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ABSTRACT

MODELING OF MICROPIPETTE ASPIRATION OF

FLACCID HUMAN RED BLOOD CELL USING FINITE

ELEMENTS

This thesis aims to analyze the steady state deformation of flaccid red blood cell

(RBC) in micropipette aspiration (MA) experiment using finite elements (FE). Three

different geometries, namely infinite plane, disk and modified biconcave model are used

for undeformed flaccid RBC to see the geometry effects.

ABAQUS is used to solve the micropipette aspiration problem. A nearly incom-

pressible, isotropic, hyperelastic, 2D material model is used for the cell membrane with

the aid of the user subroutine, UGENS. Comparing the experimental results found in

literature and the computational results, material characteristics of RBC membrane is

investigated where the appropriate in-plane shear modulus value is estimated as 3-4

µN/m.

It is observed that the cytosol, the fluid inside the red blood cell, modeled as

a hydraulic fluid does not affect the deformation of the aspirated membrane portion.

Additionally, principal stretches and stress resultants and the fractional area change

at maximum applied suction pressure are also computed.
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ÖZET

YUMUS.AK İNSAN ALYUVARININ MİKROPİPETE

EMİLİMİNİN SONLU ELEMANLAR İLE

MODELLENMESİ

Bu tezin amacı yumus.ak insan alyuvarının mikropipete emiliminin sonlu eleman-

lar ile analizini yapmaktır. Deforme olmamıs. yumus.ak alyuvarı modellemek amacıyla

üc. farklı geometrik model olus.turulmus.tur: sonsuz düzlem, disk ve değis.tirilmis. bikonkav

modelleri.

Mikropipet emilimi problemini c.özmek ic.in ABAQUS kullanılmıs.tır. Hücre mem-

branı ic.in kullanılan iki boyutlu, izotropik, hiperelastik malzeme modeli ABAQUS’e

UGENS adlı altprogram yardımı ile tanımlanmıs.tır. Elde edilen sayısal sonuc.lar ile lit-

eratürdeki deneysel sonuc.ların kars.ılas.tırılması sonucunda alyuvar membranının malzeme

özellikleri incelenmis. ve düzlem kayma modülünün değeri 3-4 µN/m olarak bulunmus.tur.

C. alıs.mada hidrolik bir sıvı olarak modellenen alyuvarın ic. sıvısının aspire edilen

membran bölgesindeki deformasyona etkisinin olmadığı gözlemlenmis.tir. Ayrıca defor-

masyon sonucu membranda olus.an gerilim ve gerinim değerleri ile oransal alan değis.imi

de hesaplanmıs.tır.
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1. INTRODUCTION

Red blood cells (RBC) also known as erythrocytes or red cells are important

components of the human circulatory system. They carry oxygen from lungs to body

tissues. To reach all body tissues they have to squeeze and pass through all capillaries

in the body. Some of human capillaries are much more smaller than RBC’s and RBC’s

deform extremely during the passage through these small sized capillaries; they recover

their original shape afterwards. The deformation characteristics of RBC and material

properties of its membrane have been subjects of study for researchers.

Blood flow in the body is highly affected by the deformability of RBC’s. Material

and geometric properties of RBC influence the blood flow. Any change in these prop-

erties can disturb the blood flow and cause a disease in the body. For instance, RBC is

used as the maturation lodge by intracellular parasites such as Plasmodium Falciparum

that causes malaria. During the maturation process of the parasite in RBC, cell’s me-

chanical properties are altered. RBC stiffens progressively losing the ability to undergo

large deformations and becomes adhesive complicating the passage through the blood

vessels and capillaries which can lead to cerebral malaria, hypoglycemia, respiratory

distress and even death [1].

Moreover, RBC provides a convenient possibility for cell membrane studies. RBC

just consists of a membrane complex and a fluid enclosed by the membrane called

cytosol. Thus, the deformation behavior of the whole cell can be used to investigate

the material behavior of the membrane.

Additionally, this simple biological structure made it the start point for the de-

velopment of mechanical models for more complex structured cells.

Studies to understand the deformation of RBC and the material behavior of

its membrane have been done where appropriate mechanical models for the cell and

material models for its components are used to explain the results and observations
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of whole cell experiments like micropipette aspiration, cell swelling, fluid shear flow

deformation and optical tweezers stretching.

1.1. Biological Structure of Human Red Blood Cell

As shown in figure 1.1 a RBC has an axisymetric biconcave shape with an average

diameter of about 7-8 µm and is remarkably simple structured compared to other types

of cells. The nucleus and other organelles which are present during the development

of the cell are expelled immediately after the release of the cell into the circulatory

system. So, the only components of a mature human RBC are the membrane-associated

cytoskeleton complex and the fluid inside called cytosol [2].

Figure 1.1. A human RBC [3]. The top view shows RBC to be circular whereas the

side view shows RBC to be a biconcave disc

1.1.1. Components of Human Red Blood Cell and Their Material Behavior

The cytosol inside the cell is assumed to behave as a Newtonian fluid. Therefore,

elastic material and geometric properties of RBC can be fully attributed to the cell

membrane [4].
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Cell membrane

Cytosol

Figure 1.2. Components of human RBC [3]

As depicted in figure 1.3 RBC membrane consists of a lipid bilayer, transmem-

brane proteins and the spectrin network, namely the cytoskeleton [5]. In literature

there are some analyses [5, 6, 7] where the whole membrane structure is considered as

an effective continuum material since the interest lies in the in the characteristics of

the whole membrane not the individual components of it.

Figure 1.3. Human RBC membrane structure [5]

Because of the extremely small size of RBC well-known engineering material tests

such as uniaxial tension, biaxial tension and compression tests with a specimen cut out

of cell membrane cannot be performed. Only whole cell experiments like micropipette

aspiration, cell swelling, fluid shear flow deformation and optical tweezers stretching

techniques are used. Although not only the cell membrane but the whole cell deforms

during these experiments the material properties of the membrane can be deducted

from results using appropriate mechanical models. The Newtonian behavior of the

cytosol causes that the deformation characteristics of the whole RBC come from the

membrane. Therefore, whole cell experiments can be used to obtain the membrane

material characteristics.
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Previous studies characterized the material behavior of the RBC membrane with

three elastic material properties: in-plane shear modulus, µ; in-plane bulk modulus,

K and bending stiffness, B [8, 9]. Each of these material properties is related to

two independent, fundamental elastic deformation type of membrane (figure 1.4 and

1.5): (1) shear deformation in the plane at constant surface area without bending

the membrane, where this deformation can also be considered as an elongation in one

principal direction and contraction in the second one and is characterized by in-plane

shear modulus, µ, with units of mN/m and (2) isotropic or uniform dilation in the

plane without shearing or bending the membrane where the surface area is altered.

This type of deformation is characterized by in-plane bulk modulus, K, with units of

mN/m. In addition to the first two deformation types the membrane may also bend

without shearing or expansion which is characterized by bending stiffness, B, with units

of N·m [8].

σ11 σ11

σ22

σ22

(a) (b)

Figure 1.4. Deformations at constant area. (a) To keep the surface area constant

elongation in one principal direction results in contraction in the other principal

direction. (b) Simple shear deformation also occurs at constant area.

1.2. Micropipette Aspiration Experiment with Flaccid Human RBC

Micropipette aspiration is one of the whole cell experiments where the surface of

the cell is sucked into a small glass tube and the leading edge of its surface is tracked.

Figure 1.6 shows micropipette aspiration of a flaccid RBC. In the experiment, RBC

is aspirated partially into the pipette. To aspirate the cell a suction pressure, ∆P is

applied, and the distance, D, the leading edge of RBC undergoes in the pipette, is

recorded.
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σ0

σ0

σ0

σ0

(a)

M M

(b)

Figure 1.5. Area expansion and bending deformations a.) Area expansion for biaxial

tension. b.) Bending deformation

(a) (b)

Figure 1.6. Micropipette aspiration of flaccid human RBC: a.) Image of the

aspiration of a flaccid red blood cell into a pipette [10] b.) Schematic of a

micropipette aspiration [11]

1.3. Previous Studies on the Deformation of Red Blood Cell

Rand and Burton [12] were the first to apply the micropipette aspiration technique

to RBC (preswollen ones). They concluded that the membrane is isotropic in 2D. Rand
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[13] found that RBC membrane has great resistance to isotropic surface tension which

means high resistance to lysis. Hochmuth and Mohandas [14] observed that the RBC

membrane can deform greatly subjected to uniaxial tension where they used the fluid

shear flow technique. They realized that membrane surface area remained almost

constant although the deformation in one direction was high. In addition, Evans and

Fung [15] showed after swelling experiments that the transformation of RBC from

biconcave shape to spherocyte did not cause an increase in the membrane surface area.

In the light of the previous studies Evans [16] proposed a material model for RBC

membrane. He modeled the membrane as a 2D, incompressible, isotropic material and

constructed an elastic strain energy density function with a single elastic constant.The

constitutive law derived related Green-Lagrange strains to Cauchy stress resultants.

He employed this material model to analyze cell swelling [16], fluid shear flow and

micropipette aspiration experiments [17] using analytical models.

Skalak et al. [18] also proposed a material model for the RBC membrane similar

to the one of Evans [16]; however by making use of a strain energy density function

with two elastic constants. One of these constants is related to the shear deformation

characteristics of the membrane which is analogous to the elastic constant in the Evans’

work [16]. The second constant reflects the dilation characteristics of RBC membrane

the value of which is much greater than the first one implying high resistance of the

membrane to an area increase meaning a nearly incompressible material in 2D.

Note that the studies mentioned above made use of membrane material models

which have no resistance to bending. Therefore the elastic constants have been derived

to give the deformation response of RBC to in-plane force boundary conditions. How-

ever, some works were done also to identify the bending stiffness of RBC membrane

[19, 20]. Zarda et al. [21] and Pai and Weymann [22] included both the bending and

in-plane material characteristics in their analysis for osmotic swelling of RBC.

Recently, some studies to analyze the RBC deformation by optical tweezers ex-

periment were conducted where continuum mechanics approach utilized finite element
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method [5, 6, 23]. These researches used 3D, incompressible, isotropic, hyperelastic

material models. In their work Dao et al. [5] modeled the RBC membrane complex as

an effective continuum material and the cytosol inside the cell as a Newtonian fluid pre-

serving the cell volume and maintaining the fluid pressure distribution inside the cell.

They investigated the viscoelastic characteristics of the effective membrane by employ-

ing neo-Hookean hyperelastic strain energy density function for the elastic response of

the RBC membrane.

1.3.1. Previous Micropipette Aspiration Studies with Flaccid RBC

Prior analytical studies of the micropipette aspiration of flaccid human red blood

cell are the ones done by Evans [17] and Chien et al. [24]. Both analyzed this exper-

iment where the suction of an infinite plane into a cylindrical micropipette was used

as the model [17] (figure 1.7). This model is valid for small pipettes and for thin dis-

cocytes aspirated in the central region which is assumed to be relatively flat compared

to the peripheral portion of the cell. Additionally, the model is just suitable for the

experiments where the portion of the cell outside the pipette remains flat throughout

the experiment and the sucked portion leans tightly to the pipette’s wall. So, the model

is valid for cells with nonspherical outside portion and if no buckling occurs inside the

pipette. Another assumption is that there exists no frictional force between the pipette

wall and the aspirated cell membrane.

Both studies benefited from the membrane theory where the structure is consid-

ered as incapable of conveying moments to analyze the experiment. Thus, the mate-

rial behavior of the RBC membrane used by both analyses is the 2D, incompressible,

isotropic, hyperelastic material model proposed by Evans [16].

The geometry of pipette, shapes RBC undergo in the experiment and the loading

are axisymetric. By solving the equilibrium equations for this axisymetric condition

both Evans and Chien et al. ended up with an equation relating the applied suction

pressure, ∆P to the distance, D the leading edge of RBC goes inside the pipette where

the material constant is another parameter in the equation. By setting different values
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r

Figure 1.7. Schematic drawing of the deformed shape for analyzing the micropipette

aspiration of the infinite plane membrane model used by Evans and Chien et al. [24]

for this material constant different ∆P vs. D curves are obtained which are compared

with the experimental curve.

