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ABSTRACT 

 

 

Basically, the geometric nonlinearity of space structures has been discussed in this 

Thesis. There are totally three types of nonlinearities, which are a) the geometric 

nonlinearity which arises from the large nodal deflections and finite changes in the geometry 

of deformed structure, b) the material nonlinearity, and c) the combination of both the 

geometric and material nonlinearities.  

 

 Linear and nonlinear parts of the tangent stiffness matrices are derived for bar 

elements in 2-Dimension, and also for truss bar elements in space structures in order to see 

the effect of the nonlinearity on materials. Furthermore a number of numerical 

computational techniques have been described, including a) Regular, b) Halved, and           

c) Mid – Point Incremental Load Procedures, as well as the Newton – Raphson iteration 

schemes, with modifications of the stiffness matrices at each loading step.  

 

 Moreover, in order to investigate the effects of geometric nonlinearity on space 

structures, a typical steel dome structure is selected, which is analyzed by utilizing the 

LUSAS package program. Firstly, some pilot test examples are investigated by using the 

LUSAS program and the solutions are compared with the exact solutions. Secondly, a 

complete steel lattice dome, with a diameter of 72 meter, has been fully analyzed using the 

nonlinear Newton – Raphson iteration scheme and the steel structural elements have been 

designed in accordance with TS 648-Turkish Standard.  
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ÖZET 

 

  

Bu tezde temel olarak uzay sistemlerdeki geometrik doğrusalsızlık ele alınmıştır. 

Genelde üç çeşit doğrusalsızlık bulunmaktadır.  Bunlar; a) büyük deformasyonlardan ve de 

şekli bozulmuş yapıların geometrisindeki sınırlı değişimlerden doğan geometrik 

doğrusalsızlıklar, b) maddesel doğrusalsızlıklar ve c) geometrik ve maddesel 

doğrusalsızlıkların birleşimi.  

 

Madde üzerindeki doğrusalsızlık etkisini görmek için teğetsel rijitlik matrislerinin 

doğrusal ve doğrusal olmayan kısımları, iki boyuttaki ve uzay kafes sistemlerdeki çubuk 

elemanları için üretilmiştir. Çeşitli nümerik hesap yöntemleri arasında a) Normal, b) Yarı 

yüklemeli ve c) Orta noktada yüklemeli olmak üzere tüm parça parça yükleme metotları ile, 

eleman rijitlik matrisi her adımda değiştirilen Newton – Raphson iterasyon metotları ayrı 

ayrı ele alınmıştır. 

 

Ayrıca uzay sistemler üzerindeki geometrik doğrusalsızlık etkisini incelemek için, 

tipik bir çelik kubbe yapı seçilmiştir. Bu kubbesel yapı için paket program olarak LUSAS 

kullanılmıştır. Öncelikle LUSAS kullanılarak bazı test örnekler çözülmüştür ve bu 

örneklerin çözümleri tam ve gerçek sonuçlar ile karşılaştırılmıştır. Ayrıca 72 metrelik bir 

çapa sahip olan dantel şeklindeki çelik kubbenin analizinde Newton – Raphson iterasyon 

yöntemi uygulanmıştır. Çelik yapı elemanları da TS 648-Türk Standartlarına uygun dizayn 

edilmiştir.  

 

 

  

 

 

 

 

 



 
vi 

 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS ..........................................................................................     iii 

ABSTRACT .................................................................................................................     iv 

ÖZET ...........................................................................................................................      v 

LIST OF FIGURES ......................................................................................................      x 

LIST OF TABLES .......................................................................................................    xii 

LIST OF SYMBOLS....................................................................................................   xiii 

1.   INTRODUCTION ..................................................................................................      1 

      1.1.   General Remarks ...........................................................................................      1 

      1.2.   Nonlinearity ...................................................................................................      3 

      1.3.   Buckling ........................................................................................................      7 

2.   THEORY OF NONLINEAR STRUCTURAL ANALYSIS ....................................    10 

      2.1.   Method of Nonlinear Analysis .......................................................................    10 

      2.2.   Geometric Nonlinearity ..................................................................................    12 

               2.2.1.   Incremental Procedure ........................................................................    12 

               2.2.2.   Iterative Procedure .............................................................................    13 

      2.3.   Nonlinear Field Problems...............................................................................    14 

      2.4.   The Buckling of Lattice Domes under the Simultaneous Concentrated Loads.    15 

      2.5.   Buckling Consideration in the Design and Construction of Space Structures ..    15 

      2.6.   Rapid Progress in Computers .........................................................................    17 

3.   TANGENT STIFFNESS MATRICES FOR THE BAR ELEMENTS .....................    18 

      3.1.   Tangent Stiffness Matrix of a Truss Bar .........................................................    19 

      3.2.   Other Form of the Tangent Stiffness Matrix ...................................................    25 

      3.3.   Tangent Stiffness for a Space Truss System ...................................................    26 

      3.4.   Tangent Stiffness Matrix for a Space Member................................................    31 

               3.4.1.   Linear Part of the Tangent Stiffness Matrix ........................................    32 



 
vii 

 

               3.4.2.   Nonlinear Part of the Tangent Stiffness Matrix ...................................    33 

4.   COMPUTATIONAL TECHNIQUES .....................................................................    34 

      4.1.   About the Computational Techniques ............................................................    34 

      4.2.   What is Nonlinear Analysis for LUSAS? .......................................................    34 

               4.2.1.   Geometrically Nonlinear Analysis ......................................................    37 

               4.2.2.   Nonlinear Mixed Conditions...............................................................    39 

               4.2.3.   Materially Nonlinear Analysis ............................................................    39 

      4.3.   Incremental Procedures ..................................................................................    39 

               4.3.1.   Regular (Basic) Incremental Procedure ...............................................    39 

               4.3.2.   Halved Incremental Procedure ............................................................    41 

               4.3.3.   Midpoint Runge-Kutta Procedure .......................................................    41 

      4.4.   Iterative Procedures .......................................................................................    42 

               4.4.1.   The Newton – Raphson Method .........................................................    42 

               4.4.2.   The Modified Newton – Raphson Method ..........................................    44 

               4.4.3.   Mixed Procedure ................................................................................    45 

      4.5.   LUSAS as a Package Program .......................................................................    46 

               4.5.1.   About LUSAS ....................................................................................    46 

               4.5.2.   Nonlinear Solution Procedure of LUSAS............................................    46 

               4.5.3.   Iterative Procedure .............................................................................    47 

               4.5.4.   Standard Newton – Raphson Method: .................................................    47 

               4.5.5.   Iterative Acceleration (Line Searches) ................................................    48 

               4.5.6.   Separate Iterative Loops .....................................................................    48 

               4.5.7.   Incremental Procedure ........................................................................    49 

               4.5.8.   Constrained solution methods (arc-length) ..........................................    49 

               4.5.9.   Automatic increment reduction ...........................................................    50 

5.   EXAMPLES OF DOME STRUCTURES ...............................................................    51 

      5.1.   Types of Domes .............................................................................................    51 



 
viii 

 

      5.2.   Significant and Famous Dome Structures in the World ..................................    52 

6.   TEST EXAMPLES ................................................................................................    58 

      6.1.   About the Test Examples ...............................................................................    58 

      6.2.   The First Illustrative Numerical Example .......................................................    58 

      6.3.   The Second Illustrative Numerical Example...................................................    60 

      6.4.   The Third Illustrative Numerical Example .....................................................    62 

      6.5.   The Fourth Illustrative Example .....................................................................    63 

7.   NONLINEARITY OF A DOME AS A SPACE STRUCTURE ..............................    66 

      7.1.   About the Dome .............................................................................................    66 

      7.2.   Plan View of the Lattice - Dome ....................................................................    67 

      7.3.   Modeling the Dome with LUSAS ..................................................................    68 

      7.4.   Loading and Constraints ................................................................................    77 

               7.4.1.   Application of TDY-2007 for the Structure ........................................    78 

               7.4.2.   Application of TS-498 for the Structure (For Wind Loads) .................    82 

               7.4.3.   Application of TS-498 for the Structure (For Snow Loads) .................    88 

               7.4.4.   A Single Point Load at the Top Point of the Dome .............................    93 

      7.5.   Nonlinear Solutions for Each Load Case ........................................................    94 

               7.5.1.   Nonlinear Behavior of a Critical Point for a Single Point Load ...........    94 

               7.5.2.   Nonlinear Behavior for the Dead and Snow Loads..............................    94 

               7.5.3.   Nonlinear Behavior for the Dead and Earthquake Loads .....................    95 

               7.5.4.   Nonlinear Behavior for the Dead and Wind Loads ..............................    95 

      7.6.   Local Buckling Control ..................................................................................    96 

               7.6.1.   Axial Forces of the Members for a Single Point Load at the Top Point    96 

               7.6.2.   Axial Forces of the Members for the Dead and Snow Loads ...............    97 

               7.6.3.   Axial Forces of the Members for the Dead and Earthquake Loads ......    99 

               7.6.4.   Axial Forces of the Members for the Dead and Wind Loads ...............  100 

      7.7.   Surface Cover of the Dome ............................................................................  103 



 
ix 

 

8.   CONCLUSIONS AND RECOMMENDATIONS ...................................................  104 

9.   REFERENCES .......................................................................................................  106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
x 

 

LIST OF FIGURES 

 

Figure 2.1.  Incremental loading procedure ...................................................................    11 

Figure 2.2.  Newton – Raphson procedure ....................................................................    11 

Figure 2.3.  Modified Newton – Raphson procedure .....................................................    11 

Figure 2.4.  Speed and cost evaluation of computers .....................................................    17 

Figure 3.1.  A bar element and its axial force, Q ...........................................................    19 

Figure 3.2.  A space truss system and its axial force, Q .................................................    20 

Figure 3.3.  Angles for the direction of cosine ..............................................................    20 

Figure 3.4.  A space member with MDOFs ...................................................................    20 

Figure 4.1.  Illustrations of geometrically nonlinear behavior .......................................    37 

Figure 4.2.  Basic incremental procedure ......................................................................    41 

Figure 4.3. Halved and Runge – Kutta increments ........................................................    42 

Figure 4.4.  Newton – Raphson method ........................................................................    44 

Figure 4.5. Modified Newton – Raphson method ..........................................................    45 

Figure 4.6.  Mixed procedure ........................................................................................    45 

Figure 4.7.  Nonlinear solution procedure of LUSAS ....................................................    46 

Figure 4.8.  Arc – length method ..................................................................................    50 

Figure 5.1.  Shapes of dome types ................................................................................    52 

Figure 5.2.  An aspect from the Louisiana Superdome ..................................................    54 

Figure 6.1.  Two member arch system and the point load ..............................................    58 

Figure 6.2.  Solution of two member arch system from LUSAS ....................................    59 

Figure 6.3.  Circular arch and the point load .................................................................    60 

Figure 6.4. Solution of circular arch system from LUSAS ............................................    60 

Figure 6.5.  Circular arch and the deformations of the joints .........................................    61 

Figure 6.6.  Parabolic dome and the point load .............................................................    62 

Figure 6.7.  Solution of the parabolic dome system from LUSAS .................................    62 

Figure 6.8.  Arch system with no hinges .......................................................................    64 

Figure 6.9.  Solution of the parabolic arch system from LUSAS ...................................    65 

Figure 7.1.  An example for lattice dome structures, Panora Alış-Veriş Merkezi ...........    66 

Figure 7.2.  Plan view of the lattice-dome .....................................................................    67 

Figure 7.3.  Rings and the nodes of the dome structure .................................................    68 



 
xi 

 

Figure 7.4.  Dead and earthquake loads on the points of the dome ................................    82 

Figure 7.5.  Represented areas for all points of the dome ..............................................    84 

Figure 7.6.  Dead and snow loads on the points of the dome .........................................    89 

Figure 7.7.  Single point load at the top point of the dome ............................................    93 

Figure 7.7.  Force vs displacement curve under the single point load at the top point ....    94 

Figure 7.9.   Force vs displacement curve under the dead and earthquake load ..............    95 

Figure 7.10. Force vs displacement curve under the dead load and wind load ...............    95 

Figure 7.12. Axial force diagrams of the members under the single point load ..............    97 

Figure 7.13. Axial force diagrams of the members under the dead and the snow loads ..    98 

Figure 7.14. Axial force diagrams under the dead and the earthquake loads ..................  100 

Figure 7.15. Axial force diagrams of the members under the dead and the wind loads ..  101 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
xii 

 

LIST OF TABLES 

 

Table 1.1.  Problem types in finite element method.......................................................      2 

Table 1.2.  Comparison of geometric and material nonlinearity ....................................      5 

Table 1.3.  Comparison of geometric and material nonlinearity ....................................      6 

Table 4.1.  Nonlinear solution techniques .....................................................................    35 

Table 4.2.  Comparison of solution techniques..............................................................    36 

Table 5.1.  General types of dome structures ................................................................    51 

Table 5.2.  Largest domes with ranking to the time .......................................................    53 

Table 5.3.  Dome structures by their materials ..............................................................    54 

Table 6.1.  Comparison of two different solutions.........................................................    61 

Table 6.2.  Comparison of two different solutions.........................................................    63 

Table 6.3.  Values of the factor for the arch system.......................................................    64 

Table 7.1.  Calculation of nodal coordinates .................................................................    69 

Table 7.2.  Coordinates of all points of the dome ..........................................................    70 

Table 7.3.  Effective ground acceleration coefficient ....................................................    78 

Table 7.4.  Spectrum characteristic periods ...................................................................    78 

Table 7.5.  Building importance factor ..........................................................................    79 

Table 7.6.  The length and name of the elements ..........................................................    83 

Table 7.7.  The speed and absorption values for wind loads ..........................................    83 

Table 7.8.  Wind loads for all points of the dome ..........................................................    87 

Table 7.9.  Snow pressures with respect to the altitudes and regions .............................    88 

Table 7.10.  Snow loads for all points of the dome ........................................................    89 

Table 7.11.  Formulas to calculate the steel weights ......................................................    90 

Table 7.12.  Total mass and weight for the points due to the materials ..........................    92 

Table 7.13.  Total weights for the rings due to the materials .........................................    93 

Table 7.14.  Section of the members and critical loads under the single point load ........    96 

Table 7.15.  Section of the members and critical loads under the dead and snow loads .    97 

Table 7.16.  Critical loads under the dead and earthquake loads ....................................    99 

Table 7.17.  Section of the members and critical loads under the dead and wind loads ..  100 

Table 7.18.  Sections and properties of the members .....................................................  102 

 



 
xiii 

 

LIST OF SYMBOLS 

 

A    Cross sectional area 

0
A   Effective ground acceleration coefficient 

 d    Nodal displacement vector 

C R
d    Critical displacement for buckling 

 
i

D    Total displacement of i
th

 cycle 

E    Modulus of elasticity 

I    Building importance factor 

J    Torsion Constant 

 K    Tangent stiffness matrix 

i
k    Tangent stiffness of i

th
 cycle 

ij
k    Individual term inside the stiffness matrix 

,   ,  l m n   Direction cosines 

L    Final length for a cycle 

0
L    Initial length 

C R
P    Critical load for buckling 

ext
P    External load 

in t
P    Internal load 

unb
P    Unbalanced load 

0
P    Correction load 

q    Absorption (Pressure) for TS-498 

Q    Compressive force 



 
xiv 

 

,  
A B

T T    Spectrum characteristic periods 

n
T    Natural period for the first mode 

,   ,  u v w   Generic displacements at an arbitrary point 

 

    Normal strain 

e
    Effective strain 

 
e

    Elastic strain 

     Nodal displacement vector in incremental analysis 

0
    Correction displacement 

    Normal stress 

 

DL   Dead Load 

LL   Live Load 

EL   Earthquake Load 

W L   Wind Load 

 

 

 

 

 

 

 

 

 



 
xv 

 

 



 
1 

 

1. INTRODUCTION 

 

1.1. General Remarks 

 

 For the last three centuries, linear problems have been a primary concern for 

structural and soil mechanics because when someone describes nonlinear phenomena, 

nonlinear equations come with this. These equations render classical methods of 

mathematical analysis in applicable. Exact solutions for linear equations have been 

discovered for over a century. However, any method has not been explored for finding exact 

solutions to general systems of nonlinear equations yet. The number of available exact 

solutions for nonlinear deferential equations is a mystery.  

 A nonlinear barrier has been created by the complexities of nonlinear analysis. 

Recently, this barrier could have been understood by effective use of high speed computers. 

In spite of the fact that finite element methods can be used for design in structural and soil 

mechanics, severe tests must be used to prove the accuracy of the proposed computational 

technique.  

 It has been understood that nonlinear finite element analysis can be successfully 

performed and there are several reasons that indicated this. These are the availability of very 

efficient nonlinear solution algorithms, the experience gained with their application to 

engineering problems, and the development of improved and high order element 

characteristics. Nowadays, the barriers to the general solution of nonlinear problems by 

finite elements have been removed considerably, and this process is successfully applied to 

nonlinear problems in structural and soil mechanics. It is a well known fact that the finite 

element methods are the most powerful general tools for the numerical solutions of a various 

problems encountered in engineering. The stress and deformation analysis of solids and 

soils, the solution of acoustical and neutron physics, fluid dynamics, biomedical 

engineering, medical treatment and analyses of various parts and cells of human body are 

examples of application of this method. For each field of application, the problem may be 

formulated in any one of the following types: 
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 Equilibrium problem 

 Eigenvalue problem 

 Propagation problem 

Descriptions of problems in each field of application as shown at one of the 

categories above are given in Table 1.1. The information in this table is basically extracted 

from (Desai, et al., 1972).  

