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I want to thank Assoc. Prof. Yağmur Denizhan, who introduced me to the

subject, for her guidance and help during the preparation of this thesis. I have very

much benefited from the discussions we had on the subject.

I would like to express my sincere gratitude to my family who have never hesitated

to give me all assitance they can throughout my entire life.

This thesis has been supported by TUBİTAK National Scholarship Programme
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ABSTRACT

A COMPARISON OF IDENTIFICATION TECHNIQUES

FOR FRACTIONAL ORDER SYSTEMS

This thesis compares the performances of various identification methods of de-

terministic and linear systems described by fractional order models. A detailed intro-

duction to fractional calculus and fractional differential equations is presented. In this

respect, the definitions of fractional calculus by Cauchy, Grünwald-Letnikov, Riemann-

Liouville and Caputo as well as their properties and integral transforms are covered.

Both analytical and numerical solutions of fractional differential equations as well as the

initial condition problem are given in this thesis. Nonparametric and parametric sys-

tem identification techniques for integer order systems are reviewed. The investigated

fractional order identification methods are parametric techniques based on minimizing

the prediction error. The modeling is done in black-box approach where the structure

of the fractional order differential equation is selected at the start of the identifica-

tion procedure. The estimation of the parameter vector can be performed in time and

frequency domain. Time domain identification is carried out by using linear regres-

sion form and Grünwald-Letnikov’s definition while the investigated frequency domain

methods are Levy’s method and Levy’s method with Vinagre’s weights. As benchmark

systems, semi-integrating electrical circuits and Bagley-Torvik’s viscoelastic system are

used. Identification results have revealed that in general the proposed fractional order

models are more successful at predicting the system output than the proposed integer

order models. The persistency of excitation from integer order system identification

has to be redefined for fractional order system identification. Time domain methods

can be applied directly while in frequency domain system’s frequency response must

first be estimated by nonparametric methods. Original contribution of this thesis is the

comparison of integer and fractional order models for the chosen benchmark systems.
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ÖZET

KESİRLİ DERECELİ SİSTEMLER İÇİN SİSTEM TANIMA

TEKNİKLERİNİN KARŞILAŞTIRILMASI

Bu tezde çesitli sistem tanıma tekniklerinin kesirli dereceli deterministik doğrusal

sistemler üzerindeki performansları karşılaştırılmıştır. Bu çalışmanın öncelikli hede-

flerinden biri, kesirli dereceli matematiğin tanıtılmasıdır. Bu bağlamda kesirli dereceli

matematikte en çok kullanılan Cauchy, Grünwald-Letnikov, Riemann-Liouville ve Ca-

puto türev ve integral tanımları incelenmiştir. Bu tanımların özellikleri ve Laplace

dönüşümlerine yer verilmiştir. Kesirli dereceli diferansiyel denklemlerin analitik ve

sayısal çözümleri ile birlikte başlangıç koşulu problemi araştırılmıştır. Parametrik ve

parametrik olmayan tamsayılı sistem tanıma teknikleri üzerinde çalışılmıştır. İncelenen

kesirli dereceli sistem tanıma teknikleri parametriktir ve öngörü hatasını küçültmeye

dayanır. Kullanılacak olan kesirli dereceli diferansiyel denklemin yapısı siyah-kutu

yöntemi gereği kullanıcı tarafından başta seçilir. Parametre vektörü zaman tanım

kümesi ve frekans tanım kümesi metotları ile bulunabilir. Zaman tanım kümesinde

doğrusal regresyon formu ve Grünwald-Letnikov tanımı kullanılırken frekans tanım

kümesinde Levy’nin metodu ve Vinagre ağırlıklarının bu metoda uygulanması incelenir.

Anlatılan tekniklerin karşılaştırılması yarım integral alıcı devreler ve Bagley-Torvik sis-

temi üzerinde yapılır. Sonuçta önerilen kesirli dereceli modellerin tamsayı karşılıklarına

göre dinamik sistemi temsil etmede genelde daha başarılı oldukları görülmüştür. Giriş

işaretleri için geçerli olan sürekli uyarma kavramının kesirli dereceli sistem tanıma için

tekrar tanımlanması gerektiğini gözlenmiştir. Zaman tanım kümesi metotları doğrudan

uygulanabilirken frekans tanım kümesinde ilk önce frekans cevabının parametrik ol-

mayan metotlar ile bulunması gerekir. Bu tez çalışmasında özgün olarak tamsayılı ve

kesirli dereceli modeller seçilen örnek sistemler üzerinde karşılaştırılmıştır.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF SYMBOLS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . xvi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Dynamical System Models . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Fractional Order Equations . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4. System Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1. Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.2. System Identification Procedure . . . . . . . . . . . . . . . . . . 7

1.5. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. FRACTIONAL ORDER LINEAR SYSTEMS . . . . . . . . . . . . . . . . . 12

2.1. Fractional Order Calculus . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1. Gamma Function . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2. Definitions and Properties of Fractional Order Calculus . . . . . 16

2.1.2.1. Fractional-order Cauchy Integral Formula . . . . . . . 16

2.1.2.2. Grünwald-Letnikov Definition . . . . . . . . . . . . . . 16

2.1.2.3. Riemann-Liouville Definition . . . . . . . . . . . . . . 17

2.1.2.4. Caputo Definition . . . . . . . . . . . . . . . . . . . . 17

2.1.2.5. Properties of Fractional-Order Calculus . . . . . . . . 18

2.1.3. Integral Transforms of Fractional Operators . . . . . . . . . . . 19

2.1.3.1. Laplace Transform of Integrals . . . . . . . . . . . . . 20

2.1.3.2. Laplace Transform of Fractional Derivatives . . . . . . 20

2.1.4. Numerical Evaluation of Fractional Order Differentiation . . . . 22

2.1.4.1. Using Grünwald-Letnikov Definition . . . . . . . . . . 22

2.1.4.2. Using Backward Differences . . . . . . . . . . . . . . . 22



vii

2.2. Fractional Order Linear Differential Equations . . . . . . . . . . . . . . 25

2.2.1. Mittag-Leffler Function . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2. Numerical Methods of Solving FODEs . . . . . . . . . . . . . . 27

3. INTEGER ORDER SYSTEM IDENTIFICATION TECHNIQUES . . . . . 33

3.1. Review of Linear Systems . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1. Impulse Response . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.2. Disturbance Framework . . . . . . . . . . . . . . . . . . . . . . 35

3.2. Nonparametric Identification . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1. Time Domain Methods . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1.1. Impulse Response Analysis . . . . . . . . . . . . . . . 36

3.2.1.2. Step Response Analysis . . . . . . . . . . . . . . . . . 37

3.2.1.3. Correlation Analysis . . . . . . . . . . . . . . . . . . . 38

3.2.2. Frequency Domain Methods . . . . . . . . . . . . . . . . . . . . 39

3.2.2.1. Frequency Analysis by Correlation Method . . . . . . 40

3.2.2.2. Fourier Analysis . . . . . . . . . . . . . . . . . . . . . 41

3.2.2.3. Spectral Analysis . . . . . . . . . . . . . . . . . . . . . 43

3.3. Parametric Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.1. Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2. Parametrized Model Structures . . . . . . . . . . . . . . . . . . 46

3.3.2.1. Equation Error Model Structure . . . . . . . . . . . . 47

3.3.2.2. ARMAX Model Structure . . . . . . . . . . . . . . . . 48

3.3.2.3. Output Error Model Structure . . . . . . . . . . . . . 50

3.3.2.4. General Family of Model Structures . . . . . . . . . . 51

3.3.3. Prediction Error Framework . . . . . . . . . . . . . . . . . . . . 52

3.3.3.1. Linear Regression and Least-Squares Method . . . . . 53

3.4. Persistence of Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5. Comparison of Integer Order Identification Methods . . . . . . . . . . . 59

4. FRACTIONAL ORDER SYSTEM IDENTIFICATION TECHNIQUES . . . 68

4.1. Parametric Identification with Fractional Order Models . . . . . . . . . 68

4.1.1. Time Domain Methods . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1.1. Linear Regression . . . . . . . . . . . . . . . . . . . . . 68

4.1.1.2. Iterative Search By Grünwald-Letnikov Definition . . . 70



viii

4.1.2. Frequency Domain Methods . . . . . . . . . . . . . . . . . . . . 72

4.1.2.1. Levy’s Identification Method . . . . . . . . . . . . . . 73

4.1.2.2. Enhancing Levy’s Identification with Weights . . . . . 76

4.2. Benchmark Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1. Semi-integrating Circuits . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2. Viscoelastic System of Bagley-Torvik . . . . . . . . . . . . . . . 87

4.3. Comparison of Fractional Order Identification Methods . . . . . . . . . 90

5. A HEURISTIC PROCEDURE FOR IDENTIFYING AN UNKNOWN LINEAR

DETERMINISTIC SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

APPENDIX A: EXISTENCE AND UNIQUENESS THEOREMS FOR FODEs 119

APPENDIX B: STOCHASTIC PROCESSES . . . . . . . . . . . . . . . . . . 123

APPENDIX C: TRANSFER FUNCTION OF LTI SYSTEM . . . . . . . . . . 125

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



ix

LIST OF FIGURES

Figure 1.1. A system with output y, input u, measured disturbance w, and

unmeasured disturbance v. . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2. Flowchart of the basic system identification method [1]. . . . . . . 9

Figure 1.3. Identification approach. . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.1. Gamma function and its reciprocal for −4 ≤ x ≤ 6. . . . . . . . . 15

Figure 2.2. Comparison of Cauchy and Grünwald-Letnikov definition of a frac-

tional derivative to the order 0.75 for f(t) = sin(3t + 1). . . . . . . 23

Figure 2.3. Comparison of Grünwald-Letnikov and backward difference defini-

tion of a fractional derivative to the order 0.75 for f(t) = sin(3t + 1). 25

Figure 2.4. One-parameter Mittag-Leffler function as α varies from 0.2 to 1.0

in 0.2 increments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 2.5. Analytical and numerical solutions of two-term FODE for α = 1.8. 30

Figure 2.6. Analytical and numerical solutions of the 2-FODE with Caputo

initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.7. Analytical and numerical solutions of the 2-FODE with the RL

initial conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.1. A framework for linear systems with disturbances. . . . . . . . . . 36

Figure 3.2. One-step-ahead prediction of ν(n). . . . . . . . . . . . . . . . . . . 46



x

Figure 3.3. One-step-ahead prediction of y(n). . . . . . . . . . . . . . . . . . . 46

Figure 3.4. ARX model structure [1]. . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 3.5. ARMAX model structure [1]. . . . . . . . . . . . . . . . . . . . . . 49

Figure 3.6. OE model structure [1]. . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 3.7. Generalized model structure. . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.8. System response to random binary signal. . . . . . . . . . . . . . . 59

Figure 3.9. Detrended output signal (y) and the random binary input signal (u). 60

Figure 3.10. Estimated Impulse response by correlation analysis. . . . . . . . . 61

Figure 3.11. Estimated Step Response by Correlation Analysis. . . . . . . . . . 61

Figure 3.12. Estimated Frequency Response by ETFE and SPA. . . . . . . . . 62

Figure 3.13. Comparison of the measured output and the OE model output. . . 63

Figure 3.14. 5-step-ahead comparison of the measured output and the OE and

ARMAX model outputs. . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 4.1. An integrating circuit. . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.2. A simple 3-component circuit [6]. . . . . . . . . . . . . . . . . . . 79

Figure 4.3. 5-component circuit [6]. . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 4.4. A semi-integrating circuit [6]. . . . . . . . . . . . . . . . . . . . . . 82



xi

Figure 4.5. A semi-logarithmic plot of f(υ) for various values of n. . . . . . . 84

Figure 4.6. Frequency response of semi-integrators for n1 = 30 and n2 = 50. . 85

Figure 4.7. Pole-zero map of the transfer function of the semi-integrating cir-

cuit of n1 = 30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.8. Step responses of semi-integrating circuits with n1 = 30 and n2 = 50. 87

Figure 4.9. A rigid plate in a Newtonian fluid. . . . . . . . . . . . . . . . . . . 88

Figure 4.10. An immersed plate in a Newtonian fluid. . . . . . . . . . . . . . . 89

Figure 4.11. Input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.12. Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 4.13. Cross Validation with PRBS . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.14. Cross Validation with Step Signal. . . . . . . . . . . . . . . . . . . 93

Figure 4.15. Cross validation of the model estimated by iterative search method. 94

Figure 4.16. Parameter values of the iterative search for the step input . . . . . 95

Figure 4.17. Frequency Response Estimation by ETFE . . . . . . . . . . . . . . 96

Figure 4.18. Levy’s fit in frequency domain with and without weights. . . . . . 97

Figure 4.19. Cross validation for frequency domain estimation. . . . . . . . . . 97



xii

Figure 4.20. Ladder circuit extended with a series connection of a resistor and

an inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 4.21. Input signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 4.22. Model simulations and prediction errors for cross validation with

PRBS response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Figure 4.23. Cross Validation with Step Signal. . . . . . . . . . . . . . . . . . . 100

Figure 4.24. Cross validation of the models by iterative search method . . . . . 101

Figure 4.25. Parameter values of the iterative search for the step input . . . . . 102

Figure 4.26. Frequency response estimation. . . . . . . . . . . . . . . . . . . . . 103

Figure 4.27. Levy’s fit in frequency domain with and without weights. . . . . . 104

Figure 4.28. Cross validation of the models estimated in frequency domain. . . 104

Figure 4.29. Input signals used for identification of the Bagley-Torvik system. . 105

Figure 4.30. Cross validation of fractional order and integer order models. . . . 106

Figure 4.31. Cross validation with step input. . . . . . . . . . . . . . . . . . . . 107

Figure 4.32. Cross validation of the models estimated by iterative search method.108

Figure 4.33. Parameter values of the iterative search for the step input . . . . . 108

Figure 4.34. Frequency response estimation of Bagley-Torvik system. . . . . . . 110



xiii

Figure 4.35. Levy’s fit in frequency domain with and without weights. . . . . . 110

Figure 4.36. Cross validation of the model estimated in frequency domain. . . . 111



xiv

LIST OF TABLES

Table 2.1. Some values of the gamma function. . . . . . . . . . . . . . . . . . 15

Table 3.1. Comparison of nonparametric linear identification methods . . . . 66

Table 3.2. Comparison of parametric identification of black-box model struc-

tures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 4.1. Parameter estimations using linear regression. . . . . . . . . . . . . 92

Table 4.2. Iterative search of the parameters. . . . . . . . . . . . . . . . . . . 93

Table 4.3. Iterative search of the parameters. . . . . . . . . . . . . . . . . . . 95

Table 4.4. Frequency domain estimation of the parameters. . . . . . . . . . . 96

Table 4.5. Parameter estimations using linear regression. . . . . . . . . . . . . 99

Table 4.6. Iterative search of the parameters. . . . . . . . . . . . . . . . . . . 101

Table 4.7. Iterative search of the parameters. . . . . . . . . . . . . . . . . . . 102

Table 4.8. Frequency domain estimation of the parameters. . . . . . . . . . . 103

Table 4.9. Parameter estimations using linear regression. . . . . . . . . . . . . 106

Table 4.10. Iterative search of the parameters. . . . . . . . . . . . . . . . . . . 107

Table 4.11. Iterative search of the parameters. . . . . . . . . . . . . . . . . . . 109



xv

Table 4.12. Frequency domain estimation of the parameters. . . . . . . . . . . 110

Table 4.13. Comparison of fractional order parametric identification methods . 112



xvi

LIST OF SYMBOLS/ABBREVIATIONS

arg min f(x) Value of x that minimized f(x)

E {x} Mathematical expectation of the random vector x

E {x(n)} lim
N→∞

1

N

N∑
n=1

E {x(n)}

aDα
t Continuous integro-differential operator

L {·} Laplace transform

�(z) Real part of the complex number z

�(z) Imaginary part of the complex number z

R Set of real numbers

R
N Euclidian N -dimensional space

Z Set of integer numbers

Rx(τ) E
{
x(n)xT (n − τ)

}
Rx1x2(τ) E

{
x1(n)xT

2 (n − τ)
}

Φx(ω) Power spectrum of x

Φx1x2(ω) Cross power spectrum between x1 and x2

G(ejω) Frequency Response

G(s) Continuous time transfer function from u to y

G0(s) True continuous time transfer function from u to y

G(z) Discrete time transfer function from u to y

G(z, θ) Discrete time transfer function from u to y in a model struc-

ture, corresponding to the parameter value θ

G0(z) True discrete time transfer from u to y for a given system

H(z) Discrete time transfer function from e to y

H(z, θ) Discrete time transfer function from e to y in a model struc-

ture, corresponding to the parameter value θ

L(z) Prefilter for prediction errors

UN (ω) Fourier transform of u

VN(θ, ZN) Criterion function to be minimized



xvii

Wνν̂(z) Discrete time transfer function from ν to ν̂
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1. INTRODUCTION

Science is based on making observations and building models which best repre-

sent the properties deduced from these observations. The aim of modelling is to fit

the observations into some structure. System identification studies the techniques of

establishing mathematical models by using data gathered from the dynamical systems

that are to be identified. Since scientific research is centered on dynamical systems,

system identification is an integral part of scientific methodology and thus has a wide

application area [1].

Since Newton discovered his laws of motion, and combined them with differential

equations to explain Kepler’s laws of planetary motion in 1666, various mathematical

formalisms have been developed in order to model dynamical systems. Dynamical

system models can be categorized according to various criteria. The two main types

are differential equations and difference equations. The difference between them is

based on their evaluation of time. While differential equations describe the evolution

of dynamical systems in continuous time, the time in difference equations is discrete.

These two types of mathematical models can be further categorized according to a

number of properties such as ordinary or partial, linear or nonlinear, time invariant or

time variant, deterministic or stochastic.

Order of a differential equation can also be the basis of categorization. Fractional

order differential equations are differential equations which involve derivatives of non

integer, fractional order. Although the invention of fractional calculus is as old as the

classical calculus going back to the late 1600s, it has not been widely used as a tool

for modelling dynamical systems. However, identification on real systems has shown

that fractional order models can be more intrinsic and adequate than integer order

models in describing the dynamics of many real systems. One of the first such physical

systems known to be modelled by a fractional order differential equation is the semi-

infinite lossy transmission line. The current going into this line is modelled equal as the

(0.5)th order derivative of the applied voltage [2]. Another electrical dynamical system
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example is a capacitor model which uses fractional order calculus in order to better

account for losses [3]. Heating dynamics of a heat-rod system can also be modelled by

a fractional order differential equation [1].

There exist many more dynamical systems such as viscoelastic systems, electro-

chemical processes, dielectric polarization, colored noise, electromagnetic waves and

boundary layer effects in ducts, the dynamics of which is claimed to be better captured

via fractional order models throughout the literature. The fractional-order-nature of

the dynamics of these systems is believed to originate from the material and chemical

properties found within these systems [2, 4]. However, system identification with frac-

tional order models is an area that has been investigated much less than its integer

order counterpart. Thus there remains a wide range of dynamical systems which can

benefit from a fractional order model. The aim of this thesis is to identify such systems

and observe if they can be better represented by fractional order models.

1.1. Dynamical Systems

A dynamical system is one which upon an interaction with external stimuli pro-

duces observable signals, i.e. outputs, based on not only on the current values of the

external stimuli but also on their earlier values. This is an important feature which

distinguishes a dynamical system from any other system [1]. If a dynamical system al-

ways produces the same output for a given starting condition, then it is a deterministic

one. The dynamical systems in this thesis are deterministic.

Systemu

w

v

y

Figure 1.1. A system with output y, input u, measured disturbance w, and

unmeasured disturbance v.
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The external signals acting on a system are categorized as inputs and disturbances

(Figure 1.1). Input signals are signals created intentionally by the user and can be

changed by the user while disturbance signals are not controllable. Disturbance signals

can also be classified as measured disturbance and unmeasured disturbance (Figure

1.1).

1.2. Dynamical System Models

Models can be classified into many different groups according to the mathematical

formalism employed. The problem of driving a car can be solved by the help of a

mental model without any mathematical sophistication. Graphical models consisting

of numerical tables and plots can be sufficient to describe certain systems. Impulse

responses, step responses and frequency responses are graphical models typically used

for the linear systems. Even complex dynamics of nonlinear systems can be understood

by graphical models called flows.

Mathematical expressions such as difference or differential equations may be con-

sidered as advanced mathematical or analytical models and they are preferred to the

simpler models mentioned above once the application becomes complicated. Mathe-

matical models are categorized into groups such as time continuous or time discrete,

lumped or distributed, deterministic or stochastic, linear or nonlinear. Each of these

adjectives marks a property of the used model for the dynamic system and thus de-

termines the type of the equation. Mathematical models are used in almost all fields

of science including engineering, physics and even nontechnical areas like economy,

ecology and biology [1].

