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ABSTRACT

UNCERTAINTY AND CERTAINTY RELATIONS FOR
THE Q-OSCILLATOR

The uncertainty and certainty relations for the momentum and position operators
for the g-oscillator and Fibonacci oscillator are investigated in this thesis. The one-
dimensional g-oscillator, the two-dimensional g-oscillator which is invariant under the

action of the unitary g-deformed quantum group and Fibonacci oscillator are studied.

We study the one-dimensional g-oscillator. Firstly, by using the commutation
relation for the momentum and position operators, the uncertainty relations for the
energy eigenstates and any state which is a superposition of energy eigenstates are
calculated. By calculating the upper limit of the expectation value of the hamiltonian,
the upper limits of AP and AX and the certainty relations are obtained in the case in
which 0 < ¢ < 1. Then further uncertainty relations for the momentum and position
are obtained. Secondly, by calculating AP and AX directly and by finding their lower
and upper limits, the uncertainty and certainty relations for the energy eigenstates
are again obtained. As a result, the two ways of finding the uncertainty and certainty
relations for the energy eigenstates are true but the most informative results are selected
from the two different sets of results obtained by these two methods. Thus the further
uncertainty relations and the certainty relations are obtained for the energy eigenstates
and an arbitrary state. The classical limits of (¢,41 — &,,)/e, where g, are the energy
eigenvalues are calculated for the different intervals of ¢. It is shown that the classical

limit of this quantity in the case in which ¢ > v/2 is unreasonable.

A similar procedure is repeated for the two-dimensional g-oscillator and Fibonacci

oscillator.



OZET

Q-SALINIMCISINA AIT BELIRSIZLIK VE BELIRLILIK
BAGINTILARI

Bu tezde, g-salinimcisina ait momentum ve konum iglemcilerinin sagladiklar
belirsizlik ve belirlilik bagintilari incelenmistir. Bir boyutlu g-salinimcisi, iiniter q-
deforme kuantum grubu altinda degismez olan iki boyutlu g-salinimcisi ve Fibonacci

salimimeisi caligilmigtir.

Bir boyutlu ¢-salimmeisi inceledik. Ilk olarak, momentum islemecisi ve konum
islemcisine ait komiitasyon bagintilari kullanilarak, enerji 6zvektorleri igin ve enerji
ozvektorlerinin bir kombinasyonu olan her hangi bir durum icin belirsizlik bagintilari
hesaplanmigtir. Hamiltonyenin beklenen degerinin iist limiti hesaplanarak, 0 < ¢ < 1
kogulunda A P’nin ve AX’in iist limitleri ve belirsizlik bagintilar elde edilmigtir. Sonra
ileri belirsizlik bagmtilar: elde edilmistir. Ikinci olarak, AP ve AX dogrudan hesa-
planarak ve bunlarin alt ve tist limitleri bulunarak, enerji 6zvektorleri igin belirsizlik
bagintilar1 ve belirlilik bagintilar: tekrar elde edilmistir. Son olarak, enerji 6zvektorleri
igin belirsizlik bagintilar1 ve belirlilik bagintilar1 bulmanin iki yolu da dogrudur. Bu
iki metodla elde edilen iki farkli ¢oziim setinden en ¢ok bilgi veren sonuclar segilmistir.
Boylece, enerji 6zvektorleri i¢in ve herhangi bir durum icin ileri belirsizlik bagintilar: ve
belirlilik bagintilar: elde edilmigtir. ¢'nun farkli deger araliklar: i¢in (g,41 — €,)/€,’in
klasik limitleri hesaplanmigtir. &,’in enerji 6zdegerleri oldugu bu ifadenin klasik limi-

tinin ¢ > v/2 kosulunda makul olmadig1 gosterilmistir.

Benzer bir yontem iki boyutlu g-salinimcisi ve Fibonacci salinimcisi igin tekrar-

lanmastir.
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1. INTRODUCTION

The importance of the uncertainty relations and the certainty relations for the g-
oscillator is related to the importance of the topics which are the Heisenberg uncertainty

relation[1] and the quantum harmonic oscillator.

The Heisenberg uncertainty principle is significant because it is the basis of quan-
tum mechanics. This principle says that it is not possible to measure the momentum
and the position of a particle simultaneously with a greater accuracy than the maxi-
mum accuracy determined by the uncertainty relation which is APAX > g If it were

possible, then quantum mechanics would collapse.

The quantum harmonic oscillator is a significant subject because it is exactly
solvable and is related to all branches of physics. Most of the physical systems excited
near their ground states behave like harmonic oscillators. Some of the examples are
molecular bound states and quantized radiation. The harmonic oscillator is applied to
nuclear and hadronic bound states. When the electromagnetic field is quantized one
again basically obtains the harmonic oscillator: The electrical energy behaves as the
kinetic energy of the oscillator and the magnetic energy behaves as the potential energy
of the oscillator. Quantum field theory generalizes this phenomenon to any particle or
field which is quantized. With the discovery of quantum groups[2-5] (g-groups) which
are one-parameter generalizations (deformations) of the familiar Lie groups, similar
generalizations of the quantum harmonic oscillator have attracted a lot of scientists’
attention[6-15]. The first appearance of these generalizations, now called g-oscillators,
predated the discovery of quantum groups by a decade[16-20]. The simplest one-

dimensional version of the g-oscillator is defined by the commutation relation|20]

aa' — ¢*a’a =1 (1.1)

where a' and a are the creation operator and the annihilation operator respectively

and q is the real deformation parameter. There are different kinds of multi-dimensional



extensions of the g-oscillator.[16-24] The most interesting one which is invariant under
the action of the unitary quantum group has been constructed by Pusz and Woronow-
icz[22]. The physical significance of this invariance is that there is a one to one corre-
spondence[25] between the excited states of the g-oscillator and the excited states of

the ordinary oscillator.

In section (1.1), we study the uncertainty relations. The derivation of the uncer-

tainty relations will occur. This method will be used through chapter (2).

In section (1.2), we study the physical importance of the harmonic oscillator.
Our purpose here is to realize that the applications of the harmonic oscillator thus the

g-oscillator or the Fibonacci oscillator are possible in most areas of physics.

In section (2.1), we study the one-dimensional g-oscillator. If we define the po-
sition operator and the momentum operator linearly in terms of the creation operator
and the annihilation operator, then the commutation relation satisfied is different than
the canonical commutation relation which we calculate. The commutation relations
for the hamiltonian, the creation operator and the annihilation operator are then con-
sidered to obtain the energy eigenvalues. It is examined under which conditions there
must be a ground state. Under the condition that there is a ground state, the uncer-
tainty relation for the energy eigenstates can be calculated. After that, for the case
in which 0 < ¢ < 1 and the energy eigenvalue ¢ is less than ﬁ, the upper limit of
the energy eigenvalues is found. By using this limit, the upper limits of AP, AX and
APAX can be obtained. Then one can find the lower limits of AP and AX. On
the other hand, the lower limits and the upper limit of the expectation value of the
hamiltonian are studied. Therefore we have the uncertainty relation and the certainty
relation for any state. To get these relations in a different way, we calculate AP and
AX for the energy eigenstates and we examine their lower limits and the upper lim-
its. After comparing these two sets of results obtained by the two methods, the most
informative ones are selected. In addition, (¢,41 — €,)/e, and its classical limits are

calculated for the different intervals of q.



In section (2.2), we study the two-dimensional g-oscillator. There are various
kinds of multi-dimensional extensions of the qg-oscillator. Here we will study the one
which has been constructed by Pusz and Woronowicz. This construction is invariant
under the quantum group U,(2). The degeneracy of the bound state energies of the
ordinary oscillator is conserved. The hamiltonian for the two-dimensional g-oscillator is
defined so that it has two properties which will be explained in this section. In addition
to the energy eigenvalues, the spectra of aial and agaz are calculated. However, in

general, the same procedure is followed here as section (2.1).

In section (2.3), we study Fibonacci oscillators. A similar procedure to the one in
section (2.1) is followed here. Moreover, the spectrum of the deformed number operator

a'a is examined by two methods. So it has two different forms.

In summary, through chapter (1), we will be interested in the importance of
the subject of this thesis. Through chapter (2), we will focus on the uncertainty
and certainty relations. Besides, some other important aspects of the qg-oscillator or
Fibonacci oscillator will be mentioned. In the end, the conclusion part will appear.

1.1. THE UNCERTAINTY RELATIONS

Here we will recall the well-known method of finding the uncertainty relations.

The Heisenberg uncertainty principle is obtained by this way.

Now, let A and B be two Hermitian operators satisfying

[A, B] = iC. (1.2)

To compute the uncertainty relation for A and B, we write

(AA)*(AB)* = (Y|(A = (A))*|W)(¥|(B — (B))*| V) (1.3)



where

(4) = (Y[A])

and

(B) = (¥[B|¥).

To simplify the notation, we define the pair

A=A—-(A)
B =B—(B)
We next use the equalities
At =A
and
B'=B

to rewrite the equation (1.3) in terms of A and B. Therefore we get

(AA)X(AB)? = (U|ATA|W) (0| BT B|W).

Evidently,

(AA)*(AB)? = (AU|AT)(BY|BY).

(1.4)

(1.5)

(1.6)

(1.8)

(1.9)

(1.10)

(1.11)



If we apply the Schwartz inequality which is

Vi[?[Val? > [(Vi[Va) %,

we get

(AU|AT)(BU|BY) > [(A¥|BU)|%.

It is obvious that

(AA)*(AB)* > [(AU|BY) .

substituting Eq. (1.11) in it. By using the fact that

(AU|BU) = (U|AB|D),

we rewrite the above inequality as

(AA)XAB)* = [(¥|AB|T) .

To be able to use the equation (1.2), let us write

where

Then the inequality (1.16) becomes

(AA)*(AB)* > (7]

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)



Clearly,

(AA)*(AB)* =

B~ =

[(T|[A, B].|) + i(¥|C| )"

(1.20)

Since [A, é]Jr and C' are hermitian operators, their eigenvalues are real. Using the fact

that
|z + z'y|2 =22 4+ ¢,

we get

(AA(AB)? > - ;

|

We know that the first term is certainly positive, i.e.

(T[4, B+ |¥) > 0.

So we have

(AAP*(AB)* = (¥|C|T)*.

N

Taking the square root of this inequality, we obtain
1
AAB > S|w|c|)

for any state |¥). This is the famous uncertainty relation.

(U|[A, B |¥)* + (¥|Cl¥)%

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)



1.2. THE PHYSICAL IMPORTANCE OF THE HARMONIC
OSCILLATOR

The linear harmonic oscillator is important in both classical and quantum physics.
Its importance stems from the property of its potential energy and its applications to
most continuous physical systems.
Firstly, let us examine the special property of the potential energy given by
Lo 9 9
V(z) = gmw'e (1.26)
where m, w and x denote the mass, angular frequency and position of the harmonic
oscillator respectively. This potential is very significant since any arbitrary smooth

potential near a stable equilibrium position is approximately equal to it. To prove this

fact, let us express V' (z) near z, as
V(z) = Vi(xg) + V'(20)(x — 20) + V" (0) (2 — 30)? + ... (1.27)

using the Taylor expansion. Next, let us consider xy as a stable equilibrium point.

Thus V(z) has a minimum at this point. Then we can obviously say

V'(20) =0 (1.28)
and

V" (z0) > 0. (1.29)
For simplicity, let us choose

2o =0 (1.30)



and
V(zg) =0 (1.31)

without loss of generality. We also neglect the third and higher order terms since they

approximate to zero. Finally, we have
1 " 2
V(z) = §V (0)x (1.32)

which has the same form as Eq. (1.26). As an example, we can mention the oscillations

of the atoms in a diatomic molecule here.

On the other hand, the behavior of most continuous physical systems, such as the
vibrations of an elastic medium or the electromagnetic field in a cavity can be explained
by the linear combination of many linear harmonic oscillators. The quantization of
these physical systems are also described by the quantum mechanics of many harmonic
oscillators. So that is why all modern field theories use the results of the study of the

harmonic oscillation.



2. THE UNCERTAINTY RELATIONS AND THE
CERTAINTY RELATIONS

2.1. THE ONE-DIMENSIONAL Q-OSCILLATOR

To begin with, let us choose the units so that

h=1, (2.1)

m=1 (2.2)
and

w=1 (2.3)

In terms of the momentum and position operators, the annihilation and creation

operators are defined as

— 1 N
and
al = L(X —iP) (2.5)
=75 )

respectively. These are so called because they allow us to decrease and increase the

energy.
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The hamiltonian is defined as

H

1 1
5P2 + §X2. (2.6)

As one can easily see the hamiltonian of the g-oscillator has the same structure as the

hamiltonian of the ordinary oscillator.

If we calculate the momentum and position operators in terms of the annihilation

and creation operators, we have

P = ﬁ(cﬁ —a) (2.7)
and
X:i(awa) (2.8)
7 , )

using definitions (2.4) and (2.5). Evidently, substituting these two equations into Eq.
(2.6), we get

1
H= i(aaT +a'a) (2.9)

This is a new form of the hamiltonian in terms of the annihilation and creation oper-

ators. Now, let us use the Eq. (1.1) to rewrite the above equation as

1
H= 5(1 + ¢*a'a + a'a). (2.10)
Clearly,
1+ ¢? 1
H=( ;q Jala+ 3. (2.11)
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This equation involves the deformed number operator alone which is defined as
N =d'a. (2.12)
For ¢ = 1, the hamiltonian becomes
H=a'a+ ; (2.13)

In terms of aa', the hamiltonian changes form as

1—|—q 1

H=q*{(—")aa’ — 5} (2.14)

using Eqgs. (2.9), (1.1) and eliminating the term a'a.

We will now search for the commutation relations for the hamiltonian, the an-
nihilation and creation operators. Our purpose here is to find the eigenvalues of the
hamiltonian, i.e. the energy eigenvalues. We start by multiplying the both sides by a
from the right:

1+ ¢? 1

Ha = q *{( 5 Jaa® — §}a. (2.15)

From the associativity property of the matrices, it is clear that

1+q

Ha = q_2a{( 5

Ya'a — f} (2.16)

So the commutation relation for the hamiltonian and the annihilation operator is

Ha=q ?a(H —1) (2.17)
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according to Eq. (2.11). It can be similarly shown that

1+¢

Hal = {(~—

)a'a + ;}aT (2.18)

and

2

Ha = ot {120 q Jaa® + } (2.19)

taking into account Eqgs. (2.11) and (2.18) respectively. The commutation relation for

the hamiltonian and the creation operator is
Ha' = a'(¢*H + 1) (2.20)
using Eq. (2.14).
We are now ready to obtain the energy eigenvalues. The eigenvalue problem is
Hn) = e,|n). (2.21)
By multiplication of Eq. (2.17) on the right with the energy eigenstate |n), we find
Haln) = ¢ 2a(H — 1)|n). (2.22)
Evidently, we get
Haln) = ¢ 2a(e, — 1)|n) (2.23)
and

H(aln)) = q7*(en — 1)(aln)). (2.24)
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On the other hand, we write

Ha'|n) = a'(¢*H + 1)|n) (2.25)

multiplying Eq. (2.20) by |n). Clearly, we have

Ha'ln) = a'(¢%e, + 1)|n) (2.26)

and

H(a'n)) = (¢ + 1)(a'|n)). (2.27)

£, 1s an eigenvalue of H then ¢ *(¢, — 1) and (¢%c,, + 1) are also the eigenvalues

of H because they satisfy the Eq. (2.21) and correspond to different eigenstates. Let

us consider

aln) = Cpln — 1) (2.28)

where C, are n dependent coefficients. The recursion formula is

En1=q 2&, —q 2 (2.29)

according to Eqs. (2.24), (2.28) and (2.21). By using it, we get

Eno=q ten—qt—q? (2.30)

En3=q e, —q—q'—q¢q (2.31)



and so on. Expressing these in a more contact form, we get

or

1_q2m
1—¢?

Enm = ¢ " {en — ( )}
where m = 0,1,2,3,.... Now, from Eq. (2.29) we get
Entl = q25n + 1.
So Eq. (2.27) reads
H(aln)) = enra(a’|n)).
One can easily show that
a'ln) = Dy|n +1).

If we climb up in energy using Eq. (2.34), we have

Enio = qlen + ¢4 + 1,

ents = e+ ¢+ +1

and so on. Again,

2m

I—gq
1—q2)

Entm = q2m5n + (

14

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)



is the generalized form of the energy eigenvalues.

In summary, we have

o 1_q2m
En—m = 4 2 {gn_( 1 q2 )}7
2m
m —dq
5n+m:q2 5n+(1_q2)

where m =0,1,2, ....

Let us evaluate these eigenvalues in the limit ¢ — 1. Then we get

and

Entm = En T M.

To evaluate D,,, we can write

aln +1) = Cyyaln)

evidently. It follows that

(n+ 1|aT =Cr 1 (n|,

a'aln + 1) = Cpy1a’|n)

15

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)



applying the creation operator to Eq. (2.44) and

a‘aln +1) = C,y1Dyln + 1)

16

(2.47)

from Eq. (2.36). Taking the inner product with (n + 1| and exploiting the orthonor-

mality of the basis, i.e.

(nlm) = 0pm

and Eqgs. (2.44), (2.45), we get

(Crp(n)(Crsaln)) = Coy1 Dy

and

C*,1Cnst = Cosy Dy,

Hence we have

and Eq. (2.36) reads

aln) = Cipaln +1).

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

The first recursion formula was Eq. (2.29). We will now search for its validity

for the cases. We begin by recalling our fist assumption. It says that a and a' are

the annihilation and creation operators respectively. To testify this assumption, we

must examine whether ¢, is an increasing function of n or not. If ¢, is an increasing

function of n, then our assumption is true. If we find out that ¢, is a decreasing function

of n, then there is a contradiction. To get rid of this contradiction, we redefine the
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annihilation and creation operators so that ¢, is again an increasing function of n. We

start by considering

En —En-1=q H(¢* —1)e, +1} (2.53)

from Eq. (2.29). Hence, to decide whether ¢, — ¢, is positive or negative, it is

sufficient to look at the term (¢* — 1)e,, + 1.

For ¢ > 1, we have

¢ —1>0, (2.54)
and then
(> — e, +1>0. (2.55)
Since
€n — En_1 >0, (2.56)

we can safely conclude that ¢, is an increasing function of n.
For ¢ = 1, it is obvious that
En — Ep_1 > 0. (2.57)
Here again, ¢, is an increasing function of n.
F0r0<q<1and5n>% we get

_q2a

(1—q*e, > 1 (2.58)
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and thus
(¢* —1)e, +1<0. (2.59)
Therefore we find
En — En_1 <0 (2.60)
and €, is a decreasing function of n. It means that the role of ”a” changes. It behaves
as a creation operator. This situation requires to make some modifications. We will
rearrange the notations and we will not accept the validity of the first assumption for

this case. Let us consider b and b' as our new annihilation and creation operators.

They satisfy

b=al (2.61)
and
bV =a (2.62)
Let us consider
blny = F,|ln —1). (2.63)
Then we obtain
En1 = Qe+ 1 (2.64)

from Eq. (2.27) and it follows that

Eni1 = q en—q 7 (2.65)



This and Eq. (2.24) require

biin) = Gpln + 1).

If we generalize the recursion formula in Eq. (2.64), we find

1_q2m
_2m
En-m = ¢+ ( & )
and then we get
o 1_q2m
En+m = 4 2 {en_( )}

from (2.65) where m =0,1,2, ....
Now, we will search for the behavior of ¢, for the remaining cases.

For 0 < ¢ <1 and e, = =, it is clear that

,q2 I
€n — En—1 = 0.
In fact, €, neither increases nor decreases.
For0<g<1andeg, < ﬁ, one can show that
(1—-¢%e, <1

and then

(> —1De, +1>0.

19

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)
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Hence

Ep — En_1 >0 (2.72)

and ¢, is an increasing function of n.

We have found the eigenvalues but we must check whether they are positive or
negative to be able to conclude that they are definitely the energy eigenvalues. As we
know, the negative energy is not allowed in quantum physics. If we find out that the
eigenvalues are negative for some value of m, then we will say that there must be a
ground state such that a|0) = 0. In this way, we will get rid of the negative eigenvalues.
We begin by using the fact that ¢, is the energy measured in an experiment. So it is

positive.

