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ABSTRACT

SOURCE FILE LEVEL SOFTWARE DEFECT

PREDICTION FRAMEWORK

Defect prediction techniques are used to address defective sections of source

code in software products. Applying a defect prediction technique before proceeding

to testing phase of software development helps the managers to allocate their resources

more efficiently and most core effectively such as time and effort to test certain sections

of the code. Defect predictors are useful tools to help project managers to plan test

stage during the software development life cycle without compromising on the product

quality.

In this research we have taken software defect prediction as a two way classifica-

tion problem. We have used machine learning techniques to construct our prediction

model. One of the challenges in learning based models is the collection of data. In

software engineering domain data collection is a major problem. Companies and re-

searchers often struggle to find out the right level of granularity in data collection:

i.e. module / function level versus file / class level. In this research we have been

motivated by the problem of right level of granularity. Our proposed models use the

hierarchical structure information about the source code of the software product, in

order to perform defect prediction for high level granularity such as source files (also

called classes).

We have run experiments on NASA, SoftLab and Eclipse datasets to validate our

proposed model. Additionally we have also performed cost-benefit analysis to evaluate

the net effect of using our proposed model.
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ÖZET

KAYNAK KOD SEVİYESİNDE YAZILIM HATA

KESTİRİMİ YAPISI

Hata kestirim teknikleri yazılım ürünlerindeki hatalı kod parçacıklarının tespit

edilmesinde kullanılır. Yazılım geliştirme sürecinin test aşamasına geçilmeden önce

hata kestirimi teknikleri uygulanması, yöneticilerin zaman ve iş gücü gibi kaynaklarını

kodun belirli bölümlerinin test edilmesi için ayırmasına yardımcı olarak kaynakların

verimli ve etkili kullanılmasını sağlar. Hata kestirim araları proje yöneticilerine, yazılım

geliştirme sürecinin test kısmını ürün kalitesinden ödün vermeden planlamalarında

yardımcı olur.

Bu araştırmada yazılım hata kestirimini iki sınıflı bir sınıflandırma problemi

olarak ele aldık. Kestirim modelimizi oluşturmak için otomatik öğrenme teknikleri kul-

landık. Öğrenme temelli modellerin en uğraştırıcı bölümleri veri toplamaktır. Yazılım

mühendisliğinde alan verileri ciddi bir problemdir. Şirketler ve araştırmacılar sıklıkla

doğru seviyede veri toplama ile boğuşurlar: Örneğin modül / fonksiyon bazı ile dosya

/ sınıf bazı seviyeleri. Bu araştırmada doğru veri seviyesi probleminden yola çıktık.

Sunduğumuz modeller yazılım ürününün kaynak koduyla ilgili hiyerarşi bilgisini kul-

lanarak kaynak dosya (ya da sınıf) gibi daha üst parçacık seviyelerinde hata kestirimi

yapmaktadır.

Sunduğumuz modeli geçerli kılmak için NASA, SoftLab ve Eclipse veri setleri

üzerinde deneyler gerçekleştirdik. Ayrıca sunduğumuz modelin net etkisini ortaya

çıkarmak için kar-zarar analizi de gerçekleştirdik.
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1. INTRODUCTION

1.1. Introduction

Quality of the software product can be considered in various ways. Roger S.

defines software quality as ”how well software is designed and how well the software

conforms to that design” [29]. Measuring the rate of software product’s conformance

to its design is achieved by performing ”testing”. Testing is the final step of a general

software development life cycle which aims at finding the defects before the product

is released. During the testing phase any defects that exist in the software system

is addressed and fixed. A defect is defined as ”nonconformance to the requirements”

[57]. However, performing a thorough testing for the entire software product to address

all possible defects is a long-lasting and challenging task [58]. Thus, improvements in

testing phase would not only affect the quality of the software but also increase the

profitability of the software company as well as increasing the customer satisfaction.

Defectiveness, or defect rate of the software is important in finding out the level

of quality of the software product is. Products having a high rate of defects are more

prone to contain missing functionalities, perform unexpected behaviors or even end up

with crashes. Such a product would definitely cause its customers and stakeholders to

be unsatisfied. Thus it is crucial to detect the defects and solve them during the testing

phase. One way to tackle this problem is to be able to predict defect before the testing

phase [2, 3, 7, 11, 12, 14, 15, 16]. These studies in the literature also confirm that

defect prediction models help finding the defective sections of the software and as a

result the software testing team can concentrate on the defective sections by optimizing

their resources to capture as more defects as possible while spending as less effort as

possible.

Static Code Attributes (SCA) are widely used in the literature for defect predic-

tion purposes [2, 3, 14, 15, 17, 25]. Static code attributes are collected from the source

code of the software product and can be extracted easily with a tool support. Source
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lines of code attributes (SLOC), McCabe attributes and Halstead’s attributes are the

main types of attributes that are used as SCA. Details of these attributes and some

more code attributes can be found in Appendix A.

1.2. Motivation

Defect prediction studies using static code attributes in the literature [2, 3, 7,

15, 25] have produced good results in terms of prediction accuracy. The prediction

performance of a machine learning model depends on the algorithm used and the data

at hand. In this research we mainly focused on the data side rather than the algorithm

In particular we aimed at tackling the issue of ”granularity” in collecting software

metrics. We have used decision tree classifier [15, 30, 31, 34, 37] and Näıve Bayes

classifier [2, 3, 7, 37, 54] as they are the two most commonly used machine learning

algorithms used in the literature for predicting the defective modules.

To the best of our knowledge, most studies in the literature so far have focused

on defect prediction based on a certain level of software product structure, namely

module level or source file level. Module based software code attributes, in other

words intra-module metrics are widely used to identify the effects of module structures

to the defectiveness of the software and module level software code attributes are

available in public domain datasets [18, 64]. Some of those studies propose certain

data mining operations to be performed on the module level data to improve prediction

performance of their model [31]. We have been motivated in this research to challenge

the level of granularity that we collect metric data from. We argue that module level

metrics capture the general structure of the units of functions in a software product.

Inspecting the software from a higher granularity than module level, would let us

capture the general structure of the software and hence leading to better prediction

performance without increasing the inspection effort compared to less granular level of

metric collection.
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1.3. Outline

The remainder of this document is organized as follows:

Background information about the techniques and models that is used will be

presented in Chapter 2. Chapter 3 will give brief information about the related studies

in the literature for defect prediction.

Chapter 4 will contain the details of the machine learning algorithm that are

proposed and also the inputs and outputs of the algorithms will be presented in that

chapter.

Chapter 5 will explain the experimental setups that are used to validate the

proposed models and also detail the experiments that are performed.

Chapter 6 will present the results of the experiments and provide the comparisons

of this study’s results to the results of other similar studies in the literature.

Chapter 7 will summarize the study and present the conclusions driven from the

results of this study. Possible improvements to the proposed models and future works

will also be addressed in that chapter.
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2. BACKGROUND

2.1. Overview

In this chapter, some brief information about the methods and models used in

this study will be presented. Next section will give information about the Defect

Prediction Technique, which aims to increase the quality of the software by addressing

the defects in a software product and eliminating them. Section 2.3 and 2.4 will

provide information on the specific types of defect prediction methods that are used in

this study, namely Näıve Bayes classifier and decision tree classifier, respectively. And

the final section will provide necessary background on software code metrics.

2.2. Defect Prediction

According to two independent surveys in 2004 [59] and 2007 [60], one in three

IT projects run over their budget. Having high ratio of failures in meeting project

requirements, point out a need of improvement for the software development phases.

Testing is one of the key phases that effect software development time and budget

since testing the functionality of the software, integration of the software with other

system components and ensuring the quality of the final product is an extensive task

to accomplish [5, 48]. Performing an exhaustive test on the software to detect the

defects is a way of ensuring the quality, but is also a costly operation that requires

half of the entire product development time to be allocated [5, 34]. Especially when

the software grows in both size and complexity, testing phase becomes more difficult

and even requires sophisticated procedures to be followed and tool support to be used.

Thus, it can be concluded that testing is the most expensive, and challenging phase

among software development phases, and needs to be handled with most attention.

One possible solution to this problem is to use oracles in guiding test managers to

answer questions like ”When to stop testing?” and ”How much testing is enough?”.

Defect prediction is a process of addressing defective sections of a software prod-
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uct. There are two ways of performing defect prediction: First, estimating the partic-

ular defects in given software product, and second, predicting the number of defects.

First prediction technique is not applicable for most of the software products, since it

requires extensive documentation of both the structure and the flow of data for the

product [48, 49, 61]. For this reason, the second approach is given more importance in

both the academic studies and by the managers of software product development teams.

Another important feature of the second approach is that it helps the managers to have

enough information to plan their testing phase and allocate only necessary amount of

labor and effort for testing. Throughout this document, defect prediction term will

refer to the second type of defect prediction.

Theoretically, according to the accuracy of the predictor, the effort needed to

test the software for defects can be decreased substantially and project managers can

benefit from this in allocating resources effectively. The effort necessary to extract the

data needed by the machine learning algorithm from the source code and to evaluate

the results of the algorithm can be neglected when compared to the effort necessary to

test the entire software.

There exist numerous studies on defect prediction in the literature using many

different approaches. Some of the studies have combined principles of software en-

gineering with principles of other domains, e.g. biology [47]. Chang et. al. have

implemented the ”Capture-Recapture (CR)” model from biology which is used to es-

timate the size of an animal population. Main principle of a CR model is to use the

number of animals captured for the first time, and recaptured afterwards to estimate

the total size of the animals. Authors applied this principle to defect prediction domain

by defining two major factors affecting defect detection, which are the ability of the

reviewers to find the defects and the level of difficulty in detecting the defects. Us-

ing the principles from CR model, authors developed a sequential re-inspection model

which performs two consecutive inspections where second level inspection uses the data

from the output of first level inspection. Resulting model turned out to provide more

accurate results than single level inspection and variance of the results also were more

stable in terms of having less outlier.
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Some other studies in the literature have applied several machine learning tech-

niques such as Bayesian networks, neural networks, linear regression analysis, decision

trees, and Näıve Bayes classification [7, 14, 15, 16, 30, 31]. Defect prediction meth-

ods generally use software metrics [44, 46] and defect information of previous software

products to train one (or more) of the listed machine learning algorithms. The trained

algorithm is then used to predict the defectiveness of newly implemented software code

sections. Results of the predictions might be used as a guideline during the testing

phase, giving an insight on the possibly defective sections of software thus letting the

testing team to concentrate on those sections rather then entire software.

Before explaining the machine learning models that are used in this research, we’ll

present some of the studies in the literature that applied the same models in following

subsections.

2.2.1. Defect Prediction with Näıve Bayes Classifier

Näıve Bayes is one of the widely used machine learning technique in the defect

prediction domain [2, 3, 6, 7, 18, 26, 34, 37, 52]. Tosun et. al. used Näıve Bayes

classifier and two other machine learning techniques (neural network and voting feature

intervals) in parallel to perform defect prediction where all three models are used to

perform defect prediction separately and a module is assumed to be defective only if

majority of the models predict that module as defective [18]. Since they applied no

weighting among the models, ”majority of the models” mean at least two of three

models. Authors have compared the results of their study with existing Näıve Bayes

classifier studies in the literature and ensemble of defect predictors have turned out

to provide improvements in terms of probability of detection and verification (testing)

size.

Another study in the literature by Turhan et. al. also used Näıve Bayes to

perform defect prediction [34]. In the reference study, authors have provided a model

that performs both ways of defect prediction that were addressed in the beginning of

this section. They used Näıve Bayes classifier and decision tree classifier in order to
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address defective modules in the system and used the output of the classifier model

as input to a regression model which tries to predict the number of defects that any

defectively predicted module actually has. Authors claim that this approach lets the

managers to allocate their resources better since they have the information on density

of defects within the software. Results of the study have shown that classification

models predicted defective modules as good as manual inspections and also regression

models could predict defect densities better since regression models are trained with

modules that are more likely to be defective, while many studies in the literature used

entire dataset to train their regression models [34].

An interesting study that uses Näıve Bayes to perform defect prediction is per-

formed by Turhan and Bener [26]. Authors have considered modifying one of the main

principles of Näıve Bayes classifier, which is ”independence assumption”. Independence

assumption states that the input attributes are not correlated to each other and that

each of them are normally distributed. Assuming a normal distribution, x ∼ N(µ, σ2)

, then the probability density function can be written as in Equation 2.1 [26]:

p(x) =
1√

(2π)σ
exp(−(x− µ)2

2σ2
) (2.1)

Turhan et. al. assumed that source code attributes are correlated and inspected the

multivariate approach which takes into account the relations between attributes while

determining their distribution. A multivariate normal distribution considers x as a

d-dimensional vector normally distributed by N(~µ, ~Σ) which results in a probability

density function, p(~x) as given in Equation 2.2 [26]:

p(x) =
1√

(2Π)d/2Σd/2
exp

(
−1

2
(~x− ~µ)T Σ−1(~x− ~µ)

)
(2.2)

Results of the experiments have shown that combining features while determining the

distribution can provide better performance since it extracts information from the

attributes rather than performing feature subset selection. Authors stated that using

additional information about the relations of the attributes should be further inspected



8

along with different distribution assumptions for attributes.

