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of this thesis. I thank TÜBİTAK (Scientific and Technical Research Council of Turkey)

for support through the Basic Sciences Unit Research Project 106T593.



iv

ABSTRACT

UNCERTAINTY AND CERTAINTY RELATIONS FOR

THE Q-OSCILLATOR

The uncertainty and certainty relations for the momentum and position operators

for the q-oscillator and Fibonacci oscillator are investigated in this thesis. The one-

dimensional q-oscillator, the two-dimensional q-oscillator which is invariant under the

action of the unitary q-deformed quantum group and Fibonacci oscillator are studied.

We study the one-dimensional q-oscillator. Firstly, by using the commutation

relation for the momentum and position operators, the uncertainty relations for the

energy eigenstates and any state which is a superposition of energy eigenstates are

calculated. By calculating the upper limit of the expectation value of the hamiltonian,

the upper limits of ∆P and ∆X and the certainty relations are obtained in the case in

which 0 < q < 1. Then further uncertainty relations for the momentum and position

are obtained. Secondly, by calculating ∆P and ∆X directly and by finding their lower

and upper limits, the uncertainty and certainty relations for the energy eigenstates

are again obtained. As a result, the two ways of finding the uncertainty and certainty

relations for the energy eigenstates are true but the most informative results are selected

from the two different sets of results obtained by these two methods. Thus the further

uncertainty relations and the certainty relations are obtained for the energy eigenstates

and an arbitrary state. The classical limits of (εn+1 − εn)/εn where εn are the energy

eigenvalues are calculated for the different intervals of q. It is shown that the classical

limit of this quantity in the case in which q ≥
√

2 is unreasonable.

A similar procedure is repeated for the two-dimensional q-oscillator and Fibonacci

oscillator.
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ÖZET

Q-SALINIMCISINA AİT BELİRSİZLİK VE BELİRLİLİK

BAĞINTILARI

Bu tezde, q-salınımcısına ait momentum ve konum işlemcilerinin sağladıkları

belirsizlik ve belirlilik bağıntıları incelenmiştir. Bir boyutlu q-salınımcısı, üniter q-

deforme kuantum grubu altında değişmez olan iki boyutlu q-salınımcısı ve Fibonacci

salınımcısı çalışılmıştır.

Bir boyutlu q-salınımcısını inceledik. İlk olarak, momentum işlemcisi ve konum

işlemcisine ait komütasyon bağıntıları kullanılarak, enerji özvektörleri için ve enerji

özvektörlerinin bir kombinasyonu olan her hangi bir durum için belirsizlik bağıntıları

hesaplanmıştır. Hamiltonyenin beklenen değerinin üst limiti hesaplanarak, 0 < q < 1

koşulunda ∆P ’nin ve ∆X’in üst limitleri ve belirsizlik bağıntıları elde edilmiştir. Sonra

ileri belirsizlik bağıntıları elde edilmiştir. İkinci olarak, ∆P ve ∆X doğrudan hesa-

planarak ve bunların alt ve üst limitleri bulunarak, enerji özvektörleri için belirsizlik

bağıntıları ve belirlilik bağıntıları tekrar elde edilmiştir. Son olarak, enerji özvektörleri

için belirsizlik bağıntıları ve belirlilik bağıntıları bulmanın iki yolu da doğrudur. Bu

iki metodla elde edilen iki farklı çözüm setinden en çok bilgi veren sonuçlar seçilmiştir.

Böylece, enerji özvektörleri için ve herhangi bir durum için ileri belirsizlik bağıntıları ve

belirlilik bağıntıları elde edilmiştir. q’nun farklı değer aralıkları için (εn+1 − εn)/εn’in

klasik limitleri hesaplanmıştır. εn’in enerji özdeğerleri olduğu bu ifadenin klasik limi-

tinin q ≥
√

2 koşulunda makul olmadığı gösterilmiştir.

Benzer bir yöntem iki boyutlu q-salınımcısı ve Fibonacci salınımcısı için tekrar-

lanmıştır.
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1. INTRODUCTION

The importance of the uncertainty relations and the certainty relations for the q-

oscillator is related to the importance of the topics which are the Heisenberg uncertainty

relation[1] and the quantum harmonic oscillator.

The Heisenberg uncertainty principle is significant because it is the basis of quan-

tum mechanics. This principle says that it is not possible to measure the momentum

and the position of a particle simultaneously with a greater accuracy than the maxi-

mum accuracy determined by the uncertainty relation which is ∆P∆X ≥ h̄
2
. If it were

possible, then quantum mechanics would collapse.

The quantum harmonic oscillator is a significant subject because it is exactly

solvable and is related to all branches of physics. Most of the physical systems excited

near their ground states behave like harmonic oscillators. Some of the examples are

molecular bound states and quantized radiation. The harmonic oscillator is applied to

nuclear and hadronic bound states. When the electromagnetic field is quantized one

again basically obtains the harmonic oscillator: The electrical energy behaves as the

kinetic energy of the oscillator and the magnetic energy behaves as the potential energy

of the oscillator. Quantum field theory generalizes this phenomenon to any particle or

field which is quantized. With the discovery of quantum groups[2-5] (q-groups) which

are one-parameter generalizations (deformations) of the familiar Lie groups, similar

generalizations of the quantum harmonic oscillator have attracted a lot of scientists’

attention[6-15]. The first appearance of these generalizations, now called q-oscillators,

predated the discovery of quantum groups by a decade[16-20]. The simplest one-

dimensional version of the q-oscillator is defined by the commutation relation[20]

aa† − q2a†a = 1 (1.1)

where a† and a are the creation operator and the annihilation operator respectively

and q is the real deformation parameter. There are different kinds of multi-dimensional
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extensions of the q-oscillator.[16-24] The most interesting one which is invariant under

the action of the unitary quantum group has been constructed by Pusz and Woronow-

icz[22]. The physical significance of this invariance is that there is a one to one corre-

spondence[25] between the excited states of the q-oscillator and the excited states of

the ordinary oscillator.

In section (1.1), we study the uncertainty relations. The derivation of the uncer-

tainty relations will occur. This method will be used through chapter (2).

In section (1.2), we study the physical importance of the harmonic oscillator.

Our purpose here is to realize that the applications of the harmonic oscillator thus the

q-oscillator or the Fibonacci oscillator are possible in most areas of physics.

In section (2.1), we study the one-dimensional q-oscillator. If we define the po-

sition operator and the momentum operator linearly in terms of the creation operator

and the annihilation operator, then the commutation relation satisfied is different than

the canonical commutation relation which we calculate. The commutation relations

for the hamiltonian, the creation operator and the annihilation operator are then con-

sidered to obtain the energy eigenvalues. It is examined under which conditions there

must be a ground state. Under the condition that there is a ground state, the uncer-

tainty relation for the energy eigenstates can be calculated. After that, for the case

in which 0 < q < 1 and the energy eigenvalue ε is less than 1
1−q2 , the upper limit of

the energy eigenvalues is found. By using this limit, the upper limits of ∆P , ∆X and

∆P∆X can be obtained. Then one can find the lower limits of ∆P and ∆X. On

the other hand, the lower limits and the upper limit of the expectation value of the

hamiltonian are studied. Therefore we have the uncertainty relation and the certainty

relation for any state. To get these relations in a different way, we calculate ∆P and

∆X for the energy eigenstates and we examine their lower limits and the upper lim-

its. After comparing these two sets of results obtained by the two methods, the most

informative ones are selected. In addition, (εn+1 − εn)/εn and its classical limits are

calculated for the different intervals of q.
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In section (2.2), we study the two-dimensional q-oscillator. There are various

kinds of multi-dimensional extensions of the q-oscillator. Here we will study the one

which has been constructed by Pusz and Woronowicz. This construction is invariant

under the quantum group Uq(2). The degeneracy of the bound state energies of the

ordinary oscillator is conserved. The hamiltonian for the two-dimensional q-oscillator is

defined so that it has two properties which will be explained in this section. In addition

to the energy eigenvalues, the spectra of a†1a1 and a†2a2 are calculated. However, in

general, the same procedure is followed here as section (2.1).

In section (2.3), we study Fibonacci oscillators. A similar procedure to the one in

section (2.1) is followed here. Moreover, the spectrum of the deformed number operator

a†a is examined by two methods. So it has two different forms.

In summary, through chapter (1), we will be interested in the importance of

the subject of this thesis. Through chapter (2), we will focus on the uncertainty

and certainty relations. Besides, some other important aspects of the q-oscillator or

Fibonacci oscillator will be mentioned. In the end, the conclusion part will appear.

1.1. THE UNCERTAINTY RELATIONS

Here we will recall the well-known method of finding the uncertainty relations.

The Heisenberg uncertainty principle is obtained by this way.

Now, let A and B be two Hermitian operators satisfying

[A, B] = iC. (1.2)

To compute the uncertainty relation for A and B, we write

(∆A)2(∆B)2 = 〈Ψ|(A− 〈A〉)2|Ψ〉〈Ψ|(B − 〈B〉)2|Ψ〉 (1.3)
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where

〈A〉 = 〈Ψ|A|Ψ〉 (1.4)

and

〈B〉 = 〈Ψ|B|Ψ〉. (1.5)

To simplify the notation, we define the pair

Â = A− 〈A〉 (1.6)

B̂ = B − 〈B〉. (1.7)

We next use the equalities

Â† = Â (1.8)

and

B̂† = B̂ (1.9)

to rewrite the equation (1.3) in terms of Â and B̂. Therefore we get

(∆A)2(∆B)2 = 〈Ψ|Â†Â|Ψ〉〈Ψ|B̂†B̂|Ψ〉. (1.10)

Evidently,

(∆A)2(∆B)2 = 〈ÂΨ|ÂΨ〉〈B̂Ψ|B̂Ψ〉. (1.11)
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If we apply the Schwartz inequality which is

|V1|2|V2|2 ≥ |〈V1|V2〉|2, (1.12)

we get

〈ÂΨ|ÂΨ〉〈B̂Ψ|B̂Ψ〉 ≥ |〈ÂΨ|B̂Ψ〉|2. (1.13)

It is obvious that

(∆A)2(∆B)2 ≥ |〈ÂΨ|B̂Ψ〉|2. (1.14)

substituting Eq. (1.11) in it. By using the fact that

〈ÂΨ|B̂Ψ〉 = 〈Ψ|ÂB̂|Ψ〉, (1.15)

we rewrite the above inequality as

(∆A)2(∆B)2 ≥ |〈Ψ|ÂB̂|Ψ〉|2. (1.16)

To be able to use the equation (1.2), let us write

ÂB̂ =
1

2
[Â, B̂]+ +

1

2
[Â, B̂]. (1.17)

where

[Â, B̂]+ = ÂB̂ + B̂Â. (1.18)

Then the inequality (1.16) becomes

(∆A)2(∆B)2 ≥ |〈Ψ|1
2
[Â, B̂]+ +

1

2
[Â, B̂]|Ψ〉|2. (1.19)
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Clearly,

(∆A)2(∆B)2 ≥ 1

4
|〈Ψ|[Â, B̂]+|Ψ〉+ i〈Ψ|C|Ψ〉|2. (1.20)

Since [Â, B̂]+ and C are hermitian operators, their eigenvalues are real. Using the fact

that

|x + iy|2 = x2 + y2, (1.21)

we get

(∆A)2(∆B)2 ≥ 1

4
〈Ψ|[Â, B̂]+|Ψ〉2 +

1

4
〈Ψ|C|Ψ〉2. (1.22)

We know that the first term is certainly positive, i.e.

〈Ψ|[Â, B̂]+|Ψ〉 ≥ 0. (1.23)

So we have

(∆A)2(∆B)2 ≥ 1

4
〈Ψ|C|Ψ〉2. (1.24)

Taking the square root of this inequality, we obtain

∆A∆B ≥ 1

2
|〈Ψ|C|Ψ〉| (1.25)

for any state |Ψ〉. This is the famous uncertainty relation.
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1.2. THE PHYSICAL IMPORTANCE OF THE HARMONIC

OSCILLATOR

The linear harmonic oscillator is important in both classical and quantum physics.

Its importance stems from the property of its potential energy and its applications to

most continuous physical systems.

Firstly, let us examine the special property of the potential energy given by

V (x) =
1

2
mw2x2 (1.26)

where m, w and x denote the mass, angular frequency and position of the harmonic

oscillator respectively. This potential is very significant since any arbitrary smooth

potential near a stable equilibrium position is approximately equal to it. To prove this

fact, let us express V (x) near x0 as

V (x) = V (x0) + V ′(x0)(x− x0) + V ′′(x0)(x− x0)
2 + ... (1.27)

using the Taylor expansion. Next, let us consider x0 as a stable equilibrium point.

Thus V (x) has a minimum at this point. Then we can obviously say

V ′(x0) = 0 (1.28)

and

V ′′(x0) > 0. (1.29)

For simplicity, let us choose

x0 = 0 (1.30)
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and

V (x0) = 0 (1.31)

without loss of generality. We also neglect the third and higher order terms since they

approximate to zero. Finally, we have

V (x) =
1

2
V ′′(0)x2 (1.32)

which has the same form as Eq. (1.26). As an example, we can mention the oscillations

of the atoms in a diatomic molecule here.

On the other hand, the behavior of most continuous physical systems, such as the

vibrations of an elastic medium or the electromagnetic field in a cavity can be explained

by the linear combination of many linear harmonic oscillators. The quantization of

these physical systems are also described by the quantum mechanics of many harmonic

oscillators. So that is why all modern field theories use the results of the study of the

harmonic oscillation.
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2. THE UNCERTAINTY RELATIONS AND THE

CERTAINTY RELATIONS

2.1. THE ONE-DIMENSIONAL Q-OSCILLATOR

To begin with, let us choose the units so that

h̄ = 1, (2.1)

m = 1 (2.2)

and

w = 1. (2.3)

In terms of the momentum and position operators, the annihilation and creation

operators are defined as

a ≡ 1√
2
(X + iP ) (2.4)

and

a† ≡ 1√
2
(X − iP ) (2.5)

respectively. These are so called because they allow us to decrease and increase the

energy.
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The hamiltonian is defined as

H ≡ 1

2
P 2 +

1

2
X2. (2.6)

As one can easily see the hamiltonian of the q-oscillator has the same structure as the

hamiltonian of the ordinary oscillator.

If we calculate the momentum and position operators in terms of the annihilation

and creation operators, we have

P =
i√
2
(a† − a) (2.7)

and

X =
1√
2
(a† + a), (2.8)

using definitions (2.4) and (2.5). Evidently, substituting these two equations into Eq.

(2.6), we get

H =
1

2
(aa† + a†a) (2.9)

This is a new form of the hamiltonian in terms of the annihilation and creation oper-

ators. Now, let us use the Eq. (1.1) to rewrite the above equation as

H =
1

2
(1 + q2a†a + a†a). (2.10)

Clearly,

H = (
1 + q2

2
)a†a +

1

2
. (2.11)
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This equation involves the deformed number operator alone which is defined as

N = a†a. (2.12)

For q = 1, the hamiltonian becomes

H = a†a +
1

2
. (2.13)

In terms of aa†, the hamiltonian changes form as

H = q−2{(1 + q2

2
)aa† − 1

2
}. (2.14)

using Eqs. (2.9), (1.1) and eliminating the term a†a.

We will now search for the commutation relations for the hamiltonian, the an-

nihilation and creation operators. Our purpose here is to find the eigenvalues of the

hamiltonian, i.e. the energy eigenvalues. We start by multiplying the both sides by a

from the right:

Ha = q−2{(1 + q2

2
)aa† − 1

2
}a. (2.15)

From the associativity property of the matrices, it is clear that

Ha = q−2a{(1 + q2

2
)a†a− 1

2
} (2.16)

So the commutation relation for the hamiltonian and the annihilation operator is

Ha = q−2a(H − 1) (2.17)



12

according to Eq. (2.11). It can be similarly shown that

Ha† = {(1 + q2

2
)a†a +

1

2
}a† (2.18)

and

Ha† = a†{(1 + q2

2
)aa† +

1

2
}, (2.19)

taking into account Eqs. (2.11) and (2.18) respectively. The commutation relation for

the hamiltonian and the creation operator is

Ha† = a†(q2H + 1) (2.20)

using Eq. (2.14).

We are now ready to obtain the energy eigenvalues. The eigenvalue problem is

H|n〉 = εn|n〉. (2.21)

By multiplication of Eq. (2.17) on the right with the energy eigenstate |n〉, we find

Ha|n〉 = q−2a(H − 1)|n〉. (2.22)

Evidently, we get

Ha|n〉 = q−2a(εn − 1)|n〉 (2.23)

and

H(a|n〉) = q−2(εn − 1)(a|n〉). (2.24)
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On the other hand, we write

Ha†|n〉 = a†(q2H + 1)|n〉 (2.25)

multiplying Eq. (2.20) by |n〉. Clearly, we have

Ha†|n〉 = a†(q2εn + 1)|n〉 (2.26)

and

H(a†|n〉) = (q2εn + 1)(a†|n〉). (2.27)

εn is an eigenvalue of H then q−2(εn − 1) and (q2εn + 1) are also the eigenvalues

of H because they satisfy the Eq. (2.21) and correspond to different eigenstates. Let

us consider

a|n〉 = Cn|n− 1〉 (2.28)

where Cn are n dependent coefficients. The recursion formula is

εn−1 = q−2εn − q−2 (2.29)

according to Eqs. (2.24), (2.28) and (2.21). By using it, we get

εn−2 = q−4εn − q−4 − q−2, (2.30)

εn−3 = q−6εn − q−6 − q−4 − q−2 (2.31)
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and so on. Expressing these in a more contact form, we get

εn−m = q−2mεn − q−2m(
1− q2m

1− q2
) (2.32)

or

εn−m = q−2m{εn − (
1− q2m

1− q2
)} (2.33)

where m = 0, 1, 2, 3, .... Now, from Eq. (2.29) we get

εn+1 = q2εn + 1. (2.34)

So Eq. (2.27) reads

H(a†|n〉) = εn+1(a
†|n〉). (2.35)

One can easily show that

a†|n〉 = Dn|n + 1〉. (2.36)

If we climb up in energy using Eq. (2.34), we have

εn+2 = q4εn + q2 + 1, (2.37)

εn+3 = q6εn + q4 + q2 + 1 (2.38)

and so on. Again,

εn+m = q2mεn + (
1− q2m

1− q2
) (2.39)
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is the generalized form of the energy eigenvalues.

In summary, we have

εn−m = q−2m{εn − (
1− q2m

1− q2
)}, (2.40)

εn+m = q2mεn + (
1− q2m

1− q2
) (2.41)

where m = 0, 1, 2, ....

Let us evaluate these eigenvalues in the limit q → 1. Then we get

εn−m = εn −m (2.42)

and

εn+m = εn + m. (2.43)

To evaluate Dn, we can write

a|n + 1〉 = Cn+1|n〉 (2.44)

evidently. It follows that

〈n + 1|a† = C∗
n+1〈n|, (2.45)

a†a|n + 1〉 = Cn+1a
†|n〉 (2.46)
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applying the creation operator to Eq. (2.44) and

a†a|n + 1〉 = Cn+1Dn|n + 1〉 (2.47)

from Eq. (2.36). Taking the inner product with 〈n + 1| and exploiting the orthonor-

mality of the basis, i.e.

〈n|m〉 = δnm (2.48)

and Eqs. (2.44), (2.45), we get

(C∗
n+1〈n|)(Cn+1|n〉) = Cn+1Dn (2.49)

and

C∗
n+1Cn+1 = Cn+1Dn. (2.50)

Hence we have

Dn = C∗
n+1 (2.51)

and Eq. (2.36) reads

a†|n〉 = C∗
n+1|n + 1〉. (2.52)

The first recursion formula was Eq. (2.29). We will now search for its validity

for the cases. We begin by recalling our fist assumption. It says that a and a† are

the annihilation and creation operators respectively. To testify this assumption, we

must examine whether εn is an increasing function of n or not. If εn is an increasing

function of n, then our assumption is true. If we find out that εn is a decreasing function

of n, then there is a contradiction. To get rid of this contradiction, we redefine the
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annihilation and creation operators so that εn is again an increasing function of n. We

start by considering

εn − εn−1 = q−2{(q2 − 1)εn + 1} (2.53)

from Eq. (2.29). Hence, to decide whether εn − εn−1 is positive or negative, it is

sufficient to look at the term (q2 − 1)εn + 1.

For q > 1, we have

q2 − 1 > 0, (2.54)

and then

(q2 − 1)εn + 1 > 0. (2.55)

Since

εn − εn−1 > 0, (2.56)

we can safely conclude that εn is an increasing function of n.

For q = 1, it is obvious that

εn − εn−1 > 0. (2.57)

Here again, εn is an increasing function of n.

For 0 < q < 1 and εn > 1
1−q2 , we get

(1− q2)εn > 1 (2.58)
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and thus

(q2 − 1)εn + 1 < 0. (2.59)

Therefore we find

εn − εn−1 < 0 (2.60)

and εn is a decreasing function of n. It means that the role of ”a” changes. It behaves

as a creation operator. This situation requires to make some modifications. We will

rearrange the notations and we will not accept the validity of the first assumption for

this case. Let us consider b and b† as our new annihilation and creation operators.

They satisfy

b = a† (2.61)

and

b† = a. (2.62)

Let us consider

b|n〉 = Fn|n− 1〉. (2.63)

Then we obtain

εn−1 = q2εn + 1 (2.64)

from Eq. (2.27) and it follows that

εn+1 = q−2εn − q−2. (2.65)
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This and Eq. (2.24) require

b†|n〉 = Gn|n + 1〉. (2.66)

If we generalize the recursion formula in Eq. (2.64), we find

εn−m = q2mεn + (
1− q2m

1− q2
) (2.67)

and then we get

εn+m = q−2m{εn − (
1− q2m

1− q2
)} (2.68)

from (2.65) where m = 0, 1, 2, ....

Now, we will search for the behavior of εn for the remaining cases.

For 0 < q < 1 and εn = 1
1−q2 , it is clear that

εn − εn−1 = 0. (2.69)

In fact, εn neither increases nor decreases.

For 0 < q < 1 and εn < 1
1−q2 , one can show that

(1− q2)εn < 1 (2.70)

and then

(q2 − 1)εn + 1 > 0. (2.71)
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Hence

εn − εn−1 > 0 (2.72)

and εn is an increasing function of n.

We have found the eigenvalues but we must check whether they are positive or

negative to be able to conclude that they are definitely the energy eigenvalues. As we

know, the negative energy is not allowed in quantum physics. If we find out that the

eigenvalues are negative for some value of m, then we will say that there must be a

ground state such that a|0〉 = 0. In this way, we will get rid of the negative eigenvalues.

We begin by using the fact that εn is the energy measured in an experiment. So it is

positive.

For the real parameter q, we have

q2mεn > 0 (2.73)

and

1− q2m

1− q2
≥ 0. (2.74)

Therefore we find

εn+m > 0 (2.75)

for q > 0, where m = 0, 1, 2, ....

For q > 1, we obviously have

1− (1− q2)εn > 0. (2.76)
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So ln{1− (1− q2)εn} is well-defined. If

m >
ln{1− (1− q2)εn}

ln(q2)
, (2.77)

then

m ln(q2) > ln{1− (1− q2)εn} (2.78)

and thus

q2m > 1− (1− q2)εn. (2.79)

Clearly, we get

(1− q2)εn − (1− q2m) > 0 (2.80)

and

εn − (
1− q2m

1− q2
) < 0. (2.81)

Therefore we find

εn−m < 0. (2.82)

So there must be a ground state.