For the real parameter ¢, we have

ey >0 (2.73)
and
aijzlzo. (2.74)
Therefore we find
Entm > 0 (2.75)

for ¢ > 0, where m =0,1,2,....

For ¢ > 1, we obviously have

1—(1—¢*e, >0. (2.76)
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So In{1 — (1 — ¢*)e,,} is well-defined. If

In{1—(1— q2)5n}

m > () : (2.77)
then
mn(¢*) > In{l — (1 — ¢*)e,} (2.78)
and thus
P> 1— (1 —¢Hen. (2.79)
Clearly, we get
1—¢)e,—(1—¢"™) >0 (2.80)
and
En — (11__‘];?) <0. (2.81)
Therefore we find
En—m < 0. (2.82)

So there must be a ground state.

For ¢ =1, if m > ¢,, then

En—m < 0. (2.83)

So there must be a ground state.
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For0<g¢<1andeg, > ﬁ, it is obvious that
1
En (1—q2) > 0 (2.84)
Thus we can write
e (5 _1q2) (1(]_222) >0 (2.85)
and
e — (11__qq2;n) >0 (2.86)
Finally, we have
En—m >0 (2.87)
for every m where m = 0,1,2,.... So there is no ground state.
For0<q<1and€n:ﬁ,wehave
Entm = En (2.88)
and
En—m = En (2.89)
where m = 0,1, 2, .... It means that we have only one energy eigenvalue in this case.
For0<g<1andeg, < ﬁ, it is clear that
(1—¢*)en <1 (2.90)



and

1—(1—¢*e, >0.

Hence In{1 — (1 — ¢*)e,,} is well-defined. If

In{1 — (1 — q2)5n}

e In(q?) ’

then

min(¢*) < In{l — (1 — ¢*)e, }.

Obviously, we find

q2m <1- (1 - q2)€n

and thus

(1=¢*en—(1—¢") <0.

The next step is to write

1— q2m
n— <0
Evidently, we can conclude that
En—m <0

for some m. So there must be a ground state.

23

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)
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If there is a ground state, then we consider

al0) = 0. (2.98)

Here |0) is called the ground state of the system. To determine the energy of this state,

we write

a'al0) =0 (2.99)

by applying the creation operator to it. Evidently, we get

H|0) = £0|0). (2.100)

We will call € the ground state energy. Inserting Eq. (2.11) into the above equation,

we get

1—|—q2
2

(D yata+ 30y = o) (2.101)

and therefore

1

§|O) = £9[0). (2.102)
So the ground state energy is found as

€0 = = (2.103)

For the cases in which there must occur a ground state, the eigenvalues are
computed again. For this aim, we evaluate Eqgs. (2.41) and (2.43) for n = 0 in the
following three cases. We use the above equation. Then we change the variable m to

n. Here n are nonnegative integers.



For ¢ > 1,
En = ;QQ" + (11__(];)
For ¢ =1,
Ep = B + n.
F0r0<q<1and5n<ﬁ,
=g (2

For0<g¢<1andeg, > % without loss of generality we can consider

,q2a

En = &0

and then write n instead of m. So we have

1 _q2n
_ —2n .
where n =0, +1,£2, ...
F0r0<q<1and5n:#,weget
1
Ep =
1—¢q?

similarly where n =0, +1,+2, ....

In summary, we have the following energy eigenvalues.

)}
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(2.104)

(2.105)

(2.106)

(2.107)

(2.108)

(2.109)



For ¢ > 1,
en = 54 +(1_q2)
where n =0,1,2, ....
For ¢ =1,
Ly
En==+n
2
where n =10,1,2,....
For0<q<1and€n>ﬁ,
1_q2n
_ —2n _ (-1
En =4 {80 (1_(]2)}
where n =0, 41,42, ....
For0<q<1and6n=ﬁa
1
En =
1—¢q2
where n =0, £1, £2, ....
For0<q<1andgn<ﬁa
1 2n 1_q2n
en = 54 +(1_q2)

where n =0,1,2, ....
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(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

So far, we have obtained the energy eigenvalues. We are ready now to study the
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exact relation between the states.

For ¢ > 1, we get

1+¢? t 1 Lo, 1—¢g*

) Hn) (2.115)

substituting Eqs. (2.11) and (2.110) into Eq. (2.21). If we solve this, we can easily see
that

1+ ¢? 1

1 1—¢q
P == =g 2.11
NG + 5 = 3 + (3=55) (2116)
from Eq. (2.28). It follows that
1— 2n
0, = I_CIQQ. (2.117)

Conventionally, we choose C), as real. So

1 — q2n

Therefore Eq. (2.28) reads

1 — 2n
aln) = 1_22\n —1) (2.119)
and Eq. (2.52) reads
1— g2
T _
The deformed number operator satisfies
2n
—q
alaln) = (—=)In)- (2.121)

I—gq



For ¢ = 1, we similarly write

(ala+ Zln) = (n+ )ln)

substituting Eqs. (2.13) and (2.111) into Eq. (2.21). Then we get

ICu? =n
and
C, = /n.
Hence Eq. (2.28) reads
aln) = Vil - 1)

and Eq. (2.52) reads

a'ln) = vVn+1ln +1)

for this case. The number operator satisfies

a'aln) = n|n).
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(2.122)

(2.123)

(2.124)

(2.125)

(2.126)

(2.127)

Now, to study the uncertainty relations, let us first obtain a commutation relation

for the momentum and position operators. Therefore that is the beginning of finding

the uncertainty relations. For this purpose, we rewrite Eq. (1.1) by using definitions

(2.4) and (2.5). In this case,

q2

S HiP)(X — i)~ DX —iP)(X 4 iP) =1

(2.128)



If we solve this equation step by step, we get

1 2
S (X P* 4 ilPX]) - %(X2 +P2—4[P,X]) =1

and then

1-A)( X2+ P +i(l+ P[P, X]=2.

In the end, we obtain

(1—¢*)(X?+ P?) — 2‘

P X] =i
[7] L 1+q2

Now, to compute the uncertainty relation, we write

oV v2 2
APAX > L IO+ ) =2
2 1+ ¢?

W),

according to Egs. (1.25) and (2.131). Obviously, we have

1—¢° 1
SHUIHY) — (——
1+gq 1+¢q

APAX > |( ).

First of all, let us evaluate it for the energy eigenvalues. In this case,

W) = [n)
Obviously, the inequality becomes
APAX > (AT ynln) — ()
T 144 M 1+q2""
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(2.129)

(2.130)

(2.131)

(2.132)

(2.133)

(2.134)

(2.135)



One can easily see that

(n|H|n) = ep.

Substituting Eq. (2.110) into Eq. (2.135), we get

APAX > (- e+ ATy
Ut EEAT LI g ‘
It follows
2n 2
q 1—g¢q
APAX > —1
_(1+q2)|( 5 ) 1l
and thus

APAX > ;q%.
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(2.136)

(2.137)

(2.138)

(2.139)

Therefore we have obtained the uncertainty relation for the energy eigenvalues

and for the case in which there must be a ground state. It is seen that this relation is

q and state dependent. Let us evaluate this inequality for ¢ = 1. Then we have

APAX >

DN | —

(2.140)

We will now search for the certainty relation. This is a new concept in quantum

physics actually. This concept tells us that there must be an upper limit for the

uncertainties in the momentum and position operators. We begin by examining the

relation between these uncertainties and the expectation value of the hamiltonian.

Meanwhile, the limit for the energy eigenvalues will be necessary.

To derive the certainty relations, let us start by analyzing uncertainties. For any



observable A, the uncertainty for any state, |¥) is given by

AA = {(U]A%)0) — ((U|A[E))?} 2.

We write the form

(AA)? = (W] A?|T) — ((P|A|V))?

to study it simply. As we know,

(w|A[2))* > 0.

It follows

(AA)* < (W]A%|W).

So, using this reality, we get

(AP)? < (V| P?|D)

and

(AX)? < (UX*|0).

Next, let us write

(U P2 T) + ([ X|0) = 2(0|H|D)

sandwiching Eq. (2.6) between (V| and |¥). Since we can write

(VX)) = (P XTX]W),
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(2.141)

(2.142)

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)



32

we find

(UX7)P) = (X]0))"(X]P)). (2.149)

The right of the equation gives the square of the norm of the vector, X|U) exactly.

Hence we have

(V| X2|W) > 0. (2.150)

Using this fact, we can obviously say

(U|P?|W) < 2(U|H|D). (2.151)

In a similar way, one can easily show that

(U|X3|0) < 2(V|H|T) (2.152)

since

(V| P?|¥) > 0. (2.153)

Now, combining Eqgs. (2.145) and (2.151), we obtain

(AP)? < 2(U|H|V). (2.154)

On the other hand, we find

(AX)? < 2(U|H|W) (2.155)

combining Egs. (2.146) and (2.152).
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Here, let us first evaluate the certainty relations for the energy eigenstates. In

this case, Egs. (2.154) and (2.155) become

AP < /2e, (2.156)
and

AX < V2e, (2.157)
respectively.

In the present case, finding the limits of the energy eigenvalues ¢,, is an essential
task. Therefore let us study this subject. To obtain the certainty relations, we must
calculate the upper limits of &, but for later use we also calculate the lower limits of
en. We will see that there is an upper limit for ¢, in the case in which 0 < ¢ < 1 and

En <

ﬁ. Otherwise there is no upper limit for €,. &, increases as n increases and

e, decreases as n decreases. In addition, &, approximates to its maximum value in the

limit n — oo. We will use these facts in the following cases to determine the limits of

En.
For ¢ > 1, ¢, takes the minimum value at n = 0. Since
1
f0 =3 (2.158)
and
lim &, = oo, (2.159)
we can obviously say
1
En = 5 (2.160)



For ¢ = 1, here again ¢,, takes the minimum value at n = 0. Since

o — =

and

lim &, = oo,

n—oo

we can clearly see that

DO | —

F0r0<q<1and€n>#a

n — —o00. Since

34

(2.161)

(2.162)

(2.163)

€, approximates to its minimum value in the limit

nEIEloo En = = (2.164)
and
lim &, = oo, (2.165)
we obtain
1
Ep > - (2.166)
evidently.
ForO0<g<1andeg, = ﬁ, we have only one energy eigenvalue which is
1
Ep = (2.167)




35

For0 <g<1landeg, < ﬁ, €, takes the minimum value at n = 0. Using the

fact
1

f0=7 (2.168)
and

li L (2.169)

im ¢, = , .
n—00 1— q2

we conclude

1 1
~<eg, ) 2.170
5 Sen < 7 ( )
In summary, we have the following relations.
For ¢ > 1,
1
En = - (2.171)
2
For q=1,
1
En 2 5- (2.172)
2
For0<q<1and€n>ﬁ,
1
Ep > (2.173)




1

F0r0<q<1andz-:n:w,

1

For0<q<1andgn<@,
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(2.174)

(2.175)

What we have just done is finding the limits of €,,. As we mentioned before, we

will use the results of this study to obtain the certainty relations. We will examine

only the case in which 0 < ¢ < 1 and ¢ < ﬁ because it is the unique case in which

e, has a finite upper limit. We will combine this upper limit and Eqs. (2.156) and

(2.157). So we get

2
AP < | ——
V 1—¢q?

2
AX
Viie
and thus
2
APAX < )
1—¢?
It follows that
1,, 1
—g"— < AX.
29 AP =

(2.176)

(2.177)

(2.178)

(2.179)



Combining this and Eq.

and

Similarly,

So we have

and

in summary.

(2.177), we have

L[ 2
21 AP S V1=

2

AP > ¢*" _8q'

AX > g™ _8(]2.
" 18q2<AP< T
7" 18q2<AX< =
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(2.180)

(2.181)

(2.182)

(2.183)

(2.184)

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the first method.

The uncertainty and certainty relations for the momentum and position:

For0<g¢<1landeg, <

_1
1,(12 )

1 — 2
" 8q < AP, AX <

1—¢q?

(2.185)
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The uncertainty and certainty relations for APAX:

For ¢ > 1,
1 2
APAX > 5¢™". (2.186)
For ¢ =1,
1
APAX > .. (2.187)
F0r0<q<1and€n<ﬁa
L <apax < 2 (2.188)
29 = I—¢ |

Up to this point, we have studied the uncertainty and certainty relations for
the energy eigenstates. From now on, we will discuss the uncertainty and certainty

relations for any state |¥).
As we know, any state can be expressed as
|T) = > Chln) (2.189)
n=0

where (), satisfies

SICP = 1. (2.190)
n=0
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Let us write
(V|H|P) = Z Cr (m]) (Z Chnln)) (2.191)
for later use. Exploiting the orthonormality of the basis, we obtain

(V|H|V) = Z (oM = (2.192)

In our calculations, we will use the limits of (V|H|¥) actually. So our first task
is to evaluate these limits. Let us treat separately the five cases.
For ¢ > 1, we get

[o.¢] o0 1
S [Culen = Y |CuP 5, (2.193)
n=0 n=0 2

if we multiply Eq. (2.171) by |C,,|* and then sum over all terms. It follows that

(V[H[V) > ; (2.194)
from the last equation and Egs. (2.190), (2.192).
For ¢ = 1, similarly one can find
(VH|T) > ; (2.195)
from Eq. (2.172).
For0<q¢<1andeg, > 1q2, we have
Zjo ColPen > i GG _1q2> (2.196)



and then
(W HW) > —
1—¢?
using Eq. (2.173).
F0r0<q<1and5n:$,wehave
(WIHw) =
-1

expressly.

For0<g<1landeg, < ﬁ, we obtain

oo 1 oo oo
Z |Cn|2§ < Z |Cn|25n < Z |Cn|2(
n=0 n=0 n=0

and thus

DO | —

using Eq. (2.175).

In summary, we have the following relations.

For ¢ > 1,

(V|H|P)

(AV2
DO | —
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(2.197)

(2.198)

(2.199)

(2.200)

(2.201)
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For ¢ =1,
1
(U|H|D) > 3 (2.202)
For0<q<1andgn>ﬁ,
(W H|) > — (2.203)
1—¢* .
F0r0<q<1and€n=ﬁa
R — (2.204)
F0r0<q<1and€n<ﬁ,
L (U|H|W) < ! (2.205)
2= 1—¢ '

We have obtained the limits of (U|H|¥). Hereafter, we will evaluate Eqs. (2.133),
(2.154) and (2.155) for any state.

For ¢ > 1, we write

1—¢? 1 1
VH|Y) — < —= 2.206
) EHIT) — () < (2200)

( 2

multiplying Eq. (2.201) by % and subtracting ﬁ from it. Then we get

1—¢? 1

T ) - (o (2207)

N | —

(

)| >
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expressly. So, combining this equation and Eq. (2.133), we can conclude that

1
APAX > =, (2.208)
For ¢ = 1, we obtain
1
APAX > 5 (2.209)
in the same way.
For0<g¢<1andeg, > ﬁ, we write
ALy wia) - ()l >0 2:210)
14+ q2 14+ q2 :
taking into account Eq. (2.203). So it is obvious that
APAX >0 (2.211)
from Egs. (2.210) and (2.133).
For0<g<1landeg, = ﬁ, it is clear that
L)) - () =0 2:212)
v =0 :

From it and Eq. (2.133), we have

APAX > 0. (2.213)
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Finally, for 0 < ¢ <1 and ¢, < ﬁ, one can easily show that

L = ey - () <0 (2.214)
27 ' 1+¢? 14 ¢? '
by using Eq. (2.205). It follows that
=Ly ) — ()] > 0 (2215)
14 ¢? 1+ ¢? ' '
As a result, we find
APAX >0 (2.216)

by combining Eqs. (2.215) and (2.133).

Our next task is to find the certainty relations for any state |¥). To get the

certainty relations, let us proceed as follows.

For0<g<1landeg, < ﬁ, we can see that

AP < | —— (2.217)

AX < |—2— (2.218)

from Egs. (2.155) and (2.205). Furthermore, we obtain

2

APAX
g

. (2.219)

We will now summarize the uncertainty and certainty relations for any state W.



The certainty relations for the momentum and position:

1

For0<q<1and€n<ﬁa

AP AX < | —.
) 1_q2

The uncertainty and certainty relations for APAX:

For ¢ > 1,

APAX > —
For g =1,

APAX > —
F0r0<q<1and5n>ﬁa

APAX > 0.
F0r0<q<1and€n=ﬁa

APAX > 0.
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(2.220)

(2.221)

(2.222)

(2.223)

(2.224)



ForO0<g¢<landeg, < —

45

(2.225)

We know that the Heisenberg uncertainty principle provides a lower bound on

the product of the uncertainties in the momentum and position. In other words, it

requires

APAX >

N —

Let us assume that it is also valid for this case. Then we get

AX >

from the above inequality. Therefore this equation and Eq. (2.220) imply

1 - 2
2(AP) 1—¢?

and

1—¢q?
AP > .
8
In a similar way, one can prove that
1— a2
AX >

(2.226)

(2.227)

(2.228)

(2.229)

(2.230)

using Eqgs. (2.226) and (2.220). As a consequence, we call these two equations the

further uncertainty relations.

Now, we have come to the other part of this section. This time, we will work for
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only the energy eigenstates. In order to get the uncertainty and certainty relations,
we will apply another method. We will first evaluate AP and AX for the energy
eigenstates exactly. Then we will find their limits. In this way, we will reach the

uncertainty and certainty relations.

We begin by writing

(AP)* = (n|P?In) — ({n|P|n))>. (2.231)

By using the expression of the momentum in Eq. (2.7), we rewrite Eq. (2.231) as

(AP)* = —;<n|(aT)2 +a? —a'a—aal|n) + ;(<n|<ﬂ — aln))?. (2.232)
Since
(n|(a")?|n) = 0, (2.233)
(nla’|n) =0, (2.234)
(n|(a")|n) =0 (2.235)
and
(nlaln) =0 (2.236)

according to the orthonormality of the basis, Eq. (2.232) reads

(AP)? — <n|;(aaT +dafa)n). (2.237)
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From Eq. (2.9), one can show that

(AP)? = (n|H|n). (2.238)
It follows that
AP = \/z,. (2.239)

Following a similar way, we write
(AX)? = (n|X3?|n) — ((n|X|n))% (2.240)

Inserting Eq. (2.8) into it, we get

2 _ Lo e+ dl Y — 2 ((nlat 2
(AX)* = 5(71\(@ )" +a*+a'a+aa'in) — 5((n!a + aln))*. (2.241)
Again, using Eqgs. (2.233)-(2.236), we obtain
2 Liwd +af

(AX)" = <n|§(aa +a'a)|n). (2.242)

It can be easily seen that this expression is the same as Eq. (2.237). Hence we can

conclude that

AX = \/z. (2.243)

In summary, we have

AP = \/z, (2.244)
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AX = \/z. (2.245)

At this stage, the limits of the energy eigenvalues €, are necessary to complete
our study. So Eqs. (2.171)-(2.175) play a crucial role here. Taking into account these
equations, we have the following relations that are for only the energy eigenstates and

obtained by the second method.

The uncertainty and certainty relations for the momentum and position:

For g > 1,
AP,AX > ! (2.246)
I — \/§ ’
For q =1,
AP,AX > L (2.247)
9 — \/é ’
For0<q<1and€n>ﬁ,
1
AP AX > ———. (2.248)
1—¢?
For0<g¢g<1landeg, = 1,1q27
1
AP AX = ——. (2.249)
1—¢q?2



1

F0r0<q<1and€n<ﬁa

1
< APAX <
V2~

The uncertainty and certainty relations for APAX:

For ¢ > 1,
1
APAX2§.
For g =1,
1
APAXZE
F0r0<q<1and€n>ﬁa
APAX .
ST
F0r0<q<1and€n=1_1q2,
1
APAX = =
—4q

For0<q<1andgn<ﬁa

< APAX <

1
2 1—¢*

1—¢q%
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(2.250)

(2.251)

(2.252)

(2.253)

(2.254)

(2.255)
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In the present case, we will make a comparison between Eqgs. (2.185)-(2.188) and

Egs. (2.246)-(2.255).

Taking the following relations into consideration will help us make the compari-

son. While

1 1

—q" > = 2.256

50" 2 5 (2.256)
for ¢ > 1,

1 1

—q" < = 2.257

50" < 3 (2.257)
for 0 < g < 1.

As a consequence, we select the ones which give the most information. However,
we must keep in mind that these are the relations for only the energy eigenstates. Here

comes the final results.