Menzies et. al. have also performed some dataset operations before applying

Näıve Bayes classification and obtained better prediction performances with the help

of data mining technique they applied [2]. They analyzed the dataset they use for

performing defect prediction and observed that attributes have an exponential distri-

bution. They performed log-transformation for the attribute values which reduced the

exponential distribution and provided an improvement in the overall performance of

the model. Since they obtained the best results on Näıve Bayes classifier with log-

filtering applied, they claim that Näıve Bayes can be a better predictor to exploit the

association of source code metrics and that log-filtering helps reveal this association

better [2].

Current studies in the literature show that existing defect prediction methodolo-

gies suffer from ”the Ceiling Effect” [6]. Ceiling effect is defined as ”some inherent

upper bound on the amount of information offered by, say, static code features when

identifying modules which contain faults” [6]. It states that the predictions of the

defect predictions techniques, no matter which one, is bounded with some limitation

based on the data used in predictions. It is proposed that in order to overcome this

limitation, some improvements on the data must be accomplished in order to improve

the information content of the data. Koru inspected existence of ceiling effect in his

study [31] and applied some data mining technique to extract additional information

from NASA dataset. Prediction performance of the Näıve Bayes classifier turned out to

increase after applying the data mining technique. This result supports the existence of

ceiling effect and motivates us in performing additional experiments on testing ceiling

effect.

2.2.2. Defect Prediction with Decision Tree Classifier

Decision tree is a widely used machine learning technique for defect prediction

purposes [14, 15, 26, 30, 31, 37, 45, 55]. Main factor that increases use of decision trees

is that they can provide human-friendly outputs that can be easily interpreted and



9

explained to managers or developers [14, 26, 31, 37, 55].

Koru and Liu have used decision trees to perform defect prediction in their study

[15]. The authors analyzed the NASA datasets and found out that these datasets

contain many ”small-sized” modules [15] and claimed that having many ”small-sized”

modules limited their model’s ability to learn. Thus they decided to perform defect

prediction on subsets of original dataset where each subset contains modules of similar

sizes. Results of their experiments have shown that defect prediction model had better

performance values in terms of f-measure criteria for subsets containing larger modules

and worse performance values for subsets containing smaller modules. Authors state

that larger modules will have a better chance to show variation in their measurements

which increase the model’s ability to learn from data samples [15].

Challagulla et. al. implemented many different machine learning based defect

prediction techniques in their study [37] such as decision tree, Näıve Bayes, neural

network, nearest neighbor, 1-Rule, and several regression models. They evaluated the

models on 4 different NASA datasets and compared the performances of models in

terms of Mean Absolute Error (MAE) criteria. Results of the study have shown that

even though decision tree model was not successful in predicting the error counts of

defective modules, it was the second best approach to predict defects for most of the

datasets.

2.3. Näıve Bayes Classifier

Näıve Bayes Classifier is a classifier based on applying the Bayesian probability

theory. Bayesian probability theory states that probability of some hypotheses being

true when certain conditions are observed in an environment depends on following

criteria [61, 62]:

• The probability of observing the same conditions when that hypothesis was known

to be true in the past

• The probability of that hypothesis being true (regardless of conditions)
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• The probabilities of every distinct conditions in the past (regardless of hypothesis)

In the context of defect prediction, conditions (x) are the source code feature

values of structures for which prediction will be performed. A hypothesis in defect

prediction context is defectiveness (D) of a source code structure, namely a module or

a source file. Thus general Bayesian probability theory formulation can be specialized

for defect prediction as in following equation:

P (D |x) =
P (x |D) P (D)

P (x)
(2.3)

Näıve Bayes Classifier (NBC), Näıve Bayes in short, is a supervised learning algorithm

which is used for data mining purposes and machine learning applications [1]. The main

principle that Näıve Bayes depends on is the ”conditional independence of features”

principle. According to this principle, all the conditions that are assumed to affect

the hypothesis are considered to be unrelated from each other. Without this assump-

tion, implementing a Bayesian probability theory is more challenging since gathering

the data needed to train the model becomes challenging. Conditional independence

assumption lets the classifier to work on different features as if they are not correlated

to any other features, thus makes the model more manageable and easy to use.

General Näıve Bayes algorithms also make a further assumption. The features

that affect the hypothesis are assumed to have equal weights on the probability of

the hypothesis to be true. A specific version of Näıve Bayes Classifier assigns weights

to features using several heuristics and there exist studies in the literature which has

proven feature-weight assignment to give promising results [7].

Bayes theorem states that the posterior distribution of a sample is proportional

to the prior distribution and the likelihood of the given sample [1]. Formally:

P (Ci |x) =
P (x |Ci) P (Ci)

P (x)
(2.4)
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P (x), is called the evidence which is calculated from the equation:

P (x) =
∑

i

P (x |Ci)P (Ci) (2.5)

Thus, the value of the evidence does not depend on any specific Ci, but rather it is a

normalizing constant for all classes. Eliminating the evidence from the first equation,

we obtain the main equation for Näıve Bayes Classifier:

P (Ci |x) = P (x |Ci)P (Ci) (2.6)

In this equation, P (Ci) is the prior probability of a class, which reveals the probability

of finding a data sample which belongs to class Ci. Assuming that there are c classes,

namely C1, C2, .., Cn; P (Ci) can be formulated as follows:

P (x) =

∑c
x=1 (1 |Cx = Ci)

c
(2.7)

P (x|Ci) is known as the likelihood function, which calculates the probability of finding

a data sample x when we know that it belongs to a specific class Ci. Likelihood of a data

sample is calculated by finding the frequency of that data sample in the dataset. This

operation is performed for each class exclusively, that is the data samples belonging to

class Ci are used to calculate P (x|Ci).

Finally, P (Ci|x) is the probability of a given sample’s being belonged to a specific

class Ci, namely the posterior probability of the class Ci for the data sample x. Clas-

sification of a data sample is straight forward after calculating posterior probabilities

of each class for that specific data sample. It is achieved by simply finding the class

having the highest posterior probability, and assigning the data sample to that class.
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2.4. Decision Tree Classifier

Trees are data structures which are composed of nodes containing some data

samples and edges which connect the nodes representing the relations between different

data samples [31, 33]. Trees can be defined as special forms of graphs such that two

different nodes are connected with only one path. A tree can be used to represent

some data in a structural way where data samples matching similar patterns are either

placed in the same node, or placed down in the hierarchical structure of some node.

Definition of a decision tree is given by Alpaydın as follows [1]: ”A decision tree

is a hierarchical model for supervised learning whereby the local region is identified in

a sequence of recursive splits in a smaller number of steps”. As stated in the definition,

decision tree learning is a supervised learning which divides the data into smaller

groups by performing a recursive procedure. Resulting decision tree can be used as

a supporting tool in decision making purposes since it provides necessary information

on how similar data samples can be grouped and also provides brief information about

past data having similar characteristics with existing conditions. In order to increase

usability of a decision tree and make it possible to be used in a decision making process,

tree can also be converted into a set of rules which represent the tree in a clearer way.

Ability to represent the tree as a set of rules increases usage areas of decision trees

even though their performances are sometimes worse than some other machine learning

techniques.

Constructing a simple decision tree is a recursive procedure where at each step

a test is performed in order to determine whether the tree should grow further or

not. Impurity measure is calculated in order to decide whether a split is necessary

[1, 45, 50, 51, 53]. Impurity measure calculates how good a split will be according to

its ability of classification among samples. If a split can not provide a good distinction

between data samples from different classes, then a low impurity measure result is

obtained and the algorithm stops growing the tree. On the other hand, if the algorithm

finds a criterion which provides a good split between data samples from different classes,

then impurity measure will eventually have a high value and the algorithm will continue
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splitting the data using that criterion. If multiple criteria are found with high impurity

measures, then the algorithms chooses the best criterion by comparing their impurity

measures. Calculations performed during construction of a decision tree, including

impurity calculations are explained in detail in the next paragraph.

Assume that for a specific node m in a decision tree, Nm is the number of data

samples reaching node m. If there exist i different classes, number of instances be-

longing to each class can be represented as N i
m such that Nm =

∑
iN

i
m. Thus the

probability of a new instance reaching node m belonging to a specific class i can be

written as follows:

pi
m =

N i
m

Nm

(2.8)

Probability values for all classes provide the information about how good the split is.

If pi
m are close to each other, then deciding which class to assign to a specific data

sample is not clear since each class has similar probabilities. Thus impurity measure

must be high in order to force the algorithm to continue on splitting data into smaller

and more pure datasets. Entropy is a function which fits this purpose, thus can be

used as an impurity measure:

Em = −
K∑

i=1

pi
m log2 p

i
m (2.9)

A special case for the Equation 2.9 is 0 × log 0 which is considered to be 0, since in

this case no data samples are of class Ci and we want impurity to be small in this

case. According to result of Equation 2.9, the algorithm decides whether node m is

pure enough or not. In defect prediction techniques, since we have only two classes

(defective or non-defective), we can rewrite the Em equation as follows:

Em = −p0
m log2 p

0
m − p1

m log2 p
1
m (2.10)

The Em value is compared to a predefined threshold value, Emax, which must be
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optimized for a specific domain. If Em value is smaller than the determined threshold

value, then algorithm places a leaf node and keeps the pi
m values in the leaf node for

future referencing. When a new data sample reaches a leaf node, pi
m values are used

to determine which class it will be assigned. If Em value is greater than the threshold

value, then algorithm tries to find the best split which can improve purity of the data

in sub trees. An iterative process is applied for this purpose and for each possible split

positions; the impurity after the split is calculated. After calculating split impurities

for each possible split, the criterion providing minimum impurity is chosen to be next

splitting criterion.

When calculating the best split position, let N i
mj of data samples reaching node

m are of class i and will be assigned to node j after the split such that N i
m =

∑
j N

i
mj

and N j
m =

∑
iN

i
mj. Thus we can calculate probability of a data sample reaching to

the node j as follows:

pi
mj =

N i
mj

N i
m

(2.11)

A similar calculation that we perform to calculate Em value is performed in order to

find the impurity after the split at node m is performed using the inspected criteria.

Et
m = −

∑
j

(
p0

m log2 p
0
m + p1

m log2 p
1
m

)
(2.12)

As explained before, the algorithm calculates Equation 2.12 for every possible split

position of every criterion in order to find the best splitting position and the criterion

that provides minimum Em value at node m for creating sub trees. When data sample

values are numeric, as it is in defect prediction, arithmetic means of each consecutive

data sample value is considered as a split position (assuming data sample values are

ordered). Assume that the best splitting criterion for node m is c and the best split

position for criterion c is v. Decision tree algorithm compares values of criterion c of

each Nm data sample with v and assigns the data samples that have smaller v values

to m0 node, and data samples that have greater v values to m1 node where m0 and m1
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are direct sub nodes of node m.

2.5. Software Code Metrics

A software metric is defined as ”a quantitative measure of the degree to which a

system, component, or process possesses for a given attribute.” by Halstead [9]. Soft-

ware metrics can be used for many different purposes, some of which are product release

management, software quality analysis, and process quality and efficiency analysis.

Software code metrics, as the name implies, are the types of metrics that are

directly extracted from the source code of the software. Software code metrics are also

called static code attributes since the metrics do not change in time unless the source

code itself changes or the tool that was used to extract the metrics do not change [52].

Extracting the metrics is a complex task which requires a tool support to be handled

correctly and efficiently. Tool support is also necessary to make the extracted metrics

objective, thus more reliable for the researchers [26, 34].

There are several different software metrics which serve different types of pur-

poses. Source lines of code (SLOC) metrics measure the size of the software program

in different size measures like blank LOC, commented LOC, executable LOC, etc.

These metrics represent the effort needed to develop the software.

Cyclomatic complexity metrics measure the complexity of the software program.

Thomas McCabe used graph-theory to calculate the number of linearly-independent

paths through a program module [8]. This complexity measure is important since it

is measures of how many different conditions can the software end up with, and each

of these conditions must be tested to ensure that the software is defect free. Thus

McCabe’s metrics can be assumed to represent the effort needed to test the software.

Halstead also provided some complexity metrics in his study [9]. He represented

the length of the software as the total number of operators and operands used. He

also defined the ”vocabulary” term which indicates the number of unique operators
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and operands. These metrics are accepted to represent the complexity of a software

program and is used widely in the literature [10, 11, 12, 13, 23, 44].

Source code metrics can be extracted on different levels of source code structures.

Two widely used source code structures for defect prediction purposes are modules

and source files. A module is the smallest unit of source code that is responsible for a

specific operation. Modules are called ”functions” or ”methods” in some programming

languages. One or more modules are grouped into a higher level structure, namely a

source file.

