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ABSTRACT 

 

 

ANALOG LAYOUT SYNTHESIZER FOR A PARASITIC AWARE 

DESIGN LOOP 

 

 

Analog design automation is being studied for a couple of decades and many 

researchers developed their own tools. However, there are no standards for these tools. The 

work done in this M.S. thesis aims to define standard interfaces for layout automation 

tools, making the integration of different tools possible. In addition to these interfaces, an 

interface for a layout database is defined. This interface is designed to hold any kind of 

layout structure and to cooperate with any kind of layout tool. 

 

Additionally, implementations for these interfaces are done. A floor-planner tool, a 

device generator, a fast database and a simple router are implemented in Java. The 

implemented tools are combined and a template based layout synthesizer is constructed. 

This layout synthesizer requires templates files coded in Java. Implementing the floor-

planner, a new floor-plan representation and a new inequality solver are developed and 

used. 

 

Moreover, a novel synthesis loop is defined. In this synthesis strategy, contrary to the 

old synthesis approaches, the effects of the parasitic are considered in the synthesis loop. 

The layout synthesizer implemented in this thesis is preferable in this novel synthesis loop, 

due to the very short running time. 
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ÖZET 

 

 

PARASİTİK ETKİLERİ İÇEREN BİR TASARIM DÖNGÜSÜ İÇİN 

ANALOG SERİM SENTEZLEYİCİ 

 

 

Analog devre tasarımı son yirmi yıldır üzerinde çalışılan bir konudur ve birçok 

araştırmacı bu alanda kendi otomasyon aracını geliştirmiştir. Maalesef, bu araçlar için 

tasarlanmış standart bir ara-yüz yoktur. Bu yüksek lisans tezi, tasarım otomasyon araçları 

için ara-yüzler tanımlamayı hedefliyor. Tasarım araçları için tanımlanan ara-yüzlere ek 

olarak, serim veri tabanı için de bir ara-yüz tanımlanmıştır. Bu ara-yüz herhangi bir yapıyı 

tutacak ve herhangi bir serim aracı ile uyumlu olacak şekilde tasarlanmıştır. 

 

Ek olarak, bahsedilen bu ara-yüzler gerçeklenmiştir. Yerleşim aracı, cihaz 

sentezleyici, hızlı bir serim veritabanı ve basit bir bağlayıcı Java kodlama dilinde 

gerçekleştirilmiştir. Gerçeklenen bu parçalar birleştirilerek, otomatik serim sentezleyici 

oluşturulmuştur. Bu sentezleyici Java dilinde yazılmış şablonlarla çalışmaktadır. Yerleşim 

aracını gerçeklemek için yeni bir yerleşim gösterimi ve yeni bir eşitsizlik çözücü ortaya 

konulmuştur. 

 

Bütün bunlara ek olarak, yeni bir sentez döngüsü tanımlanmıştır. Bu yeni döngüde 

parazit etkiler sentez döngüsünün içinde değerlendirilmektedir. Bu tezde geliştirilen 

otomatik serim sentezleyici hızlı çalışması sebebi için tanımlanan yeni tasarım döngüsünde 

kullanılabilir. 
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1. INTRODUCTION 

 

 

Advances in technology have provided the opportunity of integrating more devices 

into a single chip. This opportunity is becoming more difficult to utilize with every 

technology generation. Fortunately, in the digital world, the designers can utilize this 

opportunity and cope with a large number of transistors, using design automation tools. 

Development of these tools requires extensive amount of research on the topic. Since 

1970’s many researchers have been trying to advance the electronic design automation 

(EDA) tools. Note also that, the systematic structures in the digital circuitry ease the 

development of digital EDA tools. Unfortunately, when analog design is considered, there 

is almost no mature automation tool in the field.  

 

One can argue that analog circuitry contains at most a few hundred transistors and 

can be designed by a few engineers without the need of an automation tool. However, one 

should consider that the VLSI IC industry tries to maximize its profit and a main 

consideration is the time to market. A very fast response to the market will increment the 

profit considerably. Unfortunately, without a design automation tool, a single design cycle 

may not be adequate for the designer to complete the design, and time consuming trials 

may be required. Additionally the SOC designs (System on Chip) are very popular and 

more analog circuitry is being integrated.  

 

Many researchers are trying to develop EDA tools to ease the design challenge of the 

analog world. Some EDA tools contain hard-coded synthesizers which construct the 

circuitry through the instructions in the code. Another group of tools try to construct 

templates and use them for further synthesis. Also, there are tools searching for the 

solution: heuristic and optimization based tools. However, there is not a complete solution 

for analog design automation. Unfortunately, due to the lack of a standard in the field, it is 

almost impossible to combine the available tools to obtain a complete solution.  

 

An aim of this thesis is to define standard interfaces for the layout automation tools, 

making the integration of different tools possible. These interfaces are defined by 

reviewing literature about related tools. In addition to these interfaces, an interface for a 
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database is defined. This interface is designed to hold any kind of layout structure and to 

cooperate with any kind of tool (floor-planner, router, etc…). 

 

During the thesis study, an implementation of a floor-planner and an implementation 

of a layout database were performed. These implementations were written in Java and they 

comply with the related standards defined. Further, the codes are combined into a template 

based layout synthesizer. 

 

While implementing the floor-planner, a new floor-plan representation (P-Sequence) 

is developed and used. Also a new inequality solver is designed and used in the 

implemented floor-planner. 

 

Moreover, a novel synthesis loop is defined. In this synthesis strategy, contrary to the 

old synthesis approaches, the effects of the parasitic are considered in the synthesis loop. 

The layout synthesizer implemented in this thesis is preferable in this novel synthesis loop, 

due to the very short running time (a few seconds). 

 

In section 2, some of the available design tools and approaches are introduced. In 

section 3, the interface for the layout database and an implementation of this interface are 

presented. Section 4 defines the interface for the floor-planner and includes a floor-planner 

implementation. This section also reviews some common floor-plan representations and 

includes the description of P-Sequence representation. Additionally, an inequality solver is 

presented in this section. In section 5, a device generator and a template-based router are 

described. Section 6 contains information about the exchange formats between the 

available EDA tools. All of the implemented tools are combined and a layout synthesizer is 

constructed, this synthesizer is described in section 7. Section 8 concludes this work and 

proposes some future work.  
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2. DESIGN TOOLS 

 

 

2.1. Design Flow 

 

Analog design is a time consuming process; many iterations are required to finalize 

the design. In general, the design is separated into three parts. These parts are behavioral 

description, structural description and physical description. 

 

A design is described behaviorally through a HDL (hardware description language), 

such as VHDL-AMS. This description is then converted to structural description, which 

includes the circuitry as blocks. These blocks are implemented with transistors and this 

implementation is called the physical description. 

 

The design flow is schematically shown in Figure 2.1. 

 

 

Figure 2.1. Design flow 

 

2.2. Automation Tools 

 

Researchers developed many tools for EDA and these tools are classified according 

to their functionality in [1], [2], [3] and [4]. Also a brief review for some of these tools is 

going to be presented in the following sub sections. 
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2.2.1. Numerical Simulators 

 

Hand analysis of analog circuits is a complicated task and involves solving many 

differential equations simultaneously. As the circuit includes many devices, it becomes 

almost impossible to analyze the circuitry by hand. Fortunately, the early development of 

analog simulators helped the designer through the design of today’s complicated analog 

circuits. 

 

Analog simulation is a critical task for design verification. Verification is needed to 

avoid performance degradation of an analog circuit after fabrication. The degradation 

should be accounted by the designer during the design process and analog simulators with 

circuit extractors give this opportunity to the designer. 

 

Circuit simulation began with the development of the SPICE tool and nowadays 

there are many commercially available variants of SPICE. These circuit simulators are 

used in the design and verification processes. The circuit simulations may require 

considerable amount of time. To speed up the simulation of a module, including many 

analog circuits, circuit models are derived. The VHDL-AMS or Verilog-A are the 

standardized analog description languages. These circuit models not only speed up the 

simulation processes but also make it possible to simulate a group of analog circuitry 

without an implementation at the transistor level. 

 

There also exist dedicated simulators for special purposes; i.e. switched capacitor 

simulation tools, RF simulation tools, etc… 

 

2.2.2. Symbolic Analyzers of Analog Circuits 

 

Designing analog circuitry requires an insight into the circuitry. Thus, it is desirable 

to have the design equations of a circuit. For circuits of few transistors, one can derive the 

required equations (i.e. small signal gain, bandwidth, etc…) by hand. However, as more 

transistors are added to the circuit, it will not be practical to analyze the behavior of the 

circuit by hand. Symbolic analyzers, capable of handling circuits with around 10 

transistors, emerged late 1980’s. These tools were simplifying the expressions as done in 
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the hand analysis. However, these tools were not able to handle complicated circuits due to 

the extensive computational requirements. A new technique of simplification before and 

during the symbolic expression generation reduced the computation time considerably and 

enabled the symbolic analysis of practical circuits.  

 

2.2.3. Analog Circuit Synthesizers and Optimizers 

 

Topology selection is a very important problem in analog design. This problem arises 

when there are multiple topologies for an implementation. A good topology meets the 

specifications for the circuit at the minimal implementation cost (i.e. Power, Area, 

Robustness …). Unfortunately, it is hard to formulate the solution of the topology selection 

problem quantitatively. Thus, the primary synthesis tools used rule sets for the selection of 

the best topology.  

