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ABSTRACT

IMITATION OF HUMAN ARM MOVEMENTS BY A

HUMANOID ROBOT USING MONOCULAR VISION

A sociable robot must have the capability to imitate agents around it. In a human

society, people generally teach new skills to other people by demonstration. Hence, our

artificial partners should be able to learn from us by watching what we do.

In this thesis, we programmed a humanoid robot to imitate human arm move-

ments. The main problems we dealt with is the perception of the human arm movement

and finding a corresponding motor sequence that will make the robot’s movement as

much the same as human’s. We placed colored markers on the arm joints of the human

demonstrator for tracking the arm. The physical difference between the human and

the robot’s arms made it difficult to directly extract the necessary joint angles for the

robot. Instead, we employed a shared representation of movement which is neither the

joint values of the human nor the robot. We made our comparisons on that common

model.

We have conducted real world experiments where the robot watched a human

demonstrator drawing horizontal and vertical lines and circle on the board. The robot

successfully drew the lines and the circle.
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ÖZET

İNSAN KOL HAREKETLERİNİN BİR İNSANSI ROBOT

TARAFINDAN TEK KAMERA KULLANILARAK TAKLİT

EDİLMESİ

İnsan toplumunda becerileri bireyden bireye aktarmanın en önemli yollarından

biri taklittir. Robotların sosyalleşip insan toplumuna katılabilmesi için, etraflarındaki

diğer insan ve robotları taklit etme yeteneğine sahip olmaları gerekmektedir.

Bu çalışmada, bir insansı robotu insan kol hareketlerini taklit etmek üzere pro-

gramladık. Çözmemiz gereken başlıca problemler insan kol hareketlerinin tek kamera

aracılığıyla algılanması ve robotun bu hareketlere en benzer hareketleri yapabilmesi icin

gerekli olan kol eklem açılarını bulabilmekti. İnsan kol hareketini algılamak için kol

eklemlerine renkli belirleyiciler yerleştirdik ve bunları izledik. İnsan ve robot kolundaki

fiziksel farklar nedeniyle insan eklem açılarını birebir olarak robota aktarmak mümkün

olmadığından, her iki kol icin ortak bir temsil yöntemi bulmamız gerekti. Daha sonra

kollar arasındaki benzerliği bu model üzerinden karşılaştırabildik.

Yaptığımız üç gerçek dünya deneylerinde robot tahtaya dikey ve yatay çizgiler ve

de bir daire çizen bir göstericiyi izledi. Daha sonra robot çizgileri ve daireyi başarıyla

çizdi.
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1. INTRODUCTION

Imitation is an important way of skill transfer in biological agents. Many animals

imitate their parents in order to learn how to survive. It is also a way of social inter-

action. Imitative capabilities of the biological agents increase with the complexity of

the agent. It starts from simple mimicry to intention and goal-based imitation. The

most complicated form of imitation is observed in humans. This shows that imitation

requires higher mental capabilities.

A sociable robot must have the capability to imitate the agents around it. In a

human society, people generally teach new skills to other people by demonstration. We

do not learn to dance by programming, instead we see other dancers and try to imitate

them. Hence, our artificial partners should be able to learn from us by watching what

we do.

In this thesis, we programmed a humanoid robot to imitate human arm move-

ments. The main problems we dealt with is the perception of the human arm movement

and finding a corresponding motor sequence that will make robots movement as much

the same as human’s. The physical difference between the human and robot arms makes

the representation of the movement difficult. We employed a common representation

and made comparisons of the movements of two different arms on that representation.

The rest of the thesis is organized as follows: The denitions of the imitation

problem and solution methods discussed in the literature are given in Chapter 2. The

specications and limitations of our problem denition and the underlying hardware and

software platforms are detailed in Chapter 3. In Chapter 4, our methods and imple-

mentation details for the complete system are explained. In Chapter 5, experimental

results are given. In Chapter 6, the results are discussed and some possible future

works are pointed.
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2. BACKGROUND WORK

Imitation is a commonly observed behavior among the animals, especially the

ones with high cognitive skills such as dolphins [1] and great-apes, including human

beings. The reason behind biological imitation is that it is a powerful tool for the

transfer of knowledge between individuals.

Imitation is the ability of an agent (biological or artificial) to observe another

agent which we call demonstrator or model, and act like it. This is an open-ended

definition since “acting like” can be defined in many ways. If we consider the high level

behaviors, trying to achieve the same goal can be defined as acting like, no matter how

the goal is achieved. But if we consider lower level behaviors, acting like can mean

executing motor commands in a way as similar as possible, allowed by the difference

between the embodiments of agents.

Building a mixed robot-human society needs the robots to be able to adapt

themselves to the society. Imitation is the predominant mechanism of doing this. A

robot should observe the way humans and other robots act in a given context and act

in the same way.

Another benefit of imitation is that it dramatically reduces the search space of the

motor commands of an agent making a goal directed movement [2]. For an agent with

30 DOF, if a single joint command has only 3 possible values (increase, decrease, stand

still), there would be 330 > 1014 possible motor commands. Clearly it is impossible to

make a search among the members of such a large command set. However, if the agent

observes the action sequence of a demonstrator for doing the desired movement, and

finds its corresponding action sequence that looks like the demonstrator’s sequence,

it can fine tune the sequence according to its own body dynamics. Hence, the search

space will be reduced dramatically.

An example of search space reduction has been shown in an experiment where
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a 7 DOF robotic arm learns to balance an inverse pendulum by observing a human

demonstrator [2, 3]. The task is divided into two sub tasks, i.e, swinging the pendulum

up and balancing it on the upright position. In order to achieve these tasks, the robot

first learns its own model, the relation between its motor commands and the resulting

hand and pendulum position, while it tries to balance the pendulum by itself. Later on,

a metric is defined as the difference between the hand and the pendulum trajectories

of the robot and the human demonstrator. The robot tries to minimize this metric, as

it tries to make the pendulum. In five trials, the robot succeeds to bring the pendulum

up, and balance it on upright position.

2.1. Robot Imitation Problem

Imitation is a complex problem, and can be divided into smaller problems. Daut-

enhahn and Nehaniv [4] identify five subproblems: who, when, what and how to imitate,

and how to evaluate the success of imitation.

Biological agents employ imitation in order to acquire new skills, hence the imi-

tator should select the best demonstrator. In order to make the selection, the imitator

should examine the possible demonstrators and evaluate them with its own criteria.

