(x) Â 0
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can be expressed as [7]

F (x) :=




F1(x) 0 . . . 0

0 F2(x) . . . 0
...

...
. . .

...

0 0 . . . Fk(x)



Â 0

This property is very useful to express and solve the LMIs in a simple way.

The linear matrix inequalities in dynamical systems and control begin with the doc-

toral dissertation of Aleksandr Mikhailovich Lyapunov in 1892 [7]. When this idea is applied

to an autonomous system ẋ = Ax, one can say that this system is asymptotically stable if

and only if there exists an X = XT such that the LMI condition


 X 0

0 −AT X −XA


 Â 0

is satisfied. The use of LMIs in control theory is generally based on this idea. For many

more applications, see [6].

At the present time, the LMIs can be developed on the computer and obtained the

solutions easily by the MATLAB-based solvers and toolbox. In this thesis, we use YALMIP

toolbox to define the LMIs and SeDuMi as solver. The usage procedure of toolbox and solver

are discussed in detail in the Chapter 5.

1.3. Problem Statement

The control of the TRMS has been studied with different methods. The dynamic

modeling and optimal control of TRMS is presented in reference [2]. Performance analysis

of four types of conjugate gradient algorithm in the non-linear dynamic modeling of TRMS

using feedforward neural networks has been reported in reference [3]. Aldebrez et al. [4]

have proposed the parametric modeling of TRMS using a genetic algorithm.
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In this thesis, we have investigated the use of linear parameter-varying (LPV) con-

troller design for the TRMS. The non-linearities in the mathematical model of the TRMS

are considered as time varying parameters. In this way, the a linear fractional transforma-

tion (LFT) form of the dynamical model of the TRMS is obtained. It is well-known that

the stability conditions for uncontrolled parameter-dependent systems can be expressed in

terms of LMIs [7]. For systems with control inputs and measured outputs, stabilizing con-

trollers can be obtained using the stability conditions for the closed-loop system. Indeed,

the resulting existence conditions for such controllers constitute LMI conditions as well.

The thesis is organized as follows: In Chapter 2, nonlinear mathematical and quasi-

LPV model of the TRMS is derived. The discussion about the LPV systems and LFT

connection is given in Chapter 3. In Chapter 4, LPV controller design is discussed. Ap-

plication of the theory to TRMS and simulation procedure are given in Chapter 5. The

results of simulation for different modes are presented in Chapter 6. Final discussion are

mentioned in Conclusion part.
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2. Modeling of the TRMS

In this chapter non-linear model of the TRMS will be discussed. There are two

important approaches to model a dynamic system; ”Newtonian” and ”Lagrangian”. In

reference [5], the two approaches for TRMS have been discussed. In this thesis, Newtonian

based model of the TRMS has been discussed.

2.1. Nonlinear Model of the TRMS

The modeling of the TRMS is based on the newtonian approach. The derivative of

the angular momentum of the system with respect to time equals to sum of the moments

that affect the system. This idea can be shown as

MOtotal
= ḢObody

+ ω ×HO, (2.1)

where

M total : total moment about point O, HO : angular momentum about point O,

ω : angular velocity of the body frame, ḢObody
: ḢO as observed from the body frame

The vertical and horizontal free body diagram of the TRMS can be illustrated in Figures

2.1 [5] and 2.3 [5]. Because of the propellers, there is cross coupling in the system. TRMS

can be simplified by ignoring propellers as indicated in Figures 2.2 and 2.4. Affects of the

propellers to the system will be added by empirical term at the end of the each sections.

Consider the dimensions, masses and propellers forces remain same.

2.1.1. Mathematical Model of Vertical Axis

The modeling idea based on the equation (2.1). If the body frame is placed on the

point O and the moment of inertia of the system and the total moment of the system

are calculated with respect to point O, the second term of the (2.1) became zero. The
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Figure 2.1. The Free-body Diagram of Vertical Axis

Fv

x

y

O

Figure 2.2. Simplified Model (Vertical)
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calculation of the moment of inertia about horizontal axis is presented in Appendix A. This

way, we obtained the following equation for vertical axis,

M
Ovtotal

=
dSv

dt
Sv := Angular momentum in vertical plane

= JOv
dȧv

dt
JOv := Moment of inertia about horizontal axis (2.2)

The terms that affects the moment of vertical axis can be summarized as

• Propulsive Force

• Friction Moment

• Gravity Force

• Centrifugal Force

In references [5] and [1], the propulsive force and friction moment are given as

F v/h(wv/h) = kpv/h sgn(wv/h)w
2
v/h (2.3)

M fric,v/h = kfv/hȧv/h (2.4)

The total moment of the vertical axis (M vtotal
) can be written as

dSv

dt
= M vtotal

= lmF v(wv)−M fric,v + g[(A−B) cos(av)− C sin(av)]− 0.5ȧh
2H sin(2av) (2.5)

where

A := (mt/2 + mtr + mts)lt, (2.6a)

B := (mm/2 + mmr + mms)lm, (2.6b)

C := (mblb/2 + mcblcb) (2.6c)

H := Alt + Blm + mbl
2
b/2 + mcbl

2
cb. (2.6d)
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The angular velocity of the vertical axis can be written

Sv = Jvȧv (2.7)

=⇒ ȧv =
Sv

Jv

(2.8)

So far in the model, we did not take the propellers into consideration. However, they are

the main part of the cross coupling of the system. This affect is given by term ktwh

Jv
as

indicated in references [5] and [1]. When we add the affect of the empirical term to the

system. The final equation becomes as follow

ȧv =
dav

dt
(2.9)

=
Sv

Jv

+
ktwh

Jv︸ ︷︷ ︸
effect of the tail propeller on vertical axis movement

(2.10)

2.1.2. Mathematical Model of Horizontal Axis

The idea used for vertical axis is same for horizontal axis. Because the second term

of the equation (2.1) is zero for our situation. The calculation of the moment of inertia

about vertical axis is presented in Appendix A. The following expression can be written for

horizontal axis

M
Ohtotal

=
dSh

dt
Sv := Angular momentum in horizontal plane

= JOh
dȧh

dt
JOh := Moment of inertia about vertical axis axis (2.11)

As it can be considered from Figure 2.3, the terms that affect the moment of the horizontal

axis are

• Propulsive Force

• Friction Moment
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The total moment of the horizontal axis Mhtotal
can be written as

Figure 2.3. The Free-body Diagram of Vertical Axis

Fh

O

x

z

Figure 2.4. Simplified Model (Horizontal)

dSh

dt
= Mhtotal

(2.12)

= ltF h(wh)−M fric,h (2.13)

The angular velocity of the horizontal axis can be written as

Sh = Jhȧh (2.14)

=⇒ ȧh =
Sh

Jh

(2.15)

So far in the model, we did not take the propellers into consideration. However, they are

the main part of the cross coupling of the system. This affect is given by term
ktwv cos(av)

Jh
as
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[5] and [1]. When we add the affect of the empirical term to the system. The final equation

becomes as follows

ȧh =
dah

dt
(2.16)

=
Sh

Jh

+
kmwv cos(av)

Jh︸ ︷︷ ︸
effect of the main propeller on horizontal axis movement

(2.17)

2.1.3. Mathematical Model of DC Motor

The inputs of the overall TRMS system are voltages to the main and the tail propeller

DC motors and the outputs are the pitch and the yaw angles. The DC motors convert input

voltage to the angular velocity at their output shafts and thus activate the propellers (A

simplified circuit diagram for a DC motor is illustrated in figure 2.5). In this section, the

Vs

R

L

Figure 2.5. The Circuit Diagram of D.C. Motor

relationship between input voltage and angular velocity is described.