Previous studies in the literature proven that module level metrics are useful,

easy-to-use and also reliable for defect prediction purposes [2]. In the reference study,

the author provided a literature survey in the background section of the paper which

revealed that software code metrics are widely used in the literature and according

to validation and verification textbooks, software code metrics are worthy of manual

inspections. The author also shows that static code attributes are useful and can

provide promising results on defect prediction domain. He also compares the effort

necessary to collect the data required for defect prediction with the effort necessary to

test the system, and claims that collecting source code metrics is far easier since they

can be collected automatically and evaluated with a defect prediction model.
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3. PROBLEM STATEMENT

Testing phase is one of the major phases of software development cycle since it

requires nearly half of the effort of entire development [5]. Defect prediction tools

have been useful in guiding software product managers to plan their testing phase

[40]. There have been various machine learning techniques to build predictors in the

literature [2, 3, 7, 15, 16, 26, 27, 28, 37, 38, 39].

Most of the defect prediction techniques in the literature perform defect prediction

on module level source code metrics. Menzies et. al. implemented a Näıve Bayes

with log-filtering and obtained high pd rates (up to 72%) and low pf rates (down

to 25%) [2]. In a recent study Hall used decision trees to assign weights to certain

attributes and remove any unnecessary attributes to improve performance of the Näıve

Bayes Classifier and have obtained similar results for Näıve Bayes Classifier. Even

though such good results are obtained for defect prediction using module level source

code metrics, one should note that collecting defect information on module level is a

difficult and costly task. In order to collect metrics on lower levels of source code such

as modules, companies have to align their software development processes to enable

this task, train their employees to correctly follow steps required to collect module level

metrics and find appropriate tools that support this task. Such complex issues are not

only impractical for most of the companies, but also technically unavailable at the

time of this study. Even though large software companies which have mature processes

evidenced by various quality certificates (ISO, CMMI.. etc), may have difficulty in

adopting their existing processes to regularly collect data. Moreover, construction of

a metrics program requires skilled and costly employees. On the other hand, all well

known bug (defect) tracking software like Jira, Bugzilla, or TrackStudio let users relate

the defect information to certain files that are affected by the defect, which in turn

requires additional effort to be spent by development team in order to relate the defects

with modules. As a result, there exists limited number of module level metrics in the

public data repositories [64, 65].
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Considering the difficulties explained in the previous paragraph, our first research

question can be formed as: ”Can a defect prediction algorithm be implemented using

source file level defect information to provide similar or better performance than a

defect predictor using module level defect information?”. The answer of this question

will be a guide to determine the effect of a change in granularity of collected defect

information on the performance of the defect predictor which will be accomplished by

comparing defect predictors using less granular and high granular structures.

Another aim of this study is to inspect the ”ceiling effect for defect predictors”

as proposed by Menzies et. al [6]. Authors claimed that existing machine learning

techniques can not be improved further since the datasets used have a limited infor-

mation content which prevents reaching higher prediction performances. In order to

inspect this behavior, authors applied micro-sampling technique to reduce the number

of samples in the dataset down to 50 samples, and it is observed that datasets of that

size can even provide as high performances as larger datasets. The authors concluded

that improvements in defect prediction algorithms require information content of the

datasets to be increased, rather than trying to provide better predictors.

Second research question of this study would then be addressed as: ”Can the

information content of the data be increased with the help of data mining techniques

to provide better prediction performances?”. In order to increase information content

of the data, some data operators would be applied as proposed by Koru [31]. If the

performance of the defect predictor increases after applying data mining techniques,

then the existence of a ceiling effect will eventually be supported in the context of

granularity.
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4. PROPOSED MODEL

In order to find an answer to the research questions introduced in the previous

chapter, we have constructed two defect prediction models in this research. We have

addressed the problem of defect prediction as a two way classification (machine learning

problem) to investigate the effect of granularity in metric data collection. This chapter

will explain the steps followed to implement machine learning techniques.

Näıve Bayes classifier (NBC) is proven to outperform other defect prediction

models in the literature [2] and decision tree classifier (DTC) is a widely used machine

learning technique for defect prediction purposes [30, 31, 32]. Even though DTC does

not provide best results in this area, it is used widely because of the fact that its

outputs can be used to draw ”human-friendly” conclusions and perform some decision

making [14, 26, 31, 55].

In this chapter, detailed information about all dataset operations and imple-

mented models (See Figure 4.1) will be presented. Section 4.1 will explain how Näıve

Bayes classifier is implemented and will provide information on log-filtering which is a

special operation applied on data as proposed by Menzies. Similarly section 4.2 will

provide details of implementation of decision tree classifier proposed in the study. Sec-

tion 4.3 will provide information on the dataset processor system that is implemented

as a part of this thesis study, and that plays an important role in obtaining source code

metrics on highly granular source code structures. Finally, section 4.4 will provide in-

formation on what outputs is retrieved from the proposed models, and how can they

be evaluated to measure performance of the model.

4.1. Näıve Bayes Classifier

A formulation for the Näıve Bayes algorithm was given on Section 2.3. Equation

2.4 can be used to implement a Näıve Bayes algorithm if the data values are discrete

values. However defect prediction datasets consist of extracted source code metrics
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Figure 4.1. Overview of the proposed model
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which means all the data values in the dataset are numeric, rather than discrete.

When data samples are discrete values, the prior probability P (x|Ci) of a data

sample is calculated by finding the frequency of that specific data sample among all

data samples. However when the data samples are continuous values, rather than

discrete values, we need to represent the data distribution as polynomials for each of

the classes, and calculate the posterior probabilities using that polynomial function.

For this purpose, multivariate normal distribution is used to fit the polynomial to the

data samples in Näıve Bayes Classifiers.

In general, instead of using Equation 2.4 directly, logarithms are used for com-

putational convenience. Introducing the normal distribution formulation and taking

logarithms of both sides of Equation 2.4 gives us following formulation which is also

used in this study:

gi(x) = −1

2

d∑
j=1

(
xt

j − µij

σj

)2

+ log(P (Ci)) (4.1)

µij is the mean of jth attribute of data samples belonging to Ci. σj is the standard

deviation of data samples of jth attribute. Even though there exist i different classes,

only a single standard deviation value σj is seen in Equation 4.1. σj is called the

weighted standard deviation. Using a single standard deviation means that the data

values of each class are assumed to be similarly spread around the mean of that cor-

responding class. Thus in the proposed model, instead of using a separate standard

deviation for each class, the standard deviations of the classes are used to calculate the

weighted standard deviation σj. In the proposed model, weighted standard deviation

σj is calculated by using the following equation:

σj =
∑

i

(σijP (Ci)) (4.2)

Training of the proposed model consists of finding the values of the parameters of gi(x)

function, which are µij, σj and P (Ci). Original dataset that is given as input to the
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model is split into two distinct datasets, training and validation datasets. Training

dataset is used to determine the model parameters, and data samples from the valida-

tion set are classified using the learned parameters. Predicted labels of the model are

compared to the real values and prediction performance of the model is found.

Main steps of the proposed model are visualized in Figure 4.2 as follows:

Figure 4.2. Flowchart of the proposed model

In defect prediction, classification means predicting a data sample as either ”de-

fective” or ”non-defective”. Thus in a defect prediction problem, there exist two classes,

C0 being the class of non-defective items and C1 being the class of defective items.

Classification of the data samples is straight-forward after the model parameters

are calculated. For a given data sample (a module or a source file) with its attributes

as the data values, the proposed model evaluates Equation 4.1 for both C0 and C1, and

finds values of g0(x) and g1(x) respectively. Then the model assigns the data sample

to the class with the greater gi(x) value.
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4.1.1. Log-filtering

Menzies et. al. showed in their study that the distribution of values of features

for NASA dataset are exponential [2]. This behavior can be easily visualized by sorting

any features value in ascending order and plotting the values on an x-y graph as in

Figure 4.3:

Figure 4.3. Data distribution before log-filter

It is also shown that removing this exponential distribution by applying a log-

filter improves the predictor performance. Applying a log-filter simply means that all

numeric values in the dataset are replaced with their natural logarithm values. When

applying log-filter, it should be noted that some data values are 0 in the original dataset.

Thus before applying the log-filter, all data values that are equal to 0 must be changed

to a very low pivot value whose log value can be calculated. In the reference study, this

pivot value is chosen to be 0.000001 which is negligible compared to the data values of

range [0-40000] (see Figure 4.3). Thus in this study, the same pivot value is replaced

with all 0 valued data attributes before log-filter is applied [2].

After applying the log-filter to the dataset, it can be seen from the following

figure that the data values become spread across the y-axes. This change in the data

makes the data more meaningful and lets the Näıve Bayes Classifier reason about the
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data easily.

Figure 4.4. Data distribution after log-filter

As seen in Figure 4.4, the data points are now spread over the y-axes. In Figure

4.3, it can be seen that nearly 80% of the data points are close to the x-axes while

in Figure 4.4 more than 90% of the data points are spread around the y-axes. This

change in the behavior increases the ability of the Näıve Bayes algorithm to train [2].

4.2. Decision Tree Classifier

A general decision tree classifier is explained in section 2.4. This subsection will

provide information on specific operations and modifications performed on the general

DTC in order to perform defect prediction on source file level source code metrics.

Decision trees are capable of handling both numerical data values and discrete data

values at the same time. However in defect prediction only numerical data is used for

training and validating the model. Thus the model is optimized so that it can handle

numerical data better and effectively.

One of the improvements that are implemented in the proposed model is reducing

the test criteria when trying to find the best split. In the general case, as explained

earlier, a decision tree algorithm tries to find the best attribute which provides a good
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split at a certain node. In order to find the best splitting attribute, it inspects each

of the attributes and performs an iterative procedure for each attribute. An initial

splitting position is selected for a specific attribute, and the impurity after splitting

data according to that initial position is calculated. Then the algorithm iteratively

increases the splitting position by a predefined amount, ∆s, and calculates impurity

after split at each iterate. This approach guarantees a constant amount of iterations to

be performed at each iterate, however it does not guarantee to find the best splitting

position. Thus the proposed model tries to find the best splitting position by trying

every possible splitting position while keeping the test criteria as low as possible. For

this purpose, the data values are sorted in increasing order and mean values of each

adjacent data samples are used for splitting the data. Also while sorting the data, data

samples having the same value are treated as a single value which further decreased

the search space. Assuming that a node contains n data samples, but only m of them

are unique; then the algorithm saves m− n impurity calculations which increases the

performance of the model.

Proposed model is also implemented such that the model takes the Emax value

as a parameter which lets modifying the model according to different dataset easily.

Value of Emax plays an important role in determining the size of the tree which in

turn affects the performance of the model dramatically. In defect prediction, datasets

containing high number of defective data samples and very low rate of non-defective

data samples the Emax value must be kept as low as possible since even at the root

of the tree the impurity values will be high due to the structure of the dataset. On

the other hand, Emax value must be optimized around a high value for datasets which

contain similar rates of samples from different classes.

The pseudocode of a general decision tree model is provided in [1], modified

version of the proposed decision tree model can be given as follows:
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Algorithm GenerateTree(X)

1: if Entropy(X) < Emax then {Stop growing the tree}

2: Create a leaf node and save ratios of classes at node

3: Return

4: end if

5: [i, v]← SplitAttribute (X)

6: XL = {∀xi ∈ X | xi < v}

7: XR = {∀xi ∈ X | xi ≥ v}

8: GenerateTree(XL)

9: GenerateTree(XR)

10: Return X

Figure 4.5. Decision tree model - generate tree procedure

Algorithm SplitAttribute(X)

1: MinEnt ← MAX

2: for i = 1 to d do {For all attributes}

3: X ← Sort(X, i) { sort X according to ith attribute, filter unique values }

4: end for

5: for xi ∈ X do {For all split positions}

6: Split X into XL and XR

7: e← SplitEntropy( XL, XR )

8: if e < MinEnt then {Mark minimum entropy position}

9: MinEnt ← e;

10: bestAttribute ← i

11: end if

12: Return bestAttribute

13: end for

Figure 4.6. Decision tree model - split attribute procedure
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4.3. Dataset Processor

In this study, 5 datasets (CM1, MC1, PC1, PC2, and PC3) from the NASA MDP

repository and 3 datasets (AR3, AR4, and AR5) from SoftLab data repository are used.

Additionally, software code metrics for 11 sub-projects of Eclipse project is extracted

on module level and these datasets are evaluated with the proposed model. All 19

datasets contain defect information and metrics extracted on module level. However

this study aims at performing defect prediction on highly granular structures such as

source files, so that a dataset processor is implemented to extract source file level defect

information and source code metrics from module level defect information and source

code metrics, respectively.

A source file may contain one or more modules, thus the metrics that belong to

the modules of a source file should be consolidated to obtain source file level metrics. In

order to perform this task, first it is necessary to construct a hierarchical representation

of the source code and determine which module belongs to which source file. Datasets

from NASA and SoftLab repositories contain this information with different represen-

tations. Proposed dataset processor takes a NASA dataset or a SoftLab dataset as

input, processes it to construct source code hierarchy, and provides an output dataset

which contains source file level source code metrics and defect information.