For q = 1, if m > εn, then

εn−m < 0. (2.83)

So there must be a ground state.
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For 0 < q < 1 and εn > 1
1−q2 , it is obvious that

εn − (
1

1− q2
) > 0. (2.84)

Thus we can write

εn − (
1

1− q2
) + (

q2m

1− q2
) > 0 (2.85)

and

εn − (
1− q2m

1− q2
) > 0. (2.86)

Finally, we have

εn−m > 0 (2.87)

for every m where m = 0, 1, 2, .... So there is no ground state.

For 0 < q < 1 and εn = 1
1−q2 , we have

εn+m = εn (2.88)

and

εn−m = εn (2.89)

where m = 0, 1, 2, .... It means that we have only one energy eigenvalue in this case.

For 0 < q < 1 and εn < 1
1−q2 , it is clear that

(1− q2)εn < 1 (2.90)
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and

1− (1− q2)εn > 0. (2.91)

Hence ln{1− (1− q2)εn} is well-defined. If

m >
ln{1− (1− q2)εn}

ln(q2)
, (2.92)

then

m ln(q2) < ln{1− (1− q2)εn}. (2.93)

Obviously, we find

q2m < 1− (1− q2)εn (2.94)

and thus

(1− q2)εn − (1− q2m) < 0. (2.95)

The next step is to write

εn − (
1− q2m

1− q2
) < 0. (2.96)

Evidently, we can conclude that

εn−m < 0 (2.97)

for some m. So there must be a ground state.
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If there is a ground state, then we consider

a|0〉 = 0. (2.98)

Here |0〉 is called the ground state of the system. To determine the energy of this state,

we write

a†a|0〉 = 0 (2.99)

by applying the creation operator to it. Evidently, we get

H|0〉 = ε0|0〉. (2.100)

We will call ε0 the ground state energy. Inserting Eq. (2.11) into the above equation,

we get

{(1 + q2

2
)a†a +

1

2
}|0〉 = ε0|0〉 (2.101)

and therefore

1

2
|0〉 = ε0|0〉. (2.102)

So the ground state energy is found as

ε0 =
1

2
. (2.103)

For the cases in which there must occur a ground state, the eigenvalues are

computed again. For this aim, we evaluate Eqs. (2.41) and (2.43) for n = 0 in the

following three cases. We use the above equation. Then we change the variable m to

n. Here n are nonnegative integers.
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For q > 1,

εn =
1

2
q2n + (

1− q2n

1− q2
). (2.104)

For q = 1,

εn =
1

2
+ n. (2.105)

For 0 < q < 1 and εn < 1
1−q2 ,

εn =
1

2
q2n + (

1− q2n

1− q2
). (2.106)

For 0 < q < 1 and εn > 1
1−q2 , without loss of generality we can consider

εn = ε0 (2.107)

and then write n instead of m. So we have

εn = q−2n{ε0 − (
1− q2n

1− q2
)} (2.108)

where n = 0,±1,±2, ....

For 0 < q < 1 and εn = 1
1−q2 , we get

εn =
1

1− q2
(2.109)

similarly where n = 0,±1,±2, ....

In summary, we have the following energy eigenvalues.



26

For q > 1,

εn =
1

2
q2n + (

1− q2n

1− q2
) (2.110)

where n = 0, 1, 2, ....

For q = 1,

εn =
1

2
+ n (2.111)

where n = 0, 1, 2, ....

For 0 < q < 1 and εn > 1
1−q2 ,

εn = q−2n{ε0 − (
1− q2n

1− q2
)} (2.112)

where n = 0,±1,±2, ....

For 0 < q < 1 and εn = 1
1−q2 ,

εn =
1

1− q2
(2.113)

where n = 0,±1,±2, ....

For 0 < q < 1 and εn < 1
1−q2 ,

εn =
1

2
q2n + (

1− q2n

1− q2
) (2.114)

where n = 0, 1, 2, ....

So far, we have obtained the energy eigenvalues. We are ready now to study the
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exact relation between the states.

For q > 1, we get

{(1 + q2

2
)a†a +

1

2
}|n〉 = {1

2
q2n + (

1− q2n

1− q2
)}|n〉 (2.115)

substituting Eqs. (2.11) and (2.110) into Eq. (2.21). If we solve this, we can easily see

that

(
1 + q2

2
)|Cn|2 +

1

2
=

1

2
q2n + (

1− q2n

1− q2
) (2.116)

from Eq. (2.28). It follows that

|Cn|2 =
1− q2n

1− q2
. (2.117)

Conventionally, we choose Cn as real. So

Cn =

√
1− q2n

1− q2
. (2.118)

Therefore Eq. (2.28) reads

a|n〉 =

√
1− q2n

1− q2
|n− 1〉 (2.119)

and Eq. (2.52) reads

a†|n〉 =

√
1− q2n+2

1− q2
|n + 1〉. (2.120)

The deformed number operator satisfies

a†a|n〉 = (
1− q2n

1− q2
)|n〉. (2.121)
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For q = 1, we similarly write

(a†a +
1

2
)|n〉 = (n +

1

2
)|n〉 (2.122)

substituting Eqs. (2.13) and (2.111) into Eq. (2.21). Then we get

|Cn|2 = n (2.123)

and

Cn =
√

n. (2.124)

Hence Eq. (2.28) reads

a|n〉 =
√

n|n− 1〉 (2.125)

and Eq. (2.52) reads

a†|n〉 =
√

n + 1|n + 1〉 (2.126)

for this case. The number operator satisfies

a†a|n〉 = n|n〉. (2.127)

Now, to study the uncertainty relations, let us first obtain a commutation relation

for the momentum and position operators. Therefore that is the beginning of finding

the uncertainty relations. For this purpose, we rewrite Eq. (1.1) by using definitions

(2.4) and (2.5). In this case,

1

2
(X + iP )(X − iP )− q2

2
(X − iP )(X + iP ) = 1. (2.128)
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If we solve this equation step by step, we get

1

2
(X2 + P 2 + i[P, X])− q2

2
(X2 + P 2 − i[P, X]) = 1 (2.129)

and then

(1− q2)(X2 + P 2) + i(1 + q2)[P, X] = 2. (2.130)

In the end, we obtain

[P, X] = i
(1− q2)(X2 + P 2)− 2

1 + q2
. (2.131)

Now, to compute the uncertainty relation, we write

∆P∆X ≥ 1

2
|〈Ψ|(1− q2)(X2 + P 2)− 2

1 + q2
|Ψ〉|, (2.132)

according to Eqs. (1.25) and (2.131). Obviously, we have

∆P∆X ≥ |(1− q2

1 + q2
)〈Ψ|H|Ψ〉 − (

1

1 + q2
)|. (2.133)

First of all, let us evaluate it for the energy eigenvalues. In this case,

|Ψ〉 = |n〉. (2.134)

Obviously, the inequality becomes

∆P∆X ≥ |(1− q2

1 + q2
)〈n|H|n〉 − (

1

1 + q2
)|. (2.135)
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One can easily see that

〈n|H|n〉 = εn. (2.136)

Substituting Eq. (2.110) into Eq. (2.135), we get

∆P∆X ≥ (
1

1 + q2
)|(1− q2){1

2
q2n + (

1− q2n

1− q2
)} − 1|. (2.137)

It follows

∆P∆X ≥ (
q2n

1 + q2
)|(1− q2

2
)− 1| (2.138)

and thus

∆P∆X ≥ 1

2
q2n. (2.139)

Therefore we have obtained the uncertainty relation for the energy eigenvalues

and for the case in which there must be a ground state. It is seen that this relation is

q and state dependent. Let us evaluate this inequality for q = 1. Then we have

∆P∆X ≥ 1

2
. (2.140)

We will now search for the certainty relation. This is a new concept in quantum

physics actually. This concept tells us that there must be an upper limit for the

uncertainties in the momentum and position operators. We begin by examining the

relation between these uncertainties and the expectation value of the hamiltonian.

Meanwhile, the limit for the energy eigenvalues will be necessary.

To derive the certainty relations, let us start by analyzing uncertainties. For any
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observable A, the uncertainty for any state, |Ψ〉 is given by

∆A ≡ {〈Ψ|A2|Ψ〉 − (〈Ψ|A|Ψ〉)2}1/2. (2.141)

We write the form

(∆A)2 ≡ 〈Ψ|A2|Ψ〉 − (〈Ψ|A|Ψ〉)2 (2.142)

to study it simply. As we know,

(〈Ψ|A|Ψ〉)2 ≥ 0. (2.143)

It follows

(∆A)2 ≤ 〈Ψ|A2|Ψ〉. (2.144)

So, using this reality, we get

(∆P )2 ≤ 〈Ψ|P 2|Ψ〉 (2.145)

and

(∆X)2 ≤ 〈Ψ|X2|Ψ〉. (2.146)

Next, let us write

〈Ψ|P 2|Ψ〉+ 〈Ψ|X2|Ψ〉 = 2〈Ψ|H|Ψ〉 (2.147)

sandwiching Eq. (2.6) between 〈Ψ| and |Ψ〉. Since we can write

〈Ψ|X2|Ψ〉 = 〈Ψ|X†X|Ψ〉, (2.148)
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we find

〈Ψ|X2|Ψ〉 = (X|Ψ〉)†(X|Ψ〉). (2.149)

The right of the equation gives the square of the norm of the vector, X|Ψ〉 exactly.

Hence we have

〈Ψ|X2|Ψ〉 ≥ 0. (2.150)

Using this fact, we can obviously say

〈Ψ|P 2|Ψ〉 ≤ 2〈Ψ|H|Ψ〉. (2.151)

In a similar way, one can easily show that

〈Ψ|X2|Ψ〉 ≤ 2〈Ψ|H|Ψ〉 (2.152)

since

〈Ψ|P 2|Ψ〉 ≥ 0. (2.153)

Now, combining Eqs. (2.145) and (2.151), we obtain

(∆P )2 ≤ 2〈Ψ|H|Ψ〉. (2.154)

On the other hand, we find

(∆X)2 ≤ 2〈Ψ|H|Ψ〉 (2.155)

combining Eqs. (2.146) and (2.152).
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Here, let us first evaluate the certainty relations for the energy eigenstates. In

this case, Eqs. (2.154) and (2.155) become

∆P ≤
√

2εn (2.156)

and

∆X ≤
√

2εn (2.157)

respectively.

In the present case, finding the limits of the energy eigenvalues εn is an essential

task. Therefore let us study this subject. To obtain the certainty relations, we must

calculate the upper limits of εn but for later use we also calculate the lower limits of

εn. We will see that there is an upper limit for εn in the case in which 0 < q < 1 and

εn < 1
1−q2 . Otherwise there is no upper limit for εn. εn increases as n increases and

εn decreases as n decreases. In addition, εn approximates to its maximum value in the

limit n →∞. We will use these facts in the following cases to determine the limits of

εn.

For q > 1, εn takes the minimum value at n = 0. Since

ε0 =
1

2
(2.158)

and

lim
n→∞

εn = ∞, (2.159)

we can obviously say

εn ≥
1

2
. (2.160)



34

For q = 1, here again εn takes the minimum value at n = 0. Since

ε0 =
1

2
(2.161)

and

lim
n→∞

εn = ∞, (2.162)

we can clearly see that

εn ≥
1

2
. (2.163)

For 0 < q < 1 and εn > 1
1−q2 , εn approximates to its minimum value in the limit

n → −∞. Since

lim
n→−∞

εn =
1

1− q2
(2.164)

and

lim
n→∞

εn = ∞, (2.165)

we obtain

εn >
1

1− q2
(2.166)

evidently.

For 0 < q < 1 and εn = 1
1−q2 , we have only one energy eigenvalue which is

εn =
1

1− q2
. (2.167)



35

For 0 < q < 1 and εn < 1
1−q2 , εn takes the minimum value at n = 0. Using the

fact

ε0 =
1

2
(2.168)

and

lim
n→∞

εn =
1

1− q2
, (2.169)

we conclude

1

2
≤ εn <

1

1− q2
. (2.170)

In summary, we have the following relations.

For q > 1,

εn ≥
1

2
. (2.171)

For q=1,

εn ≥
1

2
. (2.172)

For 0 < q < 1 and εn > 1
1−q2 ,

εn >
1

1− q2
. (2.173)
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For 0 < q < 1 and εn = 1
1−q2 ,

εn =
1

1− q2
. (2.174)

For 0 < q < 1 and εn < 1
1−q2 ,

1

2
≤ εn <

1

1− q2
. (2.175)

What we have just done is finding the limits of εn. As we mentioned before, we

will use the results of this study to obtain the certainty relations. We will examine

only the case in which 0 < q < 1 and ε < 1
1−q2 because it is the unique case in which

εn has a finite upper limit. We will combine this upper limit and Eqs. (2.156) and

(2.157). So we get

∆P <

√
2

1− q2
, (2.176)

∆X <

√
2

1− q2
(2.177)

and thus

∆P∆X <
2

1− q2
. (2.178)

It follows that

1

2
q2n 1

∆P
≤ ∆X. (2.179)
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Combining this and Eq. (2.177), we have

1

2
q2n 1

∆P
<

√
2

1− q2
(2.180)

and

∆P > q2n

√
1− q2

8
. (2.181)

Similarly,

∆X > q2n

√
1− q2

8
. (2.182)

So we have

q2n

√
1− q2

8
< ∆P <

√
2

1− q2
(2.183)

and

q2n

√
1− q2

8
< ∆X <

√
2

1− q2
(2.184)

in summary.

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the first method.

The uncertainty and certainty relations for the momentum and position:

For 0 < q < 1 and εn < 1
1−q2 ,

q2n

√
1− q2

8
< ∆P, ∆X <

√
2

1− q2
. (2.185)
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The uncertainty and certainty relations for ∆P∆X:

For q > 1,

∆P∆X ≥ 1

2
q2n. (2.186)

For q = 1,

∆P∆X ≥ 1

2
. (2.187)

For 0 < q < 1 and εn < 1
1−q2 ,

1

2
q2n ≤ ∆P∆X <

2

1− q2
. (2.188)

Up to this point, we have studied the uncertainty and certainty relations for

the energy eigenstates. From now on, we will discuss the uncertainty and certainty

relations for any state |Ψ〉.

As we know, any state can be expressed as

|Ψ〉 =
∞∑

n=0

Cn|n〉 (2.189)

where Cn satisfies

∞∑
n=0

|Cn|2 = 1. (2.190)
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Let us write

〈Ψ|H|Ψ〉 = (
∞∑

m=0

C∗
m〈m|)H(

∞∑
n=0

Cn|n〉) (2.191)

for later use. Exploiting the orthonormality of the basis, we obtain

〈Ψ|H|Ψ〉 =
∞∑

n=0

|Cn|2εn. (2.192)

In our calculations, we will use the limits of 〈Ψ|H|Ψ〉 actually. So our first task

is to evaluate these limits. Let us treat separately the five cases.

For q > 1, we get

∞∑
n=0

|Cn|2εn ≥
∞∑

n=0

|Cn|2
1

2
, (2.193)

if we multiply Eq. (2.171) by |Cn|2 and then sum over all terms. It follows that

〈Ψ|H|Ψ〉 ≥ 1

2
(2.194)

from the last equation and Eqs. (2.190), (2.192).

For q = 1, similarly one can find

〈Ψ|H|Ψ〉 ≥ 1

2
(2.195)

from Eq. (2.172).

For 0 < q < 1 and εn > 1
1−q2 , we have

∞∑
n=0

|Cn|2εn >
∞∑

n=0

|Cn|2(
1

1− q2
) (2.196)
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and then

〈Ψ|H|Ψ〉 >
1

1− q2
(2.197)

using Eq. (2.173).

For 0 < q < 1 and εn = 1
1−q2 , we have

〈Ψ|H|Ψ〉 =
1

1− q2
(2.198)

expressly.

For 0 < q < 1 and εn < 1
1−q2 , we obtain

∞∑
n=0

|Cn|2
1

2
≤

∞∑
n=0

|Cn|2εn <
∞∑

n=0

|Cn|2(
1

1− q2
) (2.199)

and thus

1

2
≤ 〈Ψ|H|Ψ〉 <

1

1− q2
(2.200)

using Eq. (2.175).

In summary, we have the following relations.

For q > 1,

〈Ψ|H|Ψ〉 ≥ 1

2
. (2.201)
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For q = 1,

〈Ψ|H|Ψ〉 ≥ 1

2
. (2.202)

For 0 < q < 1 and εn > 1
1−q2 ,

〈Ψ|H|Ψ〉 >
1

1− q2
. (2.203)

For 0 < q < 1 and εn = 1
1−q2 ,

〈Ψ|H|Ψ〉 =
1

1− q2
. (2.204)

For 0 < q < 1 and εn < 1
1−q2 ,

1

2
≤ 〈Ψ|H|Ψ〉 <

1

1− q2
. (2.205)

We have obtained the limits of 〈Ψ|H|Ψ〉. Hereafter, we will evaluate Eqs. (2.133),

(2.154) and (2.155) for any state.

For q > 1, we write

(
1− q2

1 + q2
)〈Ψ|H|Ψ〉 − (

1

1 + q2
) ≤ −1

2
(2.206)

multiplying Eq. (2.201) by 1−q2

1+q2 and subtracting 1
1+q2 from it. Then we get

|(1− q2

1 + q2
)〈Ψ|H|Ψ〉 − (

1

1 + q2
)| ≥ 1

2
(2.207)
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expressly. So, combining this equation and Eq. (2.133), we can conclude that

∆P∆X ≥ 1

2
. (2.208)

For q = 1, we obtain

∆P∆X ≥ 1

2
(2.209)

in the same way.

For 0 < q < 1 and εn > 1
1−q2 , we write

|(1− q2

1 + q2
)〈Ψ|H|Ψ〉 − (

1

1 + q2
)| > 0 (2.210)

taking into account Eq. (2.203). So it is obvious that

∆P∆X > 0 (2.211)

from Eqs. (2.210) and (2.133).

For 0 < q < 1 and εn = 1
1−q2 , it is clear that

|(1− q2

1 + q2
)〈Ψ|H|Ψ〉 − (

1

1 + q2
)| = 0. (2.212)

From it and Eq. (2.133), we have

∆P∆X ≥ 0. (2.213)



43

Finally, for 0 < q < 1 and εn < 1
1−q2 , one can easily show that

−1

2
≤ (

1− q2

1 + q2
)〈Ψ|H|Ψ〉 − (

1

1 + q2
) < 0 (2.214)

by using Eq. (2.205). It follows that

|(1− q2

1 + q2
)〈Ψ|H|Ψ〉 − (

1

1 + q2
)| > 0. (2.215)

As a result, we find

∆P∆X > 0 (2.216)

by combining Eqs. (2.215) and (2.133).

Our next task is to find the certainty relations for any state |Ψ〉. To get the

certainty relations, let us proceed as follows.

For 0 < q < 1 and εn < 1
1−q2 , we can see that

∆P <

√
2

1− q2
(2.217)

according to Eqs. (2.154) and (2.205). Similarly, we get

∆X <

√
2

1− q2
(2.218)

from Eqs. (2.155) and (2.205). Furthermore, we obtain

∆P∆X <
2

1− q2
. (2.219)

We will now summarize the uncertainty and certainty relations for any state Ψ.
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The certainty relations for the momentum and position:

For 0 < q < 1 and εn < 1
1−q2 ,

∆P, ∆X <

√
2

1− q2
. (2.220)

The uncertainty and certainty relations for ∆P∆X:

For q > 1,

∆P∆X ≥ 1

2
. (2.221)

For q = 1,

∆P∆X ≥ 1

2
. (2.222)

For 0 < q < 1 and εn > 1
1−q2 ,

∆P∆X > 0. (2.223)

For 0 < q < 1 and εn = 1
1−q2 ,

∆P∆X ≥ 0. (2.224)
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For 0 < q < 1 and εn < 1
1−q2 ,

0 < ∆P∆X <
2

1− q2
. (2.225)

We know that the Heisenberg uncertainty principle provides a lower bound on

the product of the uncertainties in the momentum and position. In other words, it

requires

∆P∆X ≥ 1

2
. (2.226)

Let us assume that it is also valid for this case. Then we get

∆X ≥ 1

2(∆P )
(2.227)

from the above inequality. Therefore this equation and Eq. (2.220) imply

1

2(∆P )
<

√
2

1− q2
(2.228)

and

∆P >

√
1− q2

8
. (2.229)

In a similar way, one can prove that

∆X >

√
1− q2

8
(2.230)

using Eqs. (2.226) and (2.220). As a consequence, we call these two equations the

further uncertainty relations.

Now, we have come to the other part of this section. This time, we will work for
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only the energy eigenstates. In order to get the uncertainty and certainty relations,

we will apply another method. We will first evaluate ∆P and ∆X for the energy

eigenstates exactly. Then we will find their limits. In this way, we will reach the

uncertainty and certainty relations.

We begin by writing

(∆P )2 = 〈n|P 2|n〉 − (〈n|P |n〉)2. (2.231)

By using the expression of the momentum in Eq. (2.7), we rewrite Eq. (2.231) as

(∆P )2 = −1

2
〈n|(a†)2 + a2 − a†a− aa†|n〉+

1

2
(〈n|a† − a|n〉)2. (2.232)

Since

〈n|(a†)2|n〉 = 0, (2.233)

〈n|a2|n〉 = 0, (2.234)

〈n|(a†)|n〉 = 0 (2.235)

and

〈n|a|n〉 = 0 (2.236)

according to the orthonormality of the basis, Eq. (2.232) reads

(∆P )2 = 〈n|1
2
(aa† + a†a)|n〉. (2.237)
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From Eq. (2.9), one can show that

(∆P )2 = 〈n|H|n〉. (2.238)

It follows that

∆P =
√

εn. (2.239)

Following a similar way, we write

(∆X)2 = 〈n|X2|n〉 − (〈n|X|n〉)2. (2.240)

Inserting Eq. (2.8) into it, we get

(∆X)2 =
1

2
〈n|(a†)2 + a2 + a†a + aa†|n〉 − 1

2
(〈n|a† + a|n〉)2. (2.241)

Again, using Eqs. (2.233)-(2.236), we obtain

(∆X)2 = 〈n|1
2
(aa† + a†a)|n〉. (2.242)

It can be easily seen that this expression is the same as Eq. (2.237). Hence we can

conclude that

∆X =
√

εn. (2.243)

In summary, we have

∆P =
√

εn, (2.244)



48

∆X =
√

εn. (2.245)

At this stage, the limits of the energy eigenvalues εn are necessary to complete

our study. So Eqs. (2.171)-(2.175) play a crucial role here. Taking into account these

equations, we have the following relations that are for only the energy eigenstates and

obtained by the second method.

The uncertainty and certainty relations for the momentum and position:

For q > 1,

∆P, ∆X ≥ 1√
2
. (2.246)

For q = 1,

∆P, ∆X ≥ 1√
2
. (2.247)

For 0 < q < 1 and εn > 1
1−q2 ,

∆P, ∆X >
1√

1− q2
. (2.248)

For 0 < q < 1 and εn = 1
1−q2 ,

∆P, ∆X =
1√

1− q2
. (2.249)
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For 0 < q < 1 and εn < 1
1−q2 ,

1√
2
≤ ∆P, ∆X <

1√
1− q2

. (2.250)

The uncertainty and certainty relations for ∆P∆X:

For q > 1,

∆P∆X ≥ 1

2
. (2.251)

For q = 1,

∆P∆X ≥ 1

2
. (2.252)

For 0 < q < 1 and εn > 1
1−q2 ,

∆P∆X >
1

1− q2
. (2.253)

For 0 < q < 1 and εn = 1
1−q2 ,

∆P∆X =
1

1− q2
. (2.254)

For 0 < q < 1 and εn < 1
1−q2 ,

1

2
≤ ∆P∆X <

1

1− q2
. (2.255)
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In the present case, we will make a comparison between Eqs. (2.185)-(2.188) and

Eqs. (2.246)-(2.255).