In this thesis only deterministic, lumped-parameter, continuous time linear sys-

tems will be considered. Such systems lend themselves to description in terms of

ordinary linear differential equations.
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1.3. Fractional Order Equations

Fractional calculus is not a new subject. Interest in this subject dates back to a

letter written by Leibniz to L’Hôspital in the late 17th century. In the year of 1695

L’Hôspital, referring to the differentiation notation dny/dxn, asked Leibniz: “What if

n be 1/2?”. Leibniz [5] replied: “. . . This is an apparent paradox from which, one day,

useful consequences will be drawn.”

First organized studies on fractional calculus were performed in the beginning

and middle of the 19th century by Liouville and Riemann. Liouville (1832) expanded

functions in series of exponentials and defined the derivative of such a series by oper-

ating term-by-term under the assumption of derivative order being a positive integer.

Riemann (1847) proposed a different definition which involved a definite integral and

was applicable to power series with noninteger exponents [5].

It was Grünwald and Krug who first unified the results of Liouville and Riemann.

Grünwald (1867) adopted as his starting point the definition of a derivative as the limit

of a difference quotient and arrived at definite integral formulas for differentiation to an

arbitrary order. Krug (1890), working through Cauchy’s integral formula for ordinary

derivatives, showed that Riemann’s definite integral had to be interpreted as having a

finite lower limit while Liouville’s definition corresponded to a lower limit −∞ [5].

Meanwhile the development of the applications of the fractional calculus was

moving parallel to these theoretical beginnings. One of the first applications was the

tautochrone problem. Abel (1823) solved the integral equation for the tautochrone

problem via an integral transform which could be written as a semi-derivative. A

powerful boost in the use of fractional calculus to solve problems was provided by Boole.

Boole (1844) developed symbolic methods for solving linear differential equations with

constant coefficients. The next important step in the application of fractional order

calculus was made by Heaviside. Heaviside developed operational calculus to solve

certain problems of electromagnetic theory. In the year of 1920 he introduced fractional

differentiation in his work on transmission line theory. Later Gemant (1936) extended
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Heaviside’s approach for problems of elasticity [6].

In the 20th century notable contributions were made to both the theory and

application of the fractional calculus. Some of the work worth mentioning was done

by Weyl (1917), Hardy and Littlewood (1925, 1928, 1932), Kober (1940), and Kut-

tner (1953) who examined some properties of both differentiation and integration to

an arbitrary order of functions belonging to Lebesgue and Lipschitz classes. Erdélyi

(1939, 1940, 1954) and Osler (1970) gave definitions of differentiation and integration

to an arbitrary order with respect to arbitrary functions. Post (1930) used difference

quotients to define generalized differentiation for operators. Riesz (1949) developed a

theory of fractional integration for functions of more than one variable. Erdélyi (1964,

1965) applied the fractional calculus to integral equations and Higgins(1967) used frac-

tional integral operators to solve differential equations [6]. Some of the present-day

applications of fractional calculus include fluid flow, rheology, dynamical processes in

self-similar and porous structures, diffusive transport akin to diffusion, electrical net-

works, probability and statistics, control theory of dynamical systems, viscoelasticity,

electrochemistry of corrosion, chemical physics, optics and signal processing.

1.4. System Identification

1.4.1. Historical Perspective

The foundations of system identification came from previous work on mathemat-

ical statistics. Econometrics and time series analysis can be considered as the mother

of system identification. The field of econometrics uses statistics to derive information

from economic data. Time series analysis and difference equation modeling are statis-

tical tools developed by econometrics. Time series analysis originated from the efforts

of Jevons (1884), Yule (1927) and Wold (1938). Mann and Wald (1943) established the

asymptotic theory of the least squares estimator for stochastic linear difference equa-

tions. Koopmans et al. (1950) not only expanded the asymptotic estimator theory

to multivariable systems, but also solved central identifiability issues and presented

Gaussian maximum likelihood estimates [7].
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Although preliminary work was long established in the field of econometrics,

from control system perspective the term “system identification” was coined by Zadeh

(1956). From that point onwards system identification theory took on two different

paths. First path dealt with the realization problem which was suggested by Ho and

Kalman (1966). Their aim was to implement impulse response in the realization of lin-

ear state space models. Before this time control engineers were using graphical models

such as Bode, and Nyquist graphs, Ziegler-Nichols charts or step response analysis in

the design of dynamic systems. With the introduction of state-space representation

there came optimal control theory which formed the basis of model based control de-

sign. Later this path was further developed by Akaike (1976), Larimore (1983), Van

Overschee and DeMoor (1996). These participations gave birth to methods called as

subspace methods [8].

The second path which was more related to statistical time series analysis from

econometrics and was given the name of prediction error approach. This approach

was pioneered by Åström and Bohlin (1965). Åström and Bohlin applied the Gaussian

maximum likelihood framework established from time series analysis to the problem

of system identification. This framework comprised of several models given unheard

names by the control community like autoregressive moving average or autoregressive

moving average with exogenous inputs. Up to that time these models were unknown

to control community but they were well known by the statistics community. These

models combined with Gaussian maximum likelihood estimate created the framework

of prediction error identification [7].

Identification community was under complete influence of the prediction error

framework until 1978 and the search for the true system model was the priority. Then

in 1978 Anderson et. al., Ljung and Caines suggested that system identification should

be seen as finding the best description of the actual system amongst a number of

models. The aim of identification became choosing the best approximation of the true

system. The priority shifted to the model errors. With the work of the eighties on

bias and variance analysis system identification emerged as a design problem. The

selection of input, model structure, and criterion became design variables which could
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be adjusted in order to achieve the identification objective set for the model [8].

A new paradigm was born in the beginnings of 1990s. In this new approach

priority was to design a model based controller. Identification for control was not

only based on identification but also on robust control theory. Thus research areas of

identification like experiment design, closed-loop identification and frequency domain

identification had to be reviewed from control perspective. The development of model-

based control design allowed the expansion of control system theory to other areas of

application untouched before such as process control, environmental systems, biological

systems, biomedical systems and transportation systems [8].

1.4.2. System Identification Procedure

System identification is based on experimentation. Input and output data gath-

ered from the system are analyzed and a model is deduced from this analysis. There

are three important objects in system identification [1].

(i) Experiment design. Input and output data are collected during the experiment.

The input signal applied to the system, measured signals and time of the measure-

ment are all determined by the user. These choices related with the experiment

design determine the quality of the recorded data.

(ii) A set of candidate models. The most important choice in the system identification

procedure is the selection of a set of candidate models from a larger collection

of models. The user’s choice must match the formal properties of the actual

system. If some insight of the system’s dynamics is available through physical

interpretation, the constructed model set is called a “grey-box”. Model sets with

adjustable parameters are called grey-boxes. Otherwise if there is no known

reference to the physical background of the system, a black-box model set is

employed. The parameters of the black box indicate no physical interpretation

of the system.

(iii) Identification method. Deciding which model is the best in the set is the identi-

fication method. The quality of a model is its degree of how well the reproduced
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model output matches the measured data.

Once the user makes a decision on the three issues mentioned above, a particular

model from the set that best fits the measured data according to the chosen criterion

may be found. There remains a last step where the particular model is evaluated to

find out whether the model is valid for its purpose. This last step is model validation.

If the model is inadequate for its intended use, the model is rejected. Thus it is highly

probable that the first model is going to fail the model validation test. Then the user

must review the previous steps of the identification procedure and make the necessary

adjustments to various steps. A model may fail the model validation test due to a

number of reasons [1].

• The numerical procedure applied to find the best model is not good.

• The chosen criterion is inadequate.

• The chosen model set’s description of the actual system is poor.

• The collected data from experimentation is not rich enough.

A significant percentage of any identification application is dedicated to handling

these validation problems over and over again like a loop. The schema of system

identification procedure is given in Figure 1.2.
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Experiment
Design

Data

Choose
Model Set

Choose
Criterion

Choose Model

Priori
Knowledge

Validate
Model

Not validated
Revise

Validated
Use it

Figure 1.2. Flowchart of the basic system identification method [1].
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1.5. Problem Statement

The aim of this thesis is to compare various identification methods for systems

that can be described in terms of fractional order models. Some dynamical systems are

reported to be better described by fractional order models than integer order models.

Some examples of such systems given in the literature are transmission lines, capacitors,

thermal systems, viscoelastic systems and electrochemical processes. Integer order

differential equations derived from classical calculus are believed to be inadequate for

modeling these real systems. Fractional order models developed for these systems

are continuous time fractional order differential equations which are linear and time

invariant. An n-term fractional order differential equation is given as

Dα0y(t)+a1D
α1y(t)+· · ·+anDαny(t) = b0D

β0u(t)+b1D
β1u(t)+· · ·+bmDβmu(t) (1.1)

where the operators Dαk and Dβk are called continuous integro-differential operator

(see Section 2) and represents differentiation of the applied function to arbitrary real

order. Depending upon the system, not all αk’s and βk’s are required to be integer or

noninteger. Differentiation orders, (α0, . . . , αn, β0, . . . , βm), are supposed to be known

by the user as it is the case of many real dynamical systems.

System identification methods that are to be investigated are based on continuous

time black-box models (Figure 1.3). Black-box models allow the user to construct

models for dynamical systems that are not easily described by known physical laws.

Black-box
u y

Figure 1.3. Identification approach.

The structure of the model depends upon the selection of the differentiation

orders, αk’s and βk’s. Once the orders are fixed for a model, then the model is
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parametrized via the coefficients of the differential equation (1.1).

θ =
[
a1 · · · an b0 · · · bm

]T

(1.2)

The parameter vector, θ, is estimated either analytically or numerically by minimizing

prediction error (see Section 3.3.3). User may estimate many model structures with

different configurations of the differentiation orders and different parameters. Then

the user compares these structures and chooses the model that fits the validation data

best.

This thesis investigates how this strategy can be applied with fractional order

models and compares various extensions of the identification techniques used with

integer order models.
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2. FRACTIONAL ORDER LINEAR SYSTEMS

Fractional order calculus is a subject as old as the classical calculus. Although

the idea of fractional order calculus was first mentioned in a letter from Leibniz from to

L’Hospital in 1695, there would not be any significant work until the beginning of the

19th century. The studies of Liouville, Riemann and Holmgren in the second half of

the 19th century could be considered the earliest systematic works on fractional order

calculus [6].

There exist many physical systems that can benefit from being described by

fractional order models. One of the first physical systems to be recognized for such

models is the voltage-current relation of a semi-infinite lossy transmission line. Another

example is the diffusion of heat into a semi-infinite solid. Heat flow into the semi-infinite

solid is equal to the half-derivative of the temperature. Such physical systems can be

better modelled by using fractional order calculus rather than the classical calculus [9].

It is observed that fractional order calculus has been neglected as a mathematical

tool for modelling fractional order system dynamics because integer-order models are

more suitable for analysis and provide in most cases easier solutions. Understanding

the solutions of fractional order differential equations is the key to building better

models for fractional order dynamic systems.

For that purpose, fundamentals of the fractional order calculus are introduced

first. There exist many different definitions because fractional order calculus is still

under development. Only the significant definitions and their useful properties will be

presented here. Then fractional order differential equations and their solutions will be

given.
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2.1. Fractional Order Calculus

Fractional order calculus is a generalization of integration and differentiation

to non-integer order fundamental operator aDα
t , where a and t are the limits of the

operation. The continuous integro-differential operator is defined in [9] and α is the

order of the operation, generally α ∈ R.

aD
α
t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dα

dtα
�(α) > 0,

1 �(α) = 0,∫ t

a
(dτ)−α �(α) < 0,

(2.1)

The development of the fractional order calculus led to various definitions of fractional

order differentiations and integrations. Some of the definitions are simply extensions

made from classical calculus. The significant definitions consists of the Cauchy integral

formula, the Grüwald-Letnikov definition, the Riemann-Liouville definition, and the

Caputo definition. Before giving these well-established definitions and their properties,

the gamma function which is used in each of these definitions is introduced.

2.1.1. Gamma Function

The complete gamma function Γ(x) function is very important in fractional cal-

culus. Certain properties of this function will be presented in this subsection. The

Euler limit (2.2) gives a thorough definition of Γ(x) [6].

Γ(x) ≡ lim
N→∞

N !Nx

x(x + 1)(x + 2) . . . (x + N)
(2.2)

Another definition of Γ(x) is the integral transform definition. Although this definition

is more practical, x cannot assume negative values (2.3).

Γ(x) ≡
∫ ∞

0

yx−1e−ydy, x > 0 (2.3)
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The recurrence property can be written down after applying an integration by parts

(2.4).

Γ(x + 1) = xΓ(x) (2.4)

The recurrence property is regarded as the most important property of Γ(x) function.

This relation can also be derived from the first definition of Γ(x) function, the Eu-

ler limit definition. By replacing x with positive integer n and using Γ(1) = 1, the

recurrence can be expanded to the factorial of n (2.5).

Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1) = . . . = n · (n − 1) · · ·2 · 1 · Γ(1) = n! (2.5)

If recurrence property is written as Γ(x−1) = Γ(x)/(x−1), an analytic continuation is

gained and the gamma funtion becomes applicable to negative arguments. According

to the new expression not only Γ(0) is infinite but also all of the negative integers give

infinity because of the recurrence. However the ratios of gamma functions of negative

integers are finite (2.6).

Γ(−n)

Γ(−N)
= (−N)(−N + 1) · · · (−n − 2)(−n − 1) = (−n)N−n N !

n!
(2.6)

The reciprocal 1/Γ(x) of the gamma function is single valued and finite for all x. The

graph of this function for −4 ≤ x ≤ 6 is shown in Figure 2.1. It is observed from

Figure 2.1 that the reciprocal changes signs continuously for negative x values. As for

the positive x values, the function approaches asymptotically to zero. This approach

can be approximated as in (2.7).

1

Γ(x)
≈ x

1
2
−x

√
2π

ex, x → ∞ (2.7)

While the gamma function of a positive integer n is itself a positive integer, the gamma

function of any negative integer is infinite.
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Figure 2.1. Gamma function and its reciprocal for −4 ≤ x ≤ 6.

The gamma functions of Γ(1
2
+n) and Γ(1

2
−n) are multiples of Γ(1

2
) =

√
π (2.8).

Γ

(
1

2
± n

)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2n)!

√
π

4nn!

(−4)nn!
√

π

(2n)!

(2.8)

Some values of the gamma function are given in Table 2.1.

Table 2.1. Some values of the gamma function.

Γ(−3
2
) = 4

3

√
π Γ(1) = 1

Γ(−1) = ±∞ Γ(3
2
) = 1

2

√
π

Γ(−1
2
) = −2

√
π Γ(2) = 1

Γ(0) = ±∞ Γ(5
2
) = 3

4

√
π

Γ(1
2
) =

√
π Γ(3) = 2
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2.1.2. Definitions and Properties of Fractional Order Calculus

There exist various definitions of fractional order derivative and integral developed

by different mathematicians.

2.1.2.1. Fractional-order Cauchy Integral Formula. This is an extension from integer

order calculus (2.9).

Dαf(t) =
Γ(α + 1)

j2π

∫
C

f(τ)

(τ − t)α+1
dτ (2.9)

C denotes the closed path that encircles the poles of f(t). Γ(α + 1) is the gamma

function (2.1.1). The advantage of the Cauchy’s integral formula is that the integrals

and derivatives of sinusoidal and cosine functions can be expressed as in (2.10).

Dα [sin ωt] = ωα sin
(
ωt +

απ

2

)
Dα [cosωt] = ωα cos

(
ωt +

απ

2

)
(2.10)

Using Cauchy’s formula it can be proved that (2.10) holds for arbitrary α.

2.1.2.2. Grünwald-Letnikov Definition. The fractional order differentiation and inte-

gral can be defined in a unified way by Grünwald-Letnikov definition [5, 6, 9, 10].

aD
α
t f(t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j

(
α

j

)
f(t − jh) (2.11)

While the subscripts to the left and right of D are lower and upper bounds in the

integral,
(

α
j

)
are the binomial coefficients. |α| denotes either the order of differentiation,

α should be positive, or the order of integration, α should be negative. α can take

noninteger values.
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The advantage of this definition is that it allows numerical differentiation and

integration of a function to an arbitrary order. However as the value of t increases,

the computations become more complex and larger memory is required due to the

increasing number of past values of the function involved in the summation.

2.1.2.3. Riemann-Liouville Definition. According to Riemann-Liouville (RL) defini-

tion [5, 6, 9, 10] the fractional order integral is established as (2.12).

aD
−α
t f(t) =

1

Γ(α)

∫ t

a

(t − τ)α−1f(τ)dτ (2.12)

a is the initial limit value and 0 < α < 1. In the case of a = 0, the notation of the

integral is simplified to D−α
t f(t). The RL definition is a widely used definition for

fractional order differentiation and integral. Similarly, fractional order differentiation

is defined as (2.13) where n − 1 < β ≤ n.

aD
β
t f(t) =

dn

dtn

[
aD

−(n−β)
t f(t)

]
=

1

Γ(n − β)

dn

dtn

[∫ t

a

f(τ)

(t − τ)β−n+1
dτ

]
(2.13)

The disadvantage of the RL definition is that its integral transform (see Section 2.1.3)

introduces initial conditions like Dα−1f(0), Dα−2f(0), . . . , Dα−nf(0) where n−1 < α ≤
n. Such initial conditions have no known physical interpretation.

2.1.2.4. Caputo Definition. The Caputo fractional order differentiation [5, 6, 9, 10] is

defined in (2.14).

0D
α
t f(t) =

1

Γ(1 − α)

∫ t

0

fm+1(τ)

(t − τ)α
dτ (2.14)
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m is an integer and α = m + γ, 0 < γ ≤ 1. Similarly, by Caputo’s definition, the

integral is described by (2.15).

0D
−γ
t f(t) =

1

Γ(γ)

∫ t

0

f(τ)

(t − τ)1−γ
dτ, γ > 0 (2.15)

The advantage of the Caputo definition is that its integral transform (see Section 2.1.3)

implements physically interpretable initial conditions such as f
′
(0), f

′′
(0), f

′′′
(0), . . .

from integer order calculus and this advantage makes Caputo definition more preferable

than the RL definition.

2.1.2.5. Properties of Fractional-Order Calculus. Properties of fractional order calcu-

lus [10] are summarized below.

• The fractional order differentiation aDα
t f(t) of an analytic function f(t) with

respect to t is also an analytic function of t and α.

• If α = n, where n is a positive integer, the fractional operator is identical to

integer order derivative. If α is a negative integer, α = −n, then the fractional

operator acts like n-fold integration.

• For α = 0 the operation aDα
t f(t) is the identity operator, aD0

t f(t) = f(t).

• The fractional order differentiation and integration are linear operators (2.16).

aD
α
t [cf(t) + dg(t)] = c aD

α
t f(t) + d aD

α
t g(t) (2.16)

• The semigroup property, commutative-law, is valid under some reasonable con-

straints on the function f(t) (2.17).

aD
α
t [aD

β
t f(t)] = aD

β
t [aD

α
t f(t)] = aD

α+β
t f(t) (2.17)
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2.1.3. Integral Transforms of Fractional Operators

The function F (s) of the complex variable s is defined by (2.18).

F (s) = L {f(t)} =

∫ ∞

0

e−stf(t)dt (2.18)

(2.18) is called the Laplace transform of the function, f(t). For the existance of the

integral, the function f(t) must be of the exponential order α, which means there exists

positive constants M and T satisfying (2.19).

e−αt|f(t)| ≤ M, t > T (2.19)

The function f(t) can be found from the Laplace transform F (s) with the help

of the inverse Laplace trasnform (2.20).

f(t) = L −1 {F (s)} =

∫ c+j∞

c−j∞
estF (s)ds, c = �(s) > c0 (2.20)

c0 lies in the right half plane of the absolute convergence of the Laplace integral (2.20).

The convolution of two functions f(t) and g(t) which are equal to zero for t < 0

is given in (2.21).

f(t) ∗ g(t) =

∫ t

0

f(t − τ)g(τ)dτ =

∫ t

0

f(τ)g(t − τ)dτ (2.21)

The Laplace transform of the convolution (2.21) is equal to the product of the Laplace

transform of those functions (2.22).

L {f(t) ∗ g(t)} = F (s)G(s) (2.22)

(2.22) holds under the assumption that both F (s) and G(s) exist.
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The Laplace transform of the derivative of an integer order n of the function f(t)

can be calculated as (2.23).

L {fn(t)} = snF (s) −
n−1∑
k=0

sn−k−1f (k)(0)

= snF (s) −
n−1∑
k=0

skf (n−k−1)(0) (2.23)

The Laplace tranforms of the fractional integrals and derivatives are given below.

The lower terminal of the fractional operators is assumed to be zero, a = 0.

2.1.3.1. Laplace Transform of Integrals. The RL fractional integral of order α > 0 can

be rewritten as a convolution of the functions g(t) = tα−1 and f(t) [11].

