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ABSTRACT 

 

 

ANALOG CIRCUIT OPTIMIZATION WITH HIERARCHICAL GENETIC 

ALGORITHMS - 3
RD

 ORDER LOW-PASS BUTTERWORTH FILTER EXAMPLE 

 

 

In the several previous studies, various kinds of Hierarchical Genetic Algorithm 

structures have been used to solve complex problems. In this thesis, a master-slave mode, 

two-layered Hierarchical Genetic Algorithm was designed to optimize an implementable 

complex integrated circuit. 

 

Our expectations from two-layered proposed HGA is to minimize the total process 

time, to reach the same solution quality with standard HGA in complex problems and to 

increase the compatibility to any other topology by working two modules collaboratively 

with each other. 

 

In the example chosen in the thesis, the upper module (master module) will optimize 

a 3
rd

 order active low-pass Butterworth filter and the lower module (slave module) will 

optimize the OPAMPs (MOS technology based integrated circuit) in the filter circuit, with 

SPICE based simulation. Thanks to this algorithm which will be realized by the proposed 

HGA, solutions can be implemented with current MOS technologies and the same result 

quality can be obtained with standard HGA and a low total process time is obtained such as 

in the Genetic Algorithm. 
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ÖZET 

 

 

HİYERARŞİK GENETİK ALGORİTMA İLE ANALOG DEVRE 

OPTİMİZASYONU – 3. DERECEDEN ALÇAK GEÇİREN BUTTERWORTH 

FİLTRE ÖRNEĞİ 

 

Daha önce yapılan çalışmalarda karmaşık problemleri çözmek için çeşitli hiyerarşik 

genetik algoritma yapıları kullanılmıştır. Bu tezde, uygulanabilir karmaşık entegre devre 

optimizasyonu yapmak için master-slave modunda iki katmanlı Hiyerarşik Genetik 

Algoritma tasarlandı. 

 

İki katmanlı olarak kullandığımız hiyerarşik genetik algoritmadan beklentimiz, iki 

modülün müşterek çalışarak, toplam işlem süresini kısaltmak, klasik genetik algoritmadaki 

sonuç kalitesini karmaşık problemler de sağlamak ve değişik topolojilere uyumluluğu 

artırmaktır. 

 

Tezde seçilen örnekte, üst modül 3. dereceden alçak geçiren aktif Butterworth filtreyi 

optimize edecek ve alt modülde filtrelerde kullanılan OPAMP’ı (MOS teknoloji bazlı 

entegre devre) SPICE tabanlı simülasyon ile optimize edecek. Önerilen HGA ile 

gerçekleştirilecek bu sistem sayesinde, çözümler güncel MOS teknolojisi ile 

gerçeklenebilecek, standart HGA ile aynı sonuç kalitesi yakalanacak ve Genetik 

Algoritmada ki gibi düşük toplam işlem süresi sağlanacaktır. 
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1.  INTRODUCTION 

 

 

1.1. Overview of Genetic Algorithm 

 

A genetic algorithm (in short GA) is an optimization technique to search and find 

approximate solutions to combinatorial optimization problems. Genetic algorithms are a 

particular class of evolutionary algorithms that use techniques inspired by evolutionary 

biology such as inheritance, mutation, recombination (crossover) and natural selection. 

 

The earlier instances of Genetic Algorithms appeared in the late 1950s and early 

1960s, programmed on computers by evolutionary biologists who were clearly seeking to 

model aspects of natural evolution. It did not occur to them that this strategy could be more 

generally applied to artificial problems. 

 

Genetic algorithms originated from the studies of cellular automata, conducted by 

John Holland and his colleagues at the University of Michigan in 1970s. Research in GAs 

remained largely theoretical until the mid-1980s, when The First International Conference 

on Genetic Algorithms was held at The University of Illinois. As academic interest grew, 

the increase in desktop computational power allowed for practical application of the new 

technique. In 1989, The New York Times writer John Markoff wrote about Evolver, the 

first commercially available desktop genetic algorithm. Custom computer applications 

began to emerge in a wide variety of fields, and these algorithms are now used by several 

companies to solve large scale problems, data fitting, trend spotting, budgeting and 

virtually any other type of combinatorial optimization. 
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1.2. Overview of Analogue Circuit Synthesis 

 

Analogue circuit synthesis is a essential in various levels at analogue and digital 

design processes by adjusting transistor sizing, calculating the passive component values 

and adjusting bias voltages and currents. Most MOS based integrated circuits (ASIC 

designs) require analogue modules to communicate external integrated circuits or passive 

components in distributed circuits [16]. Because of the nonlinearity in analogue designs, 

searching a huge solution space makes analogue simulation more difficult. In the last few 

years some techniques were used which incorporate heuristics [17], knowledge-based 

optimization [18], and simulation-based optimization [19]. Evolutionary algorithms and 

especially genetic algorithms were included to analogue circuit synthesis approximately 

three decades ago [20]. 