 

Table 1.1.  Problem types in finite element method 

PROPAGATION 

PROBLEMS 

EIGENVALUE 

PROBLEMS 

EQUILIBRIUM 

PROBLEMS 

      1.   STRUCTURES  

 Analysis of bar 

structures, plates, shells 

and solids 

 Torsion of prismatic bars 

 Stability of structures 

 Free vibration of 

structures, natural mode 

shapes and frequencies 

 Wave propagation 

 Response of structures 

to random vibrations 

(winds, earthquake) 

2. SOIL MECHANICS  

 Stress analysis 

 Fill and excavations 

 Stability of soil structure 

 Free vibration of soil 

media 

 Transient seepage 

 Flow-consolidation 

3. HEAT CONDUCTION  

 Steady state temperature 

distribution in solids and 

fluids 

----- 
 Transient heat flow in 

solids and fluids 

4. HYDRAULICS  

 Potential flow of fluids 

 Viscous flow of fluids 

 Steady-State seepage 

 Seiche of lakes and 

harbours, natural periods 

and modes of oscillation 

 Sediment transport 

 Unsteady fluid flow 

 Transient seepage 
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1.2. Nonlinearity 

 

 Nonlinearity arises in engineering problems from two main sources. Deformations of 

the material may be large, when compared with the dimensions of the structure at hand and 

therefore the equilibrium conditions should be expressed on the deformed geometry. 

Tension structures, cable bridges, arches, soil structures, retaining systems, settlement 

problems are this entire category. Problems of this type are called Geometrically 

Nonlinearity problems, in which only the force deformation characteristics of the medium 

are nonlinear, while the stress strain relationship of the material remains purely elastic. 

 There is a second category however, in which the nonlinear relationship is primarily 

due to the elasto-plastic material behavior or due to the hyperelastic efforts of some form. 

Nonlinear response may be associated also with temporal effects, such as viscoplastic 

behavior or dynamic transient phenomena. Nonlinearities arising from the stress strain 

characteristics of material or from the time and rate dependence loading are called Material 

Nonlinearity. Creep of metals and plastics as well as consolidation problems in soil 

mechanics fall into this category. 

 It is quite likelihood that both of these two different nonlinearities may occur within 

the context of one problem, it would be therefore, appropriate to classify nonlinear problems 

into three categories as follows: 

 Geometric nonlinearity: It arises from nonlinear behavior in the kinematical 

equations, in other words, from finite changes in the geometry of the deforming 

body. 

 Material nonlinearity: It arises from the nonlinearities in the constitutive equations of 

the material, or from nonlinearities in the time dependence of the strains. 

 Combined geometric and material nonlinearity 

Computationally these categories are somewhat superficial since, the mathematical 

techniques and solution algorithms are almost the same in all categories. 
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In the first category the stress strain equations are assumed to be linear but 

nonlinearity may arise both from nonlinear strain displacement relations, such as the case in 

very thin plates, and from finite changes in geometry such as the case in stability of arches 

and domes. In other words, the geometric nonlinearity encompasses either large strains or 

large displacements. And thus the Eulerian Equations are appropriate to use for this 

geometric nonlinearity problems. 

An important subclass of geometrically nonlinear problems is the case of small or 

infinitesimal strains but large and finite displacements. An example of this subclass is the 

elastic postbuckling behavior of structures. 

The second category, material or physical nonlinearity alone, is easy to define. 

Although the displacements and strains are small the stresses are not linearly proportional to 

strains. The changes in geometry are considered to be infinitesimal and the linear strain 

displacement relations are used in finite element property derivations. 

The third and the most general and famous category of nonlinear problems is the 

combined geometric and material nonlinearity, not only the constitutive behavior is 

nonlinear, but also the strains are large. Soft soil layers, rubberlike materials fall into this 

category. 

The basic differences existing in the geometric and material nonlinearities are also 

summarized in Table 1.2 and Table 1.3. 
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Table 1.2.  Comparison of geometric and material nonlinearity 

Parameter Geometric Nonlinearity Material Nonlinearity 

General Field 

of Study 
Structural Mechanics Soil and Rock Mechanics 

Displacements Finite Infinitesimal 

Equilibrium 
Eulerian                              

(Deformed state coordinates are used) 

Lagrangian                          

(Undeformed state coordinates are 

used) 

Changes in 

Geometry 
Considered Neglected 

Starins 

Displacements 

Relations 

Tensor Notation: 

 , , , ,

1

2
jk k j j k i j i k

u u u u      

Tensor Notation: 

 , ,

1

2
jk k j j k

u u    

Engineering Notation: 

   

2 2 2

1

2

1

2
x

xy

u v u u v v w w

y x x y x y x y

u u v w

x x x x

       

    

       



   
    

   

      
      
      

 
  

 

Engineering Notation: 

1

2

x

xy

u

x

u v

y x


 



  
   

  
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Table 1.3.  Comparison of geometric and material nonlinearity 

Parameter Geometric Nonlinearity Material Nonlinearity 

Yield 

Criteria 
Not needed Essential 

Flow Rule Not needed Essential 

Constitutive 

Law 

 

 

Force 

Deflection 

Relation 

 
 

Examples 

 Thin plate bending

1
 

2
Deflections thickness

 
 

 
  

 Stability of arches, domes, etc. 

 Suspension bridges, hanging roofs 

 All metals 

strained beyond 

elastic limit 

 Elasto-plastic 

behavior in 

structural and soil 

mechanics 

 Any material 

with nonlinear 

constitutive law 
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1.3. Buckling 

 

In engineering, buckling is a failure mode characterized by a sudden failure of a 

structural member subjected to high compressive stresses, where the actual compressive 

stress at the point of failure is less than the ultimate compressive stresses that the material is 

capable of withstanding. This mode of failure is also described as failure due to elastic 

instability. Mathematical analysis of buckling makes use of an axial load eccentricity that 

introduces a moment, which does not form part of the primary forces to which the member 

is subjected. 

The ratio of the effective length of a column to the least radius of gyration of its cross 

section is called the slenderness ratio (sometimes expressed with the Greek letter lambda, 

λ). This ratio affords a means of classifying columns. All the following are approximate 

values used for convenience. 

 A short steel column is one whose slenderness ratio does not exceed 50; an 

intermediate length steel column has a slenderness ratio ranging from about 50 to 

200, while a long steel column may be assumed to have a slenderness ratio greater 

than 200. 

 A short concrete column is one having a ratio of unsupported length to least 

dimension of the cross section not greater than 10. If the ratio is greater than 10, it is 

a long column (sometimes referred to as a slender column). 

 Timber columns may be classified as short columns if the ratio of the length to least 

dimension of the cross section is equal to or less than 10. The dividing line between 

intermediate and long timber columns cannot be readily evaluated. One way of 

defining the lower limit of long timber columns would be to set it as the smallest 

value of the ratio of length to least cross sectional area that would just exceed a 

certain constant K of the material. Since K depends on the modulus of elasticity and 

the allowable compressive stress parallel to the grain, it can be seen that this arbitrary 

limit would vary with the species of the timber. The value of K is given in most 

structural handbooks. 

 If the load on a column is applied through the center of gravity of its cross section, it 

is called an axial load. A load at any other point in the cross section is known as an eccentric 
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load. A short column under the action of an axial load will fail by direct compression before 

it buckles, but a long column loaded in the same manner will fail by buckling (bending), the 

buckling effect being so large that the effect of the direct load may be neglected. The 

intermediate-length column will fail by a combination of direct compressive stress and 

bending. 

 In 1757, mathematician Leonhard Euler derived a formula that gives the maximum 

axial load that a long, slender, ideal column can carry without buckling. An ideal column is 

one that is perfectly straight, homogeneous, and free from initial stress. The maximum load, 

sometimes called the critical load, causes the column to be in a state of unstable equilibrium; 

that is, any increase in the load, or the introduction of the slightest lateral force, will cause 

the column to fail by buckling. The formula derived by Euler for columns with no 

consideration for lateral forces is given below. However, if lateral forces are taken into 

consideration the value of critical load remains approximately same. 

 
 

2

2
                                                                   1.1

EI
F

KL


  

K = column effective length factor, whose value depends on the conditions of end 

support of the column, as follows.  

For both ends pinned (hinged, free to rotate), K = 1.0. 

For both ends fixed, K = 0.50. 

For one end fixed and the other end pinned, K = 0.699.... 

For one end fixed and the other end free to move laterally, K = 2.0. 

Examination of this formula reveals the following interesting facts with regard to the 

load-bearing ability of slender columns. 

 Elasticity and not compressive strength of the materials of the column determines the 

critical load. 

 The critical load is directly proportional to the second moment of area of the cross 

section. 
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 The boundary conditions have a considerable effect on the critical load of slender 

columns. The boundary conditions determine the mode of bending and the distance 

between inflection points on the deflected column. The closer together the inflection 

points are, the higher the resulting capacity of the column. 

The strength of a column may therefore be increased by distributing the material so 

as to increase the moment of inertia. This can be done without increasing the weight of the 

column by distributing the material as far from the principal axes of the cross section as 

possible, while keeping the material thick enough to prevent local buckling. This bears out 

the well-known fact that a tubular section is much more efficient than a solid section for 

column service. 

Another bit of information that may be gleaned from this equation is the effect of 

length on critical load. For a given size column, doubling the unsupported length quarters 

the allowable load. The restraint offered by the end connections of a column also affects the 

critical load. If the connections are perfectly rigid, the critical load will be four times that for 

a similar column where there is no resistance to rotation (hinged at the ends). 

Since the moment of inertia of a surface is its area multiplied by the square of a 

length called the radius of gyration, the above formula may be rearranged as follows. Using 

the Euler formula for hinged ends, and substituting A.r
2
 for I, the following formula results. 

 
 

2

2
                                                            1.2

/

F E

A l r


    

where F / A is the allowable stress of the column, and l / r is the slenderness ratio. 

Since structural columns are commonly of intermediate length, and it is impossible to 

obtain an ideal column, the Euler formula on its own has little practical application for 

ordinary design. Issues that cause deviation from the pure Euler strut behavior include 

imperfections in geometry in combination with plasticity/non-linear stress strain behavior of 

the column's material. Consequently, a number of empirical column formulae have been 

developed to agree with test data, all of which embody the slenderness ratio. For design, 

appropriate safety factors are introduced into these formulas. 
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2. THEORY OF NONLINEAR STRUCTURAL ANALYSIS 

 

2.1. Method of Nonlinear Analysis 

 

 To express a brief summary of the numerical solution techniques will be presented. 

There are elementally three schemes employed on the literature as illustrated in Fig 2.1, Fig. 

2.2, and Fig. 2.3 for one dimensional case. They are that: 

 Incremental loading procedure 

 Newton – Raphson procedure 

 Modified Newton – Raphson procedure 

In the Incremental Loading Procedure, the external loads are applied at a sequence 

of increments and a merely linear elastic analysis is performed for each increment. At the 

end of each incremental cycle however, the geometry is modified, the material features are 

modified, and thus the tangent stiffness is modified normally. A refined approach is to 

consider the stresses and strains of the previous cycle as the “initial stresses” of the 

subsequent cycle. 

In the Newton – Raphson Procedure, initially, the full external loads are applied and 

a linear analysis is performed for each increment. By utilizing the calculated strains, a set of 

internal nodal forces are developed, which are checked and controlled compared with the 

external joint loads. The differences between the external and internal nodal forces at each 

node; 

                                                         2.1
unb ext int

P P P   

are applied as the external joint loads of the second cycle of analysis. In the second cycle of 

analysis, the tangent stiffness properties correspond to the largest stage of the material 

properties and state of stress. 

 If however, the initial constant stiffness matrices are used until the analysis cycles, 

instead of the tangent stiffness matrices, the name of this method is the Modified Newton – 

Raphson Method, as illustrated in Fig. 2.3. 
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                              Figure 2.1.  Incremental loading procedure 

 

 

                          Figure 2.2.  Newton – Raphson procedure 

 

 

                             Figure 2.3.  Modified Newton – Raphson procedure 



 
12 

 

2.2. Geometric Nonlinearity 

2.2.1. Incremental Procedure 

 

 To use the incremental procedure has been very famous and popular since especially 

1960s by considering applications of the finite element methods to a class of geometrically 

nonlinear problems thanks to certain researchers such as (Turner et al., 1960). In this 

procedure, the nonlinear behavior is determined by solving a sequence of linear problems in 

which corrective the tangent stiffness matrices are used to update the geometry at the end of 

each cycle. 

 (Turner, 1959) and (Argyris, 1959) apparently discussed such incremental 

procedures as early as 1959, and (Greene, 1960) employed geometric stiffness matrices in an 

unpublished memorandum dealing with the instability of beam columns. Similar work was 

reported by (Ortega, 1969). In 1962 an extension of their earlier work was presented by 

(Turner et al., 1964) and by (Argyris et al., 1964) which were subsequently published in 

1964. (Gallagher and Padlog, 1963) discussed a procedure for linearized stability analysis. 

 Geometric stiffness matrices were also used to calculate large displacements of finite 

element models by (Argyris-a, 1964), (Argyris-b, 1965), and (Argyris-c, 1966) and 

moreover in the first Dayton conference on matrix method in structural mechanics in 

(Przemieniecki et al., 1966), and (Martin, 1966) reviewed the work on geometrically 

nonlinear problems up to that time, and presented geometric stiffness matrices for a number 

of structural elements. Martin‟s paper was published in 1966 along with his summary report 

on the subject (Martin, 1966). The general formulas for computing geometric stiffness 

matrices were subsequently presented by (Oden, 1966), and (Przemieniecki, 1967). 

 Numerous researchers have used incremental procedures and geometric stiffness 

matrices to study both stability and large displacements of complex structures. These include 

studies of the stability of thin plates by (Hartz, 1965), (Kapur, 1965), (Kapur and Hartz, 

1966), (Felippa, 1966), (Anderson et al., 1968), (Kawai and Ohtsubo, 1969), and (Hicks, 

1967); stability of thin shells by (Gallagher, 1966), (Gallgher et al., 1967), (Navaratna et, al, 

1967), (Navaratna, 1967), and (Bakus and Mello, 1969); large deflection of the plates by 

(Murray, 1967), (Murray and Wilson, 1969); large deflections of thin shells by (Stricklin et 

al., 1968), (Stricklin et al., 1969), (Wempner, 1969), (Mallett and Marcal, 1968), (Yaghmai, 
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1968), and (Yao, 1968). Problems of dynamic stability of plates and beams have been 

considered by (Hutt, 1968), and (Brown et.al, 1968). Surveys of methods and previous work 

and finite element applications to geometrically nonlinear problems have recently been 

contributed by (Martin, 1969), and (Kawai, 1969). 

 

2.2.2. Iterative Procedure 

 

The Newton – Raphson method has been used by a number of investigators to solve 

nonlinear structural problems. (Walker and Hall, 1968) used this method to study large 

deflections of beams, and (Brebbia and Conner, 1969) recently used this method 

successfully to study stability and geometrically nonlinear behavior of arbitrary shells. 

Brebbia and Corner refer to the incremental formulations used by (Wissmann, 1966), 

(Felippa, 1966), and (Argyris, 1966) as a one step Newton – Raphson Method and the 

incremental loading procedures described previously. They employ a mixed procedure 

wherein incremental loading is used for three steps and then Newton – Raphson method is 

introduced to provide successive corrections. 

Similar iterative procedures have been discussed in connection with nonlinear frame 

analysis by (Tezcan and Mahapatra, 1969), (Corner et al., 1968), (Zarghamee and Shah, 

1968), (Poskitt, 1967), and (Prasad, 1969). Tezcan and Mahapatra presented explicit forms 

of tangent stiffness matrices for plane and space frame members, which have been 

successfully employed for the geometrically nonlinear two and three dimensional structures, 

including the stability problems. (Thompson and Walker, 1969), (Walker, 1968) have used 

the Newton-Raphson method as well as perturbation and incremental step-by-step 

techniques to study stability and large deflections, including branching analysis of finite 

element models of structural systems. 

According to (Tezcan and Ovunc, 1966), an iteration procedure is presented to 

determine buckling loads of plane and space structures taking into account nonlinear 

behavior. The basic idea in this procedure is to perform a standard linear analysis under the 

action of given set of external loads and then calculate the member end forces using the 

deformed geometry. If the member end forces at a joint are not in equilibrium with the given 
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external loads, the out of balance forces are applied on to deformed geometry to yield 

another set of deformations and forces. If the new forces do not satisfy the joint equilibrium, 

the linear analysis continues with the latest geometry and with the latest out of balance 

forces. This procedure is repeated until equilibrium is reached at every joint. The original 

external loads are gradually increased and the equilibrium status is established in each time 

by following the process. The magnitude of the external loads causing divergence in the 

unbalanced forces, in other works, producing excessive deformations at the joints, is 

considered as the buckling load of the system. 

 

2.3. Nonlinear Field Problems 

 

 More general finite elements formulations of problems of nonlinear continua have 

been also considered. These include studies of nonlinear viscoelasticity (Oden, 1967), and 

(Oden, 1969) coupled thermoelasticity (Oden et al., 1969), nonlinear heat conduction 

(Aguire et al., 1969), finite thermoelasticity (Oden, 1969), fluid dynamics (Oden et al., 

1969), materials with microstructure (Oden et al., 1969), and thermomechanically simple 

materials with memory (Oden and Ramirez, 1969). The development of general finite 

element formulations, valid for any choice of reference coordinates, of heat conduction and 

motion of nonlinear thermomechanical materials is discussed in the paper (Oden and 

Ramirez, 1969). 