The two analytical studies and their results are very similar. The important point

where they diverge is the assumed final shape of the cap portion of RBC membrane

inside the pipette. Evans assumed an elliptical cap where Chien et al. a hemispherical

one.

Higuchi and Kanno analyzed the micropipette aspiration of flaccid human red

blood cell by finite element method [25]. They modeled the membrane complex as an

effective continuum material with the 3D, incompressible, hyperelastic material model

of Arruda-Boyce form of strain energy potential. The initial RBC geometry used in

the work is the biconcave shape proposed by Evans ad Fung [15]. They conducted only

small (nano-order) deformation simulations of micropipette aspiration of flaccid RBC

in their work [25].
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1.3.2. Conclusions of Previous Micropipette Aspiration Studies with Flac-

cid RBC

In works of Evans [17] and Chien et al. [24] the undeformed flaccid RBC is

modeled as an infinite plane which is a very simplified model. Both analyses make

assumptions on the deformed shape of the portion inside the pipette (spherical cap

and elliptical cap) and solve the problem based on this assumption. The results of the

two analyses [17, 24] have only slight differences. Chien et al. plotted this function

to compare it with the one obtained by Evans (see graph 1.8). Moreover, due to the

surface area constancy (2D incompressibility) assumption of the cell membrane they

only estimated the value of in-plane shear modulus, µ in their analyses which is the

only material constant of the material model they used. The value of in-plane bulk

modulus, K cannot be concluded from their analyses.

Figure 1.8. Comparison of the analytical results obtained by Evans and by the

spherical cap model of Chien et al. [24]

Higuchi and Kanno conducted only small (nano-order) deformation simulations

of micropipette aspiration of flaccid RBC in their work [25]. They used a 3D, incom-

pressible, isotropic, hyperelastic material model for RBC membrane which does not
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represent the material characteristics of the membrane very well. 3D, isotropic, hy-

perelastic material models preserve volume which are widely used in rubber elasticity.

These material models may give reasonable results for small deformations but they are

not suitable for large deformations. The incompressibility constraint in these material

models results in increase in surface area where the membrane thickness is decreased to

preserve the volume under large deformations which contradicts the RBC membrane

material property that the surface area remains almost constant.

1.4. Thesis Objective

Analytical works in literature [17, 24] that study the deformation of a flaccid RBC

using micropipette aspiration experiments assume that the membrane is incompressible

in 2D and use the material model of Evans [16] with a single material constant, namely

the in-plane shear modulus, µ. Thus, they only make estimations for this material

constant. They miss the in-plane bulk modulus, K. Additionally, these works use an

assumption for the final deformed state of the membrane (spheroidal cap, spherical

cap) and solve for using this particular final state.

Recently, Higuchi and Kanno [25] studied the micropipette aspiration of a flac-

cid RBC using finite element method. They used a 3D, incompressible, isotropic,

hyperelastic material model which is not suitable to analyze large RBC membrane

deformations.

In the present work, large deformation of flaccid RBC in micropipette aspiration

experiments is investigated using finite element modeling. A 2D, nearly incompressible,

hyperelastic, isotropic material model is implemented to the finite element program,

ABAQUS with the aid of a user subroutine, UGENS.

Three different geometrical models, namely the infinite plane, disk and modified

biconcave model are used to represent the undeformed flaccid RBC. The effects of the

cytosol, the fluid inside the red blood cell, on the deformation is also investigated by

modeling it.
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By comparing the results of the finite element simulations with the analytical

and experimental results of previous studies the values of the material constants in the

material model are estimated. Moreover, the principal stretches and stress resultants

and the fractional area change after the deformation are also computed.
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2. FINITE DEFORMATION MECHANICS

Biological materials like tissues and membranes frequently undergo finite defor-

mations in physiological activities. Any deformation with a strain greater than 3-5%

is classified as finite deformation.

Small deformation theory of elasticity assumes that material points in a de-

formable body undergo infinitesimal displacements and hence the difference between

the deformed and undeformed states is negligible. In this theory strains and displace-

ments are linearly related. But in finite deformation analysis, 1.) displacements are not

infinitesimal and 2.) strains are not infinitesimal. The above mentioned assumptions

are not valid for finite deformation analysis. If the deformation is small, linear strain

tensor and Cauchy stress tensor are appropriate for use. On the other hand, for finite

deformation proper strain and stress tensors have to be employed.

Assume that there is a deformable body in the reference or undeformed config-

uration in 3D space before the loads have been applied and that the same body gets

a deformed configuration after loading (Figure 2.1). Note that a body might undergo

rigid body motion in addition to deformation when loaded. The relation between the

two position vectors, ~X and ~x of a point within this body defined in the undeformed

and deformed configurations, respectively, are given by

~x = ~X + ~u (2.1)

or

xi = Xi + ui (2.2)

where ~u is the displacement vector.

Consider two neighboring points P (X1, X2, X3) and P ′(X1 +dX1, X2 +dX2, X3 +
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dX3) in the undeformed configuration which are transformed into Q(x1, x2, x3) and

Q′(x1 + dx1, x2 + dx2, x3 + dx3) in the deformed state given in Figure 2.1. The vectors

between these points in the reference and deformed configurations are defined as

−−→
PP ′ =

−→
dX (2.3)

and

−−→
QQ′ =

−→
dx . (2.4)

Undeformed state

Deformed state

P

P’

Q

Q’

X1, x1

X2, x2

X3, x3

~u

~x~X

−→

dX

−→

dx

Figure 2.1. Reference and final configurations of a deformable body

The two vectors describe the orientation of an infinitesimal piece of material in

the body in each configuration. Using the chain rule a mapping between these vectors

are obtained:

dxi =
∂xi

∂Xj

dXj . (2.5)
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This mapping called the deformation gradient tensor, F is defined as

Fij =
∂xi

∂Xj

. (2.6)

The second order tensor F linearly maps a vector to a vector.

The deformation gradient tensor, F in Cartesian coordinates is

F =




∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3


 . (2.7)

When equation 2.2 is used in equation 2.6 and the derivative is taken the defor-

mation gradient tensor in terms of displacements is obtained as

Fij =
∂(Xi + ui)

∂Xj

= δij +
∂ui

∂Xj

, (2.8)

where δij is the Kronecker delta.

For a volume element described by
−−→
dX1,

−−→
dX2 and

−−→
dX3 in the undeformed state

and by
−→
dx1,

−→
dx2 and

−→
dx3 in the deformed state, the initial volume of the element, dV0

can be related to its volume in the deformed state, dVf . The scalar triple products of

these vectors give the volumes in the reference and the deformed states:

dV0 =
−−→
dX1 · (−−→dX2 ×−−→dX3) (2.9)

dVf =
−→
dx1 · (−→dx2 ×−→dx3) . (2.10)

Using the deformation gradient tensor, F vectors
−→
dx1,

−→
dx2 and

−→
dx3 can be written in
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the following form:

−→
dx1 = F

−−→
dX1,

−→
dx2 = F

−−→
dX2, (2.11)

−→
dx3 = F

−−→
dX3 .

The relation between the initial and final volumes is obtained via the following deriva-

tion:

dVf = (F
−−→
dX1) ·

[
(F

−−→
dX2)× (F

−−→
dX3)

]

= (F
−−→
dX1) ·

[
F−T (

−−→
dX2 ×−−→dX3) det(F)

]

=
−−→
dX1 FT F−T (

−−→
dX2 ×−−→dX3) det(F)

= det(F)︸ ︷︷ ︸
−−→
dX1 · (−−→dX2 ×−−→dX3)︸ ︷︷ ︸

J dV0

dVf = J dV0 , (2.12)

where J is the Jacobian or the determinant of the deformation gradient tensor.

The relation in 2.12 has two important interpretations. The first one is that the

volume of an element in the deformed state is related to its volume in the undeformed

state linearly by the factor J. Secondly, if the volume of the element needs to be constant

after deformation, i.e. dV0 = dVf then the determinant of the deformation gradient

matrix has to be equal to one.

Similarly, a relation between the initial and final areas of an infinitesimal area

element defined by a parallelogram formed by two infinitesimal vectors
−−→
dX1 and

−−→
dX2

in the reference state and
−→
dx1 and

−→
dx2 in the undeformed state can be achieved. The

initial and final areas are the absolute values of the cross products of the vectors:

dA0 =
∥∥∥−−→dX1 ×−−→dX2

∥∥∥ (2.13)
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dAf =
∥∥∥−→dx1 ×−→dx2

∥∥∥ . (2.14)

Additionally, the vector
−→
dN which is the cross product of the vectors

−−→
dX1 and

−−→
dX2 and

the vector
−→
dn which is the cross product of the vectors

−→
dx1 and

−→
dx2 can be written as

follows:

−→
dN =

−−→
dX1 ×−−→dX2 = dA0

−→
N (2.15)

and

−→
dn =

−→
dx1 ×−→dx2 = dAf

−→n (2.16)

where
−→
N and−→n are the unit vectors in the direction of

−→
dN and

−→
dn, respectively. Making

use of the deformation gradient tensor, the initial and final areas of the infinitesimal

area element can be related to each other,

dAf
−→n =

−→
dx1 ×−→dx2

= (F
−−→
dX1)× (F

−−→
dX2)

= det(F) F−T (
−−→
dX1 ×−−→dX2)︸ ︷︷ ︸

dA0
−→
N

= J F−T dA0
−→
N . (2.17)

2.1. Strain and Deformation Measures for Finite Deformations

Although the deformation gradient tensor, F measures how a body changes after

the loads are applied on it, this tensor cannot be used directly for strain characterization

since it also includes rigid body motions. To investigate the strain or deformation

characterization, a measure without rigid body motion is needed.

Since the deformation gradient tensor F is non-singular, according to the polar
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decomposition theorem, there exist two positive definite symmetric tensors U and V,

and an orthogonal tensor R, uniquely determined by F, such that

F = RU = VR (2.18)

holds [26].

R is called the rotation tensor, and U and V are the right and left stretch

tensors, respectively. The geometrical interpretation of the polar decomposition of a

2D deformation gradient tensor, F is summarized in Figure 2.2. In this figure there

are four sets of base vectors:

1. ~G1&~G2

2. ~g1&~g2

3. ~G′
1& ~G′

2

4. ~g′1&~g′2 .

The first and second sets display the base vectors in the initial and deformed config-

urations, respectively. The third one is the set of the base vectors after the rotation

tensor, R is applied to the initial configuration and the last set is obtained after the

application of the right stretch tensor, U to the initial configuration, such that

F~Gi = RU~Gi = R~g′i = ~gi (2.19)

and

F~Gi = VR~Gi = V ~G′
i = ~gi (2.20)

hold.

From 2.19 it follows that the deformation of an infinitesimal volume element

having the position vector ~X and ~x in the reference and deformed configurations,
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F

U

R

V

R

G2

G1

g′
2

g′
1

g2

g1

G′

2

G′

1

initial

infinitesimal

element

deformed

infinitesimal

element

Figure 2.2. 2D illustration of the polar decompositions

respectively, can be considered as the successive application of:

• a stretch by the tensor U,

• a rigid body rotation by the tensor R,

• a translation by the vector ~v,

where the vector ~v is the displacement vector of the origin. The above first two steps de-

termine the base vectors ~gi of the deformed configuration and the third one determines

the origin of the base vectors ~gi.

In an alternative way, equation 2.20 indicates that the same deformation can be

considered as the result of the successive application of:

• a rigid body rotation by the tensor R,

• a stretch by the tensor V,

• a translation by the vector ~v .
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The above clarified mappings are illustrated in Figure 2.2.

U and V have the same eigenvalues which are real and positive. The eigenvalues

are the principal stretches, namely λi’s. Thus, a deformation can be defined with

a rotation and stretches along the three mutually orthogonal axes in the principal

directions [27]. Stretches in the principal directions which do not include rigid body

motion can be used as deformation measure.