D−α
t f(t) =

1

Γ(α)

∫ t

0

(t − τ)α−1f(τ)dτ = tα−1 ∗ f(t) (2.24)

The Laplace transform of the function tα−1 is given in (2.25).

G(s) = L
{
tα−1

}
= Γ(α)s−α (2.25)

Thus, we can obtain the Laplace transform of the RL and the Grünwald-Letnikov

fractional integral by using the Laplace transform of the convolution (2.26).

L
{
D−α

t f(t)
}

= s−αF (s) (2.26)

2.1.3.2. Laplace Transform of Fractional Derivatives. The fractional derivative defini-

tion by RL can be rewritten in the given form [11]

Dα
t f(t) ≡ g(n)(t)

g(t) = D−(n−α)
t f(t)

1

Γ(k − α)

∫ t

0

(t − τ)n−α−1f(τ)dτ, n − 1 ≤ α < n (2.27)
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If the Laplace transform of an integer-order derivative is applied to (2.27), the result

is shown in (2.28).

L {Dα
t f(t)} = snG(s) −

n−1∑
k=0

skgn−k−1(0) (2.28)

The Laplace transform of the function g(t) can be evaluated as (2.29).

G(s) = s−(n−α)F (s) (2.29)

According to the RL definition, g(n−k−1)(t) can be written as (2.30).

g(n−k−1)(t) =
dn−k−1

dtn−k−1
D−(n−α)

t f(t) = Dα−k−1
t f(t) (2.30)

Once (2.29) and (2.30) is substituted into (2.28), the Laplace transform of the RL

fractional derivative of order α > 0 is obtained (2.31).

L {Dα
t f(t)} = sαF (s) −

n−1∑
k=0

sk
[
Dα−k−1

t f(t)
]
t=0

, n − 1 ≤ α < n (2.31)

Although this Laplace transform of the RL fractional derivative is well-known, there

is a limitation due to the absence of the physical interpretation of the limit values

of fractional derivatives, Dα−1
t f(0), Dα−2

t f(0), . . . , Dα−n
t f(0). The RL definition was

revised by Caputo’s definiton because the applications such as viscoelasticity, solid

mechanics, and rheology require physically interpretable initial conditions such as

f(0), f
′
(0), f

′′
(0).

The Laplace transform of the Caputo fractional derivative is given in (2.32).

L {Dα
t f(t)} = sαF (s) −

n−1∑
k=0

sα−k−1f (k)(0), n − 1 ≤ α < n (2.32)

The Caputo’s definition provides the physically realistic initial data required by the

applications.
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2.1.4. Numerical Evaluation of Fractional Order Differentiation

2.1.4.1. Using Grünwald-Letnikov Definition. The most straightforward way of eval-

uating the fractional order derivatives is to use the Grünwald-Letnikov definition [12]

aD
α
t f(t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j

(
α

j

)
f(t − jh) ≈ 1

hα

[(t−a)/h]∑
j=0



(α)
j f(t − jh) (2.33)

The binomial coefficients 

(α)
j = (−1)j

(
α
j

)
can be computed recursively from [12]



(α)
0 = 1, 


(α)
j =

(
1 − α + 1

j

)



(α)
j−1, j = 1, 2, . . . (2.34)

If the step size h is small enough, (2.33) can be used directly to calculate approx-

imately the values of the fractional order derivatives. For example the 0.75th order

derivative of the function f(t) = sin(3t + 1) can be computed numerically for a step

size of h = 0.01. Using Cauchy’s formula (2.9) with (2.10), the 0.75th order derivative

of the function can also be obtained analytically as [12]

0D
0.75
t f(t) = 30.75 sin(3t + 1 + 0.75π/2) (2.35)

It can be seen from Figure 2.2 that there exists a significant difference between the

Cauchy and Grünwald-Letnikov definitions. This is due to the different interpretation

of the function,f(t) for t < 0. In Cauchy’s formula it is assumed that the function

f(t) = sin(3t+1) is defined for t < 0 while Grünwald-Letnikov definition assumes that

f(t) = 0 for t < 0. The difference at t = 0 is caused by this fact [12].

2.1.4.2. Using Backward Differences. The fractional derivative of order α of a function

f(t), which is defined in [a, b] such that f(t) ≡ 0 for t < a, is given as the equation

(2.36) [13].

aD
α
t f(t) =

1

Γ(n − α)

(
d

dt

)n ∫ t

a

f(τ)dτ

(t − τ)α−n+1
, a < t < b, n − 1 ≤ α < n (2.36)
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Figure 2.2. Comparison of Cauchy and Grünwald-Letnikov definition of a fractional

derivative to the order 0.75 for f(t) = sin(3t + 1).

Equidistant nodes with the step h : tk = kh (k = 0, 1, . . . , N), are taken in the interval

[a, b] where t0 = a and tN = b. Using the backward fractional difference approximation

for the α-th derivative at the points tk, k = 0, 1, . . . , N the equation (2.37) can be

obtained [13].

aD
α
tk

f(t) ≈ ∇αf(tk)

hα
= h−α

k∑
j=0

(−1)j

(
α

j

)
fk−j, k = 0, 1, . . . , N (2.37)

The equation (2.37) can be evaluated for each of the N + 1 nodes and represented in

the given matrix form (2.38) [13].

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−α∇αf(t0)

h−α∇αf(t1)

h−α∇αf(t2)
...

h−α∇αf(tN−1)

h−α∇αf(tN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

hα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣



(α)
0 0 0 0 · · · 0



(α)
1 


(α)
0 0 0 · · · 0



(α)
2 


(α)
1 


(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·



(α)
N−1

. . . 

(α)
2 


(α)
1 


(α)
0 0



(α)
N 


(α)
N−1

. . . 

(α)
2 


(α)
1 


(α)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f0

f1

f2

...

fN−1

fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



(α)
j = (−1)j

(
α

j

)
, j = 0, 1, . . . , N (2.38)
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The column vector of function values fk (k = 0, . . . , N) (2.38) is multiplied by the

matrix (2.39) [13].

Bα
N =

1

hα

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣



(α)
0 0 0 0 · · · 0



(α)
1 


(α)
0 0 0 · · · 0



(α)
2 


(α)
1 


(α)
0 0 · · · 0

. . .
. . .

. . .
. . . · · · · · ·



(α)
N−1

. . . 

(α)
2 


(α)
1 


(α)
0 0



(α)
N 


(α)
N−1

. . . 

(α)
2 


(α)
1 


(α)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.39)

The result of the multiplication is the column vector of approximated values of the

fractional derivative aDα
tk

f(t), k = 0, 1, . . . , N . The matrix Bα
N can be considered as a

discrete analogue of fractional differentiation of order α [13].

For Bα
N and Bβ

N the following property holds (2.40) [13].

Bα
NBβ

N = Bβ
NBα

N = Bα+β
N (2.40)

In order for Bα
N and Bβ

N to be used as the discrete analogues of the fractional derivatives

aDα
t and aD

β
t where n − 1 ≤ α < n and m − 1 ≤ α < m the following equation must

be satisfied (2.41) [13].

aD
α
t

(
aD

β
t f(t)

)
=a Dβ

t (aD
α
t f(t)) =a Dα+β

t f(t)

f (k)(a) = 0, k = 1, 2, . . . , r − 1, r = max {n, m} (2.41)

The function f(t) = sin(3t + 1) is solved numerically this time using backward

difference technique with the same step size of h = 0.01 (Figure 2.3).
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Figure 2.3. Comparison of Grünwald-Letnikov and backward difference definition of a

fractional derivative to the order 0.75 for f(t) = sin(3t + 1).

2.2. Fractional Order Linear Differential Equations

2.2.1. Mittag-Leffler Function

The exponential function, e−t, plays a very important role in the theory of in-

teger order differential equations. One parameter generalization of this function was

introduced by G. M. Mittag-Leffler [9, 10].

Eα(t) =

∞∑
k=0

tk

Γ(αk + 1)
(2.42)

A plot of one parameter Mittag-Leffler function of Eα(−tα) for various values of α is

given in Figure 2.4. As it is seen from Figure 2.4, for α = 1 one parameter Mittag-

Leffler function behaves like e−t is the basis for the solution of integer order differential

equations.
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increments.

The two parameter function of the Mittag-Leffler type, which plays a very im-

portant role in the fractional calculus, was introduced by Agarwal [9]. A number

of relationships for this function were obtained by Humbert and Agarwal using the

Laplace transform technique. A two parameter function of the Mittag-Leffler type is

defined by the series expansion [9, 10].

Eα,β(t) =
∞∑

k=0

tk

Γ(αk + β)
, (α > 0, β > 0) (2.43)

By using the definition (2.43), the following equations can be derived (2.44).

E1,1(t) =

∞∑
k=0

tk

Γ(k + 1)
=

∞∑
k=0

tk

k!
= et

E1,2(t) =
∞∑

k=0

tk

Γ(k + 2)
=

∞∑
k=0

tk

(k + 1)!
=

et − 1

t

E1,3(t) =
∞∑

k=0

tk

Γ(k + 3)
=

∞∑
k=0

tk

(k + 2)!
=

et − 1 − t

t2
(2.44)
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Once the first parameter is fixed to one, the function can be generalized (2.45).

E1,m(t) =
1

tm−1

{
et −

m−2∑
k=0

tk

k!

}
(2.45)

The hyperbolic sine and cosine are also particular cases of the Mittag-Leffler

function (2.46).

E2,1(t
2) =

∞∑
k=0

t2k

Γ(2k + 1)
= cosh(t)

E2,2(t
2) =

∞∑
k=0

t2k

Γ(2k + 2)
=

sinh(t)

t
(2.46)

For β = 1 the two parameter Mittag-Leffler function turns into the one parameter

Mittag-Leffler function (2.47).

Eα,1(t) =
∞∑

k=0

tk

Γ(αk + 1)
≡ Eα(t) (2.47)

2.2.2. Numerical Methods of Solving FODEs

The general procedure of numerical solution of fractional order differential equa-

tions (FODE) consists of two steps. First initial conditions are used to reduce a given

initial-value problem to a problem with zero initial conditions. At this stage a mod-

ified equation with zero initial conditions is obtained. Then the system of algebraic

equations is obtained by replacing all derivatives in the modified equation by the cor-

responding discrete analogues, Bα
N [13].

An m-term linear FODE is shown as

m∑
k=1

pk(t)D
αky(t) = f(t), 0 ≤ α1 < α2 < . . . < αm, n − 1 < αm < n (2.48)
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Dαk (2.48) denotes either RL or Caputo fractional derivative of order αk. Using

the following notations given as

P
(k)
N =

⎡⎢⎢⎢⎢⎢⎢⎣
pk(t0) 0 . . . 0

0 pk(t1) 0
...

0 . . .
. . . 0

0 . . . 0 pk(tN)

⎤⎥⎥⎥⎥⎥⎥⎦
YN =

[
y(t0) y(t1) . . . y(tN)

]T

FN =
[
f(t0) f(t1) . . . f(tN)

]T

(2.49)

and taking into account that the discrete analogue of Dαk is Bαk
N , the FODE (2.48)

can be written in the following form

m∑
k=1

P
(k)
N Bαk

N YN = FN (2.50)

If n−1 < αm < n, then the RL and the Caputo versions of the equation (2.48) become

equivalent under the assumption of zero initial values of the function y(t) and its n−1

derivatives [13].

y(k)(t0) = 0, k = 0, 1, . . . , n − 1 (2.51)

Approximating the derivatives in the initial conditions by backward differences, the

equation (2.52) can be obtained [13].

y(t0) = y(t1) = . . . = y(tn−1) = 0 (2.52)

In order to determine yn, . . . , yN from the linear algebraic system (2.50), the first n

rows must be omitted and these rows must be substituted with the zero values from

(2.52).
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This can be achieved by introducing the eliminator operator, S0,1,...,n−1 [13].

{
S0,1,...,n−1

{
m∑

k=1

P
(k)
N Bαk

N

}
ST

0,1,...,n−1

}
{S0,1,...,n−1YN} = S0,1,...,n−1FN (2.53)

The solution of the linear algebraic system (2.53) along with the zero starting values

(2.52) gives the numerical solution of the FODE (2.48) with zero initial conditions.

If the coefficients pk(t) are constant, pk(t) ≡ pk, then the system of equations

(2.53) becomes even more simpler

m∑
k=1

pkB
αk
N−n {S0,1,...,n−1YN} = S0,1,...,n−1FN (2.54)

Now three examples from [13] will be given to demonstrate how this technique can

be applied to the FODEs. A two term FODE, 2-FODE, will be solved numerically

with three different initial condition scenarios: zero initial conditions, Caputo’s initial

conditions and the RL intial conditions. The numerical solutions will be compared to

the analytical solution obtained by the Laplace transform method. The theorems for

the existance and uniqueness of the solutions are given in Appendix A.

Example 1. At first a 2-FODE with zero initial conditions is considered

y(α)(t) + y(t) = 1, y(0) = 0 y
′
(0) = 0 (2.55)

The analytical solution of the 2-FODE with zero initial conditions [13] is given as

y(t) = tαEα,α+1(−tα) (2.56)

The numerical solution of the problem can be found from the system, where m = 2,

α1 = α, α2 = 0, n = 2, p1 = p2 = 1, Bα1
N−n = Bα

N−2, Bα2
N−n = IN−2, FN = (1, 1, . . . , 1)T

[13]. The numerical solution for these values can be obtained from the system of
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algebraic equations given as

{
Bα

N−2 + IN−2

} {S0,1YN} = S0,1FN (2.57)

The analytical and numerical solutions of the problem with zero initial conditions,

y(0) = y1(0) = 0, for α = 1.8 are plotted in Figure 2.5. Simulation step size is

h = 0.01.
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Figure 2.5. Analytical and numerical solutions of two-term FODE for α = 1.8.

Example 2. The two-term FODE is now considered with given initial conditions

y(α)(t) + y(t) = 1, y(0) = c0 y
′
(0) = c1 (2.58)

The analytical solution is obtained by applying Laplace transform to Caputo’s frac-

tional derivative definition (2.59).

y(t) = c0Eα,1(−tα) + c1tEα,2(−tα) + tαEα,α+1(−tα) (2.59)

Then the problem (2.58) is transformed to the problem with zero initial conditions in

order to obtain the numerical solution. An auxiliary function y∗(t) is introduced (2.60).

y(t) = c0 + c1t + y∗(t) (2.60)
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The new problem with zero initial conditions is formed as

y(α)
∗ (t) + y∗(t) = 1 − c0 − c1t, y∗(0) = 0, y

′
∗(0) = 0 (2.61)

The analytical and numerical solutions of the 2-FODE for α = 1.8 with the given initial

conditions c0 = 1 and c1 = −1 are shown in Figure 2.6.
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Figure 2.6. Analytical and numerical solutions of the 2-FODE with Caputo initial

conditions.

Example 3. Finally the 2-FODE is considered with the RL initial conditions

(2.62).

y(α)(t) + y(t) = 1, y(α−1)(0) = c0, y(α−2)(0) = c1 (2.62)

The analytical solution can be found by applying the Laplace transform as

y(t) = c0t
α−1Eα,α(−tα) + c1t

α−2Eα,α−1(−tα) + tαEα,α+1(−tα) (2.63)

For numerical solution the problem must first be converted to the problem with zero

initial conditions. In order to accomplish this, the auxiliary function y∗(t) is needed

y(t) = c0t
α−1 + c1t

α−2 + y∗(t) (2.64)
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Substituting this expression into the equation with the initial conditions, the problem

of finding y∗(t) can be formulated as

y(α)
∗ (t) + y∗(t) = 1 − c0t

α−1 − c1t
α−2, y∗(0) = 0, y

′
∗(0) = 0 (2.65)

The analytical and numerical solutions of the 2-FODE for α = 1.8 with the given RL

initial conditions c0 = 1 and c1 = −1 are shown in Figure 2.7.
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Figure 2.7. Analytical and numerical solutions of the 2-FODE with the RL initial

conditions.
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3. INTEGER ORDER SYSTEM IDENTIFICATION

TECHNIQUES

Here identification techniques for integer order time invariant linear systems will

be presented. Although these systems represent many idealizations that do not exist

in real life processes, they constitute the most important class of dynamical systems

considered not only in the academic study but also in practice. The reason behind this

is not only the justified approximations or the simplification of the analysis. Models

estimations based on linear theory often lead to good results in practice.

Thus a review of linear systems theory is neccessary before moving on to the

identification techniques.

3.1. Review of Linear Systems

3.1.1. Impulse Response

It is well known that a linear, time invariant (LTI), casual system can be described

by its impulse response g(τ) (3.1).

y(t) =

∫ ∞

τ=0

g(τ)u(t − τ)dτ (3.1)

Knowing {g(τ)}∞τ=0, the output can be computed for any input. The impulse

response is a complete characterization of the system.

Identification deals with observations of inputs and outputs in discrete time be-

cause the data acquisition takes place in discrete time. The output signal y(t) is

assumed to be observed at the sampling instants tn = nT, n = 1, 2, . . . (3.2).

y(nT ) =

∫ ∞

τ=0

g(τ)u(nT − τ)dτ (3.2)
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The interval T is called the sampling interval. Sampling instants are equally

distributed. The input signal u(t) is kept constant between the sampling instants

(3.3).

u(t) = un, nT ≤ t < (n + 1)T (3.3)

Keeping the input signal constant between the sampling instants (3.3) simplifies

the analysis of the system (3.4).

y(nT ) =

∫ ∞

τ=0

g(τ)u(nT − τ)dτ =

∞∑
l=1

∫ lT

τ=(l−1)T

g(τ)u(nT − τ)dτ

=

∞∑
l=1

[∫ lT

τ=(l−1)T

g(τ)dτ

]
un−l =

∞∑
l=1

gT (l)un−l (3.4)

gT (l) is defined as (3.5).

gT (l) =

∫ lT

τ=(l−1)T

g(τ)dτ (3.5)

The expression (3.4) can be used to compute the output at the sampling instants.

If the input is subject to (3.3), it is sufficient to know {gT (l)}∞l=1 in order to compute

the system’s response. The relationship (3.4) describes a sampled data system and the

sequence {gT (l)}∞l=1 is called the impulse response of the system.

From here on for easing the notation T is assumed to be one time unit and n is

used to enumerate the sampling instants (3.6).

y(n) =

∞∑
k=1

g(k)u(n − k), n = 0, 1, 2, . . . (3.6)
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3.1.2. Disturbance Framework

According to the equation (3.6) the output can be exactly calculated if the input

is known. For real life processes this is not true. There always exist signals which are

beyond our control and those signals have undesirable effects on the system. In linear

system framework the undesirable effects imposed by those signals are lumped into a

additive term ν(n) at the output (3.7).

y(n) =

∞∑
k=1

g(k)u(n − k) + ν(n) (3.7)

The source of this disturbance term can be sensor measurement noise or an input that

is not contrallable by the user. The most characteristic feature of a disturbance is that

its value is not known beforehand. Information about past disturbance values may be

used to make guesses about future values. Thus a probabilistic framework is employed

in order to describe future disturbances. Let ν(n) be given as (3.8).

ν(n) =

∞∑
k=0

h(k)e(n − k) (3.8)

e(n) (3.8) is a sequence of independent identically distributed random variables with

a certain probability density function. For reasons of normalization, one can assume

that h(0) = 1 since the variance of e can be adjusted.

e(n) and ν(n) are realizations of stochastic processes (see Appendix B), sequences

of random variables. On the other hand, it can be assumed that the input sequence

is deterministic while disturbances on the system are described by random variables.

Thus the system output, y(n) is a mixed signal, a realization of a stochastic processes

with deterministic components (Figure 3.1). In system identification this configuration

is called the open loop operation where u(n) and ν(n) are independent. G and H

(Figure 3.1) represent the transfer functions (see Appendix C) of the LTI dynamical

system and the disturbance respectively.
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Figure 3.1. A framework for linear systems with disturbances.

3.2. Nonparametric Identification

Nonparametric identification methods consist of direct techniques that aim at

finding the best description of the LTI model. The description is either in time domain

as an estimate of the system’s impulse response, ĝ(n), or in frequency domain as an

estimate of the system’s frequency response, Ĝ(ejω).

3.2.1. Time Domain Methods

Time domain methods can be categorized as transient response analysis and

correlation analysis. For both categories, it is assumed that the system to be identified

operates in open loop configuration. Open loop configuration means that the sequences

u(n) and ν(n) are independent.

3.2.1.1. Impulse Response Analysis. An LTI system described by (3.7) is subjected to

a pulse input (3.9).

u(n) =

⎧⎨⎩ a, n = 0

0, n = 0
(3.9)
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The output of the system is given in (3.10).

y(n) = ag(n) + ν(n) (3.10)

If the noise level is low, it is possible to determine the impulse response coefficients

g(n) from an experiment with a pulse input. The estimate and the error are given as

ĝ(n) =
y(n)

a
(3.11)

|g(n) − ĝ(n)| =
|ν(n)|

a
(3.12)

This simple method is called impulse response analysis. Although the analysis is simple,

this method has a major drawback that it cannot be applied easily to physical processes.