 Incremental Analysis of large deformations of elastoplastic materials, with emphasis 

on shells of revolution, is examined by (Yaghmai, 1968), and applications of the finite 

elements method to the analysis of nonlinear thermoviscoelastic solid is considered by 

(Dong et al., 1968). A survey and extension of finite element formulations of problems of 

finite deformation and irreversible thermodynamics of nonlinear continua including of both 

solid and fluids, has recently been given by (Oden, 1969). 

 A comprehensive treatment is given by (Naylor et al., 1981), for the application of 

the finite element method in geotechnical engineering. (Simo, 1991), presented very general 

proofs of unconditional stability based on contractivity of the operators with areas for 

implicit integrators, midpoint rule for heat conduction, midpoint rule for static plasticity and 

viscoplasticity. 
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2.4. The Buckling of Lattice Domes under the Simultaneous Concentrated Loads 

 

 Triangular lattice domes are, in effect, warped; three dimensional trusses, due to the 

assumed perfectly frictionless member connections, and when a system of point loads are 

applied to the nodes of the frame, two types of stability problems are that: 

 Bar stability problems with solutions given by the Euler critical load, 

 Snap-Through problems 

When a system of compressive loads is applied to the joints of a framed, triangulated 

dome with straight members, two distinct stability problems may arise as the loads are 

gradually increased. 

 If the members located in the neighborhood of the loaded joints are slander, high 

ratio of effective length to minimum radius of gyration, some of them may buckle in 

the manner of axially loaded columns. This behavior constitutes the bar stability 

problem, the solution is given by the Euler critical load. 

 As the bar lengths decrease with increasing number of members, the framework 

around any particular joint becomes flatter, as the angles of intersection of adjoining 

bars grow closer to 1800. When the applied forces are slowly increased, the 

deflections of the loaded joints, coupled with the deformations of the surrounding 

ones, tend to flatten the framework even further, until a configuration is reached 

beyond which a loaded joint becomes unstable. More increasing of the load would 

cause this joint to snap-through, and the dome‟s surface would develop a more or 

less circular depression or dimple. And moreover this subject have been reported by 

(Krivoshapko, 2002), (Yamada et al., 1997), (Carpenter et al., 1966), (Aguilar and 

Huang, 1966). 

 

2.5. Buckling Consideration in the Design and Construction of Space Structures 

  

 Buckling is a serious problem that should be considered in the design and 

construction of large doubly curved space structures. The past investigations of existing 

structures indicate that certain designs have a marginal factor of safety against buckling. 



 
16 

 

Several investigators suspect that inadequate resistance to buckling contributed to the past 

failure of several structures such as the dome roofs in Bucharest, Rumania, and Fargo, North 

Dakota, and the failure of the sandwich dome on the Saturn Booster.  

 Considerable research and analysis on the stability of shell and shell-like structures 

has been performed in past years (Buchert-a, 1965), (Buchert-b, 1965), (Wright, 1965), 

(Kloppel and Roos, 1956), (Crawford and Schwartz, 1965). However the present analysis of 

these structures leaves much to be desired, the professional engineer can use the results 

available to design a safe, structurally efficient, economic doubly curved shell-like structure. 

 The stability analysis of a shell-like doubly curved structure such as braced dome, 

single or double layer grid, stressed skin system, and sandwich type should include 

consideration of the following factors: 

 General buckling, 

 Local buckling, 

 Edge conditions, 

 Yield strain of the materials, 

 Deviation from a perfect surface. 

 As a result of past research and testing, equations have been derived to allow the 

designer estimate the critical buckling loads for the general and local buckling. Although 

quantitative theoretical equations are not available for the effects of the edge conditions, 

yield strain, and imperfections; certain general design guides can be stated that will 

minimize the effects of these important factors. 

 Three types of buckling could occur in this type of dome such as member buckling, 

local buckling, and general buckling. Member buckling is similar to column or arch type 

buckling that occurs in a many civil engineering structures. Local buckling occurs in a local 

area and consists of the buckling of more than one member. General buckling occurs over a 

considerable portion of the structure and results in a general failure or collapse of the dome. 

And moreover this subject have been reported by (Darooka and Jensen, 2001), (Kitipornchai 

et al., 2004), and (Buchert, 1966). 
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2.6. Rapid Progress in Computers 

 

 There are two basic reasons in preferring mathematical modeling to the experimental 

testing. One of them is that the computational powers of computers have been drastically 

improved for the last forty years. The second one is that the cost per unit computation has 

been intensely decreased as shown in Fig. 2.4. 

 As a matter of fact, the computational power of the oldest computer ENIAC in 1945 

was approximately 100 flops (floating point operation per second) and it has been increased 

to 80000 flops at an IBM-7090 computer in 1960. Today, the CRAY4 computer for 

example, has one billion flops high computational speeds. It is easily seen that along a time 

period of about fifty years, the computational speeds of the computers have been increased 

by ten million times (Hughes, 1987) and (Hughes and Belytschko, 1992). 

 In opposite to this increase in speed, the cost of computation has been decreased by 

about thousand folds within the same time period as shown in Figure 2.4. An inflation factor 

of approximately four is assumed to occur in the computer prices between the years 1966 

and 1990. 

 

Figure 2.4.  Speed and cost evaluation of computers 
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3. TANGENT STIFFNESS MATRICES FOR BAR ELEMENTS 

 

 

In this chapter of the Thesis, the geometric nonlinearity tangent stiffness matrices of 

the bar elements will be derived. For the bar elements, the Taylor expansion method will be 

used while for the finite elements and strain energy concept will be applied. In deriving the 

tangent stiffness matrices for one dimensional bars, the Taylor expansion method is the most 

convenient. With the omission of the second and higher order derivatives, the change in the 

value of a continuous function Pi, with n independent parameters u1, u2, u3, ………, un is 

1 2 3

1 2 3

  .....................  
i i i i

i n

n

P P P P
P u u u u

u u u u

   
         

   
                  (3.1) 

in which, Pi represents any particular member end-force and u1, u2, u3, ………, un represent 

the deformations along the specified n degrees of freedom, in the global coordinate system. 

   i

ii

j

P
P u

u

 
   

  

                                                  (3.2) 

Then if this formula, which is above, is compared with the formula which is below, 

    F K d                                                        (3.3) 

 As a result, the partial derivative of the Pi with respect to the uj is equal to the 

stiffness matrix K in the global coordinate system. 

,

i

i j

j

P
K

u

 
     

  

                                                      (3.4) 
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    

                               (3.5) 
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 Once the algebraic expressions of the member end-forces P1, P2, P3, ………, Pn in 

terms of u1, u2, u3, ………, un are known in the deformed geometry, the tangent stiffness 

matrix of a bar element may be obtained simply by taking the partial derivatives of the end-

forces with respect to each one of the end-displacements.  

 

3.1.  Tangent Stiffness Matrix of a Truss Bar 

 

 

Figure 3.1.  A bar element and its axial force, Q 

Q A                                  (3.6) 

E          (3.7) 
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Q A E AE AE
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                     (3.8) 
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
              (3.9) 

cosm         (3.10) 
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sinn         (3.12) 
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0
,  L L due to the compressive axial force, Q

 

The new coordinate for the point 1:
  

1 1
Y Y d          (3.13) 

1 2
Z Z d           (3.14) 

The new coordinate for the point 2:
  

2 3
Y Y d          (3.13) 

2 4
Z Z d           (3.14) 

The new length: 

       
2 2

2 3 1 1 2 4 1 2
L Y d Y d Z d Z d                  (3.15)

 
2 2

L u v             (3.16) 

First of all, in order to determine and form the axial force vector, the angle α, which 

is between the horizontal axes and the new bar element, is used by the values of sine and 

cosine of the angle.  
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To determine k11;  
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Remember that:  
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Add to the last equation 2 2
m m  , 
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1
L LAE AE

k m m
L L L

   
     

  

     (3.30) 

 
2

2

11 0

0 0

1AE AE m
k m L L

L L L


                (3.31) 

 

Remember that: 

 0

0

AE
Q L L

L
                (3.32) 

 2 2

11

0

1
AE Q

k m m
L L

          (3.33) 

In order to get the k22 of the tangent stiffness matrix by analogy only m is replaced by n; 

 2 2

22

0

1
AE Q

k n n
L L

         (3.34) 

To determine k21; 

2

21

1

Q
k

d





        (3.35) 

   0

21 2 4 1 2

1 0

L LAE
k Z d Z d

d L L

   
        
   

           (3.36) 

21 0 0
2 2

1 0 1 0

AE v AE v
k L v L v

d L L d L u v

    
       
      

     (3.37) 
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Remember that:  

 
2

u
u

u


           (3.38) 

1

1
u

u
d


  


          (3.39) 

1

1

                   ,        0                                                  
v

v is not a function of d v
d


  


   (3.40) 

2 2

2 22 2

2

1 2

uu

u v

u vu v




  
 

 

        (3.41) 

2 2

u u
m

L u v

 



                                                  (3.42) 

2

2

2 2

u
m

u v


  

                                                      

(3.43) 

2 2

v v
n

L u v

 

  

                                                  

(3.44)

 

2 2

21 0 2 2

0

2

2
0

uu

AE u v
k vL

L u v

 

 


  
 

 
                                           

(3.45) 

21 0 2

0

    
     

0

u

AE Lk vL
L L

 

 
  

 
                                                

(3.46) 

21 0

0

AE v m
k L

L L L

 


 
      

                                              (3.47) 

21 0

0

AE mn
k L

L L

 


 
                                                     

(3.48) 
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Add to the last equation mn mn  ,  

0

21

0

LAE
k mn mn mn

L L

 
  

 
   

                                         (3.49) 

 21 0

0 0

  AE AE mn
k mn L L

L L L


                                          (3.50) 

 

Remember that: 

 0

0

AE
Q L L

L
 

   

                                                 (3.51) 

 21

0

AE Q
k mn mn

L L
                                                 (3.52) 

By the symmetry in the tangent stiffness matrix,  

 21 12

0

AE Q
k k mn mn

L L
   

   

                                      (3.53) 

Let us make up the general stiffness matrix for the bar elements under the axial force Q; 

 

 

 

 

 

2 22 2

2 22 2

2 22 2

0

2 22 2

1 1

1 1

1 1

1 1

t

m mn m mnm mn m mn

mn n mn nmn n mn nAE Q
K

m mn m mnL Lm mn m mn

mn n mn nmn n mn n

    

    
 

    

    

  
  
  
  
  

       

(3.54)

 

 

 



 
25 

 

3.2. Other Form of the Tangent Stiffness Matrix 

 

 0

0

AE
Q L L

L
 

 

                                                   (3.55) 

 Q represents the compressive axial force, therefore sign of the force, Q is positive. If 

it is a tensile axial force, then it will be negative.  

 2 2

11

0

1
AE Q

k m m
L L

  

   

                                          (3.56) 

 2 20

11

0 0

1
L LAE AE

k m m
L L L


  

    

                                   (3.57) 

2 2 20 0

11

0 0 0 0

L L LAE AE AE AE L
k m m m

L L L L L L L


   

  

                        (3.58) 

 2 20

11

0

L LAE AE AE
k m m

L L L L


    

  

                               (3.59)

 

 

2 2

2 2

2 2

2 2

t

m mn m mn

mn n mn nAE
K

L m mn m mn

mn n mn n

      
 

      
      
 

         

                       (3.60) 
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3.3. Tangent Stiffness for a Space Truss System 

 

 

Figure 3.2.  A space truss system and its axial force, Q 

 

 

Q A

  

                                                        (3.61) 

E  

   

                                                        (3.62) 

  0

0 0

L LL
Q A E AE AE

L L


   

 

                                    (3.63) 

   2 4 1 1
X d X dX u

l
L L L

     
  

  
                                (3.64) 

   2 5 1 2
Y d Y dY v

m
L L L

     
  

  
                                 (3.65) 

   2 6 1 3
Z d Z dZ w

n
L L L

     
  

  
                                (3.66) 

0
, L L  due to the compressive axial force, Q 
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The new coordinate for the point 1: 

1 1
X X d 

   

                                                    (3.67) 

1 2
Y Y d                                                          (3.68) 

1 3
Z Z d 

  

                                                      (3.69) 

The new coordinate for the point 2: 

2 4
X X d 

   

                                                    (3.70) 

2 5
Y Y d                                                          (3.71) 

2 6
Z Z d 

  

                                                      (3.72) 

The new length: 

           
2 2 2

2 4 1 1 2 5 1 2 2 6 1 3
L X d X d Y d Y d Z d Z d                      (3.73)

 
2 2 2

L u v w                                                     (3.74) 

 

 
 Figure 3.3.  Angles for the direction of cosine 
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 The direction cosines formulas: 

cos ,           cos ,            cos
X Y Z

L L L
  

  
  

   
                     (3.75) 

2 2 2 2

2 2 2

2 2
cos cos cos 1     1

X Y Z L

L L
  

     
     

   

                  (3.76) 

 

If the Length, L  is considered as a vector; 

     cos cos cosL L i L j L k    

  

                              (3.77) 

x y z
L L i L j L k  

  

                                               (3.78) 

x y z
Q Q i Q j Q k  

  

                                              (3.79) 

    2 4 1 1
cos

x

X d X dX
Q Q Q Q Ql

L L


  
   

   

                  (3.80) 

    2 5 1 2
cos

y

Y d Y dY
Q Q Q Q Qm

L L


  
                         (3.81) 

    2 6 1 3
cos

z

Z d Z dZ
Q Q Q Q Qn

L L


  
   

   

                  (3.82) 

 

   

   

   

0

2 4 1 1

0

1 1

0

2 5 1 22 2

0

3 3

0

2 6 1 34 1

0

5 2

1

6 3

2

3

L LAE
X d X d

L L
Q Q

L LAE
Y d Y dQ Q

L L
Q Q

Q L LAE
Z d Z dQ Q

L L
Q Q

Q
Q Q

Q

Q

   
      

  
   

     
             

        
          

            
 

     
     

       




  








  

            (3.83)
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To determine k11;  

1

11

1

Q
k

d





   

                                                      (3.84) 

   0

11 2 4 1 1

1 0

1
LAE

k X d X d
d L L

   
         
       

                        (3.85) 

11 0 0
2 2 2

1 0 0 1

AE u AE u
k L u L u

d L L L d u v w

    
       
           

              (3.86) 

 

Remember that:  

 
2

u
u

u




  

                                                   (3.87) 

1

1
u

u
d


  


 

                                                    (3.88) 

 2 2 2

2 2 2

2

2

uu
u v w

u v w

 
  

   

                                   (3.89) 

2 2 2

u u
l

L u v w

 

 

 

                                             (3.90) 

2

2

2 2 2

u
l

u v w


 

 

                                                 (3.91) 

2 2 2

2 2 2

11 0 2 2 2

0

2

2

uu
u u v w u

AE u v w
k L u

L u v w

 
   

 
 

  
  

 
    

                   (3.92) 

 
2

11 0 2

0

  
1

1

u
L

AE Lk L
L L

 
  

  

 
      

                                     (3.93) 
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2

11 0 2

0

1
AE L l L

k L
L L

  
  

    

                                         (3.94) 

2

11 0

0

1
1

AE l
k L

L L

 
  

     

                                           (3.95) 

 

Add to the last equation 2 2
l l  , 

2 2 20 0

11

0

1
L LAE

k l l l
L L L

 
    

 
    

                                    (3.96) 

2 20 0

11

0 0

1 1
L LAE AE

k l l
L L L L

    
        

       

                              (3.97) 

 2 2 0

11

0 0

1
L LAE AE

k l l
L L L

   
     

     

                                  (3.98) 

 
2

2

11 0

0 0

1AE AE l
k l L L

L L L


  

 

                                        (3.99) 

 2 2

11

0

1
AE Q

k l l
L L

                                               (3.100) 

2

22

2

Q
k

d





                                                      (3.101) 

3

33

3

Q
k

d





                                                      (3.102) 

2 1

21 12

1 2

Q Q
k k

d d

 
  

 
                                             (3.103) 

3 1

31 13

1 3

Q Q
k k

d d

 
  

 
                                             (3.104) 

3 2

32 23

2 3

Q Q
k k

d d

 
  
 

                                            (3.105) 
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 

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

0

2 2 2

2 2

1 1

1 1

1 1

1 1

1 1

l lm ln l lm ln l lm ln l lm ln

lm m mn lm m mn lm m mn lm m mn

ln mn n ln mn n ln mn n ln mn nAE Q
k

L Ll lm ln l lm ln l lm ln l lm ln

lm m mn lm m mn lm m mn lm

ln mn n ln mn n

      

      

      

 

      

    

 

 

 

 

 

 

 

 

 
 

2

2 2

1 1

m mn

ln mn n ln mn n

 

   

 

 

 

 

 

 

 

 
   

(3.106) 

 

3.4. Tangent Stiffness Matrix for a Space Member 

 

     

 

Figure 3.4.  A space member with MDOFs 
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At the figure above, totally 12 degree of freedoms are separately shown on an 

example of a space member. Therefore the tangent stiffness matrix should be by 12x12. 

Moreover, there are two parts of the tangent stiffness matrix for a space member. The first 

one is the linear-part, the other one is the nonlinear part of the tangent stiffness. If these parts 

are shown separately: 

 

 

3.4.1. Linear Part of the Tangent Stiffness Matrix Relative to Member Axes 

 

. . . . . . . .

. . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . . .

. . . . . . . .

l

H G H G

S S

D C D C

C A C B

T T

G E G F
k

H G H G

S S

D C D C

C B C A

T T

G F G E

   

 


 

 
 

 

 
 
 


 
 

 

 
  

 

 

 


 

  

 

 

1 1

2 2

      

4 4
                                 

2 2
                                 

                                       

2 2
                

x x z z

x x z z

EI s EI s
A E

L L

EI s EI s AE
B F S

L L L

A B E F GJ
C G T

L L L

C Q G Q
D H

L L

 

  

 
  

 
 

                                   (    )Q Axial force Compressive positive

                     (3.107) 
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For compression members: 

 

 
1

sin cos

4 2 2 cos sin
s

   

  




 
                                        (3.108) 

 

 

 
2

sin

2 2 2 cos sin
s

  

  




 
                                        (3.109) 

3.4.2. Nonlinear Part of the Tangent Stiffness Matrix Relative to Member Axes 

 

. . . . . . . .

. . . . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . .

nl

c d c d

c d c d

d a d b

d a dQ
k

c d cL

c d c d

d b d a

d a

   

 

 

 
 

 

 

 
 


 
 

 

 
  

 

 

 

 

  

 

 

2 2

     (    )

2 6
                                                        

15 5 30 10

                             Q Axial force Compressive Negative

L L L
a c b d




   

              (3.110) 
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4. COMPUTATIONAL TECHNIQUES 

 

4.1. About the Computational Techniques 

 

 All materials have the nonlinearity when they are subjected to a force or a deflection. 

At the before of the invention of the computers all people, engineers, have an obligation to 

accept that all systems have linear solution. But after the coming of the computers in our life 

and business we can easily think about the nonlinear solutions. Because some iterative or 

incremental procedures are required in order to get any nonlinear solution from any system 

since actually, the nonlinear analysis is obtained by means of repetitious linear analysis. And 

these procedures are applicable thanks to the computers which can calculate lots of 

equations in very short time.  

 In this chapter, the computational techniques existing in nonlinear analysis are 

summarized. 

4.2. What is Nonlinear Analysis for LUSAS? 

 

Linear Finite Element Analysis assumes that all materials are linear elastic in 

behavior and that deformations are small enough to not significantly affect the overall 

behavior of the structure. Obviously, this description applies to very few situations in the 

real world, but with a few restrictions and assumptions linear analysis will suffice for the 

majority of engineering applications.  

What do we look for, therefore, in our problem to indicate that a nonlinear finite 

element analysis is required? 

 Gross changes in geometry 

 Permanent deformations 

 Structural cracks 

 Buckling 

 Stresses greater than the yield stress 

 Contact between component parts 
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Three types of nonlinear analysis may be modeled using LUSAS: 

 Geometric Nonlinearity e.g. large deflection or rotation, large strain, non-

conservative loading. 

 Mixed Nonlinearity e.g. lift-off supports, general contact, compression load transfer, 

dynamic impact. 

 Material Nonlinearity e.g. plasticity, fracture/cracking, damage, creep, volumetric 

crushing, rubber material. 

 

 

Table 4.1.  Nonlinear solution techniques 
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Table 4.2.  Comparison of solution techniques 

INCREMENTAL PROCEDURES 

Advantages Disadvantages 

1. “Incremental theory”, (Flow Theory) of  

gfdplasticity is conveniently used in 

hgfincremental procedures 

1. There is a tendency of always deviating 

kjhfrom the true solution. To avoid this, a 

kjhmixed procedure may be necessary. 

2. Very general applicable to all types of 

jhgnonlinearity, except work-softening 

jhgmaterials, for the method fails. 

2.  Number of incrementss isk initially 

jhhunknown. Thus it is difficult to estimate 

jhgthe number of increments and therefore 

jhgthe degree of the accuracy is unknown. 

3. Useful results are produced at each of the 

jhhintermediate steps of loading. 

3. More time consuming than the iterative 

jhgsolutions, because all matrices must be 

kjhupdated in each cycle. 

----- 4. Not applicable to work-softeningjhgfdgk 

kjhmaterials. 

ITERATIVE PROCEDURES 

Advantages Disadvantages 

1. Lessm timem consumingm thanm them 

kjkincremental procedure. 

1. Thej efficientj “Incrementalj Theory”j of 

kjhplasticity may not be applicable, but 

kjhinstead “the total strain theory”, 

kjh(Deformation Theory) of plasticity 

kjhshould be used, which by the way has 

kjhmany doubtful assumptions. 

2. The results normally converge to the 

kjhkexact solution. 

2. There is no assurance to converge to the 

kjhexact solution. 

3. Loads are constant in each successive 

kjhcycle of analysis. 

3. Not applicable to “dynamic problems” or 

kjhpath dependent hysteretic materials. 

4. Easier to use, easier to code in the 

kjhcomputers. 

4. Displacements, stresses and strains are 

kjhdetermined for only the total load. No 

kjhinformation is obtained for the 

kjhintermediate steps of loading. 

5. Convenient for the bi modular materials 

kjhwith different modulus of elasticity in 

kjhtension and compression. 
t c

E E  

 

6. When combined with “Chord Modulus” 

kjhapproach, it becomes very successful for 

kjhmaterials with strain softening. 
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4.2.1. Geometrically Nonlinear Analysis 

 

Geometric nonlinearities arise from significant changes in the structural 

configuration during loading. Common examples of geometric nonlinearity are plate 

structures which develop membrane behavior, or the geometric bifurcation of truss or shell 

structures. The changing applications of loads or boundary conditions are also geometrically 

nonlinear effects. The figure below shows two simple structural examples which serve as 

good illustrations of geometrically nonlinear behavior. 

 

 

Figure 4.1.  Illustrations of geometrically nonlinear behavior 

 

 

For the simply supported beam (above left), the linear solution would predict the 

familiar simply supported bending moment and zero axial force. In reality as the beam 

deforms its length increases and an axial component of force is introduced.  

For the loaded strut (above right), the linear solution would fail to consider the 

progressive eccentricity of the vertical load on the bending moment diagram. In both these 

cases depending on how large the deflections were, serious errors could be introduced if the 

effects of nonlinear geometry were neglected. 
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In LUSAS geometric nonlinearity is accounted for using four basic formulations: 

 Total Lagrangian 

 Updated Lagrangian 

 Eulerian 

 Co-rotational 

In the Lagrangian formulations all variables are referred to a reference configuration. 

This will be the undeformed configuration in what is termed Total Lagrangian, or the 

configuration at the last converged solution in what is termed Updated Lagrangian. A 

Lagrangian approach tends to be preferred in structural problems where it is required to 

monitor the path of a particular particle through space. It is thus termed a referential or 

material description. The derivation which follows applies to both Total and Updated 

versions except where the differences are highlighted. The limits of integration are carried 

out over the undeformed configuration for the Total approach and the configuration at the 

last converged solution for the Updated approach. 

In the Eulerian formulation all variables are referred to the deformed configuration. 

In the past this has been preferred for fluid problems where it is required to monitor the path 

of fluid through a particular control volume and not the path of one particle in its entirety. It 

is thus termed a spatial description. For structural problems its use has been limited as the 

deformed configuration is unknown. The formulation used in LUSAS is not Eulerian in the 

strictest sense but the term is used to avoid confusion with the Lagrangian description. 

In the co-rotational formulation all strains are computed in a local frame which 

follows the element as it deforms. This approach is generally applicable, but is especially 

useful when used to formulate elements with rotational degrees of freedom. At present, this 

formulation is available for one beam element and for all 2D and 3D continuum elements 

including the solid composite elements. 
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4.2.2. Nonlinear Mixed Conditions 

 

Deformation dependent boundary condition models account for the modifications to 

the external restraints resulting from lift-off, or smooth or frictional contact during the 

process within an analysis. Within LUSAS node on node may be accounted for using joint 

elements and arbitrary contact may be accounted for using slidelines. Consider the simple 

example shown in the figure 4.1 in which the structure and its supporting surface can resist 

being pushed together, but not being pulled apart. The required contact condition may be 

imposed by using joint elements to connect between the structure and the rigid support, and 

specifying a nonlinear contact joint model incorporating large, and zero local stiffnesses in 

compression and tension respectively. 

 

4.2.3. Materially Nonlinear Analysis 

 

Materially nonlinear effects arise from a nonlinear constitutive model (that is, 

progressively disproportionate stresses and strains). Common examples of nonlinear 

material behavior are the plastic yielding of metals, the ductile fracture of granular 

composites such as concrete or time-dependent behavior such as creep. 

LUSAS incorporates a variety of nonlinear constitutive models, covering the 

behavior of the more common engineering materials. Details of these material models and 

their applicability to each LUSAS element are described in About Material Properties which 

should be read in conjunction with the Element Reference Manual. 

 

4.3. Incremental Procedures 

 

4.3.1. Regular (Basic) Incremental Procedure 

 

 The external loads are subdivided into equal or sometimes unequal divisions and 

each load increment is applied onto the system and a perfectly linear analysis is performed. 
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The displacements, stresses, and strains of each cycle are superimposed in order to obtain 

the total displacements, stresses, and strains. The regular incremental procedure is illustrated 

in Fig. 4.2. It is seen that in each cycle of analysis, a new updated stiffness matrix is used 

corresponding to the state of stress and material properties of the previous cycle. The 

governing equations are that: 

 

 Loads: 

   
1

m

i

i

P P


                                                        (4.1)       

 (m is the number of increments) 

 Stiffness Equation: 

     
1 i ii

K D P


                                                     (4.2) 

 Total Displacements: 

   
1

m

i

i

D D


                                                         (4.3) 

 The calculated force displacement curve is slightly different than the true force-

displacement curve because of a small deviation from the exact solution as a result of 

piecewise linearization. The stiffness matrix in each cycle is based on the tangent moduli 

corresponding to the effective strains of the previous cycle. In fact, the proper “the tangent 

stiffness matrix” is used in each successive cycle. The constitutive law may be prescribed 

either in digital form or in functional form. It may be determined by the following testing 

methods: 

 Uniaxial Testing 

 Triaxial Testing 

 Equivalent Stress-Strain Curve 
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4.3.2. Halved Incremental Procedure 

 

The accuracy may be improved taking smaller load increments. For instance, in each 

load step half of the load increment is taken and the tangent stiffness matrix may be updated 

in the second half. At first, the analysis proceeds along the line A to H. Then with the 

updated tangent stiffness at half point H, the analysis proceeds along to H to C. The 

accuracy will be improved by moving the solution from B to C, but the number of load 

cycles will be doubled. This is illustrated in Fig. 4.3. 

 

4.3.3. Midpoint Runge-Kutta Procedure 

 

 As already illustrated in Fig. 4.3, after the tangent stiffness matrix is updated at half 

point H, the full value of incremental load ∆P is applied at the beginning point A using the 

updated stiffness; therefore the linear analysis proceeds along the line A to D. 

 Here again two cycles of analysis are needed within each load increment. But the 

accuracy is much better than the previously described the basic increment and the halved 

increment procedures.   

 

 

      Figure 4.2.  Basic incremental procedure 
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           Figure 4.3. Halved and Runge – Kutta increments 

 

 

4.4.  Iterative Procedures 

 

4.4.1. The Newton – Raphson Method 

 

 A sequence of analysis is repeated under the full unbalanced nodal nodes. Because 

we perform a linear analysis in each iteration, equilibrium is not necessarily satisfied 

between the given external loads and the calculated internal nodal forces. 

  Normally the linear iteration cycles for the compressive type (concave down) 

nonlinearity procedure deflections less than the true values. Therefore the internal strains 

and the resulting nodal forces will be less than the true values. Therefore the external loads 

will be larger than the internal loads. After each iteration the differences between the 

external loads and the internal calculated loads will be regarded as the unbalanced loads and 

these unbalanced loads will be used in the next step to compute in additional increment of 

displacements. This process will be repeated until the maximum unbalanced loads anywhere 

in the structure become less than a tolerable value. 

 The Newton – Raphson process is illustrated in Fig. 4.4. Initially the external loads 

are applied in the 1
st
 cycle of linear analysis 

       
10

0
ext

K D P                                                 (4.4) 



 
43 

 

 Strains at the centroid of each element are calculated by 

    
1 1

G d                                                        (4.5) 

 These strains are regarded as the initials strains  0
 for the subsequent step and 

therefore, the equivalent nodal forces  
0

P acting onto the elements are calculated 

corresponding to these initial strains from 

       
int,1 1

( )

v

P G D dV 
 

                                            (4.6) 

where, the material matrix is dependent on the state of stress of the previous cycle  

     1
( )

ep

i
D D D


                                                  (4.7) 

 These nodal forces are then superimposed at each node with those of the adjoining 

elements and a set of (fixed end reactions) internal nodal forces is obtained. The unbalanced 

nodal loads for the second cycle of analysis therefore, are 

     
,2 int,1unb ext

P P P 
 
                                              (4.8) 

 The next step is to modify the stiffness matrix of each element to accommodate the 

initial stresses and yielding conditions, if any. The new stiffness matrix is called the tangent 

stiffness matrix, which contains in it, the stresses of the previous cycle and the new material 

elastic constants. It is expected that the second cycle of linear analysis will proceed along 

the line B to C, tangent to the nonlinear force-deflection curve. 

 The closer the tangent stiffness matrix to the true value, faster is the convergence. 

But in each step there is a need for the calculation of a new tangent stiffness matrix. The 

total stresses and strains are obtained by superimposing algebraically the respective values 

of each cycle as; 

   
i

                                                           (4.9) 

   
i

                                                        (4.10) 
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                      Figure 4.4.  Newton – Raphson method 

 

4.4.2. The Modified Newton – Raphson Method 

 

 In order to avoid the need for calculating the tangent stiffness matrix in each step, a 

constant stiffness, equal to the initial stiffness Ki is used throughout the iteration, as 

illustrated in Fig.4.5. Normally the tangent stiffness requires to invert a matrix and 

complicated numerical integration techniques. Thus a considerable saving is achieved in 

computations of stiffness calculations, if the stiffness matrix is assumed to remain constant. 

But with the availability of explicit forms of tangent stiffness matrices, there is practically 

no necessity any more to employ the Modified Newton – Raphson Method. 

 The number of iteration cycles in the modified procedure is substantially more than 

the regular Newton – Raphson Method, because the stiffness matrices will no longer be 

tangent to the nonlinear force–deflection curve. 
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                    Figure 4.5. Modified Newton – Raphson method 

 

4.4.3. Mixed Procedure  

 

 In order to benefit from the advantages of both the incremental and iterative 

procedures, the step-iteration or the mixed procedure is utilized as illustrated in Fig.4.6. It 

minimizes the disadvantages of each procedure. 

 In each load increment, an iterative solution procedure is used. The computational 

efforts are increased, but a higher accuracy is obtained than the pure incremental or pure 

iterative methods.  

 

Figure 4.6.  Mixed procedure 
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4.5. LUSAS as a Package Program 

 

4.5.1. About LUSAS 

 

Finite element methods are commonly utilized in the world by lots of investigators 

and researchers from lots of departments such as, especially, civil engineering, mechanical 

engineering, aircraft engineering, dentistry, and biomedical engineering and so on…LUSAS 

is famous and familiar one of them. Therefore in the Chapter 5 and 6 the LUSAS is chosen 

as a package program in order to use and gain the nonlinear solutions from the test samples 

and the dome structure. As it is known that LUSAS is a computer program and so its 

mathematical calculations and the secrets, which are hidden behind the interface of the 

program, are very significant.  

 

4.5.2. Nonlinear Solution Procedure of LUSAS 

 

 For nonlinear analysis, since it is no longer possible to directly obtain a stress 

distribution which equilibrates a given set of external loads, a solution procedure is usually 

adopted in which the total required load is applied in a number of increments. 

 Within each increment a linear prediction of the nonlinear response is made, and 

subsequent iterative corrections are performed in order to restore equilibrium by the 

elimination of the residual or „out of balance‟ forces. 

 

Figure 4.7.  Nonlinear solution procedure of LUSAS 
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The iterative corrections are referred to some form of convergence criteria which 

indicates to what extent an equilibrate state has been achieved. Such a solution procedure 

is therefore commonly referred to as an incremental-iterative (or predictor-corrector) 

method shown in the figure above. In LUSAS, the nonlinear solution is based on the 

Newton-Raphson procedure. The details of the solution procedure are controlled using the 

Nonlinear Control properties assigned to load case. 

For the analysis of nonlinear problems, the solution procedure adopted may be of 

significance to the results obtained. In order to reduce this dependence, wherever possible, 

nonlinear control properties incorporate a series of generally applicable default settings, and 

automatically activated facilities.  

 

4.5.3. Iterative Procedure 

 

 In LUSAS the incremental-iterative solution is based on Newton-Raphson iterations. 

In the Newton-Raphson procedure an initial prediction of the incremental solution is based 

on the “tangent stiffness” from which incremental displacements and their iterative 

corrections may be derived. 

 

4.5.4. Standard Newton – Raphson Method 

 

 In the standard Newton-Raphson procedure each iterative calculation is always based 

upon the current tangent stiffness. For finite element analysis, this involves the formation 

(and factorization) of the tangent stiffness matrix at the start of each iteration. 