In order to obtain a strain measure, a relation describing the length change of

a material vector from the undeformed configuration to the deformed one has to be

found. A typical strain measure is the Green-Lagrange strain tensor, ε. For a 1D case

the Green-Lagrange strain, ε is defined as the half of the ratio of the difference between

the the initial length (L0) squared and final length (Lf ) squared of a line to the initial

length squared:

ε =
L2

f − L2
0

2L2
0

. (2.21)

Thus, one can obtain the difference L2
f − L2

0 as:

2εL2
0 = L2

f − L2
0. (2.22)

The stretch in 1D is defined as

λ =
Lf

L0

=
L0 + ∆L

L0

= 1 +
∆L

L0

(2.23)

where ∆L is the change in length of the line whereas in 3D the stretches in the principal

directions are defined by

λi =
dxi

dXi

; (no sum) . (2.24)
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Using the equations 2.21 and 2.23 the Green-Lagrange strain in 1D is related to

stretch as

ε =
1

2
(λ2 − 1). (2.25)

The extension to the 3D case is the replacement of L2
0 and L2

f in equation 2.22

with dS2
0 and dS2

f , respectively,

2εdS2
0 = dS2

f − dS2
0 (2.26)

where dS2
0 and dS2

f are the lengths of the vectors
−→
dX and

−→
dx squared, respectively,

given by

dS2
0 = dXidXi

= dXiδijdXj (2.27)

and

dS2
f = dxidxi = dxiδijdxj

= dXiFkiFkjdXj . (2.28)

If equations 2.27 and 2.28 are used in 2.26 the following relation is obtained:

2dXiεijdXj = dXiFkiFkjdXj − dXiδijdXj. (2.29)

From equation 2.29 the definition of the Green-Lagrange strain tensor, ε in terms of
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the deformation gradient tensor is obtained:

εij =
1

2
(FkiFkj − δij) (2.30)

or in matrix form

ε =
1

2
(F T F − I) . (2.31)

The relationship between the Green-Lagrange strain tensor, ε and the displace-

ment vector, ~u is obtained using the equation 2.8 in equation 2.30:

εij =
1

2

[(
δki +

∂uk

∂Xi

)(
δkj +

∂uk

∂Xj

)
− δij

]
. (2.32)

Expanding the terms in parenthesis the following relation is achieved:

εij =
1

2

[
δij +

∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xj

∂uk

∂Xi

− δij

]

(2.33)

=
1

2

[
∂ui

∂Xj

+
∂uj

∂Xi

+
∂uk

∂Xj

∂uk

∂Xi

]
. (2.34)

It should be noted that the gradients in the Green-Lagrange strain tensor are

defined with respect to the initial configuration. This means that all strain measures

are calculated with respect to the undeformed state.

Another strain type, the Almansi-Eulerian strain tensor, e is calculated with

respect to the deformed state. For a 1D case the Almansi-Eulerian strain is defined

as the half of the ratio of the difference between of the initial length (L0) squared and

final length (Lf ) squared of a line to the final length squared:

e =
L2

f − L2
0

2L2
f

. (2.35)
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The relation for 3D is

2 e dS2
f = dS2

f − dS2
0 . (2.36)

After successive derivation like the one done above for the Green-Lagrangian strain

tensor, the Almansi-Eulerian strain tensor is obtained in terms of the deformation

gradient tensor as

eij =
1

2
(δij − F−1

ki F−1
kj ) (2.37)

or given in matrix form

e =
1

2
(I − F−T F−1) (2.38)

and in terms of displacements as

eij =
1

2

[
∂ui

∂xj

+
∂uj

∂xi

− ∂uk

∂xj

∂uk

∂xi

]
. (2.39)

Note that the gradients in the Green-Lagrange strain tensor are defined with respect

to the deformed configuration.

The Green-Lagrange and Almansi-Eulerian strain tensors contain quadratic terms

meaning that large deformation analysis are nonlinear. If the small deformation as-

sumption is made these quadratic terms are omitted. Therefore, for an infinitesimal

displacement case the distinction between the Green-Lagrange and Almansi-Eulerian

strain tensors disappears and a linear strain measure, the small deformation strain

tensor, ε is achieved,

εij =
1

2

[
∂ui

∂Xj

+
∂uj

∂Xi

]
. (2.40)
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The right Cauchy deformation tensor, C defined by

C = F T F (2.41)

or in indicial form by

Cij = FkiFkj , (2.42)

is a frequently used quantity in the finite deformation analysis. The explicit matrix

form of C is

C =




( ∂xk

∂X1
)2 ∂xk

∂X1

∂xk

∂X2

∂xk

∂X1

∂xk

∂X3

∂xk

∂X2

∂xk

∂X1
( ∂xk

∂X2
)2 ∂xk

∂X2

∂xk

∂X3

∂xk

∂X3

∂xk

∂X1

∂xk

∂X3

∂xk

∂X2
( ∂xk

∂X3
)2


 . (2.43)

From equation 2.30 it follows that the Green-Lagrange strain tensor is related to

the right Cauchy deformation tensor by

εij =
1

2
(Cij − δij) (2.44)

or in matrix form by

ε =
1

2
(C − I) . (2.45)

If the right Cauchy deformation tensor is transformed such that directions 1,2 and

3 are the principal directions then all the gradients other than the ones with the same

subscript
(

∂xi

∂Xi

)
existing in the tensor equal to zero. The physical meaning of this is

that the i’th-component of the position vector (xi) of an infinitesimal volume element

in the deformed state depends only to the i’th-component of the position vector (Xi)
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in the undeformed state,

xi = f(Xi). (2.46)

Thus, the right Cauchy deformation tensor in the principal direction reduces to

C =




( dx1

dX1
)2 0 0

0 ( dx2

dX2
)2 0

0 0 ( dx1

dX1
)2


 . (2.47)

From equation 2.24 and 2.47 it follows that the right Cauchy deformation tensor,

C in the principal directions can be given as

C =




λ2
1 0 0

0 λ2
2 0

0 0 λ2
3


 . (2.48)

Another explanation to this is that the three real eigenvalues of the right Cauchy

deformation tensor are the squares of the principal stretches, namely λ′is. Thus, using

equation 2.44 the Green-Lagrange strains in the principal directions are

ε1 =
1

2
(λ2

1 − 1),

ε2 =
1

2
(λ2

2 − 1), (2.49)

ε3 =
1

2
(λ2

3 − 1) .

Another frequently used quantity in the finite deformation mechanics is the left

Cauchy deformation tensor (or Finger deformation tensor), B defined by

B = FF T (2.50)
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or given by indicial notation as

Bij = FikFjk . (2.51)

The explicit matrix form of B is given by

B =




( ∂x1

∂Xk
)2 ∂x1

∂Xk

∂x2

∂Xk

∂x1

∂Xk

∂x3

∂Xk

∂x2

∂Xk

∂x1

∂Xk
( ∂x2

∂Xk
)2 ∂x2

∂Xk

∂x3

∂Xk

∂x3

∂Xk

∂x1

∂Xk

∂x3

∂Xk

∂x2

∂Xk
( ∂x3

∂Xk
)2


 . (2.52)

The left Cauchy deformation tensor in principal directions reduces to

B =




λ2
1 0 0

0 λ2
2 0

0 0 λ2
3


 (2.53)

which is equal to the right Cauchy deformation tensor in principal directions.

2.2. Stress Measures for Finite Deformations

The well-known stress measure in engineering is the Cauchy (true) stress tensor,

σ which is basically defined as the force per unit deformed area. The strain measure

that is appropriate to use with the Cauchy stress tensor is the small deformation strain

tensor, ε. This strain tensor is used in small deformations as its name suggests and

that the deformed and undeformed areas in small deformations are approximately the

same. The problem by using the Cauchy stress tensor in finite deformation cases is

that the deformed area is generally not known. Therefore, a stress measure defined

with respect to reference configuration is needed.

The stress tensor in the reference configuration area has to give the same force as
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the Cauchy stress tensor which is defined in the deformed configuration. The traction

applied on a surface is the product of the stress, the normal vector to the surface and

the area of the surface. Thus, the total force
−→
dP can be obtained via

−→
dP = σ−→n dAf (2.54)

or

−→
dP = T

−→
N dA0 , (2.55)

where σ is the Cauchy stress tensor, T is the new stress tensor with respect to the

reference area,
−→
N and −→n are the unit normal vectors to the initial and final surfaces

with the areas dA0 and dAf , respectively. It follows from equations 2.54 and 2.55 that

σ−→n dAf = T
−→
N dA0 (2.56)

holds. Recalling the mapping between the reference and deformed state surface areas

given in equation 2.17 the left hand side of the above equation becomes

σ−→n dAf = σ J F−T −→N dA0 . (2.57)

Equations 2.56 and 2.57 give a relation between the two stress tensors:

(T − σ J F−T )
−→
N dA0 = 0 . (2.58)

This new stress tensor, T defined with respect to the reference configuration is called

the 1st Piola-Kirchhoff stress tensor and it follows from equation 2.58 that this tensor

is given in terms of the Cauchy stress tensor as

T = J σ F−T . (2.59)
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or

Tij = J σik F−1
jk (2.60)

The Cauchy stress tensor in terms of the 1st Piola-Kirchhoff stress tensor is

σ = J−1 TF T (2.61)

or in indicial notation

σij = J−1 Tik Fjk (2.62)

There are two difficulties in using the 1st Piola-Kirchhoff stress tensor. First, it is

not energetically appropriate to be used with the Green-Lagrange strain tensor which is

used as the strain measure in finite deformation analysis. The product of the 1st Piola-

Kirchhoff stress tensor and the Green-Lagrange strain tensor is not the same strain

energy density result as the Cauchy stress tensor multiplied by the small deformation

strain tensor. Secondly, 1st Piola-Kirchhoff stress tensor is not symmetric which causes

difficulties by numerical analysis like finite element method. Another stress tensor,

namely the 2nd Piola-Kirchhoff stress tensor, S overcome these two handicaps.

The total force
−→
dP can be mapped back into the reference configuration using the

inverse of the deformation gradient tensor given by

−→
dP ′ = F−1−→dP (2.63)

where
−→
dP ′ is the back mapped form of the force in the undeformed state. This force

can be obtained by using the 2nd Piola-Kirchhoff stress tensor:

−→
dP ′ = S

−→
NdA0 . (2.64)



28

Equating the relation given in 2.63 and 2.64 and using the equation 2.54 the following

is obtained:

S
−→
NdA0 = F−1σ−→n dAf . (2.65)

After substituting the expression in the equation 2.17 for the deformed surface area

the following equation is obtained:

(S − JF−1σF−T )
−→
NdA0 = 0. (2.66)

which results in the final form of the relationship between the 2nd Piola-Kirchhoff and

the Cauchy stress tensors as

S = J F−1 σ F−T (2.67)

or given with indicial notation as

Sij = J F−1
ik σkm F−1

jm . (2.68)

The inverse of this relationship gives the Cauchy stress tensor in terms of the 2nd

Piola-Kirchhoff stress tensor:

σ = J−1 F S F T (2.69)

or

σkm = J−1 Fki Sij Fmj . (2.70)

From equations 2.61 and 2.69 the relation between the 1st and 2nd Piola-Kirchhoff



29

stress tensors is achieved as

S = F−1 T . (2.71)

The physical meaning of the 2nd Piola-Kirchhoff stress is hard to interpret (Figure

2.3). Usually, this tensor is used to solve finite deformation problems and then the

Cauchy stress is computed from it.

Undeformed configuration

Deformed configuration

Force

Force

Force

Cauchy stress:

Force in deformed configuration

on deformed area

1st Piola-Kirchhoff stress:

Force in deformed configuration

on undeformed area

2nd Piola-Kirchhoff stress:

Force mapped to undeformed

configuration on undeformed area

Figure 2.3. Physical interpretations and comparison of different stress definitions
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2.3. Constitutive Relations for Nonlinear Elastic Materials under Finite

Deformations: Hyperelasticity

A material is called Cauchy-elastic or just elastic if the stress field at time t

depends only on the state of deformation and not on the deformation history. Hence,

the stress field of an elastic material is independent of the deformation path and time.