The following equation can be derived by applying Kirchhoff’s law to the circuit shown

in Figure 2.5

V − VR − VL − Vn = 0, (2.18)
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where

Vr := Ri (2.19)

Vl := L
di

dt
(2.20)

Vn := knw. (2.21)

Substituting equations (2.19), (2.20) and (2.21) into equation (2.18) gives the following

equation [13]

V −Ri− L
di

dt
− knw = 0. (2.22)

The following equation can be derived by applying Newton’s law to the circuit shown in

Figure 2.5

Te − Tw′ − Tw − TL = 0 (2.23)

Te := kri (2.24)

Tw′ := J
dw

dt
(2.25)

Tw := Bw (2.26)

TL := BLwL, (2.27)

where Te is the electromagnetic torque, Tw′ is the torque due to rotational acceleration of

the rotor, Tw is the torque produced from the velocity of the rotor, and TL is the torque of

the mechanical load.

Substituting equations (2.24), (2.25), (2.26) and (2.27) into equation (2.23) gives the

following equation [13]

kri− J
dw

dt
−Bw −BLwL = 0. (2.28)

When the system reaches steady state, the time derivative of the current ( di
dt

= 0) equals
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to zero. For the propeller, it can be assumed that w = kLwL. With these assumptions, the

combination of equations (2.22) and (2.28) by eliminating the current i, gives the following

equation

dw

dt
= − kr

JR

[
R(B + BLkL)

kr

− kn

]
w +

kr

JR
V (2.29)

Define kr

JR

[
R(B+BLkL)

kr
− kn

]
= 1

T
and kr

JR
= 1

K
. In this way, equation (2.29) can be rewritten

as

d

dt
wv/h = − 1

Tv/h

wv/h +
1

Kv/h

uv/h (2.30)

2.2. Quasi-LPV Modeling of the TRMS

In the previous chapter, the nonlinear mathematical model of the TRMS was obtained.

If we treat the nonlinear terms in the model as time-varying parameters, we can use the

available results in the LPV control literature. Such a model, i.e., one where nonlinear terms

involving the state variables are treated as time-varying parameters, is referred to as a quasi-

LPV model. To obtain a quasi-LPV model of the TRMS, the state-space representation of

the model must first be derived.

The time derivative of equations (2.14) and (2.16) can be written as

äv =
1

Jv

dSv

dt
+

kt

Jv

dwh

dt
(2.31)

and

äh =
1

Jh

dSh

dt
+

km

Jh

d(wv cos(av))

dt
. (2.32)

Although the moment of inertia along the vertical axis, namely Jh, depends on av nonlin-

early, it is taken as constant.



15

Substituting equations (2.5), (2.12) and (2.30) into equations (2.31) and (2.32) re-

spectively, gives following equations

äv =
1

Jv

[lmFv(wv)−Mfric,v + g[(A−B) cos(av)− C sin(av)]

− 0.5ȧ2
hH sin(2av)] +

kt

Jv

(
− 1

Th

wh +
1

Kh

uh

)
(2.33)

äh =
1

Jh

(ltFh(wh)−Mfric,h)− kmwv sin(av)ȧv

Jh

+
km cos(av)

Jh

(− 1

Tv

wv +
1

Kv

uv) (2.34)

The states and the control inputs can be chosen as

x =




av

ȧv

ah

ȧh

wv

wh




and u =


 uv

uh




for the state space representation. The state space representation can be written as

ẋ = A(x)x + B(x)u (2.35a)

y = Cx + Du (2.35b)

where

A(x) =




0 1 0 0 0

g[(A−B) cos(av)−C sin(av)]
Jvav

−kfv

Jv
0 −H sin(av) cos(av)ȧh

Jv

lmFv(wv)
Jv

0 0 0 1 0

0 0 0 −kfh

Jh
−[km sin(av)ȧv

Jh
+ km cos(av)

TvJh
]

0 0 0 0 − 1
Tv

0 0 0 0 0
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0

− kt

JvTh

0

ltFh(wh)
Jh

0

− 1
Th




(2.36a)

B(x) =




0 0

0 kt

JvKh

0 0

km cos(av)
JhKv

0

1
Kv

0

0 1
Kh




(2.36b)

C =


 1 0 0 0 0 0

0 0 1 0 0 0


 (2.36c)

D = 0 (2.36d)

It can be deduced from equation (2.3) that the propulsive forces of the propellers

depend on angular velocity nonlinearly. In quasi-LPV modeling, this relationship between

propulsive force and the angular velocity is assumed to be linear and therefore, we take

Fv/h = k̃pv/hwv/h. (2.37)

This assumption is useful to reduce the number of parameters in quasi-LPV model.
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If we define a parameter vector as

p =




p1

p2

p3

p4

p5




:=




av

cos(av)

sin(av)

ȧh

ȧv




, (2.38)

we can then write

A(p) =




0 1 0 0 0

g[(A−B)p2−Cp3]
Jvp1

−kfv

Jv
0 −Hp3p2p4

Jv

lmk̃pv

Jv

0 0 0 1 0

0 0 0 −kfh

Jh
−[kmp3p5

Jh
+ kmp2

TvJh
]

0 0 0 0 − 1
Tv

0 0 0 0 0

0

− kt

JvTh

0

ltk̃ph

Jh

0

− 1
Th




(2.39a)

B(p) =




0 0

0 kt

JvKh

0 0

kmp2

JhKv
0

1
Kv

0

0 1
Kh




(2.39b)

C =


 1 0 0 0 0 0

0 0 1 0 0 0


 (2.39c)

D = 0 (2.39d)
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The nonlinear system represented in equation (2.35a) thus becomes a parameter de-

pendent system as

ẋ = A(p)x + B(p)u (2.40a)

y = Cx + Du. (2.40b)

In mathematics, a polynomial is an expression constructed from one or more variables

and constants, using the operations of addition, subtraction, multiplication, and raising to

constant non-negative integer powers. Moreover, a rational function is any function which

can be written as the ratio of two polynomial functions. It can be observed from equation

(2.39) that the parameter dependence of the TRMS is in the form of ratios of polynomials.