NASA datasets contain several excel files, each providing different types of infor-

mation about the dataset. Files with ” product module metrics” suffix contain module

level source code metrics and defect information. Files with ” product hierarchy.csv”

suffix contain the hierarchy information of source code as a mapping of each module to

the source file it belongs to. These two input files are used to consolidate the metrics

from module level to source file level for NASA datasets.

SoftLab data repository contains one excel file for each dataset which presents

both module level and source file level source code metrics as separate excel sheets.

Module level source code metrics sheet also contains the hierarchy information such

that the source file name of a module is stored in a column of the sheet. In order to
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find the source file of a module, a mapping between source file names and source file

level source code metrics is created and the mapping is used to consolidate metrics

from module level to source file level. When consolidating metrics to source file level,

original source code metrics for the source files are also stored and used with the

proposed defect prediction models.

The output of the dataset processor is a single excel file for each dataset, which

contains both the module level and source file level metrics of the corresponding dataset.

Module level information are provided in a sheet named ”Module Based Hierarchical”

and source file level information are provided in a sheet named ”SourceFile Based” in

the output file.

General flow of the dataset processor can be visualized in Figure 4.7 as follows:

Figure 4.7. Flowchart of dataset processor

When consolidating the metrics from module level to source file level, four dif-

ferent operators are applied: min, max, sum and average (avg). These operators are

applied for each feature of the modules belonging to the same source file, and results

are assigned to be the source file’s corresponding feature. Assuming that,
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Ami represents the ith feature value of mth module,

m ∈ Sj means that module m is a module within the source file Sj,

Sop
ji represents the ith feature value of jth source file when operator op is applied,

where op can be one of the four operators, namely min, max, sum or avg. Under these

assumptions min, max, sum and avg operators can be formulized as follows:

Smin
ji = min (Ami|∀m ∈ Sj) (4.3)

Smax
ji = max (Ami|∀m ∈ Sj) (4.4)

Ssum
ji =

∑
m

(Ami|∀m ∈ Sj) (4.5)

Savg
ji =

∑
m (Ami|∀m ∈ Sj)∑

m (1|∀m ∈ Sj)
(4.6)

Defectiveness of the modules is determined by looking at the errorcount attribute for

NASA datasets and defectcount attribute for SoftLab datasets. Modules which have

1 or more errors (defects) are assumed to be defective, and the ones with error count

as 0 are assumed to be non-defective. When consolidating the metrics from module

level to source file level, error count values are also consolidated with the sum operator

(see Equation 4.4). Resulting value is the error count for the corresponding source

file and defectiveness of a source file is also determined using the error count value of

that source file such that source files having error value equal to 0 are assumed to be

non-defective; and they are assumed to be defective otherwise. This means that, if a

source file has at least one defective module, its error count will be greater than 0; thus

it is assumed to be defective.
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4.4. Model Output

The proposed models are trained and validated after several experiments which

are explained in detail in chapter 5. After the experiments, an optimum parameter set

is determined for each of the datasets. Optimum set of parameters can then be used

to predict defectiveness of new datasets.

For Näıve Bayes Classifier the output of the proposed model is the optimum set

of parameters which are:

µij | ∀aj ∈ A ∧ i = {0, 1} (4.7)

σj | ∀aj ∈ A (4.8)

P (Ci) | i = {0, 1} (4.9)

For decision tree classifier, the model provides the structure of the resulting decision

tree. Each node in the tree is either a leaf node or a decision node. Leaf nodes keep

the ratios of the classes that data samples at that node belong to. Decision nodes keep

the value of the attribute which provided the best split for that particular node and

also keeps the best splitting value for that attribute.

When model parameters are obtained, both models can be used to predict defec-

tiveness of newly implemented source code structures, namely modules or source files.

Predictions of the models can then be used to compare with actual defectiveness of the

source code structures to measure the performance of the model.
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5. EXPERIMENTAL DESIGN

In order to validate the proposed model and evaluate its performance, several

experiments are performed. This chapter will provide detailed information about the

designs and steps of the experiments. Section 5.1 will explain the designs of performed

experiments including datasets used and steps to ensure validity of the experiments.

Section 5.2 will explain 3 major types of experiments that are performed. Section 5.3

will conclude this chapter by explaining some important points that we consider as

threats against validity of the experiments.

5.1. Experimental Setup

Experiments that are performed throughout this study are designed in order to

provide valid and reliable results. This section will identify all the steps taken to ensure

validity of the experiments.

5.1.1. Datasets

In this study 19 datasets from different data repositories are evaluated. 5 public

datasets are selected from the NASA data repository which contains SoftLab data

repository with 5 different datasets and 3 of these datasets are selected for evaluation

in this research. Remaining 11 datasets are extracted from source code of an open

source project and evaluated for the first time for defect prediction purposes in the

literature. Both NASA and SoftLab data repositories are publicly available and can

be downloaded from [65].

NASA data repository contains 11 datasets from several domains and imple-

mented in several programming languages including procedural languages like C and

object-oriented languages like Java and C++. MC2 and PC5 datasets from NASA data

repository have different formats than the other datasets, so they are not included in

this study. PC4 dataset is also not included in the study, since it contains only 1 defec-
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tive data sample and training and validating the model with only one single defective

data sample is inapplicable. Similarly, KC4 and MW1 datasets are also not applicable

for evaluation since both datasets contain only 1 source file. KC3 dataset is also not

evaluated since it contains only 5 source files (2 non-defective, 3 defective). Since K-

fold cross validation (explained later in this section) is applied, the model could not be

trained and validated using only 2 non-defective data samples. Remaining datasets,

namely CM1, PC1, PC2, PC3 and MC1 are evaluated using both machine learning

techniques proposed in this study and results are reported for these datasets. For a

detailed report on the NASA Datasets, refer to Appendix A.

Some basic information about NASA datasets both on module level and source

file level is presented in the following table:

Table 5.1. Overview of NASA datasets

One difference to be noted here among the datasets is that, MC1 contains one less

feature for module level metrics (thus 4 less features for source file level metrics), which

is DECISION DENSITY. Existence of another metric named DECISION COUNT

makes it possible to omit the DECISION DENSITY feature since it would not affect

the performance of the model significantly.

SoftLab data repository is created by the SoftLab members at Boğaziçi University

in cooperation with a white goods manufacturer company in the industry. At the time

of this thesis study the data repository contained a total of 5 datasets, all from the
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same domain (Embedded Systems Domain) and all implemented with C programming

language. In this research 3 datasets from SoftLab data repository, namely AR3, AR4

and AR5 are used in order to be able to make comparisons with the existing study in

the literature using the same datasets [6].

Some basic information about SoftLab datasets both on module level and source

file level is presented in the following table:

Table 5.2. Overview of SoftLab datasets

Table 5.2 shows that module level source code metrics are composed of 29 features,

but source file level source code metrics are composed of 145 features. The ratio of

number of features for a source file to number of features for a module is 5 for SoftLab

datasets (it is 4 for NASA datasets, see Table 5.1). Additional features for SoftLab

datasets are present in the dataset itself, which is source file level metrics extracted

directly from the source files. These metrics are not subtracted from the final dataset

since they will also provide additional information and might help the model capture

source file structures better.

Eclipse is an open source project aiming at developing a universal toolset for

development environment and is protected under Eclipse Public License (EPL) [67].

Source code of eclipse project is available either as bundled to the project executable

which can be downloaded from [68] or over concurrent versioning system (CVS) access

[69]. Eclipse source code is analyzed with a metric extraction tool named Predictive

3 [70], and both module level and source file level metrics are extracted. Predictive

3 assesses the risk level of the source code and provides a defect prediction for each
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module according to its risk level. Thus resulting dataset consists of both module level

data and also predicted defect information for any source code.

Some basic information about Eclipse datasets both on module level and source

file level is presented in the following table:

Table 5.3. Overview of eclipse datasets

5.1.2. Stratified K-fold Cross Validation

When performing the experiments, stratified K-fold cross validation is applied in

order to make sure that, valid and reliable results will be obtained. General strategy

of K-fold cross validation can be summarized as follows: Firstly, the dataset is divided

into k folds each having equal number of data samples. Then, one of the folds is kept

as the validation fold, and remaining k − 1 folds are marked as training folds. The

model is trained by using the data samples from training folds, and validation fold

is only used for evaluating the models performance after training is complete. This

training-validation cycle is repeated n times, by selecting a different fold as validation

fold at each cycle and training the model with the remaining k − 1 folds in order to



35

make sure that each fold is used for validation exactly once.

Datasets used in this study have very different characteristics, especially from

size perspective. Some datasets contain tens of thousands of modules and thousands

of source files, while some others contain only tens of modules and up to ten source

files in total. Using an identical dataset splitting strategy for all datasets would result

in erroneous experimental setups. Assuming that a fixed value for the number of folds

to be created is set in designing experiments (e.g. k = 10), smaller datasets would

be split into small-sized folds and larger datasets would be split into large-sized folds.

This turns out to be a problem especially for SoftLab datasets, where folds would

contain only 1 or 2 data samples which would limit the learning capability of the

model from the data. Thus the value of k must be optimized for all datasets, in order

to let the machine learning algorithm to have optimum number of data samples in both

training and validation folds. The proposed model is implemented to let the users to

select the number of folds to be created before running the defect prediction algorithm.

By this feature, the proposed model is capable of performing 2-fold cross validation

for small datasets (as in AR3 and AR5 datasets which contain only 8 and 7 source

files respectively), and it can also perform 10-fold cross validation which is a de-facto

standard for validating larger datasets.

When applying K-fold cross validation, the ratio of defective and non-defective

data samples in the original dataset is preserved as much as possible for all k folds. This

process is important when a dataset contains many defective data samples and only few

non-defective data samples, or vice versa. If such a dataset is being evaluated, there is

a chance that all defective (or non-defective) data samples may be placed into the same

fold which will affect the performance of the predictor negatively. In order to ensure

that such a case will never occur, we try to preserve the ratios of classes in resulting

folds, which classifies our validation strategy as stratified K-fold cross validation.

Preserving ratios of defective and non-defective samples also helps building up

folds that are better subsets of the original dataset. At the very least it is ensured that

the ratio of defective and non-defective samples are equal to the ratios from original
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dataset, which provides one major advantage: the model will be able to learn both

defective and non-defective data samples so it will be able to learn behaviors of both

classes. Thus resulting model will be a better predictor for future predictions assuming

that the original dataset is a qualified representation of the real world.

In order to ensure that validation set will contain both defective and non-defective

data samples, dataset is first split into two sub-datasets, one containing only defective

samples and the other containing only non-defective samples. After splitting is done,

the samples in both sub-datasets are shuffled to randomize their orders. k, being the

number of bins to be created, first (k− 1)/k of defective samples sub-dataset and first

(k − 1)/k of non-defective samples sub-dataset are selected and merged to construct

the k− 1 training bins. Remaining samples in the defective and non-defective samples

sub-datasets are merged to construct the validation bin. Finally the orders in the

training and validation bins are randomized in order to ensure that a random dataset

is created. Even though the order of samples in the dataset is not important for Näıve

Bayes Classifier, this randomization is implemented to let the dataset splitter usable

for other classifiers as well.

However applying stratified K-fold cross validation by itself is prone to failures

depending on the initial selection of folds [2, 15, 24, 31]. For example if the validation

fold is not a good sample of the remainder of the dataset, then the model’s performance

will probably be lower than it might be. In order to decrease the negative effect of

selection of badly structured folds on the final results, K-fold cross validation is repeated

n times. Orders of the dataset items are randomized before each repetition in order

to decrease the probability of working on the same folds. In order to increase the

probability of working with every possible set of folds, the value of n needs to be

increased, however the algorithm will surely suffer from long execution times. On the

other hand, choosing small values for n will probably cause the overall performance of

the model to change significantly depending on the validation fold selected. In order

to provide a basis for comparison, the value of n is chosen to be 10 as in the reference

study [6].
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As explained in subsection 4.1.1, the distributions of the data samples are expo-

nential for most of the attributes in NASA datasets. Exponential distribution means

that most of the data samples are close to 0 and only few of them are spread around

y-axes (see Figure 4.2). Thus a log-filter is applied to eliminate this exponential dis-

tribution which is proven to increase the performance of the classifier [2] since it leads

to more spread distribution of data samples around the y-axes (see Figure 4.3).

5.1.3. Statistical Testing: T-Test

A statistical test (or statistical hypothesis test) is a mechanism to determine

whether a hypothesis should be accepted or rejected. According to the results of

statistical test, a hypothesis can either be rejected based on the existing evidence, or

it can be concluded that there is not enough evidence to reject the hypothesis and it is

accepted. Generally, instead of accepting a hypothesis as it is, reverse of the hypothesis

is examined and if it can be rejected with existing evidence then original hypothesis is

said to be accepted. Reverse of the hypothesis is called ”null hypothesis”.

T-test is a kind of statistical test which assesses whether the means of two groups

are statistically different from each other [36]. This kind of statistical test is useful

in determining whether two independent groups of data are related to each other by

finding the degree of their relations. In defect prediction studies (and many other

domains), t-test is used to assess whether results of two defect prediction models are

significantly different than each other. This is useful when a researcher wants to check

whether results of a newly developed model are different enough than those existing

in the literature to claim that the proposed model can provide distinct behavior. It

should be noted that t-test does not evaluate the performance of the model; it rather

examines the results of the study from the significance point of view.