Once the imitator finds a suitable demonstrator, it should decide on when to imitate

according to the time and place, in other words, the context. The imitator must also

decide on which behavior of the demonstrator is going to be imitated. Will the imi-

tator imitate only the goal of the demonstrator, or imitate in lower levels (subgoals,

action sequences etc.). After selecting who, when and what to imitate, the imitator

should use appropriate mechanisms to perform the imitation. This step is called the

“correspondence problem” in which the behavior of the demonstrator and the imitator

should look like to each other as much as they can, allowed by the differences in the

embodiments and the affordances of the agents. In order to evaluate the success of

the imitation, appropriate metrics must be defined to find the difference between the

desired and performed actions and states. This evaluation can be done by either the

imitator, the demonstrator or an external observer.
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2.2. The Correspondence Problem

The success of the imitation is directly determined by how good it solves the

correspondence problem. Nehaniv and Dauthenhahn [5] defines the correspondence

problem as:

Given an observed behavior of the model, which from a given starting state
leads the model through a sequence (or hierarchy) of subgoals in states, action
and/or effects, one must find and execute a sequence of actions using ones own
(possibly dissimilar) embodiment, which from a corresponding starting state,
leads through corresponding subgoals - in corresponding states, actions and/or
effects, while possibly responding to corresponding events.

The imitator has to find a relation between the states and actions of the demon-

strator and itself. Once this relation is found, the imitator can come to a corresponding

state with the demonstrator, by doing the corresponding actions always reach to cor-

responding states. This relation can be found in different granularities. If the imitator

finds a direct mapping of joint movements, it can mimic the demonstrators movement.

However, if it finds a relation between high level actions, it can make an emulation of

the demonstrator.

A good example of making correspondence using different granularities is given in

a chess world experiment [6]. In the experiment, there are three agents with dissimilar

embodiments and affordances, namely the Queen, Knight, and Bishop. The Queen is

chosen as the demonstrator, since it has the better movement capability, and the Knight

and Bishop are chosen as imitators. The Queen makes two consecutive movements, go

left and up by three squares for each. The imitators try to imitate Queen’s movement

with two different granularities; the end-point granularity, in which the imitators try to

go to the final destination of the Queen, ignoring the path the Queen had traveled, and

the path-level granularity in which the imitators try to follow the exact path the Queen

travels. When using end-point granularity, the bishop goes to the final destination in

a single move: going up-left diagonally by three squares. On the other hand, when it

uses path-level granularity, it makes zig-zags to make it’s path as much the same as

that of the Queen’s.
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2.2.1. Metrics for evaluating the success of correspondence

In order to evaluate the success of correspondence between the agents, three

different and complementary metrics have been proposed, namely state, action and

effect metrics [7]. The state metric evaluates the similarity between the body states

of the agents, where the action state evaluates the similarity between the changes of

states. If the agents have similar embodiment, these two metrics can be defined as:

µstate =
n∑

i=1

|sα
i − sβ

i | (2.1)

µaction =
n∑

i=1

|aα
i − aβ

i | (2.2)

where sα
i and aα

i are the state and action of the ith joint of agent α respectively and

n is the number of joints. Similarly sβ
i and aβ

i are the state and action of the ith joint

of the agent β. µstate and µaction are the similarity values of the states and actions of

agents α and β.

Whenever the agents have dissimilar embodiments, a correspondence matrix is

used to make a correspondence mapping. If the demonstrator has n DOFs and the

imitator has m DOFs, a n×m correspondence matrix can transform the state vector

of the demonstrator into a corresponding state vector which has the same size as the

state vector of the imitator. After the transformation, the action and state metrics

can be used as in equations 2.1 and 2.2. By defining the correspondence matrix, many

different mappings can be defined: identity, mirror, one-to-many etc. Clearly this

matrix can be obtained by various learning algorithms such as reinforcement learning,

and learning this matrix can be an interesting research problem.

The last metric proposed by the authors is the effect metric, which measures

the similarity of the results of the agents’ actions. If they are trying to manipulate an

object, the object’s position and orientation can be used as the effect matrix. Likewise,

if the agents are moving, their own positions can be used as effect metric.
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Depending on the granularity, a combination of these metrics can be used. For

example, if a robot dog is trying to imitate a humanoid robot playing soccer, then

there is no need to make a mapping between the bodies of the two robots, instead, a

mapping between their behaviors and goals can be made. In this case, the effect metric

gets the highest priority, whereas the state and action metrics have no importance. On

the other hand, a robot trying to imitate a human manipulating an object by his hand

should use all of the metrics.

2.2.2. Solutions to the Correspondence Problem

A generic imitation framework ALICE (Action Learning for Imitation via Cor-

respondence between Embodiments) [6, 8] has been proposed for the solution of the

correspondence problem. The framework creates a correspondence library that relates

the actions, states and effects of the demonstrator to the actions (or action sequences)

that the imitator is capable of. The library stores key-action sequence pairs where

the key is composed of perceptive and proprioceptive data. Whenever a perception is

received, the key is formed and its corresponding action sequences is searched in the

library. Since the perceptions are continuos values, it is impossible to find a perfect

match between any two keys. Instead, if the keys are close to each other with some

similarity, it is assumed that they match. This way, a kind of generalization is achieved.

There is a need for a generating mechanism that creates action sequences for a

given key, since the library initially does not contain any keys, and may need to be

updated when the context is changed. This generating mechanism is independent of

the framework, and can be anything like an inverse kinematics engine, or a random

generator, etc. Once the action sequence is generated by the generating mechanism,

it is compared with the sequence proposed by the library. If the one proposed by

the library is found to be better, the agent choses that action. Otherwise, the new

generated action is chosen and the library is updated.

The comparison of the proposed actions are done with a metric. The choice of

the metric also determines the level of imitation. If the metric compares the effects of
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actions, the imitation can be characterized as goal emulation, if it compares the actions

and states, the imitation looks more likely to mimicry. Although explicitly mentioned,

the metric should use a forward model which makes an internal simulation of the

proposed actions, since the actions are evaluated before they are executed. Forward

models are explained in section 2.4.1.

This framework has been tested in the chess world problem [8] and imitation

between simulated robotic arm manipulators [6]. In the robotic arm experiment, im-

itators with different embodiments have imitated a demonstrator. Although they all

have different DOFs and different arm lengths, it has been observed that the imitator

imitated the behavior of the demonstrator very accurately. Also the online change in

the embodiment of the imitators (which simulates the growth of a person) is handled by

the framework, and the system adapted itself to the changes. The authors claim that

this can be classified as a cultural transmission of behaviors between the individuals of

a society. But this social dimension of imitation is out of the scope of this thesis.

Although the ALICE framework targets the correspondence problem directly,

other proposed methods implicitly target the same problem. The computational models

proposed so far targets how the imitation is performed and how it is evaluated. The

social aspects of imitation such as choosing a good demonstrator, choosing when to

imitate, and what to imitate has been kept out of scope. The reader should keep this

in mind, while reading the other computational approaches.