 

Later approaches constructed more quantitative ways to select a topology. Feasible 

performance space of each topology is defined. According to the specs, the best matching 

topology is selected and optimization techniques are also applied to the problem. 

 

Once a topology is selected, the next step is the performance translation. According 

to the performance specifications of the overall circuit, the performance specifications of 

the sub blocks are determined. These sub-blocks may be composed of single devices, then 

the problem can be stated as the device sizing problem. Extracting the device sizes from the 

given performance specifications is an under constrained problem. The degrees of freedom 

in the problem can be handled by knowledge based and optimization based approaches. 

 

In the knowledge based approaches, the design knowledge is coded into a computer 

executable form. This method uses the heuristic methods. Most of the knowledge based 

synthesis tools require design plans. Unfortunately, construction of these design plans is 

more time consuming than simply designing the circuit.  

 

On the other hand, optimization approaches are based on numerical optimization 

techniques. These techniques try to solve the degrees of freedom of a design, under the 

constraint of the performance specifications. Optimization based approaches also try to 
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extract the required design knowledge using analysis techniques (i.e. symbolic analysis) or 

try to use equation-free simulation-oriented approaches. Running an optimization loop 

depends upon evaluating the performance of an instance circuit. This performance 

evaluation is done by evaluating the design equations or by simulating the circuit. 

 

Although evaluation of the performance through circuit simulations does not require 

design plans and precise design equations, it requires high computational power and 

advanced numerical algorithms. In recent years, with the development of high speed 

computers, this approach started to become popular.  

 

2.2.4. Analog Layout Synthesis 

 

Due to the adaptation of the digital layout synthesis techniques to the analog 

counterpart, analog layout synthesis is the most mature part of the analog design 

automation. The goal of the layout synthesizer is to convert the schematic of a circuit into a 

producible layout. A fully automated layout synthesizer is expected to floor-plan, place and 

route the circuit elements by taking the performance considerations into account. 

 

The earliest approaches rely on procedural module generation, which is based on 

pre-coded software. The software constructs the layout according to the input parameters. 

For this approach, development and maintenance of a module generator for each circuit 

topology is necessary. Template driven module generation is a similar approach and uses 

geometric templates for each circuit. The template fixes the position and the routing of the 

circuit. Template driven approach is a fast synthesis method. This approach is suitable, if 

the layout structure is given and changes from circuit to circuit are minor. 

 

Due to the parasitic effects induced in analog layouts, the resulting circuit may not 

satisfy the performance specifications. Sometimes, big changes in the layout may be 

required for both satisfying the performance specs and having a compact layout. 

Optimization-based macro-cell place and route layout generation approach uses 

optimization techniques to optimally place and route to combine macro-cells. Macro-cell is 

defined to be a single device (i.e. transistor, capacitor) or a group of devices (matched 

pairs). This approach depends upon a pre-defined cost function and the optimizer which 
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tries to minimize the area and tries to satisfy the performance specs using this function. 

This approach requires large CPU times and the quality of the generated layout is sensitive 

to the introduced cost function. ILAC [5] and KOAN/ANAGRAM II [6] are samples for 

this approach which relies on macro-cells. The ILAC tool is inspired from digital 

automation tools; the problem with tool is that, it is not always possible to handle sensitive 

analog designs with the digital automation techniques. KOAN/ANAGRAM II tool set is a 

combination of KOAN which is a device generator and an optimization based placer, and 

ANAGRAM II which is a maze-style area router. Also tools like LADIES [7] and ALSYN 

[8] operate similarly. 

 

The next generation of tools is based on performance-driven or constraint-driven 

approaches. These approaches try to quantitatively measure the performance degradations, 

considering the parasitic and secondary effect. The area routers ROAD [9] and 

ANAGRAM III [10], the placement tool PUPPY-A [11] and are examples of this 

approach. The LAYLA [4] tool also consists of performance-driven placer and router. 

 

A new approach is to separate the device placement task into two separate tasks: 

device stacking followed by stack placement. By considering the circuit as a connected 

graph of sources and drains, the optimum merging is observed, called device stacking. In 

the stack placement phase, the devices are merged and placed accordingly. Also separate 

placing and routing phases result in non-optimal solutions. Thus, there are attempts to 

simultaneously place and route the circuits. 

 

The performance degradation due to the layout parasitic is also considered. The 

affect of parasitic to analog layout synthesis is mentioned in [12], [13] and [14]. 

 

2.2.5. Yield Estimation and Optimization 

 

Due to fluctuations in the fabrication process, the performance of fabricated circuits 

may vary. These variations may result in malfunctioning or badly performing circuits, 

which do not meet the performance specifications. The circuits need to be designed in such 

a way that maximizes the number of the functional circuits; this is also known as design for 
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manufacturability. As well as designing for manufacturability, the designs have to be 

robust and that is called design for robustness or design for quality.  

 

It is desired to know the fluctuations and the acceptability region for the parameter 

space or for the performance space. Then, according to the statistical fluctuations, the 

statistics for the well-functioning circuits can easily be obtained. However, the statistical 

fluctuations in the design parameters in the performance space and the acceptability region 

in the parameter space are not known. A simple approach is the worst-case analysis; as the 

name implies, some combination of the device parameters are used to calculate the worst 

case performance. A statistical approach is Monte-Carlo simulations. In this approach, 

according to the statistics of the parameter space, many samples of the device are 

generated and the statistics for the performance space is obtained. This approach is a CPU 

intensive process; some approximations are present to speed up this process. 
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3. LAYOUT DATABASE 

 

 

A database is defined to be the core of an analog layout tool. Thus, the 

implementation becomes very critical, if the speed of the layout tool is considered. To code 

layout automation tools compatible with the database, it is required to define a general 

interface for the database. 

 

This chapter defines the necessary functionality for a layout database. After a 

detailed literature review, interface for the database is defined. Operations needed by the 

database and their corresponding definitions are presented. Also, an implementation for the 

defined interface is performed.  

 

3.1. Data Structures 

 

The database structure for an analog layout is in essence with a floor-plan structure. 

However, there are major differences. The database holds separate layers such as poly, 

diffusion, etc… On the other hand, the floor-plan structure holds the blocks; i.e. transistors, 

capacitors, matched pairs, etc… 

 

The data structures for a database can be classified into two main groups; the 

absolute coordinate based database and relative coordinate based database. The absolute 

coordinate based database holds the absolute positions of the elements, as well as the 

layout properties. Thus, the database returns the coordinates immediately; however, the 

neighborhood information for the elements is not present in the database. On the other 

hand, the relative coordinate based database hold the neighborhood information (the local 

information). However, it cannot immediately return the coordinates of the blocks. Thus, 

layout manipulations (move, remove, etc…) cannot be immediately applied. In this 

database, the global information is first transformed into local information. 

 

Some common structures are listed in [15]. The List of Blocks Structure holds the 

absolute coordinates of the elements in a list. Also, the Bin Based Structure holds absolute 
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coordinates in a more compact way. The Neighbor Pointers Sucture and the Corner 

Stitching Structure hold relative positions of the elements. 

 

3.1.1. List of Blocks Structure 

 

This structure handles the components of a layout in a linked-list. The positions of 

the components are recorded into a structure and this structure is than added into the 

linked-list. The structure of the list is depicted in Figure 3.1. 

 

 

Figure 3.1. Linked list of blocks 

 

3.1.2. Bin-Based Structure 

 

Bin-based layout representation, superimposes a virtual grid over the layout. A bin 

B(m,n) contains the list of elements it includes. In Figure 3.2, the bin B(2,2) contains the 

components in the set S (S = {A, C, B}). These bins are held in a two-dimensional array. 

 

3.1.3. Neighbor Pointers Structure 

 

The list of blocks and the bin based methods do not hold the local information. In 

contrast, this structure holds pointers to keep local information. However, it is not easy to 

maintain this structure. A simple change in the layout may require all the pointers in the 

data structure be updated. Neighbor-pointers structure is symbolically depicted in Figure 

3.3. 

 

3.1.4. Corner Stitching Structure 

 

Corner stitching data structures hold relative positions similar to the neighbor 

pointers data structure. However, they could be manipulated much faster than the neighbor 
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pointers data structure. Unlike the previous structure, this structure holds only four 

pointers. These point the components around the lower-left and upper-right corner. 

 

 

Figure 3.2. Bin-based representation 

 

 

Figure 3.3. Neighbor pointers structure 

 

 

Figure 3.4. Corner stitches 
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3.2. Interface 

 

Through the new framework for the layout automation; router, floor-planner, circuit 

extractor or any code manipulating the layout is called a tool. All the tools communicate 

with the layout through an interface; existence of this interface facilitates compatibility. 

Tool development will be much easier and any new tool will cooperate easily with the 

previously written codes. This will yield faster code development and code reusability. 