An elastic material for which a strain energy density function exists is called hy-

perelastic or Green elastic material. A hyperelastic material postulates the existence of

a Helmholtz free energy function, Ψ defined per unit reference volume. The Helmholtz

free energy is a thermodynamic potential which measures the useful work obtainable

from a closed thermodynamic system at a constant temperature and volume. For the

case in which Ψ = Ψ(F ) is solely a function of the deformation gradient tensor, F

or some strain tensor, the Helmholtz free energy function is referred to as the strain

energy density function.

Constitutive equation of an isothermal elastic body relates the Cauchy stress ten-

sor σ = σ(~x, t) at each point ~x( ~X, t) with the deformation gradient tensor F=F( ~X, t).

The constitutive equation may be expressed in the general form

σ(~x, t) = g(F( ~X, t), ~X) (2.72)

where g is referred as the response function associated with the Cauchy stress tensor,

σ or

T(~x, t) = h(F( ~X, t), ~X) (2.73)

where h is referred as the response function associated with the 1st Piola-Kirchhoff

stress tensor, T.

Hyperelastic materials are a subclass of elastic materials whose response functions
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g and h have the physical expressions of the form

T = h(F) =
∂Ψ(F)

∂ F
(2.74)

and by use of relation 2.61,

σ = g(F) = J−1∂Ψ(F)

∂ F
FT . (2.75)

Since the Cauchy stress tensor is symmetric (σ = σT ) the response function g

also equals to the transpose of the expression given in the equation 2.75,

σ = g(F) = J−1F

(
∂Ψ(F)

∂ F

)T

. (2.76)

Consider a deformable body whose deformation is given by F. After the body

undergoes this deformation a rigid body motion is applied to it. The strain energy

density functions before and after this rigid body motion must be equal. A proper

choice for this rigid body motion might be a rotation given by the tensor RT . Hence,

the strain energy density function should obey

Ψ(F ) = Ψ(RT F )

= Ψ(RT RU )

= Ψ(U ) . (2.77)

Equation 2.77 shows that Ψ is independent of the rotational part of F = RU and

depends only on the stretching part of F, namely U.

Additionally, since the right Cauchy tensor, C and the Green-Lagrange strain

tensor, ε are functions of the deformation gradient tensor, F, the strain energy density

function Ψ may also be written as the function of the right Cauchy tensor and the
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Green-Lagrange strain tensor,

Ψ(F ) = Ψ(C) = Ψ(ε) . (2.78)

The time derivative of the strain energy function Ψ(F) can be obtained by means of

the chain rule in the form of double contraction,

∂Ψ(F )

∂t
=

∂Ψ(F )

∂F
:
∂F

∂t
. (2.79)

The above relation may be expressed using the property of double contraction as

∂Ψ(F )

∂t
= tr

[(
∂Ψ(F )

∂F

)T
∂F

∂t

]
. (2.80)

Similarly, the time derivative of the strain energy function Ψ(C) can be achieved,

∂Ψ(C)

∂t
=

∂Ψ(C)

∂C
:
∂C

∂t

= tr

[
∂Ψ(C)

∂C

(
∂C

∂t

)T
]

= tr

[
∂Ψ(C)

∂C

∂C

∂t

]
. (2.81)

Using the definition of the right Cauchy tensor C = F T F in 2.81 the following relation

is obtained:

∂Ψ(C)

∂t
= tr

[(
∂Ψ(C)

∂C

)
∂(F T F )

∂t

]

= tr

[(
∂Ψ(C)

∂C

)(
∂F T

∂t
F + F T ∂F

∂t

)]

= tr

[(
∂Ψ(C)

∂C

)(
2F T ∂F

∂t

)]
. (2.82)
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From equations 2.80 and 2.83 the following relation is deduced:

(
∂Ψ(F )

∂F

)T

= 2
∂Ψ(C)

∂C
F T . (2.83)

Substituting back the equation 2.83 into 2.76 an important reduced form of the

constitutive equation for hyperelastic materials is obtained,

σ = 2J−1F
∂Ψ(C)

∂C
F T . (2.84)

Alternative expressions may be obtained for the 1st and 2nd Piola-Kirchhoff stress

tensors by using equations 2.59 and 2.67,

T = 2F
∂Ψ(C)

∂C
(2.85)

S = 2
∂Ψ(C)

∂C
. (2.86)

Using the chain rule and the expression 2.45 in the equation 2.86 the 2nd Piola-

Kirchhoff stress tensor is obtained as the derivative of the strain energy density function

with respect to the Green-Lagrange strain tensor,

S = 2
∂Ψ

∂ε

∂ε

∂C
=

∂Ψ(ε)

∂ε
. (2.87)

Since the scalar valued strain energy density function is invariant under rotation

(equation 2.77) it may also be expressed in terms of the principal invariants of its
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argument. For instance, the function may be given in the form of

Ψ = Ψ(C) = Ψ [I1(C), I2(C)I3(C)] (2.88)

where Ii’s are the invariants of C with the definitions of

I1(C) = trC = λ2
1 + λ2

2 + λ2
3 (2.89)

I2(C) =
1

2

[
(trC)2 − tr(C2)

]

= trC−1detC

= λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 (2.90)

I3(C) = detC = λ2
1λ

2
2λ

2
3 . (2.91)

Third invariant of C is the determinant of the tensor. If a tensor is a product

of two other tensors then its determinant equals to the product of the determinants of

these two tensors. Application of this rule for C results in

detC = detF detF T = J2 , (2.92)

where J is the determinant of the deformation gradient tensor, F. Equating the relations

2.91 and 2.92 and taking the square root gives

J = λ1λ2λ3 . (2.93)
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From equations 2.48 and 2.53 it can be observed that the invariants of the left

Cauchy deformation tensor are the same with those of the right Cauchy deformation

tensor such that

I1(B) = I1(C)

I2(B) = I2(C) (2.94)

I3(B) = I3(C)

hold.

Constitutive equations for hyperelastic materials in terms of invariants are ob-

tained with the equation 2.86 by means of the chain rule differentiation,

S = 2
∂Ψ(C)

∂C
= 2

(
∂Ψ

∂I1

∂I1

∂C
+

∂Ψ

∂I2

∂I2

∂C
+

∂Ψ

∂I3

∂I3

∂C

)
. (2.95)

The derivatives of the invariants with respect to C are given by

∂I1

∂C
= I

∂I2

∂C
= I1I −C (2.96)

∂I3

∂C
= I3C

−1 [28].

Using the relations in 2.96 in the equation 2.95 an expression for the 2nd Piola-Kirchhoff

stress tensor in terms of the three invariants is obtained,

S = 2
∂Ψ(C)

∂C
= 2

[(
∂Ψ

∂I1

+ I1
∂Ψ

∂I2

)
I − ∂Ψ

∂I2

C + I3
∂Ψ

∂I3

C−1

]
. (2.97)

The relation for the Cauchy stress tensor can be deduced from the equation 2.97
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using the relation 2.69 and the definition of the right Cauchy tensor C = F T F ,

σ = 2J−1

[
I3

∂Ψ

∂I3

I +

(
∂Ψ

∂I1

+ I1
∂Ψ

∂I2

)
B − ∂Ψ

∂I2

B2

]
. (2.98)

Cayley-Hamilton equation states that every (second order) tensor A satisfies its

own characteristic equation,

A3 − I1A
2 + I2A− I3I = 0 (2.99)

where Ii’s are the invariants of the tensor A. If the left Cauchy deformation tensor, B

is used in the Cayley-Hamilton equation it becomes

B3 − I1B
2 + I2B − I3I = 0 . (2.100)

When the equation is multiplied with B−1 an expression for B2 is achieved,

B2 = I1B − I2I + I3B
−1 . (2.101)

An alternative form to the relation 2.98 is obtained by using 2.101 in it,

σ = 2J−1

[(
I2

∂Ψ

∂I2

+ I3
∂Ψ

∂I3

)
I +

∂Ψ

∂I1

B − I3
∂Ψ

∂I2

B−1

]
. (2.102)

The strain energy density function may also be regarded as a function of the

principal stretches λi (i = 1, 2, 3). Then, the principal Cauchy stresses are given by

σi = J−1λi
∂Ψ

∂λi

; i = 1, 2, 3 [28]. (2.103)

Additionally, the principal 1st and 2nd Piola-Kirchhoff stresses may be expressed
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as

Ti =
∂Ψ

∂λi

; i = 1, 2, 3 (2.104)

and

Si =
1

λi

∂Ψ

∂λi

; i = 1, 2, 3 , (2.105)

respectively, which are related to the principal Cauchy stresses as

Ti = Jλ−1
i σi; i = 1, 2, 3 (2.106)

and

Si = Jλ−2
i σi ; i = 1, 2, 3 . (2.107)

Some materials like numerous polymers may undergo finite deformations with-

out an observable volume changes. These material may be regarded as incompressible

which is a common assumption in continuum and computational mechanics. The in-

compressibility constraint is characterized by J = 1 (see equation 2.12). Materials

with internal constraints such as the incompressibility are referred to as constrained

materials.

The strain energy function for an incompressible material may be postulated as

Ψ = Ψ(F )− p(J − 1) , (2.108)

where Ψ is defined for J = detF = 1. The scalar, p in the above equation serves as

an indeterminate Lagrange multiplier and can be identified as a hydrostatic pressure.

This scalar represents a workless reaction to the kinematic constraint and may only be

determined from the equilibrium equations and the boundary conditions.
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A constitutive equation for the 1st Piola-Kirchhoff stress tensor, T is arrived by

differentiating equation 2.108 with respect to the deformation gradient tensor, F as

given in equation 2.74 and using the identity
(
∂J/∂F = JF−T

)
,

T = −pF−T +
∂Ψ(F )

∂F
. (2.109)

Multiplying equation 2.109 by F−1 from the left-hand side, the 2nd Piola-Kirchhoff

stress tensor, S as given in 2.71 takes the form

S = −pF−1F−T + F−1∂Ψ(F )

∂F
(2.110)

and after using equation 2.83 the relation becomes

S = −pC−1 + 2
∂Ψ(C)

∂C
. (2.111)

If equation 2.109 is multiplied by F T from the right-hand side the symmetric Cauchy

stress tensor, σ is obtained:

σ = −pI +
∂Ψ(F )

∂F
F T = −pI + F

(
∂Ψ(F )

∂F

)T

. (2.112)

If the strain energy density function, Ψ is expressed as a function of the principal

stretches then the relations of the stress tensors become

σi = −p + λi
∂Ψ

∂λi

; i = 1, 2, 3 ; (no sum) , (2.113)

Ti = −pλ−1
i +

∂Ψ

∂λi

; i = 1, 2, 3 ; (no sum) , (2.114)

Si = −pλ−2
i + λ−1

i

∂Ψ

∂λi

; i = 1, 2, 3 ; (no sum) . (2.115)
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3. ELASTIC MATERIAL MODELS FOR RBC

MEMBRANE

3.1. 2D, Incompressible, Isotropic, Hyperelastic Material Model of Evans

Evans modeled the membrane as a 2D, incompressible, isotropic material [16] .