 Although the standard Newton-Raphson method generally converges rapidly, the 

continual manipulation of the stiffness matrix is often expensive. The need for a robust yet 

inexpensive procedure therefore leads to the development of the family of modified 

Newton-Raphson methods. 
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4.5.5. Iterative Acceleration (Line Searches) 

 

 A slow convergence rate may be significantly improved by employing an iterative 

acceleration technique. In cases of severe and often localized nonlinearity, encountered 

typically in materially nonlinear or contact problems, some form of acceleration may be a 

prerequisite to convergence. 

 In LUSAS, iterative acceleration may be performed by applying line searches. In 

essence, the line search procedure involves extra optimization iterations, in which the 

potential energy associated with the residual forces at each iterative step, are minimized. 

Line search application is controlled via parameters on the Iteration section of the Nonlinear 

Control properties. 

 The selection of line search parameters is problem dependent and largely a matter of 

experience. However, a maximum of 3 to 5 line search iterations with a tolerance of 0.3 to 

0.8 is usually sufficient. (The closer the tolerance is to unity, the more slack the minimum 

energy requirement) 

 

4.5.6. Separate Iterative Loops 

 

 In problems where both material and contact nonlinearities are present convergence 

difficulties can arise when evaluating material nonlinearities in configurations where the 

contact conditions are invalid because the solution is not in equilibrium. To avoid this 

situation contact equilibrium can be established using elastic properties from the previous 

load increment before the material nonlinearity is resolved.  The option to define separate 

iterative loops is defined on advanced solution strategy dialog which can be found on the 

nonlinear control form. 
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4.5.7. Incremental Procedure 

 

 For the Newton-Raphson solution procedures it is assumed that a displacement 

solution may be found for a given load increment and that, within each load increment, the 

load level remains constant. Such methods are therefore often referred to as constant load 

level incrementation procedures. For instance, in the analysis of the dome structure of the 

Chapter 6, the constant load level incrementation is chosen as 50.                  

 However, where limit points in the structural response are encountered (for example 

in the geometrically nonlinear case of snap-through failure) constant load level methods 

will, at best, fail to identify the load shedding portion of the curve and, at worst, fail to 

converge at all past the limit point. The solution of limit point problems therefore leads to 

the development of alternative methods, including displacement incrementation and 

constrained solution methods. 

 

4.5.8. Constrained solution methods (arc-length) 

 

Constrained methods differ from constant level methods in that the load level is not 

required to be constant within an increment. In fact the load and displacement levels are 

constrained to follow some pre-defined path. 

In LUSAS two forms of arc-length method have been implemented: 

 Crisfield‟s modified arc-length procedure in which the solution is constrained to lie 

on a spherical surface defined in displacement space. For the one degree of freedom 

case this becomes a circular arc. 

 Rheinboldt‟s arc-length algorithm which constrains the largest displacement 

increment (defined by the predictor) to remain constant for that particular increment. 

 The use of the arc-length method has the following advantages over constant load 

level methods: 

 Improved convergence characteristics 

 Ability to detect and negotiate limit points 
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  In LUSAS, control of arc-length solution procedures is via the Incrementation 

section of the Nonlinear Control properties. If required, the solution may be started under 

constant load control, and automatically switched to arc-length control based on a specified 

value of the current stiffness parameter (defined as the scaled inner product of displacements 

and loads). The required stiffness parameter for automatic conversion to arc-length control is 

input in the Incrementation section of Nonlinear Control properties. 

  Where limit points are encountered, LUSAS will automatically determine the sign of 

the next load increment by the sign of the determinant of the stiffness matrix. This is a 

reliable method in most cases; however, it will often fail in the vicinity of bifurcation points 

when negative eigenvalues may cause premature unloading. In such cases the load reversal 

criteria may be optionally changed to be dependent on the sign of the current stiffness 

parameter. This method is better at coping with bifurcation points, but will always fail when 

a snap-back situation is encountered.   

 

     Figure 4.8.  Arc – length method 

 

4.5.9. Automatic increment reduction 

 

  Where an increment has failed to converge within the specified maximum number of 

iterations it will be automatically reduced and re-applied. This will be repeated according to 

values specified in the step reduction section (Advanced dialog) until the maximum number 

of reductions has been tried. In a final attempt to achieve a solution the load increment is 

then increased to try and step over a difficult point in the analysis. If after this the solution 

has still failed to converge to the solution terminated. 
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5. EXAMPLE DOME STRUCTURES 

 

5.1. Types of Domes 

 

About the sorts of the dome shapes, it can be said that there are remarkably 4 types 

of dome shapes. These different dome shapes are generally used in everywhere. These are: 

 Schwedler Domes 

o With Diagonals  

o No Diagonals 

 Lattice Domes 

 Lamella Domes 

 Geodesic Domes 

According to the paper (Richter et al., 1975), the strength of these dome types are 

different in each other compared with their weight. This dome geometry comparison is that:  

Table 5.1.  General types of dome structures (Richter et al., 1975) 

 

DOME TYPES 

Schwedler Domes Lattice 

Domes 

Lamella 

Domes 

Geodesic 

Domes Diagonal No Diag. 

Dome Weight (kg) 4500 4500 4500 4500 4500 

Number of Nodes 61 61 61 61 61 

Maximum Unbalanced 

Load (kg/m
2
) 

205 90 147 205 293 

Relative Strength 70% 30% 50% 70% 100% 

Deflection with under 

the Unbalanced Load  
3.9 cm. 45 cm. 4.2 cm. 2.2 cm. 2.2 cm. 

All domes are the same overall size; that is, 30 meters in diameter and in a 

spherical radius and all are 43 meters high. 

All four are completely triangulated space-truss configurations. 
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 The geodesic dome type is commonly used in all over the world because of some 

advantages such as its high strength and light-weight property. But in this Thesis, the lattice 

dome shape is selected to research in Chapter 7. 

 

 

Figure 5.1.  Shapes of dome types 

 

 

5.2. Significant and Famous Dome Structures in the World 

 

 Until now lots of dome structures have been built in the world. Their materials 

consist of not only concrete but also steel. Some of them could succeed to be live into our 

era. Below is a list of buildings that have held the title of the largest dome compared with 

the held record times of the structures: 
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Table 5.2.  Largest domes with ranking to the time 

Dates Diameter Name Location Builders 

1stc.BC– 

19 BC 
21.5 m 

Temple of 

Mercury 
Baiae, Italy Roman Empire 

128–1436 43.4 m Pantheon Rome, Italy Roman Empire 

1436–1881 45 m The Duomo Florence, Italy City state of Florence 

1881–1902 
46.9 m 

Devonshire 

Royal Hospital 
Buxton, UK 

Cotton Famine Relief 

Fund 

1902–1913 
59.45 m 

West Baden 

Springs Hotel 

West Baden, 

Indiana, USA 
Lee Wiley Sinclair 

1913–1930 
65.0 m Centennial Hall 

Breslau, 

Poland 
Deutsches Reich 

1930–1957 
65.8 m 

Leipzig Market 

Hall 

Leipzig, 

Germany 
Deutsches Reich 

1957–1965 
109 m 

Belgrade Fair - 

Hall 1 

Belgrade, 

Serbia 
Belgrade Fair 

1965–1975 
195.5 m 

Reliant 

Astrodome 

Housto, Texas, 

USA 
H.A. Lott, Inc. 

1975–1992 
207 m 

Louisiana 

Superdome 

New Orleans, 

USA 

City State of New 

Orleans 

1992 –

present 
256.0 m Georgia Dome 

Atlanta, 

Georgia, USA 

Georgia World Congress 

Center Authority 

  

From the above table the Louisiana Superdome in New Orleans, USA was built from 

the structural steel frame and due to this property it is like our lattice dome structure which 

is searched in the Chapter 7. An aspect from its picture and some properties of the Louisiana 

Superdome are that: 
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Figure 5.2.  An aspect from the Louisiana Superdome 

  

Of course, a dome structure may have different kinds of the materials such as stone, 

concrete, masonry, wood, cast iron, steel and reinforced concrete and so on…Below is a list 

of buildings that have held the title of the largest dome in terms of their structure: 

 

Table 5.3.  Dome structures by their materials 

Material Diameter Name Location Builder 

Stone 
14.5 m Treasury - Atreus Mycenae, Greece City of Mycenae 

15.0 m Western Thermae Gerasa, Jordan Roman Empire 

Concrete 

6.52 m Stabiae Thermae Pompeii, Italy Roman Empire 

21.5 m Temple Mercury Baiae, Italy Roman Empire 

43.4 m Pantheon Rome, Italy Roman Empire 

Masonry 

11.5 m Red Hall Pergamon, Turkey Roman Empire 

23.85 m Zeus Temple Pergamon, Turkey Roman Empire 

24.15 m Rotunda – George Thessaloniki, Greece Roman Empire 

31.5 m Hagia Sophia Istanbul, Turkey Byzantine Empire 

45 m The Duomo Florence, Italy City of Florence 

Wood 

20.40 m Dome of the Rock Jerusalem, Israel Umayyad Empire 

36.0 m St. Blaise's Abbey St.Blaise, Germany Pierre M. d'Ixnard 

153.0 m Walkup Skydome 
Flagstaff, Arizona, 

USA 

Northern Arizona 

University 

Location:  1500 Sugar Bowl Drive, 

New Orleans, Louisiana  

Construction: $134 million (Initial) 

Cost:  $193 million (2005 repair) 

Architect: Curtis and Davis 

Capacity: Football:  72,968--------

Basketball:55,675                

Baseball:   63,525 

 

 

http://en.wikipedia.org/wiki/New_Orleans,_Louisiana
http://en.wikipedia.org/wiki/USD
http://en.wikipedia.org/wiki/USD
http://en.wikipedia.org/wiki/American_football
http://en.wikipedia.org/wiki/Basketball
http://en.wikipedia.org/wiki/Baseball
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Table 5.4.  Dome structures by their materials (Cont.) 

Material Diameter Name Location Builder 

Wood 

161.5 m Tacoma Dome 
Tacoma, 

Washington, USA 

City of Tacoma, 

WA 

163.4 m Superior Dome 
Marquette, 

Michigan, USA 

State of 

Mich./Northern 

Michigan Uni. 

Cast iron 29.0 m US Capitol dome 
Washington D.C., 

USA 
USA 

Steel 

 

59.45 m 
West Baden 

Springs Hotel 

West Bade, Indiana, 

USA 

Lee Wiley 

Sinclair 

195.5 m Relian Astrodome 
Houston, Texas, 

USA 
H.A. Lott, Inc. 

207 m 
Louisiana 

Superdome 
New Orleans, USA 

City State of New 

Orleans 

Reinforced 

Concrete 

65.0 m Centennial Hall Breslau, Poland Deutsches Reich 

65.8 m Leipzig Hall Leipzig, Germany Deutsches Reich 

100.6 m 
Palazzo dello 

Sport 
Rome, Italy 

1960 Summer 

Olympics 

121.9 m Assembly Hall 
Champaign, Illinois, 

USA 

Uni. of Illinois 

Urbana-

Champaign 

134.1 m Norfolk Scope 
Norfolk, Virginia, 

USA  
City of Norfolk 

201.0 m Kingdome 
Seattle, Washington, 

USA 

King County, 

Washington 

 

 If it is wanted that the famous steel dome structures, which are listed in Table 5.4., 

are shown from outside and inside: 

 



 
56 

 

 

Figure 5.3.  An aspect of the outside view of West Baden Springs Hotel 

 

 

 

Figure 5.4.  An aspect of the inside view of West Baden Springs Hotel 
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Figure 5.5.  An aspect of the inside view of Relian Astrodome 

 

 

 

 

Figure 5.6.  An aspect of the outside view of Relian Astrodome 
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6. TEST EXAMPLES 

 

6.1.    About the Test Examples 
 

 The aim of this Chapter of the Thesis is to test solution the skills of usage of the 

computer program (LUSAS) and to control with the exact solutions. Totally there are three 

different test samples and their separately solutions and errors or the similarity compared 

with the exact solutions by using the LUSAS as a package program in this Chapter.  

 

6.2. The First Illustrative Numerical Example 

 

 In this part of the test examples, the stability of the pin-connected two member arch 

system shown in Fig. 6.1 is investigated by using the computer program, LUSAS. And for 

this problem (two member arch system), the properties of the two member arch system are 

that:  

 

 

 

      Figure 6.1.  Two member arch system and the point load 
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 Figure 6.2.  Solution of two member arch system from LUSAS 
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6.3. The Second Illustrative Numerical Example 

 

 In this test example of a circular arch, with a concentrated load P acting at the 

crescent is shown in Fig. 6.4. is investigated by using the computer program, LUSAS. And 

for this problem (Non-linear Buckling of a Circular Arch), the properties of the circular arch 

system are that:  

 

 

   Figure 6.3.  Circular arch and the point load 

 

 

 

                    Figure 6.4. Solution of circular arch system from LUSAS 
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 Table 6.1.  Comparison of two different solutions 

 

Displacement Values From the LUSAS 

 

Directions Point 1 Point 3 Point 4 Point 6 (Top) 

X direction (ft.) 0 -0.3931 -0.2502 0 

Y direction (ft.) 0 0.1082 -0.0668 -0.9363 

Z direction (rad.) 0 0.0049 -0.1447 0 

 

Displacement Values From the Paper (Tezcan and Ovunc, 1966) 

 

Directions Point 1 Point 3 Point 4 Point 6 (Top) 

X direction (ft.) 0 -0.3902 -0.2394 0 

Y direction (ft.) 0 0.1094 -0.0520 -0.9083 

Z direction (rad.) 0 0.0050 -0.1412 0 

 

 

 

Figure 6.5.  Circular arch and the deformations of the joints (Tezcan and Ovunc, 1966) 
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6.4. The Third Illustrative Numerical Example 

 

 In this test example of a parabolic dome, which has a concentrated load P acting at its 

top point is shown in Fig. 6.7. is investigated by using the computer program, LUSAS. And 

for this problem (Non-linear Buckling of a Parabolic Dome), the properties of the circular 

arch system are that: 

 

 

Figure 6.6.  Parabolic dome and the point load (Tezcan and Ovunc, 1966) 

 

 

         Figure 6.7.  Solution of the parabolic dome system from LUSAS 
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 Table 6.2.  Comparison of two different solutions 

 

Displacement Values From the LUSAS 

 

Directions Point 3 Point 8 Point 9 Point 13 (Top) 

X direction (ft.) 0.3008 0,0074 0.0311 0 

Y direction (ft.) 0 0 0.0311 0 

Z direction (rad.) -0.1037 -0,5651 -0.4049 -0.8633 

 

Displacement Values From the Paper (Tezcan and Ovunc, 1966) 

 

Directions Point 3 Point 8 Point 9 Point 13 (Top) 

X direction (ft.) 0.3906 0.0799 0.0420 0 

Y direction (ft.) 0 0 0.0420 0 

Z direction (rad.) -0.0084 -0.3469 -0.2376 -0.5603 

 

 

6.5. The Fourth Illustrative Example 

 

 According to the book whose name is Theory of Elastic Stability, if an arch system is 

under a uniformly distributed load, for the buckling case the arch‟s critical load can be 

expressed by the formula below:  

 

4 3cr

EI
q

l
                                                          (6.1) 
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Figure 6.8.  Arch system with no hinges (Timoshenko et al., 1961) 

 

 

Table 6.3.  Values of the factor for the arch system (Timoshenko et al., 1961) 

h

l
 

No hinges 

4
  

One hinge 

4
  

Two hinges 

4
  

Three hinges 

4
  

0.1 60.7 33.8 28.5 22.5 

0.2 101 59 45.4 39.6 

0.3 115 ….. 46.5 46.5 

0.4 111 96 43.9 43.9 

0.5 97.4 ….. 38.4 38.4 

0.6 83.8 80 30.5 30.5 

0.8 59.1 59.1 20.0 20.0 

1.0 43.7 43.7 14.1 14.1 

 

 

In this test sample, the properties of the problem are that: 

 8    .h m  

20    .l m  

 

   

2

3 4

1            :1 1

1
1   . 1   0.0833  

12

Square
A m Cross sectional area x

I m m m



 

 



 
65 

 

 

   

 

4

6 2

6 2 4

4 33

0.4  ,         111

200 10    /

200 10    / 0 .0833  
111 231157.5    / .

20   
cr

h

l

E x kN m

x kN m mEI
q kN m

l m





   



   

 

 In this test example, the data are applied by using the computer program, LUSAS. 

According to the program, the load displacement graph is that: 

 

 

   Figure 6.9.  Solution of the parabolic arch system from LUSAS 
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7. NONLINEARITY OF A DOME AS A SPACE STRUCTURE 

 

7.1. About the Dome 

 

 This lattice dome structure is a kind of space structures whose elements are steel bars 

and have different sections. It is covered by using the flexi glass because of the strong and 

lightweight materials. Moreover all supports are pinned.  

  

 About the physical properties of the dome is that its height is exactly 30 m. The 

diameter of the dome is approximately 72 m. And so this structure is the largest dome in 

Turkey and it has a good place in the list of the largest domes in the world. 