Such systems are referred to as Linear Fractional LPV (LF-LPV) systems. In the next

chapter, we discuss LF-LPV systems in detail.
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3. Linear Fractional Representations

Most engineering problems, especially control problems, begin with the modeling of

the system. It is also same for some division of the sociology and economy. However, the

success of the study mostly depends on the closeness of the model and the real system. The

model of the system should contain all possibilities of the real system. For instance; car

suspension design. What is the mass of the car? Should the mass of the car be taken with

passengers or without passengers? How can this uncertainty be taken into consideration in

the design? Indeed, Linear Parameter Varying system can be considered as this example.

This method enable to take into consideration all uncertainties in the system.

In general LPV systems are represented as,

ẋ = A(p)x + B(p)u (3.1a)

y = C(p)x + D(p)u (3.1b)

where p = (p1, · · · , pk)
T is the vector of time-varying parameters, where each pi is bounded

as pi(t) ∈ [p
i
, pi] for all t.

A ratio of polynomials in one or more variables is referred to as a rational, or lin-

ear fractional function. Hence, if the parameter dependence is in the form of a ratio of

polynomials, we say the system is a linear fractional LPV system. As pointed out at the

end of the previous chapter, the TRMS system is linear-fractional LPV in terms of the pa-

rameters p1, · · · , p5. We now look at rational functions and the so-called Linear Fractional

Transformation (LFT) in some detail.

3.1. Linear Fractional Transformation (LFT)

We begin by a simple example.
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Example 3.1.1. [8] Consider the static system

y =
d + δ(bc− ad)

1− aδ
u =: K(δ)u. (3.2)

We can express K(δ) as

K(δ) =
d(1− aδ) + bcδ

1− aδ

= d + cδ(1− aδ)−1b. (3.3)

A straightforward calculation shows that we can represent the system as


 zu

y


 =


 a b

c d





 wu

u


 (3.4)

where wu = δzu. (3.5)

We can express (3.4) and (3.5) equivalently as a feedback interconnection shown in Figure

3.1.

zuwu

u y













a b

c d













δ

Figure 3.1. Representation of K(δ)

The Example 3.1.1 is a simple situation for a parameter dependent system. In general,

parameter dependent systems can be shown as in Figure 3.2. The LFT representation of

any rational parameter dependent system is the interconnection of the parameter variation
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u y







A(∆) B(∆)

C(∆) D(∆)







Figure 3.2. Parameter Dependent State-Space Representation

and the nominal Linear Time Invariant (LTI) system. The variation of the parameters

are pulled out from the nominal system and they are collected in the ∆ block. This LFT

interconnection is represented in Figure 3.3. The equations of the LFT interconnection

represented in Figure 3.3 are written as

ẋ = Ax + B1w + B2u (3.6a)

z = C1x + D11w + D12u uncertainty channel (3.6b)

y = C2x + D21w + D22u input - output channel (3.6c)

where

w = ∆z. (3.7)

The structure of the ∆ block is described as

∆ = diag(δ1In1 , · · · , δkInk
). (3.8)

zw

u y

∆















A B1 B2

C1 D11 D12

C2 D21 D22















Figure 3.3. General LFT Representation
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δ1, · · · , δk are the variations of the parameters. n1, · · · , nk indicate how many times a pa-

rameter is seen in the system. As mentioned in the beginning of the chapter, the variations

of the parameters are bounded with finite values. However, this variations can be normal-

ized for desired bounds. We will discuss normalization method in detail in Normalization

of the Parameters section. For that purpose, a specific ∆ block set is defined as

Definition 3.1.1. The unit ball set is defined as

B∆ := {∆ ∈ ∆ : ∆T ∆ ¹ I}.

After the discussion of the structure of ∆, we can continue giving more information

about LFTs. There are two different types of LFT interconnections:

• Upper-LFT as illustrated in Figure 3.4

• Lower-LFT as illustrated in Figure 3.5

zw

u y

∆







M11u
M12u

M21u
M22u







Figure 3.4. Simplified LFT Representation (Upper)

zw

u y

∆







M11l
M12l

M21l
M22l







Figure 3.5. Simplified LFT Representation (Lower)
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The transfer between u and y is denoted as Fu(M, ∆) for upper-LFT and Fl(M, ∆)

for lower-LFT. Specifically,

Fu(Mu, ∆) = M21u∆(I −M11u∆)−1M12u + M22u (3.9a)

Fl(Ml, ∆) = M12l
∆(I −M22l

∆)−1M21l
+ M11l

, (3.9b)

where

Mu :=


 M11u M12u

M21u M22u


 (3.10a)

Ml :=


 M11l

M12l

M21l
M22l


 (3.10b)

For upper-LFT representation, unless M11u = 0 the matrix (I−M11u∆) cannot be inverted

for all values ∆ ∈ ∆. In fact, it is sufficient that invertibility is feasible for all ∆ ∈ B∆.

We call the LFT well-posed, if

det(I −M11u∆) 6= 0 for all ∆ ∈ B∆. (3.11)

We assume that systems, indicated in this thesis, are well-posed.

At the end of this section, the following example is useful to show the derivation of

LFT representation. This example is more complex than Example 3.1.1. In this example,

we consider a mass-spring-damper system. The damper constant c and the spring constant

k are the time varying parameters of the system. Firstly, we derive the mathematical

model of the system. The model depends on the parameters c and k. The variations of the

parameters are pull out from the system by putting the nominal values of the parameters

and their variations in the system. Finally, ∆ block is constructed and it is interconnected

with the nominal system.

Example 3.1.2. [10] In this example, the spring constant k and the damping ratio c are
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the parameters which are changing between

k = [k, k] (3.12a)

c = [c, c] (3.12b)

The equation of motion of the system

mξ̈ + cξ̇ + kξ = F (3.13)

The nominal values of the parameters can be defined as the geometric mean of the bounds.

ξ

c

k

m

F

Figure 3.6. Mass-Spring-Damper System

ko := k+k
2

(3.14a)

co := c+c
2

(3.14b)

Then, we can write the variations of the parameters as,

kv := k − ko (3.15a)

cv := c− co (3.15b)

When we put the nominal values and the variations of the parameters into the system.
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Equation of motion can be rewritten as

mξ̈ + coξ̇ + koξ︸ ︷︷ ︸
nominalsystem

= F + cv ξ̇ + kvξ, zc := ξ̇ and zk := ξ (3.16a)

= F + zccv + zkkv, zccv = wc and zkkv = wk (3.16b)

= F + wc + wk (3.16c)

Then we can write


 ξ̇

ξ̈


 =


 0 1

−ko

m
− co

m





 ξ

ξ̇


 +


 0 0

1
m

1
m





 wk

wc


 +


 0

1
m


 F (3.17a)


 zk

zc


 =


 1 0

0 1





 ξ

ξ̇


 (3.17b)


 wk

wc


 =


 kv 0

0 cv





 zk

zc


 (3.17c)