 

Also, one can implement his/her own database, obeying the rules in the interface. If 

the new implementation is correctly coded, the new database will also work with the 

previously developed tools. The required functionalities for a database are stated below: 

 

1. Add new element or remove old one, 

2. Set or to get the properties of an element (i.e. layer, shape, etc…), 

3. Rotate or flip an element. 

 

In addition to the listed core functions the following functionality is added to the 

interface. These functionalities make the database compatible with digital automation tools 

 

1. Build instances from a master 

2. Support grouping and hierarchy 

3. Transform coordinates from a frame to another  

 

3.2.1. Building Instances from a Master 

 

It may be desirable to clone an element, for instance to construct an array of 

transistors or to construct a symmetrical layout. The database interface supports generation 

of new elements from an initially generated element; the initial one is called a master. This 

functionality makes it possible to construct a layout from objects (like an object oriented 

language). The objects may be transistors, current mirrors or differential pairs; however 

dislike object oriented languages the instances are exact copies of the master. 
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3.2.2. Supporting Grouping and Hierarchy 

 

The database interface can be used to group some elements; such as the transistors in 

a differential pair. This functionality contributes the concept of hierarchy into the database; 

the user may define a hierarchy in the layout. Moving a group will move all the 

components inside the group, which will speed up most of the floor-plan functionalities. 

 

3.2.3. Transforming Coordinates 

 

If a hierarchy is built in the layout, it will be required to calculate the positions of an 

element with respect to hierarchical frames. In Figure 3.5, the coordinate of the point in the 

outer frame can be calculated by summing the coordinate of the inner frame with the 

coordinate of the point. This is the simplest case and it may be more complicated if 

rotation and flip operations are included. 

 

There are two types of transformations (except translation), these are rotation and 

flipping. These transformations are done by multiplying the coordinates of a point by the 

related matrix in Figure 3.6. 

 

 

Figure 3.5. Transformation is needed 

 

𝑦𝑓  

𝑦𝑝  

𝑥𝑝  

𝑥𝑓  
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Figure 3.6. Transformations 

 

3.3. Implementation 

 

The implementation of the interface supports hierarchical structures. A group 

(module) is a parent and contains elements (transistors, capacitors, wires, etc…). An 

element may also be a parent, thus the implementation is capable of holding any degree of 

hierarchy.  

 

A mathematical formulation of the implementation is given; the formulation is based 

on a previous work [16]. The layout is composed of groups (group of circuit elements or a 

single element). A set of groups is denoted by 𝐺 =  𝑔1, 𝑔2, … , 𝑔𝑛 . A group consists of 

many elements; for instance, in a CMOS process, the layout will be composed of elements 

such as: diffusion region, metal region, poly region, etc… The set of elements are denoted 

by 𝐸 𝑔 =  𝑒1, 𝑒2, …  . Similarly for a process, the set of available layers is donated 

by𝐿 =  𝑙1, 𝑙2, … , 𝑙𝑘 . Then the layer to which an element (𝑒𝑖 ) belongs is denoted by 

𝑙 𝑒𝑖 ∈ 𝐿 and similarly the width and height of an element are denoted by 𝑤 𝑒𝑖  and 𝑕 𝑒𝑖 , 

respectively. The absolute coordinates of an element (𝑜𝑖 ) belonging to a group (𝑔) is 

denoted by  𝑥 𝑔 + 𝑥 𝑒𝑖 , 𝑦 𝑔 + 𝑦 𝑒𝑖  ; where 𝑥 𝑔  and 𝑦 𝑔  are the x and y 

coordinates of a group (𝑔), respectively. The 𝑥 𝑒𝑖  and 𝑦 𝑒𝑖  are the relative coordinates of 
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an element (𝑒𝑖) with respect to a group (𝑔). In this representation, all the elements (circuit 

components, wires or any kind of structure) are denoted by groups (a collection of 

regions). 

 

Generally, simple structures are involved in layouts; thus, the layout tool is designed 

to support rectangular shapes. Any elliptic shape is approximated by a polygon. The 

implemented tool also supports rectangular shapes and polygons. Due to the embedded 

objects, the code may be upgraded easily to elliptic shapes. 

 

The implementation has the capability of rotating and flipping modules (groups). If a 

module is rotated or flipped, the entire sub modules are also affected; however, their 

coordinates are not modified. Thus, the database implementation runs extremely fast. The 

modifications are hierarchically stored. The coordinate of a module is calculated, when it is 

asked. This property speeds the floor-planner tremendously. Thus, a floor-planner may also 

run over the database, without holding a data structure.  

 

The transformations may be calculated through the given transformation matrix. 

However, the sine and cosine functions -in the matrix- are time consuming and rarely 

required. Through the available tools, only simple rotations are involved. Thus to speed up 

the code, the sine and cosine are replaced by conditional code according to Figure 3.7. 

 

 

Figure 3.7. Fast Transformations 
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The database is graphically illustrated in Figure 3.8. The elements are held in the 

database and when these elements are called through the interface, they are processed. The 

processing unit applies the related transformations to these elements. 

 

 

Figure 3.8. Structure of the database 
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4. FLOOR-PLANNER 

 

 

The positions of the modules in a layout affect the performance of the circuit. Due to 

the omitted parasitic effects, the performance of the circuit degrades from the targeted 

value. These effects are the parasitic wire resistances and capacitances, potential variations 

in the bulk material, cross-talk effects etc… These parasitic wire resistances and 

capacitances can be minimized by carefully placing the modules in the layout. The 

placement of the modules in the layout is called floor-planning. Generally, floor-planners 

focus on the placement of the modules (transistors, macro-cells, capacitors, etc…), rather 

than placing each layer (poly regions, metal regions, and contacts). This speeds up the 

search for a solution by reducing the solution space. There are some approaches also trying 

to place the layers. The approach in [17] formulates the layout as equations. These 

equations and the cost functions are solved with a non-linear optimizer. 

 

Some approaches consider the floor-planning problem as a rectangular packing 

problem (RP) [18]. With M being a set of rectangular modules, the RP is to place the 

modules in M without any overlaps into a minimum bounding rectangle. This approach 

only aims to minimize the chip area. Another approach considers the wire length, pre-place 

blocks and the density of the floor-plan [19]. The approaches in [20] and [21] optimize the 

wire length and the area. The approach in [21] also considers the density. Moreover, some 

approaches consider parasitic affects [17]. 

 

This chapter defines a general interface that can represent any floor-planner. The 

interface is also compatible with optimizers. The floor-plan can be modified not only by 

the internal optimizer but also by different optimizers, i.e. the optimizer of the router, etc...  

 

The interface is constructed through a detailed literature review about the floor-

planning structures and optimizers.  

Additionally, an implementation for the floor-planner interface is presented. This 

implementation does not include an optimizer. However, it reads the placement from a 

template. 
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4.1. Constraints 

 

It is important for the designer to control the absolute positions of some blocks, such 

as I-O pads. The designer also desires to control the relative positions of modules, i.e. 

symmetric modules. These constraints are needed to be passed through the floor-planner. 

Thus, the interface of the floor-planner should be capable of holding such constraints. In 

general, the constraints can be grouped as follows: 

 

1. Absolute positions 

2. Ranges for module positions 

3. Positions with respect to the boundaries 

4. Alignment of modules 

5. Abutment of modules 

6. Clustering of modules 

7. Symmetric placement of modules 

 

A method to handle these placement constraints is presented in [22]. Below, a short 

description of the idea, to hold these constraints, is stated. 

 

For two blocks A and B, the horizontal and vertical displacement between the lower 

left corners of the blocks are denoted by 𝑕(𝐴, 𝐵)  and 𝑣(𝐴, 𝐵) , respectivelly. The 

displacement may be positive or negative. If the lower left corner of A is to the left of that 

of B, the displacement 𝑕(𝐴, 𝐵)  will be positive. Similarly the vertical displacement 

( 𝑣(𝐴, 𝐵) ) can take positive or negative values. The relative placement constraints 

(alignment, abutting, clustering and symmetry constraints) between these modules (A, B) 

can be written as 𝑣 𝐴, 𝐵 =  𝛼, 𝛽  where 𝛼, 𝛽 are real numbers and 𝛼 ≤ 𝛽, meaning that 

the vertical displacement between A and B is in the interval  𝛼, 𝛽 . Absolute placement 

constraints (absolute positions, position ranges with respect to the boundaries) are handled 

by replacing A or B with LL, RR, BB and TT. These correspond to left, right, bottom and 

top boundaries of the chip. For instance 𝑕 𝐴, 𝑅𝑅  denotes the horizontal displacement of 

the module A from the right boundary. 
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4.1.1. Absolute Constraints 

 

These constraints are used to impose the position of a module with respect to 

boundaries. A sample constraint is depicted in Figure 4.1. 

 

 

Figure 4.1. Absolute constraint 

 

4.1.2. Relative Constraints 

 

These constraints are used to describe the position of a module with respect to 

another module. The most general case -for relative constraints- is depicted in Figure 4.2. 

Special cases of the relative constraints are listed in the sub sections. 

 

 

Figure 4.2. Relative constraint 

 

4.1.2.1. Alignment Constraints. These are used to align the top, bottom, left or right 

boundaries of modules. A sample drawing is depicted in Figure 4.3. 