Such pulse inputs are not easy to generate in real time and even if they are generated,

they cause the error of the estimate to be significant. Moreover they make the system

exhibit nonlinear effects which destroy our assumption of a linear model [1, 14].

3.2.1.2. Step Response Analysis. If the input signal is selected as a step

u(n) =

⎧⎨⎩ a, n ≥ 0

0, n < 0

the output of the LTI system is given as (3.13).

y(n) = a

n∑
k=1

g(k) + ν(n) (3.13)

By using (3.13) the estimate of g(n) can be obtained as (3.14).

ĝ(n) =
y(n) − y(n − 1)

a
(3.14)

|g(n) − ĝ(n)| =
|ν(n) − ν(n − 1)|

a
(3.15)
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Similarly step response analysis suffers from large estimation errors in pratical applica-

tions. However if the goal is to recover some basic control related characteristics such

as delay time, static gain, and dominating time constants, the accuracy of the step

response analysis is sufficient [1, 14].

3.2.1.3. Correlation Analysis. If the input of an LTI system is a quasi-stationary se-

quence and the system operates in open-loop configuration

E {u(n)u(n − τ)} = Ru(τ)

E {u(n)ν(n − τ)} ≡ 0

then the correlation of output and input [1] is given as

E {y(n)u(n − τ)} = Ryu(τ) =
∞∑

k=1

g(k)Ru(k − τ) = g ∗ Ru(τ) (3.16)

If the input is chosen as white noise so that

Ru(τ) = aδτ0

then an estimate of the impulse response is obtained by using an estimate of Ryu(τ)

[1].

g(τ) =
Ryu(τ)

a
⇒ ĝ(τ) =

R̂N
yu(τ)

a
=

1

N

N∑
n=τ

y(n)u(n − τ)

1

N

N∑
n=0

u2(n)

(3.17)

If the input is not white noise, the correlation between output and input

R̂N
yu(τ) =

M∑
k=1

ĝ(k)R̂N
u (k − τ) (3.18)
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yields an algebraic system of equations where R̂N
u (τ) = R̂N

u (−τ)

⎡⎢⎢⎢⎣
R̂N

yu(0)
...

R̂N
yu(M − 1)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
R̂N

u (0) R̂N
u (−1) . . . R̂N

u (−(M − 1))

R̂N
u (1) R̂N

u (0) . . . R̂N
u (−(M − 2))

...
. . .

. . .
...

R̂N
u (M − 1) . . . . . . R̂N

u (0)

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

ĝ(0)
...

ĝ(M − 1)

⎤⎥⎥⎥⎦ (3.19)

Once the algebraic system of equations (3.19) is solved, the estimate can be calculated

ĝ(τ) =
M−1∑
k=0

ĝ(k)z−k (3.20)

3.2.2. Frequency Domain Methods

If the input to the LTI system without the disturbance term (3.6) is a sinusoidal

signal,

u(n) = a cos ωn = a�(ejωn)

the corresponding output [1] is given as

y(n) = a
∞∑

k=1

g(k)�(ejω(n−k)) = a�
{ ∞∑

k=1

g(k)ejω(n−k)

}

= a�
{

ejωn
∞∑

k=1

g(k)e−jωk

}
= a�{

ejωnG(ejω)
}

= a|G(ejω)| cos(ωn + φ), φ = ∠G(ejω) (3.21)

In (3.21) the input cosine is defined since time minus infinity. If u(n) = 0, n < 0, then

an additional term is obtained (3.22).

−�
{

ejωn
∞∑

k=n

g(k)e−jωk

}
(3.22)
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This term (3.22) is of transient nature and tends to go to zero as time goes to infinity

provided that G(z) is stable.

If the input is applied to the system with the disturbance term, the output is

given in (3.23).

y(n) = a|G(ejω)| cos(ωn + φ) + ν(n) + transient, φ = ∠G(ejω) (3.23)

The system output (3.23) is always a cosine of the same frequency but with an ampli-

tude magnified by |G(ejω)| and a phase shift of ∠G(ejω). The complex valued function

G(ejω), −π ≤ ω ≤ π (3.24)

denotes the transfer function evaluated at the point z = ejω. This function is called the

frequency function of the system because it gives information as to what will happen

in stationarity [1, 14].

The frequency domain analysis comprises of methods aiming at the determination

of an estimate of G(ejω). Using the amplitude and phase shift imposed on the output

signal, an estimate ĜN (ejω) can be calculated. However, this calculation is just for one

frequency. Thus, the calculations must be repeated for a number of frequencies in the

frequency band specified by the user [1, 14].

3.2.2.1. Frequency Analysis by Correlation Method. With the noise component ν(n)

present in (3.23), it is not easy to determine |G(ejω)| and φ accurately by graphic

methods. The part of the output that is a cosine function of known frequency can be

correlated from the noise. By inserting the sums [14]

Ic(N) =
1

N

N∑
n=1

y(n) cosωn, Is(N) =
1

N

N∑
n=1

y(n) sin ωn
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into (3.23), once the transient term is ignored, the Ic(N) and Is(N) are obtained (3.25).

Ic(N) =
a

2
|G(ejω)| cosφ + a|G(ejω)|1

2

1

N

N∑
n=1

cos(2ωn + φ)

+
1

N

N∑
n=1

ν(n) cos ωn

Is(N) = −a

2
|G(ejω)| sin φ + a|G(ejω)|1

2

1

N

N∑
n=1

sin(2ωn + φ)

+
1

N

N∑
n=1

ν(n) sin ωn (3.25)

The second term goes to zero as N goes to infinity. The third term also tends to zero

if ν(n) does not contain a pure periodic component of frequency ω.

These two expressions suggest the following estimate of |G(ejω)| and φ [14].

|ĜN(ejω)| =

√
I2
c (N) + I2

s (N)

a/2

φ̂N = ∠ĜN(ejω) = − tan−1 Is(N)

Ic(N)
(3.26)

By repeating the procedure for a number of frequencies, the frequency response of the

system can be obtained. However, many industrial processes do not admit sinusoidal

inputs in normal operation. Moreover, the experimentation time is long due to the

repeated procedure [1, 14].

3.2.2.2. Fourier Analysis. For a finite sequence of inputs u(n), n = 1, 2, . . . , N the

discrete Fourier transform (DFT) is given as

UN (ω) =
1√
N

N∑
n=1

u(n)e−jωn (3.27)
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DFT gives values calculated for ω = 2πk/N, k = 1, . . . , N . UN(ω) is periodic with

period 2π.

UN (ω + 2π) = UN(ω)

The inverse DFT can be applied to get u(n) (3.28).

u(n) =
1√
N

N∑
k=1

UN

(
2πk

N

)
ej2πkn/N (3.28)

For a linear system an estimate of the frequency function can be computed by

applying DFT (3.29).

ĜN(ejω) =
YN(ω)

UN (ω)
(3.29)

Here ω is precisely the frequency of the input signal. In a linear system different

frequencies pass through the system independently of each other. It is therefore quite

natural to extend the frequency analysis estimate to the case of multifrequency inputs

(3.30).

ˆ̂
GN(ejω) =

YN(ω)

UN (ω)
(3.30)

ˆ̂
GN(ejω) is called the empirical transfer function estimate (ETFE). In (3.30) it is as-

sumed that UN(ω) = 0. If for some frequencies DFT yields zero, then the ETFE is

undefined for those frequencies.

In the case of a periodic input signal, ETFE yields very good estimates at the

frequencies that are present in the input. However when the input is not periodic the

ETFE becomes a very crude estimate. For inputs that are not periodic the variance

of ETFE does not decrease as N increases unlike the case of periodic inputs. The

estimates at different frequencies are asymptotically uncorrelated [1, 14].
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With the help of ETFE, the discrete time transfer function can also be estimated

from the following procedure [1, 14].

(i) Calculate
ˆ̂
GN(ej 2π

N
k) for k = 1, . . . , N .

(ii) Apply the inverse DFT, ˆ̂g(n) =
1

N

N∑
k=1

ˆ̂
GN(ej 2π

N
k)ej 2π

N
nk, n = 1, . . . , N

(iii) Define
ˆ̂
G(z) =

N∑
k=1

ˆ̂g(k)z−k.

3.2.2.3. Spectral Analysis. If the output signal y(n) and the input signal u(n) are

jointly quasi-stationary (see Appendix B), then the power spectrum of y(n) is defined

as

Φy(ω) =
∞∑

τ=−∞
Ry(τ)e−jτω (3.31)

while the cross spectrum between the output and the input signals is expressed as

Φyu(ω) =
∞∑

τ=−∞
Ryu(τ)e−jτω (3.32)

In case u(n) is a quasi-stationary, deterministic signal with spectrum Φu(ω) and e(n)

is white noise with variance λ, spectrum of y(n) and cross spectrum of y(n) and u(n)

is given as

Φy(ω) = |G(ejω)|2Φu(ω) + λ|H(ejω)|2

Φyu(ω) = G(ejω)Φu(ω) (3.33)

Thus the estimate is the ratio of two spectral estimates

ĜN (ejω) =
Φ̂N

yu(ω)

Φ̂N
u (ω)

(3.34)

The steps of the spectral analysis method is shown below [1, 14].
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(i) Compute the covariances and cross-covariance from u(n) and y(n)

R̂N
u (τ) =

1

N

N∑
n=1

u(n + τ)u(n), R̂N
yu(τ) =

1

N

N∑
n=1

y(n + τ)u(n)

(ii) Apply DFT to covariance and cross-covariance in order to obtain spectrum and

cross spectrum

Φ̂N
u (ω) =

M∑
τ=−M

R̂N
u (τ)WM(τ)e−jωτ , Φ̂N

yu(ω) =

M∑
τ=−M

R̂N
yu(τ)WM (τ)e−jωτ

WM(τ) is called the lag window with the width M .

(iii) The ratio of the spectra gives the estimate, ĜN(ejω).

3.3. Parametric Identification

Parametric identification is based on estimation methods using a parameter vector

θ. A set of candidate models is selected first and then the parameter vector of each

model is estimated. Then the best model within the set is chosen to represent the

dynamical system. This section concentrates on the decision of whether a model is

good or not. Within this context the concept of prediction is addressed first. Next

various model structures for the LTI systems are introduced. Finally minimization of

the prediction error is given.

3.3.1. Prediction

The idea of how to predict future output values is essential for the development

of parameter identification methods. In a LTI system described by (3.7) the prediction

of ν(n) [1] is given as

ν(n) =

∞∑
k=0

h(k)e(n − k) (3.35)
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It is further assumed that H(z) is stable (3.36).

∞∑
k=0

|h(k)| < ∞ (3.36)

A crucial property of (3.35) is that H(z) should be invertible in order to compute

e(n) once ν(n) is known for n − 1, n − 2, . . . (3.37).

e(n) =
∞∑

k=0

h̃(k)ν(n − k), H̃(z) =
∞∑

k=0

h̃(k)z−k,
∞∑

k=0

|h̃(k)| < ∞ (3.37)

H̃(z) = H−1(z) is satisfied provided that the function 1/H(z) be analytic in |z| ≥ 1.

H(z) must have no zeros on or outside the unit circle.

One-step-ahead prediction of ν(n) [1] can be done if the observations up to n− 1

are present. Since h(0) = 1, ν(n) can expressed as

ν(n) =
∞∑

k=0

h(k)e(n − k) = e(n) +
∞∑

k=1

h(k)e(n − k) (3.38)

The knowledge of ν(n) for n− 1, n− 2, . . . implies the knowledge of e(n) for n− 1, n−
2, . . .. Therefore the second term of (3.38) is known up to n − 1. The conditional

expectation of ν(n) denoted by ν̂(n|n − 1) [1] can be calculated as

ν̂(n|n − 1) =
∞∑

k=1

h(k)e(n − k) (3.39)

since e(n) has zero mean. The transfer function of the one-step-ahead disturbance

predictor [1] is given as

Wνν̂(z) =
H(z) − 1

H(z)
= [1 − H−1(z)] (3.40)

Using this transfer function the one-step-ahead prediction of ν(n) can be computed as

shown in Figure 3.2.
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)(ˆ zW vv

)(nv )(ˆ nv

Figure 3.2. One-step-ahead prediction of ν(n).

One-step-ahead prediction of y(n) assumes that the values of the output and

input are known up to n − 1th step. The one-step-ahead prediction of y(n) then can

be calculated using the transfer functions

Wuŷ(z) = H−1(z)G(z), Wyŷ(z) = 1 − H−1(z) (3.41)

as shown in Figure 3.3.

u(n)
)(ˆ zW yu +

)(ˆ zW yy

y(n)

)(ˆ ny

Figure 3.3. One-step-ahead prediction of y(n).

3.3.2. Parametrized Model Structures

An LTI model is specified by the impulse response, the spectrum of the additive

disturbance and the PDF of the disturbance. A complete model is thus given by

G(z, θ), H(z, θ), and fe(x, θ) the PDF of e(n). θ denotes the parameter vector to be

determined by the identification procedure. Parameters are the unknown coefficients of

the mathematical model that govern the system behaviour. One-step-ahead prediction

of a complete model can be computed by using (3.41) (Figure 3.3). The prediction

does not depend on fe(x, θ) [1].
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There are different ways of describing a complete model in terms of θ. One

obvious way of parametrizing G and H is to represent them in rational functions and

then the coefficients of the numerator and denominator are taken as parameters.

3.3.2.1. Equation Error Model Structure. The most simple linear difference equation

that describes the input-output relationship is given by

y(n)+ a1y(n− 1) + · · ·+ anay(n− na) = b1u(n− 1) + · · ·+ bnb
u(n− nb) + e(n) (3.42)

The model (3.42) is called an equation error model due to the noise term which acts

like a direct error in the equation. The parameter vector is shown as

θ =
[
a1 . . . ana b1 . . . bnb

]T

(3.43)

By introducing

A(z) = 1 + a1z
−1 + · · ·+ anaz

−na (3.44)

B(z) = b1z
−1 + · · ·+ bnb

z−nb (3.45)

G(z, θ) and H(z, θ) can be expressed as

G(z, θ) =
B(z)

A(z)
, H(z, θ) =

1

A(z)
(3.46)

This model is also known as an ARX model (Figure 3.4), where AR refers to the

autoregressive part A(z)y(n) and X to the extra input B(z)u(n). In the special case

where na = 0, y(n) is modeled as a finite impulse response (FIR).

The most important property of the equation error model is that the predictor

can be written as a linear regression. By inserting (3.46) into (3.41) the predictors for
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A

B
+

A

1

u

e

y

Figure 3.4. ARX model structure [1].

the equation error model can be obtained as

Wuŷ(z) = B(z), Wyŷ(z) = 1 − A(z) (3.47)

By using the vector

ϕ(n) =
[
−y(n − 1) · · · −y(n − na) u(n − 1) · · · u(n − nb)

]T

(3.48)

the predictor (3.47) can be expressed as

ŷ(n|n − 1) = θT ϕ(n) = ϕT (n)θ (3.49)

This form is known as linear regression in statistics and the vector ϕ(n) is the regression

vector.

3.3.2.2. ARMAX Model Structure. The equation error model structure lacks the free-

dom in describing the properties of the disturbance term. If the equation error is defined

as a moving average of white noise, then the model is given as

y(n) + a1y(n − 1) + · · · + anay(n − na)

= b1u(n − 1) + · · ·+ bnb
u(n − nb) + e(n) + c1e(n − 1) + · · ·+ cnce(n − nc) (3.50)
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Introducing

C(z) = 1 + c1z
−1 + · · · + cncz

−nc (3.51)

G(z, θ) and H(z, θ) can be given as

G(z, θ) =
B(z)

A(z)
, H(z, θ) =

C(z)

A(z)
(3.52)

ARMAX model structure is shown in Figure 3.5.

A

B
+

A

C

u

e

y

Figure 3.5. ARMAX model structure [1].

The parameter vector for ARMAX is

θ =
[
a1 . . . ana b1 . . . bnb

c1 . . . cnc

]T

(3.53)

The predictors for ARMAX model structure (Figure 3.5) are obtained by inserting

(3.52) into (3.41)

Wuŷ(z) =
B(z)

C(z)
, Wyŷ(z) = 1 − A(z)

C(z)
(3.54)

The predictor can be rewritten like (3.49)

ŷ(n|n − 1) = ϕT (n, θ)θ (3.55)
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The regression vector is defined as

ϕ(n, θ) = [−y(n − 1) . . . −y(n − na) u(n − 1) . . . u(n − nb)

ε(n − 1, θ) . . . ε(n − nc, θ)]
T (3.56)

where the prediction error

ε(n, θ) = y(n) − ŷ(n|n − 1) (3.57)

is used. The equation (3.55) is called pseudolinear regression due to θ being an argu-

ment of the regression vector.

3.3.2.3. Output Error Model Structure. The transfer functions of all previous model

structures, both G and H share the polynomial A as a common factor in the denom-

inators. The relation between input and undisturbed output w can be expressed as a

linear difference equation

w(n) + f1w(n − 1) + · · ·+ fnf
w(n − nf ) = b1u(n − 1) + · · · + bnb

u(n − nb) (3.58)

y(n) = w(n) + e(n) (3.59)

With F (z) given as

F (z) = 1 + f1z
−1 + · · · + fnf

z−nf (3.60)

y(n) can be written as

y(n) =
B(z)

F (z)
u(n) + e(n) (3.61)

Output error (OE) model structure can be seen from Figure 3.6.
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F

B
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e

y

Figure 3.6. OE model structure [1].

The parameter vector for the OE model structure is given as

θ =
[
b1 b2 . . . bnb

f1 f2 . . . fnf

]T

(3.62)

Since H(z, θ) = 1, the predictor is

ŷ(n|n − 1) = w(n) (3.63)

The predictor can be rewritten as in formal agreement with the ARMAX model

predictor

ŷ(n|n − 1) = ϕT (n, θ)θ (3.64)

where the regression vector is given as

ϕ(n, θ) =
[
u(n − 1) . . . u(n − nb) −w(n − 1, θ) . . . −w(n − nf , θ)

]T

(3.65)

3.3.2.4. General Family of Model Structures. All of the model structures given so far

and more can be derived from a generalized model structure shown as

G(z, θ) =
B(z)

A(z)F (z)
, H(z, θ) =

C(z)

A(z)D(z)
(3.66)

If the dynamics contain a delay of nk samples from input to output, then this results

in some zero coefficients for polynomial B.
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In this case the generalized model (see Figure 3.7) can be described by

G(z, θ) = z−nk
B(z)

A(z)F (z)
, H(z, θ) =

C(z)

A(z)D(z)
(3.67)

AF

B
+u

e

y

AD

C

Figure 3.7. Generalized model structure.

The predictor can also be generalized as

Wuŷ(z) =
D(z)B(z)

C(z)F (z)
, Wyŷ(z) = 1 − D(z)A(z)

C(z)
(3.68)

3.3.3. Prediction Error Framework

There exists various model structures as seen in Section 3.3.2. In order to distin-

guish a model from a set of candidate models a test is needed to evaluate a model’s

ability to describe the observed data. The essence of a model is its prediction aspect

and thus a model’s performance can be judged in this respect. The prediction error of

a certain model is defined as

ε(n, θ) = y(n) − ŷ(n|θ) (3.69)

When the input-output data set Zn = [y(1), u(1), y(2), u(2), . . . , y(N), u(N)] is known,

the prediction error of a certain model can be computed for n = 1, 2, . . . , N .
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A good model produces small prediction errors when applied to the observed

data. The problem is to qualify what “small” should mean. One approach is to form a

criterion function that measures the size of ε. The prediction-error sequence is a vector

in R
N . The size of this vector can be measured using any norm in R

N .

The prediction error sequence is filtered through a stable linear filter L(z) which

yields the filtered prediction error εF (n, θ). The aim of filtering is to remove high

frequency disturbances. The filter L acts like a frequency weighting which enchances

or suppresses certain frequencies. Once the filtered prediction error is subject to the

following norm

VN(θ, ZN) =
1

N

N∑
n=1

l(εF (n, θ)) (3.70)

where l(·) is a scalar valued positive function. For the choice of l(·), a first candidate

is a quadratic norm

l(ε) =
1

2
ε2 (3.71)

which is convenient both for computation and analysis.

The function VN(θ, ZN) is a well-defined scalar-valued function of the model

parameter θ. The estimate θ̂N is defined by minimization

θ̂N = θ̂N (ZN) = arg min VN(θ, ZN) (3.72)

Here arg min means the minimizing argument of the function. If the minimum is not

unique, then arg min denote the set of minimizing arguments. The procedures used in

this way of estimating θ is known as prediction error identification methods (PEM).