In block diagram form




ξ̇

ξ̈

zk

zc

y




=




0 1 0 0 0

−ko

m
− co

m
1
m

1
m

1
m

1 0 0 0 0

0 1 0 0 0

1 0 0 0 0




︸ ︷︷ ︸
M




ξ

ξ̇

wk

wc

F




(3.18a)


 wk

wc


 =


 kv 0

0 cv




︸ ︷︷ ︸
∆


 zk

zc


 (3.18b)
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Fu(M, ∆) =




1 0

0 1

1 0




︸ ︷︷ ︸
M21

.


 kv 0

0 cv




︸ ︷︷ ︸
∆




I −

 0 1

ko

m
co

m




︸ ︷︷ ︸
M11


 kv 0

0 cv




︸ ︷︷ ︸
∆




−1


 0 0 0

1
m

1
m

1
m




︸ ︷︷ ︸
M12

+




0 0 0

0 0 0

0 0 0




︸ ︷︷ ︸
M22

(3.19)

3.2. Normalization of the Parameters

For analysis which is used for uncertain systems, it is generally better to normalize

the parameter variations between -1 and +1. For instance, the system depends on two

parameters δ1 and δ2 with δ1 ∈ [δ−1 , δ+
1 ] and δ2 ∈ [δ−2 , δ+

2 ] normalizing consists of replacing

δ1, δ2 by δ́1, δ́2

δ1 =
δ+
1 + δ−1

2
+

δ+
1 − δ−1

2
δ́1 (3.20a)

δ2 =
δ+
2 + δ−2

2
+

δ+
2 − δ−2

2
δ́2 (3.20b)

where δ́1 ∈ [−1, +1] and δ́2 ∈ [−1, +1].

More generally, n1 and n2 are the number of parameters seen in the system model

and normalization consists of replacing ∆ by P ∆́Q + R . The expression of P, Q and R in

the above example is

P =


 In1 0

0 In2


 ; Q =


 In1

δ+
1 −δ−1

2
0

0 In2
δ+
2 −δ−2

2


 ; R =


 In1

δ+
1 +δ−1

2
0

0 In2
δ+
2 +δ−2

2




The following lemma computes the new equivalent expression to normalize the system

Lemma 3.2.1. If the matrix ∆ is replaced by P ∆́Q+R, the following expression is obtained
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Fu(M, ∆) = Fu(Ḿ, ∆́) (3.21)

provided that

Ḿ11 = Q(I −M11R)−1M11P (3.22a)

Ḿ12 = Q(I −M11R)−1M12 (3.22b)

Ḿ21 = M21P + M21R(I −M11R)−1M11P (3.22c)

Ḿ22 = M22P + M21R(I −M11R)−1M12 (3.22d)

The presented normalization procedure can be applied to Example 3.1.2

Example 3.2.1. The parameters k and c can be normalized as follows

k = ko − ḱδk, δk = [−1, +1] where ko :=
k + k

2
and ḱ := −k − k

2
(3.23a)

and

c = co − ćδk, δc = [−1, +1] where co :=
c + c

2
and ć := −c− c

2
(3.23b)

Then we can rewrite the equation of motion as

mξ̈ + coξ̇ + koξ︸ ︷︷ ︸
nominalsystem

= F + ćδcξ̇ + ḱδkξ, zc = ćξ and zk = ḱξ (3.24a)

= F + zcδc + zkδk, zcδc = wc and zkδk = wk (3.24b)

= F + wc + wk (3.24c)
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Then we can write


 ξ̇

ξ̈


 =


 0 1

−ko

m
− co

m





 ξ

ξ̇


 +


 0 0

1
m

1
m





 wk

wc


 +


 0

1
m


 F (3.25a)


 zk

zc


 =


 ḱ 0

0 ć





 ξ

ξ̇


 (3.25b)


 wk

wc


 =


 δk 0

0 δc





 zk

zc


 (3.25c)

In block diagram form




ξ̇

ξ̈

zk

zc

y




=




0 1 0 0 0

−ko

m
− co

m
1
m

1
m

1
m

ḱ 0 0 0 0

0 ć 0 0 0

1 0 0 0 0




︸ ︷︷ ︸
M




ξ

ξ̇

wk

wc

F




(3.26a)


 wk

wc


 =


 δk 0

0 δc




︸ ︷︷ ︸
∆


 zk

zc


 (3.26b)

Fu(M, ∆) =




ḱ 0

0 ć

1 0




︸ ︷︷ ︸
M21


 δk 0

0 δc




︸ ︷︷ ︸
∆




I −

 0 1

ko

m
co

m




︸ ︷︷ ︸
M11


 δk 0

0 δc




︸ ︷︷ ︸
∆




−1


 0 0 0

1
m

1
m

1
m




︸ ︷︷ ︸
M12

+




0 0 0

0 0 0

0 0 0




︸ ︷︷ ︸
M22

(3.27)
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As mentioned in the beginning of the chapter, if the time varying parameters are in

the rational polynomial form in the equation, this system can be represented in LFT form.

The LFT representation of the parameter dependent systems are used to design a controller

for the system. As mentioned before, LFR Toolbox presents useful functions to obtain the

LFT representation of a parameter dependent system. We will discuss functions of the LFR

Toolbox and the LFT representation of the TRMS in detail. In the next chapter, stability

and the performance analysis of the LF-LPV systems are discussed and the procedure of

the controller design is presented.



30

4. LF-LPV Systems: Analysis and Control Design

In first the section of the chapter, we will discuss the stability and the performance

analysis of the LF-LPV systems. The stability conditions of a parameter dependent system

will be presented in terms of LMIs. In the second section, control design will be discussed

and we will show the solution of the controller.

4.1. Analysis of LF-LPV Systems

The main idea of the stability condition in terms of LMIs comes from the Lyapunov

equation. This idea can be considered for an autonomous system in the following theorem

Theorem 4.1.1. [6] The system ẋ = Ax is asymptotically stable if and only if there exists

a solution P = P T Â 0 to the inequality

AT P + PA ≺ 0.

Consider the system

ẋ = Ax + B1 (4.1a)

wu = C1x + D11zu, wu = ∆zu. (4.1b)

The illustration of the system is presented in Figure 4.1.

We assume A is Hurwitz and ∆ is in the form (3.8). The following theorem gives

sufficient conditions that guarantee robust stability for all admissible parameter trajectories.

Theorem 4.1.2. [7] The system 4.1 is robustly stable if there exists an X = XT Â 0 and
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∆







A B1

C1 D11







zuwu

Figure 4.1. LF-LPV System without Performance Channel

matrices Q = QT , S and R = RT such that




I 0

A B1

0 I

C1 D11




T 


0 X 0 0

X 0 0 0

0 0 Q S

0 0 ST R







I 0

A B1

0 I

C1 D11



≺ 0 (4.2)

and


 ∆

I




T 
 Q S

ST R





 ∆

I


 Â 0 for all ∆ ∈ ∆. (4.3)

System (4.1) is a parameter dependent autonomous system. However, this idea can

be extended to quantify the effect of the disturbance on the system. This way, system can

remain still stable for reasonable disturbance from the environment. The extra channel is

added to the system (4.1) called the Performance Channel. This way, we can obtain the

system (4.4).