The uncertainty and certainty relations for the momentum and position:

For ¢ > 1,

AP, AX > (2.258)

Nl

For g =1,

AP,AX > (2.259)

Nl



ForO0<g¢<1landeg, > —

1q2’
AP, AX > 5
-9
For0<q<1andgn=ﬁ,
1
AP,AX = .
1—¢?
F0r0<q<1and€n<ﬁa
L ocapax< -1
V2 1-¢

The uncertainty and certainty relations for APAX:

For ¢ > 1,
1
APAX > §q".
For g =1,
1
APAX > oX
For0<q<1andgn>ﬁa
APAX > .

1—¢?

o1

(2.260)

(2.261)

(2.262)

(2.263)

(2.264)

(2.265)
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ForO0<g<1landeg, =

=g
APAX — (2.266)
= 1 _q2, .
For0<q<1andgn<ﬁ,
1 _ APAX < (2.267)
2 = 1—¢* '

Now, we wander the behavior of (g,,41 — €,)/en in the classical limit n — oo for

the cases in which there is a ground state. For this aim, we write

Entl —En _ iq

€n 1¢*r + (L)

using Eq. (2.110) or Eq. (2.114) which are the same equations. Cancelling some terms,

we get
. (1+q2) 2n
€ Lg2n 4 (1 qZ") ’
n 2 1—q?
and
2
v e _ () (2.270)
- —2n _ .
n 3+ ((11_7(121)
but now in another form. Let us study for the cases separately:
For ¢ > 1,
lim LT 2 (2.271)

n—0oo gn
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by using the form in Eq. (2.270). If we evaluate this limit for ¢ > /2, then we have

lim LT (2.272)

n—oo é‘n

This tells us that
Ent1 > 26, (2.273)

for ¢ > v/2 in the limit n — oco. Hence we can easily comment that the classical limit

of this quantity is unreasonable when ¢ is around v/2 or greater than it.
For g =1,

lim LT (2.274)

n—oo gn
It is seen that in the classical limit, the continuity of energy is satisfied.

_1
1—!]2 )

For0<g<1landeg, <
lim T g (2.275)

by using the form in Eq. (2.269). Thus the continuity of energy is also satisfied in the

classical limit for this case.

Hence this is the end of this section. In the next section, we will work in two

dimension.
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2.2. THE TWO-DIMENSIONAL Q-OSCILLATOR

The easy method to construct a two-dimensional g-oscillator is to take two com-

muting copies of the g-oscillator[26]. Then we can write

ap=a®I (2.276)

aa=1®a (2.277)

so that one has the commutation relations

aal — ¢tala; =1 (2.278)
where 7 = 1,2 and
CLi(Zj = ajai, (2279)
aal = ala; (2.280)
(] i i (] .

where i # j.

However a more important construction has been discovered by Pusz and Woronow-
icz and has the property of being invariant under the quantum group U,(2)[22] and
having a degenerate spectrum for the total g-deformed number operator by

N, = alay + dbas. (2.281)

These commutation relations in this case are given by

Ao — qilalaz = 0, (2282)
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arab — qaba, =0, (2.283)
aral — ¢?alay =1 (2.284)

and
aza} — ¢*abay = araf — afa;. (2.285)

We can define the annihilation and creation operators in terms of the hermitean mo-

mentum operators P, and position operators X by

1
and
P L :

The hamiltonian is defined as

1

5

1—|—q2
2

1
H= §(P12 + X2) + V(P + X2). (2.288)
This definition satisfies two conditions. The first condition is that when the hamiltonian
is reduced to one-dimension it should be the familiar non-deformed harmonic oscillator
hamiltonian which is 1(P# + XZ). The second condition is that when expressed in
terms of the creation and annihilation operators the hamiltonian should be a linear

function of the deformed number operator (2.281). This ensures that the spectrum of

1Jrq2

5— In this equation

the hamiltonian is also degenerate. As we will show, the factor

ensures that this condition is satisfied.

Now, let us calculate the momentum and position operators in terms of the

annihilation and creation operators. For this aim, let us use the definitions in Egs.
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(2.286) and (2.287) to write

i
P.=—=(af —a 2.289
and
X, = (a}, + ax) (2.290)
= — a :
k \/5 k k
where k = 1,2. If we write these equations more explicitly, we get
0
P =—(al —a), 2.291
1 \/5( 1 1) ( )
X, = — (al +ay) (2.292)
= a a s .
1 \/5 1 1
Py = —(a} — an) (2.293)
V2
and
Xy = — (ab + a) (2.294)
2 \/§ 2 2

Reexpressing the hamiltonian in terms of the creation and annihilation operators, we
have

1 1,1+ ¢
H = S (aa] +ajar) + S (——

)(asal, + abas) (2.295)
using Eqgs. (2.291)-(2.294). If we use the commutation relations in Eqs. (2.284) and

(2.285), we get another form of the hamiltonian. Thus we write

1+ ¢?

5 )1+ alay — alay + Pabas + aday).  (2.296)

1 1
1 = 20+ dalar + afan) + 5
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If we rearrange it, we get

L+¢* 1,1+ ¢ +‘12)2T 1 1(1+q2

1
H=( 5 Jajar + 5( 5 (g — 1)a1a1 + ( 5 a0y + 5 + 5(—5 ), (2.297)
1+¢? 1 1+ ¢
H=( 2q )*(alar + abas) + {1+ ( 2q )} (2.298)
and therefore
L+ a0 i 3+¢°
H=( )*(atar + abas) + ( ). (2.299)

2 4

This form of the hamiltonian is more compact and involves only the total g-deformed
number operator in Eq. (2.281). Here we can also define the g-deformed number
operators as

N, = alay (2.300)

and

Ny = abas. (2.301)

For ¢ = 1, the hamiltonian becomes

H = alay + alay + 1, (2.302)

as we expect.

Hereafter we will find the commutation relations for the hamiltonian, the anni-

hilation and creation operators because we will use them to obtain the eigenvalues of
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the hamiltonian. The eigenvalue problem that we want to solve is

H|n1n2> = Eni,ne |n1n2>. (2303)

Let us begin by multiplying Eq. (2.299) on the right by a;. So we write

1+ ¢ 3+ ¢
Ha, = ( 2q )*(alay + alaz)ar + ( 4q Jar. (2.304)
Using Eqgs. (2.282)-(2.284), it becomes
1+4¢*, alaJ{al —a —2 3+ ¢
Hay = (——) 2 + 4 mayan) + (= ar (2.305)
We next obtain
L+¢% s 5 i 1+¢*, 3+¢°
Hay = (—5—)"q  m(aia + agas) = (—5—)"q "o + (=) (2.306)

from the associativity property of the matrices. At this point, we must use the definition
of the hamiltonian in Eq. (2.299) because we want to find the relation between Hay

and a1 H. Hence we get

3 2 1 2 3 2
AU QY L P Gl

Ha, = q %a, {H — ( 1 5 1 )az. (2.307)
If we rearrange it, then we have
-2 3+¢ -2 1+¢°,
Hay = g aiH +{(——)(¢" = Vg~ = (—5—)"¢ "} (2.308)

and

1
Ha, = q72a1H + 1q72(q4 + 2(]2 -3 - q4 — 2q2 — 1)@1. (2309)



29

Therefore the commutation relation for the hamiltonian and the annihilation operator

ai is

Ha, = q %a,(H —1). (2.310)

As we mentioned before, we will use it to obtain the energy eigenvalues. By multipli-

cation of the above equation on the right with |nins), one can easily find

Hay|ning) = ¢ 2ay (H — 1)|niny). (2.311)

From Eq. (2.303), it is obvious that

Haq|ning) = q_2a1(5n1’n2 — 1)|ning). (2.312)

Then we can rearrange it as

H(ai|nin2)) = ¢ 2 (Enymy — 1)(a1]n1n2)). (2.313)

As one can easily see, the hamiltonian has another eigenstate with another eigenvalue.

Let us define this state as

a1|n1n2) = Cn17n2’n1 — 1, n2> (2314)

where C,,, », are n; and ny dependent coefficients. Inserting it into Eq. (2.313), we

have

€ty = q 2(Enymy — 1) (2.315)

This is a recursion formula. To deduce its general form from it, we write

Emy—2my =4 2(Eny1my — 1). (2.316)



It is clear that

€ni—2my = q_4{€n17n2 - (1 + q2>}‘

We continue by writing

8n1—3,’n2 = q_4{€n1—1,n2 - (1 + q2)}

and then

En1—3,np = q_G{gnl,nz - {1 + q2 + (q2)2}}
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(2.317)

(2.318)

(2.319)

From Egs. (2.315), (2.317) and (2.319), we can conclude that the general form is that

Eni—mimng = (q72)m1{€n17n2 {1+ ¢+ (C]2)2 + ...+ (qZ)mlfl}}.

To express it more compactly, we write

2mq

—om l—gq
5n1—m1,n2 = q 2 1{€n17n2 - (1_7q2)}

This time, let us multiply Eq. (2.299) on the right by a!. Then we get

34+ ¢

1+ ¢?
1 )@1

2

T+ (

)*(afar + ajas)a

obviously. By using Egs. (2.282) and (2.283), one can easily show that

3+ ¢
4

1+¢

: )l

Hal = ( )(alara] + ¢*alabas) + (

(2.320)

(2.321)

(2.322)

(2.323)
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Let us rewrite it as

1+ ¢ 3+ ¢
Hal = ( 2q 2al(1+ ?alay + ¢Palas) + ( 4q )al (2.324)
using Eq. (2.284). Then it becomes
t L+6° 5 0 1, + t 1+¢° 5+, 3+¢
Ha; = (T) q*ay(ajay + ayaz) + (T) al + (= )ai. (2.325)

We can now use Eq. (2.299) to obtain the relation between H al and alH. So we have

34+ ¢°
4

Hal = al{H — OO0} 4 0+ 72 + ¢+ 3}l (2.326)
and

Hal = ¢*alH + al. (2.327)
As a result, the second commutation relation is

Hal = al(?H +1). (2.328)

Again we will use it to find the rest of the energy eigenvalues. If we multiply it on the

right with |ning), we write
Hallniny) = al (¢ H + 1)|nyny). (2.329)
Then it becomes
H(a}|ning)) = (¢*€n, my + 1)(al|n1ns)) (2.330)

from Eq. (2.303). The next step is to change the form of the recursion formula in Eq.



(2.315) as
Emitlng = qz&?nl,n2 + 1.
If we use it, Eq. (2.330) reads
H(al[nina)) = n, 41, (a1 [nan2)).

Hence it is evident that

a“nlng) = Dy no|m1 + 1,n9).
If we climb up in energy using it, we obtain

Eni+2,n0 = q25m+1,n2 + 1.

Substituting Eq. (2.331) into it, we find

Emt2my = @ Enymy + (1 4+ 7).
Similarly, we get

Emt3ns = ¢ Enyi1me + (1+¢%)
and then

Entdns = Cnims + {1+ ¢ + (¢°)°}

As a consequence, we get the generalized form as

Enstmins = (@)™ enpm + {1+ @+ () + . + (@)™}
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(2.331)

(2.332)

(2.333)

(2.334)

(2.335)

(2.336)

(2.337)

(2.338)
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If we rewrite it in a more compact way, we have

1_q2m1
1—¢?

_ 2m

Eny4+ming = 4 Eny,ng + ( ) (2339)

To continue our study of the energy eigenvalues, let us now multiply Eq. (2.299)

on the right by ay. Then we write

34+ ¢°

1+ ¢?
Hay = ( )Q(GIM + agaz)az + ( 1

2

)as. (2.340)

After that we use Eqgs. (2.282)-(2.285) to write

1+ ¢? B 3+ ¢?
Hay = (Tq)z{azaial +q 2{(1 - q2)a1a1 + CL2CL; - 1}a2} + ( 4q )a2 (2-341)
and then
1+ ¢? B 34 ¢°
Hay = (Tq)Q{aW{al + g 2a2{(1 — ¢¥alar + abas — 13} + ( 4‘-’ Jas.  (2.342)

If we rearrange it so that it involves the total g-deformed number operator, we have

1+¢*, _ 1+q¢>, _ 3+q2
Hay = (Tq)Qq 2as(alay + abas) — (Tq)Qq 2a5 + ( 4q )as. (2.343)
We again use Eq. (2.299) to rewrite it as
_ 3+ ¢ 1.
Hay = q %ay{H — ( 4q )b+ 4 i-a 2(1+¢%)” + 3+ ¢’ }as. (2.344)

If we calculate this equation, we obtain

1
Hay = q *axH + 1{—(1*2(1 ) +34+ ¢ —q 23+ ¢)}as. (2.345)
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In the end, we find the third commutation relation as

Hay = q %as(H — 1). (2.346)

To continue, we multiply it on the right with |n;ns). So we have

Hag|ning) = q 2ag(H — 1)|niny). (2.347)

It becomes

H (az|ning)) = ¢ *(Enymy — 1)(a2|n1ns)) (2.348)

if we use Eq. (2.303). Next we consider

a2’n1n2> = Fnhng\nl,nz — 1> (2349)

So we find the following recursion formula. It is

Emme1 =G 2(Enymy — 1) (2.350)

Since this formula is very similar to Eq. (2.315) mathematically, then we can immedi-

ately say that

1 — q2m2

T h (2.351)

€nina—mo = q_2m2{5n1,n2 —(

Now, it remains to determine the last commutation relation. For this purpose,
we will follow a similar procedure as before. Let us multiply Eq. (2.299) on the right
by ag. Then we get

1—|—q2
2

Hal = ( )2(alar + abas)al + ( )al. (2.352)



This equation becomes

34 ¢*
4

1+q2
2

Ha} = ( )2(abala, + abagal) + ( )a}

if we use Eqgs. (2.282) and (2.283). From Eqs. (2.284) and (2.285), we get

1+¢ 3+¢*
—5 T Vab{q(ala + abay) + 1} + (< )ab.

Hal =
) (2

By using Eq. (2.299), we have

3+ ¢?
4

1+q2
2

Ha = ¢l {H — (=)} + (—5 ) a} + (
and then

Hal = a}{¢*H + i(—q‘l -3¢ +¢" +2¢° +1+3+ ¢}
So the fourth commutation relation is

Hab = al(¢*H +1).
Next if we multiply it on the right with |niny), we find
Hal|niny) = a (¢ H + 1)|nyny.)
Let us use Eq. (2.303) to write
H(a5|nins)) = (42, ny + 1)(ablnany)).

Since another form of Eq. (2.350) is

2
Enima+l = 4 Enyny + 17
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(2.353)

(2.354)

(2.355)

(2.356)

(2.357)

(2.358)

(2.359)

(2.360)
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we can immediately conclude that

ablning) = Gy my|na, no + 1). (2.361)

Since Eq. (2.360) is very similar to Eq. (2.331) mathematically, we can safely say that

2ma 1- q2m2

Enynotme =4 Enyns (1_7q2) (2.362)

In summary, we have

—2m 11— q2m1

€ni—mine — 4 2 Hening — (1_7(12)}, (2.363)
m 1 — q2m1

€n1+m1,n2 = q2 15n1,n2 + (1_7(]2), (2364)
—2m - q2m2

Enino—mo — ¢ 2 2{57117”2 — (qu)}, (2365)
m 1 _ q2m2

Eninatma — q2 25n1,n2 + (1_7q2) (2366)

Now, let us evaluate these recursion formulas in the limit ¢ = 1. Then Egs.

(2.363), (2.364), (2.365), (2.366) read

g”l*mlﬂm = 5n1,n2 — my, (2367)

877114’7?’11,7742 = 6711,712 + mq, (2368)
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E€ni,na—mo — Ening — M2, (2369)

5n1,n2+m2 - 5n17n2 + mo (2370)

respectively.

Up to this point, we have obtained the generalized forms of the recursion for-
mulas for the energy eigenvalues. The similarity between the energy eigenvalues in
Egs. (2.40), (2.41) and these energy eigenvalues attracts our attention at this stage.
So it means that they also share some important properties. We will mention these

properties one by one.

Firstly, from the study in section (2.1), we can surely conclude that

Dy ny = ;14_1’”2 (2.371)
and
Grosms = F - (2.372)
So Egs. (2.333) and (2.361) read
allning) = C% 1 |na + 1,no) (2.373)
and
ablning) = ) npi1lna,ne + 1) (2.374)

respectively.
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Secondly,

gnl,ng - gnl—l,ng Z 0 (2375)

and

8n1,n2 - 87’L1,ng—1 Z 0 (2376)

for all cases of ¢ and ¢, ,, except the case in which 0 < ¢ < 1 and €, , > ﬁ. So

E€ny .y decreases as ny or ng increases in this case. It requires to redefine the annihilation

and creation operators as

by = al, (2.377)

bl = ay, (2.378)

by = ab, (2.379)
and

bl = as. (2.380)

Let us next consider

and

bl|n1n2> = Jn1,n2|n1 - 1,n2>

le?’L17”L2> = Kn17n2]n1, Ng — 1>

(2.381)

(2.382)
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Therefore we have

Eni—ming = q2ml€n1,”2 + (1_7q2), (2383)
—om, 1-— q2m1
Eni+mine — 4 2 1{57117”2 — (1_7q2)}, (2384)
m 1 - q2m2
€nina—mg = q2 *Cnime T ( 1= f ) (2.385)
and
_om, 1-— qu2
5n1,n2+m2 =q 2 2{€n1,n2 - (1_7q2)} (2386)

Thirdly, it is necessary to know whether these all recursion formulas are negative
or positive to decide that they are exactly energy eigenvalues. In other words, for
which cases there must occur a ground state? So again, we can confidently say that

there must be a ground state for the following three cases. They are (¢ > 1), (¢ = 1)

and (0 < ¢ < 1 and &,,,, < 7). In addition, in the case in which 0 < ¢ < 1 and

Enimg = ﬁ there is only one 1e_r‘11(2ergy eigenvalue which is 1fq2.
If there is a ground state, then we can say
a1|00) =0 (2.387)
and
as|00) = 0. (2.388)

We consider |00) as the ground state of the system. To calculate the ground state
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energy, we write

1—|—q2

5 (alay + aba,)|00) =0 (2.389)

(

from Eqs. (2.387) and (2.388). The next step is to write

(H - (BZqQ)HOO) ~0 (2.390)

using Eq. (2.299). So it is obvious that

34+ ¢°

H|00) = ( 1 )[00). (2.391)
This and Eq. (2.303) imply that
2
cop = > Zq . (2.392)

This is the ground state energy.

At this point, we must evaluate the eigenvalues again according to the final facts.
In other words, for the cases in which there must be a ground state, we will compute

the energy eigenvalues. Let us first write

1 o q2m1

= ) (2.393)

_ 2m
€n1+m1,n2+m2 =dq €n1>n2+m2 + (

using Eq. (2.364). Then we can write

1— q2(m1+m2)

Eni+mi,notme = q2(m1+m2)5m’n2 + ( 1_ q2 ) (2394)
substituting Eq. (2.366) into it. We rearrange it as
1_ 2(n1+n2)
5,”17”2 — q2(n1+n2)€070 + (q—) (2395)

1—¢q?
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by letting n; = 0, no = 0 and inverting mq, ms to ny,no respectively. As a result,

substituting Eq. (2.392) into it, we get

34+ ¢
4

1 — q2(n1+n2)
1—¢q?

Enimg = ( )q2(n1+n2) + ( ) (2396)

Accordingly, for the following three cases we rewrite the energy eigenvalues.