2.3. Imitation from a Neuroscience Perspective: Mirror Neurons

Computer scientists should understand how biological agents imitate other agents,

before trying to make their own computational models for imitation. Since imitation

requires visual perception, mapping of visual representation to motor representation

and executing the final motor commands, the circuit starting from the visual cortex to

the primary motor cortex of the brain should be studied in detail. Neuroscientists are

trying to discover the properties of these cortices in the brains of humans and macaque

monkeys, which are the closest biological relative of humans. The investigations in
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monkeys are done in more detailed way since invasive methods can be used. Single

neuron activities in the monkey brain can be monitored by inserting electrodes in it.

On the other hand, experiments with humans are done with non-invasive methods such

as positron emission tomography (PET) and functional magnetic resonance imaging

(fMRI) techniques. The results of these experiments gives ideas only about the func-

tioning of a large group of neurons in the specific parts of the brain. Here, we will try

to explain the brain activity in the monkey brain and after that the hypothesis about

the human brain areas.

In order to understand the imitation in animals, one of the most important parts

of the monkey brain is the rostral part of the inferior premotor area 6, which is also

called area F5. This area is active during the planning and execution of hand and mouth

movements [9]. The premotor cortex is responsible for the high level descriptions of

motor acts, and control of proximal muscles. The execution of the selected motor act

is done in the primary motor cortex. The importance of area F5 comes from the fact

that it is directly connected to the visual area AIP, which extracts the affordances

of objects that are visually percepted. F5 is assumed to translate these affordances

coming from AIP in visual terms into appropriate motor terms [9, 10]. F5 neurons

show two very important characteristics. First they discharge selectively for specific

types of actions. Some neurons discharge during precision grip where only the thumb

and the index finger is used to grip a small object, while some others discharge during

a power grasp, where whole fingers and the palm of the hand is used to grasp a bigger

object. Secondly, there is a temporal relation between F5 neuron firings. Some of them

discharge during the whole grasping action, some are active during the opening of the

fingers, some are active during the contact of the fingers with the object etc. These

two properties may indicate that F5 neurons form a motor vocabulary, in which the

words of the vocabulary are populations of neurons [11, 10].

Murata et. al. [12] discovered that some of the F5 neurons also respond to visual

stimuli. These neurons, which are active during grasping an object are also active

when the object is only visually presented but not manipulated. These neurons are

called canonical neurons. The most important property of these neurons is that there



9

is a clear congruence between the motor acts and the visual properties they respond

to. The neurons which fire during a precision grip are also active when a small object

which can be manipulated with precision grip is observed, but they do not fire for

observing other objects. It can be proposed that these neurons are defining the objects

in motor terms.

Another type of neurons, called mirror neurons [11], was found in the premotor

cortex that respond to both visual and motor stimuli. Unlike canonical neurons, they

do not discharge when an agent observes an object. They discharge when an action

towards an object is perceived. Additionally, the action without object (mimicry)

does not make these neurons discharge. These neurons are also selective and show

congruence between the motor acts and the visual properties they respond to. There

are two types of neurons according to their congruency levels. Strictly congruent mirror

neurons respond to visual stimuli unless it is exactly the same as the motor stimuli

they respond to. For example if they fire when the monkey is performing precision

grip, they fire only if a precision grip of another agent is observed. On the other

hand, broadly congruent neurons do not need such a strict relationship between the

motor and visual stimuli. A strictly congruent neuron which fires when the monkey

is performing precision grip, may fire when any type of grip is observed. Finally, in

addition to visio-motor mirror neurons, audio-motor mirror neurons are also present

[13]. Besides responding to the observation of an action, they respond when the sound

of the action (for example ripping a paper) is heard.

Since we will investigate some computational models for imitation based on the

findings in neuroscience, we have to understand the hypothetical circuits on the monkey

brain. The mirror neurons in the monkey are primarily found in area F5. The input

to F5 mirror neurons are thought to be coming from Superior Temporal Sulcus (STS).

The importance of STS is that, the neurons in this area show the visual properties

of mirror neurons. They fire selectively when an action is perceived, but they do not

fire when the action is performed. It has been proposed that STS makes the first

identification of movements by getting input from the visual cortex [10].
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After the discovery of mirror neurons in macaque monkeys, experiments for de-

tecting these type of behavior in humans were conducted [14, 15]. It has been found

that there are mirror-like activities in the areas Brodmann 40 and 44 in the human

brain. The area Brodmann 44 is considered to be the human homologue of the mon-

key’s area F5. Additionally, this area covers some part of the Broca’s area, which is

responsible for speech generation.

There are some studies that show that the mirror neurons also help to understand

the intentions of other agents. Intention can be described as the high level goal of an

agent. For example, if an agent is reaching for a cup, its immediate goal is to grasp the

cup, but its high level goal may be to drink the tea in the cup or to clean the cup etc.

The clue for extracting the intention of the agent is the context in which the action

takes place. If the cup is full of hot tea, the intention is probably to drink tea. On the

other hand, if the cup is empty and dirty, the intention to grasp the cup is probably

cleaning it. Iacoboni et. al. [16] did experiments by showing grasping videos to the

subjects and recording their brain activity using fMRI. Three types of videos were

shown: context only, action only and action in context. The differences between the

signals collected in these three scenarios showed that there was a significant increase

in the signals emitted from the inferior frontal cortex, where the mirror neurons is

assumed to exist. The authors concluded that mirror neurons may help to extract the

intentions of the observed agent.

It is also proposed that people understand other people by simulating their emo-

tional states internally [17]. An experiment on emotional simulation was done by

Wicker et. al. [18]. The subjects observing facial expressions of other people showed a

mirror-like neural activity in their cortical regions which are responsible for emotion.

Furthermore, there are studies that show that there are less mirror-like neural activities

in the premotor areas of autistic children compared to the normal children’s [17, 19].

Autistic patients lacks the ability to understand other’s emotional state.
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2.4. Computational Approaches

2.4.1. Mental State Inference (MSI)

Inspired from the dual role of premotor cortex, a mental state inference method

has been proposed. The method uses the control mechanisms developed for the manual

manipulation to internally simulate the action of the demonstrator. This simulation

leads to the inference of the mental state of the demonstrator [20]. It has been tested

in a simulation environment, where a robotic arm tries to reach certain points on a

board, and the observer watching it in order to infer it’s mental state (the point which

the arm is aimed to reach).

The mechanism for the control of the agent is inspired from the brain and divided

as visual, parietal, premotor and primary motor cortices. The visual cortex process the

sensory input and extract visual features, and the parietal cortex uses these features

and current goal to calculate a control variable X (equation 2.6). If the goal is to

reach for a point, than the control variable becomes the distance between the point

and the tip of the manipulator. Then, the reaching goal can be defined to minimize

this distance. After the control variable is extracted, premotor cortex calculates the

difference between the desired and the current states of the control variable and tells

the primary motor cortex the desired change in the position of the hand (equation 2.4).