 

To refer to the goal of using the dome is that it may be used for lots of different aims 

such as sports activities, concert and theater areas, cultural activities, great organizations, 

and botanic parks and so on… 

 

 

 

Figure 7.1.  An example for lattice dome structures, Panora Alış-Veriş Merkezi, Ankara 
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7.2. Plan View of the Lattice - Dome 

 

  

 

Figure 7.2.  Plan view of the lattice-dome 
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7.3. Modeling the Dome with LUSAS 

 

 

There are totally 620 members, and some of them form the groups in each other. So 

that there are 21 different member groups, and these groups have their own properties such 

as their length and sections…Moreover 353 points exist in this dome structure. And the 

orders of these coordinates of these points are that: 

 

 

Figure 7.3.  Rings and the nodes of the dome structure 
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Table 7.1.  Calculation of nodal coordinates 

Ring No. X-Coordinates Y-Coordinates 

1 4 cos
n

  4.sin
n

  

2 1
8 cos cos

n
   

33
8.cos sin

n
   

3 33 1
(2. ) cos

n
X X   

33 1
(2. ) sin

n
X X   

4 
33

65 97

97

(2. cos ) cos
cos

n

X
X  


  33

65 97

97

(2. cos ) sin
cos

n

X
X  


  

5 97 65
(2. ). cos

n
X X   

97 65
(2. ) sin

n
X X   

6 
97

129 161

161

(2. cos ) cos
cos

n

X
X  


  97

129 161

161

(2. cos ) sin
cos

n

X
X  


  

7 161 129
(2. ) cos

n
X X   

161 129
(2. ) sin

n
X X   

8 
161

193 225

225

(2. cos ) cos
cos

n

X
X  


  161

193 225

225

(2. cos ) sin
cos

n

X
X  


  

9 225 193
(2. ) cos

n
X X   

225 193
(2. ) sin

n
X X   

10 
225

257 289

289

(2. cos ) cos
cos

n

X
X  


  225

257 289

289

(2. cos ) sin
cos

n

X
X  


  

11                           

(for the support 

points) 

289 257
(2. ) cos

n
X X   

289 257
(2. ) sin

n
X X   

All 

Z-Coordinates 

2 25
30 ( )

216
n n

X Y   

                                   7.2.
n

Numerical value of angles for each node are supp lied in Table 
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Table 7.2.  Coordinates of all points of the dome 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Ring 

No:1 
Z1 = 29.62963 m. Ring 

No:7 
Z7 = 14.48508 m. 

1 0   39.99 (†)   0.00 (†)  193 0 61.87956 0 

2 11.25 39.91363 0.78036 194 11.25 61.38211 5.05070 

3 22.5 39.68601 1.53073 195 22.5 59.90887 9.90732 

4 33.75 39.31636 2.22228 196 33.75 57.51646 14.38319 

5 45 38.81892 2.82842 197 45 54.29683 18.30634 

6 56.25 38.21277 3.32587 198 56.25 50.37368 21.52597 

7 67.5 37.52122 3.69551 199 67.5 45.89781 23.91838 

8 78.75 36.77085 3.92314 200 78.75 41.04119 25.39162 

9 90 35.99049 4 201 90 35.99049 25.88907 

10 101.25 35.21012 3.92314 202 101.25 30.93978 25.39162 

11 112.5 34.45975 3.69551 203 112.5 26.08316 23.91838 

12 123.75 33.76820 3.32587 204 123.75 21.60729 21.52597 

13 135 33.16206 2.82842 205 135 17.68414 18.30634 

14 146.25 32.66461 2.22228 206 146.25 14.46451 14.38319 

15 157.5 32.29497 1.53073 207 157.5 12.07210 9.90732 

16 168.75 32.06734 0.78036 208 168.75 10.59886 5.05070 

17 180 31.99049 4.9E-16 209 180 10.10141 3.1E-15 

18 191.25 32.06734 -0.78036 210 191.25 10.59886 -5.05070 

19 202.5 32.29497 -1.53073 211 202.5 12.07210 -9.90732 

20 213.75 32.66461 -2.22228 212 213.75 14.46451 -14.38319 

21 225 33.16206 -2.82842 213 225 17.68414 -18.30634 

22 236.25 33.76820 -3.32587 214 236.25 21.60729 -21.52597 

23 247.5 34.45975 -3.69550 215 247.5 26.08316 -23.91838 

24 258.75 35.21012 -3.92314 216 258.75 30.93978 -25.39162 

25 270 35.99049 -4 217 270 35.99049 -25.88907 

26 281.25 36.77085 -3.92314 218 281.25 41.04119 -25.39162 

27 292.5 37.52122 -3.69553 219 292.5 45.89781 -23.91838 
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Table 7.2.  Coordinates of all points of the dome (Cont.) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

28 303.75 38.21277 -3.32587 220 303.75 50.37368 -21.52597 

29 315 38.81891 -2.82842 221 315 54.29683 -18.30634 

30 326.25 39.31636 -2.22228 222 326.25 57.51646 -14.38319 

31 337.5 39.68600 -1.53073 223 337.5 59.90887 -9.90732 

32 348.75 39.91363 -0.78036 224 348.75 61.38211 -5.05070 

Ring 

No:2 
Z2 = 28.53275 m. 

Ring 

No:8 
Z8 = 10.72465 m. 

33 5.625 43.91363 0.78036 225 5.625 64.70799 2.82842 

34 16.875 43.60914 2.31109 226 16.875 63.60439 8.37658 

35 28.125 43.01188 3.75301 227 28.125 61.43961 13.60283 

36 39.375 42.14479 5.05070 228 39.375 58.29683 18.30634 

37 50.625 41.04119 6.15430 229 50.625 54.29683 22.30634 

38 61.875 39.74350 7.02139 230 61.875 49.59332 25.44912 

39 73.125 38.30158 7.61865 231 73.125 44.36707 27.61390 

40 84.375 36.77085 7.92314 232 84.375 38.81891 28.71750 

41 95.625 35.21012 7.92314 233 95.625 33.16206 28.71750 

42 106.88 33.67939 7.61865 234 106.88 27.61390 27.61390 

43 118.13 32.23747 7.02139 235 118.13 22.38765 25.44912 

44 129.38 30.93978 6.15430 236 129.38 17.68414 22.30634 

45 140.63 29.83618 5.05070 237 140.63 13.68414 18.30634 

46 151.88 28.96909 3.75301 238 151.88 10.54136 13.60283 

47 163.13 28.37183 2.31109 239 163.13 8.37658 8.37658 

48 174.38 28.06734 0.78036 240 174.38 7.27298 2.82842 

49 185.63 28.06734 -0.78036 241 185.63 7.27298 -2.82842 

50 196.88 28.37183 -2.31109 242 196.88 8.37658 -8.37658 

51 208.13 28.96909 -3.75301 243 208.13 10.54136 -13.60283 

52 219.38 29.83618 -5.05070 244 219.38 13.68414 -18.30634 

53 230.63 30.93978 -6.15430 245 230.63 17.68414 -22.30634 

54 241.88 32.23747 -7.02139 246 241.88 22.38765 -25.44912 
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Table 7.2.  Coordinates of all points of the dome (Cont.) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

55 253.13 33.67939 -7.61865 247 253.13 27.61390 -27.61390 

56 264.38 35.21012 -7.92314 248 264.38 33.16206 -28.71750 

57 275.63 36.77085 -7.92314 249 275.63 38.81891 -28.71750 

58 286.88 38.30158 -7.61865 250 286.88 44.36707 -27.61390 

59 298.13 39.74350 -7.02139 251 298.13 49.59332 -25.44912 

60 309.38 41.04119 -6.15430 252 309.38 54.29683 -22.30634 

61 320.63 42.14479 -5.05070 253 320.63 58.29683 -18.30634 

62 331.88 43.01188 -3.75301 254 331.88 61.43961 -13.60283 

63 343.13 43.60914 -2.31109 255 343.13 63.60439 -8.376586 

64 354.38 43.91363 -0.78036 256 354.38 64.70799 -2.828427 

Ring 

No:3 
Z3 = 26.75151 m. 

Ring 

No:9 
Z9 = 6.96422 m. 

65 0 47.83677 0 257 0 67.53641 0 

66 11.25 47.60914 2.31109 258 11.25 66.93027 6.15430 

67 22.5 46.93502 4.53337 259 22.5 65.13512 12.07210 

68 33.75 45.84031 6.58144 260 33.75 62.21997 17.52597 

69 45 44.36707 8.37658 261 45 58.29683 22.30634 

70 56.25 42.57193 9.84982 262 56.25 53.51646 26.22948 

71 67.5 40.52386 10.94453 263 67.5 48.06259 29.14463 

72 78.75 38.30158 11.61865 264 78.75 42.14479 30.93978 

73 90 35.99049 11.84628 265 90 35.99049 31.54592 

74 101.25 33.67939 11.61865 266 101.25 29.83618 30.93978 

75 112.5 31.45711 10.94453 267 112.5 23.91838 29.14463 

76 123.75 29.40904 9.84982 268 123.75 18.46451 26.22948 

77 135 27.61390 8.37658 269 135 13.68414 22.30634 

78 146.25 26.14066 6.58144 270 146.25 9.76100 17.52597 

79 157.5 25.04595 4.53337 271 157.5 6.84585 12.07210 

80 168.75 24.37183 2.31109 272 168.75 5.05070 6.15430 

81 180 24.14420 1.4E-15 273 180 4.44456 3.8E-15 
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Table 7.2.  Coordinates of all points of the dome (Cont.) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

82 191.25 24.37183 -2.31109 274 191.25 5.05070 -6.15430 

83 202.5 25.04595 -4.53337 275 202.5 6.84585 -12.07210 

84 213.75 26.14066 -6.58144 276 213.75 9.76100 -17.52597 

85 225 27.61390 -8.37658 277 225 13.68414 -22.30634 

86 236.25 29.40904 -9.84982 278 236.25 18.46451 -26.22948 

87 247.5 31.45711 -10.94477 279 247.5 23.91838 -29.14463 

88 258.75 33.67939 -11.61865 280 258.75 29.83618 -30.93978 

89 270 35.99049 -11.84628 281 270 35.9904 -31.54592 

90 281.25 38.30158 -11.61865 282 281.25 42.14479 -30.93978 

91 292.5 40.52386 -10.94453 283 292.5 48.06259 -29.14463 

92 303.75 42.57193 -9.84982 284 303.75 53.51646 -26.22948 

93 315 44.36707 -8.37658 285 315 58.29683 -22.30634 

94 326.25 45.84031 -6.58144 286 326.25 62.21997 -17.52597 

95 337.5 46.93502 -4.53337 287 337.5 65.13512 -12.07210 

96 348.75 47.60914 -2.31109 288 348.75 66.93027 -6.15430 

Ring 

No:4 
Z4 = 24.35438 m. 

Ring 

No:10 
Z10 = 3.34829 m. 

97 5.625 51.53229 1.53073 289 5.625 69.75870 3.32587 

98 16.875 50.93502 4.53337 290 16.875 68.46100 9.84982 

99 28.125 49.76345 7.36180 291 28.125 65.91549 15.99524 

100 39.375 48.06259 9.90732 292 39.375 62.21997 21.52597 

101 50.625 45.89781 12.07210 293 50.625 57.51646 26.22948 

102 61.875 43.35229 13.77296 294 61.875 51.98573 29.92500 

103 73.125 40.52386 14.94453 295 73.125 45.84031 32.47051 

104 84.375 37.52122 15.54180 296 84.375 39.31636 33.76821 

105 95.625 34.45975 15.54180 297 95.625 32.66461 33.76821 

106 106.88 31.45711 14.94453 298 106.88 26.14066 32.47051 

107 118.13 28.62868 13.77296 299 118.13 19.99524 29.92500 

108 129.38 26.08316 12.07210 300 129.38 14.46451 26.22948 
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Table 7.2.  Coordinates of all points of the dome (Cont.) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

109 140.63 23.91838 9.90732 301 140.63 9.76100 21.52597 

110 151.88 22.21752 7.36180 302 151.88 6.06548 15.99524 

111 163.13 21.04595 4.53337 303 163.13 3.51997 9.84982 

112 174.38 20.44868 1.53073 304 174.38 2.22227 3.32587 

113 185.63 20.44868 -1.53073 305 185.63 2.22227 -3.32587 

114 196.88 21.04595 -4.53335 306 196.88 3.51997 -9.84982 

115 208.13 22.21752 -7.36180 307 208.13 6.06548 -15.99524 

116 219.38 23.91838 -9.90732 308 219.38 9.76100 -21.52597 

117 230.63 2608316 -12.07210 309 230.63 14.46451 -26.22948 

118 241.88 28.62868 -13.77296 310 241.88 19.99524 -29.92500 

119 253.13 31.45711 -14.94453 311 253.13 26.14066 -32.47051 

120 264.38 34.45975 -15.54180 312 264.38 32.66461 -33.76821 

121 275.63 37.52122 -15.54180 313 275.63 39.31636 -33.76821 

122 286.88 40.52386 -14.94453 314 286.88 45.84031 -32.47051 

123 298.13 43.35229 -13.77296 315 298.13 51.98573 -29.92500 

124 309.38 45.89781 -12.07210 316 309.38 57.51646 -26.22948 

125 320.63 48.06259 -9.90732 317 320.63 62.21997 -21.52597 

126 331.88 49.76345 -7.36180 318 331.88 65.91549 -15.99524 

127 343.13 50.93502 -4.53337 319 343.13 68.46100 -9.84982 

128 354.38 51.53229 -1.53073 320 354.38 69.75870 -3.32587 

Ring 

No:5 
Z5 = 21.43346 m. 

Ring 

No:11 
Z11 = 0 m.    (Support Points) 

129 0 55.22780 0 321 0 71.98098 0 

130 11.25 54.85816 3.75301 322 11.25 71.28943 7.02139 

131 22.5 53.76345 7.36180 323 22.5 69.24136 13.77296 

132 33.75 51.98573 10.68768 324 33.75 65.91549 19.99524 

133 45 49.59332 13.60283 325 45 61.43961 25.44912 

134 56.25 46.67817 15.99524 326 56.25 55.98573 29.92500 

135 67.5 43.35229 17.77296 327 67.5 49.76345 33.25087 
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Table 7.2.  Coordinates of all points of the dome (Cont.) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

136 78.75 39.74350 18.86767 328 78.75 43.01188 35.29894 

137 90 35.99049 19.23731 329 90 35.99049 35.99049 

138 101.25 32.23747 18.86767 330 101.25 28.96909 35.29894 

139 112.5 28.62868 17.77296 331 112.5 22.21752 33.25087 

140 123.75 25.30280 15.99524 332 123.75 15.99524 29.92500 

141 135 22.38765 13.60283 333 135 10.54136 25.44912 

142 146.25 19.99524 10.68768 334 146.25 6.06548 19.99524 

143 157.5 18.21752 7.36180 335 157.5 2.73961 13.77296 

144 168.75 17.12281 3.75301 336 168.75 0.69154 7.02139 

145 180 16.75317 2.3E-15 337 180 -1.5E-06 4.4E-15 

146 191.25 17.12281 -3.75301 338 191.25 0.69154 -7.02139 

147 202.5 18.21752 -7.36180 339 202.5 2.73961 -13.77296 

148 213.75 19.99524 -10.68768 340 213.75 6.06548 -19.99524 

149 225 22.38765 -13.60283 341 225 10.54136 -25.44912 

150 236.25 25.30280 -15.99524 342 236.25 15.99524 -29.92500 

151 247.5 28.62868 -17.77296 343 247.5 22.21752 -33.25087 

152 258.75 32.23747 -18.86767 344 258.75 28.96909 -35.29894 

153 270 35.99049 -19.23731 345 270 35.99049 -35.99049 

154 281.25 39.74350 -18.86767 346 281.25 43.01188 -35.29894 

155 292.5 43.35229 -17.77296 347 292.5 49.76345 -33.25087 

156 303.75 46.67817 -15.99524 348 303.75 55.98573 -29.92500 

157 315 49.59332 -13.60283 349 315 61.43961 -25.44912 

158 326.25 51.98573 -10.68768 350 326.25 65.91549 -19.99524 

159 337.5 53.76345 -7.36180 351 337.5 69.24136 -13.77296 

160 348.75 54.85816 -3.75301 352 348.75 71.28943 -7.021396 
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Table 7.2.  Coordinates of all points of the dome (Cont.) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Node 

No. 

Angle 

θ 
X (m) Y (m) 

Ring 

No:6 
Z6 = 18.10101 m. 

Ring 

No:6 
Z6 = 18.10101 m. 

161 5.625 58.55368 2.22228 177 185.63 13.42729 -2.22228 

162 16.875 57.68659 6.58144 178 196.88 14.29438 -6.58144 

163 28.125 55.98573 10.68768 179 208.13 15.99524 -10.68768 

164 39.375 53.51646 14.38319 180 219.38 18.46451 -14.38319 

165 50.625 50.37368 17.52597 181 230.63 21.60729 -17.52597 

166 61.875 46.67817 19.99524 182 241.88 25.30280 -19.99524 

167 73.125 42.57193 21.69610 183 253.13 29.40904 -21.69610 

168 84.375 38.21277 22.56319 184 264.38 33.76820 -22.56319 

169 95.625 33.76820 22.56319 185 275.63 38.21277 -22.56319 

170 106.88 29.40904 21.69610 186 286.88 42.57193 -21.69610 

171 118.13 25.30280 19.99524 187 298.13 46.67817 -19.99524 

172 129.38 21.60729 17.52597 188 309.38 50.37368 -17.52597 

173 140.63 18.46451 14.38319 189 320.63 53.51646 -14.38319 

174 151.88 15.99524 10.68768 190 331.88 55.98573 -10.68768 

175 163.13 14.29438 6.58144 191 343.13 57.68659 -6.58144 

176 174.38 13.42729 2.22228 192 354.38 58.55368 -2.22228 

Ring 

No:0 
Z0 = 30 m. 