Taking the following relations into consideration will help us make the compari-

son. While

1

2
qn ≥ 1

2
(2.256)

for q > 1,

1

2
qn ≤ 1

2
(2.257)

for 0 < q < 1.

As a consequence, we select the ones which give the most information. However,

we must keep in mind that these are the relations for only the energy eigenstates. Here

comes the final results.

The uncertainty and certainty relations for the momentum and position:

For q > 1,

∆P, ∆X ≥ 1√
2
. (2.258)

For q = 1,

∆P, ∆X ≥ 1√
2
. (2.259)
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For 0 < q < 1 and εn > 1
1−q2 ,

∆P, ∆X >
1√

1− q2
. (2.260)

For 0 < q < 1 and εn = 1
1−q2 ,

∆P, ∆X =
1√

1− q2
. (2.261)

For 0 < q < 1 and εn < 1
1−q2 ,

1√
2
≤ ∆P, ∆X <

1√
1− q2

. (2.262)

The uncertainty and certainty relations for ∆P∆X:

For q > 1,

∆P∆X ≥ 1

2
qn. (2.263)

For q = 1,

∆P∆X ≥ 1

2
. (2.264)

For 0 < q < 1 and εn > 1
1−q2 ,

∆P∆X >
1

1− q2
. (2.265)
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For 0 < q < 1 and εn = 1
1−q2 ,

∆P∆X =
1

1− q2
. (2.266)

For 0 < q < 1 and εn < 1
1−q2 ,

1

2
≤ ∆P∆X <

1

1− q2
. (2.267)

Now, we wander the behavior of (εn+1 − εn)/εn in the classical limit n →∞ for

the cases in which there is a ground state. For this aim, we write

εn+1 − εn

εn

=
1
2
q2n+2 + (1−q2n+2

1−q2 )− 1
2
q2n − (1−q2n

1−q2 )

1
2
q2n + (1−q2n

1−q2 )
(2.268)

using Eq. (2.110) or Eq. (2.114) which are the same equations. Cancelling some terms,

we get

εn+1 − εn

εn

=
(1+q2

2
)q2n

1
2
q2n + (1−q2n

1−q2 )
(2.269)

and

εn+1 − εn

εn

=
(1+q2

2
)

1
2

+ ( q−2n−1
1−q2 )

(2.270)

but now in another form. Let us study for the cases separately:

For q > 1,

lim
n→∞

εn+1 − εn

εn

= q2 − 1 (2.271)
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by using the form in Eq. (2.270). If we evaluate this limit for q ≥
√

2, then we have

lim
n→∞

εn+1 − εn

εn

> 1. (2.272)

This tells us that

εn+1 > 2εn (2.273)

for q ≥
√

2 in the limit n →∞. Hence we can easily comment that the classical limit

of this quantity is unreasonable when q is around
√

2 or greater than it.

For q = 1,

lim
n→∞

εn+1 − εn

εn

= 0. (2.274)

It is seen that in the classical limit, the continuity of energy is satisfied.

For 0 < q < 1 and εn < 1
1−q2 ,

lim
n→∞

εn+1 − εn

εn

= 0 (2.275)

by using the form in Eq. (2.269). Thus the continuity of energy is also satisfied in the

classical limit for this case.

Hence this is the end of this section. In the next section, we will work in two

dimension.



54

2.2. THE TWO-DIMENSIONAL Q-OSCILLATOR

The easy method to construct a two-dimensional q-oscillator is to take two com-

muting copies of the q-oscillator[26]. Then we can write

a1 = a⊗ I (2.276)

a2 = I ⊗ a (2.277)

so that one has the commutation relations

aia
†
i − q2a†iai = 1 (2.278)

where i = 1, 2 and

aiaj = ajai, (2.279)

aia
†
j = a†jai (2.280)

where i 6= j.

However a more important construction has been discovered by Pusz and Woronow-

icz and has the property of being invariant under the quantum group Uq(2)[22] and

having a degenerate spectrum for the total q-deformed number operator by

Nq = a†1a1 + a†2a2. (2.281)

These commutation relations in this case are given by

a2a1 − q−1a1a2 = 0, (2.282)
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a1a
†
2 − qa†2a1 = 0, (2.283)

a1a
†
1 − q2a†1a1 = 1 (2.284)

and

a2a
†
2 − q2a†2a2 = a1a

†
1 − a†1a1. (2.285)

We can define the annihilation and creation operators in terms of the hermitean mo-

mentum operators Pk and position operators Xk by

ak ≡
1√
2
(Xk + iPk) (2.286)

and

a†k ≡
1√
2
(Xk − iPk). (2.287)

The hamiltonian is defined as

H =
1

2
(P 2

1 + X2
1 ) +

1

2
(
1 + q2

2
)(P 2

2 + X2
2 ). (2.288)

This definition satisfies two conditions. The first condition is that when the hamiltonian

is reduced to one-dimension it should be the familiar non-deformed harmonic oscillator

hamiltonian which is 1
2
(P 2

2 + X2
2 ). The second condition is that when expressed in

terms of the creation and annihilation operators the hamiltonian should be a linear

function of the deformed number operator (2.281). This ensures that the spectrum of

the hamiltonian is also degenerate. As we will show, the factor 1+q2

2
in this equation

ensures that this condition is satisfied.

Now, let us calculate the momentum and position operators in terms of the

annihilation and creation operators. For this aim, let us use the definitions in Eqs.
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(2.286) and (2.287) to write

Pk =
i√
2
(a†k − ak) (2.289)

and

Xk =
1√
2
(a†k + ak) (2.290)

where k = 1, 2. If we write these equations more explicitly, we get

P1 =
i√
2
(a†1 − a1), (2.291)

X1 =
1√
2
(a†1 + a1), (2.292)

P2 =
i√
2
(a†2 − a2) (2.293)

and

X2 =
1√
2
(a†2 + a2). (2.294)

Reexpressing the hamiltonian in terms of the creation and annihilation operators, we

have

H =
1

2
(a1a

†
1 + a†1a1) +

1

2
(
1 + q2

2
)(a2a

†
2 + a†2a2) (2.295)

using Eqs. (2.291)-(2.294). If we use the commutation relations in Eqs. (2.284) and

(2.285), we get another form of the hamiltonian. Thus we write

H =
1

2
(1 + q2a†1a1 + a†1a1) +

1

2
(
1 + q2

2
)(1 + q2a†1a1 − a†1a1 + q2a†2a2 + a†2a2). (2.296)
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If we rearrange it, we get

H = (
1 + q2

2
)a†1a1 +

1

2
(
1 + q2

2
)(q2 − 1)a†1a1 + (

1 + q2

2
)2a†2a2 +

1

2
+

1

2
(
1 + q2

2
), (2.297)

H = (
1 + q2

2
)2(a†1a1 + a†2a2) +

1

2
{1 + (

1 + q2

2
)} (2.298)

and therefore

H = (
1 + q2

2
)2(a†1a1 + a†2a2) + (

3 + q2

4
). (2.299)

This form of the hamiltonian is more compact and involves only the total q-deformed

number operator in Eq. (2.281). Here we can also define the q-deformed number

operators as

N1 = a†1a1 (2.300)

and

N2 = a†2a2. (2.301)

For q = 1, the hamiltonian becomes

H = a†1a1 + a†2a2 + 1, (2.302)

as we expect.

Hereafter we will find the commutation relations for the hamiltonian, the anni-

hilation and creation operators because we will use them to obtain the eigenvalues of
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the hamiltonian. The eigenvalue problem that we want to solve is

H|n1n2〉 = εn1,n2|n1n2〉. (2.303)

Let us begin by multiplying Eq. (2.299) on the right by a1. So we write

Ha1 = (
1 + q2

2
)2(a†1a1 + a†2a2)a1 + (

3 + q2

4
)a1. (2.304)

Using Eqs. (2.282)-(2.284), it becomes

Ha1 = (
1 + q2

2
)2(

a1a
†
1a1 − a1

q2
+ q−2a1a

†
2a2) + (

3 + q2

4
)a1. (2.305)

We next obtain

Ha1 = (
1 + q2

2
)2q−2a1(a

†
1a1 + a†2a2)− (

1 + q2

2
)2q−2a1 + (

3 + q2

4
)a1 (2.306)

from the associativity property of the matrices. At this point, we must use the definition

of the hamiltonian in Eq. (2.299) because we want to find the relation between Ha1

and a1H. Hence we get

Ha1 = q−2a1{H − (
3 + q2

4
)} − (

1 + q2

2
)2q−2a1 + (

3 + q2

4
)a1. (2.307)

If we rearrange it, then we have

Ha1 = q−2a1H + {(3 + q2

4
)(q2 − 1)q−2 − (

1 + q2

2
)2q−2}a1 (2.308)

and

Ha1 = q−2a1H +
1

4
q−2(q4 + 2q2 − 3− q4 − 2q2 − 1)a1. (2.309)
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Therefore the commutation relation for the hamiltonian and the annihilation operator

a1 is

Ha1 = q−2a1(H − 1). (2.310)

As we mentioned before, we will use it to obtain the energy eigenvalues. By multipli-

cation of the above equation on the right with |n1n2〉, one can easily find

Ha1|n1n2〉 = q−2a1(H − 1)|n1n2〉. (2.311)

From Eq. (2.303), it is obvious that

Ha1|n1n2〉 = q−2a1(εn1,n2 − 1)|n1n2〉. (2.312)

Then we can rearrange it as

H(a1|n1n2〉) = q−2(εn1,n2 − 1)(a1|n1n2〉). (2.313)

As one can easily see, the hamiltonian has another eigenstate with another eigenvalue.

Let us define this state as

a1|n1n2〉 = Cn1,n2|n1 − 1, n2〉 (2.314)

where Cn1,n2 are n1 and n2 dependent coefficients. Inserting it into Eq. (2.313), we

have

εn1−1,n2 = q−2(εn1,n2 − 1). (2.315)

This is a recursion formula. To deduce its general form from it, we write

εn1−2,n2 = q−2(εn1−1,n2 − 1). (2.316)
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It is clear that

εn1−2,n2 = q−4{εn1,n2 − (1 + q2)}. (2.317)

We continue by writing

εn1−3,n2 = q−4{εn1−1,n2 − (1 + q2)} (2.318)

and then

εn1−3,n2 = q−6{εn1,n2 − {1 + q2 + (q2)2}}. (2.319)

From Eqs. (2.315), (2.317) and (2.319), we can conclude that the general form is that

εn1−m1,n2 = (q−2)m1{εn1,n2 − {1 + q2 + (q2)2 + ... + (q2)m1−1}}. (2.320)

To express it more compactly, we write

εn1−m1,n2 = q−2m1{εn1,n2 − (
1− q2m1

1− q2
)}. (2.321)

This time, let us multiply Eq. (2.299) on the right by a†1. Then we get

Ha†1 = (
1 + q2

2
)2(a†1a1 + a†2a2)a

†
1 + (

3 + q2

4
)a†1 (2.322)

obviously. By using Eqs. (2.282) and (2.283), one can easily show that

Ha†1 = (
1 + q2

2
)2(a†1a1a

†
1 + q2a†1a

†
2a2) + (

3 + q2

4
)a†1. (2.323)
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Let us rewrite it as

Ha†1 = (
1 + q2

2
)2a†1(1 + q2a†1a1 + q2a†2a2) + (

3 + q2

4
)a†1 (2.324)

using Eq. (2.284). Then it becomes

Ha†1 = (
1 + q2

2
)2q2a†1(a

†
1a1 + a†2a2) + (

1 + q2

2
)2a†1 + (

3 + q2

4
)a†1. (2.325)

We can now use Eq. (2.299) to obtain the relation between Ha†1 and a†1H. So we have

Ha†1 = q2a†1{H − (
3 + q2

4
)}+

1

4
{(1 + q2)2 + q2 + 3}a†1 (2.326)

and

Ha†1 = q2a†1H + a†1. (2.327)

As a result, the second commutation relation is

Ha†1 = a†1(q
2H + 1). (2.328)

Again we will use it to find the rest of the energy eigenvalues. If we multiply it on the

right with |n1n2〉, we write

Ha†1|n1n2〉 = a†1(q
2H + 1)|n1n2〉. (2.329)

Then it becomes

H(a†1|n1n2〉) = (q2εn1,n2 + 1)(a†1|n1n2〉) (2.330)

from Eq. (2.303). The next step is to change the form of the recursion formula in Eq.
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(2.315) as

εn1+1,n2 = q2εn1,n2 + 1. (2.331)

If we use it, Eq. (2.330) reads

H(a†1|n1n2〉) = εn1+1,n2(a
†
1|n1n2〉). (2.332)

Hence it is evident that

a†1|n1n2〉 = Dn1,n2|n1 + 1, n2〉. (2.333)

If we climb up in energy using it, we obtain

εn1+2,n2 = q2εn1+1,n2 + 1. (2.334)

Substituting Eq. (2.331) into it, we find

εn1+2,n2 = q4εn1,n2 + (1 + q2). (2.335)

Similarly, we get

εn1+3,n2 = q4εn1+1,n2 + (1 + q2) (2.336)

and then

εn1+3,n2 = q6εn1,n2 + {1 + q2 + (q2)2}. (2.337)

As a consequence, we get the generalized form as

εn1+m1,n2 = (q2)m1εn1,n2 + {1 + q2 + (q2)2 + ... + (q2)m1−1}. (2.338)
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If we rewrite it in a more compact way, we have

εn1+m1,n2 = q2m1εn1,n2 + (
1− q2m1

1− q2
). (2.339)

To continue our study of the energy eigenvalues, let us now multiply Eq. (2.299)

on the right by a2. Then we write

Ha2 = (
1 + q2

2
)2(a†1a1 + a†2a2)a2 + (

3 + q2

4
)a2. (2.340)

After that we use Eqs. (2.282)-(2.285) to write

Ha2 = (
1 + q2

2
)2{a2a

†
1a1 + q−2{(1− q2)a†1a1 + a2a

†
2 − 1}a2}+ (

3 + q2

4
)a2 (2.341)

and then

Ha2 = (
1 + q2

2
)2{a2a

†
1a1 + q−2a2{(1− q2)a†1a1 + a†2a2 − 1}}+ (

3 + q2

4
)a2. (2.342)

If we rearrange it so that it involves the total q-deformed number operator, we have

Ha2 = (
1 + q2

2
)2q−2a2(a

†
1a1 + a†2a2)− (

1 + q2

2
)2q−2a2 + (

3 + q2

4
)a2. (2.343)

We again use Eq. (2.299) to rewrite it as

Ha2 = q−2a2{H − (
3 + q2

4
)}+

1

4
{−q−2(1 + q2)2 + 3 + q2}a2. (2.344)

If we calculate this equation, we obtain

Ha2 = q−2a2H +
1

4
{−q−2(1 + q2)2 + 3 + q2 − q−2(3 + q2)}a2. (2.345)
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In the end, we find the third commutation relation as

Ha2 = q−2a2(H − 1). (2.346)

To continue, we multiply it on the right with |n1n2〉. So we have

Ha2|n1n2〉 = q−2a2(H − 1)|n1n2〉. (2.347)

It becomes

H(a2|n1n2〉) = q−2(εn1,n2 − 1)(a2|n1n2〉) (2.348)

if we use Eq. (2.303). Next we consider

a2|n1n2〉 = Fn1,n2|n1, n2 − 1〉. (2.349)

So we find the following recursion formula. It is

εn1,n2−1 = q−2(εn1,n2 − 1). (2.350)

Since this formula is very similar to Eq. (2.315) mathematically, then we can immedi-

ately say that

εn1,n2−m2 = q−2m2{εn1,n2 − (
1− q2m2

1− q2
)}. (2.351)

Now, it remains to determine the last commutation relation. For this purpose,

we will follow a similar procedure as before. Let us multiply Eq. (2.299) on the right

by a†2. Then we get

Ha†2 = (
1 + q2

2
)2(a†1a1 + a†2a2)a

†
2 + (

3 + q2

4
)a†2. (2.352)
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This equation becomes

Ha†2 = (
1 + q2

2
)2(a†2a

†
1a1 + a†2a2a

†
2) + (

3 + q2

4
)a†2 (2.353)

if we use Eqs. (2.282) and (2.283). From Eqs. (2.284) and (2.285), we get

Ha†2 = (
1 + q2

2
)2a†2{q2(a†1a1 + a†2a2) + 1}+ (

3 + q2

4
)a†2. (2.354)

By using Eq. (2.299), we have

Ha†2 = q2a†2{H − (
3 + q2

4
)}+ (

1 + q2

2
)2a†2 + (

3 + q2

4
)a†2 (2.355)

and then

Ha†2 = a†2{q2H +
1

4
(−q4 − 3q2 + q4 + 2q2 + 1 + 3 + q2)}. (2.356)

So the fourth commutation relation is

Ha†2 = a†2(q
2H + 1). (2.357)

Next if we multiply it on the right with |n1n2〉, we find

Ha†2|n1n2〉 = a†2(q
2H + 1)|n1n2.〉 (2.358)

Let us use Eq. (2.303) to write

H(a†2|n1n2〉) = (q2εn1,n2 + 1)(a†2|n1n2〉). (2.359)

Since another form of Eq. (2.350) is

εn1,n2+1 = q2εn1,n2 + 1, (2.360)
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we can immediately conclude that

a†2|n1n2〉 = Gn1,n2|n1, n2 + 1〉. (2.361)

Since Eq. (2.360) is very similar to Eq. (2.331) mathematically, we can safely say that

εn1,n2+m2 = q2m2εn1,n2 + (
1− q2m2

1− q2
). (2.362)

In summary, we have

εn1−m1,n2 = q−2m1{εn1,n2 − (
1− q2m1

1− q2
)}, (2.363)

εn1+m1,n2 = q2m1εn1,n2 + (
1− q2m1

1− q2
), (2.364)

εn1,n2−m2 = q−2m2{εn1,n2 − (
1− q2m2

1− q2
)}, (2.365)

εn1,n2+m2 = q2m2εn1,n2 + (
1− q2m2

1− q2
). (2.366)

Now, let us evaluate these recursion formulas in the limit q = 1. Then Eqs.

(2.363), (2.364), (2.365), (2.366) read

εn1−m1,n2 = εn1,n2 −m1, (2.367)

εn1+m1,n2 = εn1,n2 + m1, (2.368)
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εn1,n2−m2 = εn1,n2 −m2, (2.369)

εn1,n2+m2 = εn1,n2 + m2 (2.370)

respectively.

Up to this point, we have obtained the generalized forms of the recursion for-

mulas for the energy eigenvalues. The similarity between the energy eigenvalues in

Eqs. (2.40), (2.41) and these energy eigenvalues attracts our attention at this stage.

So it means that they also share some important properties. We will mention these

properties one by one.

Firstly, from the study in section (2.1), we can surely conclude that

Dn1,n2 = C∗
n1+1,n2

(2.371)

and

Gn1,n2 = F ∗
n1,n2+1. (2.372)

So Eqs. (2.333) and (2.361) read

a†1|n1n2〉 = C∗
n1+1,n2

|n1 + 1, n2〉 (2.373)

and

a†2|n1n2〉 = F ∗
n1,n2+1|n1, n2 + 1〉 (2.374)

respectively.
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Secondly,

εn1,n2 − εn1−1,n2 ≥ 0 (2.375)

and

εn1,n2 − εn1,n2−1 ≥ 0 (2.376)

for all cases of q and εn1,n2 except the case in which 0 < q < 1 and εn1,n2 > 1
1−q2 . So

εn1,n2 decreases as n1 or n2 increases in this case. It requires to redefine the annihilation

and creation operators as

b1 = a†1, (2.377)

b†1 = a1, (2.378)

b2 = a†2, (2.379)

and

b†2 = a2. (2.380)

Let us next consider

b1|n1n2〉 = Jn1,n2 |n1 − 1, n2〉 (2.381)

and

b2|n1n2〉 = Kn1,n2|n1, n2 − 1〉. (2.382)
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Therefore we have

εn1−m1,n2 = q2m1εn1,n2 + (
1− q2m1

1− q2
), (2.383)

εn1+m1,n2 = q−2m1{εn1,n2 − (
1− q2m1

1− q2
)}, (2.384)

εn1,n2−m2 = q2m2εn1,n2 + (
1− q2m2

1− q2
) (2.385)

and

εn1,n2+m2 = q−2m2{εn1,n2 − (
1− q2m2

1− q2
)}. (2.386)

Thirdly, it is necessary to know whether these all recursion formulas are negative

or positive to decide that they are exactly energy eigenvalues. In other words, for

which cases there must occur a ground state? So again, we can confidently say that

there must be a ground state for the following three cases. They are (q > 1), (q = 1)

and (0 < q < 1 and εn1,n2 < 1
1−q2 ). In addition, in the case in which 0 < q < 1 and

εn1,n2 = 1
1−q2 there is only one energy eigenvalue which is 1

1−q2 .

If there is a ground state, then we can say

a1|00〉 = 0 (2.387)

and

a2|00〉 = 0. (2.388)

We consider |00〉 as the ground state of the system. To calculate the ground state
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energy, we write

(
1 + q2

2
)2(a†1a1 + a†2a2)|00〉 = 0 (2.389)

from Eqs. (2.387) and (2.388). The next step is to write

{H − (
3 + q2

4
)}|00〉 = 0 (2.390)

using Eq. (2.299). So it is obvious that

H|00〉 = (
3 + q2

4
)|00〉. (2.391)

This and Eq. (2.303) imply that

ε0,0 =
3 + q2

4
. (2.392)

This is the ground state energy.

At this point, we must evaluate the eigenvalues again according to the final facts.

In other words, for the cases in which there must be a ground state, we will compute

the energy eigenvalues. Let us first write

εn1+m1,n2+m2 = q2m1εn1,n2+m2 + (
1− q2m1

1− q2
) (2.393)

using Eq. (2.364). Then we can write

εn1+m1,n2+m2 = q2(m1+m2)εn1,n2 + (
1− q2(m1+m2)

1− q2
) (2.394)

substituting Eq. (2.366) into it. We rearrange it as

εn1,n2 = q2(n1+n2)ε0,0 + (
1− q2(n1+n2)

1− q2
) (2.395)
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by letting n1 = 0, n2 = 0 and inverting m1, m2 to n1, n2 respectively. As a result,

substituting Eq. (2.392) into it, we get

εn1,n2 = (
3 + q2

4
)q2(n1+n2) + (

1− q2(n1+n2)

1− q2
). (2.396)

Accordingly, for the following three cases we rewrite the energy eigenvalues.

For q > 1,

εn1,n2 = (
3 + q2

4
)q2(n1+n2) + (

1− q2(n1+n2)

1− q2
). (2.397)

For q = 1,

εn1,n2 = 1 + n1 + n2. (2.398)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

εn1,n2 = (
3 + q2

4
)q2(n1+n2) + (

1− q2(n1+n2)

1− q2
). (2.399)

For 0 < q < 1 and εn1,n2 > 1
1−q2 , we can consider

εn1,n2 = ε0,0 (2.400)

without loss of generality. Then we invert m1, m2 to n1, n2 respectively. Let us first

write

εn1+m1,n2+m2 = q−2m1{εn1,n2+m2 − (
1− q2m1

1− q2
)} (2.401)
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from Eq. (2.384). We next obtain

εn1+m1,n2+m2 = q−2(m1+m2){εn1,n2 − (
1− q2(m1+m2)

1− q2
)} (2.402)

using Eq. (2.386). Then we get

εn1,n2 = q−2(n1+n2){ε0,0 − (
1− q2(n1+n2)

1− q2
)} (2.403)

using it where n1, n2 = 0,±1,±2, ....