Inspection of significance with t-test starts with defining a null hypothesis, which

may either be directional or non-directional. A directional null hypothesis aims to

find a relation between the results in a predetermined direction such that the mean

of one group of results is significantly greater than mean of the other group or vice
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versa. However a non-directional null-hypothesis only aims at finding a significant

difference between results, no matter in which direction (which mean is greater than

the other). In this thesis study, non-directional null-hypothesis is inspected since our

aim is to determine whether the results are significantly different than each other and

the performance of the model will be evaluated using the criteria defined in Chapter 6.

After defining the null-hypothesis, means and standard deviations of two groups of

data are calculated. Assuming that first group of data (group A) contains NA elements

and is distributed normally with (µA, σ
2
A) and second group of data (group B) contains

NB elements and is distributed normally with (µB, σ
2
B); variance of the entire source

population (group A and group B) is calculated using the following equation:

σ2
p =

σA + σB

(NA − 1) + (NB − 1)
(5.1)

Variance of the source population is used to calculate standard deviation of the source

population with the following equation:

σp =

√
σ2

p

NA

+
σ2

p

NB

(5.2)

The t-value for the source population can then be calculated using Equation 5.3 from

the means of groups and the standard deviation obtained from Equation 5.2:

t =
µA − µB

σp

(5.3)

The resulting t-value is used to determine whether results in the groups are statisti-

cally significant with the help of t-table. T-table provides t-values for specific source

population sizes and for specific significance levels. Significance level (or risk level)

is defined as the probability of making a decision to reject the null hypothesis when

the null hypothesis is actually true. Significance level is represented with an alpha

parameter which is taken to be 0.05 as a rule of thumb in many studies [6, 7, 18, 19],

thus the same level of significance is used in this thesis study.
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5.2. Experiments

In this section, three main experiments that are performed to validate the models

are presented. In subsection 5.2.1, experiments for validating the models and comparing

the results with the existing studies in the literature are presented. Subsection 5.2.2

explains some data related issues that were presented in [56], and further explains the

experiments that are performed in this study to overcome those problems.

5.2.1. Experiments for Model Validation

In the first phase of experiments, main aim is to inspect whether the proposed

model is valid and can be used as an alternative to the existing models on defect

prediction. In order to ensure that performed experiments can be used to compare

the results with the results of the existing studies, the experimental setup defined in

section 5.1 is used.

Menzies et. al. has shown that the Näıve Bayes algorithm give the most useful

results among the other defect prediction models [2]. The results of proposed Näıve

Bayes Classifier are compared to the results in the reference study since it already

provides the best results for defect prediction in the literature so far. In order to be

able to make comparisons, Näıve Bayes Classifier is trained and validated with the

same dataset and same features.

Koru et. al. implemented a Decision Tree Classifier using Weka’s J48 learner in

order to predict the defects on class level for NASA datasets [15]. J48 is an imple-

mentation of a special form of decision tree learning algorithm. The proposed model

will also be compared to the reference study in terms of pd, pf, balance and f-measure

criteria and results will be reported in chapter 6.
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5.2.2. Experiments for Cost-Benefit Analysis

In order to evaluate the model in terms of its usefulness an additional set of ex-

periments is performed. Results of the experiments are used to perform cost-benefit

analysis which compares the model’s benefits with its costs, and provides an under-

standable interpretation of the model’s results for non-technical staff.

In order to measure the cost of the model, the ”size” of the source code that

needs to be tested must be measured. NASA dataset contains 6 features for measuring

the size of the source code in terms of SLOC measures. These features are:

• # of lines of codes (LOC TOTAL)

• # of blank lines (LOC BLANK)

• # of lines with both code and comment (LOC CODE AND COMMENT)

• # of lines of comments (LOC COMMENTS)

• # of lines of executable statements (LOC EXECUTABLE)

• Total # of lines (NUMBER OF LINES)

However, in a recent workshop [56] the quality of these metrics is discussed and

many researchers concluded that they are not reliable enough to be used in defect

prediction. Koru [66] has shown that MC1 dataset contains nearly half of its SLOC

measures as 0, which raises a question about the quality of the dataset. The researcher

who extracted the source code metrics explained this problem and emphasized that

this is an issue related to the SLOC measures only, and that other metrics are not

corrupted [66]. It is also addressed that this problem existed in only MC1, PC2, PC3,

PC4, and PC5 datasets and that SLOC measures of these datasets should not be used

for defect prediction purposes.

Reliable SLOC measures are necessary to measure the cost of the proposed

model. Thus, cost-benefit analysis could not be performed for the projects listed

above. Depending on the emphasis of the researcher, CM1 and PC1 datasets con-

tain reliable SLOC measures and these datasets are used for performing cost-benefit
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analysis throughout this research. Furthermore, the datasets from SoftLab data repos-

itory and Eclipse data repository are also available for the purposes of cost-benefit

analysis, and they will be evaluated in the experiments.

5.2.3. Experiments for Multi-level Prediction

Another set of experiments are designed in order to evaluate the performance of

multi-level prediction. Multi-level prediction can be defined as predicting the defects on

source file level and on module level consecutively. Firstly, a source file level prediction

is performed to predict defective source files in the system, and a module level prediction

for the modules of the defectively predicted source files is performed to narrow down

the code coverage necessary to be tested.

Main aim of performing multi-level prediction is to take advantage of both predic-

tion approaches. Source file level prediction will hopefully narrow initial search space

to a smaller set of source files, and module level prediction will decrease the total lines

of codes needed to be tested in the testing phase.

5.3. Threats to Validity

One problem that was encountered during the study was addressed after the

conclusion from a recent workshop was published, as it is explained in 5.2.2. According

to the researchers, three of the datasets that were used in this study contained problems

with some static code features, thus it was not reliable to use them for defect prediction

purposes. For this reason, when performing cost-benefit analysis, these datasets became

unavailable for evaluation.
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6. RESULTS

In this section and its subsections, the criteria that are considered when com-

paring the model to the existing models and the results in terms of those criteria are

presented.

6.1. Performance Criteria

The main criteria for comparing this study with the studies in the literature are

the probability of detection (pd), probability of false alarm (pf) and balance (balance)

criteria. As shown in Figure 4.1, the model is validated by taking two input sets,

which are prediction labels and validation labels. Validation labels are the classes of

data samples from the validation bin, and prediction labels are the classes that are

predicted by the model to the same samples from the validation bin. Thus, by using

the predicted and actual label values, a confusion matrix is created as follows:

Table 6.1. Confusion matrix

The terms in the table can be explained as follows:

True Positive (tp) : a defective module is classified as defective.

False Positive (fp) : a non-defective module is classified as defective.

False Negative (fn) : a defective module is classified as non-defective.

True Negative (tn) : a non-defective module is classified as non-defective.
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These definitions can be used to calculate the pd and pf values as given in the

following equations:

pd =
tp

tp+ fn
(6.1)

pf =
fp

fp+ tn
(6.2)

Probability of detection (pd) value measures the rate of finding the defective data

samples. Probability of false alarm (pf) value, in turn, measures the rate of the models’

incorrect classifications for non-defective data samples. An ideal classifier would classify

the samples so that pd value would be 1 and the pf value would be 0. This case means

that the system correctly classified all the defective items and did not classify any

non-defective item as defective. However, such a case is not always possible to reach in

real life. Thus, we can drive a third criterion, the balance criterion, using the pd and

pf values with the following equation:

balance = 1−
√

(0− pf)2 + (1− pd)2

√
2

(6.3)

In general, having higher pd rates, lower pf rates and high balance value is expected.

A predictor resulting in high pd and low pf rates will have a high balance value, as

desired. However, according to the domain of interest, it may be acceptable to have

high pf rates, i.e. embedded system domain. Oral et. al. explained in their study [41],

that deployment process for software from embedded system is more difficult than

deployment of software from other domains, which make detection of defects more

important. Furthermore, embedded system software are generally implemented in low

level programming languages, such as C, which limit the debugging and tracing abilities

during testing phase. This limitation not only increases the testing efforts required to

ensure quality of such software but also makes it harder to detect the defects by manual

inspection since it would require exhaustive inspection of entire code. Thus it can be

concluded that if high pd rates are assured by the defect predictor embedded system
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domain software, then high pf rates can be acceptable.

Another measure that is used to compare model performances is f-measure as

used by Koru in his study [31]. F-measure is used in comparing performances of

information retrieval and statistical classification methods in terms of effectiveness of

the method. In order to calculate f-measure, precision and recall values of the model

must be calculated. Precision, from defect prediction perspective, is defined as the

ratio of the number of data samples that are classified as defective to the number

of all defectively predicted data samples. Having high precision values means that

modules that are predicted to be defective are more likely to be defective than non-

defective, thus higher precision values are expected. Recall is defined as the ratio of

correctly classified defective data samples among all correct classifications. Equations

for precision and recall are provided as follows [15]:

precision =
tp

tp+ fp
(6.4)

recall =
tp

tp+ fn
(6.5)

F-measure value can be calculated using precision and recall values from the following

Equation [15]:

f −measure =
2 ∗ precision ∗ recall
precision+ recall

(6.6)

Rather than evaluating the performance in terms of precision and recall, f-measure

is evaluated since it takes into account both recall and precision. Having high preci-

sion and high recall values means that the model can classify defective data samples

correctly, which is an expected behavior. High precision and recall values will eventu-

ally lead to high f-measure values, thus it should be noted that when evaluating the

performance higher f-measures will represent better prediction performance.
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In addition to the performance analysis on pd, pf, balance, and f-measure criteria

defined above, cost-benefit analysis of the proposed models is also performed. Cost-

benefit analysis is mainly used in monetary systems in order to compare the value of a

study with its expected benefits [35]. Decision makers may choose to assent negative

effects of taking a decision if they think its benefits will be of much higher importance

for their interests. Enabling this additional information is a major advantage of cost-

benefit analysis for decision makers.

Arisholm and Briand performed cost-benefit analysis of defect prediction of fault

prone software systems in their study [19]. In the reference study, the authors pro-

posed a logistic regression model to detect fault proneness of a software product using

class level data extracted from a Telecom Software implemented in Java programming

language [20]. They collected class level source code metrics using two different source

code analyzers implemented in Java programming language, XRadar and JHawk. Ex-

tracted metrics include structural information on classes like coupling between classes,

class characteristics like type and size of the class, as well as change history for faults.

In a previous study, Briand and Wuest addressed an important issue relating

the performance of defect predictors [21] such that there was little evidence that a

defect predictor can have direct economical effect for a company. Arisholm and Briand

inspected this statement and found out that common performance evaluation strate-

gies like confusion matrix do not directly relate the cost-effectiveness of a model [19].

The authors reached to a similar conclusion from the results of experiments that they

performed. Their results revealed that their model can predict more than 70% of the

defects in less than 30% of classes, which seem to be a promising result. However,

future analysis of the results has shown that those 30% of all classes contain 50% of all

source code. Thus they claim that using size of defectively predicted source code for

assessing the performance of predictor is a better measure since it reflects verification

cost of the prediction more precisely.

Tosun also performed cost-benefit analysis of defect predictors in her study [18].

In the reference study, three different defect prediction techniques are used to perform
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defect prediction and an ensemble is implemented which combines results of the three

models to provide the final prediction such that a module is predicted as defective only

if majority of algorithms predict that module as defective. Performance evaluation

of the model is performed by comparing with pure Näıve Bayes Classifier. Authors

also performed cost-benefit analysis for the results they obtained by computing the

decreases in the verification effort. They compared the size of source code that would

be inspected by random selection of classes, with the size of source code that the

ensemble marked for inspection to determine the change in verification effort and used

the term ”gained efficiency” to reflect this change rate. They evaluated the model on

three datasets from SoftLab data repository, namely AR3, AR4 and AR5 and obtained

better pd values for each dataset. However when the model’s costs is taken into account

it is seen that gained efficiency for AR4 dataset is better for Näıve Bayes Classifier than

for the ensemble of classifiers.

The ability to make observations like described in the previous paragraph lets

decision makers to choose which classifier fits better to the domain of interest. Consider

the case of AR4 dataset explained above: If the domain of interest requires detection of

defects with a high probability and verification costs is not the main consideration, then

a project manager might want to use ensemble of classifiers rather than Näıve Bayes

Classifier. However if the verification cost is more important than defect detection rate,

than a project manager might choose pure Näıve Bayes Classifier in order to decrease

the time/effort spent on verification of source code. Without cost-benefit analysis, this

kind of information would not be available to the project managers.

Figure 6.1 represents the plot of gained efficiency and probability of detection

(pd) which might help explain cost-benefit analysis easier. Plot area can be divided

into three types of regions namely desired region, inefficient region and beware of

region as shown in the plot. Locations of intersection lines that separate these regions

can not be generalized since importance of prediction performance and verification

effort can change from domain to domain as explained in previous paragraph. Once

the intersection lines are determined for a specific domain, cost-benefit analysis plot

enables graphical interpretation of the results. X-axes of the plot represent the pd
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values ranging from 0 to 1 and y-axes of the plot represent gained efficiency values

ranging from 0 to 1.