 

4.1.2.2. Abutment Constraints. These types of constraints are used to bond two modules. It 

is possible to abut the left boundary of an element with the right boundary of another one 
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or top boundary of an element with the bottom boundary of another one. In Figure 4.4, the 

top of module b1 is abutted with the bottom of module b2. 

 

 

Figure 4.3. Alignment constraints (a) alignment of the left boundaries, (b) alignment of the 

centers,(c) alignment of the right boundaries 

 

 

Figure 4.4. Abutment constraint 

 

4.1.3. Symmetry Constraints 

 

These constraints guarantee that two modules are symmetrically places with respect 

to a reference point. A descriptive drawing is given in Figure 4.5. 

 

 

Figure 4.5. Symmetry constraint 
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4.2. Floor Plan Representation 

 

There are many approaches to solve the problem of floor-planning. These approaches 

propose floor-plan structures to hold and manipulate the placement. In general floor-plans 

can be grouped into two; slicing and non-slicing.  

 

4.2.1. Slicing Structures 

 

Due to the complexity of the problem, hierarchical methods have been extensively 

used. For the slicing representation, Otten [23] proposed a binary tree representation. Then, 

a formal representation -normalized Polish expression- for this slicing structure was 

proposed by Wong and Liu [24]. A simple slicing floor-plan structure and the 

corresponding slicing tree representation are presented in Figure 4.6. The polish expression 

of the given floor-plan is (312*+654+**). 

 

It is commonly believed that the slicing structure is not a complete representation. 

The structure seems not being capable of holding non-slicing floor-plan solutions. 

However, Lai and Wong [25] showed that applying many vertical and horizontal 

compactions, slicing tree representation can be converted into a non-slicing floor-plan 

having the minimum area. 

 

 

Figure 4.6. Slicing floor-plan structure 
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4.2.2. Non-Slicing Structures 

 

Many non-slicing structures have been proposed, such as: BSG [26], Sequence Pair 

[18], O-tree [27], B*-tree [28], TCG [29], CBL [30] and Q Sequence [31], etc…  

 

These structures are separated into sub categories in [32]. BSG and sequence pair can 

represent general floor-plans and describe relative positions between blocks, such as left-

of, below, etc… The second category is composed of O-tree and B*-tree, and these 

describe relative positions of the blocks in 1-D. These two representations have smaller 

solution space however they do not directly hold the geometric relations between blocks. 

The last category contains the CBL and Q-sequence. These coding schemes are called 

Mosaic where the chip is divided into rectangular rooms. The mosaic structures cannot 

represent all kinds of floor-plans unless empty space is added. 

 

4.2.2.1. Sequence Pair. A widely accepted and used floor-plan structure is the Sequence 

Pair [18]. This representation resembles the above-below and left to-right to representation 

in [33]. The difference is that each packing is represented by a pair of module name 

sequences (Γ+ and Γ−) in sequence pair representation 

 

In the original paper, a set of requirements for the floor-plan representation are listed. 

First, the solution space -represented by the floor-plan structure- should be finite and every 

solution in the representation should be feasible. The paper lists more: every solution 

should be realizable in polynomial time. The last requirement is that the best solution 

evaluated in the representation, should be the optimum solution. The solution space 

satisfying these requirements is called P-admissible. It is also stated that the Sequence pair 

representation is P-admissible. 

 

A floor-plan and the corresponding representation are presented in Figure 4.7. Γ+ and 

Γ− are ordered pair of module name sequences. A decoding scheme for the Sequence Pair 

is tabulated for any module x and y. 
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The packing (positions of the blocks) is calculated through the longest path algorithm 

on a vertex weighted directed acyclic graph. The vertices in this graph are the modules and 

the weights of the edges are the dimensions of the modules.  

 

 

Figure 4.7. Floor-plan for the sequence pair: (Γ+, Γ-) = (abdecf, cbfaed) 

 

Table 4.1. Decoding the Sequence Pair representation 

Order in the sequences Description 

y is after x in both Γ+  and Γ− y is right to x 

x is after y in both Γ+  and Γ− y is left to x 

y is before x in Γ+  and after x in Γ− y is above x 

x is before y in Γ+  and after y in Γ− y is below x 

 

Optimization algorithms are used to search for the best floor-plan. These algorithms 

require perturbations in the layout to obtain the optimum placement. The original paper 

[18] presented two perturbations through searching the optimum layout. The applied 

perturbations to the layout are: 

 

1. Changing the orientation either vertically or horizontally (this set includes 2𝑚  

perturbations) 

2. Altering the order of the modules in the sequence pairs (this set includes  𝑚! 2 

perturbations) 

 

These perturbations have to be supported by the interface. The iterate function 

generates a new solution, the isValid function decides whether the solution is valid or not. 

The getCost function returns the cost of the floor-plan. All these functions have to be 
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defined in the implementation, however the perturb function should input the type of the 

perturbation. Required types for the perturbations for the given Sequence Pair 

implementation are tabulated. 

 

Although just two perturbations are considered, finding the best placement is very 

time consuming. Two approaches are proposed to decrease the time complexity. The first 

approach is to speed up the calculations by special methods. The original packing 

algorithm has 𝑂 𝑛2  complexity and a faster packing algorithm is presented in [34] with a 

complexity of 𝑂 𝑛 log 𝑛 . The algorithm presented in [35] is based on longest common 

subsequence and obtains the coordinates of the modules and the total width and height of 

the floor-plan in 𝑂 𝑛 log log 𝑛 . The second approach, to speed up the search process, 

decreases the solution space, as done in [36]. 

 

These algorithms are directly related to the implementation. Solution space reduction 

should be implemented in the autoPlace function. This function runs the placement engine 

in the floor-planner. Note that the floor-plan implementation may not have a placement 

engine. 

 

Table 4.2: Required types of perturbations for SP representation 

Type of Perturbation Description 

PERTURB_ROTATE_90 
Rotates the given module (equivalent to 

changing the orientation) 

PERTURB_SWAP_P 
Swaps the positions of two modules (there 

should not be constraints on the modules) 

 

4.2.2.2. O-Tree. In [27] an ordered tree (O-tree) structure, to represent non-slicing floor-

plans, is presented. In this paper, an admissible placement is defined; this placement is 

obtained through abutting the modules to the left and to the bottom. This process is called 

compaction. Also, in the paper, it is shown that the solution space of the O-tree 

representation is smaller than that of Sequence Pair. 
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A sample O-tree is given in Figure 4.8. The tree represents the horizontal placement; 

also, a tree for the vertical placement is required. Note that the O-tree represents 

compacted floor-plans. 

 

In the original paper, a contour structure is used to reduce the required time during 

the conversion from the O-tree to constraint graph representation. Algorithms for 

conversion from the O-tree representation to the constraint graph representation and vice 

versa are also proposed. 

 

 

Figure 4.8. An O-tree representation 

 

The perturbations used to search the solution space are deleting and insertion (see 

Table 4.3). However, these perturbations may not result in an admissible (compact) floor-

plan. A post processing is needed to be applied to the resulting floor-plan. The post 

processing is done through the postProcess function. This function constructs an 

admissible tree and it is not included in the perturb function (This speeds up the algorithms 

including successive perturbations).  

 

Table 4.3. Required types of perturbations for the O-tree representation 

Type of Perturbation Description 

PERTURB_DELETE 
Removes a module from the 

representation 

PERTURB_INSERT 
Inserts a module into the 

representation 

 



26 

4.2.2.3. B*-Tree. The B*-tree [28] is based on ordered binary trees. Similar to the O-tree, 

the B*-tree represents compact (admissible in [27]) floor-plans. The B*-tree is constructed 

according to above and right to relations (A sample B*-tree is given in Figure 4.9) and the 

operations search, insertion, and deletion are very fast compared to the O-tree 

representation. 

 

 

Figure 4.9. A B*-tree representation 

 

The paper presents deleting and insertions as the floor-plan perturbations. The 

structure, in terms of the interface, is very similar to the O-tree representation. There are 

many B*-tree based floor-planners considering boundary constraints [37], pre-placed 

modules [38], etc… 

 

4.2.2.4. BSG. Bounded slicing grid representation, presented in [26], cuts the plane into 

rooms with horizontal and vertical line segments. These rooms are represented by utilizing 

two directed graphs in [26]. The structure of the bounded slicing grid and a room are 

shown in Figure 4.10. 

 

The BSG representation incurs redundancy [28], a packing may have multiple 

representations. The redundancy in the representation degrades the complexity of the 

search process. The BSG is extended to handle pre-placed modules and soft modules. 

 

4.2.2.5. TCG. Transitive closure graph based representation is presented by Lin and Chang 

in [29]. TCG based representation holds the relative positions of the blocks in two TCG 

graphs (Figure 4.11). TCG based representation is reported to satisfy the four properties of 



27 

P-admissibility, defined in [18] (Also defined in section 4.2.2.1). The packing is calculated 

using the longest path algorithm. 

 

 

Figure 4.10. Bounded Slicing Grid 

 

In addition to the perturbation defined (swap and rotate) the floor-plan is perturbed 

through reverse and move operations. These perturbations are added to the interface (Table 

4.4). 