For 0 < q < 1 and εn1,n2 = 1
1−q2 , we can similarly get

εn1,n2 =
1

1− q2
(2.404)

where n1, n2 = 0,±1,±2, ....

In summary, we have the following energy eigenvalues.

For q > 1,

εn1,n2 = (
3 + q2

4
)q2(n1+n2) + (

1− q2(n1+n2)

1− q2
) (2.405)

where n1, n2 = 0, 1, 2, ....

For q = 1,

εn1,n2 = 1 + n1 + n2 (2.406)

where n1, n2 = 0, 1, 2, ....
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For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

εn1,n2 = q−2(n1+n2){ε0,0 − (
1− q2(n1+n2)

1− q2
)} (2.407)

where n1, n2 = 0,±1,±2, ....

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

εn1,n2 =
1

1− q2
(2.408)

where n1, n2 = 0,±1,±2, ....

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

εn1,n2 = (
3 + q2

4
)q2(n1+n2) + (

1− q2(n1+n2)

1− q2
) (2.409)

where n1, n2 = 0, 1, 2, ....

Thus we have completed our study of finding the energy eigenvalues partly. Hence

this study is not complete exactly. We will see that the study of the eigenvalues of

the q-deformed number operators N1, N2 will bring us some extra cases in which there

must be a ground state. Here, let us recall that the definitions of N1 and N2 were given

in Eqs. (2.300) and (2.301) respectively. We will call these extra cases the anomalous

cases because they are unexpected and extraordinary facts.

To begin with, we want to get the commutation relations between N1, N2 and

a1, a†1, a2, a†2.

Let us write

N1a1 = a†1a1a1 (2.410)
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using the definition in Eq. (2.300). From Eq. (2.284), we get

N1a1 = q−2(a1a
†
1 − 1)a1. (2.411)

This implies that

N1a1 = q−2a1(a
†
1a1 − 1). (2.412)

Therefore the commutation relation for N1 and a1 is

N1a1 = q−2a1(N1 − 1). (2.413)

We next introduce the eigenvalue problem. It is

N1|n1n2〉 = N (1)
n1,n2

|n1n2〉. (2.414)

N (1)
n1,n2

denotes the eigenvalues of N1 here. We note that Eq. (2.413) is very similar to

Eq. (2.17) mathematically. In addition, Eq. (2.414) is similar to Eq. (2.21). Hence we

can reach some results directly. We have

N
(1)
n1−m1,n2

= q−2m1{N (1)
n1,n2

− (
1− q2m1

1− q2
)} (2.415)

and

N
(1)
n1+m1,n2

= q2m1N (1)
n1,n2

+ (
1− q2m1

1− q2
). (2.416)

Let us continue finding the eigenvalues of N1 by writing

N1a2 = a†1a1a2 (2.417)
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from Eq. (2.300). Then it is obvious that

N1a2 = a2a
†
1a1 (2.418)

from Eqs. (2.282) and (2.283). So we can see that

N1a2 = a2N1. (2.419)

It tells us that N1 and a2 commute. To find the eigenvalues, let us multiply it on the

right with the energy eigenstate |n1n2〉. Hence we get

N1a2|n1n2〉 = a2N1|n1n2〉. (2.420)

It follows that

N1(a2|n1n2〉) = N (1)
n1,n2

(a2|n1n2)〉. (2.421)

Using Eqs. (2.349) and (2.414), we have

N
(1)
n1,n2−1 = N (1)

n1,n2
(2.422)

and thus

N
(1)
n1,n2−m2

= N (1)
n1,n2

. (2.423)

By using Eq. (2.422), we find

N
(1)
n1,n2+1 = N (1)

n1,n2
. (2.424)
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We generalize it as

N
(1)
n1,n2+m2

= N (1)
n1,n2

. (2.425)

In this context, the second eigenvalue problem is

N2|n1n2〉 = N (2)
n1,n2

|n1n2〉. (2.426)

To analyze the relation between N2a2 and a2N2, we proceed as follows. We get

N2a2 = a†2a2a2 (2.427)

from Eq. (2.301). We rearrange it as

N2a2 = q−2{(1− q2)a†1a1 + a2a
†
2 − 1}a2 (2.428)

by using Eqs. (2.285) and (2.284). One can easily show that

N2a2 = q−2a2{(1− q2)N1 + N2 − 1} (2.429)

from the definitions of N1 and N2. By multiplication of it on the right with the energy

eigenstate |n1n2〉 we have

N2a2|n1n2〉 = q−2a2{(1− q2)N1 + N2 − 1}|n1n2〉. (2.430)

Then we get

N2(a2|n1n2〉) = q−2{(1− q2)N (1)
n1,n2

+ N (2)
n1,n2

− 1}(a2|n1n2〉) (2.431)

taking account of Eqs. (2.414) and (2.426). Using Eqs. (2.349) and (2.426), we obtain
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the last recursion formula. This recursion formula is

N
(2)
n1,n2−1 = q−2{(1− q2)N (1)

n1,n2
+ N (2)

n1,n2
− 1}. (2.432)

However, we want to reach its generalized form. For this reason, we write

N
(2)
n1,n2−2 = q−2{(1− q2)N

(1)
n1,n2−1 + N

(2)
n1,n2−1 − 1}. (2.433)

We substitute Eqs. (2.422) and (2.432) into it to get

N
(2)
n1,n2−2 = q−2{(1 + q−2)(1− q2)N (1)

n1,n2
+ q−2N (2)

n1,n2
− (1 + q−2)}. (2.434)

In a similar way, we proceed by writing

N
(2)
n1,n2−3 = q−2{(1 + q−2 + q−4)(1− q2)N (1)

n1,n2
+ q−4N (2)

n1,n2
− (1 + q−2 + q−4)}. (2.435)

At this point, the above equations give an idea to generalize the recursion formula in

Eq. (2.432). As a result, we obtain

N
(2)
n1,n2−m2

= q−2{{1 + q−2 + (q−2)2 + ... + (q−2)m2−1}(1− q2)N (1)
n1,n2

+(q−2)m2−1N (2)
n1,n2

− {1 + q−2 + (q−2)2 + ... + (q−2)m2−1}}. (2.436)

If we tidy up this equation, we reach

N
(2)
n1,n2−m2

= q−2m2{(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
)}. (2.437)

By writing n2 + 1 instead of n2, Eq. (2.432) becomes

N
(2)
n1,n2+1 = (q2 − 1)N

(1)
n1,n2+1 + q2N (2)

n1,n2
+ 1. (2.438)
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Substituting Eq. (2.424) into it, we have

N
(2)
n1,n2+1 = (q2 − 1)N (1)

n1,n2
+ q2N (2)

n1,n2
+ 1. (2.439)

Evidently, we get

N
(2)
n1,n2+2 = (1 + q2)(q2 − 1)N (1)

n1,n2
+ q4N (2)

n1,n2
+ (1 + q2) (2.440)

from it and Eq. (2.424). Let us continue by writing

N
(2)
n1,n2+3 = (1 + q2 + q4)(q2 − 1)N (1)

n1,n2
+ q6N (2)

n1,n2
+ (1 + q2 + q4). (2.441)

The last three equations give us an idea to obtain the generalized recursion formula.

Accordingly, one can show that

N
(2)
n1,n2+m2

= {1 + q2 + (q2)2 + ... + (q2)m2−1}(q2 − 1)N (1)
n1,n2

+(q2)m2N (2)
n1,n2

+ {1 + q2 + (q2)2 + ... + (q2)m2−1}. (2.442)

Finally, if we write it more compactly, we have

N
(2)
n1,n2+m2

= (q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
). (2.443)

Now, we will discuss the commutation relation for N2 and a1. We start by writing

N2a1 = a†2a2a1 (2.444)
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from Eq. (2.301). Then we use Eqs. (2.282) and (2.283) to have

N2a1 = q−2a1a
†
2a2. (2.445)

This implies that

N2a1 = q−2a1N2. (2.446)

The next step is to write

N2a1|n1n2〉 = q−2a1N2|n1n2〉 (2.447)

by multiplying Eq. (2.446) on the right with |n1n2〉. It follows that

N2(a1|n1n2〉) = q−2N (2)
n1,n2

(a1|n1n2〉) (2.448)

according to Eq. (2.426). We get the recursion formula

N
(2)
n1−1,n2

= q−2N (2)
n1,n2

(2.449)

by using Eqs. (2.314) and (2.426). If we generalize it, we have

N
(2)
n1−m1,n2

= q−2m1N (2)
n1,n2

. (2.450)

Eq. (2.449) implies that

N
(2)
n1+1,n2

= q2N (2)
n1,n2

. (2.451)

From here, we obtain

N
(2)
n1+m1,n2

= q2m1N (2)
n1,n2

. (2.452)
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In the present case, let us combine some of our results to obtain more compact

expressions. In other words, let us first write n2 + m2 instead of n2 in Eq. (2.416).

Then we get

N
(1)
n1+m1,n2+m2

= q2m1N
(1)
n1,n2+m2

+ (
1− q2m1

1− q2
). (2.453)

After that we write

N
(1)
n1+m1,n2+m2

= q2m1N (1)
n1,n2

+ (
1− q2m1

1− q2
) (2.454)

inserting Eq. (2.425) into it. Similarly, we get

N
(1)
n1−m1,n2−m2

= q−2m1{N (1)
n1,n2−m2

+ (
1− q2m1

1− q2
)} (2.455)

by putting n2 −m2 instead of n2 in Eq. (2.415). Next, we substitute Eq. (2.423) into

it to have

N
(1)
n1−m1,n2−m2

= q−2m1{N (1)
n1,n2

− (
1− q2m1

1− q2
)}. (2.456)

Since we also want to find the combined forms of the eigenvalues of N (2)
n1,n2

, we proceed

writing n2 + m2 instead of n2 in Eq. (2.452). Then we get

N
(2)
n1+m1,n2+m2

= q2m1N
(2)
n1,n2+m2

. (2.457)

The next step is to substitute Eq. (2.443) into it. So we obtain

N
(2)
n1+m1,n2+m2

= q2m1{(q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
)}. (2.458)

Similarly, we have

N
(2)
n1−m1,n2−m2

= q−2m1N
(2)
n1,n2−m2

(2.459)
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if we write n2 −m2 instead of n2 in Eq. (2.450). Then let us substitute Eq. (2.437)

into it to obtain

N
(2)
n1−m1,n2−m2

= q−2(m1+m2){(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
)}. (2.460)

In summary, we have

N
(1)
n1−m1,n2

= q−2m1{N (1)
n1,n2

− (
1− q2m1

1− q2
)}, (2.461)

N
(1)
n1+m1,n2

= q2m1N (1)
n1,n2

+ (
1− q2m1

1− q2
), (2.462)

N
(1)
n1,n2−m2

= N (1)
n1,n2

, (2.463)

N
(1)
n1,n2+m2

= N (1)
n1,n2

, (2.464)

N
(2)
n1−m1,n2

= q−2m1N (2)
n1,n2

, (2.465)

N
(2)
n1+m1,n2

= q2m1N (2)
n1,n2

, (2.466)

N
(2)
n1,n2−m2

= q−2m2{(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
)}, (2.467)

N
(2)
n1,n2+m2

= (q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
) (2.468)
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and

N
(1)
n1−m1,n2−m2

= q−2m1{N (1)
n1,n2

− (
1− q2m1

1− q2
)}, (2.469)

N
(1)
n1+m1,n2+m2

= q2m1N (1)
n1,n2

+ (
1− q2m1

1− q2
), (2.470)

N
(2)
n1−m1,n2−m2

= q−2(m1+m2){(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
)}, (2.471)

N
(2)
n1+m1,n2+m2

= q2m1{(q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
)}. (2.472)

If there is a ground state such that a1|00〉 = 0 and a2|00〉 = 0, we can use Eqs.

(2.387) and (2.414) to say

N
(1)
0,0 |00〉 = 0. (2.473)

Therefore it is obvious that

N
(1)
0,0 = 0. (2.474)

In this case, Eq. (2.470) becomes

N (1)
n1,n2

=
1− q2n1

1− q2
(2.475)

when we write n1 = 0, n2 = 0 and then change m1, m2 into n1, n2 respectively. In
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addition, Eq. (2.414) reads

a†1a1|n1n2〉 = (
1− q2n1

1− q2
)|n1n2〉. (2.476)

If we follow a similar way, we write

N
(2)
0,0 |00〉 = 0 (2.477)

according to Eqs. (2.388) and (2.426). Clearly, we have

N
(2)
0,0 = 0. (2.478)

We recalculate Eq. (2.472) by writing n1 = 0, n2 = 0 and then changing m1, m2 into

n1, n2 respectively. Accordingly, we conclude

N (2)
n1,n2

= q2n1(
1− q2n2

1− q2
). (2.479)

In addition, Eq. (2.426) reads

a†2a2|n1n2〉 = q2n1(
1− q2n2

1− q2
)|n1n2〉. (2.480)

In summary, we have

N (1)
n1,n2

=
1− q2n1

1− q2
, (2.481)

N (2)
n1,n2

= q2n1(
1− q2n2

1− q2
). (2.482)

What we have just done is to find the eigenvalues of a†1a1 and a†2a2 for the cases in
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which there must be a ground state such that a1|00〉 = 0 and a2|00〉 = 0. Now, to find

the eigenvalues of a†1a1 and a†2a2 for the case in which 0 < q < 1 and εn1,n2 > 1
1−q2 , we

follow a different way. Let us recall that new annihilation and creation operators are

defined for this case. Accordingly, let us write these eigenvalues again. Eqs. (2.462),

(2.461), (2.464), (2.463), (2.466), (2.465), (2.468) and (2.467) change as

N
(1)
n1−m1,n2

= q2m1N (1)
n1,n2

+ (
1− q2m1

1− q2
), (2.483)

N
(1)
n1+m1,n2

= q−2m1{N (1)
n1,n2

− (
1− q2m1

1− q2
)}, (2.484)

N
(1)
n1,n2−m2

= N (1)
n1,n2

, (2.485)

N
(1)
n1,n2+m2

= N (1)
n1,n2

, (2.486)

N
(2)
n1−m1,n2

= q2m1N (2)
n1,n2

, (2.487)

N
(2)
n1+m1,n2

= q−2m1N (2)
n1,n2

, (2.488)

N
(2)
n1,n2−m2

= (q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
) (2.489)

and

N
(2)
n1,n2+m2

= q−2m2{(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
)} (2.490)

respectively.
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At this stage, we focus on the fact that N (1)
n1,n2

and N (2)
n1,n2

can not take the negative

values. To confirm this, let us write

N (1)
n1,n2

= 〈n1n2|a†1a1|n1n2〉 (2.491)

using Eq. (2.414). We can rewrite it as

N (1)
n1,n2

= (a1|n1n2〉)†(a1|n1n2〉). (2.492)

We can easily see that this is exactly the square of the norm of a vector. Therefore it

can not be negative definitely. Eventually, N (1)
n1,n2

must be nonnegative. The same is

true for N (2)
n1,n2

. This can be also proved in a similar way. For that reason, we wander

whether there are some extra cases in which there must be a ground state.

Before starting, we notice that Eqs. (2.461) and (2.462) are mathematically

similar to Eqs. (2.40) and (2.41) respectively. Hence we reach the following result

directly. For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 , there must be a state such that

a1|0n2〉 = 0. (2.493)

We will use this fact later.

Now, we will analyze the following five cases. Some of these cases have some

subcases.

Firstly, for q > 1, it is obvious that

N
(2)
n1,n2+m2

> 0. (2.494)
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Secondly, for q = 1, since

N (2)
n1,n2

+ m2 > 0, (2.495)

we get

N
(2)
n1,n2+m2

> 0. (2.496)

Thirdly, for 0 < q < 1 and εn1,n2 > 1
1−q2 , we have

(
1 + q2

2
)(N (1)

n1,n2
+ N (2)

n1,n2
) + (

3 + q2

4
) >

1

1− q2
(2.497)

if we sandwich Eq. (2.299) between 〈n1n2| and |n1n2〉 and then use Eqs. (2.303),

(2.414) and (2.426). It follows that

(
1 + q2

2
)(N (1)

n1,n2
+ N (2)

n1,n2
) > (

1 + q2

2
)2(

1

1− q2
) (2.498)

and then

N (1)
n1,n2

+ N (2)
n1,n2

>
1

1− q2
. (2.499)

Now, the following three subcases of this case will be examined. So we will use this

inequality.

For N (1)
n1,n2

> 1
1−q2 , it is obvious that

N (1)
n1,n2

− ( 1
1−q2 )

N
(1)
n1,n2 + N

(2)
n1,n2 − ( 1

1−q2 )
> 0. (2.500)
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This implies that ln{
N

(1)
n1,n2

−( 1
1−q2 )

N
(1)
n1,n2

+N
(2)
n1,n2

−( 1
1−q2 )

} is well-defined. If

m2 >

ln{
N

(1)
n1,n2

−( 1
1−q2 )

N
(1)
n1,n2

+N
(2)
n1,n2

−( 1
1−q2 )

}

ln q2
(2.501)

then

m2 ln q2 < ln{
N (1)

n1,n2
− ( 1

1−q2 )

N
(1)
n1,n2 + N

(2)
n1,n2 − ( 1

1−q2 )
} (2.502)

and thus

q2m2 <
N (1)

n1,n2
− ( 1

1−q2 )

N
(1)
n1,n2 + N

(2)
n1,n2 − ( 1

1−q2 )
. (2.503)

Evidently, we have

q2m2{N (1)
n1,n2

+ N (2)
n1,n2

− (
1

1− q2
)} < N (1)

n1,n2
− (

1

1− q2
) (2.504)

and then

(q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
) < 0. (2.505)

Therefore we conclude that

N
(2)
n1,n2−m2

< 0. (2.506)

This means that there must be a state such that

b2|n10〉 = 0. (2.507)

If we look at this case from the angle of the energy, there is no ground state because

n1 does not have a lower bound. However, it is obvious that there is a greatest lower
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bound for the energy. Furthermore, we can say that there is a ground state that is

only related with N (2)
n1,n2

. Accordingly, we call this state an anomalous ground state.

Now, it is clear that

N (1)
n1,n2

− (
1

1− q2
) > 0 (2.508)

and thus

(1− q2m2){N (1)
n1,n2

− (
1

1− q2
)} > 0. (2.509)

Evidently, we get

(1− q2m2)N (1)
n1,n2

− (
1− q2m2

1− q2
) > 0. (2.510)

We can surely write

N
(2)
n1,n2+m2

> 0. (2.511)

For N (1)
n1,n2

= 1
1−q2 , we obtain

N
(2)
n1,n2−m2

= q2m2N (2)
n1,n2

. (2.512)

One can easily see that

N
(2)
n1,n2−m2

> 0. (2.513)

Similarly, we have

N
(2)
n1,n2+m2

= q−2m2N (2)
n1,n2

. (2.514)
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So we conclude that

N
(2)
n1,n2+m2

> 0. (2.515)

For N (1)
n1,n2

< 1
1−q2 , we have

q2m2{N (1)
n1,n2

+ N (2)
n1,n2

− (
1

1− q2
)} > 0 (2.516)

from Eq. (2.499) and we obviously have

(
1

1− q2
)−N (1)

n1,n2
> 0. (2.517)

Adding these two inequalities, we obtain

q2m2{N (1)
n1,n2

+ N (2)
n1,n2

− (
1

1− q2
)}+ (

1

1− q2
)−N (1)

n1,n2
> 0. (2.518)

It follows that

(q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
) > 0. (2.519)

Therefore we get

N
(2)
n1,n2−m2

> 0. (2.520)

Now, we have

{( 1

1− q2
)−N (1)

n1,n2
}q2m2 > 0. (2.521)
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Then we get

−(
1− q2m2

1− q2
) + (

1

1− q2
)−N (1)

n1,n2
q2m2 > 0, (2.522)

if we add 1
1−q2 to it and subtract 1

1−q2 from it. If we add

N (1)
n1,n2

+ N (2)
n1,n2

>
1

1− q2
(2.523)

to the above inequality, we find

−(
1− q2m2

1− q2
)−N (1)

n1,n2
q2m2 + N (1)

n1,n2
+ N (2)

n1,n2
> 0. (2.524)

If we tidy up it, we get

(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
) > 0. (2.525)

So it follows that

N
(2)
n1,n2+m2

> 0. (2.526)

In the beginning of the study of finding extra cases, we implicitly mentioned that

there must be a state such that

b†1|0n2〉 = 0. (2.527)

If we say it more explicitly, Eq. (2.493) necessitates this. Here again, there is a ground

state that is related with only N (1)
n1,n2

. So this state is again an anomalous ground state.
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Fourthly, for 0 < q < 1 and εn1,n2 = 1
1−q2 , we find

N (1)
n1,n2

+ N (2)
n1,n2

=
1

1− q2
(2.528)

if we sandwich Eq. (2.299) between 〈n1n2| and |n1n2〉 and then use Eqs. (2.303),

(2.414) and (2.426).

Now, let us study the following two subcases of this case.

For N (1)
n1,n2

= 1
1−q2 , we have

N (2)
n1,n2

= 0 (2.529)

from Eq. (2.528). So Eq. (2.467) reads

N
(2)
n1,n2−m2

= q−2m2N (2)
n1,n2

. (2.530)

So we have

N
(2)
n1,n2−m2

= 0. (2.531)

In addition, Eq. (2.468) reads

N
(2)
n1,n2+m2

= q2m2N (2)
n1,n2

. (2.532)

Hence

N
(2)
n1,n2+m2

= 0. (2.533)
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For N (1)
n1,n2

< 1
1−q2 , we certainly have

q2m2{N (1)
n1,n2

+ N (2)
n1,n2

− (
1

1− q2
)} = 0 (2.534)

from Eq. (2.528). Then it is obvious that

q2m2{N (1)
n1,n2

+ N (2)
n1,n2

− (
1

1− q2
)} −N (1)

n1,n2
+ (

1

1− q2
) = −N (1)

n1,n2
+ (

1

1− q2
). (2.535)

The next step is to look at Eq. (2.489) to decide

N
(2)
n1,n2−m2

= (
1

1− q2
)−N (1)

n1,n2
. (2.536)

We know that

N (1)
n1,n2

+ N (2)
n1,n2

− (
1

1− q2
) = 0 (2.537)

from Eq. (2.528). It follows that

q−2m2{N (1)
n1,n2

+N (2)
n1,n2

−(
1

1− q2
)+q2m2{( 1

1− q2
)−N (1)

n1,n2
}} = q−2m2q2m2{( 1

1− q2
)−N (1)

n1,n2
}.

(2.538)

Using Eq. (2.490), we conclude that

N
(2)
n1,n2+m2

= (
1

1− q2
)−N (1)

n1,n2
. (2.539)

Again here we can see that there must be a state such that

a1|0n2〉 = 0 (2.540)

for this case if we recall Eq. (2.493). This is an anomalous ground state that is related

with only N (1)
n1,n2

.
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Fifthly and finally, for 0 < q < 1 and εn1,n2 < 1
1−q2 , we have

N (1)
n1,n2

+ N (2)
n1,n2

<
1

1− q2
. (2.541)

For this case, we may have only the subcase in which N (1)
n1,n2

< 1
1−q2 . Since

q2m2 − 1 ≤ 0 (2.542)

and

N (1)
n1,n2

− (
1

1− q2
) < 0, (2.543)

we conclude that

(q2m2 − 1){N (1)
n1,n2

− (
1

1− q2
)}+ q2m2N (2)

n1,n2
> 0. (2.544)

Therefore we have

N
(2)
n1,n2+m2

> 0. (2.545)

In summary, we have the following anomalous cases.