 †  In reality 9 significant digits have been 

utilized for X and Y values in computer 

application. 353 -------- 0 0 
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To be necessary to explain the modeling briefly that a 3 dimensional nonlinear beam 

is selected as the element description in LUSAS. The number of mesh divisions is 4. This 

small value is used for this model. Because the smaller values and the bigger values are tried 

and it is easily seen that the 4 value is the optimum point for the number of mesh divisions. 

It means that the results of the analysis are same for the 4 and the bigger values. And in 

order to go to the exact solution in the smallest time by using the computer and so the 4 

value is selected. Moreover the sections of the steel bar elements are assigned. There are 

totally 21 different sections for the elements. These sections were determined according to 

the local buckling analysis of the all members. The bar elements are a isotropic material 

whose the young modulus is 200x10
6
 kN/m

2
. About the supports, all of them are assigned as 

a pinned support. Finally as a loading type, three different cases are used for this dome 

nonlinear analysis. The first one is vertical load case with snow and dead loads. The second 

one is about wind load with dead and live loads, and third loading case is combination of 

earthquake load with dead and live loads. This load cases are appropriate according to      

TS-500. 

 

 

7.4. Loading and Constraints 

 

 All of the supports are only pinned for this structure. Thus at the bottom of the dome 

there are totally 32 pinned supports. About the loadings, there are three kinds of load 

combination for this dome, and the first one consists of the dead load and the snow load as a 

live load. And the second load combination is constituted from the dead load and wind load 

as a live load. The third load combination is formed by the dead load and the earthquake 

load. As to the calculation of these load types, the TDY-2007 was used for the calculation of 

the equivalent static earthquake load. For the snow and wind forces on the stories (rings) of 

the dome structure, the TS-498 was used.  
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7.4.1. Application of TDY-2007 for the Structure 

 

 SAP-200 was used in order to get the periods of the modes of the dome structure. 

According to the analysis at the SAP-2000 package program, the period of the first mode is 

0.25 seconds. And so Tn = 0.25 sec. 

  

For the first seismic zone, A0 = 0.40  

 

Table 7.3.  Effective ground acceleration coefficient 

Seismic Zone A0 

1 0.40 

2 0.30 

3 0.20 

4 0.10 

 

 

 

 

For all of the local site class TA < Tn < TB  

 

Table 7.4.  Spectrum characteristic periods 

Local Site Class TA (sec.) TB (sec.) 

Z1 0.10 0.30 

Z2 0.15 0.40 

Z3 0.15 0.60 

Z4 0.20 0.90 

 

 

For the spectrum coefficient, S(T) = 2.5   (TA < Tn < TB) 
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For the building importance factor, I = 1.2 

 

Table 7.5.  Building importance factor 

Purpose of Occupancy or Type of Building 
Importance 

Factor (I) 

1. Building to be utilized after the earthquake and buildings 

containing hazardous materials 

    a) Buildings required to be utilized immediately after the 

kjhkiiearthquake (Hospitals, dispensaries, health wards, fire fighting 

kjhkjibuildings and facilities, PTT and other communication 

kjhkjifacilities, transportation stations and terminals, power 

kjhkjigeneration and distribution facilities; governorate, country and 

kjhkiimunicipality administration buildings, first aid and emergency 

kjhkiiplanning stations) 

    b)  Buildings containing or storing toxic, explosive and flammable 

kjhkiimaterials, etc. 

 

1.5 

2. Intensively and long-term occupied buildings and buildings 

preserving valuable goods 

    a) Schools, other educational buildings or facilities, dormitories 

kjikjhand hostels, military barracks, prisons, etc. 

    b)  Museums 

1.4 

3. Intensively but short-term occupied buildings 

    Sport facilities, cinema, theatre and concert halls, etc. 
1.2 

4. Other buildings 

    Buildings other than above defined buildings. (Residential and 

kiioffice buildings, hotels, building-like industrial structures, etc.) 

1.0 
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For the spectral acceleration coefficient,  

 

A(T) = A0 I S(T)                                                                                                      (7.1) 

A(T) = (0.40) (1.2) (2.5) 

A(T) = 1.2 

 

For the structural behavior factor, R = 5.6   (from UBC, for the steel ordinary braced frames) 

 

Ra(T) = R = 5.6 (Tn > TA) 

 

W = ∑ (wi) = ∑ (gi + n qi),   (n=30%, since snow load shall be considered as dead load)   (7.2) 

 

W = 23.99 + 92.45 + 180.31 + 274.41 + 375.43 + 488.49 + 592.54 + 672.84 + 

742.48+..….+ 803.30 + 828.13 = 5074.38 kN. 

 

Vt = W A(T1) / Ra(T1) ≥ (0.10) A0 I W                                                                   (7.3) 

 

 Vt = (5074.38) (1.2) / (5.6) ≥ (0.10) (0.40) (1.2) (5074.38) 

 

 Vt = 1087.37 ≥ 243.57    → Acceptable! 

  

Vt = ∆FN + ∑(Fi)                                                                                                      (7.4) 

  

 ∆FN = (0.07) T1 Vt ≤ (0.2) Vt                                                                                  (7.5) 

 

 ∆FN = (0.07) (0.25) (1087.37) ≤ (0.2) (1087.37) 

 

 ∆FN = 19.03 ≤ 217.47    → Acceptable! 

 

Fi = (Vt - ∆FN) (wiHi / ∑(wj Hj))                                                                            (7.6) 
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∑(wjHj)  = [(828.13).(3.35)] + [(803.3).(6.96)] + [(742.48).(10.72)] + 

….[(672.84).(14.49)] + [(592.54).(18.10)] + [(488.49).(21.43)] + 

….[(375.43).(24.35)] + [(274.41).(26.75)] + [(180.31).(28.53)] + 

….[(92.45).(29.63)] ….+ …[(23.99).(30)] 

 

∑(wjHj) =  2774.24 + 5590.97 + 7959.38 + 9749.45 + 10724.97 + 10468.34 + 

....9141.72 + 7340.47 + 5144.24 + 2739.29 + 719.70 

 

∑(wj Hj)  =  72352.77 

 

F10 = (1087.37 – 19.03) [(828.13) (3.35) / (72352.77)] 

F10 = 40.96 kN. 

 

F9 = (1087.37 – 19.03) [(803.3) (6.96) / (72352.77)] 

F9 = 82.56 kN. 

 

F8 = (1087.37 – 19.03) [(742.48) (10.72) / (72352.77)] 

F8 = 117.53 kN. 

 

F7 = (1087.37 – 19.03) [(672.84) (14.49) / (72352.77)] 

F7 = 143.96 kN. 

 

F6 = (1087.37 – 19.03) [(592.54) (18.10) / (72352.77)] 

F6 = 158.36 kN. 

 

F5 = (1087.37 – 19.03) [(488.49) (21.43) / (72352.77)] 

F5 = 154.57 kN. 

 

F4 = (1087.37 – 19.03) [(375.43) (24.35) / (72352.77)] 

F4 = 134.98 kN. 

 

F3 = (1087.37 – 19.03) [(274.41) (26.75) / (72352.77)] 

F3 = 108.39 kN. 
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F2 = (1087.37 – 19.03) [(180.31) (28.53) / (72352.77)] 

F2 = 75.96 kN. 

 

F1 = (1087.37 – 19.03) [(92.45) (29.63) / (72352.77)] 

F1 = 40.45 kN. 

 

F0(N) = (1087.37 – 19.03) [(23.99) (30) / (72352.77)] + 19.03 

F0(N) = 29.66 kN. 

 

 

Figure 7.4.  Dead and earthquake loads on the points of the dome 

 

 

7.4.2. Application of TS-498 for the Structure (For Wind Loads) 

 

 

About the Areas of the Points for the Wind and Snow Loads: 

 

The 3-D coordinates of all points of the dome are known. Thus the length of the 

members which start from a point to another point of the dome structure can be determined 

easily by using the formula below, 

 

2 2 2

1 2 1 2 1 2
( ) ( ) ( )L x x y y z z     

 
                                   (7.7) 
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Table 7.6.  The length and name of the elements 

ELEMENTS, E 
LENGTH 

(m) 
ELEMENTS, E 

LENGTH 

(m) 

From the Top Point to the 1. Ring 4.0171102 6. Ring-Horizontal 4.4445619 

1. Ring-Horizontal 0.7841371 From 6. Ring to 7. Ring 5.3921139 

From 1. Ring to 2. Ring 4.1476670 7. Ring-Horizontal 5.0751463 

2. Ring-Horizontal 1.5607226 From 7. Ring to 8. Ring 5.4900692 

From 2. Ring to 3. Ring 4.3786747 8. Ring-Horizontal 5.6568542 

3. Ring-Horizontal 2.3222774 From 8. Ring to 9. Ring 5.4900692 

From 3. Ring to 4. Ring 4.6632890 9. Ring-Horizontal 6.1840836 

4. Ring-Horizontal 3.0614675 From 9. Ring to 10. Ring 5.3921139 

From 4. Ring to 5. Ring 4.9529557 10. Ring-Horizontal 6.6517569 

5. Ring-Horizontal 3.7711739 From 10. Ring to the Bottom 5.2164261 

 

 

 

W = c.q,   (for the value of coefficient c, 0.8 + 0.4 is used.)                     (7.8) 

 

 

Table 7.7.  The speed and absorption values for wind loads 

Height (m) 
Speed of the wind 

(m/sec) 

Absorption(Pressure) 

q (kN/m
2
) 

Rings 

0-8 28 0.5 9,10 

9-20 36 0.8 6,7,8 

21-100 42 1.1 0,1,2,3,4,5 

>100 46 1.3 --- 
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The 3-D coordinates of all points of the dome structure and the angles between the 

earth surface and the triangular surface which is formed by the points of the dome structure 

are known. Thus the areas of these triangular surfaces can be determined easily. And of 

course, the wind loads and the snow loads depend on these areas. 

 

 

Figure 7.5.  Represented areas for all points of the dome 

 

 

To calculate the load areas, the formulas are that: 

For the Point 353: 

1 1

,353 2

1
32.( sin )

2 2 2

E E

L

L L
A                                              (7.9) 

 

For the Points on the Ring 1: 

2

2 2
2 21 2

3 44

, 2 2

43 1 2

2 4 2 2 2
)(

E

E

E EE

L n E

L
L

L LL
A L




                           (7.10) 
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For the Points on the Ring 2: 

2

2 4
2 23 2

66 1

, 4 22 2

2

5
43 1 12

sin
2 4 2 2 2 2 2

)(
E

E

EE E

L n E

E

L
L

L LL L
A L 




                 (7.11) 

 

For the Points on the Ring 3: 

2

2 6
2 2 2 25 2

8 7 8 3 44

, 6 2 2

4 2.3 1 2

2 4 2 2 2 2 2
)(

E

E

E E E E EE

L n E

L
L

L L L L LL
A L


 

             (7.12) 

 

For the Points on the Ring 4: 

2

2 8
2 2 2 27 2

10 9 10 6 5 6

, 8 2 2

4 43 1 2

2 4 2 2 2 2 2
)(

E

E

E E E E E E

L n E

L
L

L L L L L L
A L


 

            (7.13) 

 

For the Points on the Ring 5: 

2

2 10
2 22 29 2

8 7 812 11 12

, 10 2 2

443 1 2

2 4 2 2 2 2 2
)(

E

E

E E EE E E

L n E

L
L

L L LL L L
A L




           (7.14) 

 

For the Points on the Ring 6: 

2

2 12
2 2 2 211 2

13 14 10 9 1014

, 12 2 2

4 43 1 2

2 4 2 2 2 2 2
)(

E

E

E E E E EE

L n E

L
L

L L L L LL
A L


 

          (7.15) 
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 For the Points on the Ring 7: 

2

2 14
2 2 2 213 2

16 15 16 12 11 12

, 14 2 2

4 43 1 2

2 4 2 2 2 2 2
)(

E

E

E E E E E E

L n E

L
L

L L L L L L
A L


 

         (7.16) 

 

For the Points on the Ring 8: 

2

2 16
2 2 2 2 215 2

18 17 18 13 1414

, 16 2 2

4 43 1 2

2 4 2 2 2 2 2
)(

E

E

E E E E EE

L n E

L
L

L L L L LL
A L


 

         (7.17) 

 

For the Points on the Ring 9: 

2

2 18
2 2 2 217 2

20 19 20 16 15 16

, 18 2 2

4 43 1 2

2 4 2 2 2 2 2
)(

E

E

E E E E E E

L n E

L
L

L L L L L L
A L


 

         (7.18) 

 

For the Points on the Ring 10: 

2

2 20
2 22 219 2

18 17 1822 21 22

, 20 2 2

443 1 2

2 4 2 2 2 2 2
)(

E

E

E E EE E E

L n E

L
L

L L LL L L
A L




         (7.19) 
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To calculate the Wind Forces on each Load Areas: 

  

. .
Wind Load

F A c q                                                      (7.20) 

 

 

Table 7.8.  Wind loads for all points of the dome 

Points on the (Rings) 
Load Areas 

(m2) 

Wind Loads 

Pressure (kN)  

Wind Loads  

Suction (kN) 

353 (0) 6.2964130 5.540843 2.770422 

1---32 (1) 3.1459139 2.768404 1.384202 

33---64 (2) 6.3873964 5.620909 2.810454 

65---96 (3) 9.8337399 8.653691 4.326846 

97---128 (4) 13.4986369 11.87880 5.939400 

129---160 (5) 17.2553524 15.18471 7.592355 

161---192 (6) 20.8715000 13.35776 6.678880 

193---224 (7) 24.0524156 15.39355 7.696773 

224---256 (8) 26.4883880 16.95257 8.476284 

257---288 (9) 27.8968952 11.15876 5.579379 

289---320 (10) 28.0694219 11.22777 5.613884 
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7.4.3. Application of TS-498 for the Structure (For Snow Loads) 

 

 

 

Table 7.9. Snow pressures with respect to the altitudes and regions 

Altitude Regions 

m. I (kN/m
2
) II (kN/m

2
) III (kN/m

2
) IV (kN/m

2
) 

        ≤ 200 0.75 0.75 0.75 0.75 

300 0.75 0.75 0.75 0.80 

400 0.75 0.75 0.75 0.80 

500 0.75 0.75 0.75 0.85 

600 0.75 0.75 0.80 0.90 

700 0.75 0.75 0.85 0.95 

800 0.80 0.85 1.25 1.40 

900 0.80 0.95 1.30 1.50 

1000 0.80 1.05 1.35 1.60 

>1000 
110% of the loads at the 1000 m. altitude,               < 1500 m. altitude 

115% of the loads at the 1000 m. altitude,               > 1500 m. altitude 

 

For example; 

The regions: IV 

The altitude = 950 m. 

Then PSnow = 1.50 kN/m
2 

 

To calculate the Snow Forces on each Load Areas: 

   2 2
1.50 /

Snow Load
F A m kN m                                          (7.21) 
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Table 7.10.  Snow loads for all points of the dome 

Points on the 

(Rings) 

Load Areas  

(m
2
) 

Snow Loads 

(kN) 

353 (0) 12.5928261 18.889 

1---32 (1) 3.1459139 4.719 

33---64 (2) 6.3873964 9.581 

65---96 (3) 9.8337399 14.751 

97---128 (4) 13.4986370 20.248 

129---160 (5) 17.2553525 25.883 

161---192 (6) 20.8715000 31.307 

193---224 (7) 24.0524155 36.079 

224---256 (8) 26.4883880 39.733 

257---288 (9) 27.8968952 41.845 

289---320 (10) 28.0694219 42.104 

 

 

 

Figure 7.6.  Dead and snow loads on the points of the dome 

 

There is a steel plate at the top point of the dome in order to facilitate to get the 

connections each other of the totally 32 members at the top. Thus the steel mass and weight 

at the top point of the dome is much more with respect to the other points of the other rings 
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of the dome. According to the calculations, the weight of the top point is approximately 

35.99 kN. as easily seen from the Table 7.11.  

To calculate the weight of steel members in terms of the length of the members: 

For the Point 353: 

 3
 7900  / .

s
d kg m  

 = 0.75 .          (          ,                           )
sp sp

R m At the top point there is a steel plate whose radius is R  

 0.20  .          (          ,                            )
sp sp

t m At the top point there is a steel plate whose th ickness is t  

 

2

1 1
32. ( ).

1000

sp sp s E E sp

S

R t d g M L R g
W

  
                                   (7.22) 

  35.99  .
S

W kN
 

 

 

Table 7.11.  Formulas to calculate the steel weights 

Ring No. Node No. Weight of the Steel Members 

0 353 

2

1 1
32. ( ).

1000

sp sp s E E sp

S

R t d g M L R g
W

  
  

 

1 [1, 32] 

1 1

2 2 3 3
2

1000

E E

E E E E

s

M L
g M L M L

W

 
  

 
  

 

2 [32, 64] 

3 3 4 4 5 5
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

3 [65, 96] 

5 5 6 6 7 7
( )

1000

E E E E E E

s

g M L M L M L
W

 
  
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Table 7.11.  Formulas to calculate the steel weights (Cont.) 