Table 4.4. Perturbations inspired from TCG 

Type of Perturbation Description 

PERTURB_MOVE_UP 
Places a module above another 

module 

PERTURB_MOVE_RIGHT 
Places a module at right side of 

another 

 

 

Figure 4.11. Transitive Closure Graphs 
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4.2.2.6. CBL. Corner block list representation is presented in [30]. The floor-plan structure 

is based on the mosaic structure. This structure is also defined in the paper. 

 

Corner block is defined and the representation is constructed by deleting the corner 

blocks. The representation includes a sequence S of block names, a list of orientations L, 

and a list T of T-junctions (intersection of an edge of a module with corner of another 

module). The (S, L, T) sequence is called a corner block list. The corner block list of the 

floor-plan in Figure 4.12 is (S, L, T) = (fcegbad, 001100, 001010010). Note that, all CBL 

representations may not lead to a correct floor-plan, and this limits the representation. 

 

The CBL representation is used to optimize the floor-plan in [30]. Rotation, 

reflection and perturbations of S, L, T lists are used to construct new solutions. The 

perturbations in the list are not general and should not be included in the interface. 

 

 

Figure 4.12. Floor-plan is represented as (S, L, T) = (fcegbad, 001100, 001010010) 

 

Table 4.5. Perturbations 

Type of Perturbation Description 

PERTURB_REFLECT_HORIZONTAL Mirrors the modules horizontally 

PERTURB_REFLECT_VERTICAL Mirrors the modules vertically 

 

4.2.3. P-Sequence 

 

P-Sequence (Projection Sequence) is a new representation developed through the 

study of this thesis. This representation is used to hold the floor-plan of the implemented 

floor-planner. 
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Two sequences of module name are used; these sequences are held for the vertical 

and horizontal projections of the modules. These projections are constructed by projecting 

the modules onto x and y axis. The axis is divided into segments according to these 

projections. In Figure 4.13, the segments are regions between the two dashed lines. 

 

The floor-plan may be represented as (H, V) = ({A, BC, C, D}, {ACD, ABD, B}). 

The groups of the module names (such as ACD) are the modules in the segments on the 

axis. ACD is a group of module names whose projections are in the first segment on the y 

axis. 

 

P-Sequence is superior to other representations; the neighborhoods of a module are 

easily extracted from this representation. Also this representation does not require a 

compact layout; a layout with spaces is easily handled through this representation. 

 

4.2.3.1. Compaction of P-Sequence. Most of the time the following segments include 

similar modules and it is not required to hold their names many times. Through the 

following this representation is more compacted. 

 

 

Figure 4.13. Modules are projected onto x and y axis 
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Process of compaction: 

 

1. If the name of the module is recorded in segment i and is not present in segment i + 

1 add the name to i + 1th group. 

2. If the name of the module is not present in segment i and is recorded in segment i + 

1 add the name to i + 1th group. 

3. If the name of the module is recorded in segment i and it is also recorded in 

segment i + 1 do not change i + 1th group. 

4. If the name of the module is not present in segment i and it is also not present in 

segment i + 1 do not change i + 1th group. 

 

For instance, the representation for Figure 4.13 is found as (H, V) = ({A, BC, C, D}, 

{ACD, ABD, B}). After the compaction the representation is (H, V) = ({A, ABC, B, CD}, 

{ACD, CB, AD}). 

 

For the floor-plan in Figure 4.14, normal representation is (H, V) = ({baif, aif, ef, 

gef, gf, ghf}, {bg, bh, ah, ih, ieh, eh, f}) and the compacted representation is (H, V) = 

({baif, b, aie, g, e, h}, {bg, hg, ba, ai, e, i, ehf}). As the number of module increases the 

compact representation becomes much shorter than the normal representation. 

 

 

Figure 4.14. Floor-plan is represented as (H, V) = ({baif, b, aie, g, e, h}, {bg, hg, ba, ai, e, 

i, ehf}) 
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4.2.3.2. Analysis of P-Sequence. The number of segments for the worst case is calculated. 

For the worst case, projection of a module separates the axis into three parts. An example 

is given for four modules in Figure 4.15. In general, the axis is separated into 2n – 1 

segments, for n modules and for the worst case. 

 

 

Figure 4.15. Four modules separate the axis at most to 7 pieces. 

 

Again, for the worst case segment at the center includes n modules and the first and 

last segments include a single module. Thus the total number pointers required to hold the 

modules are: 

𝑁 =
𝑛 𝑛 − 1 

2
+ 𝑛 +

𝑛 𝑛 − 1 

2
= 𝑛2 

 

4.3. Layout Description Script (LDS) 

 

This section presents the description of the floor-plan through java script. This 

description uniquely defines a placement for the chip. 

The command in this description language describes an interface for the floor-

planner. This description language is directly related to the layout constraints (See Section 

4.1). The required commands for the script are stated under the subsections. 

 

4.3.1. Alignment Commands 

 

Alignment commands are used to align to modules. The predefined command 

handles aligning the top, bottom or middle (vertical) points of two different modules. It is 

also possible to align the left, right and center (horizontal) points of these modules. 

 

4.3.2. Abutment Commands 

 

The abutment commands are used to bond two different modules. It is mostly used to 

connect wires to modules. Due to electrical rules in the design all wires are required to 

touch the ports. 
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Table 4.6. Commands for alignment 

Definition Description 

int alignLeft(int reference, int e); Aligns left boundaries of modules 

int alignRight(int reference, int e); Aligns right boundaries of modules 

int alignCenter(int reference, int e); Aligns center points (horizontal) of modules 

int alignTop(int reference, int e); Aligns top boundaries of modules 

int alignBottom(int reference, int e); Aligns bottom boundaries of modules 

int alignMiddle(int reference, int e); Aligns center points (vertical) of modules 

 

Table 4.7. Command for abutment 

Definition Description 

int abutRight(int reference, int e); 
Aligns right boundary of module reference 

module with the left boundary of input module 

int abutLeft(int reference, int e); 

Aligns left boundary of module reference 

module with the right boundary of input 

module 

int abutAbove(int reference, int e); 

Aligns top boundary of module reference 

module with the bottom boundary of input 

module 

int abutBelove(int reference, int e); 
Aligns bottom boundary of module reference 

module with the top boundary of input module 

 

4.3.3. Insertion Commands 

 

Previously defined commands are used to add constraints into the layout and they are 

converted to constraints. However, the following commands are not constraints and they 

are used to define the order of the modules. 

 

4.3.4. Command for General Constraints 

 

This command adds general constraints. Previously defined alignment and abutment 

commands are special cases for this command. 
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Table 4.8. Module insertion 

Definition Description 

int insertAt(int e, double x, double y); 
Adds a new module at the x and y 

coordinates 

int insertRight(int reference, int e); 
Adds a new module to the left of the 

reference module 

int insertLeft(int reference, int e); 
Adds a new module to the right of the 

reference module 

int insertAbove(int reference, int e); 
Adds a new module above the reference 

module 

int insertBelove(int reference, int e); 
Adds a new module below the reference 

module 

 

4.3.5. Update Commands 

 

These commands are used to update the layout database or update the floor-plan. An 

update to the database will load the coordinates of the modules to the database from the 

floor-planner. 

 

Table 4.9. Adding general constraints 

Definition Description 

void setLocation(int e, int reference, 

double xMin, double xMax, double 

yMin, double yMax); 

Places two modules in such a way that the 

difference between their x coordinates is in the 

range [xmin, xmax]. Similarly the difference between 

their y coordinates is in the range [ymin, ymax]. 

 

Table 4.10. Command for updating 

Definition Description 

void updatePlan(DataBase dB, int e); 
Reloads the properties of a module into the 

floor-planer  

void updateBase(DataBase dB); 
Updates the database according to the 

coordinates in the floor-planner 
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4.3.6. Basic Commands 

 

Basic commands are used to delete/add modules, remove constraints, and undo the 

last modification. 

 

Table 4.11. Basic commands 

Definition Description 

void iterate(); Forces the floor-planer to find a valid solution 

int redo(int n); Redo 

int undo(int n);  Undo 

void removeConstraint(int e); Removes the input constraint 

void delete(int e); Removes a module from the floor-planner 

 

4.4. Constraints and Inequalities 

 

In section 4.3, the commands for the layout description script are stated. Most of 

these commands add constraints to the floor-planner. In Figure 4.16, a simple floor-plan is 

shown. The arrows indicate the input constraints. In this example, left edge of module A is 

abutted with the left boundary of the floor-plan and the right edge of module D is abutted 

with the right boundary of the floor-plan. Also, there are constraints due to the static 

modules, the width of A is constant and this is another constraint. Moreover, module D 

cannot come closer to module B, because it cannot pass over module C. A classification 

for the constraints is stated in the next subsection.  

 

4.4.1. Classification of Constraints 

 

In general, constraints in a floor-plan may be grouped into two: soft and hard 

constraints. 

 

4.4.1.1. Soft Constraints. Soft constraints are not static, and they can disappear. For 

instance, the module B in Figure 4.16 cannot touch the left boundary of the floor-plan, due 

to module A; however if module B moves up it can touch the left boundary. Thus, the 

constraint that B should be after A is a soft constraint and it can disappear. 
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Figure 4.16. Constraints in the floor-planer 

 

4.4.1.2. Hard Constraints. Hard constraints are static and they do not disappear unless the 

user removes it. In Figure 4.16, the width of module C is fixed to 15 and it will not change. 