Figure 6.1. Cost-benefit Analysis Plot

Upper-right region of the plot can be defined as ”desired region” since results

falling in this region means the defect prediction model provided high gain in veri-

fication costs as well as high pd values, which means that defects in the system are

addressed with high probability while keeping the defectively predicted source code

size small. Such a defect prediction model can be helpful in decreasing the verifica-

tion efforts necessary to test the software while increasing the quality of the resulting

product by making it less erroneous.

Upper-left and lower-right regions of the plot are defined as inefficient regions,

since results falling in these regions lack from either pd or gained efficiency criteria.

According to the inefficient region of plot that a result falls, corrective actions might

be planned by the project managers while planning their verification or testing phase.

For example consider a case where the defect prediction model provided 40% pd rate

and 85% gained efficiency rate, then a project manager might think that 40% is a low

pd rate and will not be suitable for the domain of the project. Thus he can decide

to widen the code coverage to be verified which will in turn decrease the verification

effort decrease provided by the defect prediction model.
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Finally, lower-left region of the plot can be defined as ”beware of” region since

results falling in this regions lacks from both gained efficiency and pd criteria, which

means that the defect prediction model addressed much of the source code to be verified

but the addressed source code contains less of the defects. In this case, using results

of the defect prediction model will eventually lead the testing team to focus on wrong

sections of code and will most likely waste more resources like time and man-power

than it will save.

In this research, results for cost-benefit analysis will be provided in the format

used in [18, 19]. In the reference studies, the authors defined several measurements to

address cost-benefit of the system. Measurements that are used and their explanations

are given in Table 6.2.

Table 6.2. Measurements used in cost-benefit analysis

Values from Table 6.2 will be calculated for both module level prediction model

and source file level prediction model and according to their probability of defect de-

tection and gained efficiency values, a conclusion about which predictor is better will

be drawn. In order to make the tables simpler, abbreviations for each measurement

will be used in tables.

TotalLOC and inspectedLOC measurements are calculated directly from the

source code metrics or from the output of the model. Remaining measurements need

to be calculated from other measurements and equations that are used to calculate

those values are provided below.

neededLOC = totalLOC ∗ pd (6.7)
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changeLOC =
totalLOC − inspectedLOC

totalLOC
(6.8)

Gainedefficiency =
neededLOC − inspectedLOC

neededLOC
(6.9)

6.2. Performance

The criteria used to measure the performance are already defined in previous

section. In this section, the results of the proposed model when evaluated with the tests

defined in chapter 5 will be presented. For each data repository, performance results

of both models and cost-benefit analysis of the results will be provided consecutively.

6.2.1. Model Validation

First step to evaluate the performance of the predictor is to compare the proposed

model’s performance with the results of existing models in the literature. As explained

in chapter 4, defect prediction on high levels of source code structures is proposed

in this thesis study, thus the proposed model will be compared to existing models in

the literature which perform module level defect prediction model [2, 3, 7, 26, 30, 31].

Performance evaluations of classifiers for different levels of granularity are compared

in terms of pd, pf, and balance criteria which are also used for model validation in

the given reference studies. F-measure criteria will then be used to compare different

classifiers’ performances.

The results presented in this subsection are extracted from experiments using K-

fold cross validation. For module level prediction the value of k is taken as 10, in order

to have similar results of those from the reference study. However the same value could

not be used for source file level prediction for some datasets since the datasets did not

contain enough number of defective and non-defective source files to be divided into

10 folds. Thus when designing experiments with source files, the value of k is taken to
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be 2 for Nasa and SoftLab datasets, which lets construction of random training and

validation datasets (in terms of ratios of defective and non-defective data samples).

As explained in section 5.2, in order to validate the Näıve Bayes Classifier against

the existing studies in the literature, the problems with the dataset is omitted and

SLOC metrics are also used when training and validating the model. Thus, all 5

datasets from NASA repository, namely CM1, MC1, PC1, PC2 and PC3, are evaluated

at this step.

All comparisons between module level prediction and source file level prediction

will be provided in the same format but since each data repository contains datasets

having different characteristics, their results will be presented separately. In order to

provide a clear understanding, first some information regarding the table structure is

provided. Rows of the table contain results for a single dataset (product) and columns

of the table contain results for different levels of predictions. Evaluations of predictors

will be performed on pd, pf and balance criteria and minimum, maximum and average

values of each criteria are also provided for each product as min, max and avg rows,

respectively. The numbers written in green represent better prediction values achieved

by the proposed algorithm and the numbers in red represent worse prediction values

achieved by the proposed algorithm.

According to Table 6.3, source file level prediction has a positive impact on prob-

ability of defect detection and a negative effect on probability of false alarms. On the

overall, it is seen that the proposed model can provide better balance values for 2 of the

datasets and worse results on the remaining 3 datasets. T-test results verify that all

pd values and pf values from Table 6.3 are statistically significant. On the other hand,

t-test results show that balance results are not statistically significant except for CM1

dataset. Thus it can be stated that source file level prediction can provide significantly

better pd values with the cost of worse pf values, but on the overall the balance values

will be similar for both of the models. Obtaining similar results on balance criteria lets

a project manager to determine which criteria (either pd or pf) is more important for

the domain of interest and decide which model to use for defect prediction.
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Table 6.3. Module level vs source file level NB results (NASA with SLOC metrics)

In order to have a better understanding of the results, cost-benefit analysis results

are provided in Table 6.4:

Table 6.4. Cost-benefit analysis of NB on NASA datasets

Cost-benefit analysis results show that module level prediction can provide an

improvement of 89% on efficiency which is a relatively high rate compared to source

file level prediction’s 46% improvement. Considering that source file level prediction

provided worse pd, pf and balance values it is concluded that module level prediction

has clearly a better performance than source file level prediction for CM1 dataset.
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Even though source file level prediction can detect defects in PC1 dataset with

significantly better performance, cost-benefit analysis results show that it can not de-

crease the effort required for testing the software as much as module level prediction.

Module level prediction can decrease the effort down to 11% while source file level pre-

diction can decrease the effort only down to 56% which causes source code predictor

to examine over 10K lines of codes more than module level predictor.

As explained in subsection 5.2.2, SLOC measurements of some projects within

NASA dataset are not accurate, thus it is not safe to use these values for defect pre-

diction purposes. Even though these metrics are error prone, they were used in the

previous experiments since main purpose was to validate the model with existing mod-

els. In order to inspect the effect of erroneous SLOC measurements to the proposed

model, a second experiment is performed. In the second experiment, the same datasets

are used for testing the model, but their SLOC metrics are eliminated.

Table 6.5. Module level vs source file level NB results (NASA without SLOC metrics)

Comparing results from Table 6.3 and Table 6.5, it is seen that performances of

both predictors did not change significantly for both of the predictors and even in some

cases it is observed that the prediction performance decreases when SLOC metrics are
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removed (CM1 and PC3). These results show that problematic SLOC measurements

did not affect the performance of the model much in the first place and it is not possible

to claim that they have a negative impact on the performance of the predictor.

Results of the second experiment must also be evaluated in conjunction with

t-test results. T-test results show us that, as in previous experiment, all pd and pf

results are statistically significant at level. Thus we can conclude that source file level

prediction provides improvements in defect prediction probability but will also suffer

from increasing false alarms for NASA datasets. T-test results also reveal that balance

values are statistically significant for only MC1 and PC3 datasets. We can see from

Table 6.5 that source file level prediction provided better balance result for MC1 dataset

and worse balance result for PC3 dataset, which again makes it impossible to draw a

strict conclusion on the quality of either defect prediction models when balance criteria

is considered.

Näıve Bayes Classifier is also evaluated using SoftLab repository datasets for both

module level and source file level predictions and results are presented in the following

table.

Table 6.6. Module level vs source file level NB results (SoftLab)

The results of Näıve Bayes Classifier on source file level turned out to perform

worse than on module level for SoftLab repository datasets. Not only the probability of

false alarm rates are worse for source file level prediction, as it was the case for NASA
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repository datasets, but also probability of detection and balance values are always

worse than or equal to the module level prediction. These results are also tested by

t-test and it turned out that all pd, pf and balance values are statistically significant.

Cross-referencing the results with structure of the datasets (Table 5.2), it is ob-

served that source file level prediction’s performance decreases substantially for those

datasets which are relatively small in size. AR3 contains only 8 source files, 3 of them

being defective and AR5 contains only 7 source files, 3 of them being defective. The

model’s defect detection rates decrease substantially for these two datasets, from 0.75

down to 0.45 for AR3 and from 0.88 down to 0.75 for AR5 dataset. On the other hand,

the defect detection performance for AR4 increases from 0.72 up to 0.82, as it would

be expected after observing results for NASA datasets. Considering that K-fold cross

validation is performed 10 times and the results being statistically examined, we claim

that number of source files is an important parameter that affects the performance of

Näıve Bayes Classifier.

Before proceeding to Eclipse data repository results, cost-benefit analysis for

SoftLab datasets is provided.

Table 6.7. Cost-benefit analysis of NB on SoftLab datasets

Cost-benefit analysis results show that source file level prediction can decrease

the number of lines of code to be inspected (CL row values of the table), however

these results do not mean that it is a better alternative since prediction performances
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of the model also decreases significantly. For AR3 dataset, source file level prediction

addresses 1790 lines of code as defective, but inspecting that much of source code would

lead to 45% of all defects. On the other hand, module level prediction addresses 2130

lines of code as defective and 75% of all defects will be covered during the testing. So

it is seen that module level prediction can improve the prediction performance by 30%

while increasing the code coverage by only 16%.

A similar analysis for AR4 dataset shows that source file level prediction will lead

to detection of 82% of all defects within 3994 lines of code inspection area, while module

level prediction will lead to 72% of defects within 3227 lines of code. In this case, there

is a trade-off between inspection size and defect detection rate. If domain of interest

requires immediate completion of verification phase, then module level prediction will

be useful since it addresses 19% less source code as defective. But if domain of interest

requires high confidence of final product being less defective, then source file level

prediction will be a better alternative since it can address additional 10% of defects by

addressing additional 700 lines of code as defective.

Results presented in 6.8 are consistent with results from NASA datasets in 6.3.

Source file level prediction provides slightly better defect detection probability rates

for most of the datasets, half of them being statistically insignificant. On the other

hand, source file level prediction provides worse false alarm rates than module level

prediction on all datasets and all of these values are statistically significantly. As a

result, most of the balance results are significantly worse for source file level prediction

than for module level prediction. Nevertheless, it is seen that the decrease in the rate

of balance values are not as high as decrease rates for SoftLab dataset results. Thus

we can claim that this is a supporting factor on our hypothesis which states that in

order to have better performance on balance criteria, larger datasets are required.

Cost-benefit analysis for eclipse data repository (see Table 6.9) show that source

file level prediction provides worse gained efficiency values for all of the datasets (worse

by 2% - 4%). Recall from Table 6.8 that defect prediction probabilities are better for
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Table 6.8. Module level vs source file level NB results (eclipse)



57

Table 6.9. Cost-benefit analysis of NB on eclipse datasets
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source file level prediction, but according to cost-benefit analysis amount of source code

that needs to be validated is smaller when module level prediction is used. Thus there

is a trade-off between detection rate and verification size and according to domain of

interest either of the models can be useful.

In order to demonstrate how to analyze the results of cost-benefit analysis, let

us consider jdi and ui datasets. Probability of detection for jdi dataset on source file

level is significantly better than on module level, but amount of code that source file

level predictor addresses as defective is also higher than module level predictor. Thus a

project manager will have to make a decision between detecting additional 2% defects

or additional 500 lines of code inspection. Considering that 500 lines of code will

probably not require so much testing effort then the choice will be beneath source file

level predictor. For the ui dataset, source file level prediction provides significantly

better pd value (at α = 0.05) but this time the additional amount of source code to

be validated is 10K (increased by 66%). Decision to be made at this point will be, is

detecting 1% of defects worth validating additional 10K lines of source code. If domain

of interest is not one that requires zero defect product to be resulted, then apparently

the choice will be beneath module level predictor.

6.2.2. Decision Tree Classifier

Experiments with decision tree classifier are performed to inspect the effect of

performing defect prediction on different granularity levels for a second type of machine

learning algorithm. As in case of Näıve Bayes classifier experiments, K-fold cross

validation is performed for both module and source file level experiments where for

module level prediction and for source file level prediction.

For decision tree classifier, Emax criterion also needs to be optimized as explained

in Section 2.4. The value of Emax is used when the algorithm decides whether a node is

pure enough or not. So Emax directly affects the size of the tree and must be optimized.