As indicated in equation 2.88 the strain energy density function can be written in terms

of the invariants of right Cauchy deformation tensor, C. The invariants are given for

the 3D right Cauchy deformation tensor in equations 2.89, 2.90 and 2.91. For the 2D

tensor the invariants are

I∗1 (C) = trC = λ2
1 + λ2

2 (3.1)

I∗2 (C) = detC = λ2
1λ

2
2 . (3.2)

The incompressibility condition in the plane indicates that the area remains con-

stant. Considering an infinitesimal square area element in 2D with the edges in the

initial configuration, dX1 and dX2 becoming a rectangle with the edges dx1 and dx2,

the ratio of the final area to the initial area, dAf/dA0 can be given as

dAf

dA0

=
dx1dx2

dX1dX2

= λ1λ2 . (3.3)

Here the subscripts 1 and 2 stand for the principal directions. The principal directions

1 and 2 lie in the plane and the principal direction 3, which will be used in the following

sections, is directed perpendicular to this plane. Thus, if the initial and final areas are

equal (incompressibility constraint) then λ1λ2 = 1 holds.
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Same result can be obtained substituting the appropriate unit normal vector and

deformation gradient tensor into the relation given in 2.17:

dAf





0

0

1





= dA0 (λ1λ2)




1/λ1 0 0

0 1/λ2 0

0 0 1








0

0

1





. (3.4)

Note that the unit vectors in the normal direction to the area element are the same and

in the third principal direction and the stretch in the third principal direction equals

to one. The third row gives the necessary relation between the initial and final areas:

dAf = dA0 λ1λ2 (3.5)

which is the same with the expression 3.3.

Evans assumed that RBC membrane is an incompressible material such that the

second invariant, I∗2 is equal to one. Then the strain energy density function, ΨE is a

function of the first invariant I∗1 only,

ΨE = ΨE(I∗1 ) . (3.6)

Expanding the strain energy density function in a power series in I∗1 gives

ΨE =
∞∑

n=1

En(I∗1 − 2)n (3.7)

where En’s are the material constants.

Evans [16] claimed that the first term of the power series expansion suffices to

represent the strain energy density function of RBC membrane:

ΨE = E1(λ
2
1 + λ2

2 − 2) . (3.8)
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In his work Evans also mentioned briefly about the strain energy density function

proposed by Skalak et al. for RBC membrane [18]. One of the significant differ-

ences between the two strain energy density functions is that Skalak et al. assumed a

quadratic function. Evans discussed that linear form of strain energy density function

can be successively used for RBC membrane even for very large extension ratios.

The Cauchy stress-stretch relation of an incompressible, isotropic, hyperelastic

material in 3D is given in equation 2.113. Remember that p in this equation is the

Lagrange multiplier, which can be identified as the hydrostatic pressure. This term is

added to the equation in order to include the effect of the incompressibility constraint.

Although there is no deformation due to the hydrostatic pressure acting on the faces

of an incompressible unit cubic material element there still exist normal stresses on the

faces created by the hydrostatic pressure. Since any value of the hydrostatic pressure

cause the same deformation state (namely no deformation) the normal stress values

due to this type of loading cannot be obtained from the deformation state.

For a 2D analysis , equation 2.113 becomes,

Σi = −p + λi
∂Ψ

∂λi

; i = 1, 2 ; (no sum) ; (3.9)

where Σi is the Cauchy stress resultant per unit length in the ith-principal direction.

Thus, the constitutive law can be derived from 3.8 using 3.9,

Σi = −p + 2E1λ
2
i ; i = 1, 2 ; (no sum) . (3.10)

Using equation 2.49 the Cauchy stress resultant-Green-Lagrange strain relation

in the principal directions are given as

Σi = −pm + 4E1εi i = 1, 2 , (3.11)
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with

pm = p + 2E1. (3.12)

In equation 3.11 the only material constant is the variable E1 which is related

to the shear modulus of the material. The in-plane shear modulus, µ of this material

model can be obtained using the relation

µ =
1

2

∂Σs

∂γs

(3.13)

where Σs and γs are the in-plane shear stress resultant and strain, respectively given

as

Σs =
1

2
(Σ1 − Σ2) (3.14)

γs =
1

2
(ε1 − ε2) =

1

2
(λ2

1 − λ2
2). (3.15)

Using 3.11, 3.13, 3.14 and 3.15 the relation between µ and the coefficient E1 can

be obtained,

µ = 2E1. (3.16)

Evans defined the in-plane shear modulus as µE = 4E1 in his work indicating

µE = 2µ.
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The final form of the constitutive relation can be given as

Σi = −pm + µE(λ2
i − 1) ; i = 1, 2 ; (no sum) . (3.17)

There is no constant related to the bulk modulus since the material is assumed

to be incompressible meaning the bulk modulus is infinite. The term p is included in

3.10 to add the effect of this infinity-bulk modulus.

Evans uses this material model to analyze the cell swelling [16], fluid shear flow

and micropipette aspiration experiments [17] where analytical models are employed.

3.2. 2D, Compressible, Isotropic, Hyperelastic Material Model of Skalak

et al.

Skalak et al. [18] proposed an isotropic, compressible, hyperelastic 2D material

model for RBC membrane benefiting from a strain energy density function, ΨS, given

as

ΨS =
B

4
(
I2
1

2
+ I1 − I2) +

C

8
I2
2 (3.18)

where

I1 = λ2
1 + λ2

2 − 2 (3.19)

I2 = λ2
1λ

2
2 − 1 (3.20)

and B and C are the material constants.

The Cauchy stress-stretch relation of compressible, isotropic, hyperelastic mate-
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rials in 3D was given in equation 2.103. The 2D analogous of the formulation is

Σi = J−1
A λi

∂Ψ

∂λi

i = 1, 2 (3.21)

where JA = λ1λ2.

Hence, the 2D Cauchy stress resultant-stretch relations can be given as

Σ1 =
λ1

λ2

[
B

2
(λ2

1 − 1) +
C

2
λ2

2I2] (3.22)

Σ2 =
λ2

λ1

[
B

2
(λ2

2 − 1) +
C

2
λ2

1I2] (3.23)

Skalak et al. obtained the values of the two constants, B and C from the in-plane

shear and bulk modulus values available in the literature. By assigning a larger value

to the constant C compared to B a nearly incompressible material was obtained.

3.3. 2D, Compressible, Isotropic, Hyperelastic Material Model of Evans et

al.

As stated before, from the experiments conducted with RBC it is observed that

the deformation behavior of RBC membrane under constant surface area differs from

the dilatational one. Forces which must be applied in order to achieve a deformation

causing a surface area increase are comparatively much greater than the ones to cause

a deformation with constant surface area. Therefore, an elastic constitutive equation

separating the effects of changes in area from extensional deformation at constant area

is needed [29]. This type of material model is a 2D analog of rubber. Rubber greatly

resists volume changes as indicated by its large volumetric compressibility (bulk) mod-

ulus, but is capable of very large extensions at nearly constant volume due to its

comparatively low shear modulus. Similarly, RBC membrane greatly resists surface
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area changes whereas very large extensions at nearly constant surface area is possible.

In the light of the above discussion the Cauchy stress resultant, Σ is the sum of

two stress resultant components: 1) a dilatational stress resultant, Σα and 2) stress

resultant due to the extensional deformation at constant surface area, Σβ:

Σ = Σα + Σβ . (3.24)

Considered in terms of the stress resultant components Σα and Σβ, the second

term in equation 3.10 is the stress resultant due to the extensional deformation at

constant surface area. This expression is used for the stress resultants in the principal

directions due to the extensional deformation at constant surface area in the present

material model such that

Σβ
i = µλ2

i ; i = 1, 2 ; (no sum) (3.25)

holds.

Evans and Skalak proposed that Σα can be approximated with a Taylor series

expansion in the fractional change in area, α by

Σα = Σα
0 + Kα + O(α2) + ... , (3.26)

where Σα
0 is the dilatational stress resultant in the initial state, K is the in-plane

bulk modulus and the function O(x) stands for the higher order terms in the sum [29].

α is the fractional change in area, (dAf − dA0)/dA0 where dAf and dA0 are the

final and initial areas, respectively. Using equation 3.3 the fractional change in area
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can be given as

α =
dAf − dA0

dA0

= λ1λ2 − 1 . (3.27)

Assuming that the initial equilibrium state of the membrane is stress free (Σα
0 = 0)

and that the fractional area change α is small such that the higher order terms in

equation 3.26 can be neglected, the constitutive relations of the present material model

in the principal directions are

Σ1 = Kα + µλ2
1 (3.28)

and

Σ2 = Kα + µλ2
2 . (3.29)

The assumption that the fractional area change α is small should be checked after the

analysis to prove the validity of the constitutive relations 3.28 and 3.29.

This constitutive relation is similar to the one given in equation 3.10. The differ-

ence between the two models is that the present model does not assume the material

as incompressible but nearly incompressible. The Lagrange multiplier, p in equation

3.10 is replaced by a term including the in-plane bulk modulus, K to add the effect of

area expansion into the constitutive relation. The choice of a significantly larger value

for in-plane bulk modulus, K compared to the in-plane shear modulus, µ provides that

the area of the membrane remains almost constant if no large isotropic stress resultants

exist. So, a nearly incompressible material model is obtained.

Using 3.27 in 3.28 and 3.29, the constitutive relations in the principal directions
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become

Σ1 = K(λ1λ2 − 1) + µλ2
1 (3.30)

and

Σ2 = K(λ1λ2 − 1) + µλ2
2 . (3.31)

The above constitutive relations are used by Evans et al. to investigate the value

of the in-plane bulk modulus, K of RBC membrane by constructing an analytical model

for micropipette aspiration experiment of preswollen RBC’s [30].

3.4. 3D, Incompressible, Isotropic, Hyperelastic Material Model of

Neo-Hookean Strain Energy Density Function

Recently, Dao et al. [5] used the optical tweezer method to deform RBC and em-

ployed the isotropic, incompressible neo-Hookean material model in 3D for cell mem-

brane,

ΨNH = G(λ2
1 + λ2

2 + λ2
3 − 3) (3.32)

where G is the elastic material constant.

The incompressibility constraint in 3D means that the material volume remains

constant throughout the deformation process and the Jacobian, J of the deformation

gradient tensor equals to unity (see equation 2.12).

Although Dao et al. used this material model in the FE analysis of optical tweezer

deformation it does not represent the material characteristics of RBC membrane prop-

erly. As mentioned before RBC membrane conserves its surface area. If an in-plane

deformation to a sheet of neo-Hookean material with the same thickness of RBC mem-
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brane is applied then the surface area increases where the thickness decreases such that

its volume is conserved. Hence, large in-plane deformations cause large increases in

surface area if 3D, incompressible, isotropic, hyperelastic material models are used.

3.5. Comparison of 2D and 3D Isotropic Hyperelastic Material Models

As stated in the previous sections, 2D and 3D isotropic hyperelastic material

models are used to represent the material behavior of RBC membrane. Previous studies

have shown that the membrane is highly resistant to an isotropic (biaxial) surface

stretch but would readily stretch in one direction [4, 13, 14]. This means that the

membrane would resist to surface area increase which is the case by isotropic stretching.

On the other hand, it would deform easier by uniaxial stretching where the force needed

for this type of loading would be much less than the one needed by isotropic stretching

and the surface area is almost constant.

To make a comparison between the 2D and 3D, isotropic, hyperelastic mate-

rial models 2D, nearly incompressible, isotropic, hyperelastic material model given

in section 3.3 and 3D, incompressible, isotropic, hyperelastic material model of neo-

Hookean strain energy density function (see section 3.4) are chosen as representative

examples. The material constants of the 2D material model are K = 500 mN/m and

µ = 0.0035 mN/m which are in the range of values given in literature. The single

material constant, G of neo-Hookean type material is chosen as 5 kPa which is also

comparable with the estimated values of previous studies [5, 25].