3.3.3.1. Linear Regression and Least-Squares Method. Linear regression is a special

case of PEM. Linear regression model structures are very useful in describing both
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linear and nonlinear systems. The linear regression employs a predictor that is linear

in θ

ŷ(n|θ) = ϕT (n)θ + μ(n) (3.73)

μ(n) represents the known parameters. ϕ is the vector of regressors, the regression

vector. For example the regression vector of an ARX model structure is given as

ϕ(n) =
[
−y(n − 1) . . . −y(n − na) u(n − 1) . . . u(n − nb)

]T

(3.74)

Once μ(n) is considered zero for notational simplicity, the prediction error for (3.73)

becomes

ε(n, θ) = y(n) − ϕT (n)θ (3.75)

If the frequency filtering and error criterion is taken as L(z) = 1 and l(ε) = 1
2
ε2

respectively, then

VN(θ, ZN) =
1

N

N∑
n=1

1

2
[y(n) − ϕT (n)θ]2 (3.76)

This is the least squares criterion for linear regression. The most important feature

of this criterion is that it is a quadratic function of θ. Therefore it can be minimized

analytically

θ̂LS
N = arg min VN(θ, ZN) =

[
1

N

N∑
n=1

ϕ(n)ϕT (n)

]−1

1

N

N∑
n=1

ϕ(n)y(n) (3.77)

which gives the least squares estimate (LSE) provided that the inverse exits.
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If the d×d matrix R(N) and the d-dimensional column vector f(N) is introduced

as

R(N) =
1

N

N∑
n=1

ϕ(n)ϕT (n) (3.78)

f(N) =
1

N

N∑
n=1

ϕ(n)y(n) (3.79)

the entries of (3.78) and (3.79) will consist of estimates of the covariance function of

output and input sequence.

[R(N)]ij =
1

N

N∑
n=1

y(n − i)y(n − j), 1 ≤ i, j ≤ na (3.80)

The LSE can be computed using only such estimates.

Under the assumption that the observed data is generated by

y(n) = ϕT (n)θ0 + ν0(n) (3.81)

where θ0 and ν0 are considered the true values of the parameter vector and the distur-

bance respectively. Then the LSE (3.77) can be expressed as

θ̂LS
N = θ0 + [R(N)]−1 1

N

N∑
n=1

ϕ(n)ν0(n) (3.82)

Desired properties of θ̂N are given as

• It is close to θ0.

• It converges to θ0 as N goes to infinity.
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If ν0(n) is small compared to ϕ(n), then the error term

[R(N)]−1 1

N

N∑
n=1

ϕ(n)ν0(n) (3.83)

will be small and the first property is satisfied.

In order to investigate the case where N goes to infinity, ν0(n) is assumed to be

a realization of a stationary stochastic process. If the input is quasi stationary so that

the sums like

R̂N
u (τ) =

1

N

N∑
n=1

u(n)u(n − τ) → Ru(τ) = E {u(n − τ)u(n)} (3.84)

converge as N tends to infinity. Then R(N) converges as R(N) → R∗. Also under

weak conditions

1

N

N∑
n=1

ϕ(n)ν0(n) → h∗

Thus the LSE (3.82) converges as

θ̂N → θ0 + (R∗)−1h∗ (3.85)

The requirements for (3.85) to be valid is given as

• R∗ is nonsingular. If the input and disturbance sequences are independent, open

loop configuration, and the m × m matrix whose i, j entry is Ru(i − j) is non-

singular, then R∗ becomes nonsingular. In this case the input is called to be

persistently exciting of order nb.

• h∗ = 0. This can be realized in two ways

(i) ν0(n) is a sequence of independent random variables with zero mean values,

white noise. Then ν0(n) does not depend on what has happened up to

n − 1-th step and hence E {ϕ(n)ν0(n)} = 0
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(ii) The input sequence is independent of the zero mean noise sequence and

na = 0. Then ϕ(n) contains only u terms and hence E {ϕ(n)ν0(n)} = 0.

3.4. Persistence of Excitation

A quasi-stationary input signal u(n), with spectrum Φu(ω), is persistently exciting

of order n if, for all filters of the form

Wn(z) = w1z
−1 + · · ·+ wnz−n (3.86)

the equation

|Wn(ejω)|2Φu(ω) ≡ 0 ⇒ Wn(ejω) ≡ 0 (3.87)

is satisfied [1]. The equation (3.87) indicates that Wn(z)Wn(z−1) can have at most n−1

different zeros on the unit circle due to symmetry. Hence u(n) is persistently exciting

of order n, if Φu(ω) is different from zero at least n points in the interval −π < ω ≤ π

[1].

Another definition of persistence of excitation is given in terms of the covariance

function Ru(τ). The quasi-stationary input signal u(n) is persistently exciting of order

n if and only if n × n matrix of Rn

Rn =

⎡⎢⎢⎢⎢⎢⎢⎣
Ru(0) Ru(1) · · · Ru(n − 1)

Ru(1) Ru(0) · · · Ru(n − 2)
...

...
. . .

...

Ru(n − 1) Ru(n − 2) · · · Ru(0)

⎤⎥⎥⎥⎥⎥⎥⎦ (3.88)

is nonsingular [1].

Excitation orders for input signal commonly used in identification are given below.
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• Step Input. Persistently exciting of order 1.

• Pseudo Random Binary Signal. Pseudo random binary signal (PRBS) is a peri-

odic signal with period M that can only take two different values, ∓a, in a certain

way. A PRBS of length n ≤ M is persistently exciting of order n. By using the

covariance function for the PRBS of length n ≤ M

Ru(τ) =

⎧⎨⎩ a2 τ = 0,∓M,∓2M, . . .

− a2

M
otherwise

(3.89)

it can be shown that Rn

Rn =

⎡⎢⎢⎢⎢⎢⎢⎣
a2 −a2

M
· · · −a2

M

−a2

M
a2 · · · −a2

M
...

... · · · ...

−a2

M
−a2

M
· · · a2

⎤⎥⎥⎥⎥⎥⎥⎦ (3.90)

is nonsingular [1].

• Periodic Sum of Sinusoids Signal. Periodic sum of sinusoids signal is the sum of

sinusoids at m different frequencies.

u(n) =
m∑

j=1

aj cos(ωjt + φj) (3.91)

Periodic sum of sinusoids signal is persistently exciting of order n if Φu(ω)

Φu(ω) =

m∑
j=1

aj

2
[δ(ω − ωj + δ(ω + ωj))] (3.92)
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is nonzero at exactly n different frequencies

0 ≤ ω1 < ω2 < · · · < ωn ≤ π

n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2m 0 < ω1, ωn < π

2m − 1 0 < ω1 ⊗ ωn = π

2m − 2 0 = ω1 & ωn = π

(3.93)

3.5. Comparison of Integer Order Identification Methods

For example assume that the transfer function of the system to be identified is

as follows

G(s) =
1

s2 + 0.2s + 1
e−2s (3.94)

This system (3.94), which is a second order process model with underdamped modes

(complex poles) and a peak frequency response at 1 rad/s, is simulated at a sampling

interval of 1 s and a large enough set of input-output data is gathered. A random binary

signal of 100 sample length that is persistently exciting of order 100 (see Section 3.4)

is used as an input signal. As for a disturbance term, white noise with a standard

deviation of 0.2 is applied which results in a signal-to-noise ratio of about 20 dB. A

plot of the gathered input-output data is given in Figure 3.8.
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Figure 3.8. System response to random binary signal.
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As a first step, the mean values of both output and input signal is subtracted in

order to remove any offsets. This operation is known as detrending. The linear model

we are trying to build describe deviations from a physical equilibrium. With steady-

state data, it is reasonable to assume that the mean levels of the signals correpond

to such an equilibrium. Thus, detrending is required to avoid modeling the absolute

equilibrium levels in physical units. Once detrending is applied, the input-output data

is split into two parts: the first part of the data to be used in estimation and the second

part of the data to be used for validation (Figure 3.9).
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Figure 3.9. Detrended output signal (y) and the random binary input signal (u).

Using correlation analysis the impulse response of the system is obtained. Sys-

tem’s true and estimated impulse responses are shown in Figure 3.10. The system’s

first response to the input outside the 3-standard deviation confidence region occurs

at the third lag. The fact that the system’s first response does not occur at the zero

lag indicates that there is a nonzero delay in the system.

Step response of the system can also be estimated from correlation analysis.

Estimated step response (Figure 3.11) confirms the existence of a delay in the system.

Moreover, the overshoot clearly indicates that the system has complex poles and hence

the order of the system should be greater than one.
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Figure 3.10. Estimated Impulse response by correlation analysis.
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Figure 3.11. Estimated Step Response by Correlation Analysis.
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Frequency response of the system is estimated using both ETFE and SPA. The

amplitude peaks at the frequency of about 1 rad/s (Figure 3.12). This suggests a

possible resonant behaviour of the complex poles.
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Figure 3.12. Estimated Frequency Response by ETFE and SPA.

As it is observed from the identification methods applied so far, nonparametric

identification is very useful in giving the user information about some properties of the

system which can be useful for choosing the form of the model. From time domain

identification methods of impulse and step analysis, it is inferred that the system has

a three sample delay from input to output. Frequency domain methods have shown

that the system order is 2 and the poles are complex. Now by using these facts a

parametrized model for the system may be constructed using output error (OE) model

structure

G(z, θ) = z−nk
B(z)

F (z)
= z−3 b1 + b2z

−1

1 + f1z−1 + f2z−2
, H(z, θ) = 1 (3.95)
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The prediction error of this model (3.95) can be written in pseudolinear regression

form (see Section 3.3.2.3)

ŷ(n|n − 1) = ϕT (n, θ)θ, θ̂ =
[
b1 b2 f1 f2

]T

ϕ(n, θ) =
[
u(n − 3) u(n − 4) −ŷ(n − 1, θ) −ŷ(n − 2, θ)

]T

(3.96)

The parameters of the model (3.95) are estimated as

θ̂ =
[
0.44 0.39 −0.98 0.81

]T

(3.97)

The comparison of the estimated OE model and the validation data is shown in Figure

3.13. The estimated OE model fits the validation data by 78.34 per cent.
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Figure 3.13. Comparison of the measured output and the OE model output.

The estimated OE model is a discrete time model and this discrete time OE model

must be converted to continuous time since the system to be identified is a continuous

time process.

Ĝ(z) =
0.44z−3 + 0.39z−4

1 − 0.98z−1 + 0.81z−2
⇒ Ĝ(s) =

0.008573s + 0.9998

s2 + 0.217s + 1.003
e−2s (3.98)
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If the parameter vector is rewritten for the continuous time process model, the

parametric identification procedure may be evaluated in continuous time as

θ0 =
[
1 0.2 1 1 0 2

]T

θ̂ =
[
1.003 0.217 1 0.9998 0.008573 2

]T

(3.99)

The constructed OE model structure (3.95) is inadequate in modeling the noise

as it is seen from the comparison (Figure 3.13). The identification can be improved

by using ARMAX model structure (see Section 3.3.2.2) which allows more flexibility

in modeling the noise. Hence, the noise model is changed to a second order moving

average process while the system model is kept same.

G(z, θ) = z−nk
B(z)

F (z)
= z−3 b1 + b2z

−1

1 + f1z−1 + f2z−2
, H(z, θ) = 1+c1z

−1 +c2z
−2 (3.100)

The parameters of the ARMAX model (3.100) are estimated as

θ̂ =
[
f1 f2 b1 b2 c1 c2

]T

=
[
−0.99 0.81 0.43 0.41 0.88 −0.03

]T

yields the following model

Ĝ(z, θ) =
0.43z−3 + 0.41z−4

1 − 0.99z−1 + 0.81z−2
, Ĥ(z, θ) = 1 + 0.88z−1 − 0.03z−2 (3.101)

The 5-step-ahead comparison of the two models and the validation data is shown in

Figure 3.14. While the OE model fits the validation data by 78.34 per cent, the fit of

the ARMAX model is 81.55 per cent. It is seen clearly that the ARMAX model due

to better modeling noise is more successful at fitting the validation data than the OE

model.
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Figure 3.14. 5-step-ahead comparison of the measured output and the OE and

ARMAX model outputs.

While none of the applied identification methods is perfect, all of them give some

insight into the system. Each identification method has its own set of advantages

and disadvantages. All of the nonparametric methods depend on their inputs being

persistently exciting. Time domain methods of impulse and step response analysis

are simple to apply and may yet give critical information such as delay time, gain,

dominating time constant, order and complexity of system poles but they are subject

to significant errors due to noise that cannot be neglected. Correlation analysis gives the

same estimate regardless of the noise as long as the input remains persistently exciting.

Frequency domain methods composed of frequency, fourier and spectral analysis also

depend on the the type of the input signals and do not yield satisfactory results for

poor input signals such as impulse and step. Although frequency analysis method is

easy to apply and allows focusing on a specified frequency range, the method must be

repeated for the given number of frequencies which may cause long experimentation

time and requires sinusoidal input signal which in practice cannot be applied to many

real processes. While fourier analysis results in good estimates for periodic inputs, the

nonperiodic inputs gives crude estimates. Spectral analysis attempts to smooth the

frequency response estimated from fourier analysis by using frequency windows. The

selection of the frequency window determines the quality of the estimates by spectral
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analysis. A comparison of the nonparametric linear identification methods is presented

in Table 3.1.

Table 3.1. Comparison of nonparametric linear identification methods

Domain Methods Advantages Disadvantages

Time

Impulse Resp.

simple to apply impulse is hard to generate

can be used to determine noise neglected

delay large estimation error

may evoke nonlinear modes

Step Resp.
allows determination of noise neglected,

delay, gain, order large estimation error

Corr. Anal.
gives same estimation input signal must be

error regardless of noise persistently exciting

Freq.

Freq. Anal.

easy, allows to focus only works with sinusoidal

on a specified frequency input, experiment must be

range repeated for each frequency

Fourier Anal.
estimations are good only estimations are crude

for periodic inputs for nonperiodic inputs

Spec. Anal.
can smooth estimations smoothing not

by windowing guaranteed

On the other hand, parametric methods are not as sensitive to the type of input

signals as the nonparametric methods. The success of the parametric methods depends

on the selection of the correct model structure. Equation error model structure also

known as ARX is the most simple model structure. Although from a physical point

of view this model structure may seem unnatural to model the noise through the

denominator dynamics of the system, the advantage of this model which makes it a

prime choice for many applications is its predictor that can be written in a linear

regression form. The disadvantage of the ARX model is lack of adequate freedom in

describing the disturbance term. The ARMAX model structure gives the user flexibility

by describing the noise as a moving average (MA) process. However, this flexibility

comes at a price. The predictor for ARMAX model structure cannot be written in
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a linear regression form. OE model structure allows independent parametrization of

the system and disturbance transfer functions. Like ARMAX model structure, the

predictor of OE cannot be written in a linear regression form. A comparison of the

parametric identification of black-box model structures is given in Table 3.2.

Table 3.2. Comparison of parametric identification of black-box model structures.

Model Structures Advantages Disadvantages

ARX

prediction error is in linear noise model is fixed and

regression form, parameters cannot be changed

may be calculated by LS

ARMAX

noise may be modeled as prediction error is not

a MA process of any order in linear regression form,

parameter can only be

OE
parametrization of system calculated numerically

and noise model is independent
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4. FRACTIONAL ORDER SYSTEM IDENTIFICATION

TECHNIQUES

The fractional order system identification techniques that are covered in this

section are parametric identification methods with fractional order models. Since the

nonparametric identification methods given in Section 3.2 do not use a mathematical

model, they can be directly applied to any linear system without any modification.

The parametric methods should be extended to fractional order models. As benchmark

systems semi-integrating circuits and viscoelastic system of Bagley-Torvik are analyzed

in detail. The given parametric identification methods with fractional order models are

compared using the benchmark systems.

4.1. Parametric Identification with Fractional Order Models

There exist both time domain and frequency domain parametric identification

methods using fractional order models.

4.1.1. Time Domain Methods

4.1.1.1. Linear Regression. The linear regression method from integer order system

identification can be extended to fractional order models as well. The fractional order

system that is to be identified is assumed to be governed by the following fractional

order differential equation

Dα0y(t)+a1D
α1y(t)+· · ·+anDαny(t) = b0D

β0u(t)+b1D
β1u(t)+· · ·+bmDβmu(t) (4.1)

The fractional orders,(α0, . . . , αn, β0, . . . , βm), are supposed to be known as is the case

of many systems such as thermal systems [15]. If no insight is available regarding the

fractional orders, they are to be chosen by trial and error. The parameter vector that

is to be estimated by linear regression is composed of the coefficients of the fractional
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order differential equation

θ =
[
a1 · · · an b0 · · · bm

]T

(4.2)

Isolating the term Dα0y(t) allows us to rewrite the fractional order differential equation

in linear regression form [16]

Dα0y(t) = −a1D
α1y(t) − · · · − anDαny(t) + b0D

β0u(t) + · · ·+ bmDβmu(t)

=
[
−Dα1y(t) . . . −Dαny(t) Dβ0u(t) . . . Dβmu(t)

]
θ (4.3)

Since the data acquisition takes place at the sampling intervals, numerical schemes of

fractional order differentiation (see Section 2.1.4) can be applied to the sampled output

and input to form the regression vector [16]

⎡⎢⎢⎢⎢⎢⎢⎣
Dα0y(0)

Dα0y(h)
...

Dα0y(Kh)

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

ŷ(kh)

=
[
−Dα1y · · · −Dαny Dβ0u · · · Dβmu

]
︸ ︷︷ ︸

ϕ(kh)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

...

an

b0

...

bm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

θ

(4.4)

Dαiy =

⎡⎢⎢⎢⎢⎢⎢⎣
Dαiy(0)

Dαiy(h)
...

Dαiy(Kh)

⎤⎥⎥⎥⎥⎥⎥⎦ Dαiu =

⎡⎢⎢⎢⎢⎢⎢⎣
Dαiu(0)

Dαiu(h)
...

Dαiu(Kh)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.5)

The LS solution of linear regression is given as

θ̂ =
(
ϕT ϕ

)−1
ϕT ŷ(kh) (4.6)

provided that the inverse exists. Fractional order models based on (4.1) have been

developed by Mathieu (1996), Le Lay (1998), Trigeassou (1999) and Cois (2000) [15, 17].
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The calculation of the regression vector (4.4) requires differentiating the output

and input signals of the system to an arbitrary real order. The Grünwald-Letnikov

definition may be used for numerical evaluation of fractional order differentiation (see

Section 2.1.4.1). Using Grünwald-Letnikov definition the predictor (4.4) can be rewrit-

ten as

ŷ(kh) = −

n∑
i=1

ai

hαi

k∑
j=0

(−1)j

(
αi

j

)
y(kh − jh)

n∑
i=1

ai

hαi

+

m∑
l=0

bl

hβl

k∑
j=0

(−1)j

(
βl

j

)
u(kh − jh)

n∑
i=1

ai

hαi

(4.7)

The equation (4.7) is nonlinear with respect to the parameters given in (4.2). This

nonlinearity can be adressed by defining a new set of parameters

a∗
i =

ai

hαi

n∑
i=1

ai

hαi

, 1 ≤ i ≤ n b∗l =

bl

hβl

n∑
i=1

ai

hαi

, 0 ≤ l ≤ m (4.8)

Now the predictor can be expressed in a linear form with the new set of parameters

ŷ(kh) = −
n∑

i=1

a∗
i y

∗
i (kh) +

m∑
l=0

b∗l u
∗
l (kh) (4.9)

y∗
i (kh) and u∗

l (kh) are defined from (4.7) and represent past values of the output and

input variables respectively. This method is desribed in [18].

4.1.1.2. Iterative Search By Grünwald-Letnikov Definition. By using (4.7) and (4.8)

the predictor (4.9) can also be written as

ŷ(kh) = −
n∑

i=1

a∗
i

k∑
j=0

(−1)j

(
αi

j

)
y(kh − jh) +

m∑
l=0

b∗l

k∑
j=0

(−1)j

(
βl

j

)
u(kh − jh) (4.10)



71

According to commensurate order form [19], in which α’s and β’s are multiple of a real

q ∈ R \ Z, the predictor (4.10) can be reorganized as

ŷ(kh, θ) = −
n∑

i=1

a∗
i

k∑
j=0

(−1)j

(
iq

j

)
y(kh− jh) +

m∑
l=0

b∗l

k∑
j=0

(−1)j

(
lq

j

)
u(kh− jh) (4.11)

A modal decomposition of this form (4.11) has been suggested by Cois, et. al. [20].