A copy of the command is given to a forward model FM and it calculates the effect

of the command for control, since the visual feedback of the command will be delayed

(equation 2.3). The primary motor cortex calculates the necessary motor commands,

and moves the arm (equation 2.5).
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Xn
j,pred = FMj(∆Θn−1

j , Xn−1
j,pred) (2.3)

∆Θn
j = MPj(X

n
j,pred, X

n−delay
j ) (2.4)

Θn+1
j = FD(DCj(∆Θn

j + Θn−1
j , Θn−1

j )) (2.5)

Xn+1
j = CVj(Θ

n+1
j ) (2.6)

In the mental state inference mode, visual and parietal cortices calculates the

control variable (which translated according to the observer), from the visual percep-

tion of the demonstrators action. The control variable is given to the premotor cortex,

and according to the estimated mental state of the demonstrator, a motor command

is produced. However, this command is not executed but instead, used by the for-

ward model to calculate the possible next state of the demonstrator. When the next

visual feedback about the demonstrator arrives, it’s compared with the estimation of

the forward model, and the estimated mental state of the demonstrator is updated

accordingly. This work has shown that the internal simulation of the demonstrator by

using the observer’s own control mechanisms can be used to extract the mental state

(intention) of the demonstrator.

Xn
i,observed = CVi(Actor) (2.7)

Mental simulation (m=1,...,n)

Xm
i,pred = FMi(∆Θm−1

i , Xm−1
i,pred) (2.8)

∆Θm
i = MPi(X

m
i,pred) (2.9)

In order to infer the mental state of the actor, the observer has to make a search

among the possible mental states. If the search space is discrete, an exhaustive method

can be used. The observer can simulate all possible mental states internally and com-
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Figure 2.1. MSI Model [20]

pare their control variables with the observed control variable. The mental state whose

control variable show the maximum similarity to the observed control variable is said

to be the mental state of the actor.

If the search space is continuous, which is the case in most of the real world

situations, an exhaustive search can not be applied. But a stochastic gradient descent

method can be applied. Starting from a random mental state (for example a random

point on a 2D surface for the manipulator to reach) the observer can make random

movements and try to converge to the actual mental state.

This method is applied in a two dimensional simulator where a robotic hand tries

to infer the mental state of the actor (the point which the actor tries to reach).
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Algorithm ExhaustiveMentalStateSearch

1: Tk = Sk = [] {Tk and Sk are sequences observed and simulated control variables for mental state

k}

2: repeat

3: Pick next possible mental state j

4: xi
j {Calculate control variable for hypothesized mental state j}

5: Tj = [Tj , xi
j ]

6: Mentally simulate movement with mental state j

7: Compute Xj

8: Sj = [x0
j , x

1
j , ..., x

N
j ] {N is the control variables collected during movement observation}

9: DN = (1−γ)
1−γN+1

∑N
i=0(x

i
sim − xi)T W (xi

sim − xi)γN−i {xi
sim ∈ Sj and xi ∈ Tj}

10: until Movement is finished

11: Return jmin

Figure 2.2. The exhaustive mental state search algorithm.
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Algorithm StochasticGradientDescentMentalStateSearch

1: Set A to a random mental state

2: MaxIter = 20

3: D = 1e20

4: repeat

5: Add actor’s current kinematics in sequence K

6: for i = 1 to MaxIter do

7: Generate random perturbation ∆A

8: A = A + ∆A

9: TA = [x0, x1, ..., xN ]

10: DN = (1−γ)
1−γN+1

∑N
i=0(x

i
sim − xi)T W (xi

sim − xi)γN−i

11: if Dlast < DN then

12: A = A− 1.2∆A {Apply 20% penalty}

13: Go to step 7

14: end if

15: if rand() < 0.1 then

16: Go to step 7 {Make a random move}

17: end if

18: Go to step 8 {If perturbation is good, use it once more}

19: end for

20: until Movement is Finished

21: Return A

Figure 2.3. The gradient descent mental state search algorithm.
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3. PROPOSED APPROACH

The goal of this thesis is the imitation of human arm movements by a humanoid

robot. This goal is composed of two sub-goals: perceiving the human motion sequence

and executing the necessary motion commands to replicate the perceived action. Con-

sidering the five major problems of imitation [4], we are dealing only with the “how to

imitate” problem. The selection of demonstrator, the time and reason of imitation is

out of our scope. After a successful imitation, the robot is not supposed to understand

the intention of the action. Our scope is limited with programming a robot, which

moves its arm in a way as much similar as the human demonstrator’s.

Imitation starts with the perception of the demonstrator. Many types of sensors

can be used for collecting information about the demonstrator’s body posture. Cam-

eras and motion capture suits are the most common ones. In this work, we used the

monocular vision system of our humanoid robot. Using a single camera for the action

detection introduced another problem. The estimation of the depth of the objects in

the image with a single camera is difficult.

The correspondence problem is the main problem of this task. The arm of a

human differs from the arm of the robot that we use. The biggest difference is that

the humans have ball-and-socket type of joints in their shoulders while robots usually

have two rotational shoulder joints. We have seen that it is hypothesized that the

mirror neuron systems are used for expressing the movement of others in the agents

own motor vocabulary [10, 11]. A similar approach should be used by the robot to

represent the arm movements of the human demonstrator.

In almost all of the robotic imitation experiments, the imitator robots are assumed

to extract the exact joint positions of the demonstrator. But it is less probable that

the biological agents extract each others exact joint positions. Instead, the usage of

qualitative representations are more likely. We have also done experiments on using

qualitative representations for joint positions in a simulator environment.
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3.1. The Stick Figure

In order to solve the correspondence problem, the arm is modeled as a stick figure

as shown in Figure 3.1. It can be the arm of a robot or a human regardless of the number

and types of joints, provided that the arm is composed of two parts. In the experiments,

both the human and the robot arms have two parts: upper and lower arm. But the

shoulder joint of the human arm is of ball and socket type. On the other hand, the

robot’s shoulder has two rotational joints, allowing the arm turn in two perpendicular

axes. The stick figure is represented by the lengths of the upper and lower arms and 2

angles for the orientations of each part. These orientation angles are neither the joint

angles of the robot nor the human arm. This allows us to compare the position of

the two arms in a common representation different than the internal representations of

the human and robot. This common representation solves the correspondence problem

between the human and robot arms.

Figure 3.1. The stick figure

The stick figure of the robot itself is calculated by the forward model. The forward

model takes the joint angles of the robot as input and calculates the stick model. Let

s = [r1, q1, r2, q2] be the vector of the stick figure and j = [j1, j2, j3, j4] be the vector of

joint angles. Then the forward model makes the transform:

s = FM(j) (3.1)
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Where FM is the forward model. First, it calculates the positions of the elbow (accord-

ing to the shoulder) and hand (according to the elbow) by using forward kinematics.