For ¢ > 1,
3+ q2 2(n1+nz2) 1- q2(n1+n2)
Ening = ( 1 )=+ (1_—q2) (2.397)
For ¢ =1,
gnl,nz =1 + ni + na. (2398)
For 0 < g <1land &, < 1=,
3+ q2 2(n1+nz2) 1- q2(n1+n2)
Eninz = ( 1 )=+ (1_—612) (2.399)
For 0 < g <1 and g, 5, > ﬁ, we can consider
8n1,n2 = Z.:0,0 (2400)

without loss of generality. Then we invert mq, ms to ny, ny respectively. Let us first
write

1 — q2m1

Eni4+my,notme — q72m1 {gm,anrmz - (1_7qg>} (2401)
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from Eq. (2.384). We next obtain

1 — q2(m1+m2)

R e T ) (2.402)
using Eq. (2.386). Then we get
T A (1_{@;;@)} (2.403)
using it where ny,no =0, +1,£2,....
For 0 <g<1and ey, n = ﬁ, we can similarly get
Enime = 7 _1 7 (2.404)
where ny,ne = 0,4+1,£2, ...
In summary, we have the following energy eigenvalues.
For ¢ > 1,
S (3 ‘ZQQ)qﬂm—&-m) + (1_1‘-’2_(7;1;@) (2.405)
where ny,ns =0,1,2,....
For g =1,
Enims = 1+ 11+ N2 (2.406)

where ni,ny =0,1,2,....
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1

For 0 < ¢ <1ande,, > —g>

1 — q2(n1+n2)

Enymy = 2D L 0 ( - )} (2.407)
where ny,ne = 0,£1,£2, ...
For 0 <g<1andey = ﬁ,
1
gnl,nz - 1 . q2 (2408)
where ny,ne = 0,4+1,£2, ...
For 0 < g <1and e, , < ﬁ,
3 4 q2 1— q2(n1+n2)

Enrms = ( )gAmtn2) (2.409)

4 1—¢?

where ni,ny =0,1,2,....

Thus we have completed our study of finding the energy eigenvalues partly. Hence
this study is not complete exactly. We will see that the study of the eigenvalues of
the g-deformed number operators Ny, Ny will bring us some extra cases in which there
must be a ground state. Here, let us recall that the definitions of N7 and Ny were given
in Egs. (2.300) and (2.301) respectively. We will call these extra cases the anomalous

cases because they are unexpected and extraordinary facts.

To begin with, we want to get the commutation relations between Ny, Ny and

T 1
ai, a, a2, Gy.
Let us write

N1a1 = aIalal (2410)
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using the definition in Eq. (2.300). From Eq. (2.284), we get

NMay = ¢ 2(aral — 1)ay. (2.411)
This implies that

Ny = ¢ %ai(ala; — 1). (2.412)
Therefore the commutation relation for Ny and a; is

Nia; = ¢ %a;(N; — 1). (2.413)
We next introduce the eigenvalue problem. It is

Nilnng) = N, Inins). (2.414)

N,,(L?m denotes the eigenvalues of Ny here. We note that Eq. (2.413) is very similar to

Eq. (2.17) mathematically. In addition, Eq. (2.414) is similar to Eq. (2.21). Hence we

can reach some results directly. We have

(1) “2my § Ar(1) 1— g™
Nn1—m1,n2 — C] {Nn17n2 - ( 1 — q2 )} (2415)
and
(1) 2my A7(1) 1— g™
Novvmims = ¢ Ny, + (71 7 ). (2.416)

Let us continue finding the eigenvalues of N; by writing

N1a2 = aIalag (2417)
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from Eq. (2.300). Then it is obvious that

N1a2 = CLQCLJ{CM (2418)

from Eqs. (2.282) and (2.283). So we can see that

Nlag = a2N1. (2419)

It tells us that N; and as commute. To find the eigenvalues, let us multiply it on the

right with the energy eigenstate |niny). Hence we get

Nlag\mm) = agNllnan). (2420)
It follows that
Nl(a2|n1n2>) = Nr(i?ng (a2|n1n2)>. (2421)

Using Eqgs. (2.349) and (2.414), we have

N =NY, (2.422)
and thus
Ny = NSV (2.423)
By using Eq. (2.422), we find
Nynyi1 = Nil,. (2.424)
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We generalize it as

N sy = NSV (2.425)

ni,n2+mo ni,ng’

In this context, the second eigenvalue problem is

No|ning) = Ng?n2|n1n2>. (2.426)
To analyze the relation between Nsas and asNo, we proceed as follows. We get
Noay = agagaQ (2.427)
from Eq. (2.301). We rearrange it as
Noas = ¢ 2{(1 — ¢*)alay + azal — 1}a, (2.428)
by using Eqs. (2.285) and (2.284). One can easily show that

Naas = g 2as{(1 — ¢*) N1 + N, — 1} (2.429)

from the definitions of Ny and N,. By multiplication of it on the right with the energy

eigenstate |nijny) we have
Naag|ning) = g 2a{(1 — ¢*)Ny + Ny — 1}|niny). (2.430)
Then we get
Na(azning)) = ¢ 2{(1 = ¢)NV,, + NP — 1} (az|nins)) (2.431)

taking account of Eqgs. (2.414) and (2.426). Using Eqgs. (2.349) and (2.426), we obtain
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the last recursion formula. This recursion formula is

N = (1= AND,, + NP — 1}, (2.432)

n ni,n2 ni,n2

However, we want to reach its generalized form. For this reason, we write

N2 = 0 0 = )N st + Nia = 13- (2:433)

ni,na2—2 ni,na2—1 -
We substitute Eqs. (2.422) and (2.432) into it to get

Nitna2 =a (1 +¢7)(1 = )N

ni,ne—2 7 ni,n9

+¢ 2N —(14+¢7%)). (2.434)

ni,n2
In a similar way, we proceed by writing
Nitnams = @ {4072+ a7 )1 = N, + a7 N, = (1407 + a7} (2435)

At this point, the above equations give an idea to generalize the recursion formula in

Eq. (2.432). As a result, we obtain

Ninamme = 6074 (07 4 (7)™ H1 = )N,

g )N, {1+ a7+ (07 (7)™ (2.436)

ni,n2

If we tidy up this equation, we reach

—om m 1- q2m2
Né?nz—mQ =dq 2 2{<1 - q2 2)N7(L1?n2 + N?S?Lm - (1_7(]2)} (2437)
By writing ny + 1 instead of ng, Eq. (2.432) becomes
Nr(j?ng—&-l = (q2 - 1)Nr(i3nz+1 + QQNg?nz + L. (2'438)
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Substituting Eq. (2.424) into it, we have

N2 = (- )NY + NP1 (2.439)
Evidently, we get
NG =1+ )@ = DND,, + ¢ NP, + (1 +¢7) (2.440)

from it and Eq. (2.424). Let us continue by writing

N s =1+ 4+ = DONY,, + *ND,, + 1+ +q"). (2.441)

The last three equations give us an idea to obtain the generalized recursion formula.

Accordingly, one can show that

Ny = {1+ @ + (@) + -+ (@)™ He = DN,

+H@)ND L, + {1+ + () + o+ ()™ (2.442)

Finally, if we write it more compactly, we have

1 — q2m2

— (q2m2 _ ].)N(l) 2m2N(2) ( 1 — q2 ) (2443)

ni n2 ni,n2

Now, we will discuss the commutation relation for Ny and a,. We start by writing

Noay = agagal (2.444)
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from Eq. (2.301). Then we use Egs. (2.282) and (2.283) to have

Noa; = q_2a1a£a2. (2.445)
This implies that
Noay = ¢ a1 Ns. (2.446)
The next step is to write
Nyay|ning) = ¢ %a; Na|nins) (2.447)

by multiplying Eq. (2.446) on the right with |nyny). It follows that

Ng(allnlng)) = qizN@) (a1]n1n2>) (2448)

ni,n2

according to Eq. (2.426). We get the recursion formula

N& | = ¢ 2N (2.449)

N e = 2™ND (2.450)
Eq. (2.449) implies that
N1 = N, 2451
From here, we obtain
Mo = N, (2452)
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In the present case, let us combine some of our results to obtain more compact

expressions. In other words, let us first write ny + mo instead of ny in Eq. (2.416).

Then we get
(1) 2N 1—g¢*™m
Nn1+m1,n2+m2 = an,n2+m2 + (1_7q2) (2,453)
After that we write
(1) 27N 1 —¢*™
Nn1+m1,n2+m2 = an1,n2 (1—7(]2) (2454)
inserting Eq. (2.425) into it. Similarly, we get
1 —om 1 1 _ q2ml
Nél) mi,no—ma 2 1{Nn1)n2 —mo + (1_7&)} (2455)

by putting ns — mqy instead of ny in Eq. (2.415). Next, we substitute Eq. (2.423) into

it to have

2m1

1) _ g l—¢
an—m1,n2—m2 - 1{ n17n2 - (72

el (2.456)

Since we also want to find the combined forms of the eigenvalues of N,(L?)m, we proceed

writing ne 4+ my instead of ny in Eq. (2.452). Then we get

2 m
N7(11)+m1,n2+m2 - 2 1Nn1,n2+m2‘ (2457)
The next step is to substitute Eq. (2.443) into it. So we obtain
(2) 2mq 2mo (1) 2mo ( ) 1- q2m2
Nn1+m1,n2+m2 =4q {(q - 1)Nn1,n2 +q an na + (1_7(]2)} (2458)
Similarly, we have
2 —9m 2
N s s = 42 N (2.459)
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if we write ny — mo instead of ny in Eq. (2.450). Then let us substitute Eq. (2.437)

into it to obtain

1 — q2m2
2 —2(m1+m m
N7(11)—m1,n2—m2 =dq 2mat 2){(1 - C]2 2)N7(IBH2 + N7(l?”2 - (1—7q2
In summary, we have
1— q2m1
1 —2m
N1S1)fm1,n2 =4 2 1{N7g?n2 _( 1 — 2 )}?
q
1 — 2mq
1 2my A7(1 q
Nﬁq)—i—ml,ng :q 1N7$1?7L2+( 1_ 2 )7
q
1) _ nQ
an,ngfmz - Nél?ny
1) 1
N£1,n2+m2 = Nr(u?ny
2 —2m 2
N7(u)—m17n2 =dq 1N7(11?n2’
2 2m 2
N75,1)-‘rm1,77/2 = q 1N’V(Z1?TL27
1— q2m2
2 —2m, m
Noths s = 41— ™)ND,, + N2, — (5=},

1—g¢q

2m
:(q2m2_1)N(1) 1—q™
l—¢q

ni,n2

+¢*™ NP+ (

ni,n2

)}-

(2.460)

(2.461)

(2.462)

(2.463)

(2.464)

(2.465)

(2.466)

(2.467)

(2.468)
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and

(1) —omy g Ar(1) 1— g™
an—ml,ng—m2 =q {an,nz — (1_7(]2)}, (2469)

(1) 2m1 Ar(1) 1—g*m
Nn1+m1,n2+m2 =dq Nn17n2 + ( 1 — q2 )7 (2470)

2 —2(m1+m m 1— q2m2

Notmimams = a7 (L= TN+ ND, — (o )b A
2 m m " 1 — q2m2

Nr(u)-i-m1,n2+m2 = q2 1{(612 2 1)N7(L3n2 + q2 2N7(L??n2 + (1_7q2)} (2.472)

If there is a ground state such that a1|00) = 0 and a»]|00) = 0, we can use Egs.
(2.387) and (2.414) to say

N§ 4100y = 0. (2.473)
Therefore it is obvious that
N§§ =o. (2.474)
In this case, Eq. (2.470) becomes
N = 11__‘1;;“ (2.475)

when we write ny = 0, ny = 0 and then change mi, ms into ni,ny respectively. In



addition, Eq. (2.414) reads

1_ 2n1

7)|n1n2>.

a1a1|n1n2> = ( 1—

If we follow a similar way, we write
N§100) =0
according to Eqgs. (2.388) and (2.426). Clearly, we have

N =0,
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(2.476)

(2.477)

(2.478)

We recalculate Eq. (2.472) by writing ny; = 0, ne = 0 and then changing m;, my into

ny, ny respectively. Accordingly, we conclude

2n9o
7)-

l—q
2 2n
NTS,l),TLQIq 1( 1_q

In addition, Eq. (2.426) reads

1 — 2ng
abas|ning) = ¢*™( =& )[ninz).
In summary, we have
N =17 QZ;H
n1,n2 1— q ’
2n
(2 — QQM(l —4q 2)
ni,n2 1— q2 :

(2.479)

(2.480)

(2.481)

(2.482)

What we have just done is to find the eigenvalues of a{al and agag for the cases in
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which there must be a ground state such that a,]/00) = 0 and a5|00) = 0. Now, to find
the eigenvalues of aial and agaz for the case in which 0 < ¢ <1 and &, 5, > ﬁ, we
follow a different way. Let us recall that new annihilation and creation operators are
defined for this case. Accordingly, let us write these eigenvalues again. Eqs. (2.462),

(2.461), (2.464), (2.463), (2.466), (2.465), (2.468) and (2.467) change as

(1) —omy n(1) 1—q¢™
N’Vll—ml ny — 4 an,nz + (qu), (2483)
1 —2m 1— q2m1
N'r(L1)+m1 ny — 4 2 1{ TSByQ - (1_7(]2)}7 (2484)
1
Ny = N (2.485)
1
NV gty = N, (2.486)
N7(L?)fm1,n2 = q2m1 N’I’(L?),’fu? (2487)
N® — g 2m N(2) (2.488)
ni+mi,ng q ni,na’? .
2 m " 1 q2m2
Notna-ms = (@™ = DN, + "N, + (- ) (2.489)
and
N® (1 N e (™ 9.490
ninat+my = 4 {( q ) nine T Vniing ( )} ( . )

1—¢?

respectively.
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At this stage, we focus on the fact that Nﬁ)n , and Ng?m can not take the negative

values. To confirm this, let us write

N = (ninylalay|nins) (2.491)

niy,n2

using Eq. (2.414). We can rewrite it as

Nfﬁ?nz = (a1|n1n2>)T(a1|n1n2)). (2.492)
We can easily see that this is exactly the square of the norm of a vector. Therefore it
can not be negative definitely. Eventually, N,(&)m must be nonnegative. The same is

true for Nr(f?m. This can be also proved in a similar way. For that reason, we wander

whether there are some extra cases in which there must be a ground state.

Before starting, we notice that Eqs. (2.461) and (2.462) are mathematically
similar to Eqgs. (2.40) and (2.41) respectively. Hence we reach the following result

there must be a state such that

. 1
directly. For 0 < ¢ <1 and NV, < s

We will use this fact later.

Now, we will analyze the following five cases. Some of these cases have some

subcases.
Firstly, for ¢ > 1, it is obvious that

NP > 0. (2.494)
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Secondly, for ¢ = 1, since

NP +msy >0, (2.495)
we get
N g > 0. (2.496)
Thirdly, for 0 < ¢ < 1 and &y, p, > ﬁ, we have
1+ ¢* 3+ ¢ 1
(GO, + M) + () > = (2.497)

if we sandwich Eq. (2.299) between (nins| and |ning) and then use Egs. (2.303),
(2.414) and (2.426). It follows that

1+ ¢? 1+ ¢? 1

N N® 2 2.498
( 5 Y(Np s + Nana) > ( 5 )(1_q2) ( )
and then
1
2
Nois + Nith > 7= ot (2.499)

Now, the following three subcases of this case will be examined. So we will use this

inequality.

For N >~ —L_ it is obvious that

n1,n2 1—q2>

N (1
e (=) > 0. (2.500)
N’V(Ll)nz + NT(L1)7L2 - ( L 2)




(1) ( 1

This implies that In{ N L } is well-defined. If
ni,ngy +an ng —
N(l) ( 1 )
l ni,ng 1 q2
{ N(ll),nz J"N'gzl),nQ 7( 1_1q2 ) }
meo > n q2
then
T(Li)’ng - (]_ ! 2)
myIng® < In{ — }
NT% ,n2 ‘|’ Nél)”a - (1—1q2)
and thus
1
q2m2 N&?n? B (1*112> )
NT(L}?TLQ + NT(L?),W - (1—1q2)
Evidently, we have
1
2m 2
2{ n1n2+NT(L1?n2 (1_q )}< n1n2 (1_q2)

and then

(@ = DN+ N+ () <o
Therefore we conclude that
< 0.

This means that there must be a state such that

b2|n10> =0.
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(2.501)

(2.502)

(2.503)

(2.504)

(2.505)

(2.506)

(2.507)

If we look at this case from the angle of the energy, there is no ground state because

ny does not have a lower bound. However, it is obvious that there is a greatest lower
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bound for the energy. Furthermore, we can say that there is a ground state that is

only related with Nr(f?m. Accordingly, we call this state an anomalous ground state.

Now, it is clear that

1
ND >0
ni,no (1 _qg)
and thus
1—g*"){ND ! 0
( —dq ){ nl,ng_(l_qg)}> .

Evidently, we get

2 1 —g*m
(1-¢q m2)N1§Bn2 - (1_7(]2) >0
We can surely write
N g > 0.
For NV, = 72, We obtain
Nitha-ms = €™ N,

One can easily see that

Similarly, we have

(2.508)

(2.509)

(2.510)

(2.511)

(2.512)

(2.513)

(2.514)



So we conclude that

2
NV(11?”2+m2 > 0.

For NV <« L e have

ni,ne 1—q2?

q2m2{N(1) + N(Z)

n1,n2 n1,m2 ( 1 —

from Eq. (2.499) and we obviously have

1
(1_f)—Ngm>o.

Adding these two inequalities, we obtain

1 1

quz{N(l) + N® =

ni,n2 ni,n2 ( 1

ni,n2

—dq

It follows that

(q2m2 _ 1)]\](1) + q2m2N(2) + ( —

ni,n2 ni,n2

Therefore we get

Now, we have

1
1_f)—Nm Y¢*™ > 0.

ni,n2

{(

2)}+(1 5) =N >0
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(2.515)

(2.516)

(2.517)

(2.518)

(2.519)

(2.520)

(2.521)
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Then we get
¢ 1 1) oms
(o) T G ) Nt >0, (2.522)
if we add g to it and subtract == from it. If we add
1
N, + Ny > 7= p (2.523)

to the above inequality, we find

S -

- N @™+ N+ NP> 0. (2.524)

ni,no ni,ng

If we tidy up it, we get

1_ 2mo
(1 - q2m2)N7S1)n2 + Nﬁi)nz - (1_qu) > 0. (2525)
So it follows that
NP img > 0. (2.526)

In the beginning of the study of finding extra cases, we implicitly mentioned that

there must be a state such that

bl |0ny) = 0. (2.527)

If we say it more explicitly, Eq. (2.493) necessitates this. Here again, there is a ground

state that is related with only an n,- D0 this state is again an anomalous ground state.



Fourthly, for 0 < ¢ <1 and €5, ,, = ﬁ, we find

NO LN

ni,n2 ni,n2

if we sandwich Eq. (2.299) between (nins| and |niny) and then use Egs.

(2.414) and (2.426).

Now, let us study the following two subcases of this case.

) _ 1
For Nélm = -z We have

N® =0

ni,n2

from Eq. (2.528). So Eq. (2.467) reads

NS s = 42N,
So we have
NP e = 0.
In addition, Eq. (2.468) reads
N i = TN, s
Hence
N iy = 0.
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(2.528)

(2.303),

(2.529)

(2.530)

(2.531)

(2.532)

(2.533)



For N,%?m < ﬁ, we certainly have

1

PN+ N, = (=) =0
from Eq. (2.528). Then it is obvious that
1
2m (1) (2 _ _NO — _NO
q 2{Nn1,nz+Nn1,n2 (l_qz)} an,n2+(1_q2)_ an’”2+<1_q2)'
The next step is to look at Eq. (2.489) to decide
) 1 (1)
Nnhng—mg = (1_7(]2) - Nn1,n2'
We know that
N N 1 5
n1,n2 + ni,ng (1 _ q2) -
from Eq. (2.528). It follows that
T U NG R S WS PR S S S S QR L S
q { nl,n2+ nl,ng_(l _q2)+q 1 _q2 ni,ne _q q 1 _q2

Using Eq. (2.490), we conclude that

N® = ( 1 ) — N

ni,nz+mz 1 — qz ni,ng’

Again here we can see that there must be a state such that

ay|0ng) =0

)
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(2.534)

(2.535)

(2.536)

(2.537)

—N®

ni,n2

(2.538)

(2.539)

(2.540)

for this case if we recall Eq. (2.493). This is an anomalous ground state that is related

with only NV

ni,n2’

}.
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Fifthly and finally, for 0 < ¢ < 1 and ¢, ,, < %qQ, we have

1

Ny + Niths < 1 _1q2. (2.541)
For this case, we may have only the subcase in which NT(“)n2 T
"™ —1<0 (2.542)
and
N, = () <0, (2.543)
1) 1— ¢
we conclude that
(@ = DN, = (= )b+ N, >0, (2544)
Therefore we have
NP g > 0. (2.545)

In summary, we have the following anomalous cases.