The deformation behavior of the 2D hyperelastic material model by isotropic

and uniaxial stretching are given in figures 3.1 and 3.2, whereas the ones of the neo-

Hookean material are given in 3.3 and 3.4. Note that the first vertical axes in figures

3.1 and 3.2 stand for the first principal stress resultant, Σ1 where the ones in figures

3.3 and 3.4 stand for the first principal stress, σ1. In these figures not the stress and

the stress resultant values but the orders of them are the important point. For the 3D

hyperelastic material, the stresses in isotropic and uniaxial tension are in the same order

which is not the case for the RBC membrane but are six orders of magnitude different
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for the 2D hyperelastic material. Moreover, another striking difference can be realized

in fractional area changes. The isotropic tension causes surface area change for both

material models which is expected. But this is not the case for uniaxial tension where

area remains almost constant for 2D hyperelastic material. The 3D, incompressible,

isotropic, hyperelastic material model results in an area increase by uniaxial stretching

since the thickness of the material decreases and the volume is preserved. Thus, it can

be concluded that the 3D, incompressible, isotropic, hyperelastic materials are not a

good choice to represent the RBC membrane, especially in large deformations.
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Figure 3.1. Stress resultant in the first principal direction, Σ1 and fractional area

change, α by isotropic (biaxial) tension (Σ1 = Σ2) for 2D, nearly incompressible,

isotropic, hyperelastic material described in section 3.3
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Figure 3.2. Stress resultant in the first principal direction, Σ1 and fractional area

change, α by uniaxial tension (Σ2 = 0) for 2D, nearly incompressible, isotropic,

hyperelastic material described in section 3.3
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Figure 3.3. Stress in the first principal direction, σ1 and fractional area change, α by

isotropic (biaxial) tension (σ1 = σ2) for 3D, incompressible, isotropic, neo-Hookean

hyperelastic material described in section 3.4
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Figure 3.4. Stress in the first principal direction, σ1 and fractional area change, α by

uniaxial tension (σ2 = 0) for 3D, incompressible, isotropic, neo-Hookean hyperelastic

material described in section 3.4
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4. MODELS FOR THE DEFORMATION OF FLACCID

RBC BY MICROPIPETTE ASPIRATION

4.1. Analytical Models

4.1.1. Infinite Plane Membrane Model of Evans

Evans studied micropipette aspiration of flaccid RBC where the suction of an

infinite plane into a cylindrical micropipette was used as the model [17] (see graph

1.7). This model is valid for small pipettes and for thin discocytes aspirated in the

central region which is assumed to be relatively flat compared to the peripheral portion

of the cell. Additionally, the model is just suitable for the experiments where the

portion of the cell outside the pipette remains flat throughout the experiment and the

sucked portion leans tightly to the pipette’s wall. So, the model is valid for cells with

nonspherical outside portion and if no buckling occurs inside the pipette. Another

assumption is that there exists no frictional force between the pipette wall and the

aspirated cell membrane.

Evans benefited from the membrane theory to analyze the experiment. Membrane

theory is one of the two distinct theories used in the analysis of shell-like structures.

In this theory the structure is considered as incapable of conveying moments whose

effects are included in the other theory, namely the bending or general theory [31].

Additionally, out-of-plane stresses are negligible in the case of shells and membranes

and are not included in the equilibrium equations. Therefore, the analysis reduces to

a plane stress case.

The geometry of pipette, shapes RBC undergo in the experiment and the loading

are axisymetric. Therefore, Evans used the mechanical equilibrium equations of the

membrane theory for axisymetric membrane surfaces which relates the in-plane stress
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resultants, Σij, to the external forces exerted on the membrane [29],

∂Σφφ

∂φ
+

∂(Σφmr)

∂s
+ Σφm

∂r

∂s
+ σφr = 0 (4.1)

∂(Σmmr)

∂s
+

∂Σφm

∂φ
− Σφφ

∂r

∂s
+ σmr = 0 (4.2)

Σmm

Rm

+
Σφφ

Rφ

= ∆P (4.3)

where ∆P is the pressure difference across the membrane (inside minus outside pres-

sure) and σφ and σm are the shear stresses applied on surface of membrane. The

subscripts m and φ denote the meridional and the azimuthal ones, respectively and

due to the axisymetric nature of the problem, are the principal directions. r is the

radial coordinate (see figure 1.7) whereas φ is the azimuthal coordinate. s is the curvi-

linear coordinate along the meridian. Rm and Rφ are the radii of the membrane surface

in the meridional and azimuthal directions.

For axisymetric loading of the membrane, the shear stress, σφ and shear force

resultant, Σφm are zero. So, the equilibrium equations reduce to

d(Σmmr)

ds
− Σφφ

dr

ds
+ σmr = 0 (4.4)

Σmm

Rm

+
Σφφ

Rφ

= ∆P. (4.5)

If σm equals to zero then the solutions to the equations 4.4 and 4.5 are

Σmm =
∆PRφ

2
(4.6)
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and

Σφφ =
(2/Rφ − 1/Rm)

2
R2

φ∆P. (4.7)

There are three cell portions to be analyzed: the cap, the cylindrical portion, and

the outside portion which is assumed to be flat. For the cap, equations 4.6 and 4.7

give the stress resultants. For the cylindrical portion, the stress resultant Σmm remains

constant since no friction between the pipette wall and the membrane is assumed.

Finally, the equilibrium equation for the plane outside can be obtained from equations

4.4 and 4.5 noting that dr = ds, 1/Rm = 1/Rφ = 0, and ∆P = 0,

Σmm − Σφφ + r
dΣmm

dr
= 0 . (4.8)

The constitutive relation for the red cell membrane proposed by Evans [16] and

given in 3.11 is modified using the relation µE = 4E1,

Σmm = −pm + µEεmm (4.9)

Σφφ = −pm + µEεφφ (4.10)

where the Green-Lagrange strains εmm and εφφ are obtained from 2.49 as

εmm =
1

2
(λ2

mm − 1) (4.11)

εφφ =
1

2
(λ2

φφ − 1). (4.12)
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The material model used by Evans [16] is assumed to be incompressible in 2D

meaning that there is no change in the membrane surface area due to the deformation.

So, the product of the stretch ratios in the principal directions equals to one,

λmmλφφ = 1 (4.13)

and the stretch ratio in the radial direction can be written in terms of the azimuthal

one,

λmm =
1

λφφ

. (4.14)

Then, equation 4.12 becomes

εφφ =
1

2
(λ−2

mm − 1). (4.15)

The stretch ratio λφφ is given by the ratio of the deformed circle circumference

to the undeformed circle circumference at the same material location,

λφφ =
2πr

2πr0

=
r

r0

, (4.16)

r0 being the radius in the undeformed state.

Thus, λmm can be given as

λmm =
1

λφφ

=
r0

r
. (4.17)
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In terms of equations 4.9 to 4.12 and 4.15 to 4.17, equation 4.8 becomes,

1

2
[
(r0

r

)2

−
(

r

r0

)2

] +
r0

r

dr0

dr
−

(r0

r

)2

− r

µE

dpm

dr
= 0. (4.18)

Deformed and undeformed elemental areas located on the plane region outside

the pipette should be equal.

r0dr0dφ = rdrdφ (4.19)

Eliminating the dφ terms, equation 4.19 becomes

dr0

dr
=

r

r0

. (4.20)

Equation 4.20 can be used in equation 4.18 to obtain

2−
(r0

r

)2

−
(

r

r0

)2

=
2r

µE

dpm

dr
. (4.21)

Since the material is considered as incompressible, deformed and undeformed

total membrane areas are equal and the radius r in the deformed state is related to the

undeformed radius r0 by

πr2
0 = ACAP + ACY L + π(r2 −R2

P ) (4.22)

where ACAP and ACY L are the surface areas of the cap and the cylinder portion,

respectively and RP is the pipette radius.
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Now define

A′ =
ACAP + ACY L − πR2

P

π
. (4.23)

So, equation 4.22 becomes

r2
0 = A′ + r2. (4.24)

Using 4.24, 4.21 becomes

2− A′ + r2

r2
− r2

A′ + r2
=

2r

µE

dpm

dr
. (4.25)

Equation 4.25 can be integrated to obtain

[
ln r +

A′

2r2
− 1

2
ln(A′ + r2)

]RP

∞
= 2

pm(RP )− pm(∞)

µE
. (4.26)

It is assumed that the outside portion remains relaxed. Hence, the value of pm(∞)

is taken as zero.

A′

2R2
P

− 1

2
ln

(
A′ + R2

P

R2
P

)
= 2

pm(RP )

µE
. (4.27)

Equation 4.9 can be used to obtain the stress resultant in the radial direction at

the pipette tip,

Σmm(RP ) = −pm(RP ) + µEεmm(RP ). (4.28)
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The radial Lagrangian strain is obtained from 4.11 by using 4.17 and 4.24,

εmm(RP ) =
A′

2R2
P

. (4.29)

The final form of Σmm(RP ) is obtained from 4.28 with the help of 4.27 and 4.29,

Σmm(RP ) =
µE

4

[
A′

R2
P

+ ln

(
1 +

A′

R2
P

)]
. (4.30)

As indicated before, Σmm is constant in the cylindrical portion of the membrane.

Equations 4.6 and 4.30 should be equal for the radial stress resultant at the cap-cylinder

junction,

2
∆PRP

µE
=

A′

R2
P

+ ln

(
1 +

A′

R2
P

)
. (4.31)

Equation 4.31 relates the aspirated area to the pressure difference required to suck

the membrane into the pipette. Evans assumed a spheroidal cap which is a half-ellipse

in cross section and obtained ∆PRP /µE as a function of D/RP .

4.1.2. Infinite Plane Membrane Model of Chien et al. (Spherical Cap

Model)

Chien et al. [24] also analyzed the micropipette aspiration of red blood cell. Their

analytical approach was very similar to the Evans’ one [16]. The work of Chien et al.

diverge from the Evans’ analysis at three important points. First, the in-plane shear

modulus, µC , they used is equal to one-half of µE. So, the constitutive relations used

in this paper are

Σmm = −pm +
µC

2
εmm (4.32)
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Σφφ = −pm +
µC

2
εφφ. (4.33)

Secondly, they used equation 4.8 to obtain an expression for Σmm where Evans

used this equation to get an expression for the term, pm in his constitutive relations

(see equation 4.26). Then they equated the stress resultant Σmm at the cap-cylinder

junction (equation 4.6) to this expression,

RP ∆P

2
=

∫ ∞

RP

(Σmm − Σφφ)
dr

r
. (4.34)

The integral on the left hand side of 4.34 can be evaluated using equations 4.11,

4.15, 4.17, 4.24, 4.32 and 4.33.

∫ ∞

RP

(Σmm − Σφφ)
dr

r
=

∫ ∞

RP

µC

(
r2
0

r3
− r

r2
0

)
dr (4.35)

∫ ∞

RP

µC

(
r2
0

r3
− r

r2
0

)
dr = µC

∫ ∞

RP

(
A′ + r2

r3
− r

A′ + r2

)
dr (4.36)

µC

∫ ∞

RP

(
A′

r3
+

1

r
− r

A′ + r2

)
dr =

µC

2

[
−A′

r2
+ 2 ln r − ln(A′ + r2)

]∞

RP

(4.37)

µC

2

[
−A′

r2
+ 2 ln r − ln(A′ + r2)

]∞

RP

=
µC

2

[
A′

R2
P

+ ln

(
A′ + R2

P

R2
P

)]
(4.38)

Thus, equation 4.34 becomes,

RP ∆P

µC
=

A′

R2
P

+ ln

(
1 +

A′

R2
P

)
. (4.39)
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Expressions 4.31 and 4.39 are the same noting that the shear modulus µC is equal

to one-half of the shear modulus µE.

The last difference of the analysis of Chien et al. is that they assumed the cap

geometry as hemispherical. Whit this assumption equation 4.23 becomes

A′ =
2πR2

P + 2πRP (D −RP )− πR2
P

π
(4.40)

A′ = 2RP D −R2
P . (4.41)

Using equation 4.41, the relation between ∆PRP /µC and D/RP can be obtained

from 4.39 easily,

RP ∆P

µC
=

2D

RP

− 1 + ln

(
2D

RP

)
. (4.42)

4.2. FE Analysis

Higuchi and Kanno analyzed an RBC and an spherocyte subjected to micropipette

aspiration experiment by FEM [25]. They modeled the membrane complex as an ef-

fective continuum material with the 3D, incompressible, hyperelastic material model

of Arruda-Boyce form of strain energy potential. The RBC geometry used in the work

is the one proposed by Evans ad Fung [15] who estimated the biconcave shape of RBC

(see figure 4.1) by the equation given as

y = ±0.5R0

[
1− x2 + z2

R2
0

]0.5
[
C0 + C1

x2 + z2

R2
0

+ C2

(
x2 + z2

R2
0

)2
]

(4.43)

with R0 = 3.91µm, C0 = 0.207161, C1 = 2.002558 and C2 = −1.122762 where R0

is the RBC radius. Higuchi and Kanno did small (nano-order) deformation analysis
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of the experiment and obtained stress distribution and displacements occuring in the

membrane.