The predictor allows the parametrization of the commensurate order along with the

coefficients. Parameter vector is given as

θT =
[
q a∗

1 · · · a∗
n b∗0 · · · b∗m

]
(4.12)

The parameter vector (4.12) can be estimated numerically by minimizing the prediction

error. With θ̂ being an estimation of θ the prediction error for a kth sample of total

K number of system output data, y(kh), is

ε(kh, θ̂) = y(kh) − ŷ(kh, θ̂) (4.13)

The optimal value of θ̂ can be obtained through minimization of the quadratic criterion

applied to the prediction error

VK(θ̂, ZK) =
1

K

K−1∑
k=0

1

2
ε2(kh, θ̂) (4.14)

Since the predictor ŷ(kh, θ̂) is nonlinear with respect to θ̂, a nonlinear numerical

search routine must be used in order to find the optimal parameters that minimize

the quadratic criterion. Numerical minimization of the quadratic criterion update the

estimate of the minimizing point iteratively according to

θ̂i+1 = θ̂i + λfi (4.15)

where i denotes the current iteration and fi is a search direction based on information

about VK(θ̂, ZK) acquired at previous iterations and λ is a positive constant deter-
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mined so that an appropriate decrease in the value of VK(θ̂, ZK) is obtained. Methods

using values of the function, VK(θ̂, ZK), of its gradient, and of its Hessian, the second

derivative matrix, are called “Newton” algorithms [1]. The Newton algorithms use the

following search direction

fi = −
[
V

′′
(θ̂i)

]−1

V
′
(θ̂i) (4.16)

which is known as Newton search direction [1]. Some well-known algorithms using

the Newton search direction (4.16) are trust-region reflective, Levenberg-Marquardt

and Gauss-Newton algorithms. These algorithms are implemented in Matlab’s Opti-

mization Toolbox which has been used in minimizing (4.14). The implementation of

these algorithms are described in [21]. Levenberg-Marquardt algorithm is chosen for

simulations.

4.1.2. Frequency Domain Methods

If the frequency response of the fractional order system is estimated successfully

by parametric identification methods, then the estimated frequency response can be

modeled by using a transfer function

Ĝ(s) =
bmsβm + · · · + b2s

β2 + b1s
β1 + b0

ansαn + · · ·+ a2sα2 + a1sα1 + 1
=

m∑
k=0

bks
kq

1 +

n∑
k=1

aks
kq

(4.17)

where m and n are the orders of the numerator and denominator. This transfer function

has a specific form and so the order is commensurate which means that all powers of

the Laplace variable, α’s and β’s, are multiple of a real q ∈ R \ Z [22, 23].
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By replacing s = jω the frequency response of the transfer function can be

expressed as

Ĝ(jω) =

m∑
k=0

bk(jω)kq

1 +
n∑

k=1

ak(jω)kq

=
N(jω)

D(jω)
=

χ(ω) + jγ(ω)

η(ω) + jκ(ω)
(4.18)

N(jω) and D(jω) are complex while χ, γ, η, κ are real [22, 23].

The prediction error between the model and the actual system is given for a

specific frequency

ε(jω) = G(jω) − Ĝ(jω) = G(jω) − N(jω)

D(jω)
(4.19)

It is possible to minimize the norm of this prediction error but the minimization prob-

lem is difficult. In order to simplify the problem, the prediction error has to be redefined

[22, 23].

4.1.2.1. Levy’s Identification Method. Levy’s method tries to minimize the square of

the norm of

ε(jω)D(jω) = G(jω)D(jω)− N(jω) (4.20)

This form of prediction error leads to a set of equations easily solvable. For simplifying

notation, a new variable E is introduced and the frequency argument of the variables

is omitted [22, 23].

E = GD − N = [�(G) + j�(G)] (η + jκ) − (χ + jγ)

= [�(G)η − �(G)κ − χ] + j [�(G)κ + �(G)η − γ] (4.21)
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The square of the norm of E is

|E|2 = [�(G)η −�(G)κ − χ]2 + [�(G)κ + �(G)η − γ]2 (4.22)

It is observed from (4.18) that

χ(ω) =
m∑

k=0

bk�
[
(jω)kq

]
γ(ω) =

m∑
k=0

bk�
[
(jω)kq

]
(4.23)

η(ω) = 1 +
n∑

k=1

ak�
[
(jω)kq

]
κ(ω) =

n∑
k=1

ak�
[
(jω)kq

]
(4.24)

Differentiating |E|2 with respect to bk and ak (k = 0, 1, . . . , m) yields

∂|E|2
∂bk

= 0 ⇔ [�(G)η − �(G)κ − χ]� [
(jω)kq

]
+ [�(G)κ + �(G)η − γ]� [

(jω)kq
]

= 0 (4.25)

∂|E|2
∂ak

= 0 ⇔ η
{
[�(G)]2 + [�(G)]2

}�[(jω)kq] + κ
{
[�(G)]2 + [�(G)]2

}�[(jω)kq]

+ χ
{�(G)�[(jω)kq] − �(G)�[(jω)kq]

}
− γ

{−�(G)�[(jω)kq] − �(G)�[(jω)kq]
}

= 0 (4.26)

The m+1 equations from (4.25) and the n equation from (4.26) together form a linear

system of equations which can be solved to find the parameters [23].

⎡⎣A B

C D

⎤⎦⎡⎣b

a

⎤⎦ =

⎡⎣f

g

⎤⎦ (4.27)

The linear system of equation is summed for each frequency supposing that the fre-

quency response is estimated at N frequencies [23].

Al,c =

N∑
p=1

{−� [
(jωp)

lq
]� [(jωp)

cq] − � [
(jωp)

lq
]� [(jωp)

cq]
}

,

l = 0, 1, . . . , m ∧ c = 0, 1, . . . , m (4.28)
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Bl,c =
N∑

p=1

{� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] + � [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]

−� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] + � [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]
}

,

l = 0, 1, . . . , m ∧ c = 1, . . . , n (4.29)

Cl,c =

N∑
p=1

{−� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] + � [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]

−� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] − � [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]
}

,

l = 1, . . . , n ∧ c = 0, 1, . . . , m

Dl,c =

N∑
p=1

({�[G(jωp)]}2 + {�[G(jωp)]}2)
{�[(jωp)

lq]�[(jωp)
cq] + �[(jωp)

lq]�[(jωp)
cq]
}

, l = 1, . . . , n ∧ c = 1, . . . , n (4.30)

b =
[
b0 · · · bm

]T

(4.31)

a =
[
a1 · · · an

]T

(4.32)

fl,1 =

N∑
p=1

−�[(jωp)
lq]�[G(jωp)] − �[(jωp)

lq]�[G(jωp)], l = 0, 1, . . . , m (4.33)

gl,1 =
N∑

p=1

−�[(jωp)
lq]
({�[G(jωp)]}2 + {�[G(jωp)]}2) , l = 1, . . . , n (4.34)

Another way to deal with the issue of N frequencies is to assign a system for each

frequency and then stack them [23].

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1

C1 D1

A2 B2

C2 D2

...
...

AN BN

CN DN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣b

a

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

g1

f2

g2

...

fN

gN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.35)
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This is an overdetermined system and so the least squares solution can be used.

⎡⎣b

a

⎤⎦ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1

C1 D1

A2 B2

C2 D2

...
...

AN BN

CN DN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1

C1 D1

A2 B2

C2 D2

...
...

AN BN

CN DN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1

C1 D1

A2 B2

C2 D2

...
...

AN BN

CN DN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

g1

f2

g2

...

fN

gN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.36)

In simulations Levy’s method is applied via Fractional Control Toolbox developed by

Valerio [24].

4.1.2.2. Enhancing Levy’s Identification with Weights. Levy’s method has a disad-

vantage. The Levy’s method often leads to models well fitted to high frequencies

but poorly fitted to low frequencies. Using well-chosen weights the influence of low

frequency data can be increased and thus this issue may be counterbalanced [22].

If g(t) is the step response of the fractional order system to be identified, according

to Vinagre [22]

∫ ∞

0

|g(t) − ĝ(t)|2dt =

∫ ∞

0

∣∣∣∣L −1

[
G(s)

1

s

]
− L −1

[
Ĝ(s)

1

s

]∣∣∣∣2 dt (4.37)

and Parseval’s theorem [22] allows this to be written as

∫ +∞

−∞

∣∣∣∣G(jω)
1

jω
− Ĝ(jω)

1

jω

∣∣∣∣2 dω =

∫ +∞

−∞

|ε(ω)|2
ω2

dω (4.38)

Applying trapezoidal numerical integration rule [22] gives

N−1∑
p=1

{
1

2
(ωp+1 − ωp)

[ |ε(ωp+1)|2
ω2

p+1

+
|ε(ωp)|2

ω2
p

]}
=

N∑
p=1

|ε(ωp)|2ω∗
p (4.39)
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where

ω∗
p =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(ω2 − ω1)/2ω2

1 if p = 1

(ωp+1 − ωp−1)/2ω2
p if 1 < p < N

(ωf − ωf−1)/2ω2
f if p = N

(4.40)

Instead of minimizing
N∑

p=1

|E(ωp)|2, the new cost function
N∑

p=1

|E(ωp)|2ω∗
p is going to

be minimized [22]. The weights that decrease with frequency clearly increases the

influence of low frequencies. The new weights do not depend on the coefficients and

so differentiating the prediction error with respect to the coefficients does not yield

dramatic changes. The matrices and the vectors for the new weights [22] can be

calculated from

Al,c =
N∑

p=1

{−� [
(jωp)

lq
]� [(jωp)

cq] − � [
(jωp)

lq
]� [(jωp)

cq]
}

ωp,

l = 0, 1, . . . , m ∧ c = 0, 1, . . . , m (4.41)

Bl,c =

N∑
p=1

{� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] + � [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]

−� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] + � [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]
}

ωp,

l = 0, 1, . . . , m ∧ c = 1, . . . , n (4.42)

Cl,c =
N∑

p=1

{−� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] + � [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]

−� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)] −� [
(jωp)

lq
]� [(jωp)

cq]� [G(jωp)]
}

ωp,

l = 1, . . . , n ∧ c = 0, 1, . . . , m (4.43)

Dl,c =
N∑

p=1

({�[G(jωp)]}2 + {�[G(jωp)]}2)
{�[(jωp)

lq]�[(jωp)
cq] + �[(jωp)

lq]�[(jωp)
cq]
}

ωp,

l = 1, . . . , n ∧ c = 1, . . . , n (4.44)
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fl,1 =
N∑

p=1

{−�[(jωp)
lq]�[G(jωp)] − �[(jωp)

lq]�[G(jωp)]
}

ωp, l = 0, 1, . . . , m (4.45)

gl,1 =

N∑
p=1

{−�[(jωp)
lq]
({�[G(jωp)]}2 + {�[G(jωp)]}2)}ωp, l = 1, . . . , n (4.46)

In simulations Levy’s method with Vinagre’s weights is applied via Fractional Control

Toolbox developed by Valerio [24].

4.2. Benchmark Systems

The fractional order models of semi-integrating circuits and viscoelastic system

of Bagley-Torvik will be analysed in this section.

4.2.1. Semi-integrating Circuits

Electrical circuits have long been used to perform the operations of differentiation

and integration. A simple circuit (Figure 4.1) with a capacitor can be used to provide

a voltage output that is proportional to the integral of the applied input current under

the assumption of v(0) = 0.

v(t) =
1

C

d−1

dt−1
i(t) (4.47)

Circuits that perform differentiation and integration to noninteger orders can

also be designed. One such circuit is called semi-integrating circuit or semi-integrator.

Although these circuits can perform semi-integration, they have two design considera-

tions: accuracy and limited operation time. Response of a semi-integrating circuit is

approximately proportional to the semi-integral of the input signal meaning the circuit

has a degree of accuracy. Secondly the semi-integrating circuit can approximate the

behaviour of a real semi-integrator only over a limited time interval which has a finite

upper limit and a nonzero lower limit. In other words, the semi-integrating circuit

has a frequency bandpass. Although these two issues may be improved by selecting

better components and increasing the number of components, the cost of the design
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will inevitably increase [6].

C

i(t)

v(t)

Figure 4.1. An integrating circuit.

First the simple circuit in Figure 4.2 is considered. The input current i(t) flows

through the resistor R1 and then continues through a parallel combination of the ca-

pacitor C0 and the resistor R0. It is assumed that at t = 0 the circuit is at rest which

implies that both the applied input current and the potential output are both zero.

i(t ≤ 0) = v(t ≤ 0) = 0 (4.48)

A nonzero input current is applied after t = 0.

i(t)

v(t) C0 R0

i0(t)

v0(t)

R1

Figure 4.2. A simple 3-component circuit [6].

The current i0 flows through the resistor R0 and according to Ohm’s law, i0 is

i0 =
v0

R0
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The current that flows through the capacitor can be written as

i(t) − i0(t) = C0
dv0

dt

where using Ohm’s law the input current i(t) is given as

i(t) =
v(t) − v0(t)

R1

The differential equation that govens the input current i(t) and the output voltage v(t)

is

[R0 + R1]i(t) + R0R1C0
di(t)

dt
= v(t) + R0C0

dv(t)

dt
(4.49)

If the Laplace transform is applied to (4.49),

V (s)

R1I(s)
= 1 +

1

R1C0

s +
1

R0C0

(4.50)

provided that the initial conditions are zero.

Next two additional components, a series resistor R2 and a capacitor C1, are

added to the simple 3-component circuit. The new circuit is shown in Figure 4.3.

i1(t)

v1(t)
C0

R0

i0(t)

v0(t)

R1

C1

R2

v(t)

i(t)

Figure 4.3. 5-component circuit [6].
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The transfer function of the 5-component circuit is given as

V (s)

R2I(s)
= 1 +

1

R2C1

s +
I1(s)

C1V1(s)

(4.51)

I1(s)/V1(s) is the inverse of the transfer function of the three component circuit. In-

serting (4.50) into (4.51) yields

V (s)

R2I(s)
= 1 +

ω3

s +
ω2

1 +
ω1

s + ω0

(4.52)

where the frequencies are defined as

ω0 ≡ 1

R0C0
ω1 ≡ 1

R1C0
ω2 ≡ 1

R1C1
ω3 ≡ 1

R2C1
(4.53)

The transfer function (4.52) can also be represented in the notation of continued frac-

tions [6]

V (s)

R2I(s)
= 1 +

ω3

s+

ω2

1+

ω1

s+

ω0

1
(4.54)

The transfer function (4.54) can be generalized to cover (2n−1)-component circuit

shown in Figure 4.4. The transfer function of the (2n − 1)-component circuit can be

expressed as

E(s)

RnI(s)
= 1 +

ω2n−1

s+

ω2n−2

1+
· · · ω2

1+

ω1

s+

ω0

1
(4.55)

where the frequencies are

ω2k =
1

RkCk
ω2k+1 =

1

Rk+1Ck
(4.56)

Circuit design seen in Figure 4.4 is also known as an arithmetic ladder network [6].
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C0 R0

Rk

Ck

Rn

v(t)

i(t)

k=1,2...,n-1

Figure 4.4. A semi-integrating circuit [6].

ωj can be nondimensionalized through division by s [6]

ωj

s
≡ υj (4.57)

Then (4.55) can simplified as

V (s)

RnI(s)
= 1 +

υ2n−1

1+

υ2n−2

1+
· · · υ2

1+

υ1

1+

υ0

1
(4.58)

The transfer function (4.58) can take more convenient forms for certain values

of R and C. For examples if all capacitors have a common capacitance value and all

resistors except the last one have a common resistance value [6]

C0 = C1 = . . . = Cn−1 = C

R0 = R1 = . . . = Rn−1 = R, Rn =
1

2
R (4.59)

Redefining υ [6] for this case

υ0 = υ1 = . . . = υ2n−3 = υ2n−2 =
1

RCs
≡ υ, υ2n−1 =

2

RCs
≡ 2υ (4.60)

Using (4.60) the transfer function (4.58) can be written as

2V (s)

RI(s)
= 1 + 2

υ

1+

υ

1+
· · · υ

1+

υ

1
(4.61)
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According to Oldham [6], it can be established inductively that the continued fraction

(4.61) of 2n numeratorial υ’s is equal to

υ

1+

υ

1+
· · · υ

1+

υ

1
=

√
4υ + 1

1 +

[√
4υ + 1 − 1√
4υ + 1 + 1

]2n+1 −
√

4υ + 1

2
− 1

2
(4.62)

Combining (4.61) and (4.62) and then through division by 2
√

υ the following [6] can

be obtained

V (s)

I(s)

√
Cs

R
=

√
4υ + 1

4υ

[
[
√

4υ + 1 + 1]2n+1 − [
√

4υ + 1 − 1]2n+1

[
√

4υ + 1 + 1]2n+1 + [
√

4υ + 1 − 1]2n+1

]
︸ ︷︷ ︸

f(υ)

(4.63)

A plot of the right-hand side of equation, f(υ), versus logarithmicly scaled υ for

various values of n is shown in Figure 4.5. It can be observed that as n grows larger

the function takes values closer to unity over a wide range of υ values. The function

lies within 2% of unity for n values larger than 10 [6].

V (s)

I(s)

√
Cs

R
≈ 1, for 6 ≤ υ ≤ 1

6
n2 (4.64)

Using the definition of υ (4.57) the transfer function of the semi-integrating circuit is

expressed as

V (s)

I(s)
≈
√

R

C

1

s0.5
, for 6RC ≤ 1

s
≤ 1

6
n2RC (4.65)

Time domain expression of (4.65) can be obtained by applying inverse Laplace trans-

form rigorously

v(t) ≈
√

R

C

d−0.5i

dt−0.5
(t), for 6RC ≤ t ≤ 1

6
n2RC (4.66)
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Figure 4.5. A semi-logarithmic plot of f(υ) for various values of n.

Simulation is carried out with two different n values, n1 = 30 and n2 = 50 in

order to verify (4.66). The values of the resistor and capacitor in both designs are

selected equal

C0 = C1 = . . . = Cn−1 = 0.1F

R0 = R1 = . . . = Rn−1 = 0.1Ω, Rn = 0.05Ω

⎫⎬⎭ V (s)

I(s)
≈
√

0.1

0.1

1

s0.5
≈ 1

s0.5
(4.67)

The frequency response of the two designs is shown in Figure 4.6. As it is observed

from the frequency response, the slope in the magnitude plot is −10 dB/decade which

can also be expressed as −0.5 × 20 dB/decade. On the other hand, phase plot shows

that the phase between the specified frequency interval, [1, 10], is approximately half

of 90 degrees, −0.5 × 90 degrees.

The simulation results are in agreement with the analytical analysis. If the trans-

fer function of an ideal fractional order integrator is given as

Iα(s) =
1

sα
(4.68)
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Figure 4.6. Frequency response of semi-integrators for n1 = 30 and n2 = 50.

then magnitude and phase can be computed analytically [25, 26] from

Iα(jω) =
1

(jω)α
⇒ |Iα(jω)| =

∣∣∣∣ 1

(jω)α

∣∣∣∣ =
1

ωα
, ∠Iα(jω) = α × π

2
(4.69)

In the case of semi-integrators, α = 0.5, the magnitude and phase are found as

|I0.5(jω)| =
1√
ω

, ∠I0.5(jω) =
π

4
(4.70)

The poles and zeros of the semi-integrator circuit for n1 = 30 is shown in Figure

4.7. All of these poles and zeros are all real and lie in the left half plane. The transfer

function of the semi-integrating circuit can be seen as the nth approximant, truncated

after nth level, of a real J-fraction and so all poles of this fraction are real, simple

and have positive residues. Furthermore they all lie in the negative half of the real

axis because the denominators of all the kth approximants are polynomials in s with

positive coefficients [27].

In order to verify time domain expression (4.66) of a semi-integrating circuit, step

input is applied to both designs, n1 = 30 and n2 = 50. Simulation results are compared

to the step response obtained analytically. Analytical computation of step response of
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Figure 4.7. Pole-zero map of the transfer function of the semi-integrating circuit of

n1 = 30.

a fractional integrator is found by using the inverse Laplace transform

L −1

{
1

sα

}
=

tα

Γ(α)
, α > 0 (4.71)

By using (4.71), step response can be calculated analytically from

y(t) = L −1

{
1

s

1

sα

}
= L −1 1

s1+α
=

tα

Γ(1 + α)
, for α = 0.5 ⇒ y(t) =

t0.5

Γ(1.5)
(4.72)

Step responses are given in Figure 4.8. According to (4.66) the both circuit designs

can approximate a true semi-integrator only for a limited time interval. The intervals

can be calculated as

6RC ≤ t ≤ 1

6
n2RC

⎧⎨⎩ 0.06 ≤ t ≤ 1.53, for n1 = 30

0.06 ≤ t ≤ 4.17, for n2 = 50
(4.73)

As it is observed from Figure 4.8, simulation results are in agreement with (4.73).
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Figure 4.8. Step responses of semi-integrating circuits with n1 = 30 and n2 = 50.

4.2.2. Viscoelastic System of Bagley-Torvik

Viscoelastic system of Bagley-Torvik describes the motion of a large thin plate

submerged in a Newtonian fluid. Mathematical model of this system is a fractional

order differential equation which is originally formulated by R. L. Bagley and P. J.

Torvik [9].