 

Some knowledge-based analogue synthesis computer programs; OASYS [21], 

BLADES [22] and IDAC [23] enable rapid synthesis of analog MOS circuits. On the other 

hand, the results of these knowledge based approaches are inaccurate. 

  

In addition to, equation-based analogue synthesis techniques have also been used. 

Some examples of these approaches are OPASYN [24], OPTIMAN [25] and AMGIE [26]. 

These techniques are quite fast due to using analytical equations for circuit evaluation, if 

the terms in transfer function are not complex. As the equations get more complicated, this 

model loses its efficiency. 

 

Nowadays, simulation-based approaches are widely used for analogue circuit 

synthesis. One commercially simulation-based approach is GBOPCAD [27] which uses 

HSPICE. Using a commercial tool brings some advantages; to get rid of writing software 

and to adapt easily to different simulation environments. On the contrary, using 

commercial tool has undeniable drawbacks. Two of the main drawbacks are latencies with 

user operating and breaking the synthesis process when it has an error in inter-application 

communication space. 
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Consequently, writing an in-house simulator and circuit synthesizer ensures several 

advantages. Latencies from operator can diminish by full automatic processes. Making a 

new search algorithm can decrease total process time with solving complex large-scale 

problems. 
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2. GENETIC ALGORITHM AND OPERATORS 

 

 

In the nature, each species needs to adapt to a changing environment in order to 

maximize of its survival property. The stronger species and individuals have more chance 

to survive and breed. GA is formed with adaptation, breeding, elimination, and mutation of 

individuals like in the natural environment. In other words, GA uses these rules in order to 

solve problems or in order to optimize required processes or nearly unlimited number of 

applications. GA is also a powerful method which can simplify, clarify and solve more 

complicated problems quickly and robustly. 

 

Terms in GA: 

 Individual -  A member of  population or any possible solution 

 Chromosome – Coded chain of an individual 

 Allele - Gene in the chromosome or cell of  coded chain 

 Population - Group of all individuals 

 Search Space - All possible solutions to the problem 

 Locus - The position of a gene on the chromosome 

 Genome - Collection of all chromosomes for an individual 

 Fitness Function – tool can eliminate the unwanted individuals 

 Cost – vital member of Fitness Function to help the make elimination 

Operations in GA: 

 Reproducing (Crossover)– Breeding of parents with the altering genes method 

which ensures to produce new generation 

 Mutation – Random altering of the  gene in the chromosome of an individual 

 Selecting (Elimination) – Choosing the satisfactory or strong individuals and 

killing the unsatisfactory or weak individuals in the population by the help of 

fitness function. 
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2.1. Recombination 

 

In the recombination process, new individuals are produced by breeding of the 

parents in the population. First, individuals are selected randomly in order to be coupled to 

breed. Recombination can be done by real numbers or binary numbers which is called 

crossover. Chosen couples breed via crossover techniques: 

 Single-point / double-point /multi-point crossover 

  Uniform crossover 

  Shuffle crossover 

  Crossover with reduced surrogate 

 

In single-point crossover technique, a crossover position is determined and genes are 

altered from this position 

 

 

Figure 2. 1. Single point crossover 

 

In double-point crossover technique, two crossover positions are determined and 

genes are altered from these positions. 
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Figure 2. 2. Double point crossover 

 

In multi-point crossover technique, more than two crossover points are selected, and 

selected positions determine where the genes are altered. 

 

 

Figure 2. 3. Multi point crossover 

 

In the uniform crossover, each bit or gene is selected randomly, either from the first 

parent or from the second one. 

 

In selective crossover, one offspring of one parent gets the dominant allele genes. 

The second offspring gets the recessive genes. 

 

 



7 

 

 

Figure 2. 4. Cut and splice crossover 

 

In cut and splice crossover, crossover points are different for the couple which is 

dated. Children born with the different string lengths. 

In shuffle crossover, there are three steps in this type of crossover. First, the positions 

of bits or genes in the string are randomly shuffled, then the two strings are crossed over, at 

last, the offspring is un-shuffled. 

 

2.2. Selection 

 

Selection determines which individuals are chosen after recombination and how 

many offspring each selected individual produces. The main idea is, to give preference to 

better individuals, allowing them to pass on their genes to the next generation. The 

goodness of each individual depends on its fitness. Fitness may be determined by an 

objective function or by a subjective judgement. Also cost or punishment is a part of 

fitness function. 

The types of selections in GAs are: 

 Roulette Selection 

 Rank Selection 

 Steady-State Selection 

 Elitist Selection 
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 Tournament Selection 

 Truncating Selection 

 

In the roulette selection, parents are selected according to their fitness. The better the 

chromosomes are, the more chances they have to be selected. Like the in the game, there is 

a roulette wheel where all chromosomes in the population are placed, every individual has 

its place according to its fitness function. 