For 0 < g <1, epny > Tz and NU ——, there must be an anomalous

ni, nz 1— q

ground state such that

For 0 < ¢ <1, gpymy > 1q2 and NV

1
nims < T-gz» there must be an anomalous

1
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ground state such that

bi|0ny) = 0. (2.547)

For 0 < g <1, epn, = 1q2 and an ny < ﬁ, there must be an anomalous

ground state such that

We have finished the study of finding anomalous cases. Now, we want to recal-

culate N{! n2 and N )n for these cases.

The first case is the one in which 0 < ¢ <1, &0, > 1= q2 and an - 1}q2.
According to Eq. (2.546) we can write
bba|n10) = 0. (2.549)
This gives us that
asab|n,0) =0 (2.550)

if we use Eqs. (2.379) and (2.380). We will write this equation in terms of only N

ni,n2

and N2 because we want to find the eigenvalues of N) ~and N2~ corresponding
ni, n2 g n2 ni,n2

to the anomalous ground state. Therefore we use Eqgs. (2.285) and (2.284) to write
{(¢® — Dalay + ¢*abas + 1}n10) = 0. (2.551)
From Egs. (2.300), (2.301), (2.414) and (2.426) we can write

{(¢> = DNYy + #NDy + 1} na0) = 0. (2.552)



It follows that

(q2 - 1)N75, ni

30 + qQN@?O +1=0.
For ny = 0, this equation reads

(¢ = N5 + &* N +1=0.
Let us solve it for Né?o) . Then we get

Nog = (a7 = 1)Nog — 7>

Now, let us combine Egs. (2.487) and (2.488) to get

Ny iy = €N,
where m; = 0,£1,+2, ... If we write ny + my instead of nq, we obtain
N?’(j)-l'ml,n2+m2 =q ™ Né?nr‘rmz'
where my = 0,1,2,.... For ny =0 and ny = 0 it becomes

N(2) — q—2m1 N(Q)

mi,ma 0,mz*

For n; = 0 and ny = 0 Eq. (2.490) reads

2 —om . 1 2 1 —g*m
N, = 6" {(1 = ") No + Nogy = (= 5
Feeding Eq. (2.555) into this equation, we find
-2 2ma
—2ma [ [~ m 9" —4
Ny = a72™{(q 7% = ¢"™)Ngid — ( )}

1—¢?
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(2.553)

(2.554)

(2.555)

(2.556)

(2.557)

(2.558)

(2.559)

(2.560)
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If we tidy up it, we get

1
N(Q) — (g 2(m2tD) _q N(l) .

)} (2.561)
Let us feed this into Eq. (2.558) and change m;j, msy into ny, ny respectively. Then we

get

1

Nty = a7 a0 = DINGD = (7= 5

ni,n2

)} (2.562)

where ny = 0,+1,42, ... and ny = 0,1,2,.... In addition, let us combine Eqgs. (2.483)
and (2.484) to write

1 2m1

1 —2m, —q
Nidemams = @ NG, = (7= )b (2.563)
where m; = 0, £1, +2, ... If we write ny + mo instead of no, we obtain

1 — q2m1

1_7q2)} (2.564)

1 —om 1
N7(l1)+m1,n2+mz =49 2 I{Nél?nz-i-mz - (
where my = 0,1,2,.... Let us substitute Eq. (2.486) into it and then evaluate it for
ny = 0 and ny = 0 and finally change m, ms into ny, ny respectively. Therefore it is

clearly seen that

2n1

)} (2.565)

—om 1—¢q
N, = a2 {Ngg — ( g

where n; = 0,£1,4£2, ... and ny, =0,1,2, ....

The second anomalous case is the one in which 0 < ¢ < 1, €, p, > ﬁ and

N < L. If we take Eq. (2.547) into account, we get

n1,m2 1—q2"

bybl|0ny) = 0. (2.566)



When we use Eqgs. (2.377) and (2.378), we have
alay|0ns) = 0.
Then we get
N(522|0n2> =0

from Eqs. (2.300) and (2.414). So it is obvious that

For ny, = 0, it becomes

The next step is to combine Eqgs. (2.485) and (2.486), to have

Nﬁ?nﬁmg = NT(LBTLQ
where my = 0,1, +2, ... If we write ny + my instead of ny, we obtain
Ny mstms = Ny ns
where m; =0, —1,—2,.... For n; = 0 and ny = 0, this equation reads
Nr(nlf,mz = NT(nll),O'

Now, let us find N,(nll)p. For n; = 0 and ny = 0, Eq. (2.483) reads

Com 1_q72m1
M=)+ (L

mi,

)
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(2.567)

(2.568)

(2.569)

(2.570)

(2.571)

(2.572)

(2.573)

(2.574)



98

where m; = 0,—1,—-2,.... Let us substitute Eq. (2.570) into it to get

—2mq

o _1—q
N S (2.575)

We can now insert this into Eq. (2.573) and change mq, ms into ny, ny respectively, to

have

1 o 2m
NO - (2.576)

ni,n2 1 — q2

where ny =0, —1,—2,... and no = 0, +1,+£2,.... To get Nﬁ?m for this case, let us write
Eq. (2.487) as

N(2)

ni+mi,na+msa

— ¢ NP (2.577)

where m; = 0,—1,—-2,... and my = 0,+1,£2,.... Now, we can combine Eqs. (2.489)
and (2.490) as

2mo

—2m Mo 1_q
= ¢ {(1—¢ )N(l) + N® - (——

ni,ne n1,n2 1— q2

N

n1,n2+msa

)} (2.578)

where my = 0,41, £2, ... Let us substitute it into Eq. (2.577) to have

2mo

_(1_7q

N(Q)
1—¢?

ni1+mi,n2+msa

— q72(m1+m2){(1 _ q2m2>N(1) + N(z)

ni,n2 ni,n2

. (2.579)

If we evaluate it for ny = 0 and ny = 0 and then change my, msy into ny, ny respectively,

we find

_o(n n n 1 _ q2n2
N® =g 2t (1 — g®2)Ni| + N§3 — ( o )} (2.580)
According to Eq. (2.570), it becomes
—2(n1+n 1— q2n2
NP, = q 2 (NG — ( )} (2.581)

1—¢q?



99

where n; =0,—1,—-2,... and ny = 0,41, +2, ...

Finally, the third anomalous case is the one in which 0 < ¢ < 1, €y, n, =

and NV, < =z We can write o
alai|0ng) =0 (2.582)
using Eq. (2.548). Then we have
NgH,|0ng) = 0 (2.583)
from Eqgs. (2.300) and (2.414). It is clearly seen that
N§h. =o. (2.584)
For ny = 0, it becomes
N =0. (2.585)
Now, let us combine Egs. (2.463) and (2.464) to write
Nz tms = N, (2.586)
where my = 0, £1, 42, .... Next, we write ny + my instead of n; to obtain
Naers e = N s, (2.587)
where m; = 0,1,2,.... For ny = 0 and ny = 0 this equation becomes
N L =N (2.588)
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To find NT(,LI)Q, we rewrite Eq. (2.462) for ny = 0 and ny = 0. Hence we have

1

1 — 2my
Nindo =@ NG+ (7= ) (2.580)
where my; = 0,1,2,.... If we use Eq. (2.585), we find
2m1
m _1-4q
N, = — 2.590
m1,0 1 o q2 ( )

Inserting this into Eq. (2.588) and changing mq, my into ny, ny respectively, we obtain

(2.591)

where ny = 0,1,2,... and ny = 0, £1,£2, .... To find N2 we use Eq. (2.466). Then

n1,n2’
we get
Ny = @™ N,y (2:592)
where m; = 0,1,2,.... From it, we can write
T (2.593)

Now, let us combine Eqgs. (2.467) and (2.468) to get

. . 1 — q2m2
Ng?nz—i—mz = ((]2 ‘- 1)Nr(zi?n2 + q2 QNT(L?M + ( 1 —¢? ) (2594)
where my = 0,41, £2,.... Let us feed this into Eq. (2.593) to have
2 2my §(,2ma (1) 2ma AT(2) 1—g*m
N mingams = ¢ (@™ = DNy, + 7™ NP, + ( )} (2.595)

1—¢?



For n; = 0 and ny = 0, it becomes

2mo

1 —
N s ——q2m‘{(qmn2—-1)ﬁ$13+-qm”2ﬁéi3+-(1_:{f2

)}

If we use Eq. (2.585) and change m;j, msy into ny, ng respectively, we get

2n2

)}
where n; =0,1,2,... and no =0, +1,£2, ....

Let us summarize Nfl? and Ng?m for the three anomalous cases.

n2

For0<qg <1, enn > _1q2 and NV > _1

1 ni,ng 1—g2%>

2n1

_on l—gq

)}

where ny = 0,4+1,£2,... and ny =0, 1,2, ...,

—oni/ —2(n 1 1
Nty = a7 a0 = DINGG = (7= )
where n; = 0,£1,£2,... and ny =0, 1,2, ....
For0<g <1, epn > 1_1q2 and Né?nz < 1_1q2,
m _ 1=
ni,n2 1— q2
where n; =0,—1,—-2,... and ny = 0,+1,+2, ...,
@) o) (D) (L@
an,ngzq {NO,O _( ].—q2 >}

where n; =0,—1,—-2,... and ny = 0,41, +2, ....
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(2.596)

(2.597)

(2.598)

(2.599)

(2.600)

(2.601)
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ForO0<g<1, epn = ﬁ and N < 1

n1,n2 1—g2>

1
Nyine = == e (2.602)
where n; =0,1,2,... and no =0, +1,£2, ...,
n n 1- q2n2
Nty = @™ No + (=)} (2.603)

where ny =0,1,2,... and ny = 0,+1,+2, ...

Hereafter, we will be interested in the uncertainty relations for the momentum
and position operators. Here we will examine the uncertainty relations for the energy
cigenstates. We will use Eqgs. (2.291)-(2.294) to evaluate the following commutation
relations. Firstly, we write

PP = [~ (al - ay), jé(a; — )], (2.604)

-

Evidently, we get
Lo g i f
[P, ] = —5([%@2] — lay, ag] — [a1, a3] + [a1, ag)). (2.605)
Since we have

<n1n2]a1a2|n1n2> = 0, (2606)
(nyng|alas|ning) = 0, (2.607)

(nyng|ayab|ning) =0 (2.608)



and

<n1n2|a1a£|n1n2> =0,

we reach

<n1n2|[P1, P2]|n1n2> = 0.

Similarly, we write

-

[Py, X, (a] — a1), —=(a} + a2)].

[

Sl

Obviously, we have
[P, X) = S((a ) + (o], o] a1, 0] — [an, )
and then
(ning|[Py, Xa]|ning) =0
from Eqs. (2.606)-(2.609). We continue writing

[P, Xy] = [ (a] + a1)).

Sl

ﬁ(a’; - a2)7

It follows that
[Py, X1 = ~([a}, al] + [a}, a1] — [as, a]] — [as, a1])
and then

(ning|[Pa, Xi]|ning) =0
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(2.609)

(2.610)

(2.611)

(2.612)

(2.613)

(2.614)

(2.615)

(2.616)



from Egs. (2.606)-(2.609). Finally, we have

X0, Xo] = [ (] + a1), —=(a} + as)]

1
V2

[\

and

X1, %] = 5l ab] + lad, 0s] + e af] + [on, )

Therefore one can show that

(ning|[ X1, Xo]lning) =0

from Eqs. (2.606)-(2.609). If we use Eq. (1.25), we obtain

APAP, > 0,

AP, AX, >0,

AP,AX; >0

and

AX1AXy >0
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(2.617)

(2.618)

(2.619)

(2.620)

(2.621)

(2.622)

(2.623)

according to Egs. (2.610), (2.613), (2.616) and (2.619) respectively. Let us calculate

the remaining commutation relations to obtain the corresponding uncertainty relations.

It is evident that

7
[P, Xq] = 5[“1 - (11,@1 + a4].

(2.624)



It follows that
[Py, X1] = i[al, aq].
We use Eq. (2.284) to write
[P, X1] = i(aial - qQaJ{al —1).
If we tidy up it, we get
[P, X1] = i{(1 - ¢*)ajay — 1}.
From Eq. (1.25), one can immediately get
AP AX, > ;|(1 — ) (U|alal | T) —1].
Similarly, we have
[Py, X5] = ;[ag — Gy, ab + ag).
Then it is obvious that
[Py, Xo] = i[ab, as).

We use Egs. (2.285) and (2.284) to obtain

[Py, X5] = i(a;ag —1- q2a§a1 + aial — q2a£a2).

If we tidy up it, we find

(P2, Xo] = i{(1 — ¢*)(a]a, + abas) — 1}.
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(2.625)

(2.626)

(2.627)

(2.628)

(2.629)

(2.630)

(2.631)

(2.632)
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In terms of the hamiltonian, it becomes

. 2 5 3+ ¢

[Py, X5] = Z{(ﬁqg) (1= ){H = (=)} 1} (2.633)

from Eq. (2.299). More compactly, we have

, 2 2
[Po o] = il = ) =1, (2.634)
Therefore we can write
1

APAXy > S (1 — ¢*)(W|H|¥) -1 (2.635)

21 4 ¢

from Eq. (1.25).

At this stage, we will recalculate Egs. (2.628) and (2.635) for the energy eigen-

states |ning). In this case, we consider as

Firstly, Eq. (2.628) reads

1
APAX, > 5|1~ )N — 1], (2.637)
Let us evaluate this inequality for the following five cases. For this aim, we will substi-
tute Eq. (2.481) into the above inequality for the following three cases. We will follow
a different way for the remaining two cases. Thus we will have found the uncertainty

relations for the energy eigenstates.



For ¢ > 1,
1 2n
APAX, > 54 !
For ¢ =1,
1
APAX, > 7
For 0 < g <1 and an no 1,1(12,
1 2n
APAX, > §q !
For 0 < ¢ <1 and an o 1_1q27
<n1n2|aTa1|n1n2) > L
1 1 _ q2

if we take Eqgs. (2.483)-(2.486) into consideration. Since

1
~|(1 = ¢®) (mnalalai|ning) — 1] > 0,
2

we can confidently say that

APIAX, >0

looking at Eq. (2.637).
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(2.638)

(2.639)

(2.640)

(2.641)

(2.642)

(2.643)
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For0<g<1and NV = 1_1q2, we have

ni,n2

1
<n1n2|a1a1|n1n2) = 1— ¢ (2.644)

from Eqs. (2.469) and (2.470). Finally, we substitute it into Eq. (2.637) to have

AP, AX; > 0. (2.645)
Secondly, Eq. (2.635) reads
ABAXy > S 201 = en s — 1] (2.646)
2 2 = 9 1+q2 4" )€ny,ne :

from Eq. (2.303). In the present case, we substitute Eq. (2.396) into the above
inequality for the following three cases to have the uncertainty relations for the energy

eigenstates. For the remaining two cases we will follow a different way.

For ¢ > 1,
1, 2 3+ ¢
AP,AXy > = 2 mAn2)) (1 — 2 — 1. 2.64
2 2_2(1+q2)q (1 —q°)( 1 ) — 1 (2.647)
If we tidy up it, we get
1
AP,AX, > §q2("1+”2). (2.648)

For ¢ = 1, the above inequality reads

1
APAX, > . (2.649)
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For 0 < g <1and g, 5, < #, we again have

1
AP,AX, > §q2("1+”2). (2.650)

For 0 < ¢ <1 and &, 5, > ﬁ, we obviously have

(1= ¢*)en, my — 1] > 0. (2.651)
For 0 < ¢ < 1and &, n, = {~z, we obtain
AP,AX> >0 (2.653)

if we use the value of €, ,,, in Eq. (2.646).

Now, we want to find the certainty relations. Let us first recall Eq. (2.144).

According to it, we can write the following relations. It is clear that

(AP)* < (U|PE D), (2.654)

(AX)? < (V| XET), (2.655)

(AP,)? < (9| P2|w) (2.656)



and

(AX,)* < (U|X3|V).

Then we sandwich Eq. (2.288) between (V| and |¥) to write

(UIPED) + (PIXT|D)

1—|—q2
2

+(

Since

(U|PIW) = (VPP |D),

we find

(UIPED) = (Pi|0)N(Pr|)).

J(UIP|0) + (PIXG|W)) = 2(V|H| D).
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(2.657)

(2.658)

(2.659)

(2.660)

The right of the equation is the square of the length of the vector, P;|W¥). So it must

be nonnegative. We express it as

(U|PEw) >0

mathematically. Similarly, one can easily show that

(U|X7|W) >0,

(U|P|w) >0

(2.661)

(2.662)

(2.663)
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and

(U|X3|W¥) > 0. (2.664)

If we take these four equations and Eq. (2.658) into consideration, we obtain

(WIPPW) < 2(W[H D), (2.665)
(WIXI0) < 200 H|), (2.666)
(VIP) < (= (VI H]) (2.667)
and
(VIXFY) < (V). (2:668)

Let us combine Eqgs. (2.654) and (2.665) to get
(AP)? < 2(U|H|V). (2.669)
Similarly, we get
(AX))? < 2(T|H|D) (2.670)
according to Eqgs. (2.655) and (2.666). Next, we have
4

(APRy)* < (W)MHI‘I’), (2.671)
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if we combine Eqgs. (2.656) and (2.667). Finally, we obtain
(AXo)? < (— )| H W) (2.672)
=g

from Egs. (2.657) and (2.668).

First of all, we will evaluate the certainty relations for only the energy eigenstates.

So we have
<n1n2|H|n1n2) = Eni,no (2673)

by multiplying Eq. (2.303) on the left by (n;ns| and exploiting the orthonormality of

the basis, i.e.
(n1ng|mims) = 0pymi Ongms - (2.674)

If we use Eq. (2.673), then Egs. (2.669), (2.670), (2.671) and (2.672) read

(AP1)2 S 25711,712) (2675)
(AX1)? < 260,01 (2.676)
4
AP)? < (—— 2.
(AP)* < (1 5)emum (2.677)
and
4
AX)? < (——)enm 2.678
(AX2)* < (7 3)omms (2.678)

respectively.
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At this point, it is clear that we need the limits of ¢,, ,,. Here it is enough to
know the upper limits of ¢, », but for later use we will also compute the lower limits
of €,,.m,- In the following calculations, we will use the fact that ¢, ,, is an increasing
function of n; and ny. For all cases, €,, », approximate to its maximum value in the

limit ny, ny — oo.