Let pe = (xe, ye, ze) and ph = (xw, yw, zw) be the elbow and wrist points in cartesian

coordinates respectively. Then,

pe = T ej (3.2)

ph = Twj (3.3)

where T e and Tw are the transformation matrices for elbow and hand. These matrices

are calculated by using the Denavit-Hartenberg (DH) convention [21]. The stick figure

is formed by transferring these points into spherical coordinates.

r1 = arctan (ze/
√

x2
e + y2

e) (3.4)

q1 = π/2 + arctan (ye/xe) (3.5)

r2 = arctan (zw/
√

x2
w + y2

w) (3.6)

q2 = π/2 + arctan (yw/xw) (3.7)

The stick figure of the demonstrator can be constructed after the shoulder, elbow

and wrist points are located on the 3D space. Locating these body parts can be done by

various methods, for example by vision processing, placing sensors on the body parts.

Once the imitator constructs the stick figure of the demonstrator, it can replicate the

same stick figure by setting its arm joints to necessary values.

The replication of the stick figure differs according to the arm configuration of the

robot. The programmer either should find a direct method for the robot to replicate

the stick figures, or should employ a training procedure for the robot to learn how to

replicate the sticks.
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4. EXPERIMENTS

We did our experiments in an indoor environment under stable lightning condi-

tions. We placed colored markers on the joints of the demonstrator for simplifying the

vision processing. This type of color based perception required the stable lightning

conditions as our training method for color detection does not tolerate variances in

light intensity. The hardware and software platforms will be described in the following

section.

4.1. Hardware Platforms

4.1.1. Aldebaran Nao Humanoid Robot

The main robot for our experiments is the Nao humanoid robot, produced by

Aldebaran Robotics company [22]. The specifications of the robot are as follows:

• 21 degrees of freedom.

• 2 CMOS cameras with 640x480 maximum resolution at 30 frames for second.

• 4 ultrasound distance sensors on the chest.

• Loudspeakers and microphones on the head.

• Pressure sensors and bumpers at the feet.

• x86 AMD Geode 500 Mhz CPU.

In our experiments we controlled 10 of the joints (2 joints for the head pan and

tilt, and 4 joints on each arm). The remaining 11 joints on the hips and legs were just

released. Additionally we used only one of the cameras. Although Nao has 2 cameras,

they can not be used as a stereo vision system. First, they are aligned vertically on the

head and their field of views do not overlap; furthermore only one camera can be active

at a time, according to robot’s hardware limitations. The images were taken from the

upper camera in a 320x240 resolution at 15 frames per second and the color space is

YUV442. Additionally, we used the speech synthesis API provided by Aldebaran to
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Figure 4.1. Overview of the Aldebaran Nao Robot [22]

interact with the robot in human-robot experiments.

4.1.2. Sony Aibo 4-Legged Robots

Aibo is the general name of 4-legged robot dogs, produced by Sony [23]. We

used two models of Aibo’s: ERS-210 and ERS-7. These two models have similar

embodiments. They have 18 degrees of freedom: 3 joints for each leg, 3 joint for the

neck, 1 joint for the mouth and 2 joints for the tail. Their differences come from their

cameras and processing powers. ERS-210 has a CMOS camera with 176x144 resolution

and 57.6◦ (horizontal) and 47.8◦ (vertical) field of view. The camera provides 25 frames

per second. ERS-7 has a CMOS camera with 208x160 resolution and 56.9◦ (horizontal)

and 45.2◦ (vertical) field of view. It provides 30 frames per second. They both have

64 bit RISC processors but ERS-210’s processor runs at 384 MHz and ERS-7’s runs

at 576. The robots are running on Aperios real time operating system designed by

Sony and programmed via OPEN-R software development kit. We used Aibo’s in the

simulator environment together with Nao’s for correspondence experiments.
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4.2. Software Platforms

We used the C++ library developed for the robot soccer team Cerberus called

BOUNLib [24]. This library provides the necessary tools such as data structures,

wireless communication, image processing, neural networks, fuzzy inference engines.

Additionally we used the monitoring tool Cerberus Station. The station listens to the

messages from the robot or simulator and show their content in appropriate monitors.

The raw or processed images can be viewed instantly with this station. Furthermore it

helps the development of some vision algorithms and it provides a mechanism for color

calibration. The station is extensible by introducing new plugins. We have written an

imitation controller plugin for monitoring the imitation activity in the robot.

In addition to the BOUNLib, we have developed a RobotLib which includes con-

trollers for Aibo and Nao robots. All of the algorithms used in the experiments were

included in this library. The controllers for the real and simulated robots are just

wrappers which include the robot controller inside the RobotLib. This way we used

our controllers both in real world and simulator experiments, by saving a lot of de-

velopment time. The general structure of BOUNLib, RobotLib and CerberusStation is

shown in Figure 4.2.

4.2.1. Webots Simulation Environment

Webots is a development environment used to model, program and simulate mo-

bile robots [25]. It is a 3D simulator where the users can model their own robots, as well

as use pre-modeled ones. In our experiments we used Aibo ERS-210, Aibo ERS-7 and

Aldebaran Nao models. Webots includes these robot models ready to use 4.3. The user

has to write his own controller by using Webots C++ or Python API. We modified the

robot models in order to add colored markers in the arm to help image processing. This

simulation platform was used for prototyping and testing of algorithms. Additionally

we conducted several experiments using Aibo and Nao robots to solve correspondence

problem.



22

Figure 4.2. General Software Architecture

Figure 4.3. Webots Simulation Environment.
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4.3. Vision System

We have used a monocular vision system for tracking the arm movements. For

the ease of the image processing, colored marks are placed on the joints of the human

and robot arms that are to be imitated. Therefore, the first step in processing the

image is to segment the pixels in the image into discrete color groups (green, red,

yellow, blue, white, black). We trained a Generalized Regression Neural Network [26]

that takes the YUV values of a pixel and returns its probabilities of being a member

of each color class. The pixel is classified as the color with the highest probability

value. In order to train the network, a training set must be prepared. This is done

by taking several images from the robot’s camera and labeling the colors in the image

(Figure 4.4). The network generalizes this data set and creates a color table. The color

table stores all the possible YUV values and their corresponding color classes, hence

no complex calculation is done online for the color classification. A lookup operation

from the color table is performed for each pixel.

(a) Raw Image (b) Color Labeled Image

Figure 4.4. Raw and labeled images shown in the labeler plugin of the Cerberus

Station.

After the training, the color table is tested with several images in the CerberusSta-

tion. Figure 4.5 shows the vision tester plugin and the color classified image with the
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color blobs. A color table has to be trained for each robot and environment pair, since

both the robots and environments have different characteristics.