For 0 < q < 1, εn1,n2 > 1
1−q2 and N (1)

n1,n2
> 1

1−q2 , there must be an anomalous

ground state such that

b2|n10〉 = 0. (2.546)

For 0 < q < 1, εn1,n2 > 1
1−q2 and N (1)

n1,n2
< 1

1−q2 , there must be an anomalous
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ground state such that

b†1|0n2〉 = 0. (2.547)

For 0 < q < 1, εn1,n2 = 1
1−q2 and N (1)

n1,n2
< 1

1−q2 , there must be an anomalous

ground state such that

a1|0n2〉 = 0. (2.548)

We have finished the study of finding anomalous cases. Now, we want to recal-

culate N (1)
n1,n2

and N (2)
n1,n2

for these cases.

The first case is the one in which 0 < q < 1, εn1,n2 > 1
1−q2 and N (1)

n1,n2
> 1

1−q2 .

According to Eq. (2.546) we can write

b†2b2|n10〉 = 0. (2.549)

This gives us that

a2a
†
2|n10〉 = 0 (2.550)

if we use Eqs. (2.379) and (2.380). We will write this equation in terms of only N (1)
n1,n2

and N (2)
n1,n2

because we want to find the eigenvalues of N (1)
n1,n2

and N (2)
n1,n2

corresponding

to the anomalous ground state. Therefore we use Eqs. (2.285) and (2.284) to write

{(q2 − 1)a†1a1 + q2a†2a2 + 1}|n10〉 = 0. (2.551)

From Eqs. (2.300), (2.301), (2.414) and (2.426) we can write

{(q2 − 1)N
(1)
n1,0 + q2N

(2)
n1,0 + 1}|n10〉 = 0. (2.552)
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It follows that

(q2 − 1)N
(1)
n1,0 + q2N

(2)
n1,0 + 1 = 0. (2.553)

For n1 = 0, this equation reads

(q2 − 1)N
(1)
0,0 + q2N

(2)
0,0 + 1 = 0. (2.554)

Let us solve it for N
(2)
0,0 . Then we get

N
(2)
0,0 = (q−2 − 1)N

(1)
0,0 − q−2. (2.555)

Now, let us combine Eqs. (2.487) and (2.488) to get

N
(2)
n1+m1,n2

= q−2m1N (2)
n1,n2

(2.556)

where m1 = 0,±1,±2, .... If we write n2 + m2 instead of n2, we obtain

N
(2)
n1+m1,n2+m2

= q−2m1N
(2)
n1,n2+m2

. (2.557)

where m2 = 0, 1, 2, .... For n1 = 0 and n2 = 0 it becomes

N (2)
m1,m2

= q−2m1N
(2)
0,m2

. (2.558)

For n1 = 0 and n2 = 0 Eq. (2.490) reads

N
(2)
0,m2

= q−2m2{(1− q2m2)N
(1)
0,0 + N

(2)
0,0 − (

1− q2m2

1− q2
)}. (2.559)

Feeding Eq. (2.555) into this equation, we find

N
(2)
0,m2

= q−2m2{(q−2 − q2m2)N
(1)
0,0 − (

q−2 − q2m2

1− q2
)}. (2.560)
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If we tidy up it, we get

N
(2)
0,m2

= (q−2(m2+1) − 1){N (1)
0,0 − (

1

1− q2
)}. (2.561)

Let us feed this into Eq. (2.558) and change m1, m2 into n1, n2 respectively. Then we

get

N (2)
n1,n2

= q−2n1(q−2(n2+1) − 1){N (1)
0,0 − (

1

1− q2
)} (2.562)

where n1 = 0,±1,±2, ... and n2 = 0, 1, 2, .... In addition, let us combine Eqs. (2.483)

and (2.484) to write

N
(1)
n1+m1,n2

= q−2m1{N (1)
n1,n2

− (
1− q2m1

1− q2
)}. (2.563)

where m1 = 0,±1,±2, .... If we write n2 + m2 instead of n2, we obtain

N
(1)
n1+m1,n2+m2

= q−2m1{N (1)
n1,n2+m2

− (
1− q2m1

1− q2
)} (2.564)

where m2 = 0, 1, 2, .... Let us substitute Eq. (2.486) into it and then evaluate it for

n1 = 0 and n2 = 0 and finally change m1, m2 into n1, n2 respectively. Therefore it is

clearly seen that

N (1)
n1,n2

= q−2n1{N (1)
0,0 − (

1− q2n1

1− q2
)} (2.565)

where n1 = 0,±1,±2, ... and n2 = 0, 1, 2, ....

The second anomalous case is the one in which 0 < q < 1, εn1,n2 > 1
1−q2 and

N (1)
n1,n2

< 1
1−q2 . If we take Eq. (2.547) into account, we get

b1b
†
1|0n2〉 = 0. (2.566)
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When we use Eqs. (2.377) and (2.378), we have

a†1a1|0n2〉 = 0. (2.567)

Then we get

N
(1)
0,n2

|0n2〉 = 0 (2.568)

from Eqs. (2.300) and (2.414). So it is obvious that

N
(1)
0,n2

= 0. (2.569)

For n2 = 0, it becomes

N
(1)
0,0 = 0. (2.570)

The next step is to combine Eqs. (2.485) and (2.486), to have

N
(1)
n1,n2+m2

= N (1)
n1,n2

(2.571)

where m2 = 0,±1,±2, .... If we write n1 + m1 instead of n1, we obtain

N
(1)
n1+m1,n2+m2

= N
(1)
n1+m1,n2

(2.572)

where m1 = 0,−1,−2, .... For n1 = 0 and n2 = 0, this equation reads

N (1)
m1,m2

= N
(1)
m1,0. (2.573)

Now, let us find N
(1)
m1,0. For n1 = 0 and n2 = 0, Eq. (2.483) reads

N
(1)
m1,0 = q−2m1N

(1)
0,0 + (

1− q−2m1

1− q2
) (2.574)
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where m1 = 0,−1,−2, .... Let us substitute Eq. (2.570) into it to get

N
(1)
m1,0 =

1− q−2m1

1− q2
. (2.575)

We can now insert this into Eq. (2.573) and change m1, m2 into n1, n2 respectively, to

have

N (1)
n1,n2

=
1− q−2n1

1− q2
(2.576)

where n1 = 0,−1,−2, ... and n2 = 0,±1,±2, .... To get N (2)
n1,n2

for this case, let us write

Eq. (2.487) as

N
(2)
n1+m1,n2+m2

= q−2m1N
(2)
n1,n2+m2

(2.577)

where m1 = 0,−1,−2, ... and m2 = 0,±1,±2, .... Now, we can combine Eqs. (2.489)

and (2.490) as

N
(2)
n1,n2+m2

= q−2m2{(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
)} (2.578)

where m2 = 0,±1,±2, .... Let us substitute it into Eq. (2.577) to have

N
(2)
n1+m1,n2+m2

= q−2(m1+m2){(1− q2m2)N (1)
n1,n2

+ N (2)
n1,n2

− (
1− q2m2

1− q2
)}. (2.579)

If we evaluate it for n1 = 0 and n2 = 0 and then change m1, m2 into n1, n2 respectively,

we find

N (2)
n1,n2

= q−2(n1+n2){(1− q2n2)N
(1)
0,0 + N

(2)
0,0 − (

1− q2n2

1− q2
)}. (2.580)

According to Eq. (2.570), it becomes

N (2)
n1,n2

= q−2(n1+n2){N (2)
0,0 − (

1− q2n2

1− q2
)} (2.581)
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where n1 = 0,−1,−2, ... and n2 = 0,±1,±2, ....

Finally, the third anomalous case is the one in which 0 < q < 1, εn1,n2 = 1
1−q2

and N (1)
n1,n2

< 1
1−q2 . We can write

a†1a1|0n2〉 = 0 (2.582)

using Eq. (2.548). Then we have

N
(1)
0,n2

|0n2〉 = 0 (2.583)

from Eqs. (2.300) and (2.414). It is clearly seen that

N
(1)
0,n2

= 0. (2.584)

For n2 = 0, it becomes

N
(1)
0,0 = 0. (2.585)

Now, let us combine Eqs. (2.463) and (2.464) to write

N
(1)
n1,n2+m2

= N (1)
n1,n2

(2.586)

where m2 = 0,±1,±2, .... Next, we write n1 + m1 instead of n1 to obtain

N
(1)
n1+m1,n2+m2

= N
(1)
n1+m1,n2

(2.587)

where m1 = 0, 1, 2, .... For n1 = 0 and n2 = 0 this equation becomes

N (1)
m1,m2

= N
(1)
m1,0. (2.588)
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To find N
(1)
m1,0, we rewrite Eq. (2.462) for n1 = 0 and n2 = 0. Hence we have

N
(1)
m1,0 = q2m1N

(1)
0,0 + (

1− q2m1

1− q2
) (2.589)

where m1 = 0, 1, 2, .... If we use Eq. (2.585), we find

N
(1)
m1,0 =

1− q2m1

1− q2
. (2.590)

Inserting this into Eq. (2.588) and changing m1, m2 into n1, n2 respectively, we obtain

N (1)
n1,n2

=
1− q2n1

1− q2
(2.591)

where n1 = 0, 1, 2, ... and n2 = 0,±1,±2, .... To find N (2)
n1,n2

, we use Eq. (2.466). Then

we get

N
(2)
n1+m1,n2

= q2m1N (2)
n1,n2

. (2.592)

where m1 = 0, 1, 2, .... From it, we can write

N
(2)
n1+m1,n2+m2

= q2m1N
(2)
n1,n2+m2

. (2.593)

Now, let us combine Eqs. (2.467) and (2.468) to get

N
(2)
n1,n2+m2

= (q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
) (2.594)

where m2 = 0,±1,±2, .... Let us feed this into Eq. (2.593) to have

N
(2)
n1+m1,n2+m2

= q2m1{(q2m2 − 1)N (1)
n1,n2

+ q2m2N (2)
n1,n2

+ (
1− q2m2

1− q2
)}. (2.595)
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For n1 = 0 and n2 = 0, it becomes

N (2)
m1,m2

= q2m1{(q2m2 − 1)N
(1)
0,0 + q2m2N

(2)
0,0 + (

1− q2m2

1− q2
)}. (2.596)

If we use Eq. (2.585) and change m1, m2 into n1, n2 respectively, we get

N (2)
n1,n2

= q2n1{q2n2N
(2)
0,0 + (

1− q2n2

1− q2
)} (2.597)

where n1 = 0, 1, 2, ... and n2 = 0,±1,±2, ....

Let us summarize N (1)
n1,n2

and N (2)
n1,n2

for the three anomalous cases.

For 0 < q < 1, εn1,n2 > 1
1−q2 and N (1)

n1,n2
> 1

1−q2 ,

N (1)
n1,n2

= q−2n1{N (1)
0,0 − (

1− q2n1

1− q2
)} (2.598)

where n1 = 0,±1,±2, ... and n2 = 0, 1, 2, ...,

N (2)
n1,n2

= q−2n1(q−2(n2+1) − 1){N (1)
0,0 − (

1

1− q2
)} (2.599)

where n1 = 0,±1,±2, ... and n2 = 0, 1, 2, ....

For 0 < q < 1, εn1,n2 > 1
1−q2 and N (1)

n1,n2
< 1

1−q2 ,

N (1)
n1,n2

=
1− q−2n1

1− q2
(2.600)

where n1 = 0,−1,−2, ... and n2 = 0,±1,±2, ...,

N (2)
n1,n2

= q−2(n1+n2){N (2)
0,0 − (

1− q2n2

1− q2
)} (2.601)

where n1 = 0,−1,−2, ... and n2 = 0,±1,±2, ....
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For 0 < q < 1, εn1,n2 = 1
1−q2 and N (1)

n1,n2
< 1

1−q2 ,

N (1)
n1,n2

=
1− q2n1

1− q2
(2.602)

where n1 = 0, 1, 2, ... and n2 = 0,±1,±2, ...,

N (2)
n1,n2

= qn1{q2n2N
(2)
0,0 + (

1− q2n2

1− q2
)} (2.603)

where n1 = 0, 1, 2, ... and n2 = 0,±1,±2, ....

Hereafter, we will be interested in the uncertainty relations for the momentum

and position operators. Here we will examine the uncertainty relations for the energy

eigenstates. We will use Eqs. (2.291)-(2.294) to evaluate the following commutation

relations. Firstly, we write

[P1, P2] = [
i√
2
(a†1 − a1),

i√
2
(a†2 − a2)]. (2.604)

Evidently, we get

[P1, P2] = −1

2
([a†1, a

†
2]− [a†1, a2]− [a1, a

†
2] + [a1, a2]). (2.605)

Since we have

〈n1n2|a1a2|n1n2〉 = 0, (2.606)

〈n1n2|a†1a2|n1n2〉 = 0, (2.607)

〈n1n2|a1a
†
2|n1n2〉 = 0 (2.608)
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and

〈n1n2|a†1a
†
2|n1n2〉 = 0, (2.609)

we reach

〈n1n2|[P1, P2]|n1n2〉 = 0. (2.610)

Similarly, we write

[P1, X2] = [
i√
2
(a†1 − a1),

1√
2
(a†2 + a2)]. (2.611)

Obviously, we have

[P1, X2] =
i

2
([a†1, a

†
2] + [a†1, a2]− [a1, a

†
2]− [a1, a2]) (2.612)

and then

〈n1n2|[P1, X2]|n1n2〉 = 0 (2.613)

from Eqs. (2.606)-(2.609). We continue writing

[P2, X1] = [
i√
2
(a†2 − a2),

1√
2
(a†1 + a1)]. (2.614)

It follows that

[P2, X1] =
i

2
([a†2, a

†
1] + [a†2, a1]− [a2, a

†
1]− [a2, a1]) (2.615)

and then

〈n1n2|[P2, X1]|n1n2〉 = 0 (2.616)
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from Eqs. (2.606)-(2.609). Finally, we have

[X1, X2] = [
1√
2
(a†1 + a1),

1√
2
(a†2 + a2)] (2.617)

and

[X1, X2] =
1

2
([a†1, a

†
2] + [a†1, a2] + [a1, a

†
2] + [a1, a2]). (2.618)

Therefore one can show that

〈n1n2|[X1, X2]|n1n2〉 = 0 (2.619)

from Eqs. (2.606)-(2.609). If we use Eq. (1.25), we obtain

∆P1∆P2 ≥ 0, (2.620)

∆P1∆X2 ≥ 0, (2.621)

∆P2∆X1 ≥ 0 (2.622)

and

∆X1∆X2 ≥ 0 (2.623)

according to Eqs. (2.610), (2.613), (2.616) and (2.619) respectively. Let us calculate

the remaining commutation relations to obtain the corresponding uncertainty relations.

It is evident that

[P1, X1] =
i

2
[a†1 − a1, a

†
1 + a1]. (2.624)
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It follows that

[P1, X1] = i[a†1, a1]. (2.625)

We use Eq. (2.284) to write

[P1, X1] = i(a†1a1 − q2a†1a1 − 1). (2.626)

If we tidy up it, we get

[P1, X1] = i{(1− q2)a†1a1 − 1}. (2.627)

From Eq. (1.25), one can immediately get

∆P1∆X1 ≥
1

2
|(1− q2)〈Ψ|a†1a1|Ψ〉 − 1|. (2.628)

Similarly, we have

[P2, X2] =
i

2
[a†2 − a2, a

†
2 + a2]. (2.629)

Then it is obvious that

[P2, X2] = i[a†2, a2]. (2.630)

We use Eqs. (2.285) and (2.284) to obtain

[P2, X2] = i(a†2a2 − 1− q2a†1a1 + a†1a1 − q2a†2a2). (2.631)

If we tidy up it, we find

[P2, X2] = i{(1− q2)(a†1a1 + a†2a2)− 1}. (2.632)
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In terms of the hamiltonian, it becomes

[P2, X2] = i{( 2

1 + q2
)2(1− q2){H − (

3 + q2

4
)} − 1}. (2.633)

from Eq. (2.299). More compactly, we have

[P2, X2] = i(
2

1 + q2
)2{(1− q2)H − 1}. (2.634)

Therefore we can write

∆P2∆X2 ≥
1

2
(

2

1 + q2
)2|(1− q2)〈Ψ|H|Ψ〉 − 1| (2.635)

from Eq. (1.25).

At this stage, we will recalculate Eqs. (2.628) and (2.635) for the energy eigen-

states |n1n2〉. In this case, we consider as

|Ψ〉 = |n1n2〉. (2.636)

Firstly, Eq. (2.628) reads

∆P1∆X1 ≥
1

2
|(1− q2)N (1)

n1,n2
− 1|. (2.637)

Let us evaluate this inequality for the following five cases. For this aim, we will substi-

tute Eq. (2.481) into the above inequality for the following three cases. We will follow

a different way for the remaining two cases. Thus we will have found the uncertainty

relations for the energy eigenstates.
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For q > 1,

∆P1∆X1 ≥
1

2
q2n1 . (2.638)

For q = 1,

∆P1∆X1 ≥
1

2
. (2.639)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

∆P1∆X1 ≥
1

2
q2n1 . (2.640)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

〈n1n2|a†1a1|n1n2〉 >
1

1− q2
(2.641)

if we take Eqs. (2.483)-(2.486) into consideration. Since

1

2
|(1− q2)〈n1n2|a†1a1|n1n2〉 − 1| > 0, (2.642)

we can confidently say that

∆P1∆X1 > 0 (2.643)

looking at Eq. (2.637).
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For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 , we have

〈n1n2|a†1a1|n1n2〉 =
1

1− q2
(2.644)

from Eqs. (2.469) and (2.470). Finally, we substitute it into Eq. (2.637) to have

∆P1∆X1 ≥ 0. (2.645)

Secondly, Eq. (2.635) reads

∆P2∆X2 ≥
1

2
(

2

1 + q2
)2|(1− q2)εn1,n2 − 1| (2.646)

from Eq. (2.303). In the present case, we substitute Eq. (2.396) into the above

inequality for the following three cases to have the uncertainty relations for the energy

eigenstates. For the remaining two cases we will follow a different way.

For q > 1,

∆P2∆X2 ≥
1

2
(

2

1 + q2
)2q2(n1+n2)|(1− q2)(

3 + q2

4
)− 1|. (2.647)

If we tidy up it, we get

∆P2∆X2 ≥
1

2
q2(n1+n2). (2.648)

For q = 1, the above inequality reads

∆P2∆X2 ≥
1

2
. (2.649)
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For 0 < q < 1 and εn1,n2 < 1
1−q2 , we again have

∆P2∆X2 ≥
1

2
q2(n1+n2). (2.650)

For 0 < q < 1 and εn1,n2 > 1
1−q2 , we obviously have

|(1− q2)εn1,n2 − 1| > 0. (2.651)

∆P2∆X2 > 0. (2.652)

For 0 < q < 1 and εn1,n2 = 1
1−q2 , we obtain

∆P2∆X2 ≥ 0 (2.653)

if we use the value of εn1,n2 in Eq. (2.646).

Now, we want to find the certainty relations. Let us first recall Eq. (2.144).

According to it, we can write the following relations. It is clear that

(∆P1)
2 ≤ 〈Ψ|P 2

1 |Ψ〉, (2.654)

(∆X1)
2 ≤ 〈Ψ|X2

1 |Ψ〉, (2.655)

(∆P2)
2 ≤ 〈Ψ|P 2

2 |Ψ〉 (2.656)
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and

(∆X2)
2 ≤ 〈Ψ|X2

2 |Ψ〉. (2.657)

Then we sandwich Eq. (2.288) between 〈Ψ| and |Ψ〉 to write

〈Ψ|P 2
1 |Ψ〉+ 〈Ψ|X2

1 |Ψ〉

+(
1 + q2

2
)(〈Ψ|P 2

2 |Ψ〉+ 〈Ψ|X2
2 |Ψ〉) = 2〈Ψ|H|Ψ〉. (2.658)

Since

〈Ψ|P 2
1 |Ψ〉 = 〈Ψ|P †

1P1|Ψ〉, (2.659)

we find

〈Ψ|P 2
1 |Ψ〉 = (P1|Ψ〉)†(P1|Ψ〉). (2.660)

The right of the equation is the square of the length of the vector, P1|Ψ〉. So it must

be nonnegative. We express it as

〈Ψ|P 2
1 |Ψ〉 ≥ 0 (2.661)

mathematically. Similarly, one can easily show that

〈Ψ|X2
1 |Ψ〉 ≥ 0, (2.662)

〈Ψ|P 2
2 |Ψ〉 ≥ 0 (2.663)
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and

〈Ψ|X2
2 |Ψ〉 ≥ 0. (2.664)

If we take these four equations and Eq. (2.658) into consideration, we obtain

〈Ψ|P 2
1 |Ψ〉 ≤ 2〈Ψ|H|Ψ〉, (2.665)

〈Ψ|X2
1 |Ψ〉 ≤ 2〈Ψ|H|Ψ〉, (2.666)

〈Ψ|P 2
2 |Ψ〉 ≤ (

4

1 + q2
)〈Ψ|H|Ψ〉 (2.667)

and

〈Ψ|X2
2 |Ψ〉 ≤ (

4

1 + q2
)〈Ψ|H|Ψ〉. (2.668)

Let us combine Eqs. (2.654) and (2.665) to get

(∆P1)
2 ≤ 2〈Ψ|H|Ψ〉. (2.669)

Similarly, we get

(∆X1)
2 ≤ 2〈Ψ|H|Ψ〉 (2.670)

according to Eqs. (2.655) and (2.666). Next, we have

(∆P2)
2 ≤ (

4

1 + q2
)〈Ψ|H|Ψ〉, (2.671)
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if we combine Eqs. (2.656) and (2.667). Finally, we obtain

(∆X2)
2 ≤ (

4

1 + q2
)〈Ψ|H|Ψ〉 (2.672)

from Eqs. (2.657) and (2.668).

First of all, we will evaluate the certainty relations for only the energy eigenstates.

So we have

〈n1n2|H|n1n2〉 = εn1,n2 (2.673)

by multiplying Eq. (2.303) on the left by 〈n1n2| and exploiting the orthonormality of

the basis, i.e.

〈n1n2|m1m2〉 = δn1m1δn2m2 . (2.674)

If we use Eq. (2.673), then Eqs. (2.669), (2.670), (2.671) and (2.672) read

(∆P1)
2 ≤ 2εn1,n2 , (2.675)

(∆X1)
2 ≤ 2εn1,n2 , (2.676)

(∆P2)
2 ≤ (

4

1 + q2
)εn1,n2 (2.677)

and

(∆X2)
2 ≤ (

4

1 + q2
)εn1,n2 (2.678)

respectively.
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At this point, it is clear that we need the limits of εn1,n2 . Here it is enough to

know the upper limits of εn1,n2 but for later use we will also compute the lower limits

of εn1,n2 . In the following calculations, we will use the fact that εn1,n2 is an increasing

function of n1 and n2. For all cases, εn1,n2 approximate to its maximum value in the

limit n1, n2 →∞.