For ¢ > 1, €, n, takes the minimum value at n; = 0 and ny = 0. Since

SRR (2.679)
’ 4
and
nhlggoo Enymy = OO, (2.680)
we have
i = 2 ZQQ. (2.681)
For ¢ =1, &,, n, takes the minimum value at n; = 0 and ny = 0. In this case, we
obtain
€00 =1 (2.682)
and
lim &y, n, = 00. (2.683)

ni,n2—00

Therefore it is obvious that

Enymg > 1. (2.684)
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For 0 < g <1andey, , > ﬁ, €ny ny @pproximates to its minimum value in the

limit ny,ny — —o0. So we get

A Enyng = 7 _1q2 (2.685)
and
p 0 Eny iy = 0. (2.686)
Accordingly, we have
1
Eninz = 2 (2.687)
For 0 <g¢g<1landey n = ﬁ, we have only one energy eigenvalue. Hence we
get
: (2.688)

1

For 0 < ¢ <1 and €n n, < 7=, €nyn, takes the minimum value at n, = 0 and

ny = 0. Since

3 2
co0 = *4‘1 (2.689)

and

(2.690)

lim ¢ = —
ny,na—00 ni,n2 1 _q27
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we can obviously write

3+ ¢ 1
1 < Enymy < ¢ (2.691)
In summary, we have the following limits of the energy eigenvalues.
For ¢ > 1,
3+ ¢
Enymg > ) (2.692)
4
For q=1,
Enymg = 1. (2.693)
For 0 < ¢ <1 and ¢,, 5, > 1,1(12,
1
S > T (2.694)
For 0 <g<1ande, n = 1_1q27
1
S = T (2.695)
For 0 <g<1and e, , < 1_1q2,
3+ ¢ 1
1 < Enpng < - (2.696)



116

Now, let us continue to evaluate the certainty relations. As we can see, there is

an upper limit for ¢, ,, for only one case in which 0 < ¢ < 1 and ¢, , <

1q2 . So we

will find the certainty relations for only this case. Hence Egs. (2.675), (2.676), (2.677)

and (2.678) read

2
AP <
1 1 qz’
2
AX, < 1— 2
4
AP, <
2 1_q4
and
AX, <

respectively. Then we use these four equations to obtain

APAP, < (1_2612)\/3,
APAX, < (1—2q2)\/37
APAX, < (1—2q2)\/37
AX,AX, < Hiﬂmv

(2.697)

(2.698)

(2.699)

(2.700)

(2.701)

(2.702)

(2.703)

(2.704)
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2

and

(2.706)

4
APAXy < 7
We will now summarize the uncertainty and certainty relations for the energy
eigenstates that we have obtained by the first method.
The uncertainty and certainty relations for the momentum and position:

ForO<g<1land ey pn, < =2

—y
AP <[5 _2q2, (2.707)
AXy <5 _2q2, (2.708)
APy <[5 _4q4, (2.709)
AX, < 1 _4q4. (2.710)

The uncertainty and certainty relations for APLAP,, APLAX,, AP,AX; and
AXlAXQ:
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APAP, >0, (2.711)

APAX, >0, (2.712)

AP,AX, >0, (2.713)

AX1AX, > 0. (2.714)
For 0 <g<1and e, n < ﬁ,

APAP, < (1 iﬁm , (2.715)
APAX; < (1 qu)\/Z , (2.716)
APAX; < (1 qu)\/Z , (2.717)
AXIAX; < (5 fqm/Z. (2.718)

The uncertainty and certainty relations for AP, AX;:
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For ¢ > 1,
1 2n
For ¢ =1,
1
APAX, > 5 (2.720)
For 0 < g <1 and an no 1,1(12,
AP AX; > 0. (2.721)
For 0 < ¢ <1 and an ng = 1_1q27
APAX; > 0. (2.722)
For 0 < ¢ <1 and Nn1 'nia 1,1q27
1,
For 0 < g <1and g, 5, < #7
—dq

The uncertainty and certainty relations for AP,AX5:



120

For ¢ > 1,

1
AP,AX, > §q2("1+”2). (2.725)

For g =1,

1
APAXy > . (2.726)

1

For 0 < ¢ <1 and ¢, 5, > g%

AP,AX, > 0. (2.727)
For0<g<1andey, n = ﬁ,

AP,AX, > 0. (2.728)
For 0 < g < 1and £, 0, < 12,

1
5q2<m+n2> < APAX, < (2.729)

1—qg*

Up to now, we have studied the uncertainty and certainty relations for the energy
eigenstates. However, from now on, we will generalize them to any state |¥). An

arbitrary state can be expressed as

|\D> = Z Onl,n2|n1n2> (2730)

ni,n2=0



where C),, ,, satisfies

o0

Z ‘Cn17n2‘2 =1L

n1,n2=0

For later use, we will calculate some expressions. Firstly, we write

Wlala[0) = (S o bmmaliala( Y Copmlina)).

m1,mo2=0 ni,n2=0

After that, we exploit the orthonormality of the basis to have

(Ulalar|[ W) = 3" [Coyns PNV,
n1,n2=0
Secondly, we write
(V[H|V) = Z Coroym (| ) H Z ChynaIN1N2)).
m1,m2=0 n1,no=0

Then we exploit the orthonormality of the basis to get

(e 9]

<\IJ|H‘\IJ>: Z ‘Cm,nzlzem,nz-

n1,n2=0

To evaluate Eq. (2.637), finding the limits of N{}) is an essential task.

1,12

For ¢ > 1, we look at Eq. (2.481) to have

NO >,

ni,n2 —
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(2.731)

(2.732)

(2.733)

(2.734)

(2.735)

(2.736)
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For ¢ = 1, it is clear that

NW >0 (2.737)

according to Eq. (2.481).

For 0 < ¢ < 1and NV we take Eqgs. (2.483)-(2.486) into consideration

ni,n2 17q2’
to decide
NO gt (e 2.738
nlng_ { _(1_(]2)} ( )
where n; = 0,£1, 42, .... This equation tells us that
N 1 2.739
ni,n 1 _ q2 ° ( ° )
For 0 < ¢ <1 and anm = 12, we have
O R——— 2.740
ni,ne 1 — q2 ( . )
from Eqs. (2.461) - (2.464).
For 0 < ¢ <1 and an g < ﬁ, we use Eq. (2.481) to get
0< NWY ! 2.741
= nl,n2<1_q2' ( ‘ )
In summary, we have the following limits of N (! O
For ¢ > 1,
1
N> 0. (2.742)
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For ¢ =1,

NW >, (2.743)

For0<g<1and NV >

ni,ne 1—q2 I

1)
Nm?n2 > =2

(2.744)

For 0 < g <1 and an ny = 1fq2,
1
NO ) 2.745
ni,n2 1 _ q2 ( )
For 0 < ¢ <1 and Nn1 o 1_1q27
0 1
0< N (2.746)

ni,n2 1_q2'

We are ready now to find the limits of (¥|ala;|¥). We use Eq. (2.733) to evaluate

these limits for the following five cases.

For ¢ > 1, since we have

o0

S |Cu PN >0 (2.747)

ni,n2 —
n1,n2=0

from Eq. (2.742), we can conclude that

(W]ala, | @) > 0. (2.748)



For ¢ = 1, similarly, we get

oo

Z ’Cnl n2’ éi)TLQ 2 0

ni,n2=0

from Eq. (2.743). Then it follows that

(Ulafa: W) > 0

For 0 < ¢ <1and an - 1fq2, we obtain
> 1
Z |Cn1,n2| N’r(zi)ng Z n1 N2| ﬁ)
ni,no2=0 ni,n2=0 q
from Eq. (2.744). Then we use Eq. (2.731) to write
1
.I_
(U|aja, | V) > v
For 0 < ¢<1and an e = 1 1q2, we can obviously write
o0 o0 1
Z |C | Nr(z?ng = Z |Cn1,n2|2(ﬁ>
ni,n2=0 n1,m2=0 q

if we use Eq. (2.745). If we take Eq. (2.731) into account, we get

Ulala | W) =
(V]aja|¥) -

For0<g<1and NV < %{12, we use Eq. (2.746) to get

ni, nz 1

1
—

O < Z nl n2| n1 n2 Z nl TL2| 1

ni,n2=0 ni,n2=0

).
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(2.749)

(2.750)

(2.751)

(2.752)

(2.753)

(2.754)

(2.755)



Then we obtain

0 < (¥lajay W) <

using Eq. (2.731).

In summary, we have the following limits of (¥|ala;|¥):

2

—dq

For ¢ > 1,
(Ulala,|¥) >0
For ¢ =1,
(Ulala,|¥) >0
For 0 < ¢ <1 and Nn1 o 1_1(12,
T 1
(Ul|ajaq| V) > 2
For 0 < ¢ <1 and an ng = 1_1,12,
1
(¥lafa|¥) = ——.
For 0 < g <1 and an o 1,1q2,
; 1
0 < (Vajai|¥) < T

q*
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(2.756)

(2.757)

(2.758)

(2.759)

(2.760)

(2.761)
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Now, we will evaluate Eq. (2.628) for the following five cases.

For ¢ > 1, we can write

(1 - ) (Wlala ) —1 < -1 (2.762)

using Eq. (2.757). It follows that

1 1
210~ ) lalan|¥) — 1] > (2.763)
Then we obviously have
1
APAX, > 3 (2.764)
For ¢ =1, Eq. (2.628) reads
1
APAX, > 7 (2.765)
For 0 <¢<1and NV, > 2, using Eq. (2.759), we have
1 9 t
5](1 — ¢ )(Vlaja,|¥) — 1] > 0. (2.766)
This gives us that

For 0 < g<1and NV = 1. we evidently get

n1,Mm2 1—q2”

APIAX; >0 (2.768)
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by using Eq. (2.760).

For 0 < g<1and NV < L. since we have

ni,n2 1—q2

~1< (1= (¥lala,|¥) —1<0 (2.769)
from Eq. (2.761) and then
1 2y (Ulql
5|1 = @) (Wlajai|¥) — 1] >0, (2.770)
we can surely say that
APAX; > 0. (2.771)

Now, we will compute Eq. (2.635). For this purpose, we will use the limits of
Eny.my b0 calculate the limits of (W|H|¥). To calculate them, we need the expression in

Eq. (2.735). So let us study for the following cases.

For ¢ > 1, we obtain

o] oY) 3 + q2
Z |C7117’fl2 |28n1,n2 Z Z |Cn1,n2 |2(T) (2772)

ni,n2=0 ni,n2=0

from Eq. (2.692). Let us use Eq. (2.731) to write

3 2
(U|H|T) > Zq . (2.773)
For ¢ = 1, using Eq. (2.693) we write
Yo Cumalenine = D0 |Cumal® (2.774)

n1,m2=0 n1,n2=0



Then let us use Eq. (2.731) to obtain

(U|H|T) > 1.

For 0 < ¢ <1 and g, 5, > ﬁ, we have

> 2 = 2 1
> [CounaPenns > D [CoumaP(5——)
ni1,m2=0 n1,m2=0 q

from Eq. (2.694). This gives us that

1
VIH|V) > ——
(VIH) > =
if we use Eq. (2.731).
For0 <g¢g<1lande, n = ﬁ, we have
S 2 S 2 1
Z |Cn1,n2| Ening = Z |Cn1,n2| (1 2)
ni,n2=0 n1,n2=0 -9
from Eq. (2.695). Then we have
1
(WA =

from Eq. (2.731).

1

For 0 < g <1and g, 5, < T—g2» We can write

Z |Cn17n2|2( 1 )S Z ’Cn1,n2’25n1,n2< Z |Cn17n2|2(1_q2)

n1,n2=0 ni,n2=0 n1,n2=0
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(2.775)

(2.776)

(2.777)

(2.778)

(2.779)

(2.780)
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from Eq. (2.696). If we use Eq. (2.731), we evidently have

3+ ¢ 1
<(VIH|¥V) < —. 2.781
TS (HIY) < (2.781)
In summary, we have the following limits of (V|H|¥):
For ¢ > 1,
3+¢°
(U|H|W) > T (2.782)
For ¢ =1,
(U|H|¥) > 1. (2.783)
For 0 < g < 1and £, 0, > 12,
(U|H|¥) > L (2.784)
1—q? .
For 0 <g<1and e, n = ﬁ,
1
(U|H|¥) = . (2.785)
For 0 <g<1and e, , < ﬁ,
3+ ¢* 1
T wH) < (2.786)

4 1—¢?
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This is the end of studying the limits of (V|H|¥). So we are ready now to evaluate

Eq. (2.635).

For ¢ > 1, we get

(1= )| Hw) 1< (1L

if we use Eq. (2.782). It follows that

2

( V|1 = ) (W[ H|¥) —1] =

N —

Obviously, we obtain

AP,AX, > —.

For ¢ = 1, Eq. (2.635) reads

AP,AXy > —.

For 0 < ¢ <1 and &, 5, > #, we find

2
1+ ¢?

( )|(1 = ) (¥ H[¥) —1] >0

N —

if we take Eq. (2.784) into consideration. Hence we have

APQAXQ > 0.

1
1+ ¢? -2

(2.787)

(2.788)

(2.789)

(2.790)

(2.791)

(2.792)



For 0 < ¢ <1ande, = #, Eq. (2.635) reads
AP,AX5 >0
if we use Eq. (2.785).

For 0 < g <1and e, ,, < ﬁ, we can write

1—|—q2
2

—( )< (1—¢*)(T|H|¥) -1 <0

from Eq. (2.786). It follows that

1, 2

0<—(1+q2

S Pl — @)W H|) — 1] < o

1+ ¢?

Therefore we get

AP,AX, > 0.

)%
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(2.793)

(2.794)

(2.795)

(2.796)

We have obtained the uncertainty relations for any state |¥). It remains to

compute the certainty relations. The case in which 0 < ¢ < 1 and €, », <

unique case that we can study the certainty relations.

@ is the

For 0 < ¢ < 1 and €5, , < ﬁ, let us recall Eq. (2.786). So using Egs.

(2.669)-(2.672) we obtain

2
AP <\[—
1 1_(]27

(2.797)

(2.798)
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(2.799)

and

AXQ <

(2.800)

~

l—gq

respectively.

We will now summarize the uncertainty and certainty relations for any state |¥).

The certainty relations for the momentum and position:

For 0 <g <1and ¢, , < L

g7
2
APl, AX; < 1— 2 (2801)
4
APQ, AXQ < 1 (2802)
—q
The uncertainty and certainty relations for AP AX;:
For ¢ > 1,
1
APAX, > 3 (2.803)
For g =1,
1
APAX, > 7 (2.804)
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For 0 < ¢ < 1 and NV 1

n1,n2 1—q2’

For 0 < ¢ <1 and an ny = 1_1q27
APAX, > 0. (2.806)

For 0 < g <1 and an o 1,1(12,
AP AX, > 0. (2.807)

The uncertainty and certainty relations for AP,AX5:

For ¢ > 1,
1
AP, AXy > 7 (2.808)
For ¢ =1,
1
AP,AXy > 3 (2.809)
For 0 < g <1and ey, n > 2,
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1

For 0 < ¢ <1ande, = —g>

AP,AX, > 0. (2.811)

1

FOI‘ O < q < 1 and gnl,nQ < 1_q27

We have finished the first part of this section. The second part will contain the
calculations of AP, AX;, AP;, AX, and finding their limits. This is the second
method to find the uncertainty and certainty relations. However, we will work for only

the energy eigenstates here.

Let us start by recalling the implicit expression for an uncertainty. For an operator

A, we have
(AA)? = (nyng| A% |ning) — ((nina| Alning))?. (2.813)
Using this expression, we will calculate the following uncertainties.
Now, we use Eq. (2.291) to write
(AP = (mnal{=5 (e} = ax)*}mna) = {{mmal{ s (el = ) Hmn)}?. (2514
We know that

<n1n2|a1|n1n2> = 0, (2815)

(ninalaf|ning) = 0, (2.816)



(ningla?ning) = 0
and
(nans|(af)?|ninz) = 0.
Accordingly, Eq. (2.814) reads
(AP)* = ;(n1n2|(a1ai + alay)|nins).

To obtain it in terms of the g-deformed number operator Ny, we write

1+q2
2

)<n1n2|a1a1|n1n2>}1/2

1

using Eq. (2.284). This obviously gives us that

1 1+
AP, = {5 + (T)Nﬁ?ng}m-

Let us now calculate the uncertainty for X;. We can write

(AX1)2 = <”1”2H;(a1 + Gl)Q}\”ﬂb) - {<”1”2’{\}§(@1 + al)}\n1n2>}2

using Eq. (2.292). Next using Egs. (2.815)-(2.818), we obtain
2_ 1 gt
(AXl) = §<n1n2’(a1a1 + a1a1>’n1n2>.
We note that

AP = AX,
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(2.817)

(2.818)

(2.819)

(2.820)

(2.821)

(2.822)

(2.823)

(2.824)



if we look at Eqs. (2.819) and (2.823).

To continue, let us look at Eq. (2.293). Then we write

(APz)Z = <”1n2|{—;(a§ - a2)2}|”1n2> - {<”1n2|{\j§(a£ - az)}|”1n2>}2-

Since we know that

(nan\a2|n1n2> = 0,
(nlng\a£|n1n2> =0,

(ninsla3|ning) =0
and
(nina|(ad)?|nina) = 0,

we can clearly see that

s _ 1 o

(APQ) = §(n1n2|(a2a2 + a2a2)|n1n2>.
Let us use Egs. (2.285) and (2.284) to write
1
(APR)?* = §(n1n2|(1 + qQaJ{al — aial + q2a;a2 + a£a2)|n1n2>.

If we tidy up it, we get

q2—1 1—|—q2

2

1
APy = {( )<n1n2|a§a1|n1n2) + ( )(”1”2|a§a2|nln2> + 5}1/2-
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(2.825)

(2.826)

(2.827)

(2.828)

(2.829)

(2.830)

(2.831)

(2.832)



Finally, we have

2 1+ 2
ap, = {(E AN, + (5L

ni,n2

NG, + 517

ni, TL2

Now, let us write

(AX)? = {mnal{(ad + ) }muns) — {<nm2|{j§<a£ T a3)} [mana)}?

using Eq. (2.294). If we use Egs. (2.826)-(2.829), we get
(AX,)? = ;<n1n2](a2a£ + agag)]nlng).
We can easily see that
APy, = AX,
if we look at Eqs. (2.830) and (2.835).

In summary, we have

1+
APlvAAle { _I_( 2q ) ni, n2}1/2
¢ —1 1 1+ ¢ (2 1/2
AP27AX2 = {(T)Nnhnz + ( 9 )an n2 }
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(2.833)

(2.834)

(2.835)

(2.836)

(2.837)

(2.838)

We are ready now to calculate the uncertainty and certainty relations for the

energy eigenstates [nins).

Firstly, we will keep Eq. (2.837) in mind while we are studying for the following



five cases.

For ¢ > 1, we have

1
AP, AX > —
1 1 = \/§
from Eq. (2.742).
For ¢ =1, we get
APLAX, >
1, 1 = \/§
using Eq. (2.743).
For 0 < ¢ <1 and an - 1}q2, we have

1 1+ ¢? 12 o
{5+ CELIND, 12 > [

_q2

from Eq. (2.744). This gives us that

1
APl,AXl >y .
1—¢?
For 0 < ¢ <1 and annz = 11q2, we get
1
AP =AX; =
1—¢?

from Eq. (2.745).
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(2.839)

(2.840)

(2.841)

(2.842)

(2.843)
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For 0 < ¢<1and an - 1_1q2, we obtain
1 1 14+ 1
=<~ (——)NY 2.844
2—2_'_( 2 ) n1,n2<1_q2 ( )
using Eq. (2.746). Therefore we have
L o apax, < /-1 (2.845)
\/§ = 1, 1 1— q2 . .

Secondly, we will use Eq. (2.838) to study for P, and X,. Here it is necessary
to find the limits of N2 . We look at Eqs. (2.465) and (2.466) to evaluate the lower

ni, n2

limit. So we conclude that

N2 >0 (2.846)

ni,nz2 —
for all cases. In addition, we want to find the upper limits.

For0 <g<1landey n = ﬁ, we get

(2.847)

from Eq. (2.528).

For 0 < ¢ <1 and €, », approximates to its maximum value at

ni,n2

ny = 0 and in the limit ny — oo. Accordmgly, we find

1

N® <
1—g¢q

ni,n2

(2.848)

2

from Eq. (2.482).

In summary, we have the following limits of N(?) D



For all of the cases,

ForO<g<lande, n, =72

1

For 0 < g <1and gy, ,, < g%

N® <

ni,n2

l—gq

Using Eq. (2.849), we can safely say that

21 1

(AR)?, (AX,)? > (QT)N(” + o

ni,n2 2

Let us evaluate it for the following five cases.

For ¢ > 1, we have

1
APy, AXy > —
2 2 = \/§
using Eq. (2.742).
For ¢ = 1, Eq. (2.852) reads
1
APy AXy > —.

V2
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(2.849)

(2.850)

(2.851)

(2.852)

(2.853)

(2.854)



For 0 < ¢ <1 and N{! _1q2, we have

ni, n2 1

2 1
(L) N+ =<0

2 nenze 9
from Eq. (2.744). So we conclude that
APy, AXy > 0.
For0<g<1land NV, = 1_1q2, Eq. (2.852) reads
APy, AXy > 0
if we use Eq. (2.745).
For 0 < ¢ <1 and an o _1q2, Eq. (2.852) reads
(AP, (AX)? > g

if we use Eq. (2.481). Then we have

1
APy, AX, > —q™
2 2_\/§q
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(2.855)

(2.856)

(2.857)

(2.858)

(2.859)

In addition to these uncertainty relations we want to find the certainty relations.

For this purpose, we will search for an upper limit for AP;, AX;, AP, and AXs.

For0<g<1land NV < 1

i < T-g2» We obtain
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1 1+4 1
~ 4 (—=—)NW 2.860
2 + ( 2 ) ni,n2 < 1 _ q2 ( )
if we use Eq. (2.746). Evidently, we find
1
AP, AX; < (2.861)
1—¢?

if we take Eq. (2.837) into account.