ẋ = Ax + B1wu + Bpwp (4.4a)

zu = C1x + D11wu + D1pwp, wu = ∆zu (4.4b)

zp = Cpx + D1pwu + Dppwp (4.4c)
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∆











A B1 Bp

C1 D11 D1p

Cp Dp1 Dpp











zuwu

wp

zp

Figure 4.2. LF-LPV System with Performance Channel

The system with performance channel is shown in Figure 4.2.

In system (4.4), wp (disturbance) is seen as an input variable whose effect on the

output zp we try to minimize. The effect of the wp on zp can be quantified by calculating

the worst possible ratio of their norms. A norm is a function that assigns a strictly positive

length or size to all vectors in a vector space, other than the zero vector. In other words,

we can measure the size of vectors by taking their norms. Here, we will use the L2-norm

(a.k.a. the energy-norm) for analysis.

Definition 4.1.1. [10] The L2 norm of the vector x(t) = (x1(t), · · · , xn(t))T is defined as

‖x‖2 =

√∫ ∞

0

xT (t)x(t).dt (4.5)

Based on Figure 4.3, the L2-gain system from wp to zp can be represented as

‖T‖L2→L2 := sup
wp∈L2,wp 6=0

‖zp‖2

‖wp‖2

(4.6)

The following theorem gives the conditions for which LPV system (4.4) remains stable with

L2 norm below γ.

Theorem 4.1.3. [7] Consider the system 4.4. Assume that A is Hurwitz and γ > 0. Then,

the LPV system 4.4 remains stable with L2 norm below γ if there exists an X = XT Â 0
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and matrices Q = QT , S and R = RT such that




I 0 0

A B1 Bp

0 I 0

C1 D11 D1p

0 0 I

Cp Dp1 Dp2




T 


0 X 0 0 0 0

X 0 0 0 0 0

0 0 Q S 0 0

0 0 ST R 0 0

0 0 0 0 −γI 0

0 0 0 0 0 γ−1I







I 0 0

A B1 Bp

0 I 0

C1 D11 D1p

0 0 I

Cp Dp1 Dp2




≺ 0 (4.7)

and


 ∆

I




T 
 Q S

ST R





 ∆

I


 Â 0 for all ∆ ∈ ∆. (4.8)

wp zpFu















A B1 Bp

C1 D11 D1p

Cp Dp1 Dpp







, ∆








︸ ︷︷ ︸

T

Figure 4.3. Transfer between wp and zp

4.2. Control Design for LF-LPV Systems

In this section, we will discuss the controller design for LF-LPV system. In the

previous section, the stability and performance conditions are given in Theorems 4.1.3 and

4.1.2.

Now consider the systems with a control input u, and a measured output y which is

illustrated in Figure 4.4. The system equations are
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∆











A B1 Bp B2

C1 D11 D1p D12

Cp Dp1 Dpp Dp2

C2 D21 D2p D22











zuwu

wp zp

u y

Figure 4.4. LF-LPV system with control input u and measured output y

ẋ = Ax + B1wu + Bpwp + B2u (4.9a)

zu = C1x + D11wu + D1pwp + D12u, wu = ∆zu (4.9b)

zp = Cpx + Dp1zu + Dppzp + Dp2u (4.9c)

y = C2x + D21wu + D2pwp. (4.9d)

The objective is to design a controller of the form

ẋK = AKxK + BK2y + BK1wKu (4.10a)

u = CK2xK + DK22y + DK21wKu (4.10b)

zKu = CK1xK + DK12y + DK11wKu , wKu = ∆zKu . (4.10c)

Figure 4.5 shows the form of the desired controller.

∆











AK BK2
BK1

CK2
DK22

DK21

CK1
DK12

DK11











zKu
wKu

yu

Figure 4.5. The Illustration of Controller
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∆
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




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A B1 Bp B2

C1 D11 D1p D12

Cp Dp1 Dpp Dp2

C2 D21 D2p D22











zuwu

wp
zp

∆











AK BK2
BK1

CK2
DK22

DK21

CK1
DK12

DK11











zKu

wKu

yu

Figure 4.6. The Closed Loop System

When the plant and the controller are combined, we obtain the closed loop system as

[9]

ẋa = (Aa + Ba
2KCa

2 )xa + (Ba
1 + Ba

2KDa
21)w

a
u + Ba

pwp (4.11a)

za
u = (Ca

1 + Da
12KCa

2 )xa + (Da
11 + Da

12KDa
21)w

a
u + Da

1pwp (4.11b)

zp = (Ca
p + Da

p2KCa
2 )xa + (Da

p1 + Da
p2KDa

21)w
a
u + Da

ppwp (4.11c)

Where

Aa :=


 A 0

0 0


 , Ba

2 :=


 B2 0 0

0 0 In


 , Ba

1 :=




C2 0

0 0

0 In


 , Da

p2 :=
(

Dp2 0 0
)

Ca
p :=

(
Cp 0

)
, Da

1p :=


 D1p

0


 , Da

p1 :=
(

Dp1 0
)

, Da
pp = Dpp,
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Ba
1 :=


 B1 0

0 0n×m


 , Ca

1 :=


 C1 0

0 0m×n


 , Da

21 :=




D21 0 D2p

0 Im 0

0 0 0


 (4.12)

Da
12 :=


 D12 0 0

0 Im 0


 , Da

11 :=


 D11 0

0 0m×m


 , K :=




DK22 DK21 CK2

DK12 DK11 CK1

BK2 BK1 AK




n is number of state and m is number of repeated parameters.

The closed loop matrices can be written in more compact form as

Gcl =


 Acl Bcl

Ccl Dcl


 (4.13)

Acl = Aa + Ba
2KCa

2 , Bcl = B̃a
1 + Ba

2KD21 (4.14)

Ccl = Ĉa
1 + Da

12KCa
2 , Dcl = D̃a

11 + D̃a
12KDa

21 (4.15)

where

B̃a
1 :=

(
Ba

1 Ba
p

)
, C̃a

1 :=


 Ca

1

Ca
p


 , D̃a

11 :=


 Da

11 Da
1p

Da
p1 Da

pp


 , D̃a

12 :=


 Da

12

Da
p2


 (4.16)

We can write the stability condition of the closed loop system by using Theorem 4.1.3. The

closed loop system 4.11 remains stable with L2 norm below γ > 0, if there exist χ = χT Â 0,
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Qe = QT
e ≺ 0, Re = RT

e Â 0, and γ > 0 such that the inequalities [7]

χ Â 0,




Acl Bcl

Ccl Dcl

I 0

0 I




T




0 0 0 χ 0 0

0 Re 0 0 0 0

0 0 γ−1I 0 0 0

χ 0 0 0 0 0

0 0 0 0 Qe 0

0 0 0 0 0 −γI







Acl Bcl

Ccl Dcl

I 0

0 I



≺ 0 (4.17a)




∆ 0

0 ∆

I 0

0 I




T


 Qe 0

0 Re







∆ 0

0 ∆

I 0

0 I



Â 0 (4.17b)

are satisfied. The following theorem is the main idea of the controller design.