Figure 4.1. Cross section of RBC biconcave shape estimated by Evans and Fung [15]
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5. PRESENT FE ANALYSIS

The micropipette aspiration experiment of flaccid RBC is analyzed using finite

element package ABAQUS. Three different geometric models representing the unde-

formed flaccid RBC are used for this purpose. The first one is the ”Infinite Plane

Membrane Model” (figure 5.1) where the undeformed RBC geometry is modeled as

an infinite plane as done by the analytical analyses in literature. This model provides

a direct comparison of the computational results with the analytical ones. Second

geometric model for the flaccid RBC is the so called ”Disk Model” where the cross

section of this geometric model is shown in figure 5.4. The last model is the ”Modified

Biconcave Model” (figure 5.8) which is a modified version of the biconcave RBC shape

(figure 4.1) proposed by Evans and Fung [15].

Since the geometry of the flaccid RBC and the pipette and the loading condition

by micropipette aspiration experiment is axisymetric an axisymetric FE analysis is

performed. Therefore, all three geometrical models mentioned are axisymetric models.

In all three computational models the inner radius of the pipette is taken as 0.45

µm in order to be able to compare the results with the experimental ones given in [32].

A fillet of radius of 0.05 µm is added to the pipette tip for convergence issues.

An axisymmetry boundary condition is applied to the node or nodes located on

the symmetry line. The pipette is modeled as a rigid body and encastered. A negative

pressure (suction pressure) is applied on the portion of the membrane located inside

the pipette which caused the partial aspiration of the membrane into the pipette.

The tangential behavior of the interaction between the micropipette and membrane is

assumed to be frictionless in all models.

Convergence check is done for all computational models and suitable element

sizes are chosen. The 2-node, linear, axisymetric shell elements, SAX1 are used for the

cell membrane.
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The material model described in the section 3.3 is implemented to ABAQUS

with the aid of the user subroutine UGENS where linear or nonlinear constitutive

relations of a shell section can be programmed. The nonlinear geometry option is used

for the inclusion of the nonlinear effects of large displacements. As it can be seen in

the equations 3.30 and 3.31, the material constants are the in-plane shear modulus, µ

and the in-plane bulk modulus, K. The bending stiffness of the membrane is neglected

and only in-plane elasticity is taken into consideration as it was done in the analytical

models in literature.

5.1. Infinite Plane Membrane Model

In the infinite plane membrane model, flaccid RBC which is to be aspirated into

micropipette is taken as an infinite plane membrane (see figure 5.1). The membrane

plane is modeled large enough (with a radius of 5 µm) to represent an infinite one.

The axisymetric FE model used for this geometry is given in figure 5.3.

Pipette

Infinite 

plane

Figure 5.1. Cross section of the infinite plane membrane model at the initial state
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Figure 5.2. Cross section of the infinite plane membrane model at the deformed state

X

Y

Z

Pipette

Infinite 

plane

Figure 5.3. Axisymetric FE model for infinite plane geometry
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5.2. Disk Model

The so-called disk model is an evaluated version of the infinite plane model en-

closing a volume inside (figure 5.4). In the model the top and bottom faces are still

flat. The distance between these faces are 1 µm and the radii of faces are 3.5 µm. The

axisymetric FE model used for the disk geometry is given in figure 5.6.

Disk 

model

Pipette

Figure 5.4. Cross section of the disk model at the initial state

Figure 5.5. Cross section of the disk model at the deformed state
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X

Y

Z

Pipette

Disk 

model

Figure 5.6. Axisymetric FE model for the disk geometry

5.3. Modified Biconcave Model

The modified biconcave model is the most realistic geometry for flaccid biconcave

RBC shape. The starting geometry for this model is the estimated shape for biconcave

RBC proposed by Evans and Fung [15]. The modified part is the portion inside the

pipette. This portion is modeled flat which is curved in the biconcave RBC geometry

of Evans and Fung (see figure 5.7). This modification enables the direct comparison

of the results obtained from the simulations with this model and the ones with the

infinite plane and disk models. Additionally, this geometrical modification helps to

convergence of simulations. The axisymetric FE model used for this geometry is given

in figure 5.10.

This geometric model is first simulated without cytosol and then with cytosol.

To model the cytosol inside the RBC axisymetric hydrostatic fluid elements with two

nodes, namely FAX2 elements are used.



67

Modified 

biconcave model
RBC shape

Figure 5.7. Modified biconcave model and the RBC geometry proposed by Evans and

Fung

Pipette

Modified 

biconcave  

model

Figure 5.8. Cross section of the modified biconcave model at the initial state
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Figure 5.9. Cross section of the modified biconcave model at the deformed state

X

Y

Z

Pipette

Modified 

biconcave model

Figure 5.10. Axisymetric FE model for the modified biconcave geometry
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6. RESULTS

Typical values in literature for in-plane shear modulus, µ are in the range of

3-5 ·10−3 mN/m whereas for in-plane bulk modulus, K much higher values like 500

mN/m are estimated [4, 8, 9]. This K value is 105 times larger than the value for µ.

This means that RBC membrane is a nearly incompressible material which can deform

easily keeping its surface area constant.

To be able to compare the FE results with the results in literature ∆P · Rp vs.

D/Rp graphs are obtained. Graphs for different K and µ values are computed in the

FE simulations. There are various articles from where experimental data and analytical

results for MA of flaccid RBC experiment can be obtained [32, 17, 24]. All of them

resulted in similar ∆P ·Rp vs. D/Rp graphs. The article of Evans and La Celle is the

one chosen for the comparison since it contains the info of inner pipette radius [32].

The effects of the two elastic material constants, K and µ are investigated where

one of the constants varies and the other one is constant. Additionally, the fractional

area change, α, the stretches and stress resultants in the first and second principal

directions, λ1, λ2, Σ1 and Σ2, respectively, after the deformation are also computed for

all geometric models where the principal direction 1 is the meridional direction and

the principal direction 2 is the circumferential direction.

6.1. Infinite Plane Membrane Model

The ∆P ·Rp vs. D/Rp graph obtained from the FE simulations of infinite plane

membrane model for the elastic material constants K = 500 mN/m and µ = 3 ·
10−3 mN/m is given in figure 6.1 with the experimental results obtained by Evans and

La Celle [32]. These values for K and µ give the curve which fits the experimental data

best. The analytical result obtained by Evans and La Celle is also given in the same

figure. The computational and analytical graphs show very similar results.
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Figure 6.1. Comparison of the experimental and analytical results given by Evans

and La Celle [32] and FE simulation for infinite plane membrane model with

K = 500 mN/m and µ = 3 · 10−3 mN/m

Results of infinite plane membrane models with different element numbers (125,

250 and 500 elements) for K = 500 mN/m and µ = 3 · 10−3 mN/m are given in figure

6.2. Since the three curves show very similar results the mesh with 250 elements is

chosen for the infinite plane model.

The effects of the two elastic material constants, K and µ are also investigated

where one of the constants varied and the other one is kept constant. Figure 6.3 shows

the graphs for different K values. In these simulations the value of µ is 3 ·10−3 mN/m.

It can be easily seen that the variation in K values results in slightly different curves.

In figure 6.4 different ∆P ·Rp vs. D/Rp curves for different µ values are compared

where K value is fixed to 500 mN/m. Variation in µ value greatly affects the distance

of the aspirated tongue in the pipette.

As indicated before the validity of the constitutive relation used in the present

work (equations 3.30 and 3.31) has to be proved by checking whether the fractional sur-

face area change, α remained small. α is plotted as a function of curvilinear distance, s,
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Figure 6.2. Results of infinite plane membrane models with different element numbers

for K = 500 mN/m and µ = 3 · 10−3 mN/m
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Figure 6.3. Comparison of FE simulation results for infinite plane membrane model

with fixed value of µ = 3 · 10−3 mN/m and different K values: a) K = 100 mN/m, b)

K = 500 mN/m, c) K = 700 mN/m
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Figure 6.4. Comparison of FE simulations results for infinite plane membrane model

with fixed value of K = 500 mN/m and different µ values: a) µ = 1 · 10−3 mN/m, b)

µ = 3 · 10−3 mN/m, c) µ = 5 · 10−3 mN/m

along the meridian from the pole of the aspirated tongue to the outer membrane surface

in figure 6.5 at the pressure value of 0.07 kPa for the values of K and µ as 500 mN/m

and 3 · 10−3 mN/m, respectively. The graph indicates that the fractional surface area

values are very small meaning that the membrane remained almost incompressible.

Same graphs are computed for different K values by keeping the µ value constant

at 3 · 10−3 mN/m to see the effect of in-plane bulk modulus on surface area increase.

When the graphs 6.5, 6.6, 6.7 and 6.8 are investigated it becomes obvious that the

fractional surface area values in micropipette aspiration of flaccid RBC are very small

even for the value of K = 1 mN/m.

The stretches in the first and second principal directions, namely λ1 and λ2 are

also computed. Figures 6.9 and 6.10 give the principal stretches as a function of

curvilinear distance, s, at the suction pressure of 0.07 kPa for K = 500 mN/m and

µ = 3 · 10−3 mN/m. Evans and Skalak have obtained a similar graph for the first

principal stretch in their analytical analysis [29].
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Figure 6.5. Fractional area change, α in the infinite plane membrane model as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface for K = 500 mN/m and µ = 3 · 10−3 mN/m

at ∆P = 0.07 kPa

Figure 6.6. Fractional area change, α as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the infinite plane membrane model for K = 100 mN/m and µ = 3 · 10−3 mN/m

at ∆P = 0.07 kPa



74

Figure 6.7. Fractional area change, α as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the infinite plane membrane model for K = 10 mN/m and µ = 3 · 10−3 mN/m

at ∆P = 0.07 kPa

Figure 6.8. Fractional area change, α as a function of curvilinear distance , s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the infinite plane membrane model for K = 1 mN/m and µ = 3 · 10−3 mN/m

at ∆P = 0.07 kPa
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Figure 6.9. First principal stretch, λ1 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the infinite plane membrane model for K = 500 mN/m and µ = 3 · 10−3 mN/m at

∆P = 0.07 kPa

Figure 6.10. Second principal stretch, λ2 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the infinite plane membrane model for K = 500 mN/m and µ = 3 · 10−3 mN/m at

∆P = 0.07 kPa
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The stress resultants in the first and second principal directions, Σ1 and Σ2,

respectively, may be another interesting subject. The graphs of these at the suction

pressure of 0.07 kPa for K = 500 mN/m and µ = 3 · 10−3 mN/m are plotted in figures

6.11 and 6.12.

Figure 6.11. First principal stress resultant, Σ1 in the meridional direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the infinite plane membrane model for

K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa

6.2. Disk Model

The ∆P · Rp vs. D/Rp graph obtained from the FE simulations of disk model

for the elastic material constants K = 500 mN/m and µ = 3 · 10−3 mN/m is given

in figure 6.13 with the experimental results obtained by Evans and La Celle [32]. The

computational result fits the experimental data well. The analytical result obtained

by Evans and La Celle is also given in the same figure.