For 0 < ¢ <1and gy pn, = ﬁ, since N is nonnegative, we can conclude

that
¢ =1 o
EEHND,, <o 2562
We also have
1+¢? 1 1
— )N 4 < 2.863
( 2 ) ni,n2 + 2 — 1 _ qQ ( )

from Eq. (2.850). Adding these two inequalities, we find

2 2
N + 5N+ 5 < 0 (2.864)
It follows that
1
APy, AX, < 5 (2.865)
-9

from Eq. (2.838).
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For 0 < g <1and g, 5, < #, we can similarly conclude that

1

APy, AX. —

(2.866)
from Eq. (2.851).

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the second method.

The uncertainty and certainty relations for AP, AXy:

For ¢ > 1,
AP, AX; > L (2.867)
1, 1 = \/§ .
For ¢ =1,
1
AP, AX) > —. (2.868)

3

For0<g<1land NV > _1

ni,ng 1—¢2>
APLAX) > 4| — (2.869)
1, 1 1 — q2 . .
For 0 < g <1 and NT(Ll)n = 1,1 75
1,Mn2 q
1
AP, AX; = (2.870)

—_
I

Q
[\



For 0 < ¢ < 1 and NV L

ni,n2 1—q2’

1
< AP, AX, <
\/5_ 1 1

The uncertainty and certainty relations for AP, AXs:

For ¢ > 1,
APy, AXy > 1
29 2 = \/§
For ¢ =1,
APy, AXy > L
25 2 = \/5
For 0 < ¢ <1 and Nn1 ny > 1_1q2,
APy, AXy > 0.
For 0 < g <1 and an ny = 1,1q2,
APy, AXy; > 0.
For 0 < ¢ <1 and an o 1_1q27
APy, AXy > L
25 2 = \/iq
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(2.871)

(2.872)

(2.873)

(2.874)

(2.875)

(2.876)
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For 0 <g<1and e, n =

g
1
APy, AXy < 5 (2.877)
—q
For 0 < ¢g<1andey pn < ﬁ,
APy AX, < — (2.878)
27 2 1 - q2- .

For simplicity, we consider that F' denotes any quantity from AP,AP;, APLAX,,
AP,AX; and AX;AX5. The uncertainty and certainty relations for F":

For ¢ > 1,
1
F > 3 (2.879)
For g =1,
1
For 0 < ¢ <1 and N}l?m > 1_1q2,
F >0. (2.881)
For 0 < ¢ <1 and N,S?m = 1_1q27

F>0. (2.882)
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For 0 < ¢ < 1 and NV L

ni,n2 1—q2’

F>—q¢". (2.883)

N —

The uncertainty and certainty relations for AP, AX;:

For ¢ > 1,
1
APAX, > 3" (2.884)
For ¢ =1,
1
APAX; > 3 (2.885)
For 0 < g <1 and an g 1,1[12,
APAX, > — (2.886)
1 1 1 — q2 . :
For 0 < ¢ <1 and an . 1_1q2,
1
APAX, = 5 (2.887)
—dq
For 0 < ¢ <1 and N,g)nz < 1_1q27
Lo apax, < 2 (2.885)
5 < 1841 < 7 :



The uncertainty and certainty relations for AP, A X5:

For ¢ > 1,
1
AP, AXy > 3

For g =1,
1
AP,AX,; > 3

For0<g<1land NV > 1

n1,Mm2 1—q2”

AP,AXy > 0.
For 0 < ¢ <1 and N,ﬁ?m = 1,1[127
AP,AXy > 0.

For0<g<1land NV < 1

n1,n2 1—q2”

1
APQAXQ Z 5(]2”1.

1

For0 <g<1landey n = —g

1
AP,AX, < 1
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(2.889)

(2.890)

(2.891)

(2.892)

(2.893)

(2.894)
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1

For 0 < ¢<1lande, , < —g>

1
AP,AX, < 12

— (2.895)

Now, we will make a comparison between the uncertainty and certainty relations
obtained by the first method and the ones obtained by the second method. As we
know, to be able to compare them, they must be in the same category. If we say it
more explicitly, we must rearrange some of the results obtained by the second method
so that they are categorized according to the energy eigenvalues, not N}LBM. However,
we will lose some information due to this rearrangement. After the categorization, we
will be able to select the most informative ones. In this way, we will have the best

conclusions for the energy eigenstates. As an example, let us categorize the relations

for AP,AX,. It is clear that Eqgs. (2.889) and (2.890) remain unchanged. We know

that for the case in which 0 < ¢ < 1 and €5, »,, > ﬁ, there are three cases. They
are (N, > o), (N, = =) and (N}, < 1=5). So we look at Eqgs. (2.891),

(2.892) and (2.893) to conclude that these three cases depending on NV, - share that

n2

APR,AX, > 0. (2.896)
For 0 < ¢ <1ande, , = ﬁ, there are two cases which are (N, = 1_1q2)
and (N{V,, < ﬁ) Hence we use Eqs. (2.892) and (2.893) to decide that the two

cases depending on Nfi?ng share that

AP,AX, > 0. (2.897)

1
1_q2 )

Therefore Eq. (2.893) is also valid.

we have only one case which is (N{V, < 1_1q2).

For 0 < g <1andey, , <

Let us now summarize the uncertainty and certainty relations for the energy



eigenstates after the categorization.

The uncertainty and certainty relations for AP, AXj:

For ¢ > 1,
AP, AX; > :
1, 1 = \/5
For ¢ =1,
AP, AX, > 1
1 1 = \/5
For 0 < g <1 and an o 1,1q2,
1
AP, AX; > .
1—¢?
For 0 < g <1 and an ny = 1,1(12,
1
AP, AX, = .
1—¢?
For 0 < g <1and g, n, < #7
1 1
— < AP, AX .
\/— >~ 1, 1 1 _q2

The uncertainty and certainty relations for AP, AXs:
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(2.898)

(2.899)

(2.900)

(2.901)

(2.902)
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For ¢ > 1,
APy AX, > — (2.903)
2 2 Z \/5 :
For ¢ =1,
APy AX, > — (2.904)
2 2 = \/5 :
For 0 < ¢ <1 and &, 5, > ﬁa
APy, AXy; > 0. (2.905)
For0<g<1andey, n = ﬁ,
1
0< AP AX, < 5 (2.906)
—q
For 0 <g<1and e, , < ﬁv
Lomcanax, <t (2.907)
\/iq ~ 25 2 _ q2 :
The uncertainty and certainty relations for F":
For ¢ > 1,
1
F> 3 (2.908)



For ¢ =1,

For0<g<1land NV > _1_
q

ni,n2 1

For0<g<1land N = _1

ni,ng 1—¢2?

1

For 0 < ¢g<1andey pn < =g

1n1
_ < F <
2q

The uncertainty and certainty relations for AP AX;:

For ¢ > 1,

1
AP AX, > 5

For g =1,

1
APAX, > 5

N —
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(2.909)

(2.910)

(2.911)

(2.912)

(2.913)

(2.914)



For0<g<1and NV > 1

n1,n2 1—q2”

APAX, > 11

5"

For0<g<1land NV = _1_
q

ni,n2 1

For 0 <g<1land ey p, < —2

The uncertainty and certainty relations for AP,AX5:

—dq

For ¢ > 1,
AP,AXy > —
For ¢ =1,
1
AP,AXy > 3
For 0 < ¢ <1andey n, > ﬁ,
AP,AX, > 0.
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(2.915)

(2.916)

(2.917)

(2.918)

(2.919)

(2.920)



For 0 < ¢ <1ande, = 71_1(127

1
0 < APAX, <
1—gq

FOI‘ O < q < 1 and gnl,nQ < 1_1q27

L o5, 1
=" < APAX, < —.
o = 20 A2 1— ¢
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(2.921)

(2.922)

At this point, we are ready to make a comparison between these results and

the ones obtained by the first method. For this purpose, we will need the following

relations.
For ¢ > 1,
1 1
- < - 2n1
g =97
1< 1q2(n1+n2)_
272
For g < 1,
1 1
_ > - 2n1
g =21 >
L o, 1,
g2 > Z o 2(nitng)
2q = 2q )
1 4
<

(2.923)

(2.924)

(2.925)

(2.926)

(2.927)
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Here comes the most informative results.

The uncertainty and certainty relations for AP, AXj:

For ¢ > 1,
1
AP, AX; > ﬁ (2.928)
For ¢ =1,
1
AP, AX; > ﬁ (2.929)
For 0 < g <1 and an o 1,1q2,
APLAX, > [ (2.930)
17 1 1 _ q2. .
For 0 < g <1 and an ny = 1,1(12,
AP, AX, = ! (2.931)
1, 1= 1 _ q2. .
For 0 < g <1and g, n, < #7
1 AP A 1
7 <AP,AX, < ¢ (2.932)

The uncertainty and certainty relations for AP, AXs:
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For ¢ > 1,
APy AX, > — (2.933)
2 2 Z \/5 :
For ¢ =1,
APy AX, > — (2.934)
2 2 = \/5 :
For 0 < ¢ <1 and &, 5, > ﬁa
APy, AXy; > 0. (2.935)
For0<g<1andey, n = ﬁ,
1
0< AP AX, < 5 (2.936)
—q
For 0 <g<1and e, , < ﬁv
Lomcanax, <t (2.937)
\/iq ~ 25 2 _ q2 :
The uncertainty and certainty relations for F":
For ¢ > 1,
1
F> 3 (2.938)



For ¢ =1,

For0<g<1land NV > _1_
q

ni,n2 1

For0<g<1land N = _1

ni,ng 1—¢2?

1

For 0 < ¢g<1andey pn < =g

1n1
_ < F <
2q

The uncertainty and certainty relations for AP AX;:

For ¢ > 1,

1
APlAXl Z 5(]2”1.

For g =1,

1
APAX, > 5

N —
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(2.939)

(2.940)

(2.941)

(2.942)

(2.943)

(2.944)



For 0 < ¢ <1 and an o 1_1q2,
APAX, >
For 0 < ¢ <1 and an ny = 1_1q27
AP AX,
For 0 < g <1 and an no 1,1(12,
1
3 AP AX,

The uncertainty and certainty relations for AP,AX5:

For ¢ > 1,
1 2(n1+n2)
APQAXQ 2 iq ey
For ¢ =1,
1
AP,AXy > 7
For 0 < g <1and ey, n > 2,
APQAXQ > 0.

—dq
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(2.945)

(2.946)

(2.947)

(2.948)

(2.949)

(2.950)
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1

For 0 < ¢ <1ande, = —g>

1
0 < AP,AX, < . 2.951
SARAX < 7 (2.951)
For 0 < ¢g<1landeg, pn < ﬁa
Lom < ApAx, < (2.952)
2q = 2 2 1_q2' '

Finally, we will calculate the classical limits of (€,,41.05 — Enyna)/Enyny fOr the
cases in which there must occur a ground state. In other words, the behavior of this

quantity in the limit n; and ny, — oo will be examined now. So let us write

(#)qQ(”1+n2)+2 4 (1*q2(n1+n2)+2) _ (3zf12)q2(n1+n2) — (17q2("1+”2))

Eni+lmng — Ening 1—q2 1—¢2
= —g2(ni+ny)
Eni e (#)qﬂm—knz) + (%)
(2.953)
by using Eq. (2.405). If we tidy up it, we get
2 n n
Emting ~ Emama _ & A (2.954)
- _o2(n14+mn9g) | ° :
(B )g2tna) - (LT
Its another form is
_ 1+¢%y2
5n1+1,n2 5711,712 . ( 2 ) 2 955
c - 3+q2 q72(n1+n2)_1 . ( . )
n1,m2 (=) + (=)
For ¢ > 1, we obtain
lim Cratlne T Cmme _ 2 4 (2.956)

n1,n2—00 En no
b

if we take Eq. (2.955) into consideration.
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For ¢ > \/5, we conclude that

En na — Enin
lim —fatbnz Trne g (2.957)
L2 ee €n1,n2
using the above equation. It follows that
Enitlng = 2€ny ny- (2.958)

This tells us that the energy behaves unreasonably in the classical limit because the

continuity of the energy is not seen here.

For ¢ = 1, we have

n na ~ <ni,n 1
Smtlng ~ Fmmp (2.959)
5n1,n2 1 —+ ni + N9

from Eq. (2.406). So one can easily see that

. En +1lna = €n ,n
lim e D2 = ). (2.960)
711,m2200 €nq,na

Therefore, in the classical limit, the continuity condition is satisfied for this case.

For0<g<1landeg, < ﬁ, we use Eq. (2.954) to write

. e 1 — £
lim A Tz (2.961)
ni,na2—0o0 5n17n2

It means that the energy is continuous in the classical limit as it must be.

We have come to the end of this section. In the next section, we will study the

Fibonacci oscillators.
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2.3. FIBONACCI OSCILLATORS

We will investigate Fibonacci oscillator with the two parameters in this section.

To begin with, we will define the annihilation and creation operators and the
hamiltonian in terms of the momentum and position operators. For this purpose, let
us look at the beginning of section (2.1). We will consider that Eqs. (2.4)-(2.9) are

also valid here.

Let us now introduce some new concepts. The most general form of generalized
integers is a sequence where an integer is generalized to the corresponding term in
the sequence. Here we can mention a generalized Fibonacci sequence as an example.
Each term of this sequence is a linear combination of the two previous terms with fixed

weights.

Now, we are ready to describe the Fibonacci oscillators. Fibonacci oscillator[13,
27, 28] is the oscillator whose spectrum is given by a generalized Fibonacci sequence.
This deformation of the quantum harmonic oscillator algebra is similar to the q-
deformation of Lie groups and Lie algebras. This deformation is also the most general
deformation of the quantum harmonic oscillator algebra whose spectrum is given by

the natural numbers n. Fibonacci basic integers are defined as

qq —q3
n] = 2.962
[n] P ( )

with the choice of initial conditions

[0] =0, (2.963)

1] =1 (2.964)
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and the condition

al0) =0 (2.965)

where [n] also satisfies

a'aln) = [n]|n). (2.966)

Here, the constants ¢; and ¢y are called the real parameters of the Fibonacci basic

integers. Now, we want to introduce Fibonacci oscillators in a different way. So let us

write
N _ N
[N] =ala =0 "% (2.967)
41— q2
and
gV g
[N+1]=aa =1 —2 . (2.968)
41— Q2
Here, N satisfies that
N|n) = nln) (2.969)
where n = 0,1,2,.... Then we can write
afaln) = (L2 )p) (2.970)
a1 — Q2
and
n+l _  n+4l
aalln) = ("2 yn), (2.971)
1 — G2

One can easily show that Eq. (2.967) satisfies the generalized Fibonacci sequence which
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18

[N + 2] = a[N + 1] + S[N] (2.972)
where
a=q+q (2.973)
and
b =—-qg. (2.974)

So that is why this oscillator is called the Fibonacci oscillator. For « = 1 and g =1,

the sequence [n] yields the well-known Fibonacci numbers which are

0,1,1,2,3,5,8,13,21, ... (2.975)

Now, let us study the algebra of Fibonacci oscillator. Using Eqgs. (2.967), (2.968)

and the definition of the Fibonacci basic integer, we obtain

aa' — qata = ¢ (2.976)

and

aal — gata = ¢V (2.977)

Then let us write

aN|n) = na|n) (2.978)



using Eq. (2.969). If we consider that

aln) = F,|n — 1)

where F), are n dependent constants, then Eq. (2.978) becomes

aN|n) = Fynln —1).

Since we have

(N+1|n—1)=n|n—1)

from Eq. (2.969), Eq. (2.980) reads

aN|n) = F,(N + 1)|n — 1).

We again use Eq. (2.979) to write

{aN}n) = {(N + Da}n).

So we get

aN = (N +1)a

from it. Similarly, we have

af(N)[n) = Fn.f(n)[n —1)

from Egs. (2.969) and (2.979). Then we get

JIN+Dfn—=1) = f(n)ln = 1)

163

(2.979)

(2.980)

(2.981)

(2.982)

(2.983)

(2.984)

(2.985)

(2.986)
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from Eq. (2.969). If we substitute it into Eq. (2.985) and use Eq. (2.979), we find

{af(N)}n) = {f(N + 1)a}|n).

It follows that

af(N)= f(N + 1)a.

(2.987)

(2.988)

At this stage, we will combine Eqs. (2.976) and (2.977) to see another aspect of the

algebra of Fibonacci oscillator. Firstly, we multiply Egs. (2.976) and (2.977) on the

left by a. So we have

aaa’ — qraa’a = aqév

and

aaa’ — guaa’a = aq{v

respectively. Let us now add these two equations to get

2aaa’ — (q1 + g2)aala = a(q)’ + ¢3').

Next, we multiply Eq. (2.976) on the right by g.a to have

paa'a — qgpataa = ¢ a

and we multiply Eq. (2.977) on the right by ¢;a to have

qraata — qigpa’aa = ¢ a.

(2.989)

(2.990)

(2.991)

(2.992)

(2.993)
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Now, let us add these two equations to write
(1 + @)aa’a — 2q1qpataa = (¢ + ¢Y)a. (2.994)
We can easily see that
aaa’ — (¢ + g2)aa’a + qgzaaa = ;{G(Q{V +¢) — (@ + g )a} (2.995)
if we subtract Eq. (2.994) from Eq. (2.991). Evidently, we get
agy = q1' a (2.996)
from Eq. (2.988). Inserting this into Eq. (2.995), we obtain
aaa' — (q1 + @)aa’a + qgea’aa = 0. (2.997)

This is the most compact form that can be obtained from the combination of Egs.

(2.976) and (2.977).

At this point, we want to find the representations from Eq. (2.997). For this aim,

we consider that

a'aln) = B,|n) (2.998)
and

aa'ln) = Cp|n). (2.999)
If we multiply it on the left by af, we find

a'(aa’|n)) = a' (C,|n)). (2.1000)
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Then it is obvious that

a'a(a’|n)) = C,(al|n)). (2.1001)
If we consider that
a'ln) = Gpln + 1), (2.1002)
then it is evident that
C, = Bn1 (2.1003)

from Eqs. (2.998) and (2.1001). So Eq. (2.999) reads

aa'n) = Bpyi|n). (2.1004)
From Eq. (2.997), we get
1
a'aa = (ﬁ){(ql + @)aa’a — aaa'}. (2.1005)
142

Then by multiplication of this equation on the right with |n), we obtain

a'a(aln)) = (q11q2){(ql +g)a(alaln)) — a(aa’|n))}. (2.1006)
So it is clear that
afa(aln)) = (qj@){(ql + q2) B, — By }(aln)) (2.1007)

if we use Eqgs. (2.998) and (2.1004). This immediately gives us that

+ 1

Bn—l = Bn( -
q142 q192

(2.1008)



167

if we use Eqgs. (2.979) and (2.998).

At first glance, to change the variables seems to simplify the calculations. On the
contrary, we will see that it will make difficult the calculations. However, let us first

change the variables as follows to experience it. We consider

b= g1+ g2 (21009)

= q1qe. (2.1010)
If we insert these two equations into Eq. (2.1008), we find

This is the recursion formula for Fibonacci oscillator. Then we write n — 1 instead of

n in it to get

b 1
Bn_o=B,_1(-) — Bp(-). (2.1012)
c c
This gives us that
Bow=Buo - Y (Y (2.1013)
n—2 n 02 c n+1 02 .