(a) Vision Tester (b) Vision Monitor

Figure 4.5. An example of a classified image shown in the vision tester plugin of the

CerberusStation.

Once the image is segmented into discrete colors, the next step is to find blobs

in the image. A blob is a group of pixels of the same class that are connected. After

the grouping of the pixels, the region is approximated as an ellipse which has the

following properties as shown in Figure 4.6. Arm positions are extracted by using

these properties of these blobs.

Figure 4.6. An example of a red blob and its properties.
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4.4. Implementation of Mental State Inference Method

We developed a toy simulation environment to replicate the experiments of mental

state inference (MSI) model (Figure 4.7) proposed by Oztop et. al. [20] . In the

simulator, there are two robots, a demonstrator and an imitator. The demonstrator

(bottom robot) moves its two-joint arm for reaching the blue points on the board. The

other robot watches and tries to estimate the point which the arm is trying to reach

before the arm actually reaches the point. The biological inspiration in this experiment

is that both robots use the same modules for creating and perceiving the movement. As

the demonstrator moves its arm, the imitator simulates the demonstrators movements

internally by using its own motion modules, the authors state that this can be a model

of mirror neuron system.

Figure 4.7. 2D Toy Simulator Environment. Green robot is the actor, red robot is the

watcher.



26

In order to employ such a high level imitation model for imitating the human

arm movements, we should solve the problems of low level imitation. The robot must

be able to understand the position of the human arm and find a proper representation

for it. We postponed this research as a possible future work, and continued our study

with the low level imitation.

4.5. A Fuzzy Imitation Approach

Biological agents use qualitative terms to express an event. In the case movement

understanding, we can say that the arm of a person can be down, up, half-down , half-

up etc. But we do not say that the arm makes an angles of 73 degrees with the body

for instance. Inspired from this phenomenon, we proposed to express the joint values

qualitatively. Figure 4.8 shows an example fuzzification of the Aibo front arm joints

by using five fuzzy sets with triangular membership functions.

In our fuzzy imitation approach, the imitator perceives the demonstrator’s arm

joints as fuzzy memberships. Afterwards, these fuzzy membership values are used to

produce the joint values of the imitator itself. This method requires one-to-one mapping

of the joints. We conducted our experiments on Webots simulation environment with

three different robots: Aibo Ers-210, Aibo Ers-7 and Nao (Figures 4.9 and 4.10).

The arm configurations of the Aibo robots were almost identical except their joint

limits. However, the arm configuration of the Nao robot differs from the Aibo arm

configurations. First of all, the Nao arm has four degrees of freedom, whereas the Aibo

arm has three degrees of freedom. We fixed the elbow yaw joint of the Nao at zero

degrees so that we were able to make a one-to-one mapping between Aibo and Nao

arm joints. The limitations of the arm joints are shown in Tables 4.1, 4.2 and 4.3.

4.5.1. Learning Fuzzy Memberships

The imitator learned how to extract the fuzzy membership values of the joints of

the demonstrator from the visual data and generated motor commands by defuzzifying

the membership values. We trained neural networks (one for each membership func-



27

Figure 4.8. Fuzzy Sets for Aibo Front Arm Joints

Table 4.1. The joint limits of the left arm of the Aibo ERS-210 Robot.

ERS-210 Joints Minimum Maximum

J1 -117 117

J2 -11 89

J3 -27 147
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Figure 4.9. The Aibo robot imitating another Aibo robot on Webots Simulator

Figure 4.10. The Aibo robot imitating the Nao robot on Webots Simulator
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Table 4.2. The joint limits of the left arm of the Aibo ERS-7 Robot’s arm.

ERS-7 Joints Minimum Maximum

J1 -115 130

J2 -10 88

J3 -25 122

Table 4.3. The joint limits of the left arm of the Nao Robot.

Nao Joints Minimum Maximum

Shoulder Pitch -120 120

Shoulder Roll -95 0

Elbow Roll 0 90

tion) for learning the membership values. We created the data set by storing the joint

values of the actor and perceptions of the imitator. The joint values of the actor are

converted into fuzzy memberships. The perceptions of the imitator are the following

blob properties: center, area and orientation. We collected data for 400 time steps.

We trained one network for one membership function, which means, if we have

five memberships for each joint value, it requires 15 networks since we are trying to

learn three joints. Figure 4.11 shows the final result of the system. The blue lines shows

the actual arm movements while the red lines show the joint values of the imitator.

4.5.2. Intermediate Results

Although representing the joint angles as fuzzy memberships seems more natural,

this method does not help solving the correspondence problem between the human arm

and a robot arm. The method, in its current form, is only applicable whenever the arm

configurations of the agents are similar. By similar, we mean that both agents have

the same number of joints with similar movement ranges. However, the method may

be applicable in a later step, after solving the correspondence problem. This issue will

be saved as a future work for our thesis.
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Figure 4.11. Results of The Training

4.6. Stick Figure Experiments

We tested our stick figure imitation model in a real world experiment. In the

experiment, the demonstrator was wearing colored markers on his right arm joints while

drawing lines and circles on the board, as shown in Figure 4.12. The robot watched

and stored the movements executed by the demonstrator. Since we are not dealing

with “when to imitate” problem, we cropped the necessary parts of the perception log

offline. Afterwards we ran the networks to find the joint sequences on the log.

4.6.1. Perception of the Demonstrator’s Stick Figure

The stick figure of the human (the demonstrator) is estimated by vision process-

ing. First, the image of the human demonstrator is segmented into discrete colors.

After the color segmentation 3 blobs are found: green, red and yellow. The center

of the green blob shows the position of the shoulder. The centers of red and yellow

show the elbow and wrist points respectively. The estimation process starts with the
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Figure 4.12. The experiment setup.

registration of the stick. In the registration, the demonstrator stands still in front of

the robot, and stretches his arm. The view of the arm at this stage is shown in Figure

4.14a. The robot registers the lengths of the upper and lower arms, namely Lmax
1 and

Lmax
2 , in terms of numbers of pixels. These values will be used for comparison in the

later steps.