First the motion of a half-space Newtonian viscous fluid induced by a prescribed

transverse motion of a rigid plate on the surface is considered. The equation of motion

of the fluid is

ρ
∂v

∂t
= μ

∂2v

∂z2
, 0 < t < ∞, −∞ < z < 0 (4.74)

where ρ is fluid density, μ is viscosity and v(t, z) is transverse velocity, which is a

function of time t and the distance z from fluid plate contact boundary (Figure 4.9).

It is assumed that the initial value of the velocity is zero, v(0, z) = 0, and as z

goes to minus infinity the influence of the plate’s motion vanishes, v(t,−∞) = 0. The

fluid’s velocity at z = 0 is equal to the given velocity of the plate, v(t, 0) = vp(t).
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Figure 4.9. A rigid plate in a Newtonian fluid.

The following boundary-value problem is obtained by applying the Laplace trans-

form (4.74).

ρsV (s, z) = μ
d2V (s, z)

dz2
, V (s, 0) = Vp(s), V (s,−∞) = 0 (4.75)

The solution of (4.75) is given as

V (s, z) = Vp(s)e
z

√
ρs

μ (4.76)

Differentiating (4.76) with respect to z yields

dV (s, z)

dz
=

√
ρs

μ
V (s, z) (4.77)

The stress σ(t, z) can be expressed as

σ(t, z) = μ
∂v(t, z)

∂z
(4.78)

If the Laplace transform is applied to (4.78), the following equation in Laplace domain

is obtained

σ(s, z) = μ
dV (s, z)

dz
=

√
μρs V (s, z) (4.79)
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where σ(s, z) denotes the Laplace transform of σ(t, z). The equation (4.79) can be

rewritten in the time domain as

σ(t, z) =
√

μρ 0D
0.5
t v(t, z) (4.80)

(4.80) indicates that the stress at a given point at any time depends on the time history

of the velocity at that point.

Now the actual viscoelastic system can be considered. As it is seen from Figure

4.10, there is a thin rigid plate of mass M which is immersed in a Newtonian fluid of

infinite extent by an area of S and is connected by a massless spring of stiffness K to

a fixed point.

f(t)

K

M,S

Newtonian
Fluid

Figure 4.10. An immersed plate in a Newtonian fluid.

It is assumed that the spring does not disturb the fluid and the area of the plate

is sufficiently large to produce the velocity field and stresses related to (4.80) in the

fluid adjacent to the plate. When a forcing function f(t) is applied to the plate, the

displacement y of the plate is given as

My
′′
(t) = f(t) − Ky(t) − 2Sσ(t, 0) (4.81)

Substituting the stress given by (4.80) into (4.81) and using vp(t, 0) = y
′
(t) gives the
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following fractional order differential equation of Bagley-Torvik

a2y
′′
(t) + a1 0D

1.5
t y(t) + a0y(t) = f(t), t > 0

a2 = M, a1 = 2S
√

μρ, a0 = K, y(0) = 0, y
′
(0) = 0 (4.82)

4.3. Comparison of Fractional Order Identification Methods

A semi-integrating circuit of n = 90 components is designed with the resistance

and capacitance values equal to R = 0.1Ω and C = 0.1F respectively. Then the arith-

metic ladder network is placed in a negative feedback loop which yields the following

system transfer function

G0(s) =
1

1

Gladder(s)
+ 1

(4.83)

Three different input signals including a step, a periodic sum of sinusoids and a PRBS

are applied to (4.83). Simulation step size is chosen to be 0.01 seconds. The periodic

sum of sinusoids signal is generated for five frequencies that are selected in respect with

the bandwidth of the system (4.83) which is calculated to be ωB = 0.4802.

u(t) =

5∑
k=1

ak cos(ωkt + φk),

0 ≤ ω1 = 0.0126 ≤ ω2 = 0.0880 ≤ ω3 = 0.1508

≤ ω4 = 0.2262 ≤ ω5 = 0.3016 ≤ ωB = 0.4802 (4.84)

The sum of sinusoids signal and the PRBS are shown in Figure 4.11.
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Figure 4.11. Input Signals

Step response (Figure 4.12(a)) and sum of sinusoids response (Figure 4.12(b))

of the system are used in the estimation procedure while the PRBS response of the

system is reserved for cross validation of the estimated models.
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Figure 4.12. Output Signals

The system (4.83) is to be identified with both a fractional order model and an

integer first order process model

Ĝf(s) =
b0

a1s0.5 + 1
, θ̂f =

⎡⎣a1

b0

⎤⎦ , Ĝi(s) =
b0

a1s + 1
, θ̂i =

⎡⎣a1

b0

⎤⎦ (4.85)

Parameter estimations using linear regression methods of integer order and fractional

order system identification are given for all input signals in Table 4.1.
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Table 4.1. Parameter estimations using linear regression.

θ
Step Signal Sum of Sinusoids PRBS

θ̂f1 θ̂i1 θ̂f2 θ̂i2 θ̂f3 θ̂i3

a1 0.9892 2.5269 1.0372 0.0839 0.3905 0.0914

b0 0.9968 0.8512 1.0279 0.3928 0.4841 0.3917

The estimated fractional and integer order models for step and sum of sinusoids

responses are compared to the measured system output for the PRBS input. While

the fractional order models from step and sum of sinusoids responses fit the measured

system output by 91.02 per cent and 91.42 per cent (Figure 4.13(a)), the fits for the

integer order models are calculated to be 16.44 per cent and 64.09 per cent (Figure

4.13(b)).
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Figure 4.13. Cross Validation with PRBS

The models constrcuted from the estimations with the PRBS input are compared

to the measured step response of the system (see Figure 4.14). Although the models

built from the PRBS response is expected to perform much better due to the high

excitation order of a PRBS input, the fractional and integer order models estimated

from the PRBS give very poor fits in cross validation with the step response (Figure

4.14).
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Figure 4.14. Cross Validation with Step Signal.

Grünwald-Letnikov definition (see Section 2.1.2.2) allows the parametrization of

the model order. If the proposed fractional order model is rewritten in commensurate

order form

Ĝf(s) =
b0

a1sα + 1
=

b0

a1skq + 1
, k = 1, θ =

⎡⎢⎢⎢⎣
q

a1

b0

⎤⎥⎥⎥⎦ (4.86)

then iterative search method (see Section 4.1.1.2) can be applied to estimate the com-

mensurate order of the model. The results of the estimations can be seen in Table

4.2.

Table 4.2. Iterative search of the parameters.

θ θ̂f4(Step) θ̂f5(Sum of Sinusoids) θ̂f6(PRBS)

q 0.4974 0.5123 0.5696

a1 0.9932 0.9391 0.7480

b0 0.9999 0.9690 0.8757

V (θ) 0.0032 0.0025 0.5212
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The cross validation of the model estimated from step response data is given in

Figure 4.15. The fit of the model is computed to be 90.78 per cent.
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Figure 4.15. Cross validation of the model estimated by iterative search method.

Information about each iteration of the Levenberg-Marquardt algorithm including

the number of function evaluations, norm of the residual vector, first order optimality

measure, Levenberg-Marquardt parameter, ζ , and the norm of current step are given

in Table 4.3. The values of the parameters for each iteration are plotted in Figure 4.16.

The parametric identification method of Levy (Section 4.1.2.1) requires the esti-

mation of the frequency response of the system. Hence, first objective is to estimate

the frequency response of the system by using a nonparametric frequency estimation

method (see Section 3.2.2). Frequency response estimates calculated by ETFE and the

true frequency response of the system are given in Figure 4.17.

As it can be seen from Figure 4.17, the frequency response estimates based on

step and PRBS responses are not successful. This is due to the input signals being

non-periodic. Nonparametric identification methods are very sensitive to the type of

the input signal. ETFE gives crude estimations for non-periodic input signals. Levy’s

method cannot be applied using the step or PRBS input because of the large error

between the true and estimated frequency responses.



95

Table 4.3. Iterative search of the parameters.

Iteration
Function

Residual
First Order

ζ
Norm of

Count Optimality Step

0 4 979.726 1.27 × 103 10−2 -

1 9 864.653 5.98 × 102 10−1 1.67401

2 13 777.193 1.18 × 103 10−2 2.24126

3 17 4.75377 4.61 × 101 10−3 0.926439

4 21 0.248018 2.04 × 100 10−4 0.50966

5 25 0.179024 1.45 × 101 10−5 0.165549

6 29 0.00322674 7.84 × 10−2 10−6 0.0410263

7 33 0.0032205 1.6 × 10−4 10−7 0.000484942

8 37 0.0032205 1.86 × 10−7 10−8 1.6086 × 10−6
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Figure 4.16. Parameter values of the iterative search for the step input
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Figure 4.17. Frequency Response Estimation by ETFE

On the other hand, the frequency estimate based on the sum of sinusoids input

signal is very successful and suitable for Levy’s method since this input signal is a

periodic signal. Applying Levy’s identification method with and without Vinagre’s

weights yields the parameters given in Table 4.4.

Table 4.4. Frequency domain estimation of the parameters.

θ
Sum of Sinusoids

Levy Vinagre

a1 0.9290 1.0075

b0 0.9391 0.9889

The fit of Levy’s method with and without Vinagre’s weights can be observed in

frequency domain from Figure 4.18. The usage of Vinagre’s weights do not improve

the fit.

The PRBS input is applied to the estimated model (Table (4.4)) and the model

output is compared with the measured system output (Figure 4.19). Although the

usage of Vinagre’s weights do not provide a much better fit in the frequency domain

(Figure 4.18), the model acquired from estimation with the Vinagre’s weights gives a

slightly better fit in the time domain.
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Figure 4.18. Levy’s fit in frequency domain with and without weights.
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For a second experiment the arithmetic ladder circuit designed for n = 90, Rl =

0.1Ω and Cl = 0.1F is extended with a series connection of a resistor and an inductance

element (Figure 4.20).

R L

v(t)

i(t)

Ladder
Circuit

Figure 4.20. Ladder circuit extended with a series connection of a resistor and an

inductance.

The equation that governs this circuit can be written as

v(t) ≈ Ri(t) + L
di

dt
(t) +

√
Rl

Cl

d−0.5i

dt−0.5
(t), for 6RlCl ≤ t ≤ 1

6
n2RlCl (4.87)

Choosing R = 1Ω and L = 1H with n = 90, Rl = 0.1Ω and Cl = 0.1F for the ladder

circuit, the output current and input voltage relationship can be expressed in Laplace

domain under zero initial conditions as

G(s) =
I(s)

V (s)
=

s0.5

s1.5 + s0.5 + 1
, for 6RlCl ≤ 1

s
≤ 1

6
n2RlCl (4.88)

Simulation is carried out with three different inputs: step, sum of sinusoids and PRBS.

While the data collected from experiments with step and sum of sinusoids inputs are

used for estimation, the data collected from the experiment with the PRBS are solely

reserved for validation. The sum of sinusoids signal is composed of three sinusoids for

the following frequencies

u(t) =

3∑
k=1

ak cos(ωkt + φk),

0 ≤ ω1 = 0.063 ≤ ω2 = 0.0126 ≤ ω3 = 0.0251 (4.89)

The sum of sinusoids and the PRBS input signals are shown in Figure 4.21(a) and

Figure 4.21(b) respectively.
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Figure 4.21. Input signals

A fractional order and an integer order model are proposed for the system.

Ĝf(s) =
b1s

0.5 + b0

a2s1.5 + a1s0.5 + 1
, θ̂f =

⎡⎢⎢⎢⎢⎢⎢⎣
b0

b1

a1

a2

⎤⎥⎥⎥⎥⎥⎥⎦ , Ĝi(s) =
b1s + b0

a2s2 + a1s + 1
, θ̂i =

⎡⎢⎢⎢⎢⎢⎢⎣
b0

b1

a1

a2

⎤⎥⎥⎥⎥⎥⎥⎦ (4.90)

Parameter estimations using linear regression methods of integer order and fractional

order system identification are given for all input signals in Table 4.5.

Table 4.5. Parameter estimations using linear regression.

θ
Step Signal Sum of Sinusoids PRBS

θ̂f1 θ̂i1 θ̂f2 θ̂i2 θ̂f3 θ̂i3

b0 0.0709 0.1399 0.0358 0.2743 0.3554 0.2081

b1 0.6223 241.480 0.9168 0.8854 -0.0474 1.2248

a1 0.3686 3.4647 0.9031 1.5673 -0.0729 2.0894

a2 0.4508 1.3633 0.9344 0.8034 0.0747 1.0872

The cross validation of the estimated models with the measured PRBS response

can be observed from Figure 4.22. The first fractional order model estimated from the

step response gives a poor fit of 56.28 per cent while the fractional order model and

the integer order model estimated from the sum of sinusoids response fit the measured
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output by 95.94 per cent and 92.15 per cent respectively. The simulation of the first

integer order model estimated from the experiment with the step input is not shown

because the fit of this model is computed to be −1.18 × 104 per cent.
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Figure 4.22. Model simulations and prediction errors for cross validation with PRBS

response.

The estimated models from the PRBS response are compared to the measured

step response of the system (see Figure 4.23). Although the input is a PRBS, the cross

validation with the step response results in very poor fits (Figure 4.23).
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Figure 4.23. Cross Validation with Step Signal.
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Iterative search method (see Section 4.1.1.2) can be applied to estimate the com-

mensurate order of the model. The results of the iterative search method are given in

Table 4.6.

Table 4.6. Iterative search of the parameters.

θ θ̂f4(Step) θ̂f5(Sum of Sinusoids) θ̂f6(PRBS)

q 0.4373 0.4969 0.4835

a2 0.7644 0.9402 0.8926

a1 0.3394 0.8768 0.6613

b1 0.7963 0.9171 0.8279

b0 -0.0091 0.0290 0.0389

V (θ) 0.0024 0.0073 0.4851

The cross validation of the models estimated from step response and sum of

sinusoids response is given in Figure 4.24. The fit of the model estimated from step

response is computed to be 83.29 per cent, while the fit for the model estimated from

sum of sinusoids response is found to be 97.19 per cent.
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Figure 4.24. Cross validation of the models by iterative search method
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Information about each iteration of the Levenberg-Marquardt algorithm including

the number of function evaluations, norm of the residual vector, first order optimality

measure, Levenberg-Marquardt parameter and the norm of current step are given in

Table 4.7.

Table 4.7. Iterative search of the parameters.

Iteration
Function

Residual
First Order

ζ
Norm of

Count Optimality Step

0 6 713.495 1.02 × 103 10−2 -

1 12 0.527478 20 10−3 0.819265

2 18 0.0114178 1.98 10−4 0.236717

3 24 0.002472 0.0562 10−5 0.115255

4 30 0.00243916 0.000311 10−6 0.00594566

5 36 0.00243916 1.44 × 10−5 10−7 0.000207588

6 42 0.00243916 2 × 10−7 10−8 3.32872 × 10−7

The values of the parameters of the estimations from step and sum of sinusoids

responses are plotted for each iteration in Figure 4.25.
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Figure 4.25. Parameter values of the iterative search for the step input

The frequency response is estimated by applying ETFE to the data gathered for

different input signals. While the frequency estimation from the step and the PRBS

responses are not satisfactory, the ETFE applied to the sum of sinusoids response yields

successful magnitude and phase estimation at three frequencies (Figure 4.26).
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Figure 4.26. Frequency response estimation.

Levy’s identification with and without Vinagre’s weights yields the following pa-

rameters for the commensurate order model

G(s) =
b1s

0.5 + b0

a3s3×0.5 + a2s2×0.5 + a1s0.5 + 1
, θ =

[
b1 b0 a3 a2 a1

]T

(4.91)

Parameter estimations are given in Table 4.8.

Table 4.8. Frequency domain estimation of the parameters.

θ
Estimated Freq. Exact Freq.

Levy Vinagre Levy

b1 1.3735 1.9066 1.0001

b0 -0.1071 -0.2823 -0.0001

a3 1.3412 1.8820 1.0001

a2 -0.1551 -0.4323 0.0012

a1 1.6047 2.4742 1.0001

The fit of Levy’s method with and without weights is plotted in Figure 4.27.
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(a) Levy without weights
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(b) Levy with Vinagre’s weights

Figure 4.27. Levy’s fit in frequency domain with and without weights.

The simulation results of cross validation with PRBS are given in Figure 4.28.
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Figure 4.28. Cross validation of the models estimated in frequency domain.

For the third example, the motion of a large thin plate immersed in a Newtonian

fluid is taken. The fractional order differential equation governing the system which is

originally formulated by R. L. Bagley and P. J. Torvik [9] is also known as the Bagley-

Torvik equation. The following initial value problem is considered for the Bagley-Torvik

equation

y(2)(t) + y(3/2)(t) + y(t) = u(t), y(0) = y(1)(0) = 0 (4.92)
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Step and sum of sinusoids input signals are used to create estimation data while the

PRBS input signal is used to create the cross validation data. The frequencies of the

sum of sinusoids signal are given as

u(t) =

5∑
k=1

ak cos(ωkt + φk), 0 ≤ ω1 = 0.0314 ≤ ω2 = 0.0628 ≤ ω3 = 0.1257

≤ ω4 = 0.1885 ≤ ω5 = 0.2199 (4.93)

The sum of sinusoids signal and the RBS signal is shown in Figure 4.29(a) and Figure

4.29(b) respectively.
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Figure 4.29. Input signals used for identification of the Bagley-Torvik system.

The suggested fractional and integer order models of the system are

Gf(s) =
b0

a2s2 + a1s1.5 + 1
, θf =

⎡⎢⎢⎢⎣
b0

a1

a2

⎤⎥⎥⎥⎦ , Gi(s) =
b0

a2s2 + a1s + 1
, θi =

⎡⎢⎢⎢⎣
b0

a1

a2

⎤⎥⎥⎥⎦ (4.94)

Estimated values of the parameters are shown in Table 4.9.
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Table 4.9. Parameter estimations using linear regression.

θ
Step Signal Sum of Sinusoids PRBS

θ̂f1 θ̂i1 θ̂f2 θ̂i2 θ̂f3 θ̂i3

b0 0.9950 1.0089 0.9933 1.064 0.9851 1.0588

a1 0.9981 0.7228 0.9947 0.7427 0.9898 0.7020

a2 1.0013 2.0543 0.9975 1.7255 0.9890 1.7358

Estimated models are compared to the measured output of the system for the

PRBS input. The cross validation of fractional order models and integer order models

are shown in Figure 4.30(a) and Figure 4.30(b) respectively. It is seen from Figure 4.30

that the estimated fractional order models fits the measured PRBS response better

than their integer order counterparts.
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Figure 4.30. Cross validation of fractional order and integer order models.

The model estimated from the PRBS response is simulated using the step input

and the model output is compared to the measured output (Figure 4.31).
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Figure 4.31. Cross validation with step input.

Iterative search method (see Section 4.1.1.2) can be applied to estimate the com-

mensurate order of the model. As it is seen in Table 4.10, the fractional order is

successfully estimated.

Table 4.10. Iterative search of the parameters.

θ θ̂f4(Step) θ̂f5(Sum of Sinusoids) θ̂f6(PRBS)

q 0.5000 0.5000 0.6111

a4 1.0000 1.0000 0.0790

a3 1.0000 1.0000 1.5369

a2 0.0000 0.0000 0.4118

a1 0.0000 0.0000 -0.0349

b0 1.0000 1.0000 0.9974

V (θ) 7.9496 × 10−21 1.5230 × 10−19 4.2896 × 10−5

Iteration Number 11 38 14

The cross validation of the models estimated from step response and sum of

sinusoids response is given in Figure 4.32. The fit of the model estimated from step

response is computed to be 98.0421 per cent, while the fit for the model estimated from

sum of sinusoids response is found to be 98.04 per cent.
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Figure 4.32. Cross validation of the models estimated by iterative search method.

Information about each iteration of the Levenberg-Marquardt algorithm including

the number of function evaluations, norm of the residual vector, first order optimality

measure, Levenberg-Marquardt parameter and the norm of current step are given in

Table 4.11. The values of the parameters of the estimations from step and sum of

sinusoids responses are plotted for each iteration in Figure 4.33.
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Figure 4.33. Parameter values of the iterative search for the step input
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Table 4.11. Iterative search of the parameters.

Iteration
Function

Residual
First Order

ζ
Norm of

Count Optimality Step

0 7 23.0868 60.9 10−2 -

1 18 6.474 22.2 102 0.165676

2 25 4.0639 5.41 10 0.0741707

3 32 1.33118 22.9 1 0.279395

4 39 0.102718 9.83 10−1 0.149097

5 46 0.0173818 2.15 10−2 0.311744

6 53 0.00373819 1.7 10−3 0.342721

7 60 7.71691 × 10−6 0.00172 10−4 0.0779465

8 67 7.1552 × 10−6 0.0343 10−5 0.111126

9 74 1.44585 × 10−7 0.00686 10−6 0.0351178

10 81 6.15896 × 10−13 1.95 × 10−5 10−7 0.00128476

11 88 7.94964 × 10−21 1.76 × 10−9 10−8 3.08508 × 10−6

The frequency response estimation of Bagley-Torvik systems is shown in Figure

4.34. While the estimations from step and PRBS responses cannot be used for fre-

quency domain curve fit, the estimation from sum of sinusoids response can be used in

Levy’s method.