Results of disk model with different element numbers (250, 500 and 750 elements)

for K = 500 mN/m and µ = 3 · 10−3 mN/m are given in figure 6.14. The mesh with

500 elements is chosen for the simulation of the disk model.
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Figure 6.12. Second principal stress resultant, Σ2 in the circumferential direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the infinite plane membrane model for

K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.13. Comparison of the experimental and analytical results given by Evans

and La Celle [32] and FE simulation with K = 500 mN/m and µ = 3 · 10−3 mN/m

for disk model
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Figure 6.14. Results of disk models with different element numbers for

K = 500 mN/m and µ = 3 · 10−3 mN/m

Figure 6.15 shows the graphs for different K values. In these simulations the

value of µ is 3 · 10−3 mN/m. In figure 6.16 different ∆P · Rp vs. D/Rp curves for

different µ values are compared where K value is fixed to 500 mN/m. Similar to the

infinite plane model, the observation is that the variation in µ affects the distance of

the aspirated portion whereas the effect the variation in K is slight.

Figure 6.17 compares the simulation results of the infinite plane membrane and

disk models for different µ values where K value is fixed to 500 mN/m. The results of

the two models for the same µ value are almost same.

Figures 6.18 and 6.19 give the principal stretches as a function of curvilinear

distance, s, at the suction pressure of 0.07 kPa for K = 500 mN/m and µ = 3 ·
10−3 mN/m for the disk model. Also, fractional area change α, and stress resultants

in the first and second principal directions, Σ1 and Σ2, respectively, are computed at

the suction pressure of 0.07 kPa for K = 500 mN/m and µ = 3 · 10−3 mN/m (figures

6.20, 6.21 and 6.22).
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Figure 6.15. Comparison of FE simulation results of disk model with fixed value of

µ = 3 · 10−3 mN/m and different K values: a) K = 100 mN/m, b) K = 500 mN/m,

c) K = 700 mN/m
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Figure 6.16. Comparison of FE simulations results of disk model with fixed value of

K = 500 mN/m and different µ values: a) µ = 1 · 10−3 mN/m, b)

µ = 3 · 10−3 mN/m, c) µ = 5 · 10−3 mN/m
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Figure 6.17. Comparison of FE simulations results of infinite plane membrane and

disk models with fixed value of K = 500 mN/m and different µ values: a)

µ = 1 · 10−3 mN/m, b) µ = 3 · 10−3 mN/m, c) µ = 5 · 10−3 mN/m
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Figure 6.18. First principal stretch, λ1 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the disk model for K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.19. Second principal stretch, λ2 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the disk model for K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.20. Fractional area change, α in the disk model as a function of curvilinear

distance, s, along the meridian from the pole of the aspirated tongue to the outer

membrane surface for K = 500 mN/m and µ = 3 · 10−3 mN/m

at ∆P = 0.07 kPa
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Figure 6.21. First principal stress resultant, Σ1 in the meridional direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the disk model for K = 500 mN/m and

µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.22. Second principal stress resultant, Σ2 in the circumferential direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the disk model for K = 500 mN/m and

µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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6.3. Modified Biconcave Model

Results of the simulations with the modified biconcave model without cytosol

∆P ·Rp vs. D/Rp are very similar to the ones of the other two computational models.

Variation in the value of µ caused different ∆P · Rp vs. D/Rp curves (figure 6.23)

whereas variation in the value of K resulted in similar curves (figure 6.24).

Figure 6.25 shows that the ∆P · Rp vs. D/Rp curve which fits the experimental

data is the one with the µ value close to 0.004 mN/m. The convergence check for mod-

ified biconcave model is done with three different meshes (250, 500 and 750 elements)

for K = 500 mN/m and µ = 3 · 10−3 mN/m are given in 6.26. The mesh with 500

elements is used for the modified biconcave model.

Comparing the results of the modified biconcave model without cytosol and the

one of the infinite plane membrane model indicates that the initial curved outside por-

tion of the cell membrane causes some differences in the results (figure 6.27), especially

for lower µ values.

If the cytosol inside the RBC is also modeled the ∆P · Rp vs. D/Rp curves do

not change (figure 6.28). However, this volume preserving fluid affects the deformed

shape of the RBC membrane portion outside the pipette (figure 6.29).

Figures 6.30, 6.31, 6.33 and 6.34 give the principal stretches and stress resultants

as a function of curvilinear distance, s, at the suction pressure of 0.07 kPa for K =

500 mN/m and µ = 3 · 10−3 mN/m for the modified biconcave model without cytosol.

The fractional area change, α, is given in figure 6.32. Same plots for the modified

biconcave model with cytosol are given in figures 6.35 through 6.39.



84

�� �� � ��� �� � ��� �� � �
�	
� �
 �� � ��� � ���
 �� � ��� � ��

�� �� � �� � �� � �
�� � � � �� � � � �� � � � �� �� � �� � � � � � � � � �� �� � �� �� �� �� � �� � �� �

�
 �� � � �� � ��
Figure 6.23. Comparison of FE simulations results of modified biconcave shape model

without cytosol for fixed value of K = 500 mN/m and different µ values: a)

µ = 1 · 10−3 mN/m, b) µ = 3 · 10−3 mN/m, c) µ = 5 · 10−3 mN/m
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Figure 6.24. Comparison of FE simulations results of modified biconcave shape model

without cytosol for fixed value of µ = 3 · 10−3 mN/m and different K values: a)

K = 100 mN/m, b) K = 500 mN/m, c) K = 700 mN/m
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Figure 6.25. Comparison of the experimental and analytical results given by Evans

and La Celle [32] and FE simulation with K = 500 mN/m and µ = 3 · 10−3 mN/m

and µ = 4 · 10−3 mN/m for modified biconcave model without cytosol
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Figure 6.26. Results of modified biconcave models with different element numbers for

K = 500 mN/m and µ = 3 · 10−3 mN/m
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Figure 6.27. Comparison of FE simulations results of infinite plane membrane and

modified biconcave model without cytosol with fixed value of K = 500 mN/m and

different µ values: a) µ = 1 · 10−3 mN/m, b) µ = 3 · 10−3 mN/m, c)

µ = 5 · 10−3 mN/m

�� �� � ��� �� � ��� �� � �
�	
� � 
�� �� ��� � �� �� � � � �� � � � �� 
�� �� ��� � �� �� � � � �� � � � �� 
�� �� ��� � �� �� � � � � � � � � �

�� �� � �� � �� � ��� �
� � � � � �� � � � � � �� � � � �� � � � � � � �� � � � � � �� � � � �� �� � ! "# $ %# &

� �� �� �� � �� � � � �� �� � �� � � � �� �� �� � �� � � � �� �� � �� � � � �� �� �� � �� � � � �� �� � � � � � � �
Figure 6.28. Comparison of FE simulations results of modified biconcave shape model

with and without cytosol with fixed value of K = 500 mN/m and different µ values:

a) µ = 1 · 10−3 mN/m, b) µ = 3 · 10−3 mN/m, c) µ = 5 · 10−3 mN/m
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Figure 6.29. Deformed shapes of modified biconcave model with and without cytosol
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Figure 6.30. First principal stretch, λ1 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the modified biconcave model without cytosol for K = 500 mN/m and

µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.31. Second principal stretch, λ2 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the modified biconcave model without cytosol for K = 500 mN/m and

µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.32. Fractional area change, α in the modified biconcave model without

cytosol model as a function of curvilinear distance, s, along the meridian from the

pole of the aspirated tongue to the outer membrane surface for K = 500 mN/m and

µ = 3 · 10−3 mN/m

at ∆P = 0.07 kPa
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Figure 6.33. First principal stress resultant, Σ1 in the meridional direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the modified biconcave model without

cytosol for K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.34. Second principal stress resultant, Σ2 in the circumferential direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the modified biconcave model without

cytosol for K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.35. First principal stretch, λ1 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the modified biconcave model with cytosol for K = 500 mN/m and

µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.36. Second principal stretch, λ2 as a function of curvilinear distance, s, along

the meridian from the pole of the aspirated tongue to the outer membrane surface in

the modified biconcave model with cytosol for K = 500 mN/m and

µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.37. Fractional area change, α in the modified biconcave model with cytosol

model as a function of curvilinear distance, s, along the meridian from the pole of the

aspirated tongue to the outer membrane surface for K = 500 mN/m and

µ = 3 · 10−3 mN/m

at ∆P = 0.07 kPa
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Figure 6.38. First principal stress resultant, Σ1 in the meridional direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the modified biconcave model with cytosol

for K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa
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Figure 6.39. Second principal stress resultant, Σ2 in the circumferential direction as a

function of curvilinear distance, s, along the meridian from the pole of the aspirated

tongue to the outer membrane surface in the modified biconcave model with cytosol

for K = 500 mN/m and µ = 3 · 10−3 mN/m at ∆P = 0.07 kPa



93

7. CONCLUSION

Simulations with different in-plane bulk modulus values (100, 500 and 700 mN/m)

and fixed in-plane shear modulus value (3 µN/m) result in similar ∆P · Rp vs. D/Rp

curves for all three geometrical models. Therefore, 500 mN/m is chosen as the in-plane

bulk modulus value in the computations where the appropriate value of µ for RBC

membrane is investigated. Additionally, size of the RBC membrane surface area by

micropipette aspiration deformation remains almost constant for this K value in all

computational models where much lower values like 1 mN/m results in significant area

changes. Thus, the chosen in-plane bulk modulus value caused the surface area size to

remain almost constant after the deformation and hence, a nearly incompressible, 2D

material is obtained.

On the other hand, in-plane shear modulus, µ, greatly affects the ∆P · Rp vs.

D/Rp results for all computational models. By investigating the in-plane shear modulus

value that produce the ∆P · Rp vs. D/Rp curves, which fit the experimental data

best, the appropriate value for this material constant is estimated. Even though the

appropriate µ value differs slightly for different computed geometries, the value is in the

range of 3-4 µN/m. This corroborates the in-plane shear modulus values in literature.

Curved shape of the RBC affects the results. This can be realized comparing

∆P · Rp vs. D/Rp results of the infinite plane model and those of the disk model.

Furthermore, results of the modified biconcave model manifest this fact more pro-

nounced. Thus, the initial curved outside portion affects the deformation of flaccid

RBC in micropipette aspiration which has to be taken into account.

Cytosol is never modeled in the previous analytical analyses. Hence, its contri-

bution to whole cell deformation in the micropipette aspiration experiment has not

been investigated in these works. In the present study cytosol is modeled as a volume

preserving hydraulic fluid and it is shown that cytosol has no effect on the deformed

RBC portion inside the pipette. It just changes the shape of the outer RBC portion.
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Hence, modeling the cytosol does not influence the membrane in-plane shear modulus

value estimation.

Furthermore, stretch and stress resultant values in the principal directions are also

computed at the maximum applied suction pressure in the experiment. Investigation

of the first and second principal stretches, λ1 and λ2, which are in the meridional and

circumferential directions, respectively, as a function of curvilinear distance, s along the

meridian from the pole of the aspirated tongue to the outer membrane surface shows

that the material element located at the top of the leading edge inside the pipette is

not stretched. λ1 increases as the pipette tip is approached. Maximum value of λ1 is

obtained at the pipette tip and far away from the tip on the outer membrane portion

almost no stretch in the first principal direction is observable. On the other hand,

λ2 decreases approaching the pipette tip and the minimum value is reached at the

pipette tip. Again, far away from the tip on the outer membrane portion almost no

stretch in the second principal direction is observable. First principal stress resultant,

Σ1 decreases along the meridian from the pole of the aspirated tongue to the outer

membrane. A plateau is observable for the membrane portion which is in contact with

the pipette. Second principal stress resultant, Σ2 first deceases as the pipette tip is

approached from the aspirated tongue pole, has a minimum value at the tip and reaches

the zero-value on the outer membrane portion far away from the tip.

This work is the first FE analysis for large deformation study of human red blood

cell membrane in micropipette aspiration experiment where a 2D material model is

implemented to the FE package. In future, other whole cell experiments conducted

with RBC like osmotic swelling and optical tweezer stretching can be modeled this

way in order to investigate the deformation and material characteristics of RBC and

its membrane at continuum level. Results of such continuum models can be used as

the start point for microstructure analyses of RBC membrane.
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