For this purpose, the experiments are repeated for several Emax values in the range

[0.0002, 0.2] and the value providing the best results are presented in this subsection.
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It is observed that optimum value of Emax is related to the size of the dataset and the

percentage of defective samples in it. Emax values used in experiments are presented

in the Table 6.10:

Table 6.10. Optimum set of Emax values

A common Emax value for eclipse data repository is provided based on the obser-

vations made. Eclipse datasets are large in size and their defectiveness characteristics

are similar to each other, thus their error threshold values turned out to be similar.

Values provided in Table 6.10 are obtained after performing several experiments and

the optimum value is presented.

Recall that previous section showed that performance of defect prediction for

module level and source file level was not affected significantly when SLOC metrics

were removed from NASA datasets. Thus when evaluating decision tree model, those

metrics are included in the dataset in order to be able to perform cost-benefit analysis

as well. Results of experiments with the Emax values in Table 6.10 will be provided in

separate tables for each data repository.

Table 6.11 presents an overview of results for decision tree classifier for both

module level and source file level predictions. Performing defect prediction on source file

level provides better pd values for all of the projects and according to t-test results the

difference between pd values are significant at α = 0.05 level. But, like in our previous

experiments, source file level prediction provided significantly worse pf values for most
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Table 6.11. Module level vs source file level DT results (NASA)

of the datasets. Table 6.10 also shows that source file level prediction provides better

balance rates for most of the datasets and according to t-test results only two of these

results (CM1 and PC1) are not statistically significant. Thus we can conclude that

source file level prediction might be a better alternative on NASA datasets especially

for cases where false alarm rate is not a main concern.

Table 6.12. Cost-benefit analysis of DT on NASA datasets

Cost benefit analysis results show that even though source file level prediction

provides high defect prediction probability, it suffers from gained efficiency criteria.

Main reason for having low gain in terms of verification size is the high rates of false

alarms of source file level predictor. Source file level predictor will lead to detection
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of 20% more defects by addressing additional 1K lines of codes but not all of that

additional source code will be defective. Thus a project manager will have to choose

whether detecting additional 20% defects is worth tripling the verification size. This

behavior is even more crucial for PC1 dataset, because source file level prediction

increases the defect prediction probability from 36% up to 67% but it will requires

verification of 40 times the code that would be validated if module level predictor was

used.

Table 6.13. Module level vs source file level DT results (SoftLab)

Table 6.13 shows the results for module level and source file level predictions

using decision tree classifier. The proposed model provides worse values for all criteria

on AR3 dataset, and pf and balance results are significant. Results on AR5 dataset

shows that the model’s performance is better on all criteria but t-test results reveal

that they are not significantly better than module level prediction results. Using this

information from the results and information about the datasets from Table 5.2, we can

see that decision tree classifier requires larger datasets to work on, in order to provide

significantly better values. Results for AR4 support this claim since significantly better

defect detection and balance rates are achieved on this dataset. They are also similar

to results of NASA datasets in terms of resulting in worse pf rates and NASA datasets

are relatively large compared to SoftLab datasets.

Results of NASA and SoftLab data repositories reveal that decision tree classi-

fier can predict the defect with significantly high performance and also can provide
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improved balance values if the dataset contains enough samples to let decision tree to

learn the patterns in it. Decision tree classifiers can build effective tree structures that

correctly identifies defective and non-defective data samples, but when the dataset size

is small, as it is in AR3 (8 source files, 3 defective) and AR5 (7 source files, 3 defective),

the performance of the model becomes instable and performance may not be improved

significantly.

Table 6.14. Cost-benefit analysis of DT on SoftLab datasets

According to cost-benefit analysis results, source file level tends to increase veri-

fication size by 2600 LOC and 200 LOC for AR4 and AR5 datasets respectively. With

the contrary to this increase, source file level prediction provides detection of additional

44% of defects for AR4 dataset and 17% of defects for AR5 dataset. Thus it seems

reasonable to use source file level prediction for these two dataset, since the increases

in prediction rates are significant compared to increase in verification size. However

it is seen that the pd rate decreases slightly for AR3 dataset and also verification size

increases by 500 LOC which means that source file level does not serve well for the

defect prediction purposes on AR3 dataset.

Table 6.15 provides very interesting results for performing defect prediction by

decision tree classifier on Eclipse dataset. Source file level prediction results show that

they are worse according to all criteria for most of the datasets. Only exceptions for

this statement appear in pd result of jdt common dataset which is not a significant

result according to t-test. Except for pd value of pde dataset and pd and balance values
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Table 6.15. Module level vs source file level DT results (eclipse)
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of team dataset, all other results are statistically significant even though the means are

both very high. Significantly worse results for source file level prediction do not mean

that source file level prediction is not a good option. Because, it can be observed that

the results are very high for both of the defect predictors and not just for module level

prediction (e.g. pde dataset). One possible reason for having such rates of detections

is summarized in the following paragraph.

One reason that might have caused such high levels of prediction performances

can be related to the extraction method of datasets. As explained in sub-section 5.1.1,

Eclipse source code metrics are extracted directly from source code of Eclipse project

with the help of a tool named Predictive 3. Defect data related to modules are also

extracted with the help of the same tool, not from any bug tracking software which

means that the defect data is a ”prediction” of actual defects. Thus the algorithm

that predictive 3 uses to predict the defects in the source code is important since if

the tool uses decision tree classifier to predict the defects either, then it might explain

high rates of defect detection. Predictive 3 assigns possibilities of being defective for

each module and according to those possibilities it addresses the modules as low risk,

normal risk and high risk modules. Afterwards it predicts the defectiveness of a module

according to its risk factor. Thus it would be possible for our model to capture similar

behaviors in the source code and assign similar rates for the modules which would

lead similar defect prediction behaviors. In order to prove or disprove this hypothesis,

a web research on the tool is performed but since the tool is currently out-of-shell

product, necessary information could not be obtained. Näıve Bayes results from Table

6.8 support this claim in that the false alarm rates are not as low as decision tree

results and also balance values are not as high as decision tree results. But in order

to prove or disprove this claim, additional models must be implemented to work on

eclipse datasets.

Cost-benefit results from Table 6.16 show us that both defect prediction models

provide similar gained efficiency values (3% difference at most). Also analyzing the

table for ”Inspected LOC (IL)” row, it can be seen that both models address similar
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Table 6.16. Cost-benefit analysis of DT on eclipse datasets
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amount of source code as defective for most of the projects. Each of these datasets

has similar structures and characteristics in that, they are sub-projects of the same

project, implemented with an object-oriented language and developed using the same

processes. Having that information and the results in Table 6.16, it is not possible

to draw a definite conclusion about which defect prediction model is better under

what circumstances. However, it is observed that balance values for source file level

prediction did not worsen dramatically and this is a supporting factor for our hypothesis

on the number of source file’s affecting the balance results of the predictor. This will

be further examined in the conclusions section.

6.2.3. Multi-level Prediction

Multi-level defect prediction is defined as performing source file level prediction

and module level prediction consecutively. Previous experiments have shown that

source file level prediction can provide better pd values but it suffers from higher

verification sizes. In order to inspect whether a model that takes advantage of both

approaches can be developed, we offer performing both prediction models consecutively.

Experiments on multi-level prediction are performed using the same parameters

as defined for module level and source file level predictions. Results of the experiments

are compared to the results of source file level prediction in order to inspect whether

the performance of the model can be improved by applying module level prediction

after source file level prediction.

Table 6.17. Source file level vs multi-level NB results (NASA)
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Table 6.18. Cost-benefit analysis of NB on NASA datasets

Results for NASA datasets show that multi-level Näıve Bayes prediction provides

significantly worse defect detection rates. Despite significant decrease in probability of

false alarm rates for multi-level prediction, balance values are still significantly worse

than module level prediction. On the other hand, cost-benefit analysis results show

that multi-level prediction can provide more efficient results on both of the projects.

For CM1 dataset, results show that multi-level prediction can predict 25% less defects

(57% vs. 32%) by addressing 92% less amount of source code as defective (5205 vs.

411) which also means detecting 32% of all defects by addressing only 411 lines of

source code out of 16903 lines of source code. Thus it can be concluded that multi-

level prediction can provide higher improvement for the code coverage to be verified

than decrease in prediction performance, which makes multi-level prediction a better

alternative for CM1 dataset.

Source file level Näıve Bayes can predict 82% of defects for PC1 dataset by ad-

dressing 50% of entire source code as defective according to Table 6.18. On the other

hand, multi-level Näıve Bayes can narrow down the defectively predicted source code

coverage down to 4% with the cost of reduced probability of detection. Multi-level

prediction can predict 33% of all defects within 941 lines of codes. Thus it can be

concluded that even though the prediction performance of multi-level prediction is not

high enough to be trusted on planning the verification phase, it can still be helpful in a

quick verification of product, since it can predict each one of three defect by addressing

a relatively small amount of source code.
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Table 6.19. Source file level vs multi-level NB results (Eclipse)
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According to Table 6.19, performing module level Näıve Bayes after source file

level Näıve Bayes provides significant improvements on the performance of the predic-

tor. Defect detection probabilities are similar for both models, neither better values

nor worse values are statistically significant than each other. However considering

probability of false alarm and balance criteria shows that multi-level prediction has

clearly a better prediction performance. T-test results reveal that both pf and balance

values are statistically significant (the only exception is jdt ui dataset). Thus it can be

concluded that performance of source file level Näıve Bayes can be improved in terms

of performance criteria by applying module level Näıve Bayes on the results of source

file level prediction. In order to inspect the effect of this process, cost-benefit analysis

will also be performed.

Even though results presented in Table 6.19 has shown that multi-level prediction

can provide better performance values, cost-benefit analysis shows that using multi-

level prediction will result in increase in verification efforts. Considering that probabil-

ity of defect detection rates are similar for both models, increase in inspected lines of

code values for multi-level prediction model means that it will cause more source code

to be analyzed to detect the same amount of defects. However decrease in false alarm

rates shows that the model does not predict high volumes of source code by addressing

most of modules as defective. Thus the only logical explanation for the increase in

inspected loc is that source file level prediction can predict smaller source files with

higher accuracy and can miss few of defects in larger source files which results in higher

prediction performance but smaller source code coverage. Thus it can be concluded

that multi-level prediction will be a better model for eclipse datasets, and that if source

file level predictor will be used then further inspection might be necessary for larger

source files.

Table 6.21 shows decision tree results for source file level and multi-level predic-

tion. It is seen that multi-level prediction has a lower performance on both pd and

pf criteria and t-test results verify that these differences are statistically significant.
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Table 6.20. Cost-benefit analysis of NB on eclipse datasets

Table 6.21. Source file level vs multi-level DT results (NASA)
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Even though multi-level prediction provides better balance value for CM1 dataset, this

value is not significantly better. Thus it is concluded that multi-level decision tree will

clearly provide worse performance on defect prediction point of view.

Table 6.22. Cost-benefit analysis of DT on NASA datasets

Cost benefit analysis of decision tree for source file level and multi-level models

show that multi-level prediction can provide more efficient results in terms of verifica-

tion effort point of view. CM1 results reveal that multi-level prediction can address

33% of defects by addressing only 481 lines of code which is 9% of entire source code.

On the other hand, source file level prediction can predict 44% of defects by addressing

1770 lines of codes which is 24% of entire source code. Thus the ratio of number of

defects covered to the effort to be spent on verification of that coverage is higher for

multi-level prediction which means it can be used for a quick verification and testing

phase.

PC1 results also show that multi-level prediction can provide significant improve-

ment in inspected lines of code criteria with the cost of decreased pd values. However

it is seen that multi-level prediction can decrease total lines of code to be verified from

9630 down to 1030 which decreases the verification effort by 89% and the probability

of prediction decreases by only 50% (from 67% down to 32%). Thus it can be con-

cluded that multi-level decision tree classifier can be useful in order to plan a quick

and efficient testing phase, but it should be noted that the probability of detection will

be low and further analysis will be necessary to detect all defects.
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Table 6.23. Source file level vs multi-level DT results (eclipse)
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Decision tree results for eclipse dataset show that multi-level prediction provides

better probability of detection values for 4 of the datasets and worse results for remain-

ing 7 datasets. Even though probability of false alarm rate values are better for all

datasets, balance values are still in parallel with pd values (4 better values and 7 worse

values). Since all datasets are from the same domain and have similar structures, it

is hard to draw a strict conclusion on the results for this experiment and define what

affected the outcome of it. Cost-benefit analysis may provide some useful information

on which model is better than the other.

Table 6.24. Cost-benefit analysis of DT on eclipse datasets
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Cost-benefit analysis of source file level and multi-level prediction models show

that multi-level decision tree classifier has a consistently better performance in terms of

gained efficiency criteria. For jdi, jdt internal, jdt ui, swt and ui datasets, multi-level

prediction have better or similar pd performance and even better gained efficiency rates,

which means that multi-level prediction can both increase the prediction performance

and decrease the verification costs. Thus it is reasonable to choose multi-level prediction

for these datasets. For the remaining datasets, multi-level dataset still provides better

improvements in terms of gained efficiency criteria than decrease in probability of

detection criteria. Consider jdt common dataset where the decrease in pd value is

the highest. Multi-level prediction can predict 79% of all defects within 254 lines of

codes in average where source file level prediction can predict additional 16% defects

by addressing 497 lines of codes. Thus it can be concluded that even though the

probability of detection (or balance values) decrease for multi-level prediction, it can

still provide important information that will help in planning testing phase efficiently.