Levy’s identification with and without Vinagre’s weights is applied for the fol-

lowing commensurate order model

G(s) =
b0

a4s4×0.5 + a3s3×0.5 + a2s2×0.5 + a1s0.5 + 1
, θ =

[
b0 a4 a3 a2 a1

]T

(4.95)

Parameters are estimated as given in Table 4.12. The fit of Levy’s method with and

without weights is plotted in Figure 4.35.
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Figure 4.34. Frequency response estimation of Bagley-Torvik system.

Table 4.12. Frequency domain estimation of the parameters.

θ Levy Vinagre

b0 0.4610 0.6621

a4 0.6085 0.8709

a3 -0.3606 0.0356

a2 1.7182 1.1907

a1 -1.3645 -0.8205
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(a) Levy without weights
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Figure 4.35. Levy’s fit in frequency domain with and without weights.
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The models estimated from frequency domain are simulated with the PRBS input.

The simulation results are given in Figure 4.36.
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Figure 4.36. Cross validation of the model estimated in frequency domain.

Experiments performed on the given benchmark systems have shown that each

method has its own advantages and disadvantages. Time domain methods can be

applied directly to the gathered system input-output data while frequency domain

methods require the estimation of the frequency response of the system. Frequency

response of the system can be estimated by nonparametric frequency domain methods

but these methods yield good estimation for only periodic signals. Simulations have

also revealed that the usage of Vinagre’s weights do not always improve the frequency

domain fit. Time domain method of linear regression is easy to apply and the parame-

ters can be estimated successfully by a least squares (LS) solution as long as the input

is persistently exciting. Grünwald-Letnikov definition allows the parametrization of the

commensurate order of the system. However, this method requires a numerical search

routine in order to estimate the parameters. Only local solution can be guaranteed

by the numerical methods. The advantages and disadvantages of the given fractional

order parametric identification methods are summarized in Table 4.13.
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Table 4.13. Comparison of fractional order parametric identification methods

Domain Methods Advantages Disadvantages

Time

Linear is simple to apply, input signal must be

Regression solution is given by sufficiently exciting

least squares

can be used to determine solution is local, global

Iterative commensurate order, solution is not guaranteed,

Search can be applied to model must be in

ill-conditioned data commensurate form

Freq.

Levy

a good frequency only works with sinusoidal

domain fit results in input, low frequency fit

good time domain fit may be poor

Levy with may improve low only works with sinusoidal

weights frequency fit by input, improvement

weights is not guaranteed
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5. A HEURISTIC PROCEDURE FOR IDENTIFYING AN

UNKNOWN LINEAR DETERMINISTIC SYSTEM

Nonparametric methods should be applied as a first step in identifying an un-

known linear deterministic system. Time domain methods of impulse and step response

analysis can be used to find out important properties of a system such as delay time,

gain, time constant, and order. For example in the case of a delayed system delay

time can be computed by observing system’s first response to the impulse or step in-

put. If it is not possible to change the input signal of the system or apply inputs like

impulse or step, time domain method of correlation analysis can be applied in order

to estimate the impulse or step responses of these systems. Although the correlation

analysis depends on the input signal being sufficiently exciting and can only give crude

estimates in the presence of noise, properties of the system like delay time, gain and

order can still be identified by analysing an estimated impulse or step response. In

addition to impulse and step response analysis, an estimate of frequency response of

the system can also be used to gain insight into the unknown system. By looking

at resonance peaks, high frequency roll-off and phase shift in an estimated frequency

response, system order and delay time can be recognized.

In order to find a mathematical model for the system, a parametric method has to

be applied. If some insight regarding the system order is available by the information

gathered from the nonparametric methods or by priori knowledge about dynamics of

the system, then deciding on the form of the model to be used in the parametric method

is easier. However, if it is not possible to determine the structure of the model, as a

principle starting with a simpler first order integer model or fractional models whose

orders are less than one and using linear regression method to estimate the parameters

of the model is always recommended. Grünwald-Letnikov’s definition which allows

the parametrization of the system order can be applied with both a first order integer

model and a fractional model whose order is less than one. Then system order can be

estimated by a numerical method. If the estimated models give unsatisfactory results



114

in the validation tests, the structure of the proposed integer or fractional model must

be changed. The procedure can be outlined as

• If model structure cannot be determined, apply nonparametric methods to gain

insight into the system

– If possible apply an impulse or step input and try to determine system

properties such as delay time, gain, and system order by analyzing impulse

or step response of the system

– If it not possible to apply an impulse or step input, use correlation analysis

to estimate impulse or step response of the system

– Properties of the system can also be recognized by analyzing an estimated

frequency response of the system

• If some insight into the system, use that insight to propose a model structure

for the system and then by using a parametric method either in time domain or

frequency domain estimate the parameters of the model

• If it is not possible to determine a model structure, start out with either a first

order integer model or a fractional model whose order is less than one and by

using linear regression in time or frequency domain estimate the parameters of

the model

– Grünwald-Letnikov’s definition which allows the parametrization of the sys-

tem’s order can be used with simpler integer or fractional models and the

system’s order can be estimated by a numerical method

• For validation, models obtained under various conditions in various model struc-

tures should be simulated and compared with the measured system output
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6. CONCLUSIONS

In this thesis fractional calculus and its potential as a tool for system identifica-

tion have been investigated. Definitions and properties of fractional calculus as well as

fractional order differential equations and their solutions have been studied. It is seen

that the initial condition problem can dramatically change the solution of the fractional

order differential equation. While the usage of the RL definition introduces initial con-

ditions which are not physically interpretable, the usage of Caputo’s initial conditions

from integer order differential equations changes the solution. The lack of physical

interpretation of the RL initial conditions is a serious issue which makes it unclear

how to measure them experimentally. However, the solutions obtained from these two

different definitions coincide for zero initial conditions. For non-zero initial conditions

the problem remains and a review of the literature has shown that researchers either

use the Caputo’s definition, or consider only the case of zero initial conditions. Thus,

the usage of zero initial conditions, where the same solution is obtained regardless of

the definition, has been preferred in this study in order to avoid the initial condition

problem.

System identification with integer order models has been reviewed. A survey of

nonparametric and parametric methods based on minimizing the prediction error has

been conducted. A delayed second order process model with random binary input

disturbed by white noise has been selected as a benchmark system to compare the

performances of the surveyed identification methods. First, nonparametric methods

have been applied to the gathered data in order to gain an insight into the system.

Nonparametric methods of time and frequency domains have resulted in crude estima-

tions of impulse, step and frequency response of the system due to the fact that these

methods neglect the presence of noise. Nevertheless through analyzing these crude

estimations, delay time, system order and complexity of the system’s poles have been

identified. It is seen that nonparametric identification can give critical information

about the system to be identified as long as the estimates are good enough to extract

meaningful information. Then different model structures are proposed based on the
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insight gained through nonparametric identification and the parameters of these struc-

tures are estimated by parametric identification methods. The performances of the

different model structures are compared by using the validation data. The comparison

between different model structures has revealed that selection of the correct model

structure determines the success of the parametric methods. An outline of conclusions

drawn from the review of integer order system identification is given as

• Input signal must be persistently exciting for a successful identification. Iden-

tification methods are applied on the system’s response to the input signal. If

the input signal is not persistently exciting, then the gathered data will be ill-

conditioned and the identification will fail.

• Nonparametric methods are very sensitive to the type of the input signal. If the

input signal is not persistently exciting, then nonparametric methods give crude

estimations. For nonperiodic input signals the estimations obtained through fre-

quency domain methods are still crude even if the input signal is persistently

exciting.

• Nonparametric methods give large estimation errors in the presence of noise. The

nonparametric methods do not take noise into account in their calculations.

• System properties such as delay time, gain, time constant and order can be iden-

tified through nonparametric identification.

• Parametric identification methods are less sensitive to the type of the input signal

than the nonparametric identification methods.

• Success of parametric methods depend on the structure of the chosen model. If

the selected model structure is close to the true model of the system, then the

model parameters are estimated successfully regardless of the input signal.

After reviewing integer order system identification, attention is given to fractional

order system identification. Various parametric identification techniques which use

fractional order models have been investigated. The analyzed methods consist of linear

regression, iterative search using Grünwald-Letnikov definition, and Levy’s frequency

domain curve fitting with and without weights. Studies have uncovered the fact that

the given methods are extensions of the parametric identification methods with integer
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order models. As for the nonparametric identification, it is seen that they can be

directly applied without any modification. For comparing the performances of the

presented identification techniques, semi-integrating circuits and viscoelastic system

of Bagley-Torvik have been chosen as benchmark systems. Identification experiments

have been carried out with three systems: a semi-integrating circuit in a negative

feedback loop, a semi-integrating circuit in series connection with a resistance and an

inductance element and the viscoelastic system of Bagley-Torvik. Three input signals

including a step, a periodic sum of sinusoids and a random binary signal are applied

to each system. The data from the step and sum of sinusoids response are used in the

estimation procedure while the data gathered from the experiment with the random

binary signal are reserved for the cross validation of different models. A fractional order

and an integer order model is proposed for each system and then the parameters of

each model are estimated for both step and sum of sinusoids experiments by applying

the given identification methods. Comparisons have shown that

• From the perspective of models, the proposed fractional order models are better

at predicting the outputs of the systems than the proposed integer order models.

It may be possible to find a higher integer order model which better fits the

validation data but complexity of a model increases as its order increases.

• In the case of semi-integrating circuits the order of the true model is very high

which makes it very hard to work on these systems. The proposed fractional

order model benefits from model order reduction. Fractional order models may

provide efficient modeling and thus easier simulation of such systems.

• Persistency of excitation from integer order system identification does not work

for fractional order models. In system identification with integer order models,

the persistency of excitation demands that the level of excitation of the applied

input signal must be at least equal to or higher than the order of the proposed

model in order for a successful estimation. If the order of the proposed fractional

model is equal to or less than one as in the case of the first system, the step

input signal, of whose excitation level is one, yields good estimation results that

are in agreement with the persistency of excitation from integer order system

identification. However, PRBS input, whose excitation level is much more greater
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than the excitation level of the step input signal, results in ill-conditioned data

which prevents successful estimation.

• Nonparametric identification methods from integer order system identification

can be directly applied to fractional order systems, while parametric methods

need to be modified in order to work with fractional order models.

• Each fractional parametric method has its own advantages and disadvantages.

While time domain identification methods can be directly applied to the gathered

data, frequency domain methods of Levy with and without weights requires the

estimation of the frequency response of the system first.

• Frequency domain methods depends on the nonparametric methods from integer

order system identification for estimating the frequency response of the system.

This dependency brings a serious constraint on the type of the input signal since

nonparametric methods are very sensitive to the type of the input signal.

• Using Vinagre’s weights in Levy’s method does not guarantee an improvement in

the frequency domain fit and even in some cases poorer fits are obtained through

the usage of weights.

• Time domain method of linear regression is simply to apply and the parameters

can be easily estimated by a LS solution.

• Iterative search by using Grünwald-Letnikov’s definition is a significant method

for allowing the estimation of the system order as a model parameter. However,

this method implements numerical schemes in the search of the parameter vector.

The numerical search routines can only guarantee convergence to a local solution

of the minimization problem. In order to find the global solution there is no other

way than to re-run the numerical search routine for different initial parameter

values.

Persistency of excitation needs to be redefined for fractional order models. As a future

work, further research into this open area is encouraged.
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APPENDIX A: EXISTENCE AND UNIQUENESS

THEOREMS FOR FODEs

In this appendix the existence and uniqueness of solutions of initial value problems

for linear fractional differential equations are given. The theorems and their proofs are

given in [9].

The initial value problem is given as

0D
σn
t y(t) +

n−1∑
j=1

pj(t)0D
σn−j

t y(t) + pn(t)y(t) = f(t), (0 < t < T < ∞)

[
0D

σk−1
t y(t)

]
t=0

= bk, k = 1, . . . , n (A.1)

The fractional derivatives in the equation (A.1) are sequential derivatives (A.2).

aD
σk
t ≡ aD

αk
t aD

αk−1

t . . . aD
α1
t

aD
σk−1

t ≡ aD
αk−1

t aD
αk−2

t . . . aD
α1
t

σk =

k∑
j=1

αj , k = 1, 2, . . . , n

0 < αj ≤ 1, j = 1, 2, . . . , n (A.2)

The forcing function is bounded, f(t) ∈ L1(0, T ) (A.3). It is further assumed that

f(t) ≡ 0 for t > T .

∫ T

0

|f(t)|dt < ∞ (A.3)

In the first step, the case of zero coeficients are considered pk(t) ≡ 0.
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Theorem 1. If f(t) ∈ L1(0, T ), then the equation (A.4) has the unique solution y(t) ∈
L1(0, T ), which satisfies the initial conditions (A.1).

0D
σn
t y(t) ≡ f(t) (A.4)

Proof. The Laplace transform of the equation (A.4) is given in (A.5).

sσnY (s) −
n−1∑
k=0

sσn−σn−k

[
0D

σn−k−1
t y(t)

]
t=0

= F (s) (A.5)

Using the initial conditions (A.1) the Laplace tranform can be written as (A.6).

Y (s) = s−σnF (s) +

n−1∑
k=0

bn−ks
−σn−k (A.6)

The solution in the time domain can be obtained by applying the inverse Laplace

transform (A.7).

y(t) =
1

Γ(σn)

∫ t

0

(t − τ)σn−1f(τ)dτ +
n−1∑
k=0

bn−k

Γ(σn−k)
tσn−k−1 (A.7)

If n − k is replaced with i, the solution is shown in (A.8).

y(t) =
1

Γ(σn)

∫ t

0

(t − τ)σn−1f(τ)dτ +
n∑

i=1

bi

Γ(σi)
tσi−1 (A.8)

Once the solution expressed by (A.8) is substituted into the equation (A.1), it is ob-

served that y(t) satisfies the initial conditions and thus the existence of the solution is

proved.

Theorem 2. If f(t) ∈ L1(0, T ) and pj(t) are continuous functions in the closed interval

[0, T ], then the initial value problem (A.1) has a unique solution y(t) ∈ L1(0, T ).
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Proof. The initial value problem is assumed to have a solution y(t) (A.9).

0D
σn
t y(t) = ϕ(t) (A.9)

Using Theorem 1 the solution of (A.9) is obtained as (A.10).

y(t) =
1

Γ(σn)

∫ t

0

(t − τ)σn−1ϕ(t)dt +
n∑

i=1

bi
tσi−1

Γ(σi)
(A.10)

If y(t) (A.10) is substituted into the initial value problem (A.1), the function ϕ(t) is

obtained as the Volterra integral equation of the second kind (A.11).

ϕ(t) +

∫ t

0

K(t, τ)ϕ(τ)dt = g(t)

K(t, τ) = pn(t)
(t − τ)σn−1

Γ(σn)
+

n−1∑
k=1

pn−k(t)
(t − τ)σn−σk−1

Γ(σn − σk)

g(t) = f(t) − pn(t)
n∑

i=1

bi
tσi−1

Γ(σi)
−

n−1∑
k=1

pn−k(t)
n∑

i=k+1

bi
tσi−σk−1

Γ(σi − σk)
(A.11)

Since the functions pj(t) are continuous in [0, T ], then the kernel K(t, τ) can be ex-

pressed in the form of a weakly singular kernel (A.12).

K(t, τ) =
K∗(t, τ)

(t − τ)1−μ
(A.12)

K∗(t, τ) is continuous for 0 ≤ t ≤ T , 0 ≤ τ ≤ T , and μ = min {σn, αn}. The function,

g(t) can be written similarly in the form (A.13).

g(t) =
g∗(t)
t1−ν

(A.13)

g∗(t) is continuous in [0, T ] and ν = min {α1, α2, . . . , αn}.

The equation (A.11) with the weakly singular kernel (A.12) and the function

g(t) ∈ L1(0, T ) has a unique solution. According to Theorem 1, the unique solution

y(t) ∈ L1(0, T ) can be determined using (A.10). In many applied problems the zero
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initial conditions on the function y(t) and its integer-order derivatives are used. For this

particular case it is supposed that there exist m − 1 number of zero initial conditions,

m − 1 ≤ σn < m (A.14).

y(j)(0) = 0, j = 0, 1, . . . , m − 1 (A.14)

All sequential fractional derivatives are replaced with the Riemann-Liouville fractional

derivatives of the same order σk (A.15).

0D
σn
t y(t) +

n−1∑
j=1

pj(t) 0D
σn−j

t y(t) + pn(t)y(t) = f(t) (A.15)

Theorem 3. If f(t) and pj(t) are continuous functions in the closed interval [0, T ], then

the initial condition problem (A.15), where m − 1 ≤ σn < m and σn > σn−1 > · · · >

σ1 > 0 has a unique solution y(t), that is continuous in [0, T ].



123

APPENDIX B: STOCHASTIC PROCESSES

A stochastic process is a sequence of random variables with a joint probability

distribution function (PDF). Some well-known definitions are given for a stochastic

process, x(n) (B.1).

Mean : mx(n) = E {x(n)}
Correlation : Rx(n) = E

{
x(n1)x

T (n2)
}

Covariance : Cx(n1, n2) = E
{
(x(n1) − mx(n1))(x(n2) − mx(n2))

T
}

Variance : Rx(n, n) − E2(x(n)) (B.1)

If x(n) is a wide-sense stationary (WSS) process, the following properties hold (B.2).

mx(n) = mx = constant ∀ n

Rx(n1, n2) = Rx(n1 − n2) (B.2)

The stochastic processes with the following assumptions are called quasi-stationary

processes (B.3).

E {x(n)} = mx(n), |mx(n)| ≤ C ∀n

E {x(n)x(r)} = Rx(n, r), |Rx(n, r)| ≤ C

lim
N→∞

1

N

N∑
n=1

Rx(n, n − τ) = Rx(τ), ∀τ (B.3)

The first two properties are satisfied trivially since x(n) is a stochastic process. For

the third property a symbol E is introduced in order to ease the notation (B.4).

E {x(n)x(n − τ)} = Rx(τ) = lim
N→∞

1

N

N∑
n=1

x(n)x(n − τ) (B.4)

x(n) is a deterministic signal and that means it is a bounded sequence. Thus the limit
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in (B.4) exits.

If a stochastic process is expressed as the sum of two other stochastic processes,

x(n) = x1(n) + x2(n), then the mean and correlation of x(n) can be found as (B.5).

E {x(n)} = mx1 + mx2

E {x(n)x(n − τ)} = Rx1 + Rx2 + 2mx1mx2 (B.5)
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APPENDIX C: TRANSFER FUNCTION OF LTI SYSTEM

Using the z transform (z = ej2πf , |f | ≤ 1
2
) the output of a LTI system can be

written as

y(n) =

∞∑
k=1

g(k)u(n − k) ⇒ Y (z) = G(z)U(z) (C.1)

where G(z) is described by

G(z) =

∞∑
k=1

g(k)z−k (C.2)

G(z) is called the discrete time transfer function of the linear system.

The relationship of the distrubance term can also be expressed in the z-domain

with the discrete time transfer function, H(z).

H(z) =

∞∑
k=0

h(k)z−k (C.3)

The continuous time representation of a linear system can be obtained by applying

the Laplace transform to the impulse response function. Once the transformation is

applied, the continuous time transfer function Gc(s) describes the relationship between

the input and the output.

Y (s) = Gc(s)U(s) (C.4)

For identification of systems described by continuous time transfer functions, it is

neccessary to go from continuous time representation to discrete time representation

Gc(s) → GT (z) (C.5)
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T (C.5) denotes the sampling interval. If the input is piecewise constant over the

sampling interval, the transformation is accomplished without any approximation.

Otherwise, there exists several discrezation schemes. For example the most simple

approximation is of Euler’s

GT (z) ≈ Gc

(
z − 1

T

)

while the Tustin’s formula is given as

GT (z) ≈ Gc

(
2

T

z − 1

z + 1

)

The transfer function G(z) is stable if

G(z) =
∞∑

k=1

g(k)z−k,
∞∑

k=1

|g(k)| < ∞ (C.6)

This corresponds to G(z) being analytic on and outside the unit circle for |z| ≥ 1.
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of Fractional Order Controllers, Kosice: Technical University of Kosice, 2002.

12. D. Xue and Y. Chen, Solving Applied Mathematical Problems with MATLAB, Boca

Raton: CRC Press, 2008.

13. I. Podlubny, “Matrix Approach to Discrete Fractional Calculus”, Fractional Cal-

culus and Applied Analysis, 4, 3, pp. 359-386, 2000.
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