Ring No. Node No. Weight of the Steel Members 

4 [97, 128] 

7 7 8 8 9 9
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

5 [129, 160] 

9 9 10 10 11 11
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

6 [161, 192] 

11 11 12 12 13 13
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

7 [193, 224] 

13 13 14 14 15 15
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

8 [225, 256] 

15 15 16 16 17 17
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

9 [257, 288] 

17 17 18 18 19 19
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

10 [289, 320] 

19 19 20 20 21 21
( )

1000

E E E E E E

s

g M L M L M L
W

 
  

 

 

 

 

To calculate the weight of flexi-glass materials: 

3
1.18   /  ,           0.01   .

fgls fgls
d gr cm t m   

 
,fgls fgls L n fgls

W d gA t
                                                  (7.23)
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Table 7.12.  Total mass and weight for the points due to the materials 

Points on the 

(Rings) 

Steel-mass 

(ton) 
WSteel (kN) Wflexigl (kN) 

Load Areas 

(m
2
) 

Total Vertical 

Dead Load     

(kN) 

353 (0) 3.669 35.991656 1.4577204 12.5928261 37.4493764 

1---32 (1) 0.066 0.6447955 0.3641647 3.1459139 1.0089602 

33---64 (2) 0.116 1.1337165 0.7393922 6.3873964 1.8731088 

65---96 (3) 0.151 1.4776854 1.1383341 9.8337399 2.6160195 

97---128 (4) 0.208 2.0433865 1.5625752 13.4986370 3.6059617 

129---160 (5) 0.306 2.9974853 1.9974451 17.2553525 4.9949304 

161---192 (6) 0.367 3.6001670 2.4160431 20.8715000 6.0162101 

193---224 (7) 0.404 3.9611402 2.7842595 24.0524155 6.7453997 

224---256 (8) 0.462 4.5350939 3.0662428 26.4883880 7.6013367 

257---288 (9) 0.558 5.4757674 3.2292888 27.8968952 8.7050562 

289---320 (10) 0.631 6.1926233 3.2492601 28.0694219 9.4418834 

 

 

 If we want to calculate the cost of the total materials, we should know the amount of 

the total material which is used for the structure. Thus the total amount of all material is 

equal to the 32 times with the mass for any point. Because there are equivalent 32 nodes in 

every ring of the dome structure except the top point of the structure. 
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Table 7.13.  Total weights for the rings due to the materials 

Ring 

Number 

Steel-mass 

(ton) 
WSteel (kN) 

Flexigl-mass 

(ton) 

Wflexigl 

(kN) 

Total Mass 

(ton) 

Total 

Vertical 

Dead Load 

(kN) 

0 3.66887 35.991656 0.148595 1.4577204 3.8175 37.4493764 

1 2.10331 20.6334553 1.187897 11.65327038 3.2912 32.2867256 

2 3.69816 36.2789296 2.411881 23.66055142 6.1100 59.9394810 

3 4.82018 47.2859332 3.713220 36.42668994 8.5334 83.7126231 

4 6.66548 65.3883687 5.097085 50.00240695 11.7626 115.3907756 

5 9.77773 95.9195291 6.515621 63.91824285 16.2934 159.8377720 

6 11.7437 115.205344 7.881078 77.31337925 19.6247 192.5187232 

7 12.9212 126.756485 9.082192 89.09630461 22.0033 215.8527900 

8 14.7934 145.123006 10.00202 98.11977011 24.7954 243.2427759 

9 17.8618 175.224556 10.53387 103.3372413 28.3957 278.5617971 

10 20.2002 198.163945 10.59901 103.9763247 30.7992 302.1402694 

TOTAL 108.254 1061.971208 67.17247 658.9621 175.4264 1720.93311 

Cost 
 205000 

TL. 
----- 

 220000    

TL. 
----- 

 425000 

TL. 
----- 

 

7.4.4. A Single Point Load at the Top Point of the Dome 

 

 

Figure 7.7.  Single point load at the top point of the dome 
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7.5. Nonlinear Solutions for Each Load Case 

 

7.5.1. Nonlinear Behavior of a Critical Point for a Single Point Load at the Top Point 

 

 

Figure 7.7.  Force vs displacement curve under the single point load at the top point 

 

 

7.5.2. Nonlinear Behavior of a Critical Point for the Dead + Snow Loads 

 

 

 Figure 7.9. Force vs displacement curve under the dead load and the snow load 
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7.5.3. Nonlinear Behavior of a Critical Point for the Vertical + Earthquake Loads 

 

 

      Figure 7.9.  Force vs displacement curve under the vertical and earthquake loads 

 

 

7.5.4. Nonlinear Behavior of a Critical Point for the Vertical + Wind Loads 

 

 

 

Figure 7.10.  Force vs displacement curve under the vertical load and the wind load 
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7.6. Local Buckling Control 

 

7.6.1. Axial Forces of the Members for a Single Point Load at the Top Point 

 

Table 7.14. Section of the members and critical loads under the single point load 

Members 
Length 

(m) 

Diameter 

(mm) 

Thickness 

(mm) 

PCR 

LOAD 

(kN) 

PCR From LUSAS 

(when P =91.88 kN) 
Ratio 

353---001 4.017 88.9 4 28.746          25.950 (max.) 9.7% 

001---002 0.784 60.3 5 86.855          75.462 (max.) 13.1% 

001---033 4.148 76.1 5 33.131 5.794 82.5% 

033---034 1.561 76.1 5 89.497 24.700 72.4% 

033---065 4.379 88.9 5 64.374 3.608 94.4% 

065---066 2.322 88.9 6 103.545 10.378 90% 

065---097 4.663 114.3 5 56.926 2.806 95,1% 

097---098 3.062 114.3 5 111.697 5.817 94.8% 

097---129 4.953 114.3 6 77.664 2.437 96.9% 

129---130 3.771 114.3 6 132.060 4.029 96.9% 

129---161 5.206 127 8 96.999 2.236 97.7% 

161---162 4.444 127 5 134.721 2.984 97.8% 

161---193 5.392 133 8 122.723 2.133 98.3% 

193---194 5.075 127 5 144.497 2.488 98.3% 

193---225 5.490 159 6.3 139.062 2.085 98.5% 

225---226 5.657 127 5 166.683 2.180 98.7% 

225---257 5.490 159 8 175.624 2.082 98.8% 

257---258 6.184 127 5 137.651 1.972 98.6% 

257---289 5.392 168.3 10 260.196 2.127 99.2% 

289---290 6.652 127 5 120.310 1.530 98.7% 

289---321 5.216 168.3 11 295.531 2.256 99.2% 
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Figure 7.12. Axial force diagrams of the members under the single point load 

  

7.6.2. Axial Forces of the Members for the Dead + Snow Loads 

 

Table 7.15. Section of the members and critical loads under the dead and snow loads 

Members 
Length     

(m) 

Diameter 

(mm) 

Thickness 

(mm) 

PCR 

LOAD 

(kN) 

PCR From LUSAS      

(kN) 
Ratio 

353---001 4.017 88.9 4 28.746 14.067 51.1% 

001---002 0.784 60.3 5 86.855 62.613 27.9% 

001---033 4.148 76.1 5 33.131 13.883 58.1% 

033---034 1.561 76.1 5 89.497 76.378 (max.) 14.7% 

033---065 4.379 88.9 5 64.374 23.816 63% 

065---066 2.322 88.9 6 103.545 85.648 (max.) 17.3% 

065---097 4.663 114.3 5 56.926 37.434 34.2% 

097---098 3.062 114.3 5 111.697 88.256 (max.) 21% 

097---129 4.953 114.3 6 77.664 55.150 29% 

129---130 3.771 114.3 6 132.060 80.330 39.2% 

129---161 5.206 127 8 96.999 76.198 21.4% 

161---162 4.444 127 5 134.721 73.754 45.3% 

161---193 5.392 133 8 122.723 102.714 (max.) 16.3% 
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Table 7.15. Section of the members and critical loads under the dead and snow loads (Cont) 

Members 
Length     

(m) 

Diameter 

(mm) 

Thickness 

(mm) 

PCR 

LOAD 

(kN) 

PCR From LUSAS      

(kN) 
Ratio 

193---194 5.075 127 5 144.497 58.277 59.7% 

193---225 5.490 159 6.3 139.062 134.146 (max.) 3.5% 

225---226 5.657 127 5 166.683 35.307 78.8% 

225---257 5.490 159 8 175.624 171.145 (max.) 2.6% 

257---258 6.184 127 5 137.651 12.855 90.7% 

257---289 5.392 168.3 10 260.196 214.999 (max.) 17.4% 

289---290 6.652 127 5 120.310 29.851 75.2% 

289---321 5.216 168.3 11 295.531 268.618 (max.) 9.1% 

 

 

 

 

 

Figure 7.13. Axial force diagrams of the members under the dead and the snow loads 
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7.6.3. Axial Forces of the Members for the Dead + Earthquake Loads 

 

 

Table 7.16. Section of the members and critical loads under the dead and earthquake loads 

MEMBERS 
LENGTH     

(m) 

DIAMETER 

(mm) 

THICKNESS 

(mm) 

PCR 

LOAD   

(kN) 

PCR  

From 

LUSAS 

(kN) 

Ratio 

353---001 4.017 88.9 4 28.746 8.159 71.6% 

001---002 0.784 60.3 5 86.855 13.436 84.5% 

001---033 4.148 88.9 5 33.131 10.968 66.9% 

033---034 1.561 76.1 5 89.497 30.509 65.9% 

033---065 4.379 114.3 5 64.374 18.906 70.6% 

065---066 2.322 88.9 6 103.545 39.505 61.8% 

065---097 4.663 114.3 5 56.926 27.623 51.5% 

097---098 3.062 114.3 5 111.697 44.645 60% 

097---129 4.953 114.3 8 77.664 37.365 51.9% 

129---130 3.771 114.3 8 132.060 52.002 60.6% 

129---161 5.206 127 8 96.999 48.538 50% 

161---162 4.444 127 8 134.721 52.138 61.3% 

161---193 5.392 139.7 8 122.723 59.714 51.3% 

193---194 5.075 141.3 8 144.497 47.502 67.1% 

193---225 5.490 159 6.3 139.062 70.354 49.4% 

225---226 5.657 159 8 166.683 41.894 74.9% 

225---257 5.490 159 8 175.624 80.864 54% 

257---258 6.184 159 8 137.651 32.659 76.3% 

257---289 5.392 168.3 10 260.196 91.557 64.8% 

289---290 6.652 159 8 120.310 18.920 84.3% 

289---321 5.216 168.3 11 295.531 103.886 64.8% 
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Figure 7.14. Axial force diagrams of the members under the dead and the earthquake loads 

 

 

7.6.4. Axial Forces of the Members for the Dead + Wind Loads 

 

Table 7.17. Section of the members and critical loads under the dead and wind loads  

Members 
Length     

(m) 

Diameter 

(mm) 

Thickness 

(mm) 

PCR 

LOAD 

(kN) 

PCR From 

LUSAS 

(kN) 

Ratio 

353---001 4.017 88.9 4 28.746 17.365 39.6% 

001---002 0.784 60.3 5 86.855 22.415 74.2% 

001---033 4.148 88.9 5 33.131   23.526 (max.) 29% 

033---034 1.561 76.1 5 89.497 45.729 48.9% 

033---065 4.379 114.3 5 64.374   40.969 (max.) 36.4% 

065---066 2.322 88.9 6 103.545 55.515 46.4% 

065---097 4.663 114.3 5 56.926  45.804 (max.) 19.5% 

097---098 3.062 114.3 5 111.697 77.025 31% 

097---129 4.953 114.3 8 77.664  59.807 (max.) 23% 

129---130 3.771 114.3 8 132.060 102.678 (max.) 22.2% 

129---161 5.206 127 8 96.999  76.798 (max.) 20.8% 
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Table 7.17. Section of the members and critical loads under the dead and wind loads (Cont) 

Members 
Length     

(m) 

Diameter 

(mm) 

Thickness 

(mm) 

PCR 

LOAD 

(kN) 

PCR From 

LUSAS 

(kN) 

Ratio 

161---162 4.444 127 8 134.721 100.646 (max.) 25.3% 

161---193 5.392 139.7 8 122.723 92.423 24.7% 

193---194 5.075 141.3 8 144.497 110.709 (max.) 23.4% 

193---225 5.490 159 6.3 139.062 108.958 21.6% 

225---226 5.657 159 8 166.683 121.179 (max.) 27.3% 

225---257 5.490 159 8 175.624 128.469 26.8% 

257---258 6.184 159 8 137.651  98.062 (max.) 28.8% 

257---289 5.392 168.3 10 260.196 149.906 42.4% 

289---290 6.652 159 8 120.310  83.612 (max.) 30.5% 

289---321 5.216 168.3 11 295.531 160.526 45.7% 

 

 

 

 

 

Figure 7.15. Axial force diagrams of the members under the dead and the wind loads 
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Table 7.18. Sections and properties of the members 

ELEMENTS, E 

 

Outer 

Diameter 

(mm) 

 

Wall 

Thickness 

(mm) 

Unit 

Mass, 

M 

(kg/m) 

Cross 

Sectional 

Area 

(cm
2
) 

Moment 

of 

Inertia, I  

(cm
4
) 

Radius of 

Gyration, 

i        

(cm) 

From the Top Nodes        

to the 1. Ring 
88.9 4 8.4 10.7 96.3 3.0 

1. Ring-Horizontal 60.3 5 6.8 8.7 33.5 2.0 

From 1. Ring to 2. Ring 88.9 5 10.3 13.2 116.4 3.0 

2. Ring-Horizontal 76.1 5 8.8 11.2 70.9 2.5 

From 2. Ring to 3. Ring 114.3 5 13.5 17.2 256.9 3.9 

3. Ring-Horizontal 88.9 6 12.3 15.6 134.9 2.9 

From 3. Ring to 4. Ring 114.3 5 13.5 17.2 256.9 3.9 

4. Ring-Horizontal 114.3 5 13.5 17.2 256.9 3.9 

From 4. Ring to 5. Ring 114.3 8 21 26.7 379.5 3.8 

5. Ring-Horizontal 114.3 8 21 26.7 379.5 3.8 

From 5. Ring to 6. Ring 127 8 23.5 29.9 531.8 4.2 

6. Ring-Horizontal 127 8 23.5 29.9 531.8 4.2 

From 6. Ring to 7. Ring 139.7 8 26 33.1 720.3 4.7 

7. Ring-Horizontal 141.3 8 26.3 33.5 746.8 4.7 

From 7. Ring to 8. Ring 159 6.3 23.7 30.2 882.4 5.4 

8. Ring-Horizontal 159 8 29.8 38 1084.7 5.3 

From 8. Ring to 9. Ring 159 8 29.8 38 1084.7 5.3 

9. Ring-Horizontal 159 8 29.8 38 1084.7 5.3 

From 9. Ring               

to 10. Ring 
168.3 10 39 49.7 1564 5.6 

10. Ring-Horizontal 159 8 29.8 38 1084.7 5.3 

From 10. Ring               

to the Bottom 
168.3 11 42.7 54.4 1689.5 5.6 
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7.7. Surface Cover of the Dome 

 

For this lattice dome, flexi-glass material is selected as the surface coverage of the 

dome due to some important advantages. Some significant properties are listed below: 

 It is a kind of thermoplastic material. 

 It is produced generally as a transparent material. Ratio of transparency is equal to 

the ratio of the transparency of glass material. 

 Thickness of the material changes generally from 2 mm. to 40 mm. 

 Strength of the material is 6 times better than the strength of the glass material.  

 Heat conductivity is 20% times less than the glass material.  

 It can be adjusted to some different types of the climate. 

 Density = 1.18 gr. / cm
3
. 

But some areas may be weak because of the effect of the wind loads or snow loads. 

Since the largest areas of these areas are approximately 28 m
2
. In order to decrease this area, 

it should be divided 4 triangle areas. Therefore its area will decrease to approximately 7 m
2
, 

and this flexi glass material will be stronger against the loads.  
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8. CONCLUSIONS AND RECOMMENDATIONS 

 

In light of the overview of this Thesis, the stability of steel dome structures is 

investigated by considering the nonlinear behavior under some compressive forces. So 

according to this Thesis, a few concluding remarks and recommendations may be expressed 

as follows: 

 The updated tangent stiffness matrices of bar elements for a two or three dimensional 

system provide extreme convenience in achieving high speed for iterative nonlinear 

computations. 

 The incremental and iterative procedures such as Newton – Raphson Method, 

Modified Newton –Raphson Method, and mixed procedures provide very accurate 

and speedy solutions for a wide range of geometrically and materially nonlinear 

problems. 

 The iterative procedures appear to be very effective and efficient in solving the 

geometrically nonlinear problems, while the incremental loading procedures 

contribute themselves ideally suitable for the material nonlinearity. What is more, the 

results appear to be more exact when iterative solutions are used, while the 

incremental methods contain accumulative errors. Furthermore, the mixed 

procedures can produce the most accurate results, and because of this reason most of 

the computer programs utilize this particular procedure. 

 While solving nonlinear test problems and also during the analyses of the space 

dome, it is observed that the LUSAS package program is a very efficient, user 

friendly and versatile software. 

 The structural behavior of the spherical dome composed of steel pipe sections has 

been investigated under a variety of load combinations including dead loads, wind 

loads, snow loads, and statically equivalent earthquake loads. Additionally, it is 

recommended that the dome should be also analyzed under time history earthquake 

loads in future studies. 

 For stability of the dome structures, the general and local buckling states control the 

design. The outputs of LUSAS should be compared with the critical loads calculated 

by mathematical formulas on the slenderness ratio of bar elements. 
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 While investigating the relative degree of nonlinearity for vertical and horizontal 

loads, it has been discovered that the degree of nonlinearity under horizontal loads is 

much smaller. 

 The pin support conditions have been used in this Thesis, however the fixed support 

conditions should be investigated in the future studies. Elevated base ring situation is 

another option on dome structures that may be considered as an alternate design. 

Finally, it is also suggested that the effects of temperature changes of the steel 

structure should be also investigated in future studies. 
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