 

4.4.2. Constraints and Inequalities 

 

The boundaries of the floor-plan are denoted by B and the subscript indicates which 

boundary it is. Bl represents the left boundary, Br represents the right boundary and 

similarly Bb and Bt represents the bottom and the top boundaries, respectively. 

 

The positions of the edges of the modules are represented like lA, where the l 

represents the left edge and A represents the module name. The letter r represents the right 

edge, and similarly the b and t represents bottom and top edges, respectively. 

 

The following equation is obtained through an observation of Figure 4.16 and states 

that the position of left boundary (Bl) equals to the position of the left edge of module A 

(lA). 

 

𝐵𝑙 ≤ 𝑙𝐴 ≤ 𝐵𝑙 ↔ 𝑙𝐴 = 𝐵𝑙  

 

Similarly the following equations are obtained from the floor-plan in Figure 4.16. 

 

  𝑙𝐴 = 𝐵𝑙    𝑟𝐷 = 𝐵𝑟    𝐵𝑙 ≤ 𝐵𝑟  

  𝐵𝑙 ≤ 𝑙𝐴   𝑟𝐴 ≤ 𝑙𝐵   𝐵𝑙 ≤ 𝑙𝐵 

  𝑟𝐴 ≤ 𝑙𝐶    𝑟𝐶 ≤ 𝑙𝐷   𝑟𝐵 ≤ 𝑙𝐷 

  𝑟𝐷 ≤ 𝐵𝑟    𝑟𝐵 ≤ 𝐵𝑟    𝑟𝐴 = 𝑙𝐴 + 5 

  𝑟𝐵 = 𝑙𝐵 + 5   𝑟𝐶 = 𝑙𝐶 + 15   𝑟𝐷 = 𝑙𝐷 + 5 
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4.4.3. Inequalities and Graphs 

 

It is shown in section 4.4.2 that the floor-plan problem is a set of inequalities. The 

inequalities have to be solved in order to obtain a valid solution. 

 

In this thesis, a new algorithm is developed to solve a set of inequalities. The solution 

is found by making use of graph theory. 

 

In section 4.4.2, inequalities for the floor-plan in Figure 4.17.(a) are extracted and in 

Figure 4.17.(b) these inequalities are converted to a directed graph. The presented graph 

holds ranges as well as values, and the nodes also hold values. The edges in the graph are 

allowed to be inverted. Inversion of an edge is done as follows: 

 

 Value of the edge is negated. 

 The range is negated. When the range [α, β] is inverted, it becomes [-β, -α]. 

 

4.4.4. Solving the Inequalities 

 

The proposed solver deals with any set of constraints and detects if the solution does 

not exist. Starting from any node the algorithm runs and the procedure is as follows: 

 

1. Change the directions of the surrounding edges as outgoing. 

2. Start visiting the surrounding (directly connected) nodes. 

3. Calculate the difference between the value of this node and the connected node. 

4. Assign the difference to the edge and if the capacity of the edge is not enough to 

hold the difference, update the value of the connected node. 

5. Add any updated or unvisited node to the queue. 

6. If there is not any node to be visited, leave the loop. The node values are the 

solutions. 

7. Use Breadth-first algorithm to visit the nodes. 

 

As an example, the solution of the graph in Figure 4.17 is present in APPENDIX C. 
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4.4.5. Loop Breaking 

 

It is not always possible to find a solution to a set of inequalities. In this case, the 

presented algorithm tries to find the solution, which is not present. It is expected that the 

algorithm locks. However, in that case, the presented algorithm realizes that the 

inequalities (constraints) conflict. 

 

When a solution does not exist, the algorithm starts to visit the edges periodically. 

The order of the visited edges is considered as a signal and checked for replications. This 

signal (list of the visited edges) is processed with the system presented in Figure 4.18. 

 

 

Figure 4.17. (a) The plan and the constraints (b) The representation of the constraints in a 

graph 

 

 

Figure 4.18. Block diagram of the loop breaker 



38 

Two sample signals (visited edges) are plotted in Figure 4.19. In this figure, the 

second signal is obtained from a set of solvable inequalities and the first signal is obtained 

from a set of unsolvable inequalities. As depicted in the plot, the visited edges in the first 

signal has some periodic components, these are pointed out in Figure 4.20. Loop breaking 

property of the solver prevents blocking of the software. 

 

4.5. Floor-planner Implementation 

 

In this thesis, the implemented floor-plan is based on the P-sequence representation 

in section 4.2.3 and the inequality solver in section 4.4.4. The implementation is 

compatible with the layout description script (LDS) described in section 4.3. 

 

 

Figure 4.19. Sample signals (visited edges) 

 

 

Figure 4.20. Periodicity in the signal 
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The P-Sequence representation is used to hold the ordering of the modules. This 

structure is used to extract the soft constraints described in section 4.4.1. The hard 

constraints are installed through the template (LDS). All these inequalities (constraints) are 

solved and the database is updated according to the solution. 
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5. DEVICE GENERATOR AND ROUTER 

 

 

Device generator tool is one of the basic parts of a layout synthesizer. Similar to the 

other tools, this tool is connected to the data base and adds new structures to it. It is 

possible to construct any type of device through the device generators. These device 

generators are written in java and they depend on the available technology. It is required to 

update the device generator when the technology file updates. As an example, a CMOS 

transistor structure will be different that a bipolar one. To construct the bipolar device a 

new code is required. Thus it will be a good practice to define a interface for the device 

generator, just to make it general. In section 5.1, a general interface is defined. 

 

5.1. Interface 

 

The definition of the command, needed to construct a new device, is explained in 

Table 5.1. 

 

Table 5.1. Interface for adding new devices 

Definition Description 

int newDevice(int type, double[] 

parameters, int[] nets); 
Adds a new device to the layout database 

 

The newDevice command in Table 5.1 takes the device type as an input parameter. 

For a CMOS device technology, devices types are tabulated in Table 5.3. 

 

Device generator constructs the requested devices, however the ports of the device 

are not known. Thus, the generator should somehow return the positions of the ports. This 

is done through the getPorts command, defined in Table 5.2. 

 

Table 5.2. Interface to get the ports 

Definition Description 

int[] getPorts(int e); Returns references for the ports. 
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Table 5.3. Device types for CMOS process 

Device Value for the Type Parameter 

NMOS 1 

PMOS 2 

RESISTOR 3 

CAPACITOR 4 

INDUCTOR 5 

 

5.1.1. Example 

 

The following code constructs a PMOS device. 

 

int t = x.newDevice(PMOS, new double[] {w, l, m}, new int[] {d, g, s, b}); 

 

Where w is the width of the transistor, l is the length of the transistor; m is the 

number of folds, d is the reference of the drain node, g is the reference of the gate node, s 

is the reference of the source node and b is the reference of the bulk node. 

 

5.2. Devices 

 

In the implementation of this thesis, the device generator constructs NMOS and 

PMOS devices. The details for the constructed devices are explained in the sub sections. 

 

5.2.1. NMOS Transistor 

 

The NMOS device is constructed by calling the newDevice command. The width and 

the length of the transistor are not restricted and they can be adjusted independently. 

According to the length of transistor, the number of the metal-poly contact is updated. 

 

Also a guard ring is added around the transistor. Figure 5.1 shows a sample NMOS 

transistor. The width of this transistor is 48μm, the length of this transistor is 1μm and the 

number of folds is 14. 
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Figure 5.1. NMOS Transistor 

 

5.2.2. PMOS Transistor 

 

A PMOS device is constructed by the device generator and presented in Figure 5.2. 

The construction is similar to the NMOS transistor; additionally, NWELL layer is added 

around the transistor. 

 

5.3. Routing 

 

An interface for the routing has not been developed yet. However a template based 

router is developed. This routing scheme is based on a template that defines the wires as 

device and these devices are constructed by the device generator. 

 

In Figure 5.3, a sample routing is shown. The wire segments are coded in the 

template. Due to the fact that the designer must consider the vias, the wires and the port, 

construction of the template is a time consuming process. Thus it will be a good idea to add 

an automatic router into the design environment. I have not implemented an automatic 

router but made a detailed literature review about the available routers. These are going to 

be detailed in the following subsections. 
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Figure 5.2. PMOS Transistor 

 

 

 

Figure 5.3. Template based routing 

5.3.1. Classification of Routers 

 

In general, routing can be classified into two groups. These are area routers and 

channel routers. 
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5.3.1.1. Area Routing. Area routing tries to utilize all the spaces in the layout. If multiple 

routing layers are available, the router should also consider the effects of coupling between 

the paths and the devices. Moreover the area routing is computationally less efficient than 

the channel routing. 

 

In area routing, nets are considered individually and a global view of the 

interconnections is not present. On the other hand, area routing is general enough to be 

used with any class of circuits and geometric complexity. 

 

A well known area routing algorithm is the maze routing approach. This approach is 

based on Lee-Moore Algorithm [39]. Also the Prim’s and Kruskal’s algorithms are used to 

find out the minimum spanning tree (MST). Another approach based on planning 

techniques is in [40]. Moreover, the area routing approach is generalized for analog layouts 

in [9].  