B b 21
Bus = Ba(5 = 25) = Bun(3 — ). (2.1014)
Moo 1 B b
Buy=Bu(7 =35+ 5) = Bunl(5; — 25), (2.1015)
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By s — Bn(iz - 4? + 32) - Bnﬂ((b:;l _ 3Z ) (2.1016)

By g — Bn(iz - 512; + 6Z - Bn+1(iz - 4iz + 32), (2.1017)

By s = Bn(i: - 6522 + 10? - 42’4) - Bn+1(ii - 5? + 6[; - 614), (2.1018)
B, s — Bn(iz - 7? n 15;,L . 10?; + 014) - Bn+1(i; - Gii v 10122 - 4055) (2.1019)

and so on. Now, it seems that to generalize it is very difficult because of the coefficients.
However, to write the coefficients in a different form, more explicitly, to write them as

combinations will help us to see the general form of the recursion formula easily. So

By = By (1) D) B (0> L (2.1020)
1) ¢ 0/ ¢
Bus = B (2) b- (1) Y = B (1) ) (2.1021)
2 C 0 C 1 C
conf Gl s o
3] ¢ 1] ¢ 2] € 0/) ¢
4] € 2] € 0/) ¢ 3] ¢ 1/ €

these equations become
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B<() i () P, () LN 105
5) ¢ 3) € 1] €

6/) € 4] ¢ 2] € 0/) ¢

7 C 5 C 3 C 1 C

and so on. Now, we want to write these in a general form. Hence we find

l m — k m—2k
k=0 e

m — 2k



Cmfk

Bua X1 (

m— 2k —1

If we consider
a=q + g2
and

ﬁ = —q142,

Eq. (2.1028) becomes

We have

l m/2 if m is even
(m—1)/2  if mis odd,

and

m/2—1 if m is even
(m—1)/2  if misodd

m—k — 1) pm—2k—1

170

(2.1028)

(2.1029)

(2.1030)

(2.1031)

for Egs. (2.1028) and (2.1031). Let us now climb up in the basic integers. We can
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write

Boir = By(b) — By_y(c) (2.1032)

from Eq. (2.1008). Then one can easily see that

Bpys = B,(b* — ¢) — B,_1(bc), (2.1033)

Bz = Bn(b® — 2bc) — B,,_1(b*c — ¢?), (2.1034)

By = Bn(b* = 3b*c + ) — B,_1(b*c — 2bc?), (2.1035)
Bpys = Bn (b’ — 4bc + 3bc?) — B,,_1(b*c — 3b%c® + ¢*) (2.1036)

and so on. We can also write them as

)= ()
Bui = Bo(| | 0) = Bui(] | 0, (2.1037)
1 0
)7~ ()}
Bpio = Byl b° — ¢) — Bu_1( be), (2.1038)
2 0 1
ey
B3 = Byl b’ — bc) — B ( bc — ), (2.1039)
3 1 2 0



N
B4 = By b* — bc+ c“) — Bn-( b’c — bc), (2.1040)
4 2 0 3 1
(L) (e B
Bis = Bu(| |0’ — boe+ bc®) — B (| | bic— b c” + ¢’) (2.1041)
5 3 1 4 2 0

and so on. Therefore we can generalize them as

m — 2k

! m—k
Bpim = Bn Y (—1)F ( ) b

4 m—k—1
—B,1 Y (—1)F ( ) pro Lk (2.1042)
k=0

and

—Bo1 f: (m ke 1) a2kl gky (2.1043)

where [ and p are the same as before.
If there is a ground state, we recalculate Eqs. (2.1042) and (2.1043). For this

aim, we first evaluate these equations for n = 1. Then we use the initial conditions in

Egs. (2.963) and (2.964). After that, we change m + 1 into n. Hence we get

B, = zlj(—l)’c (n —he 1) b2k ok (2.1044)
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where n = 2, 3,4, ... and

Lfn—k-1
B, =—(-1)">" Q2R gk (2.1045)
k=0 \n — 2k — 1

where n = 23,4, ... from Eqs. (2.1042) and (2.1043) respectively. Here again [ and p

remain unchanged.

At this point, let us return to our first variables which are ¢; and ¢». Then we

write Eq. (2.1008) as
Bno1 = (1@2) {Bula1 + ¢2) — Bns}- (2.1046)
To generalize it, let us write
Bns = (102) *{Bn(¢} + @192 + 43) — Buy1(q1 + @)} (2.1047)
from Eq. (2.1046). Similarly, we find
Bn-s = (q102) {Bn(¢} + 4102 + 0165 + ©) — Bna (G + 0102 + ¢3) } (2.1048)

and so on. These three equations give us an idea to find the general form of the

recursion formula. So it is clear that

Bym = (1¢2) "™ {Bulq?* + q7" o + ¢ G + o+ @)

—Bo (@ + " P+ a4+ @) (2.1049)

More compactly, we get

q{n+1 - q;nJrl qm _ qm
Bym = (1¢2) " {Bu(F——2—) — By (4———2) ) (2.1050)
1 — G2 q1 — Q2
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To obtain the other general form which climbs up in the basic integers, we write

B = Bulqi + q2) — Bno1(q162) (2.1051)

from Eq. (2.1046). Next, we find

Bpio = Buy1(q1 + ¢2) — Bu(quiq2) (2.1052)

from it. In a similar way, we get

Bpis = Bpii (@ + 1o + ¢2) — Bo(q1¢2) (q1 + @) (2.1053)

and so on. To have the other general form, we write

m __ ,m m—1 __ m—1
Buim = Bapt (—2) — B (qigo) (——2 ) (2.1054)
q1 — g2 q1 — g2

looking at Eqgs. (2.1051)-(2.1053).

If there is a ground state, we recalculate this equation. Firstly, let us calculate

this equation for n = 0. Then we use Eqs. (2.963), (2.964) and change m into n to get

B,=0"% (2.1055)
q1 — Q2

where n =0,1,2, ....

As we mentioned before, we have seen that the last way of finding the representa-
tions is the easiest one. So this is the end of finding the representations of the algebra

of Fibonacci oscillator.

From now on, we will be interested in the uncertainty and certainty relations for

Fibonacci oscillator generally. Now, let us investigate the commutation relation for the



175
momentum and position operators. We can write
[P, X] = ;[cﬁ —a,a’ + a (2.1056)
using Eqs. (2.7) and (2.8). Then it becomes
P, X] = ;([aT, a] - [a, al]). (2.1057)
If we tidy it up, we get
[P, X] = i[a', a]. (2.1058)
Then the formula in Eq. (1.25) necessitates
APAX > ;\(n\[aT, al|n)|. (2.1059)
Next, we obviously get

1
APAX > §\<nlaTa|n) — (n|aa'|n)|. (2.1060)

Then we can immediately write

1 n__ .n n+l _ n+l
APAX > - (L =%y (N~ % (2.1061)
271 — @2 q1 — q2

from Eqs. (2.967) and (2.968). So this inequality is the uncertainty relation in the

cases in which there must be a ground state such that a|0) = 0.

Let us now examine the energy eigenvalues of the hamiltonian for this system.

Then let us calculate the limits of €(n). If we substitute Eqgs. (2.967) and (2.968) into
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Eq. (2.9), we get

Lo - ad™ —g™
H=-{(—)+(———F—)}. 2.1062
2{( a1 — q2 )+ a1 — Q2 )} ( )

Then let us sandwich this equation between (n| and |n) to have

1 n__ .n n+l __ n+l
£, == 4 — 9 i 1 42 ) (2.1063)
27— = Qe
where n = 0,1,2,.... At this point, we wander the behavior of these energy eigenvalues.
For this reason, we will modify the equation as
n+l _  n+l

cln) = A=)+ (=2 (2:1064

where n is a nonnegative real number. Next, we take the derivative of this continuous

energy function. So we have

ds_l( 1
dn 2°q1—q

Mt mgi(1+ q1) — g5 nge(1 4 q2)} (2.1065)

where ¢, # ¢o. Let us now analyze this derivative for the three cases which are

(q1,q2 > 1), {(gn >1and g < 1) or (¢ <1 and ¢ > 1)} and (q1,q2 < 1).

For q1,q2 > 1, we clearly see that

) (2.1066)

This means that ¢, is an increasing function. ¢, takes the minimum value at n = 0

and approximates to its maximum value in the limit n — oco. Since we have

o= - (2.1067)
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and
nh_)rgo En = 00, (2.1068)
we obtain
1
e 2 5. (2.1069)
For (g7 > 1 and g2 < 1) or (g1 < 1 and ¢, > 1), we again find that

de

— > 0. 2.1070

o ( )

So this is a similar situation to the one in the previous case. Therefore we conclude

that

(2.1071)

N | —

For q1, g2 < 1, we will be able to find the maximum point. To show this, we write

de
— =0 2.1072
o ( )

and then write

(@)n (1+¢)Ing

SRS 2.1073
7 (1+aq@)ng ( )
from Eq. (2.1065). It follows that
1 1
(L) = LT e)ne (2.1074)

7)) (1+q)lng "
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If we solve it for n, we get

(1+¢)Ing,

=1
" n{(l +q)Ing

}/In(D) (2.1075)
a2

where n,, is the point when ¢(n) takes the maximum value. In addition, one can show
that

d*e

o ( )
at this point. So it is another task to be sure that ¢(n) takes the maximum value at
this point. Here ¢(n) takes the minimum value at n = 0 and takes the maximum value

n = n,,. However, ¢, is a bit different from e(n) because ¢, is a discrete function and

maz ;
S

£(n) is a continuous function. So the exact solution for £** i

en ™ = max{e([[nml]), e([|nm + 1)) }. (2.1077)
In addition, we have
1
€90 = — (2.1078)
2
and
7}1_%10 g, = 0. (2.1079)
Hence we conclude that
1
3 <eg, el (2.1080)

In summary, we have the following limits of the energy eigenvalues.
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FOI' q1, 492 > 17
1
e 2 . (2.1081)
For (g3 > 1and ¢go < 1) or (g1 <1 and g5 > 1),
1
e > 5. (2.1082)
FOI' q1, 492 < 17
1
3 < &, <max{e([|nml|]), e([|nm + 1{])} (2.1083)

As it can be seen easily, we can find the certainty relation for only the case in

which ¢, g2 < 1 because there is an upper limit of ¢, in only this case. In this section,

Egs. (2.156) and (2.157) are valid. Hence we find

AP < \J2max{e([[nm]]), e([[nm + 1]])} (2.1084)

AX < \2max{e([|nnl]), e([[nm + 1))} (2.1085)

from Egs. (2.156), (2.157) and (2.1083). Now, to find the lower limits of AP and AX

we follow a way similar to the one in section (2.1) while we are obtaining Eq. (2.185).

Therefore we conclude that

N = R =
V8max{e((Inml]), e((Inm + 111)}

(2.1086)
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and

n__,m n+1l__ n+1
(gr) — (P =)

AX Z q91—gq2 .
y8max{e(([nnll), ([lnm + 1)}

(2.1087)

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the first method.
The uncertainty and certainty relations for the momentum and position:

For q1, 42 < 17

n_.m n+1l__ n+1
(=) — i)l

VBmax{e([lnml]), ((Inm + 1)}

< AP, AX < \2max{e([[nm]]), e([[nm + 1))}

(2.1088)
The uncertainty and certainty relations for APAX:
For 1,92 > 17
1 n__ .n n+1 _ n+1
APAX > |(B =%y (=% (2.1089)
2 —q @1~ 2
For (g3 > 1 and ¢go < 1) or (g1 <1 and g9 > 1),
1 n__ .n n+l _ n+l
APAX > |(B =%y (B_—% (2.1090)
2 — a1 — 42

For q1, 42 < 17

1oa —a, A4 g

271 — @ q1— 42

)| < APAX < 2max{e([|nml]),e([|nm + 1]])}. (2.1091)
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Hereafter, we will study the uncertainty and certainty relations for the energy
eigenstates by the second method. Firstly, let us calculate AP and AX by using the
formula in Eq. (2.142). So we write

(AP)* = (n|P?*n) — ({n|P|n))>. (2.1092)

If we look at Eqgs. (2.232)-(2.238), then we can easily see that

AP = \/e,. (2.1093)
Similarly, one can show that
AX = \/e,. (2.1094)

Using these two equations and the limits of €, in Egs. (2.1081)-(2.1083), we can
immediately find the uncertainty and certainty relations for the energy eigenstates
that we have obtained by the second method.

The uncertainty and certainty relations for the momentum and position:

For q1, 42 > 17

1
AP AX > —. 2.1095
> (2:1095)
For (g > 1and g2 < 1) or (¢ <1 and ¢o > 1),
AP AX > L (2.1096)
: z 75 .



For q1, 42 < 17

Sl

The uncertainty and certainty relations for APAX:

For qi,q2 > 17

APAX >

N | —

For (g > 1and g2 < 1) or (g1 <1 and g5 > 1),

APAX >

N | —

For q1, 42 < 17

< APAX < max{e([[nal)), ([l + 10))}.

DO | —

After the comparison, we will summarize the most informative results.

< AP, AX < y/max{e([[nml]), e((Inm + 1))}

182

(2.1097)

(2.1098)

(2.1099)

(2.1100)

The uncertainty and certainty relations for the momentum and position:

For q1, 42 > 17

AP,AX >

s

(2.1101)



For (g > 1and ¢go < 1) or (g1 <1 and g5 > 1),

AP,AX >

-

For q1,q2 < 1,

Sl

The uncertainty and certainty relations for APAX:

For q1,q2 > 1,
1 n__ .n n+l _ n+l
APAXZ—K% QQ>_<Q1 42
2°q —q Q= q
For (g7 > 1 and ¢go < 1) or (g1 < 1 and ¢o > 1),
1 n__ .n n+l _  n+l
27— @ q1 — 42

For q1,q2 < 17

n+1 n+1

Lot —a, a1 — @ mascd e (). e((ln
SIE=E) - (L) < aPAX < max{e((In,)). ((In -+ 1)}

< AP, AX < \Jmax{e([nal),e([Inm + L)}

183

(2.1102)

(2.1103)

(2.1104)

(2.1105)

(2.1106)

Therefore this is the end of the study of Fibonacci oscillator with two parameters.

is obtained in the limit ¢; — ¢». For simplicity, let us consider

q2 = (.

From now on, we will examine a special case for Fibonacci oscillator. This special case

(2.1107)
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This special case of Fibonacci oscillator is very significant because although, the oscil-
lator is deformed, its invariance group is undeformed, more explicitly, the algebra of
the oscillator is U(d) invariant. As it can be guessed, we will take the limits of some

important expressions.

Firstly, Eq. (2.962) becomes

[n] = ng" ! (2.1108)

in this limit with the same initial conditions in Eqgs. (2.963) and (2.964). Then Egs.
(2.967) and (2.968) become

[N] = ala = N¢" ™! (2.1109)

and

[N+1]=aa" = (N +1)¢" (2.1110)

respectively. Eq. (2.1109) satisfies the generalized Fibonacci sequence in Eq. (2.972)

when

a=2q (2.1111)

and

B=—q. (2.1112)

The algebra in Egs. (2.976) and (2.977) changes as

aa’ — ga'a = ¢". (2.1113)
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Accordingly, we write Eq. (2.997) as

aaa' — 2qaa’a + ¢*a’aa = 0 (2.1114)

in this special limit. This algebra gives us the following recursion formula

2 1
Bn—l - Bn* — Bn+172. (21115)
q q
Then we can immediately write
By =q "B, (m+ 1)q — Byjam} (2.1116)
from Eq. (2.1050). We also have
Brim = q¢" H{B,m — B,(m — 1)q} (2.1117)

from Eq. (2.1054). The uncertainty relation for this special case is obtained from Eq.
(2.1061). When we take the limit of this equation, we find

APAX > ;q"_1|n — (n+1)q|. (2.1118)
The hamiltonian for this system is expressed as

H= ;{NqN_l + (N +1)¢"} (2.1119)
when we look at Eq. (2.1062). So it is obvious that

1
En = §q"_l{n + (n+1)q}. (2.1120)
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To see the behavior of these energy eigenvalues, let us change the above equation as

1,
e(n) = 54 '(n+ng+q)

(2.1121)

where n is a nonnegative real number. If we take the derivative of this function, we get

de 1,4
gn =30 An+ng+qng+(1+q}

So let us examine this derivative for the following three cases.

For ¢ > 1, we can see that

de

%>0.

Hence ¢, is an increasing function and we find

S 1
En > —.
2
For ¢ = 1, we again find that
de
— > 0.
dn

Then ¢, is an increasing function and we have

N | —

(2.1122)

(2.1123)

(2.1124)

(2.1125)

(2.1126)

For 0 < ¢ < 1, we have a maximum point. To confirm this, we set this derivative



equal to zero and solve for n. So we begin by writing

de
%—0.

Next, we write

I+gq
Ingq

n+ng+q=—(

)

from Eq. (2.1122). It gives us that

o = — () — (L),

m 1+4+gq

In addition, one can show that

d?e
— <0
dn?
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(2.1127)

(2.1128)

(2.1129)

(2.1130)

at n = n,,. Therefore we conclude that (n) takes its maximum value at this point

exactly. If we return to our original problem, we obtain

e ™ = max{e([[nml]), e([lnm + 1{])}-

Since we have

o = =

and

lim ¢, =0,

n—oo

(2.1131)

(2.1132)

(2.1133)
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we conclude that

< g, < M7, (2.1134)

N —

In summary we have the following limits of the energy eigenvalues.

For ¢ > 1,
1
Ep > 3 (2.1135)
For g =1,
1
Ep > 3 (2.1136)
For0 <q <1,
1
5 < &, < max{e([|nml|]), e([|nm + 1{])} (2.1137)

To find the certainty relation for the case in which 0 < ¢ < 1, we look at Egs.
(2.1084) and (2.1085). Actually, these equations are also valid here. However, the value
of n,, here is different from the one in these equations. More explicitly, n,, is given in

Eq. (2.1129). Then from these equations and Eq. (2.1118) we find

AP > q"'In—(n+1)q|

> 2.1138
V8max{e([[nml]), ((Inm + 1)} ( |
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and

R e CR

> _ 2.1139
/8 max{e((lnnl).=((lm + 1)} e

We will now summarize the uncertainty and certainty relations for the energy

eigenstates that we have obtained by the first method.

The uncertainty and certainty relations for the momentum and position:

For0 <gq <1,

¢"'In — (n+1)q|

i) sy = A7 A% < y2max(eun ). llon + 1D}

(2.1140)
The uncertainty and certainty relations for APAX:
For ¢ > 1,
Lo
APAX > §q" In — (n+1)q|. (2.1141)
For q =1,
1
APAX > 3 (2.1142)
For 0 < ¢ <1,

;q"_1|n ~(n+1)q| < APAX < 2max{e(lnml).e(fnm + 1)}, (2.1143)
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We will now study the uncertainty and certainty relations for the energy eigen-
states by the second method. Eqs. (2.1093) and (2.1094) are also valid here. So the
limits of €, in Egs. (2.1135)-(2.1137) are essential to find the uncertainty and certainty
relations. Using these limits, we will summarize the uncertainty and certainty relations

for the energy eigenstates.

The uncertainty and certainty relations for the momentum and position:

For ¢ > 1,
APAX > (2.1144)
: = .
For g =1,
AP, AX > ! (2.1145)
i = .
For0 <gq <1,
1
— < AP AX < /max{e([|nn|]), e([|nm + 1|]) } 2.1146
7S Vmax{z () (] D} ( )
The uncertainty and certainty relations for APAX:
For ¢ > 1,
1
APAX > 7 (2.1147)
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For ¢ =1,

APAX > =. (2.1148)

N —

For 0 < ¢ < 1,

< APAX < max{e([|nml]),e([|nm + 1]]) } (2.1149)

DN | —

After the comparison, we will summarize the most informative results.

The uncertainty and certainty relations for the momentum and position:

For ¢ > 1,
AP AX > L (2.1150)
) - \/§' .
For g =1,
AP AX > = (2.1151)
: = .
For 0 < ¢ <1,
1
ﬁ <APAX < \/max{e([|nm|]),5([|nm + 1)} (2.1152)

The uncertainty and certainty relations for APAX:
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For ¢ > 1,
1
APAX > §q"_1|n — (n+1)q|. (2.1153)
For g =1,
1
APAX > 3 (2.1154)
For0 <g <1,
1
§q”*1\n — (n+1)q| < APAX < max{e([|nn]]), e([|[nm + 1))} (2.1155)

We have come to the end of this section. Meanwhile, we have come to the end of

this chapter. So the only remaining part is the conclusion part.
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3. CONCLUSION

We have studied the uncertainty and certainty relations for the g-oscillator and
the Fibonacci oscillator in this thesis. We have noticed some remarkable features of

these oscillators. We will mention some of them.

Firstly, the qg-oscillator and the Fibonacci oscillator have some extra relations
that the ordinary quantum oscillator does not have. Since the hamiltonian for the
g-oscillator is bounded for the case in which 0 < ¢ < 1 and ¢, < ﬁ, the momentum

and position are also bounded. This fact causes extra relations that only contain AP

or AX.

Secondly, after the studies in this thesis, we have got an idea about the value of
the real parameter q. The value of ¢ may be found from the greatest value of AX for

the universe since its position is bounded or any system whose position is bounded.

Finally, in addition to the one-dimensional g-oscillator, we studied the two-
dimensional g-oscillator. Actually, the study of the two-dimensional g-oscillator is the

first step for the study of the multi-dimensional g-oscillator and Fibonacci oscillator.

As a result, we talked about a few of the many features of the g-oscillator and
Fibonacci oscillator here. Of course, for more information, one should go through the

thesis.
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