For q > 1, εn1,n2 takes the minimum value at n1 = 0 and n2 = 0. Since

ε0,0 =
3 + q2

4
(2.679)

and

lim
n1,n2→∞

εn1,n2 = ∞, (2.680)

we have

εn1,n2 ≥
3 + q2

4
. (2.681)

For q = 1, εn1,n2 takes the minimum value at n1 = 0 and n2 = 0. In this case, we

obtain

ε0,0 = 1 (2.682)

and

lim
n1,n2→∞

εn1,n2 = ∞. (2.683)

Therefore it is obvious that

εn1,n2 ≥ 1. (2.684)
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For 0 < q < 1 and εn1,n2 > 1
1−q2 , εn1,n2 approximates to its minimum value in the

limit n1, n2 → −∞. So we get

lim
n1,n2→−∞

εn1,n2 =
1

1− q2
(2.685)

and

lim
n1,n2→∞

εn1,n2 = ∞. (2.686)

Accordingly, we have

εn1,n2 >
1

1− q2
. (2.687)

For 0 < q < 1 and εn1,n2 = 1
1−q2 , we have only one energy eigenvalue. Hence we

get

εn1,n2 =
1

1− q2
. (2.688)

For 0 < q < 1 and εn1,n2 < 1
1−q2 , εn1,n2 takes the minimum value at n1 = 0 and

n2 = 0. Since

ε0,0 =
3 + q2

4
(2.689)

and

lim
n1,n2→∞

εn1,n2 =
1

1− q2
, (2.690)
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we can obviously write

3 + q2

4
≤ εn1,n2 <

1

1− q2
. (2.691)

In summary, we have the following limits of the energy eigenvalues.

For q > 1,

εn1,n2 ≥
3 + q2

4
. (2.692)

For q=1,

εn1,n2 ≥ 1. (2.693)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

εn1,n2 >
1

1− q2
. (2.694)

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

εn1,n2 =
1

1− q2
. (2.695)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

3 + q2

4
≤ εn1,n2 <

1

1− q2
. (2.696)
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Now, let us continue to evaluate the certainty relations. As we can see, there is

an upper limit for εn1,n2 for only one case in which 0 < q < 1 and εn1,n2 < 1
1−q2 . So we

will find the certainty relations for only this case. Hence Eqs. (2.675), (2.676), (2.677)

and (2.678) read

∆P1 <

√
2

1− q2
, (2.697)

∆X1 <

√
2

1− q2
, (2.698)

∆P2 <

√
4

1− q4
(2.699)

and

∆X2 <

√
4

1− q4
(2.700)

respectively. Then we use these four equations to obtain

∆P1∆P2 < (
2

1− q2
)

√
2

1 + q2
, (2.701)

∆P1∆X2 < (
2

1− q2
)

√
2

1 + q2
, (2.702)

∆P2∆X1 < (
2

1− q2
)

√
2

1 + q2
, (2.703)

∆X1∆X2 < (
2

1− q2
)

√
2

1 + q2
, (2.704)
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∆P1∆X1 <
2

1− q2
(2.705)

and

∆P2∆X2 <
4

1− q4
. (2.706)

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the first method.

The uncertainty and certainty relations for the momentum and position:

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

∆P1 <

√
2

1− q2
, (2.707)

∆X1 <

√
2

1− q2
, (2.708)

∆P2 <

√
4

1− q4
, (2.709)

∆X2 <

√
4

1− q4
. (2.710)

The uncertainty and certainty relations for ∆P1∆P2, ∆P1∆X2, ∆P2∆X1 and

∆X1∆X2:
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∆P1∆P2 ≥ 0, (2.711)

∆P1∆X2 ≥ 0, (2.712)

∆P2∆X1 ≥ 0, (2.713)

∆X1∆X2 ≥ 0. (2.714)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

∆P1∆P2 < (
2

1− q2
)

√
2

1 + q2
, (2.715)

∆P1∆X2 < (
2

1− q2
)

√
2

1 + q2
, (2.716)

∆P2∆X1 < (
2

1− q2
)

√
2

1 + q2
, (2.717)

∆X1∆X2 < (
2

1− q2
)

√
2

1 + q2
. (2.718)

The uncertainty and certainty relations for ∆P1∆X1:



119

For q > 1,

∆P1∆X1 ≥
1

2
q2n1 . (2.719)

For q = 1,

∆P1∆X1 ≥
1

2
. (2.720)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1∆X1 > 0. (2.721)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1∆X1 ≥ 0. (2.722)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

∆P1∆X1 ≥
1

2
q2n1 . (2.723)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

∆P1∆X1 <
2

1− q2
. (2.724)

The uncertainty and certainty relations for ∆P2∆X2:
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For q > 1,

∆P2∆X2 ≥
1

2
q2(n1+n2). (2.725)

For q = 1,

∆P2∆X2 ≥
1

2
. (2.726)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

∆P2∆X2 > 0. (2.727)

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

∆P2∆X2 ≥ 0. (2.728)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1

2
q2(n1+n2) ≤ ∆P2∆X2 <

4

1− q4
. (2.729)

Up to now, we have studied the uncertainty and certainty relations for the energy

eigenstates. However, from now on, we will generalize them to any state |Ψ〉. An

arbitrary state can be expressed as

|Ψ〉 =
∞∑

n1,n2=0

Cn1,n2|n1n2〉 (2.730)
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where Cn1,n2 satisfies

∞∑
n1,n2=0

|Cn1,n2|2 = 1. (2.731)

For later use, we will calculate some expressions. Firstly, we write

〈Ψ|a†1a1|Ψ〉 = (
∞∑

m1,m2=0

C∗
m1,m2

〈m1m2|)a†1a1(
∞∑

n1,n2=0

Cn1,n2 |n1n2〉). (2.732)

After that, we exploit the orthonormality of the basis to have

〈Ψ|a†1a1|Ψ〉 =
∞∑

n1,n2=0

|Cn1,n2|2N (1)
n1,n2

. (2.733)

Secondly, we write

〈Ψ|H|Ψ〉 = (
∞∑

m1,m2=0

C∗
m1,m2

〈m1m2|)H(
∞∑

n1,n2=0

Cn1,n2 |n1n2〉). (2.734)

Then we exploit the orthonormality of the basis to get

〈Ψ|H|Ψ〉 =
∞∑

n1,n2=0

|Cn1,n2|2εn1,n2 . (2.735)

To evaluate Eq. (2.637), finding the limits of N (1)
n1,n2

is an essential task.

For q > 1, we look at Eq. (2.481) to have

N (1)
n1,n2

≥ 0. (2.736)
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For q = 1, it is clear that

N (1)
n1,n2

≥ 0 (2.737)

according to Eq. (2.481).

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 , we take Eqs. (2.483)-(2.486) into consideration

to decide

N (1)
n1,n2

= q−2n1{N (1)
0,0 − (

1− q2n1

1− q2
)} (2.738)

where n1 = 0,±1,±2, .... This equation tells us that

N (1)
n1,n2

>
1

1− q2
. (2.739)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 , we have

N (1)
n1,n2

=
1

1− q2
(2.740)

from Eqs. (2.461) - (2.464).

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 , we use Eq. (2.481) to get

0 ≤ N (1)
n1,n2

<
1

1− q2
. (2.741)

In summary, we have the following limits of N (1)
n1,n2

:

For q > 1,

N (1)
n1,n2

≥ 0. (2.742)
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For q = 1,

N (1)
n1,n2

≥ 0. (2.743)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

N (1)
n1,n2

>
1

1− q2
. (2.744)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

N (1)
n1,n2

=
1

1− q2
. (2.745)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

0 ≤ N (1)
n1,n2

<
1

1− q2
. (2.746)

We are ready now to find the limits of 〈Ψ|a†1a1|Ψ〉. We use Eq. (2.733) to evaluate

these limits for the following five cases.

For q > 1, since we have

∞∑
n1,n2=0

|Cn1,n2|2N (1)
n1,n2

≥ 0 (2.747)

from Eq. (2.742), we can conclude that

〈Ψ|a†1a1|Ψ〉 ≥ 0. (2.748)
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For q = 1, similarly, we get

∞∑
n1,n2=0

|Cn1,n2 |2N (1)
n1,n2

≥ 0 (2.749)

from Eq. (2.743). Then it follows that

〈Ψ|a†1a1|Ψ〉 ≥ 0. (2.750)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 , we obtain

∞∑
n1,n2=0

|Cn1,n2|2N (1)
n1,n2

>
∞∑

n1,n2=0

|Cn1,n2|2(
1

1− q2
) (2.751)

from Eq. (2.744). Then we use Eq. (2.731) to write

〈Ψ|a†1a1|Ψ〉 >
1

1− q2
. (2.752)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 , we can obviously write

∞∑
n1,n2=0

|Cn1,n2|2N (1)
n1,n2

=
∞∑

n1,n2=0

|Cn1,n2|2(
1

1− q2
) (2.753)

if we use Eq. (2.745). If we take Eq. (2.731) into account, we get

〈Ψ|a†1a1|Ψ〉 =
1

1− q2
. (2.754)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 , we use Eq. (2.746) to get

0 ≤
∞∑

n1,n2=0

|Cn1,n2 |2N (1)
n1,n2

<
∞∑

n1,n2=0

|Cn1,n2|2(
1

1− q2
). (2.755)
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Then we obtain

0 ≤ 〈Ψ|a†1a1|Ψ〉 <
1

1− q2
(2.756)

using Eq. (2.731).

In summary, we have the following limits of 〈Ψ|a†1a1|Ψ〉:

For q > 1,

〈Ψ|a†1a1|Ψ〉 ≥ 0. (2.757)

For q = 1,

〈Ψ|a†1a1|Ψ〉 ≥ 0. (2.758)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

〈Ψ|a†1a1|Ψ〉 >
1

1− q2
. (2.759)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

〈Ψ|a†1a1|Ψ〉 =
1

1− q2
. (2.760)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

0 ≤ 〈Ψ|a†1a1|Ψ〉 <
1

1− q2
. (2.761)



126

Now, we will evaluate Eq. (2.628) for the following five cases.

For q > 1, we can write

(1− q2)〈Ψ|a†1a1|Ψ〉 − 1 ≤ −1 (2.762)

using Eq. (2.757). It follows that

1

2
|(1− q2)〈Ψ|a†1a1|Ψ〉 − 1| ≥ 1

2
. (2.763)

Then we obviously have

∆P1∆X1 ≥
1

2
. (2.764)

For q = 1, Eq. (2.628) reads

∆P1∆X1 ≥
1

2
. (2.765)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 , using Eq. (2.759), we have

1

2
|(1− q2)〈Ψ|a†1a1|Ψ〉 − 1| > 0. (2.766)

This gives us that

∆P1∆X1 > 0. (2.767)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 , we evidently get

∆P1∆X1 ≥ 0 (2.768)
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by using Eq. (2.760).

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 , since we have

−1 ≤ (1− q2)〈Ψ|a†1a1|Ψ〉 − 1 < 0 (2.769)

from Eq. (2.761) and then

1

2
|(1− q2)〈Ψ|a†1a1|Ψ〉 − 1| > 0, (2.770)

we can surely say that

∆P1∆X1 > 0. (2.771)

Now, we will compute Eq. (2.635). For this purpose, we will use the limits of

εn1,n2 to calculate the limits of 〈Ψ|H|Ψ〉. To calculate them, we need the expression in

Eq. (2.735). So let us study for the following cases.

For q > 1, we obtain

∞∑
n1,n2=0

|Cn1,n2|2εn1,n2 ≥
∞∑

n1,n2=0

|Cn1,n2|2(
3 + q2

4
) (2.772)

from Eq. (2.692). Let us use Eq. (2.731) to write

〈Ψ|H|Ψ〉 ≥ 3 + q2

4
. (2.773)

For q = 1, using Eq. (2.693) we write

∞∑
n1,n2=0

|Cn1,n2|2εn1,n2 ≥
∞∑

n1,n2=0

|Cn1,n2|2. (2.774)
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Then let us use Eq. (2.731) to obtain

〈Ψ|H|Ψ〉 ≥ 1. (2.775)

For 0 < q < 1 and εn1,n2 > 1
1−q2 , we have

∞∑
n1,n2=0

|Cn1,n2|2εn1,n2 >
∞∑

n1,n2=0

|Cn1,n2|2(
1

1− q2
) (2.776)

from Eq. (2.694). This gives us that

〈Ψ|H|Ψ〉 >
1

1− q2
(2.777)

if we use Eq. (2.731).

For 0 < q < 1 and εn1,n2 = 1
1−q2 , we have

∞∑
n1,n2=0

|Cn1,n2|2εn1,n2 =
∞∑

n1,n2=0

|Cn1,n2|2(
1

1− q2
) (2.778)

from Eq. (2.695). Then we have

〈Ψ|H|Ψ〉 =
1

1− q2
(2.779)

from Eq. (2.731).

For 0 < q < 1 and εn1,n2 < 1
1−q2 , we can write

∞∑
n1,n2=0

|Cn1,n2|2(
3 + q2

4
) ≤

∞∑
n1,n2=0

|Cn1,n2|2εn1,n2 <
∞∑

n1,n2=0

|Cn1,n2|2(
1

1− q2
) (2.780)
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from Eq. (2.696). If we use Eq. (2.731), we evidently have

3 + q2

4
≤ 〈Ψ|H|Ψ〉 <

1

1− q2
. (2.781)

In summary, we have the following limits of 〈Ψ|H|Ψ〉:

For q > 1,

〈Ψ|H|Ψ〉 ≥ 3 + q2

4
. (2.782)

For q = 1,

〈Ψ|H|Ψ〉 ≥ 1. (2.783)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

〈Ψ|H|Ψ〉 >
1

1− q2
. (2.784)

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

〈Ψ|H|Ψ〉 =
1

1− q2
. (2.785)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

3 + q2

4
≤ 〈Ψ|H|Ψ〉 <

1

1− q2
. (2.786)
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This is the end of studying the limits of 〈Ψ|H|Ψ〉. So we are ready now to evaluate

Eq. (2.635).

For q > 1, we get

(1− q2)〈Ψ|H|Ψ〉 − 1 ≤ −(
1 + q2

2
)2 (2.787)

if we use Eq. (2.782). It follows that

1

2
(

2

1 + q2
)2|(1− q2)〈Ψ|H|Ψ〉 − 1| ≥ 1

2
. (2.788)

Obviously, we obtain

∆P2∆X2 ≥
1

2
. (2.789)

For q = 1, Eq. (2.635) reads

∆P2∆X2 ≥
1

2
. (2.790)

For 0 < q < 1 and εn1,n2 > 1
1−q2 , we find

1

2
(

2

1 + q2
)2|(1− q2)〈Ψ|H|Ψ〉 − 1| > 0 (2.791)

if we take Eq. (2.784) into consideration. Hence we have

∆P2∆X2 > 0. (2.792)
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For 0 < q < 1 and εn1,n2 = 1
1−q2 , Eq. (2.635) reads

∆P2∆X2 ≥ 0 (2.793)

if we use Eq. (2.785).

For 0 < q < 1 and εn1,n2 < 1
1−q2 , we can write

−(
1 + q2

2
)2 ≤ (1− q2)〈Ψ|H|Ψ〉 − 1 < 0 (2.794)

from Eq. (2.786). It follows that

0 <
1

2
(

2

1 + q2
)2|(1− q2)〈Ψ|H|Ψ〉 − 1| < 6(

1

1 + q2
)2. (2.795)

Therefore we get

∆P2∆X2 > 0. (2.796)

We have obtained the uncertainty relations for any state |Ψ〉. It remains to

compute the certainty relations. The case in which 0 < q < 1 and εn1,n2 < 1
1−q2 is the

unique case that we can study the certainty relations.

For 0 < q < 1 and εn1,n2 < 1
1−q2 , let us recall Eq. (2.786). So using Eqs.

(2.669)-(2.672) we obtain

∆P1 <

√
2

1− q2
, (2.797)

∆X1 <

√
2

1− q2
, (2.798)
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∆P2 <

√
4

1− q4
(2.799)

and

∆X2 <

√
4

1− q4
(2.800)

respectively.

We will now summarize the uncertainty and certainty relations for any state |Ψ〉.

The certainty relations for the momentum and position:

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

∆P1, ∆X1 <

√
2

1− q2
, (2.801)

∆P2, ∆X2 <

√
4

1− q4
. (2.802)

The uncertainty and certainty relations for ∆P1∆X1:

For q > 1,

∆P1∆X1 ≥
1

2
. (2.803)

For q = 1,

∆P1∆X1 ≥
1

2
. (2.804)
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For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1∆X1 > 0. (2.805)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1∆X1 ≥ 0. (2.806)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

∆P1∆X1 > 0. (2.807)

The uncertainty and certainty relations for ∆P2∆X2:

For q > 1,

∆P2∆X2 ≥
1

2
. (2.808)

For q = 1,

∆P2∆X2 ≥
1

2
. (2.809)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

∆P2∆X2 > 0. (2.810)
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For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

∆P2∆X2 ≥ 0. (2.811)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

∆P2∆X2 > 0. (2.812)

We have finished the first part of this section. The second part will contain the

calculations of ∆P1, ∆X1, ∆P2, ∆X2 and finding their limits. This is the second

method to find the uncertainty and certainty relations. However, we will work for only

the energy eigenstates here.

Let us start by recalling the implicit expression for an uncertainty. For an operator

A, we have

(∆A)2 = 〈n1n2|A2|n1n2〉 − (〈n1n2|A|n1n2〉)2. (2.813)

Using this expression, we will calculate the following uncertainties.

Now, we use Eq. (2.291) to write

(∆P1)
2 = 〈n1n2|{−

1

2
(a†1 − a1)

2}|n1n2〉 − {〈n1n2|{
i√
2
(a†1 − a1)}|n1n2〉}2. (2.814)

We know that

〈n1n2|a1|n1n2〉 = 0, (2.815)

〈n1n2|a†1|n1n2〉 = 0, (2.816)
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〈n1n2|a2
1|n1n2〉 = 0 (2.817)

and

〈n1n2|(a†1)2|n1n2〉 = 0. (2.818)

Accordingly, Eq. (2.814) reads

(∆P1)
2 =

1

2
〈n1n2|(a1a

†
1 + a†1a1)|n1n2〉. (2.819)

To obtain it in terms of the q-deformed number operator N1, we write

∆P1 = {1

2
+ (

1 + q2

2
)〈n1n2|a†1a1|n1n2〉}1/2 (2.820)

using Eq. (2.284). This obviously gives us that

∆P1 = {1

2
+ (

1 + q2

2
)N (1)

n1,n2
}1/2. (2.821)

Let us now calculate the uncertainty for X1. We can write

(∆X1)
2 = 〈n1n2|{

1

2
(a†1 + a1)

2}|n1n2〉 − {〈n1n2|{
1√
2
(a†1 + a1)}|n1n2〉}2 (2.822)

using Eq. (2.292). Next using Eqs. (2.815)-(2.818), we obtain

(∆X1)
2 =

1

2
〈n1n2|(a1a

†
1 + a†1a1)|n1n2〉. (2.823)

We note that

∆P1 = ∆X1 (2.824)
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if we look at Eqs. (2.819) and (2.823).

To continue, let us look at Eq. (2.293). Then we write

(∆P2)
2 = 〈n1n2|{−

1

2
(a†2 − a2)

2}|n1n2〉 − {〈n1n2|{
i√
2
(a†2 − a2)}|n1n2〉}2. (2.825)

Since we know that

〈n1n2|a2|n1n2〉 = 0, (2.826)

〈n1n2|a†2|n1n2〉 = 0, (2.827)

〈n1n2|a2
2|n1n2〉 = 0 (2.828)

and

〈n1n2|(a†2)2|n1n2〉 = 0, (2.829)

we can clearly see that

(∆P2)
2 =

1

2
〈n1n2|(a2a

†
2 + a†2a2)|n1n2〉. (2.830)

Let us use Eqs. (2.285) and (2.284) to write

(∆P2)
2 =

1

2
〈n1n2|(1 + q2a†1a1 − a†1a1 + q2a†2a2 + a†2a2)|n1n2〉. (2.831)

If we tidy up it, we get

∆P2 = {(q
2 − 1

2
)〈n1n2|a†1a1|n1n2〉+ (

1 + q2

2
)〈n1n2|a†2a2|n1n2〉+

1

2
}1/2. (2.832)
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Finally, we have

∆P2 = {(q
2 − 1

2
)N (1)

n1,n2
+ (

1 + q2

2
)N (2)

n1,n2
+

1

2
}1/2. (2.833)

Now, let us write

(∆X2)
2 = 〈n1n2|{

1

2
(a†2 + a2)

2}|n1n2〉 − {〈n1n2|{
1√
2
(a†2 + a2)}|n1n2〉}2 (2.834)

using Eq. (2.294). If we use Eqs. (2.826)-(2.829), we get

(∆X2)
2 =

1

2
〈n1n2|(a2a

†
2 + a†2a2)|n1n2〉. (2.835)

We can easily see that

∆P2 = ∆X2 (2.836)

if we look at Eqs. (2.830) and (2.835).

In summary, we have

∆P1, ∆X1 = {1

2
+ (

1 + q2

2
)N (1)

n1,n2
}1/2, (2.837)

∆P2, ∆X2 = {(q
2 − 1

2
)N (1)

n1,n2
+ (

1 + q2

2
)N (2)

n1,n2
+

1

2
}1/2. (2.838)

We are ready now to calculate the uncertainty and certainty relations for the

energy eigenstates |n1n2〉.

Firstly, we will keep Eq. (2.837) in mind while we are studying for the following
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five cases.

For q > 1, we have

∆P1, ∆X1 ≥
1√
2

(2.839)

from Eq. (2.742).

For q = 1, we get

∆P1, ∆X1 ≥
1√
2

(2.840)

using Eq. (2.743).

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 , we have

{1

2
+ (

1 + q2

2
)N (1)

n1,n2
}1/2 >

√
1

1− q2
(2.841)

from Eq. (2.744). This gives us that

∆P1, ∆X1 >

√
1

1− q2
. (2.842)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 , we get

∆P1 = ∆X1 =

√
1

1− q2
(2.843)

from Eq. (2.745).
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For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 , we obtain

1

2
≤ 1

2
+ (

1 + q2

2
)N (1)

n1,n2
<

1

1− q2
(2.844)

using Eq. (2.746). Therefore we have

1√
2
≤ ∆P1, ∆X1 <

√
1

1− q2
. (2.845)

Secondly, we will use Eq. (2.838) to study for P2 and X2. Here it is necessary

to find the limits of N (2)
n1,n2

. We look at Eqs. (2.465) and (2.466) to evaluate the lower

limit. So we conclude that

N (2)
n1,n2

≥ 0 (2.846)

for all cases. In addition, we want to find the upper limits.

For 0 < q < 1 and εn1,n2 = 1
1−q2 , we get

N (2)
n1,n2

≤ 1

1− q2
(2.847)

from Eq. (2.528).

For 0 < q < 1 and εn1,n2 < 1
1−q2 , N (2)

n1,n2
approximates to its maximum value at

n1 = 0 and in the limit n2 →∞. Accordingly, we find

N (2)
n1,n2

<
1

1− q2
(2.848)

from Eq. (2.482).

In summary, we have the following limits of N (2)
n1,n2

.
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For all of the cases,

N (2)
n1,n2

≥ 0. (2.849)

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

N (2)
n1,n2

≤ 1

1− q2
. (2.850)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

N (2)
n1,n2

<
1

1− q2
. (2.851)

Using Eq. (2.849), we can safely say that

(∆P2)
2, (∆X2)

2 ≥ (
q2 − 1

2
)N (1)

n1,n2
+

1

2
. (2.852)

Let us evaluate it for the following five cases.

For q > 1, we have

∆P2, ∆X2 ≥
1√
2

(2.853)

using Eq. (2.742).

For q = 1, Eq. (2.852) reads

∆P2, ∆X2 ≥
1√
2
. (2.854)
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For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 , we have

(
q2 − 1

2
)N (1)

n1,n2
+

1

2
< 0 (2.855)

from Eq. (2.744). So we conclude that

∆P2, ∆X2 ≥ 0. (2.856)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 , Eq. (2.852) reads

∆P2, ∆X2 ≥ 0 (2.857)

if we use Eq. (2.745).