 

As technology advances, the circuit sizes are getting larger. To cope with the 

increasing complexity, it proposed to use hierarchical approaches to handle the problem. 

The multilevel framework started to be popular in the literature recently. The approach 

uses a two stage technique, it is coarsening followed by un-coarsening. In the coarsening 

stage modules are groups according to pre-defined metric. Then the un-coarsening stage 

un-groups the grouped modules and refines the solution. A multilayer approach is 

presented in [41]. 

 

The area router is applied to analog layouts [9]. This tool uses a relative grid with 

and it allows over-device routing, although routing over sensitive modules can be 

prevented. 

 

5.3.1.2. Channel Routing. The channel router is a special router designed for routing in an 

area with no inside obstructions and with terminals on two opposite sides. The dogleg 

router has been one of the most successful implementations of this router. 
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Channel routing is computationally more efficient than the area routing. In this 

approach channels, between the rows, are used for routing. Left-edge [42] and ―Greedy‖ 

algorithms [43] are well known approaches. 

 

The channel routing is not limited to digital circuits, the tool ALG [44] is an analog 

layout generator for CMOS circuits. This tool also uses a channel based routing algorithm. 

Moreover, channel based routing is applied to channel-less circuits, the approach in [45] 

aligns the terminals of the modules in each row and constructs channel like routing areas. 

 

Routing between the rows is done through switchboxes. Thus, a switchbox router is 

also required and the switch-box problem is an NP hard problem. Some papers adapted a 

set of heuristic rules which reduces the possibility of search failure to avoid blocking. 

 

To sum up, the channel routing approach is successfully applied to digital design 

automation and it may advance the analog layout automation. 

 

5.3.2. Required Capabilities 

 

Throughout the literature review, it is concluded that the following capabilities are 

required in a router. 

 

1. Nets should be ordered according to their priority. 

2. The layer and the widths of the wires should not be static. 

3. The router should record the manipulation and when desired it should be able undo 

the modifications. 

4. All the nets should be processed simultaneously. (It is not desired to have a net by 

net router.) 

5. Physical constraints should be added between wires, such as minimum separation. 

6. The router should efficiently allocate the routing space. 

7. It should estimate the routing parasitic, such as coupling capacitance and wire 

resistance. 

8. Detailed routing may be done through the device generator, thus the main 

functionality of the router should be to manage the routing. 
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9. Symmetric routing and bus routing should be supported. 

10. Router should be able to add shielding around the wires, for preventing cross talk. 

11. Manual and automated routing should be supported simultaneously. (Manually 

routed parts may be locked.) 

12. Power nets should be defined separately. 

13. Reporting of the missing connections should be present. 

14. The layer transitions should be considered in the optimization loop. (Two many 

vias may influence the performance.) 

15. Different paths of a net can have different current densities and widths. Net 

splitting is needed. 

 

5.3.3. Routing Styles 

 

Routing of an analog circuit requires different routing layer, wire widths. These are 

called styles for routing and these styles are added into the technology files. 

 

A style contains the available routing layer, such as metal1 and metal2. Also a style 

contains information about the shielding around these layers. Moreover, in a style the 

spacing between wires, the widths of the wires are stored.  
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6. IMPORTER AND EXPORTER 

 

 

The importer and the exporter tools are used to exchange information between 

different programs. In the layout generator; the importer tool is used to import devices, nets 

and device parameters from a spice file. On the other hand; the exporter tool is used to 

output the layout. The output format of the implemented tool is GDSII. This file format is 

commonly accepted. 

 

In Figure 6.1, a design loop is defined and in Table 6.1, some formats are given. 

These formats are used to exchange information between different blocks in Figure 6.1. 

 

 

Figure 6.1. Design loop 

 

6.1. Importer 

 

This tool imports netlist and devices from the input spice file. An interface is define 

for the importer and tabulated in Table 6.2. 
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Table 6.1. Formats for exchange 

Module Input Format Output Format 

Parasitic 

Extractor  
Layout Database  GDSII  Netlist  SPICE 

Simulator  Netlist  SPICE Output  ASCII 

Performance 

Evaluator  

Output of 

Simulation  
ASCII Output  ASCII 

Optimizer  

Objectives and 

Constraints  
ASCII 

Netlist  SPICE Netlist  SPICE 

Output of 

Evaluator  
ASCII 

Layout 

Synthesizer  

Netlist  SPICE Layout 

Database 
GDSII 

Constraints  ASCII 

 

Table 6.2. Interface for the importer 

Definition Description 

void load(String fileName); Loads the netlist and components 

double[] getParameters(int e); Returns the parameter of a device 

int[] getNets(int e); Returns the nets of a device 

int[] getComponents(); Returns the components from the spice file 

 

6.2. Exporter 

 

This tool is used to export the layout database. The output format of the layout 

generator is chosen to be GDS2. However, it is not restricted to be GDS and any exporter 

(i.e. OASIS [46]) implementing the interface in Table 6.3 can be used. 

 

Table 6.3. Interface for the exporter 

Definition Description 

void connect(DataBase dB); Connects to a database 

void convert(String fileName); Exports the database into a file 
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7. LAYOUT GENERATOR 

 

 

In section 3, the layout database is introduced; in section 4, the floor-planner is 

described and in section 5, the device generator and the router are introduced; moreover 

the importer and the exporters are described in section 6. These tool are combined into a 

layout synthesizer, the block diagram of the system is depicted in Figure 7.4. 

 

A differential pair is depicted in Figure 7.1. A template is constructed for this 

differential pair. Due to the routing in the template, the template is huge. Thus, the 

template is not shown here. However, a small part of the template is stated in Figure 7.2. 

The parameters in this template are shown in Figure 7.3. 

 

 

Figure 7.1. Differential pair 

 

 

Figure 7.2. Code for the template 

plan.setAbove(p_m4s_gnd_3, m4, 0, 0); 

plan.alignLeft(p_m4s_gnd_3, generator.getPorts(m4)[2]); 

plan.alignLeft(p_m4b_gnd, generator.getPorts(m4)[3]); 

plan.abutBelow(m4, p_m4b_gnd); 



50 

 

Figure 7.3. Template based construction 

 

 

Figure 7.4. Block diagram of the layout generator 
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The layout generator is fed with the spice code in Figure 7.5 and the layout in Figure 

7.7 is synthesized. 

 

 

Figure 7.5. SPICE code 

 

The layout generator is also fed with the spice code in Figure 7.6. In Figure 7.8, the 

synthesized layout is shown. 

 

 

Figure 7.6. SPICE code 

 

 

Figure 7.7. Constructed layout (spice code in Figure 7.5) 

M1 2 7 3 1 pmos w=8e-6 l=0.2e-6 m=8 

M2 2 8 4 1 pmos w=8e-6 l=0.2e-6 m=8 

M3 4 3 6 6 nmos w=8e-6 l=0.2e-6 m=8 

M4 3 3 6 6 nmos w=8e-6 l=0.2e-6 m=8 

M7 1 9 2 1 pmos w=8e-6 l=0.2e-6 m=8 

 

M1 2 7 3 1 pmos w=132e-6 l=1e-6 m=16 

M2 2 8 4 1 pmos w=128e-6 l=0.8e-6 m=16 

M3 4 3 6 6 nmos w=48e-6 l=1e-6 m=14 

M4 3 3 6 6 nmos w=64e-6 l=1e-6 m=12 

M7 1 9 2 1 pmos w=120e-6 l=1.2e-6 m=16  
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Figure 7.8. Constructed layout (spice code in Figure 7.6) 
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8. CONCLUSION AND FUTURE WORK 

 

 

8.1. Conclusion 

 

In this work, a template-based analog layout automation tool is developed. The 

templates are coded in java language and the functions, used in these templates, are pre-

defined through the interfaces in sections 3, 4 and 5. This layout tool consists of six parts. 

These are: importer, layout database, device generator, floor-planner, router and exporter. 

 

Through the importer tool, the circuit components and their dimensions are read. The 

implemented importer reads SPICE files. The components read from the input SPICE file 

are recorded into component database. 

 

The layout database holds the drawings of the components. The implemented 

database considers the components as geometric shapes. Through this database; the 

components are easily rotate, flipped and moved. The database also supports hierarchy. 

Compared to conventional layout databases, this implementation runs faster. 

 

Drawings of the components are synthesized by the device generator. The device 

generator reads design rules from a technology file and synthesizes NMOS and PMOS 

transistor. The implemented device generator is not restricted to synthesize transistors. 

However, only these devices are defined and new devices are required to be defined. 

 

Floor-planner plans the placement of the layout components. The plans are read from 

template files. The template files include absolute and relative constraints. These 

constraints are mentioned in section 4.1. The constraints, read from the template files, are 

combined with physical constraints and they are solved by an equation solver. Algorithm 

of this solver is developed through the study of this thesis. 

Routing between components is done by a template-based router. The implemented 

router does not decide on the routing; however reads it from a template file. 
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Finally, the exporter outputs the layout database into a GDSII file. This output format 

is a common layout exchange format. 

 

Being a template-based tool, this work can synthesize layouts in a few seconds. 