Theorem 4.2.1. [7] The following statements are equivalent:

1. There exists a controller of the form 4.10 such that there exist matrices χ and Re =

−Qe Â 0 that satisfy

χ Â 0,




Acl Bcl

Ccl Dcl

I 0

0 I




T




0 0 0 χ 0 0

0 Re 0 0 0 0

0 0 γ−1I 0 0 0

χ 0 0 0 0 0

0 0 0 0 Qe 0

0 0 0 0 0 −γI







Acl Bcl

Ccl Dcl

I 0

0 I



≺ 0 (4.18)

2. There exist X = XT , Y = Y T , Q = QT = −R, Q̃ = Q̃T = −R̃ and multipliers where
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satisfy the linear matrix inequalities

ΨT




∗
∗
∗
∗
∗
∗




T 


0 X 0 0 0 0

X 0 0 0 0 0

0 0 Q 0 0 0

0 0 0 R 0 0

0 0 0 0 −γI 0

0 0 0 0 0 γ−1I







I 0 0

A B1 Bp

0 I 0

C1 D11 D1p

0 0 I

Cp Dp1 Dpp




Ψ ≺ 0 (4.19)

ΦT




∗
∗
∗
∗
∗
∗




T 


0 Y 0 0 0 0

Y 0 0 0 0 0

0 0 Q̃ 0 0 0

0 0 0 R̃ 0 0

0 0 0 0 −γ−1I 0

0 0 0 0 0 γ







−AT −CT
1 −CT

p

I 0 0

−BT
1 −DT

11 −DT
p1

0 I 0

−BT
p −DT

1p −Dpp

0 0 I




Φ Â 0 (4.20)


 Y I

I X


 Â 0 (4.21)

and


 R I

I R̃


 Â 0. (4.22)

Here,Φ and Ψ are orthonormal basis matrices of (BT
2 DT

12D
T
p2) and (C2D21D2p) respec-

tively.

Orthonormal basis matrix of M is denoted by M⊥ or ker(M) and it satisfy two

conditions.
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1. MT M⊥ = 0

2. [MM⊥] is square and invertible.

Remark: Solving for the controller

After finding the multipliers and the Lyapunov matrix constructing the controller K

depends on the 4.18. This inequality can be written as


 A + BKC

I




T

Ω


 A + BKC

I


 < 0 (4.23)

where

A :=


 Aa B̃a

1

C̃a
1 D̃a

11


 , B :=


 Ba

2

D̃a
12


 , C :=

(
Ca

2 Da
21

)
(4.24)

The inequality 4.23 can be rewritten as


 I

KC




T 
 A B

I 0




T

Ω


 A B

I 0




︸ ︷︷ ︸
Π


 I

KC


 ≺ 0 (4.25)

Assume that Π has no zero eigenvalue then one can apply the Lemma C.0.1 to the inequality

4.25 and the following inequality can be achieved. This application is performed to take K

outer part of the inequality.


 −CT KT

I




T

Π−1


 −CT KT

I


 Â 0 (4.26)

The inequality 4.26 can be rewritten again as


 KT

I




T 
 −CT 0

0 I




T

Π−1


 −CT 0

0 I




︸ ︷︷ ︸
Γ


 KT

I


 Â 0 (4.27)
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V =


 V+1

V+2


 is the eigenvector of the positive eigenvalues. The following equation

can be written by taking V as a basis


 V+1

V+2




T

Γ


 V+1

V+2


 Â 0 (4.28)

Pre- and post-multiply by V −T
+2 and V −1

+2 gives


 V+1V

−1
+2

I




T

Γ


 V+1V

−1
+2

I


 Â 0 (4.29)

This shows that

KT = V+1V
−1
+2 (4.30)
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5. LPV Control Design for the TRMS System

In this chapter, the LPV controller for the TRMS will be designed. Firstly the LFT

representation of the TRMS is derived by the LFR Toolbox. Secondly, the system is

developed with the weights and the filters and linearized model is obtained. Theorem 4.2.1

is the main part of the controller design. For that purpose, the inequalities (4.21), (4.19),

(4.20) are solved to find the variables X,Y,Q, R, Q̃, R̃ and γ by the help of the YALMIP

Toolbox and solver SeDuMi. Finally, controller is designed. The details are given in the

following sections.

5.1. LFT Representation of the TRMS

The LFT representation is obtained by the help of LFR Toolbox. LFR Toolbox is

developed by J.F. Magni. The toolbox considers modeling, manipulation, order reduction

and approximation of uncertain systems in LFT form. It also contains Simulink patch for

simulation of LFT form systems. The toolbox and more information is available in reference

[8]. The procedure to obtain the LFT representation of TRMS by LFR Toolbox is given in

detail.

The first step is to define the parameters of the system. The function lfrs is used

for this purpose.

The parameters are defined to the toolbox as, av is av, cosav is cos(av), sinav is

sin(av), zdotah is ȧh and zdotav is ȧv. The purpose zdotah and zdotav is to put the

parameters in the order that we indicated before. LFR toolbox construct the ∆ block in

the alphabetic order of the parameters.

The system matrices A(p), B(p), C,D which are indicated in equation (2.39) are de-

fined as An,Bn,Cn,Dn by putting the defined parameters av, cosav, sinav, zdotah and

zdotav into the equation. To get the true solution, one have to pay attention while writing
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the equations. The equations should be in the form of constants× parameters, e.g.,

(km/(Jh× Tv))︸ ︷︷ ︸
constant

× cosav︸ ︷︷ ︸
parameter

.

Otherwise, the variation of the parameter is taken as the multiplication of the constant by

the toolbox.

So far, the variation of the parameters are not defined. As default configuration,

bounds of the each parameters are taken as [−1, +1] by the toolbox. There are many

different ways to normalize the system in the toolbox. However, we use the most user

friendly way. The definition of the bounds of the parameters and the normalization

of the system can be achieved by the function [An,Bn,Cn,Dn]=normalizelfr([An,Bn,

Cn,Dn],parname,dmin,dmax).

The inputs of the function are parameter dependent matrices, two row vectors which

contains the maximum and the minimum values of the parameters and the string array

which contains the name and the order of the parameters.

The unnecessary large bounds for the parameters can affect the performance of the

controller. For that purpose, we try to compress the bounds as much as possible and

obtained the following results.

av cos(av) sin(av) ȧh ȧv

max π/1.5 1 1 1 1

min −π/8 -0.5 -0.5 -1 -1

After normalization, input-output LFR of the system is obtained by the function

abcd2lfr which is called as sysmin=abcd2lfr([An,Bn,Cn,Dn],6);.

The inputs of the the function are the parameter dependent matrices and the state

number of the system. The output sysmin is defined as lfr object in the Workspace of the
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MATLAB. The matrices of nominal system and the ∆ block is defined as follows


 A B1

C1 D11


 := sysmin.a,


 B2

D12


 := sysmin.b,

(
C2 D21

)
:= sysmin.c,

D22 := sysmin.d and ∆ := sysmin.e.