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 , Eq. (2.852) reads

(∆P2)
2, (∆X2)

2 ≥ 1

2
q2n1 (2.858)

if we use Eq. (2.481). Then we have

∆P2, ∆X2 ≥
1√
2
qn1 (2.859)

In addition to these uncertainty relations we want to find the certainty relations.

For this purpose, we will search for an upper limit for ∆P1, ∆X1, ∆P2 and ∆X2.

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 , we obtain
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1

2
+ (

1 + q2

2
)N (1)

n1,n2
<

1

1− q2
(2.860)

if we use Eq. (2.746). Evidently, we find

∆P1, ∆X1 <

√
1

1− q2
(2.861)

if we take Eq. (2.837) into account.

For 0 < q < 1 and εn1,n2 = 1
1−q2 , since N (1)

n1,n2
is nonnegative, we can conclude

that

(
q2 − 1

2
)N (1)

n1,n2
≤ 0. (2.862)

We also have

(
1 + q2

2
)N (2)

n1,n2
+

1

2
≤ 1

1− q2
(2.863)

from Eq. (2.850). Adding these two inequalities, we find

(
q2 − 1

2
)N (1)

n1,n2
+ (

1 + q2

2
)N (2)

n1,n2
+

1

2
≤ 1

1− q2
. (2.864)

It follows that

∆P2, ∆X2 ≤
√

1

1− q2
(2.865)

from Eq. (2.838).
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For 0 < q < 1 and εn1,n2 < 1
1−q2 , we can similarly conclude that

∆P2, ∆X2 <

√
1

1− q2
(2.866)

from Eq. (2.851).

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the second method.

The uncertainty and certainty relations for ∆P1, ∆X1:

For q > 1,

∆P1, ∆X1 ≥
1√
2
. (2.867)

For q = 1,

∆P1, ∆X1 ≥
1√
2
. (2.868)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1, ∆X1 >

√
1

1− q2
. (2.869)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1, ∆X1 =

√
1

1− q2
. (2.870)
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For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

1√
2
≤ ∆P1, ∆X1 <

√
1

1− q2
. (2.871)

The uncertainty and certainty relations for ∆P2, ∆X2:

For q > 1,

∆P2, ∆X2 ≥
1√
2
. (2.872)

For q = 1,

∆P2, ∆X2 ≥
1√
2
. (2.873)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P2, ∆X2 ≥ 0. (2.874)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P2, ∆X2 ≥ 0. (2.875)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

∆P2, ∆X2 ≥
1√
2
qn1 . (2.876)
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For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

∆P2, ∆X2 ≤
√

1

1− q2
. (2.877)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

∆P2, ∆X2 <
1

1− q2
. (2.878)

For simplicity, we consider that F denotes any quantity from ∆P1∆P2, ∆P1∆X2,

∆P2∆X1 and ∆X1∆X2. The uncertainty and certainty relations for F :

For q > 1,

F ≥ 1

2
. (2.879)

For q = 1,

F ≥ 1

2
. (2.880)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

F ≥ 0. (2.881)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

F ≥ 0. (2.882)
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For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

F ≥ 1

2
qn1 . (2.883)

The uncertainty and certainty relations for ∆P1∆X1:

For q > 1,

∆P1∆X1 ≥
1

2
. (2.884)

For q = 1,

∆P1∆X1 ≥
1

2
. (2.885)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1∆X1 >
1

1− q2
. (2.886)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1∆X1 =
1

1− q2
. (2.887)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

1

2
≤ ∆P1∆X1 <

1

1− q2
. (2.888)
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The uncertainty and certainty relations for ∆P2∆X2:

For q > 1,

∆P2∆X2 ≥
1

2
. (2.889)

For q = 1,

∆P2∆X2 ≥
1

2
. (2.890)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P2∆X2 ≥ 0. (2.891)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P2∆X2 ≥ 0. (2.892)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

∆P2∆X2 ≥
1

2
q2n1 . (2.893)

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

∆P2∆X2 ≤
1

1− q2
. (2.894)
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For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

∆P2∆X2 <
1

1− q2
. (2.895)

Now, we will make a comparison between the uncertainty and certainty relations

obtained by the first method and the ones obtained by the second method. As we

know, to be able to compare them, they must be in the same category. If we say it

more explicitly, we must rearrange some of the results obtained by the second method

so that they are categorized according to the energy eigenvalues, not N (1)
n1,n2

. However,

we will lose some information due to this rearrangement. After the categorization, we

will be able to select the most informative ones. In this way, we will have the best

conclusions for the energy eigenstates. As an example, let us categorize the relations

for ∆P2∆X2. It is clear that Eqs. (2.889) and (2.890) remain unchanged. We know

that for the case in which 0 < q < 1 and εn1,n2 > 1
1−q2 , there are three cases. They

are (N (1)
n1,n2

> 1
1−q2 ), (N (1)

n1,n2
= 1

1−q2 ) and (N (1)
n1,n2

< 1
1−q2 ). So we look at Eqs. (2.891),

(2.892) and (2.893) to conclude that these three cases depending on N (1)
n1,n2

share that

∆P2∆X2 ≥ 0. (2.896)

For 0 < q < 1 and εn1,n2 = 1
1−q2 , there are two cases which are (N (1)

n1,n2
= 1

1−q2 )

and (N (1)
n1,n2

< 1
1−q2 ). Hence we use Eqs. (2.892) and (2.893) to decide that the two

cases depending on N (1)
n1,n2

share that

∆P2∆X2 ≥ 0. (2.897)

For 0 < q < 1 and εn1,n2 < 1
1−q2 , we have only one case which is (N (1)

n1,n2
< 1

1−q2 ).

Therefore Eq. (2.893) is also valid.

Let us now summarize the uncertainty and certainty relations for the energy
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eigenstates after the categorization.

The uncertainty and certainty relations for ∆P1, ∆X1:

For q > 1,

∆P1, ∆X1 ≥
1√
2
. (2.898)

For q = 1,

∆P1, ∆X1 ≥
1√
2
. (2.899)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1, ∆X1 >

√
1

1− q2
. (2.900)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1, ∆X1 =

√
1

1− q2
. (2.901)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1√
2
≤ ∆P1, ∆X1 <

√
1

1− q2
. (2.902)

The uncertainty and certainty relations for ∆P2, ∆X2:
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For q > 1,

∆P2, ∆X2 ≥
1√
2
. (2.903)

For q = 1,

∆P2, ∆X2 ≥
1√
2
. (2.904)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

∆P2, ∆X2 ≥ 0. (2.905)

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

0 ≤ ∆P2, ∆X2 ≤
√

1

1− q2
. (2.906)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1√
2
qn1 ≤ ∆P2, ∆X2 <

√
1

1− q2
. (2.907)

The uncertainty and certainty relations for F :

For q > 1,

F ≥ 1

2
. (2.908)
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For q = 1,

F ≥ 1

2
. (2.909)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

F ≥ 0. (2.910)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

F ≥ 0. (2.911)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1

2
qn1 ≤ F <

1

1− q2
. (2.912)

The uncertainty and certainty relations for ∆P1∆X1:

For q > 1,

∆P1∆X1 ≥
1

2
. (2.913)

For q = 1,

∆P1∆X1 ≥
1

2
. (2.914)
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For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1∆X1 >
1

1− q2
. (2.915)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1∆X1 =
1

1− q2
. (2.916)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1

2
≤ ∆P1∆X1 <

1

1− q2
. (2.917)

The uncertainty and certainty relations for ∆P2∆X2:

For q > 1,

∆P2∆X2 ≥
1

2
. (2.918)

For q = 1,

∆P2∆X2 ≥
1

2
. (2.919)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

∆P2∆X2 ≥ 0. (2.920)
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For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

0 ≤ ∆P2∆X2 ≤
1

1− q2
. (2.921)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1

2
q2n1 ≤ ∆P2∆X2 <

1

1− q2
. (2.922)

At this point, we are ready to make a comparison between these results and

the ones obtained by the first method. For this purpose, we will need the following

relations.

For q > 1,

1

2
≤ 1

2
q2n1 , (2.923)

1

2
≤ 1

2
q2(n1+n2). (2.924)

For q < 1,

1

2
≥ 1

2
q2n1 , (2.925)

1

2
q2n1 ≥ 1

2
q2(n1+n2), (2.926)

1

1− q2
<

4

1− q4
. (2.927)
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Here comes the most informative results.

The uncertainty and certainty relations for ∆P1, ∆X1:

For q > 1,

∆P1, ∆X1 ≥
1√
2
. (2.928)

For q = 1,

∆P1, ∆X1 ≥
1√
2
. (2.929)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1, ∆X1 >

√
1

1− q2
. (2.930)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1, ∆X1 =

√
1

1− q2
. (2.931)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1√
2
≤ ∆P1, ∆X1 <

√
1

1− q2
. (2.932)

The uncertainty and certainty relations for ∆P2, ∆X2:
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For q > 1,

∆P2, ∆X2 ≥
1√
2
. (2.933)

For q = 1,

∆P2, ∆X2 ≥
1√
2
. (2.934)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

∆P2, ∆X2 ≥ 0. (2.935)

For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

0 ≤ ∆P2, ∆X2 ≤
√

1

1− q2
. (2.936)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1√
2
qn1 ≤ ∆P2, ∆X2 <

√
1

1− q2
. (2.937)

The uncertainty and certainty relations for F :

For q > 1,

F ≥ 1

2
. (2.938)
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For q = 1,

F ≥ 1

2
. (2.939)

For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

F ≥ 0. (2.940)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

F ≥ 0. (2.941)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1

2
qn1 ≤ F <

1

1− q2
. (2.942)

The uncertainty and certainty relations for ∆P1∆X1:

For q > 1,

∆P1∆X1 ≥
1

2
q2n1 . (2.943)

For q = 1,

∆P1∆X1 ≥
1

2
. (2.944)
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For 0 < q < 1 and N (1)
n1,n2

> 1
1−q2 ,

∆P1∆X1 >
1

1− q2
. (2.945)

For 0 < q < 1 and N (1)
n1,n2

= 1
1−q2 ,

∆P1∆X1 =
1

1− q2
. (2.946)

For 0 < q < 1 and N (1)
n1,n2

< 1
1−q2 ,

1

2
≤ ∆P1∆X1 <

1

1− q2
. (2.947)

The uncertainty and certainty relations for ∆P2∆X2:

For q > 1,

∆P2∆X2 ≥
1

2
q2(n1+n2). (2.948)

For q = 1,

∆P2∆X2 ≥
1

2
. (2.949)

For 0 < q < 1 and εn1,n2 > 1
1−q2 ,

∆P2∆X2 > 0. (2.950)
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For 0 < q < 1 and εn1,n2 = 1
1−q2 ,

0 ≤ ∆P2∆X2 ≤
1

1− q2
. (2.951)

For 0 < q < 1 and εn1,n2 < 1
1−q2 ,

1

2
q2n1 ≤ ∆P2∆X2 <

1

1− q2
. (2.952)

Finally, we will calculate the classical limits of (εn1+1,n2 − εn1,n2)/εn1,n2 for the

cases in which there must occur a ground state. In other words, the behavior of this

quantity in the limit n1 and n2 →∞ will be examined now. So let us write

εn1+1,n2 − εn1,n2

εn1,n2

=
(3+q2

4
)q2(n1+n2)+2 + (1−q2(n1+n2)+2

1−q2 )− (3+q2

4
)q2(n1+n2) − (1−q2(n1+n2)

1−q2 )

(3+q2

4
)q2(n1+n2) + (1−q2(n1+n2)

1−q2 )

(2.953)

by using Eq. (2.405). If we tidy up it, we get

εn1+1,n2 − εn1,n2

εn1,n2

=
(1+q2

2
)2q2(n1+n2)

(3+q2

4
)q2(n1+n2) + (1−q2(n1+n2)

1−q2 )
. (2.954)

Its another form is

εn1+1,n2 − εn1,n2

εn1,n2

=
(1+q2

2
)2

(3+q2

4
) + ( q−2(n1+n2)−1

1−q2 )
. (2.955)

For q > 1, we obtain

lim
n1,n2→∞

εn1+1,n2 − εn1,n2

εn1,n2

= q2 − 1 (2.956)

if we take Eq. (2.955) into consideration.
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For q ≥
√

2, we conclude that

lim
n1,n2→∞

εn1+1,n2 − εn1,n2

εn1,n2

≥ 1 (2.957)

using the above equation. It follows that

εn1+1,n2 ≥ 2εn1,n2 . (2.958)

This tells us that the energy behaves unreasonably in the classical limit because the

continuity of the energy is not seen here.

For q = 1, we have

εn1+1,n2 − εn1,n2

εn1,n2

=
1

1 + n1 + n2

(2.959)

from Eq. (2.406). So one can easily see that

lim
n1,n2→∞

εn1+1,n2 − εn1,n2

εn1,n2

= 0. (2.960)

Therefore, in the classical limit, the continuity condition is satisfied for this case.

For 0 < q < 1 and εn < 1
1−q2 , we use Eq. (2.954) to write

lim
n1,n2→∞

εn1+1,n2 − εn1,n2

εn1,n2

= 0. (2.961)

It means that the energy is continuous in the classical limit as it must be.

We have come to the end of this section. In the next section, we will study the

Fibonacci oscillators.
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2.3. FIBONACCI OSCILLATORS

We will investigate Fibonacci oscillator with the two parameters in this section.

To begin with, we will define the annihilation and creation operators and the

hamiltonian in terms of the momentum and position operators. For this purpose, let

us look at the beginning of section (2.1). We will consider that Eqs. (2.4)-(2.9) are

also valid here.

Let us now introduce some new concepts. The most general form of generalized

integers is a sequence where an integer is generalized to the corresponding term in

the sequence. Here we can mention a generalized Fibonacci sequence as an example.

Each term of this sequence is a linear combination of the two previous terms with fixed

weights.

Now, we are ready to describe the Fibonacci oscillators. Fibonacci oscillator[13,

27, 28] is the oscillator whose spectrum is given by a generalized Fibonacci sequence.

This deformation of the quantum harmonic oscillator algebra is similar to the q-

deformation of Lie groups and Lie algebras. This deformation is also the most general

deformation of the quantum harmonic oscillator algebra whose spectrum is given by

the natural numbers n. Fibonacci basic integers are defined as

[n] =
qn
1 − qn

2

q1 − q2

(2.962)

with the choice of initial conditions

[0] = 0, (2.963)

[1] = 1 (2.964)
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and the condition

a|0〉 = 0 (2.965)

where [n] also satisfies

a†a|n〉 = [n]|n〉. (2.966)

Here, the constants q1 and q2 are called the real parameters of the Fibonacci basic

integers. Now, we want to introduce Fibonacci oscillators in a different way. So let us

write

[N ] = a†a =
qN
1 − qN

2

q1 − q2

(2.967)

and

[N + 1] = aa† =
qN+1
1 − qN+1

2

q1 − q2

. (2.968)

Here, N satisfies that

N |n〉 = n|n〉 (2.969)

where n = 0, 1, 2, .... Then we can write

a†a|n〉 = (
qn
1 − qn

2

q1 − q2

)|n〉 (2.970)

and

aa†|n〉 = (
qn+1
1 − qn+1

2

q1 − q2

)|n〉. (2.971)

One can easily show that Eq. (2.967) satisfies the generalized Fibonacci sequence which
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is

[N + 2] = α[N + 1] + β[N ] (2.972)

where

α = q1 + q2 (2.973)

and

β = −q1q2. (2.974)

So that is why this oscillator is called the Fibonacci oscillator. For α = 1 and β = 1,

the sequence [n] yields the well-known Fibonacci numbers which are

0, 1, 1, 2, 3, 5, 8, 13, 21, .... (2.975)

Now, let us study the algebra of Fibonacci oscillator. Using Eqs. (2.967), (2.968)

and the definition of the Fibonacci basic integer, we obtain

aa† − q1a
†a = qN

2 (2.976)

and

aa† − q2a
†a = qN

1 . (2.977)

Then let us write

aN |n〉 = na|n〉 (2.978)
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using Eq. (2.969). If we consider that

a|n〉 = Fn|n− 1〉 (2.979)

where Fn are n dependent constants, then Eq. (2.978) becomes

aN |n〉 = Fnn|n− 1〉. (2.980)

Since we have

(N + 1)|n− 1〉 = n|n− 1〉 (2.981)

from Eq. (2.969), Eq. (2.980) reads

aN |n〉 = Fn(N + 1)|n− 1〉. (2.982)

We again use Eq. (2.979) to write

{aN}|n〉 = {(N + 1)a}|n〉. (2.983)

So we get

aN = (N + 1)a (2.984)

from it. Similarly, we have

af(N)|n〉 = Fnf(n)|n− 1〉 (2.985)

from Eqs. (2.969) and (2.979). Then we get

f(N + 1)|n− 1〉 = f(n)|n− 1〉 (2.986)
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from Eq. (2.969). If we substitute it into Eq. (2.985) and use Eq. (2.979), we find

{af(N)}|n〉 = {f(N + 1)a}|n〉. (2.987)

It follows that

af(N) = f(N + 1)a. (2.988)

At this stage, we will combine Eqs. (2.976) and (2.977) to see another aspect of the

algebra of Fibonacci oscillator. Firstly, we multiply Eqs. (2.976) and (2.977) on the

left by a. So we have

aaa† − q1aa†a = aqN
2 (2.989)

and

aaa† − q2aa†a = aqN
1 (2.990)

respectively. Let us now add these two equations to get

2aaa† − (q1 + q2)aa†a = a(qN
1 + qN

2 ). (2.991)

Next, we multiply Eq. (2.976) on the right by q2a to have

q2aa†a− q1q2a
†aa = qN+1

2 a (2.992)

and we multiply Eq. (2.977) on the right by q1a to have

q1aa†a− q1q2a
†aa = qN+1

1 a. (2.993)
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Now, let us add these two equations to write

(q1 + q2)aa†a− 2q1q2a
†aa = (qN+1

1 + qN+1
2 )a. (2.994)

We can easily see that

aaa† − (q1 + q2)aa†a + q1q2a
†aa =

1

2
{a(qN

1 + qN
2 )− (qN+1

1 + qN+1
2 )a} (2.995)

if we subtract Eq. (2.994) from Eq. (2.991). Evidently, we get

aqN
1 = qN+1

1 a (2.996)

from Eq. (2.988). Inserting this into Eq. (2.995), we obtain

aaa† − (q1 + q2)aa†a + q1q2a
†aa = 0. (2.997)

This is the most compact form that can be obtained from the combination of Eqs.

(2.976) and (2.977).

At this point, we want to find the representations from Eq. (2.997). For this aim,

we consider that

a†a|n〉 = Bn|n〉 (2.998)

and

aa†|n〉 = Cn|n〉. (2.999)

If we multiply it on the left by a†, we find

a†(aa†|n〉) = a†(Cn|n〉). (2.1000)
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Then it is obvious that

a†a(a†|n〉) = Cn(a†|n〉). (2.1001)

If we consider that

a†|n〉 = Gn|n + 1〉, (2.1002)

then it is evident that

Cn = Bn+1 (2.1003)

from Eqs. (2.998) and (2.1001). So Eq. (2.999) reads

aa†|n〉 = Bn+1|n〉. (2.1004)

From Eq. (2.997), we get

a†aa = (
1

q1q2

){(q1 + q2)aa†a− aaa†}. (2.1005)

Then by multiplication of this equation on the right with |n〉, we obtain

a†a(a|n〉) = (
1

q1q2

){(q1 + q2)a(a†a|n〉)− a(aa†|n〉)}. (2.1006)

So it is clear that

a†a(a|n〉) = (
1

q1q2

){(q1 + q2)Bn −Bn+1}(a|n〉) (2.1007)

if we use Eqs. (2.998) and (2.1004). This immediately gives us that

Bn−1 = Bn(
q1 + q2

q1q2

)−Bn+1(
1

q1q2

) (2.1008)
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if we use Eqs. (2.979) and (2.998).

At first glance, to change the variables seems to simplify the calculations. On the

contrary, we will see that it will make difficult the calculations. However, let us first

change the variables as follows to experience it. We consider

b = q1 + q2 (2.1009)

c = q1q2. (2.1010)

If we insert these two equations into Eq. (2.1008), we find

Bn−1 = Bn(
b

c
)−Bn+1(

1

c
). (2.1011)

This is the recursion formula for Fibonacci oscillator. Then we write n− 1 instead of

n in it to get

Bn−2 = Bn−1(
b

c
)−Bn(

1

c
). (2.1012)

This gives us that

Bn−2 = Bn(
b2

c2
− 1

c
)−Bn+1(

b

c2
) (2.1013)

if we use Eq. (2.1011). Continuing in this way, we obtain

Bn−3 = Bn(
b3

c3
− 2

b

c2
)−Bn+1(

b2

c3
− 1

c2
), (2.1014)

Bn−4 = Bn(
b4

c4
− 3

b2

c3
+

1

c2
)−Bn+1(

b3

c4
− 2

b

c3
), (2.1015)
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Bn−5 = Bn(
b5

c5
− 4

b3

c4
+ 3

b

c3
)−Bn+1(

b4

c5
− 3

b2

c4
+

1

c3
), (2.1016)

Bn−6 = Bn(
b6

c6
− 5

b4

c5
+ 6

b2

c4
− 1

c3
)−Bn+1(

b5

c6
− 4

b3

c5
+ 3

b

c4
), (2.1017)

Bn−7 = Bn(
b7

c7
− 6

b5

c6
+ 10

b3

c5
− 4

b

c4
)−Bn+1(

b6

c7
− 5

b4

c6
+ 6

b2

c5
− 1

c4
), (2.1018)

Bn−8 = Bn(
b8

c8
− 7

b6

c7
+ 15

b4

c6
− 10

b2

c5
+

1

c4
)−Bn+1(

b7

c8
− 6

b5

c7
+ 10

b3

c6
− 4

b

c5
) (2.1019)

and so on. Now, it seems that to generalize it is very difficult because of the coefficients.