Algorithm InitializeStickF igure

1: Lmax
1 = Lmax

2 = 0

2: while t < 10 do

3: Compute L1 and L2

4: Lmax
1 = L1 + Lt

1/10

5: Lmax
2 = L2 + Lt

2/10

6: end while

Figure 4.13. Stick Figure Initialization

Let α = (xα, yα), β = (xβ, yβ), γ = (xγ, yγ) be the 2D cartesian coordinates of the

centers of the green, red and yellow blobs on the image. The first step in estimating

the stick figure is to calculate the distances between shoulder-elbow and elbow-hand

on the image.
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L1 =
√

(xα − xβ)2 + (xα − yβ)2 (4.1)

L2 =
√

(xβ − xγ)2 + (yβ − yγ)2 (4.2)

The orientations r1 and r2 of the stick figure are estimated as the slope of the

lower and upper arms parts on the image (Figure 4.14b).

r1 = arctan ((yα − yβ)/(xα − xβ)) (4.3)

r2 = arctan ((yβ − yγ)/(xβ − xγ)) (4.4)

The orientations q1 and q2 of the stick figure are estimated by using the difference

of the arm lengths with the lengths registered in the registration phase. The idea is

that as the arm moves into the image (getting further from the observer), its projection

onto the image will be smaller (Figure 4.14c). By assuming that this relationship is

linear, the angles are estimated as:

q1 = arccos (Lmax
1 /L1) (4.5)

q2 = arccos (Lmax
2 /L2) (4.6)

4.6.1.1. Depth Estimation Problem. The depth estimation technique is based on some

simplifying assumptions. First of all, the projection of the arm onto the image plane

cannot be done linearly, instead a camera matrix should be calculated to make a better

projection. Secondly, for a given image, there are multiple candidate position for the
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(a) Registration View

(b) Front View

(c) Top View

Figure 4.14. Estimating the stick figure from the image. (a) The robot sees the

demonstrator in registration. (b) Front view for estimating angles r1 and r2. (c) Top

view for estimating angles q1 and q2. .
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arm as shown in Figure 4.15. The figure shows the top view of the arm. It is clear that

the arm can be in 4 different positions for a given image. We assumed that the arm

always moves further to the observer.

Figure 4.15. Stick Figure Depth Estimation Problem. The top view of the arm.

4.6.2. Replicating the Stick Figure

The next step after the extraction of the stick figure of the human arm is the

replication of the stick figure by the imitator. The robot should find necessary joint

angles in order to replicate the figure. We trained a hierarchy of feed-forward neural

networks for converting the perceived stick figure to joint angle values. In our model,

the first neural net extracts the proximal angles which are shoulder pitch and shoulder

roll. Taking these values together with the stick figure as input, two neural networks

determine the elbow yaw and elbow pitch angles.

4.6.2.1. Inverse Model Training. We have trained a hierarchy of feed forward neural

network which generates the shoulder and elbow joints angles as shown in Figure 4.17.

The first network learns the shoulder angles by taking the first two angles (q1 and r1) of

the stick figure, and other two networks learn the elbow yaw and roll angles by taking

the output of the first network and the second two angles (q2 and r2) of the stick figure.

Before training the networks, we made a preprocessing for removing the singular cases

in both data set generation and blob perception.
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Figure 4.16. Nao Arm Joints

4.6.2.2. Eliminating Singular Configurations. In order to train a feed-forward network

for solving the mapping problem, the mapping should be a one-to-one relationship.

However, there exists singular configurations, such that, different arm configurations

result in a single stick figure. These configurations can not be handled by a feed-forward

network, instead a recurrent neural network which takes the target stick figure and the

current arm configuration as input can be employed. In order to train such a network,

we should create a larger data set, such that all possible movements from all arm

configurations should be represented. This increases the search space exponentially.

Another solution for singular configurations is to make a preprocessing to elimi-

nate them before using a neural network. As shown in Figure 4.18, a singular configu-

ration occurs whenever the roll joint is in rest position (shown in dashed lines). In such

cases the positions of the pitch or yaw joints do not affect the stick figure that results

from the arm. Hence, we can say that whenever any of the shoulder roll or elbow yaw

joints are in zero position, the arm is in a singular configuration.
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Figure 4.17. Artificial Neural Networks used as Inverse Model.

Figure 4.18. Singular Configurations of the Arm
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In order to eliminate these configurations, first we should exclude the joint values

that makes results in a singular configuration from the training data set. We have

observed that if these values are not excluded, they result in unacceptable errors in

shoulder pitch and elbow yaw angles. Hence, we have excluded the cases where shoulder

pitch is zero and elbow yaw is -90 degrees.

Second, whenever a stick figure is observed, it should be checked that whether the

figure is in a singular position or not. This situation occurs in two conditions. First,

whenever q1 = 0, meaning that the upper arm is parallel to the ground and second

whenever q1 = q2 and r1 = r2 at the same time, meaning that the lower arm is parallel

to the upper arm. In these situations, the necessary joint values are perturbed by one

degree to their previous level in order to prevent a singular configuration.

4.6.3. Learning Shoulder Angles

In order to train the shoulder network, we have created a data set by selecting

a subset of arm joints, and creating the stick figures for the joint combinations. For

the shoulder pitch joint, we used angles starting from -120 to -60 by steps of 3 degrees.

Similarly for the shoulder roll joint, we used angles starting from -88 to -2 by steps

of 3 degrees. Hence, 21 angles for shoulder pitch and 29 angles for shoulder roll is

used, which makes 609 combinations for upper arm position. For these combinations,

we calculated the corresponding stick figures by using forward kinematics. We have

trained a feed-forward neural network with one hidden layer with 40 neurons by using

Levenberg-Marquardt algorithm. The first two angles q1 and r1 of the stick figure is

given as input, and the shoulder joint values are given as target output. The learning

curve is shown in Figure 4.19.

4.6.4. Learning Elbow Angles

We trained two networks for elbow joints: one for the elbow yaw joint and the

other for the elbow roll joint. We used the same procedure as we used in training

shoulder values. This time we used angles for all four joints combinations to create the
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Figure 4.19. Training and Validation Errors for Shoulder Network

data set. For each joint combination, the stick figure is calculated by using forward

model. Both networks take the upper stick figure angles q2 and r2 and shoulder joint

angles as input. The values of elbow yaw and elbow roll joints are the target outputs

respectively. The learning curves of the networks are shown in Figures 4.20 and 4.21.

Figure 4.20. Training and Validation Errors for Elbow Yaw Network

After running the network to find the joint angles (Figure 4.22(a)), we smoothed

it with the moving average method with a window size of five (Figure 4.22(b)). Finally,
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Figure 4.21. Training and Validation Errors for Elbow Roll Network

we chose target points with equal intervals from the data (Figure 4.22(c)). In each step,

robot tried to reach the target points, and after reaching all of the targets, it finished

its execution.

4.7. Results

Figures 4.23, 4.24, 4.25 show how the robot draws the lines and circle. Although

figures drawn by the robot are not perfect, they can be categorized as horizontal and

vertical lines and circle by a human observer. The errors in the drawings come from

the perception errors, simplifying assumptions in the vision system and inverse model

errors. The biggest effect on the drawings are perception errors. Additionally, there

is another significant difference between the human (as the demonstrator), and the

robot (as the imitator). The robot stands still and does not move its shoulder’s base

point. However the human demonstrator unwillingly moves his shoulder base point as

he draws lines. In the circle experiment, it should be noted that even if the figure is

not a perfect shoulder, the robot has successfully finished the figure at the point where

it started, hence it succeeded to make a closed loop.
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(a) Network Output for Elbow Roll Joint

(b) Elbow Roll Joint data after smoothing

(c) Target points for Elbow Roll Joint

Figure 4.22. The post procesing steps for target angles
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Figure 4.23. Robot drawing a vertical line.