Section 7 includes some of the resulting layouts. Due to the fact that template-based layout 

synthesizers run much faster that the optimization based synthesizers, they can be used in a 

parasitic aware design loops. Such a loop is defined in Figure 6.1. This design loop is 

going to be applied and this work will perform the layout synthesis. 

 

8.2. Future Work 

 

Given the template files, this work is capable of synthesizing any kind of circuit. 

However, construction of these templates takes considerable amount of time. These 

templates consist of tens of components and most of these components are wires and vias. 

Thus, a simpler routing scheme is needed. 

 

A router is required to be implemented that will automatically add the wires and vias 

into the template file. Thus, the user will only add the modules; transistors, capacitors and 

etc… The required functionalities for a router are described in section 5.3.2. 

 

Due to technology migration, template based placement may lead unoccupied die 

area. Thus, a template generator is required. This generator should synthesize a template 

for a given netlist. 
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APPENDIX A: COMPUTATIONAL COMPLEXITY 

 

 

A main concern about an algorithm is how long it takes to end. Also the algorithm 

will utilize some of the memory resources of the machine on which it is running, another 

concern is about how much of the memory will it use. The computational complexity refers 

to the formulation of the time and the memory required by an algorithm in terms of the 

algorithms input size (𝑛). The time related computational complexity is referred as time 

complexity where the memory related complexity is referred as space complexity. 

The time complexity is a measure for the time required to complete an algorithm. 

Generally it refers to the upper bound for the time required by an algorithm. The upper 

bound for the time is referred as order and indicated by (𝑂) capital-O.  Note also that, the 

formulation does not involve constants and is simplified by dropping non-dominant terms.  

For instance if the time required for some algorithm is formulated as: 

 

𝑓 𝑛 = 𝑂 𝑔 𝑛  = 𝑂 3𝑛3 + 3𝑛2log⁡ 𝑛 + 5𝑛  

 

It is said that the algorithm’s time complexity (𝑓 𝑛 ) is of order at most 𝑔 𝑛  

function. This complexity can be simplified, by removing the constants and dropping non-

dominant terms, as: 

 

𝑓 𝑛 = 𝑂 𝑔 𝑛  = 𝑂 𝑛3  

 

Other that the upper bound complexity, there exist other types of complexities such 

as the average time complexity. The average time complexity is a better figure of merit for 

the time complexity, however it is hard to formulate. Calculations require the joint 

probability density functions or joint probability mass functions for the inputs, which is 

hard to obtain. Due to this fact, the time complexity generally refers to the upper bound for 

the time complexity. 

The space complexity is measure for the amount of memory required to run an 

algorithm. Generally the space complexity is given less intention than the time complexity 

and is not mentioned. Note also that, an algorithm will not run at all if the memory 

requirements of the algorithm exceed the available resources of a machine. 
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A.1. Classification of Algorithms in terms of Order 

 

Order is defined as the upper bound for the time required by an algorithm as detailed 

in the Computational Complexity part. 

 

A.1.1. Exponential Order 

 

As the name implies, these algorithms have an exponential order. The time required 

for the algorithm grows exponentially with the input size. In integrated design automation 

these algorithms are generally used to find exact solutions to optimization problems. One 

should be careful about the size of the input, if the input size exceeds some threshold, the 

algorithm will not finalize within a tolerable time interval. 

 

A.1.2. Polynomial Order 

 

These algorithms have polynomial order and they should be preferred over 

exponential algorithms. The algorithms with order in between to polynomial orders are 

also included in this class. For instance an algorithm with an order of 𝑂 𝑛2log⁡(𝑛)  is in 

this class. 

In general one should prefer an algorithm over the other if the order is less. An algorithm 

with a linear order should be preferred over an algorithm with quadratic order. Also if 

available, algorithms with sub-linear order should be preferred over the others. For 

instance an algorithm of 𝑂 log⁡(𝑛)  requires much less time than an algorithm of 𝑂 n  as 

the input size 𝑛 increases. 
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APPENDIX B: ALGORITMIC GRAPHS 

 

 

A graph can be defined as the description of the connections between the elements of 

a set. In general graphs ease the mathematical formulation and solution of a problem. Due 

to this fact, they are also in field of integrated design automation, and they are extensively 

used.   

Algorithmic graph theory aims to design algorithms, running on graphs. This theory does 

not focus on the mathematical properties of the graphs; however it focuses on the 

application of these properties. A brief introduction to the graph theory, necessary to 

design algorithms, is stated in this part. 

 

B.1. Terminology 

 

A graph 𝐺 𝑉, 𝐸  is defined with two sets; the vertex set (𝑉) and the edge set (𝐸). An 

edge is defined to be the relation between two vertexes. If edge 𝑒  is defined between 

vertexes 𝑢 and 𝑣, the edge is formulated as 𝑒 =  𝑢, 𝑣 . See Figure B.1, for a graph 𝐺 𝑉, 𝐸  

with 𝑉 =  𝑣1, 𝑣2 , 𝑣3  and 𝐸 =  𝑒1, 𝑒2 , where edges 𝑒1 and 𝑒2 are defined as 𝑒1 =  𝑣1, 𝑣2  

and 𝑒2 =  𝑣2 , 𝑣3 , respectively. Figure B.1 

 

 

Figure B.1. A sample graph 

 

An edge starting and ending at the same vertex is a called a self-loop. If two edges 

𝑒1 =  𝑢, 𝑣 , 𝑒2 =  𝑢, 𝑣  start and end with the same vertexes, these edges are called 

parallel edges. A graph without self-loops or parallel edges is called a simple-graph. A 

graph with parallel edges but without self-loops is called a multi-graph. 

A path is defined as an alternating sequence of vertexes and edges. The first and the 

last element in a path should be a vertex. Every edge in the sequence is surrounded by two 

𝑣3  

 

𝑣2  

 

𝑣1 

𝑒2 

 

𝑒1 
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vertexes, and every edge should be defined by the surrounding two vertexes. The length of 

a path is defined as the number of edges in the path. If a path includes a vertex only ones, 

this path is called a simple path. For instance in Figure B.1 the sequence 𝑣1, 𝑒1, 𝑣2 , 𝑒2, 𝑣3 is 

a path. Note also that, the vertexes 𝑢 and 𝑣 are called connected, if there exists a path 

between them. 

 

A directed graph is sub-class of a graph, in which the edge 𝑒 =  𝑢, 𝑣  is only defined 

from 𝑢  to 𝑣 .  More formally the edge 𝑒1 =  𝑢, 𝑣  is not the same with the edge 𝑒2 =

 𝑣, 𝑢 . In Figure B.2, a directed graph is plotted. A path in a directed graph is defined as 

directed path, if all of the edges are directed in the same way as the path. 

 

 

Figure B.2. A directed graph 

 

The algorithmic graph theory focuses on developing algorithms on graphs. Thus if 

required one can extend the information, the graph holds. For instance weights to the edges 

or to the vertexes can be added. Assigning weights, the weighted path lengths are defined 

as the sum of the edge weights through a path. 

 

B.2. Graph Algorithms 

 

In this part, some of the common graph algorithms, utilized in the thesis are 

summarized. 

 

B.2.1. Depth-First Search and Breadth-First Search 

 

It is commonly required to visit the vertexes in a graph. One way to visit the vertexes 

is to use the depth first search (DFS). This algorithm recursively visits the vertexes. After a 

vertex is visited, the vertex connected to this vertex is visited. 
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Breadth-First Search (BFS) is another algorithm used to visit the vertexes. The basic 

idea of BFS is to explore all vertices adjacent to a vertex before exploring any other vertex. 

 

B.2.2. Longest-Path and Shortest-Path Algorithms 

 

The longest path algorithm is used to find the longest path starting from vertex 𝑢, 

and ending at vertex 𝑣. As well as the longest path algorithm, there exist shortest path 

algorithms. Dijkstra’s algorithm is one of the most popular shortest path algorithms. 
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APPENDIX C 

 

 

In this section the floor-plan in Figure 4.17 is going to be solved using the algorithm 

in section 4.4.4. The legend for the Figure C.2 to Figure C.20 is presented in Figure C.1. 

 

 

Figure C.1. Legend 

 

 

 

Figure C.2. Solution of the example: Step 1 
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Figure C.3. Solution of the example: Step 2 

 

 

Figure C.4. Solution of the example: Step 3 
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Figure C.5. Solution of the example: Step 4 

 

 

Figure C.6. Solution of the example: Step 5 
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Figure C.7. Solution of the example: Step 6 

 

 

Figure C.8. Solution of the example: Step 7 
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Figure C.9. Solution of the example: Step 8 

 

 

Figure C.10. Solution of the example: Step 9 
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Figure C.11. Solution of the example: Step 10 

 

 

Figure C.12. Solution of the example: Step 11 
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Figure C.13. Solution of the example: Step 12 

 

 

Figure C.14. Solution of the example: Step 13 
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Figure C.15. Solution of the example: Step 14 

 

 

Figure C.16. Solution of the example: Step 15 
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Figure C.17. Solution of the example: Step 16 

 

 

Figure C.18. Solution of the example: Step 17 
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Figure C.19. Solution of the example: Step 18 

 

 

Figure C.20. Solution of the example: Step 19 
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Figure C.21. Solution of the example (a) the floor-plan (solution) (b) graph showing the 

solution 
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