However, to write the coefficients in a different form, more explicitly, to write them as

combinations will help us to see the general form of the recursion formula easily. So

these equations become

Bn−1 = Bn(

1

1

 b

c
)−Bn+1(

0

0

 1

c
), (2.1020)

Bn−2 = Bn(

2

2

 b2

c2
−

1

0

 1

c
)−Bn+1(

1

1

 b

c2
), (2.1021)

Bn−3 = Bn(

3

3

 b3

c3
−

2

1

 b

c2
)−Bn+1(

2

2

 b2

c3
−

1

0

 1

c2
), (2.1022)

Bn−4 = Bn(

4

4

 b4

c4
−

3

2

 b2

c3
+

2

0

 1

c2
)−Bn+1(

3

3

 b3

c4
−

2

1

 b

c3
), (2.1023)
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Bn−5 = Bn(

5

5

 b5

c5
−

4

3

 b3

c4
+

3

1

 b

c3
)−Bn+1(

4

4

 b4

c5
−

3

2

 b2

c4
+

2

0

 1

c3
), (2.1024)

Bn−6 = Bn(

6

6

 b6

c6
−

5

4

 b4

c5
+

4

2

 b2

c4
−

3

0

 1

c3
)

−Bn+1(

5

5

 b5

c6
−

4

3

 b3

c5
+

3

1

 b

c4
), (2.1025)

Bn−7 = Bn(

7

7

 b7

c7
−

6

5

 b5

c6
+

5

3

 b3

c5
−

4

1

 b

c4
)

−Bn+1(

6

6

 b6

c7
−

5

4

 b4

c6
+

4

2

 b2

c5
−

3

0

 1

c4
), (2.1026)

Bn−8 = Bn(

8

8

 b8

c8
−

7

6

 b6

c7
+

6

4

 b4

c6
−

5

2

 b2

c5
+

4

0

 1

c4
)

−Bn+1(

7

7

 b7

c8
−

6

5

 b5

c7
+

5

3

 b3

c6
−

4

1

 b

c5
) (2.1027)

and so on. Now, we want to write these in a general form. Hence we find

Bn−m = Bn

l∑
k=0

(−1)k

 m− k

m− 2k

 bm−2k

cm−k
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−Bn+1

p∑
k=0

(−1)k

 m− k − 1

m− 2k − 1

 bm−2k−1

cm−k
. (2.1028)

If we consider

α = q1 + q2 (2.1029)

and

β = −q1q2, (2.1030)

Eq. (2.1028) becomes

Bn−m = (−1)m{Bn

l∑
k=0

 m− k

m− 2k

 αm−2k

βm−k

−Bn+1

p∑
k=0

 m− k − 1

m− 2k − 1

 αm−2k−1

βm−k
}. (2.1031)

We have

l =

 m/2 if m is even

(m− 1)/2 if m is odd,

and

p =

 m/2− 1 if m is even

(m− 1)/2 if m is odd

for Eqs. (2.1028) and (2.1031). Let us now climb up in the basic integers. We can
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write

Bn+1 = Bn(b)−Bn−1(c) (2.1032)

from Eq. (2.1008). Then one can easily see that

Bn+2 = Bn(b2 − c)−Bn−1(bc), (2.1033)

Bn+3 = Bn(b3 − 2bc)−Bn−1(b
2c− c2), (2.1034)

Bn+4 = Bn(b4 − 3b2c + c2)−Bn−1(b
3c− 2bc2), (2.1035)

Bn+5 = Bn(b5 − 4b3c + 3bc2)−Bn−1(b
4c− 3b2c2 + c3) (2.1036)

and so on. We can also write them as

Bn+1 = Bn(

1

1

 b)−Bn−1(

0

0

 c), (2.1037)

Bn+2 = Bn(

2

2

 b2 −

1

0

 c)−Bn−1(

1

1

 bc), (2.1038)

Bn+3 = Bn(

3

3

 b3 −

2

1

 bc)−Bn−1(

2

2

 b2c−

1

0

 c2), (2.1039)
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Bn+4 = Bn(

4

4

 b4 −

3

2

 b2c +

2

0

 c2)−Bn−1(

3

3

 b3c−

2

1

 bc2), (2.1040)

Bn+5 = Bn(

5

5

 b5−

4

3

 b3c+

3

1

 bc2)−Bn−1(

4

4

 b4c−

3

2

 b2c2 +

2

0

 c3) (2.1041)

and so on. Therefore we can generalize them as

Bn+m = Bn

l∑
k=0

(−1)k

 m− k

m− 2k

 bm−2kck

−Bn−1

p∑
k=0

(−1)k

 m− k − 1

m− 2k − 1

 bm−2k−1ck (2.1042)

and

Bn+m = (−1)m{Bn

l∑
k=0

 m− k

m− 2k

 αm−2kβk

−Bn−1

p∑
k=0

 m− k − 1

m− 2k − 1

 αm−2k−1βk} (2.1043)

where l and p are the same as before.

If there is a ground state, we recalculate Eqs. (2.1042) and (2.1043). For this

aim, we first evaluate these equations for n = 1. Then we use the initial conditions in

Eqs. (2.963) and (2.964). After that, we change m + 1 into n. Hence we get

Bn =
l∑

k=0

(−1)k

 n− k − 1

n− 2k − 1

 bn−2k−1ck (2.1044)



173

where n = 2, 3, 4, ... and

Bn = −(−1)n
l∑

k=0

 n− k − 1

n− 2k − 1

 αn−2k−1βk (2.1045)

where n = 2, 3, 4, ... from Eqs. (2.1042) and (2.1043) respectively. Here again l and p

remain unchanged.

At this point, let us return to our first variables which are q1 and q2. Then we

write Eq. (2.1008) as

Bn−1 = (q1q2)
−1{Bn(q1 + q2)−Bn+1}. (2.1046)

To generalize it, let us write

Bn−2 = (q1q2)
−2{Bn(q2

1 + q1q2 + q2
2)−Bn+1(q1 + q2)} (2.1047)

from Eq. (2.1046). Similarly, we find

Bn−3 = (q1q2)
−3{Bn(q3

1 + q2
1q2 + q1q

2
2 + q3

2)−Bn+1(q
2
1 + q1q2 + q2

2)} (2.1048)

and so on. These three equations give us an idea to find the general form of the

recursion formula. So it is clear that

Bn−m = (q1q2)
−m{Bn(qm

1 + qm−1
1 q2 + qm−2

1 q2
2 + ... + qm

2 )

−Bn+1(q
m−1
1 + qm−2

1 q2 + qm−3
1 q2

2 + ... + qm−1
2 )}. (2.1049)

More compactly, we get

Bn−m = (q1q2)
−m{Bn(

qm+1
1 − qm+1

2

q1 − q2

)−Bn+1(
qm
1 − qm

2

q1 − q2

)}. (2.1050)
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To obtain the other general form which climbs up in the basic integers, we write

Bn+1 = Bn(q1 + q2)−Bn−1(q1q2) (2.1051)

from Eq. (2.1046). Next, we find

Bn+2 = Bn+1(q1 + q2)−Bn(q1q2) (2.1052)

from it. In a similar way, we get

Bn+3 = Bn+1(q
2
1 + q1q2 + q2

2)−Bn(q1q2)(q1 + q2) (2.1053)

and so on. To have the other general form, we write

Bn+m = Bn+1(
qm
1 − qm

2

q1 − q2

)−Bn(q1q2)(
qm−1
1 − qm−1

2

q1 − q2

) (2.1054)

looking at Eqs. (2.1051)-(2.1053).

If there is a ground state, we recalculate this equation. Firstly, let us calculate

this equation for n = 0. Then we use Eqs. (2.963), (2.964) and change m into n to get

Bn =
qn
1 − qn

2

q1 − q2

(2.1055)

where n = 0, 1, 2, ....

As we mentioned before, we have seen that the last way of finding the representa-

tions is the easiest one. So this is the end of finding the representations of the algebra

of Fibonacci oscillator.

From now on, we will be interested in the uncertainty and certainty relations for

Fibonacci oscillator generally. Now, let us investigate the commutation relation for the
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momentum and position operators. We can write

[P, X] =
i

2
[a† − a, a† + a] (2.1056)

using Eqs. (2.7) and (2.8). Then it becomes

[P, X] =
i

2
([a†, a]− [a, a†]). (2.1057)

If we tidy it up, we get

[P, X] = i[a†, a]. (2.1058)

Then the formula in Eq. (1.25) necessitates

∆P∆X ≥ 1

2
|〈n|[a†, a]|n〉|. (2.1059)

Next, we obviously get

∆P∆X ≥ 1

2
|〈n|a†a|n〉 − 〈n|aa†|n〉|. (2.1060)

Then we can immediately write

∆P∆X ≥ 1

2
|(q

n
1 − qn

2

q1 − q2

)− (
qn+1
1 − qn+1

2

q1 − q2

)| (2.1061)

from Eqs. (2.967) and (2.968). So this inequality is the uncertainty relation in the

cases in which there must be a ground state such that a|0〉 = 0.

Let us now examine the energy eigenvalues of the hamiltonian for this system.

Then let us calculate the limits of ε(n). If we substitute Eqs. (2.967) and (2.968) into
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Eq. (2.9), we get

H =
1

2
{(q

N
1 − qN

2

q1 − q2

) + (
qN+1
1 − qN+1

2

q1 − q2

)}. (2.1062)

Then let us sandwich this equation between 〈n| and |n〉 to have

εn =
1

2
{(q

n
1 − qn

2

q1 − q2

) + (
qn+1
1 − qn+1

2

q1 − q2

)} (2.1063)

where n = 0, 1, 2, .... At this point, we wander the behavior of these energy eigenvalues.

For this reason, we will modify the equation as

ε(n) =
1

2
{(q

n
1 − qn

2

q1 − q2

) + (
qn+1
1 − qn+1

2

q1 − q2

)} (2.1064)

where n is a nonnegative real number. Next, we take the derivative of this continuous

energy function. So we have

dε

dn
=

1

2
(

1

q1 − q2

){qn
1 ln q1(1 + q1)− qn

2 ln q2(1 + q2)} (2.1065)

where q1 6= q2. Let us now analyze this derivative for the three cases which are

(q1, q2 > 1), {(q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1)} and (q1, q2 < 1).

For q1, q2 > 1, we clearly see that

dε

dn
> 0. (2.1066)

This means that εn is an increasing function. εn takes the minimum value at n = 0

and approximates to its maximum value in the limit n →∞. Since we have

ε0 =
1

2
(2.1067)
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and

lim
n→∞

εn = ∞, (2.1068)

we obtain

εn ≥
1

2
. (2.1069)

For (q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1), we again find that

dε

dn
> 0. (2.1070)

So this is a similar situation to the one in the previous case. Therefore we conclude

that

εn ≥
1

2
. (2.1071)

For q1, q2 < 1, we will be able to find the maximum point. To show this, we write

dε

dn
= 0 (2.1072)

and then write

(
q1

q2

)n =
(1 + q2) ln q2

(1 + q1) ln q1

(2.1073)

from Eq. (2.1065). It follows that

n ln(
q1

q2

) = ln{(1 + q2) ln q2

(1 + q1) ln q1

}. (2.1074)
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If we solve it for n, we get

nm = ln{(1 + q2) ln q2

(1 + q1) ln q1

}/ ln(
q1

q2

) (2.1075)

where nm is the point when ε(n) takes the maximum value. In addition, one can show

that

d2ε

dn2
< 0 (2.1076)

at this point. So it is another task to be sure that ε(n) takes the maximum value at

this point. Here ε(n) takes the minimum value at n = 0 and takes the maximum value

n = nm. However, εn is a bit different from ε(n) because εn is a discrete function and

ε(n) is a continuous function. So the exact solution for εmax
n is

εmax
n = max{ε([|nm|]), ε([|nm + 1|])}. (2.1077)

In addition, we have

ε0 =
1

2
(2.1078)

and

lim
n→∞

εn = 0. (2.1079)

Hence we conclude that

1

2
≤ εn ≤ εmax

n . (2.1080)

In summary, we have the following limits of the energy eigenvalues.
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For q1, q2 > 1,

εn ≥
1

2
. (2.1081)

For (q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1),

εn ≥
1

2
. (2.1082)

For q1, q2 < 1,

1

2
≤ εn ≤ max{ε([|nm|]), ε([|nm + 1|])}. (2.1083)

As it can be seen easily, we can find the certainty relation for only the case in

which q1, q2 < 1 because there is an upper limit of εn in only this case. In this section,

Eqs. (2.156) and (2.157) are valid. Hence we find

∆P ≤
√

2 max{ε([|nm|]), ε([|nm + 1|])} (2.1084)

and

∆X ≤
√

2 max{ε([|nm|]), ε([|nm + 1|])} (2.1085)

from Eqs. (2.156), (2.157) and (2.1083). Now, to find the lower limits of ∆P and ∆X

we follow a way similar to the one in section (2.1) while we are obtaining Eq. (2.185).

Therefore we conclude that

∆P ≥
|( qn

1−qn
2

q1−q2
)− (

qn+1
1 −qn+1

2

q1−q2
)|√

8 max{ε([|nm|]), ε([|nm + 1|])}
(2.1086)
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and

∆X ≥
|( qn

1−qn
2

q1−q2
)− (

qn+1
1 −qn+1

2

q1−q2
)|√

8 max{ε([|nm|]), ε([|nm + 1|])}
. (2.1087)

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the first method.

The uncertainty and certainty relations for the momentum and position:

For q1, q2 < 1,

|( qn
1−qn

2

q1−q2
)− (

qn+1
1 −qn+1

2

q1−q2
)|√

8 max{ε([|nm|]), ε([|nm + 1|])}
≤ ∆P, ∆X ≤

√
2 max{ε([|nm|]), ε([|nm + 1|])}.

(2.1088)

The uncertainty and certainty relations for ∆P∆X:

For q1, q2 > 1,

∆P∆X ≥ 1

2
|(q

n
1 − qn

2

q1 − q2

)− (
qn+1
1 − qn+1

2

q1 − q2

)|. (2.1089)

For (q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1),

∆P∆X ≥ 1

2
|(q

n
1 − qn

2

q1 − q2

)− (
qn+1
1 − qn+1

2

q1 − q2

)|. (2.1090)

For q1, q2 < 1,

1

2
|(q

n
1 − qn

2

q1 − q2

)− (
qn+1
1 − qn+1

2

q1 − q2

)| ≤ ∆P∆X ≤ 2 max{ε([|nm|]), ε([|nm + 1|])}. (2.1091)
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Hereafter, we will study the uncertainty and certainty relations for the energy

eigenstates by the second method. Firstly, let us calculate ∆P and ∆X by using the

formula in Eq. (2.142). So we write

(∆P )2 = 〈n|P 2|n〉 − (〈n|P |n〉)2. (2.1092)

If we look at Eqs. (2.232)-(2.238), then we can easily see that

∆P =
√

εn. (2.1093)

Similarly, one can show that

∆X =
√

εn. (2.1094)

Using these two equations and the limits of εn in Eqs. (2.1081)-(2.1083), we can

immediately find the uncertainty and certainty relations for the energy eigenstates

that we have obtained by the second method.

The uncertainty and certainty relations for the momentum and position:

For q1, q2 > 1,

∆P, ∆X ≥ 1√
2
. (2.1095)

For (q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1),

∆P, ∆X ≥ 1√
2
. (2.1096)
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For q1, q2 < 1,

1√
2
≤ ∆P, ∆X ≤

√
max{ε([|nm|]), ε([|nm + 1|])}. (2.1097)

The uncertainty and certainty relations for ∆P∆X:

For q1, q2 > 1,

∆P∆X ≥ 1

2
. (2.1098)

For (q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1),

∆P∆X ≥ 1

2
. (2.1099)

For q1, q2 < 1,

1

2
≤ ∆P∆X ≤ max{ε([|nm|]), ε([|nm + 1|])}. (2.1100)

After the comparison, we will summarize the most informative results.

The uncertainty and certainty relations for the momentum and position:

For q1, q2 > 1,

∆P, ∆X ≥ 1√
2
. (2.1101)
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For (q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1),

∆P, ∆X ≥ 1√
2
. (2.1102)

For q1, q2 < 1,

1√
2
≤ ∆P, ∆X ≤

√
max{ε([|nm|]), ε([|nm + 1|])}. (2.1103)

The uncertainty and certainty relations for ∆P∆X:

For q1, q2 > 1,

∆P∆X ≥ 1

2
|(q

n
1 − qn

2

q1 − q2

)− (
qn+1
1 − qn+1

2

q1 − q2

)|. (2.1104)

For (q1 > 1 and q2 < 1) or (q1 < 1 and q2 > 1),

∆P∆X ≥ 1

2
|(q

n
1 − qn

2

q1 − q2

)− (
qn+1
1 − qn+1

2

q1 − q2

)|. (2.1105)

For q1, q2 < 1,

1

2
|(q

n
1 − qn

2

q1 − q2

)− (
qn+1
1 − qn+1

2

q1 − q2

)| ≤ ∆P∆X ≤ max{ε([|nm|]), ε([|nm + 1|])}. (2.1106)

Therefore this is the end of the study of Fibonacci oscillator with two parameters.

From now on, we will examine a special case for Fibonacci oscillator. This special case

is obtained in the limit q1 → q2. For simplicity, let us consider

q2 = q. (2.1107)
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This special case of Fibonacci oscillator is very significant because although, the oscil-

lator is deformed, its invariance group is undeformed, more explicitly, the algebra of

the oscillator is U(d) invariant. As it can be guessed, we will take the limits of some

important expressions.

Firstly, Eq. (2.962) becomes

[n] = nqn−1 (2.1108)

in this limit with the same initial conditions in Eqs. (2.963) and (2.964). Then Eqs.

(2.967) and (2.968) become

[N ] = a†a = NqN−1 (2.1109)

and

[N + 1] = aa† = (N + 1)qN (2.1110)

respectively. Eq. (2.1109) satisfies the generalized Fibonacci sequence in Eq. (2.972)

when

α = 2q (2.1111)

and

β = −q2. (2.1112)

The algebra in Eqs. (2.976) and (2.977) changes as

aa† − qa†a = qN . (2.1113)
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Accordingly, we write Eq. (2.997) as

aaa† − 2qaa†a + q2a†aa = 0 (2.1114)

in this special limit. This algebra gives us the following recursion formula

Bn−1 = Bn
2

q
−Bn+1

1

q2
. (2.1115)

Then we can immediately write

Bn−m = q−(m+1){Bn(m + 1)q −Bn+1m} (2.1116)

from Eq. (2.1050). We also have

Bn+m = qm−1{Bn+1m−Bn(m− 1)q} (2.1117)

from Eq. (2.1054). The uncertainty relation for this special case is obtained from Eq.

(2.1061). When we take the limit of this equation, we find

∆P∆X ≥ 1

2
qn−1|n− (n + 1)q|. (2.1118)

The hamiltonian for this system is expressed as

H =
1

2
{NqN−1 + (N + 1)qN} (2.1119)

when we look at Eq. (2.1062). So it is obvious that

εn =
1

2
qn−1{n + (n + 1)q}. (2.1120)
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To see the behavior of these energy eigenvalues, let us change the above equation as

ε(n) =
1

2
qn−1(n + nq + q) (2.1121)

where n is a nonnegative real number. If we take the derivative of this function, we get

dε

dn
=

1

2
qn−1{(n + nq + q) ln q + (1 + q)}. (2.1122)

So let us examine this derivative for the following three cases.

For q > 1, we can see that

dε

dn
> 0. (2.1123)

Hence εn is an increasing function and we find

εn ≥
1

2
. (2.1124)

For q = 1, we again find that

dε

dn
> 0. (2.1125)

Then εn is an increasing function and we have

εn ≥
1

2
. (2.1126)

For 0 < q < 1, we have a maximum point. To confirm this, we set this derivative
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equal to zero and solve for n. So we begin by writing

dε

dn
= 0. (2.1127)

Next, we write

n + nq + q = −(
1 + q

ln q
) (2.1128)

from Eq. (2.1122). It gives us that

nm = −(
1

ln q
)− (

q

1 + q
). (2.1129)

In addition, one can show that

d2ε

dn2
< 0 (2.1130)

at n = nm. Therefore we conclude that ε(n) takes its maximum value at this point

exactly. If we return to our original problem, we obtain

εmax
n = max{ε([|nm|]), ε([|nm + 1|])}. (2.1131)

Since we have

ε0 =
1

2
(2.1132)

and

lim
n→∞

εn = 0, (2.1133)
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we conclude that

1

2
≤ εn ≤ εmax

n . (2.1134)

In summary we have the following limits of the energy eigenvalues.

For q > 1,

εn ≥
1

2
. (2.1135)

For q = 1,

εn ≥
1

2
. (2.1136)

For 0 < q < 1,

1

2
≤ εn ≤ max{ε([|nm|]), ε([|nm + 1|])}. (2.1137)

To find the certainty relation for the case in which 0 < q < 1, we look at Eqs.

(2.1084) and (2.1085). Actually, these equations are also valid here. However, the value

of nm here is different from the one in these equations. More explicitly, nm is given in

Eq. (2.1129). Then from these equations and Eq. (2.1118) we find

∆P ≥ qn−1|n− (n + 1)q|√
8 max{ε([|nm|]), ε([|nm + 1|])}

(2.1138)
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and

∆X ≥ qn−1|n− (n + 1)q|√
8 max{ε([|nm|]), ε([|nm + 1|])}

. (2.1139)

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the first method.

The uncertainty and certainty relations for the momentum and position:

For 0 < q < 1,

qn−1|n− (n + 1)q|√
8 max{ε([|nm|]), ε([|nm + 1|])}

≤ ∆P, ∆X ≤
√

2 max{ε([|nm|]), ε([|nm + 1|])}.

(2.1140)

The uncertainty and certainty relations for ∆P∆X:

For q > 1,

∆P∆X ≥ 1

2
qn−1|n− (n + 1)q|. (2.1141)

For q = 1,

∆P∆X ≥ 1

2
. (2.1142)

For 0 < q < 1,

1

2
qn−1|n− (n + 1)q| ≤ ∆P∆X ≤ 2 max{ε([|nm|]), ε([|nm + 1|])}. (2.1143)
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We will now study the uncertainty and certainty relations for the energy eigen-

states by the second method. Eqs. (2.1093) and (2.1094) are also valid here. So the

limits of εn in Eqs. (2.1135)-(2.1137) are essential to find the uncertainty and certainty

relations. Using these limits, we will summarize the uncertainty and certainty relations

for the energy eigenstates.

The uncertainty and certainty relations for the momentum and position:

For q > 1,

∆P, ∆X ≥ 1√
2
. (2.1144)

For q = 1,

∆P, ∆X ≥ 1√
2
. (2.1145)

For 0 < q < 1,

1√
2
≤ ∆P, ∆X ≤

√
max{ε([|nm|]), ε([|nm + 1|])}. (2.1146)

The uncertainty and certainty relations for ∆P∆X:

For q > 1,

∆P∆X ≥ 1

2
. (2.1147)
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For q = 1,

∆P∆X ≥ 1

2
. (2.1148)

For 0 < q < 1,

1

2
≤ ∆P∆X ≤ max{ε([|nm|]), ε([|nm + 1|])}. (2.1149)

After the comparison, we will summarize the most informative results.

The uncertainty and certainty relations for the momentum and position:

For q > 1,

∆P, ∆X ≥ 1√
2
. (2.1150)

For q = 1,

∆P, ∆X ≥ 1√
2
. (2.1151)

For 0 < q < 1,

1√
2
≤ ∆P, ∆X ≤

√
max{ε([|nm|]), ε([|nm + 1|])}. (2.1152)

The uncertainty and certainty relations for ∆P∆X:
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For q > 1,

∆P∆X ≥ 1

2
qn−1|n− (n + 1)q|. (2.1153)

For q = 1,

∆P∆X ≥ 1

2
. (2.1154)

For 0 < q < 1,

1

2
qn−1|n− (n + 1)q| ≤ ∆P∆X ≤ max{ε([|nm|]), ε([|nm + 1|])}. (2.1155)

We have come to the end of this section. Meanwhile, we have come to the end of

this chapter. So the only remaining part is the conclusion part.
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3. CONCLUSION

We have studied the uncertainty and certainty relations for the q-oscillator and

the Fibonacci oscillator in this thesis. We have noticed some remarkable features of

these oscillators. We will mention some of them.

Firstly, the q-oscillator and the Fibonacci oscillator have some extra relations

that the ordinary quantum oscillator does not have. Since the hamiltonian for the

q-oscillator is bounded for the case in which 0 < q < 1 and εn < 1
1−q2 , the momentum

and position are also bounded. This fact causes extra relations that only contain ∆P

or ∆X.

Secondly, after the studies in this thesis, we have got an idea about the value of

the real parameter q. The value of q may be found from the greatest value of ∆X for

the universe since its position is bounded or any system whose position is bounded.

Finally, in addition to the one-dimensional q-oscillator, we studied the two-

dimensional q-oscillator. Actually, the study of the two-dimensional q-oscillator is the

first step for the study of the multi-dimensional q-oscillator and Fibonacci oscillator.

As a result, we talked about a few of the many features of the q-oscillator and

Fibonacci oscillator here. Of course, for more information, one should go through the

thesis.
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