Finally, we obtained the Linear Fractional Representation of the TRMS system as

illustrated in the figure 3.3.

5.2. Constructing the System

In this section, the construction of the objective system is presented. The schematic

form of the system which we want to control, is represented in Figure 4.4. However, some

details are not realized from the figure. As it is seen in Figure 5.1, low-pass filters and

weights are added to the system. Low-pass filters allow only low frequency signals to pass.

We used Butterworth low pass filter and passband edge frequency is chosen as 2π(rad/sec).

The main objective is to make zp (error) zero in steady state for given input. If we minimize

the area of the output signals, we can increase the performance of the system. For that

purpose, integrator operator can be used. However, in Laplace domain integrator operator

is 1
s

and that makes the system unstable. Therefore, we added positive term to satisfy the

stability and finally obtained the weights as,




1
s+1e−5 0

0 1
s+1e−5


 .

Reference [10] presents detail discussion about the importance of weights.

Although closed loop system can be derived by hand, MATLAB provides very useful

function for that purpose called linmod. This function provides the state-space linear model



44

of the system of ordinary differential equations described in the Simulink environment by

specifying the input output channels. The Simlulink environment illustration of the system

setup is presented in Figure 5.1 with denoted the channel names. This way, it can be seen

wp

wu

zp

zu

uy

Figure 5.1. System Set-up

that Figure 5.1 is the reflection of Figure 4.4.

Consider the system equations (4.9) the structure of the output matrices AA, BB,

CC and DD are defined as follows:

AA := A (5.1)

BB :=
(

B1 Bp B2

)
(5.2)

CC :=




C1

Cp

C2


 (5.3)

DD :=




D11 D1p D12

Dp1 Dpp Dp2

D21 D2p D22


 (5.4)

The corresponding MATLAB function is [AA,BB,CC,DD]=linmod(’systemsetup’). This
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way, the system matrices are obtained. The next step is to construct the LMIs and find

their solutions.

5.3. Constructing the LMIs

The this step is the construction of the LMIs. As mentioned in the beginning of this

chapter. YALMIP Toolbox [11] provides functions for construction LMIs and SeDuMi [12]

provides solver for the solution of the LMIs. The function sdpvar is used to construct

the matrices. The decision variables X,Y,Q, R, Q̃, R̃ are constructed with this function.

X, Y are n × n symmetric matrices. n is the amount of states. In this system n equals

to 12. 6 states come from the model, two weights have 2 states and finally two second

order low-pass filters give 4 states. X and Y defined by X=sdpvar(n); and Y=sdpvar(n);,

respectively. The construction of the multipliers Q,R, Q̃, R̃ are more complicated than

X, Y . The structure of the Q and Q̃ depends ∆ of the system to provide the inequality 4.8.

The TRMS model has 5 parameters repeated 11 times, cos(av) repeated 5 times, sin(av)

repeated 3 times, av,ȧh and ȧv repeated 1 time.

p1 : = av (5.5)

p2 : = cos(av) (5.6)

p3 : = sin(av) (5.7)

p4 : = ȧh (5.8)

p5 : = ȧv (5.9)

and the structure of the ∆ is

∆ = diag(p1I1, p2I5, p3I3, p4I1, p5I1). (5.10)

So the Q is defined as Q1=sdpvar(1);, Q2=sdpvar(5);, Q3=sdpvar(3);, Q4=sdpvar(1);,

Q5=sdpvar(1);, Q=blkdiag(Q1,Q2,Q3,Q4,Q5); and Q=-R. The same procedure is applied

for Q̃ and R̃. The value of γ > 0 is defined by user. The basis matrices Φ and Ψ is defined

by the function called null.
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After constructing the matrices, the set of the inequalities (4.21), (4.19) and (4.20) are

developed. The function set is used for this purpose. The solution of the set of inequalities

is obtained by the function solvesdp. Different solvers are developed for LMIs. LMILab

is provided by MATLAB and it takes time to solve the inequality. Another solver called

SeDuMi which can be obtained from [12] is used for solution. Although there is not a

reasonable accuracy difference between solvers LMILab and SeDuMi, SeDuMi is much more

faster than LMILab. As a notice, it should be mentioned that most of the time solvers give

a solution but that does not mean the solution is valid for the desired condition. Because of

this reason, one has to check the solution if it satisfy the desired conditions. The solution

is found by trying the different values of the γ. For γ = 2.73, there is a solution for the

system and the results are given for this value.

After finding the decision variables X, Y, Q,R, Q̃, R̃ and γ by solving the inequalities

(4.21), (4.19) and (4.20), the next step is find the extension matrices Qe, Re and augmented

matrices to develop the stability condition for closed loop.

The extension matrices are found as indicated in reference [7].

Qe =


 Q I

I (Q− Q̃−1)−1


 and Re = −Qe. (5.11)

The augmented matrices are developed as indicated in the equation (4.12). The controller

is obtained by following the procedure that is indicated in the Remark part of the previous

chapter.

Controller matrices which is defined in equation (4.10) are obtained by simple calcu-

lation. Because size of the controller matrices are big, we did not put it here. However

the dimensions of the matrices can be summarized as A12×12
K , B12×11

K1
, B12×2

K2
, C11×12

K1
, C2×12

K2
,

D11×11
K11

, D11×2
K12

, D2×11
K21

and D2×2
K22

.
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5.4. Simulation

The simulation is performed in Simulink environment. Designed controller is con-

nected to non-linear model of TRMS. The framework is illustrated in Figure 5.2.

Figure 5.2. Simulation Framework in Simulink

In simulation part, one have to take the real life condition into consideration. Al-

though controller works well in simulation, input of model may exceed the real life condition

of system. The input of non-linear system of TRMS is voltage and in real life the value of

the input voltage is bounded with physical condition. The physical bounds of D.C. motors

of TRMS is [−2.5, 2.5]. To achieve the real life conditions, we use saturation block before

inputs of nonlinear TRMS model.

We took successful results for several different conditions. Some simulation results

are presented in the next chapter.
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6. Simulation Results

In this chapter, we present simulation results of controlled nonlinear TRMS model for

nine different modes. We consider all possible conditions. The detail of the modes are listed

in Table 6.1. Each mode applied for one simulation. They are listed in order of difficulty.

Firstly, step input is applied to the system for different orders. Secondly, sinusoidal and

square wave signal are given as input. Finally, we observe the response of the system for

different characteristics inputs. Consider the last two modes: Although TRMS is a coupled

system, different desired conditions for each angle can be satisfied at the same time. As it

can be seen from the results, designed controller works well for different modes.