Figure 4.24. Robot drawing a horizontal line
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Figure 4.25. Robot drawing a circle.
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Figures 4.26, 4.27, 4.28 show different lines and circles drawn by the robot. In

each of the drawings, the actions are generated from the same perception log. The

difference in the figures are mostly the intensity of the ink.

Figure 4.26. Robot drawing circles.

Figure 4.27. Robot drawing horizontal lines.
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Figure 4.28. Robot drawing vertical lines.
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5. CONCLUSIONS

In this thesis, we trained a humanoid robot to imitate the movements of a human

demonstrator’s arm. We tried to perceive the movement of the demonstrator with the

single camera of the robot. We use a stick figure as an agent-independent representation

of the arm movements, and train the robot to generate motor commands that will make

its arm look as much the same as the demonstrator’s.

We have seen that the differences in the bodies of the agents forces us to create a

common representation system. The imitator robot can not store the movement infor-

mation in terms of its own joint angles, because the joint types of the demonstrator and

the robot itself are different. We have seen that it is hypothesized that the biological

agents use a motor vocabulary by the help of their mirror neurons. Our stick figure

can be considered as the motor vocabulary of the imitator.

We have also seen that using single camera for movement detection gives poor

performance, since it is very difficult to extract depth information. We employed a

registration based approach. After registering the image of the stretched arm, we

looked at the differences with the registered image and the images taken at any time.

We used the differences to estimate the position of the arm. Depth was not successfully

estimated as the projection of the arm onto the image place is not linear as we assumed.

5.1. Future Work

The imitation process consists of two stages. Perception and motion generation.

There can be many future work on improving these parts. Additionally, our imitation

is limited with simple mimicry, but the higher levels of imitation such as goal directed

imitation can be achieved.

First of all, vision processing can be done without color markers so that the robot

does not need strict lighting conditions. Furthermore, more complex algorithms such
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as Hidden Markov Model or particle filter based tracking can be employed for better

depth estimation. A significant improvement on movement tracking can be achieved

by using a stereo camera based tracking.

We proposed a fuzzy representation of joint values for understanding the actions of

the imitator. This method can be used if the joints of the actor and the imitator can be

mapped one-to-one. But it does not offer a solution for the correspondence problem.

However a fuzzy approach may be employed during the solution of correspondence

problem or in the stick figure perception phase.
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APPENDIX A: Forward Kinematics

Table A.1. The Denavit-Hartenberg parameters for the right arm of Aldebaran NAO

Humanoid Robot.

i αi ai Θi di

1 −π/2 0 j1 0

2 π/2 0 π/2 + j2 0

3 π/2 0 π + j3 L1

4 π/2 0 π/2 + j4 0

5 −π/2 L2 0 0

The transformation matrix used for calculating the position of the elbow accord-

ing to the shoulder is as follows:

T e =





T e
11 T e

12 T e
13 T e

14

T e
21 T e

22 T e
23 T e

24

T e
31 T e

32 T e
33 T e

34

0 0 0 1





T e
11 = cos(j1) ∗ sin(j2) ∗ cos(j3)− sin(j1) ∗ sin(j3)

T e
12 = − cos(j1) ∗ sin(j2) ∗ sin(j3)− sin(j1) ∗ cos(j3)

T e
13 = cos(j1) ∗ cos(j2)

T e
14 = cos(j1) ∗ cos(j2) ∗ L1

T e
21 = − cos(j2) ∗ cos(j3)
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T e
22 = cos(j2) ∗ sin(j3)

T e
23 = sin(j2)

T e
24 = sin(j2) ∗ L1

T e
31 = − sin(j1) ∗ sin(j2) ∗ cos(j3)− cos(j1) ∗ sin(j3)

T e
32 = sin(j1) ∗ sin(j2) ∗ sin(j3)− cos(j1) ∗ cos(j3)

T e
33 = − sin(j1) ∗ cos(j3)

T e
34 = − sin(j2) ∗ cos(j2) ∗ L1

The transformation matrix used for calculating the position of the wrist according

to the shoulder is as follows:

Tw =





Tw
11 Tw

12 Tw
13 Tw

14

Tw
21 Tw

22 Tw
23 Tw

24

Tw
31 Tw

32 Tw
33 Tw

34

0 0 0 1





Tw
11 = −(cos(j1)∗sin(j3)∗cos(j3)−sin(j1)∗sin(j3))∗sin(j4)+cos(j2)∗cos(j2)∗cos(j4)

Tw
12 = − cos(j1) ∗ sin(j2) ∗ sin(j3)− sin(j1) ∗ cos(j3)

Tw
13 = −(cos(j1)∗sin(j2)∗cos(j3)−sin(j1)∗sin(j3))∗cos(j4)−cos(j1)∗cos(j2)∗sin(j4)

Tw
14 = (−(cos(j1) ∗ sin(j2) ∗ cos(j3)− sin(j1) ∗ sin(j3)) ∗ cos(j4)− cos(j1) ∗ cos(j2) ∗
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sin(j4)) ∗ L2 + cos(j1) ∗ cos(j2) ∗ L1

Tw
21 = cos(j2) ∗ cos(j3) ∗ sin(j4) + sin(j2) ∗ cos(j4)

Tw
22 = cos(j2) ∗ sin(j3)

Tw
23 = cos(j2) ∗ cos(j3) ∗ cos(j4)− sin(j2) ∗ sin(j4)

Tw
24 = (cos(j2) ∗ cos(j3) ∗ cos(j4)− sin(j2) ∗ sin(j4)) ∗ L2 + sin(j2) ∗ L1

Tw
31 = −(− sin(j1) ∗ sin(j2) ∗ cos(j3)− cos(j1) ∗ sin(j3))∗ sin(j4)− sin(j1) ∗ cos(j2) ∗

cos(j4)

Tw
32 = sin(j1) ∗ sin(j2) ∗ sin(j3)− cos(j1) ∗ cos(j3)

Tw
33 = −(− sin(j1)∗ sin(j2)∗ cos(j3)− cos(j1)∗ sin(j3))∗ cos(j4)+ sin(j1)∗ cos(j2)∗

sin(j4)

Tw
34 = (−(− sin(j1)∗ sin(j2)∗cos(j3)−cos(j1)∗ sin(j4))∗cos(j4)+sin(j1)∗cos(j2)∗

sin(j4)) ∗ L2− sin(j1) ∗ cos(j2) ∗ L1
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