6.3. Discussion of the Results

In order to evaluate the proposed approach, namely source file defect prediction,

two different machine learning algorithms in our proposed model are implemented and

several experiments are performed. Results of the experiments were neither discour-

aging nor very promising. It is observed that the proposed approach can improve the

performance of predictor especially in terms of prediction performance, but an increase

in one aspect generally caused a decrease in another aspect which makes the proposed

approach an alternative to existing models, rather than a replacement to them.

Näıve Bayes classifier results have shown that performing source file level predic-

tion on small datasets (containing only tens of source files) produces low probability

of detection rates and higher probability of false alarm rates. As the number of source

files decrease, the ability of the model to learn defective and non-defective samples

diminish and the model fails to provide better performance values. More qualified re-

sults are obtained from eclipse dataset experiments, which resulted in increased defect

detection rates for most of the projects. However, source file level prediction model
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suffered from high false alarm rates which decreased the balance value of the model as

well as resulting in increased inspected lines of code values.

Decision tree classifier provided better when performed on source file level for

NASA datasets. However results for module level decision tree classifier turned out to

be unexpectedly low, especially for PC2 dataset. In order to find the cause of this low

probability of detection rates, datasets are inspected against many aspects but none

of the inspected aspects turned out to be directly related to performance of the model

(See Appendix C). Thus we decided to inspect the only known problem about the

datasets, which is the problematic line of code measures. It is observed in Table 6.11

that source file level prediction outperformed module level prediction for all datasets;

however the rate of improvement is much more for MC1, PC2 and PC3 datasets,

which are known to have erroneous line of code measurements. The improvement

in the model’s performance is limited for CM1 and PC1 datasets and these datasets

have accurate line of code measurements. There seemed to be a relation between the

problem with line of code metrics and the decrease in the performance of the model,

thus additional experiments are performed on NASA datasets after removing line of

code metrics. Results of the additional experiments have shown that the performance

of the model decreased by 2% for CM1 dataset, 1% for PC1 dataset and increased by

4% for MC1 dataset and by 1% for PC2 and PC3 datasets. Even though changes in the

model performances are not statistically significant, we think that it can be considered

as a factor that affects the model performance.

Results for decision tree classifier on eclipse datasets have shown that source file

level prediction fails on both improving the performance of the predictor and also de-

creasing the verification effort. Considering that decrease of probability of detection

and balance values are statistically significant, it can be considered that module level

prediction outperforms decision tree classifier on these datasets. Eclipse datasets are

relatively large in size compared to both NASA and SoftLab datasets. Taking into ac-

count that source file level prediction have provided equal performance to module level

prediction on jdt common dataset, which is the smallest dataset in eclipse repository;

we can conclude that source file level prediction can be a good defect prediction model
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for small datasets but as the size of dataset grows the performance of source file level

prediction will tend to be worse than module level prediction.

Our last set of experiments revealed that performing module level prediction after

source file level prediction can improve the model’s performance either from detection

rates perspective or net effect perspective in terms of verification effort or even in

both perspectives. We found out in our previous experiments that source file level

prediction tends to increase the probability of detection with the cost of increased false

alarm rates. Performing module level prediction after source file level prediction turned

out to decrease the false alarm rates without decreasing detection rates, especially for

bigger datasets. Resulting balance values are higher than source file level prediction

balance values as expected. Trade-off for increased balance values appears in the form

of increased verification efforts for most of the projects. However considering that

verification effort gain rates does not decrease substantially (6% at most) and they are

still as high as 90% for most projects, it can be concluded that increase in verification

effort can be acceptable in order to detect more defects.
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7. CONCLUSIONS AND FUTURE WORK

In this chapter, the conclusions drawn from the thesis study and topics which we

think to be open for improvement is addressed.

7.1. Conclusions

In this research, we tried to examine the effect of performing defect prediction

on different granularity of source code structures. We implemented different machine

learning models to predict defects on module level and source file levels and evaluated

the models in both performance criteria and also performed cost-benefit analysis.

Results of this research have revealed that there is a trade-off between the pre-

diction performance of a model and its verification effort gain when the model is used

to predict defects using different granularity levels. For most of the projects, when-

ever the prediction performance of the model increased, we observed a decrease in the

verification effort gain and inversely, an increase in verification effort gain resulted in

a decrease in prediction performance. A project manager who wants to perform de-

fect prediction needs to consider this relation and must choose which criterion is more

important for the projects needs. If the project has mission-critical requirements and

needs to be tested thoroughly, then the manager would choose the prediction model

providing higher prediction performance.

Comparisons of source file level and module level prediction results have shown

that performing defect prediction on higher levels of source code structures have dif-

ferent impacts on smaller datasets and larger datasets. Performing defect prediction

on higher levels of structures like source files tends to provide better balance values on

NASA and SoftLab datasets than on Eclipse datasets. Even though defect prediction

probability rates on source file level prediction is better than module level prediction,

since source file level prediction has significantly worse false alarm rates; the overall

performance of the model turns out to be worse. Thus we can conclude that when
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performing source file level prediction on highly granular structures, a project manager

should keep in mind that model will provide relatively high false alarms and hence the

total size of source code to be verified will increase.

Considering the problem with source file level prediction explained in previous

paragraph, we decided to perform both levels of predictions consecutively. Proposed

multi-level prediction model performed defect prediction firstly on less granular struc-

tures like source files and high granular structures like modules. Re-evaluating the

outcome of source file level prediction with module level prediction resulted in im-

proved prediction and verification gain ratios for most of the projects, especially when

Näıve Bayes classifier is used as the machine learning algorithm. Considering that

multi-level prediction provided good results, we hope that this approach will be fur-

ther investigated by other researchers.

7.2. Contributions

This research performed defect prediction on a higher level of software hierarchy,

namely source file level and evaluated its performance in terms of performance of the

prediction and also provided cost-benefit analysis of the predictor. Similar studies in

the literature performed source file level prediction either by using direct attributes for

source files, or did not evaluate the performance of the model in terms of its costs and

benefits. Thus this study can be accepted as the first study to evaluate source file level

defect prediction in both performance and cost-benefit analysis points of view. From

this point of view, results of this study can be seen as a basis for comparison for future

studies in this area.

This research is the first study in the literature to perform ”multi-level defect

prediction”. When analyzing the effect of granularity on defect prediction performance,

we decided to perform prediction on both granularity levels consecutively, which is not

performed by any other researchers to the best of our knowledge.

Another contribution of this research is evaluating the performance of two dif-
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ferent machine learning classifiers on source file level prediction for SoftLab datasets.

SoftLab dataset repository is a relatively new and developing data repository which

needed to be evaluated with different machine learning applications and this thesis

study evaluated the datasets using Näıve Bayes Classifier and Decision Tree Classifier.

We stated one major challenge of learning based models as collecting data to train

and validate the model. During this research we analyzed an open source software prod-

uct, Eclipse, and extracted source code metrics from its source code. Additionally we

used a commercial off-the-shelf product that performs defect prediction to relate de-

fect information with the source code metrics. Both source code metrics and predicted

defect information will be available for public use in future researches.

One major contribution of this research is development of a tool which is capable

of performing module level and source file level defect prediction using both Näıve Bayes

and Decision Tree classifiers. The tool is developed in Java programming language and

reached to a size of 10K lines of codes in total which shows a remarkable effort being

spent on the development. The tool supports the following operations:

• Data mining module level datasets to create source file level datasets

• Performing Näıve Bayes and Decision Tree classification on both module and

source file levels

• Visual representation of results of experiments in both a table format and box

plots graphs

• Ability to change model parameters such as n value for n-folding and value for

DT at runtime, and to optimize these parameters for experiments

• Providing excel format outputs of results of experiments, as well as graphical

objects of box plots for future reference

• Performing statistical tests (t-test) on results of experiments
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7.3. Future Work

In section 5.3 we addressed a threat to validity of our experiments for NASA

dataset and explained that in order to remove that threat we used 14 additional datasets

from 2 different data repositories. However a future work can also be addressed in order

to overcome this threat by predicting the SLOC metrics, which are addressed to be

faulty, from the values of other correct metrics of the same data sample and SLOC

metrics of other correct data samples. If the missing values can be filled up, then

MC1, PC2 and PC3 datasets will also be available for evaluating the proposed model.

Regarding the fact that NBC provided better performances on these datasets on source

file level, achieving this goal would probably provide supporting results for our study.

Implementation of multi-level defect predictors was a contribution of this study,

and it turned out that multi-level defect prediction can be helpful especially to improve

the performance of source file level Näıve Bayes classifier. A further model based on

applying multi-level prediction can be developed which uses both levels of prediction in

parallel, not consecutively. Module level defect prediction and source file level predic-

tion can be applied on the same dataset, and results of one of the models can be used

to justify results of the other model. Finding a good method for justification of results

will be critical in such a method, since it will be the key factor to increase detection

probability and decrease false alarm rates.
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APPENDIX A: SOFTWARE CODE METRICS

Detailed information on software code metric features that are used in this study

is given in this chapter. Further information on these features and their explanations

can be found in [2, 4, 8, 9, 63].

SLOC metrics measure the source code’s length as lines of codes and they are

extracted directly from the source code of the software product. Other source code

metrics also measure the source code’s structure in many different perspectives. Details

of these features can be found in Table A.1. These metrics are also known as Base

Metrics since they are not derived from any other metrics.

Other software code metrics are known as composite metrics since they are derived

from the base metrics. McCabe’s metrics and Halstead’s metrics are these types of

metrics which are presented in Table A.2.

Table A.1. Base source code metrics
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Table A.2. Composite source code metrics

Table A.3. Object-oriented source code metrics
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APPENDIX B: DETAILED ANALYSIS OF DATASETS

Table B.1. Detailed dataset analysis - module level (part 1)
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Table B.2. Detailed dataset analysis - source file level (part 1)

Table B.3. Detailed dataset analysis - module level (part 2)
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Table B.4. Detailed dataset analysis - source file level (part 2)
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APPENDIX C: BOX PLOTS OF NAÏVE BAYES

EXPERIMENTS

Figure C.1. Comparison of Näıve Bayes box plots for CM1 dataset

Figure C.2. Comparison of Näıve Bayes box plots for MC1 dataset
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Figure C.3. Comparison of Näıve Bayes box plots for PC1 dataset

Figure C.4. Comparison of Näıve Bayes box plots for PC2 dataset
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Figure C.5. Comparison of Näıve Bayes box plots for PC3 dataset

Figure C.6. Comparison of Näıve Bayes box plots for AR3 dataset
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Figure C.7. Comparison of Näıve Bayes box plots for AR4 dataset

Figure C.8. Comparison of Näıve Bayes box plots for AR5 dataset
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Figure C.9. Comparison of Näıve Bayes box plots for jdi dataset

Figure C.10. Comparison of Näıve Bayes box plots for jdt apt dataset
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Figure C.11. Comparison of Näıve Bayes box plots for jdt common dataset

Figure C.12. Comparison of Näıve Bayes box plots for jdt core dataset



92

Figure C.13. Comparison of Näıve Bayes box plots for jdt internal dataset

Figure C.14. Comparison of Näıve Bayes box plots for jdt ui dataset
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Figure C.15. Comparison of Näıve Bayes box plots for jface dataset

Figure C.16. Comparison of Näıve Bayes box plots for pde dataset
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Figure C.17. Comparison of Näıve Bayes box plots for swt dataset

Figure C.18. Comparison of Näıve Bayes box plots for team dataset
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APPENDIX D: BOX PLOTS OF DECISION TREE

EXPERIMENTS

Figure D.1. Comparison of Decision Tree box plots for CM1 dataset

Figure D.2. Comparison of Decision Tree box plots for MC1 dataset
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Figure D.3. Comparison of Decision Tree box plots for PC1 dataset

Figure D.4. Comparison of Decision Tree box plots for PC2 dataset
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Figure D.5. Comparison of Decision Tree box plots for PC3 dataset

Figure D.6. Comparison of Decision Tree box plots for AR3 dataset
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Figure D.7. Comparison of Decision Tree box plots for AR4 dataset

Figure D.8. Comparison of Decision Tree box plots for AR5 dataset
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Figure D.9. Comparison of Decision Tree box plots for jdi dataset

Figure D.10. Comparison of Decision Tree box plots for jdt apt dataset
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Figure D.11. Comparison of Decision Tree box plots for jdt common dataset

Figure D.12. Comparison of Decision Tree box plots for jdt core dataset
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Figure D.13. Comparison of Decision Tree box plots for jdt internal dataset

Figure D.14. Comparison of Decision Tree box plots for jdt ui dataset
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Figure D.15. Comparison of Decision Tree box plots for jface dataset

Figure D.16. Comparison of Decision Tree box plots for pde dataset
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Figure D.17. Comparison of Decision Tree box plots for swt dataset

Figure D.18. Comparison of Decision Tree box plots for team dataset
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