The simulation results of the PID controller which is provided by Feedback Instru-

ments Limited for mode 1 is presented in Figures 6.2(a) and 6.2(b). For pitch angle,

quasi-LPV controller provides better overshoot than PID controller and settling times are

very close. On the other hand, for yaw angle, the settling time of the simulation with

quasi-LPV controller better than PID controller and the overshoots are close to each other.
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Figure 6.1. The Simulation Results of Angles (Mode 1)
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Table 6.1. Characteristics of the sets of inputs

Type Frequency(rad/sec) - Step Time(sec) Amplitude(rad)

Mode 1 Pitch Step 5 π/6

Yaw Step 5 π/4

Mode 2 Pitch Step 15 π/6

Yaw Step 5 π/4

Mode 3 Pitch Step 5 π/6

Yaw Step 15 π/4

Mode 4 Pitch Square 0.05π π/8

Yaw Square 0.05π π/8

Mode 5 Pitch Square 0.1π π/8

Yaw Square 0.05π π/8

Mode 6 Pitch Square 0.05π π/8

Yaw Square 0.1π π/8

Mode 7 Pitch Sine 0.05π π/8

Yaw Sine 0.1π π/8

Mode 8 Pitch Square 0.05π π/8

Yaw Sine 0.1π π/8

Mode 9 Pitch Sine 0.1π π/8

Yaw Square 0.05π π/8
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(a) The Simulation Result of PID Controller
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Figure 6.2. Simulation Results for PID Controller (Mode 1)
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Figure 6.3. Simulation Results of Control Input (Mode 1)



51

0 10 20 30 40 50
−20

0

20

40

60

80

100

120

 

 
Angular Velocity for Main Rotor (rad/sec)

(a) Angular Velocity of Main Rotor (Mode 1)
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Figure 6.4. Simulation Results of Angular Velocities (Mode 1)
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Figure 6.5. Simulation Results of Angles (Mode 2)
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0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

 

 
Desired
Model

(b) Yaw Angle (Mode 3)

Figure 6.6. Simulation Results of Angles (Mode 3)

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
Desired
Model

(a) Pitch Angle (Mode 4)

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

 

 
Desired
Model

(b) Yaw Angle (Mode 4)

Figure 6.7. Simulation Results of Angles (Mode 4)
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(a) Control input for Main Rotor (Mode 4)
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Figure 6.8. Simulation Results for Control Inputs (Mode 4)
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Figure 6.9. Simulation Result for Angular Velocity (Mode 4)
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Figure 6.10. Simulation Result for Angles (Mode 5)
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Figure 6.11. Simulation Result for Angles (Mode 7)
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(a) Control Input for Mail Rotor (Mode 7)
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Figure 6.12. Simulation Result for Control Input (Mode 7)
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Figure 6.13. Simulation Results for Angular Velocity (Mode 7)
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Figure 6.14. Simulation Result for Angles (Mode 8)
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Figure 6.15. Simulation Result for Angles (Mode 9)
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(a) Control input for Main Rotor (Mode 9)
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Figure 6.16. Simulation Result for Control Inputs (Mode 9)
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Figure 6.17. Simulation Result for Angular Velocity (Mode 9)
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7. CONCLUSIONS

In this thesis, we have investigated the use of LPV controller design for highly nonlin-

ear and cross coupled TRMS. Quasi-LPV model of the system is developed by considering

the nonlinearities in the mathematical model of the system as time varying parameters and

the system is written as LFT form. LMI conditions for the existence of the controller and

stability of the desired closed loop system are developed using LFT form of the system.

Objective LPV controller for TRMS is reached solving the LMIs.

It is seen that simulation of designed LPV controller with nonlinear model of TRMS

gives successful results for different modes.

LPV modeling and control has an important place in the literature. Several researches

and investigations are made to improve the theory and obtain better results. In this thesis,

it is showed that highly nonlinear system can be considered as an LPV system. In this way,

developed LPV theory can be applied to reach an LPV controller to control the nonlinear

model of the system.
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APPENDIX A: Moment of Inertia of TRMS

The moment of inertias about vertical and horizontal axis are the sum of the all

inertias. These can be calculated as:

The moment of inertia about horizontal axis Jv equals to

Jv = Jmr + Jm + Jcb + Jb + Jtr + Jt + Jms + Jts (A.1)

where

Jmr = mmrl
2
m (A.2)

Jm = mm
l2m
3

(A.3)

Jcb = mcbl
2
cb (A.4)

Jb = mb
l2b
3

(A.5)

Jtr = mtrl
2
tr (A.6)

Jt = mt
l2t
3

(A.7)

Jms = mms
r2
ms

2
+ mmsl

2
ms (A.8)

Jts = mtsr
2
ts + mtsl

2
t (A.9)

and the moment of inertia about vertical axis Jh equals to

Jh = Jh1 + Jh2 + Jh3 + Jh4 + Jh5 + Jh6 + Jh7 + Jh8 (A.10)

where

Jh1 = mm
(lm cos(av))

2

3
(A.11)
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Jh2 = mt
(lt cos(av))

2

3
(A.12)

Jh3 = mb
(lb sin(av))

2

3
(A.13)

Jh4 = mtr(lt cos(av))
2 (A.14)

Jh5 = mmr(lm cos(av))
2 (A.15)

Jh6 = mcb(lcb sin(av))
2 (A.16)

Jh7 = mts
r2
ts

2
+ mts(lt cos(av))

2 (A.17)

Jh8 = mmsr
2
ms + mms(lm cos(av))

2 (A.18)

or in compact form

Jh = D cos2(av) + E sin2(av) + F (A.19)

where

D = (
mm

3
+ mmr + mms)l

2
m + (

mt

3
+ mtr + mts)l

2
t (A.20)

E = mb
l2b
3

+ mcbl
2
cb, F = mmsr

2
ms + mts

r2
ts

2
(A.21)
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APPENDIX B: Constants in Mathematical Model of TRMS

Constant Parameters Value Constant Parameter Value

lt(m) 0.282 mms(kg) 0.219

lm(m) 0.246 k̃pv 1.62e-3

lb(m) 0.290 k̃ph 1.84e-3

lcb(m) 0.276 kpv 1.62e-6

rms(m) 0.155 kph 1.84e-6

rts(m) 0.100 kfv 5.45e-3

mtr(kg) 0.221 kfh 9.50e-3

mmr(kg) 0.236 kt 2.60e-5

mcb(kg) 0.068 km 2.00e-4

mt(kg) 0.015 Tv 5.22e-2

mm(kg) 0.014 Th 9.23e-3

mb(kg) 0.022 Kv 1.08e-3

mts(kg) 0.119 Kh 1.98e-4
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APPENDIX C: Auxiliary Lemma

The inertia of a matrix A is defined as in(A) = (n+, n−, n0) where

n+ := Number of the positive eigenvalues of A

n− := Number of the positive eigenvalues of A

n0 := Number of the zero eigenvalues of A

Lemma C.0.1. [9] Let Π = ΠT ∈ R(p+m)×(p+m) have in(Π) = (p,m, 0) and let K ∈ Rm×p

be given. Then,


 Im

K




T

Π


 Im

K




T

≺ 0

if and only if


 −KT

Ip




T

Π−1


 −KT

Ip


 Â 0
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