Roulette selection has problems when the fitnesses are different very much among 

the individuals. If we assume that the best chromosome fitness is more than 90%, then it 

covers a very big part of the roulette surface, hence the other chromosomes will have very 

few chances to be selected.  

Rank selection first ranks the population and then every chromosome receives fitness 

from this ranking. The worst will have fitness 1, second worst 2, third 3, and the best will 

have the maximum fitness value. The maximum fitness value is the number of 

chromosomes in population.  

In steady-state selection main idea of this selection is that a big part of chromosomes 

should survive to next generation.  

GA then works in the following way. In every generation, a few (good - with high 

fitness) chromosomes are selected for creating a new offspring. Then, some (bad - with 

low fitness) chromosomes are removed and the new offspring is placed in their place. The 

rest of the population survives to a new generation.  

In the elitist selection, the fit members of each generation are guaranteed to be 

selected. When creating new population by crossover and mutation, we have a big chance, 

that we will loose the best chromosome.  

Elitism is name of method, which first copies the best chromosome (or a few best 

chromosomes) to new population. The rest is done in classical way. Elitism can very 

rapidly increase performance of GA, because it prevents losing the best found solution.  
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In tournament selection, subgroups of individuals are chosen from the larger 

population, and members of each subgroup compete against each other. Only one 

individual from each subgroup is chosen to reproduce. 

In truncation selection, individuals are sorted according to their fitness. The 

parameter for truncation selection is the truncation threshold value. Truncation threshold 

value indicates the proportion of the population to be selected as parents. Individuals below 

the truncation threshold do not produce offspring. 

 

2.3. Mutation 

 

Mutation is a vital operator in GA. By mutation, individuals’ genes are randomly 

altered. These variations or mutation steps are generally small. They will be applied to the 

variables of the individuals with a low probability (mutation probability or mutation rate). 

Normally, offspring are mutated after being created by recombination according to 

mutation rate. 

Mutation occurs: 

 Real value mutation 

 Binary value mutation 

 

Figure 2. 5. Mutation schematic 
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2.4. Usage of Genetic Algorithm 

 

GA and evolutionary algorithms are used in several approaches in order to solve 

problems and make optimization in large scale solution space.  

  

The first and most important point is that genetic algorithms are intrinsically parallel. 

Most other algorithms are serial and can only explore the solution space to a problem in 

one direction at a time, and if the solution they discover turns out to be suboptimal, there is 

nothing to do but abandon all work previously completed and start over. However, since 

GAs have multiple offspring, they can explore the solution space in multiple directions at 

once. If one path turns out to be a dead end, they can easily eliminate it and continue work 

on more promising avenues, giving them a greater chance each run of finding the optimal 

solution. 

 

Due to the parallelism that allows them to implicitly evaluate many schemas at once, 

genetic algorithms are particularly well-suited to solving problems where the space of all 

potential solutions is truly huge - too vast to search exhaustively in any reasonable amount 

of time. 

 

Another notable strength of genetic algorithms is that they perform well in problems 

for which the fitness landscape is complex - ones where the fitness function is 

discontinuous, noisy, changes over time, or has many local optima. 

 

GA has been used to schedule jobs in a sequence dependent setup environment for a 

minimal total tardiness. All jobs are scheduled on a single machine; each job has a 

processing time and a due date. The setup time of each job is dependent upon the job 

which immediately precedes it. The GA is able to find good, but not necessarily optimal 

schedules, fairly quickly. 
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GA is also used to schedule jobs in non-sequence dependent setup environment. The 

jobs are scheduled on one machine with the objective of minimizing the total generally 

weighted penalty for earliness or tardiness from the jobs' due dates. However, this does not 

guarantee that it will generate optimal solutions for all schedules. 

Added to these GA is used in distributed computer network topologies design and in 

financial modeling applications. 

 

Also GA is used in those areas which are stated below: 

 Aerospace engineering 

 Astronomy and astrophysics 

 Chemistry 

 Electrical engineering 

 Game playing 

 Geophysics 

 Materials engineering 

 Mathematics and algorithmic 

 Military and law enforcement 

 Molecular biology 

 Pattern recognition and data mining 

 Robotics 

 Routing and scheduling 

 Systems engineering 

 

 

 

 

 

 

http://www.talkorigins.org/faqs/genalg/genalg.html#examples:robotics
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3. HIERARCHICAL GENETIC ALGORITHM 

 

 

With the growing required in GA applications, GA algorithms have started to 

develop day by day. In some applications, especially in large scale problems, adding 

specific improvements and tactics is required in genetic algorithm when the time 

consumption is considerable. A type of a genetic algorithm has started to be used which is 

called Hierarchical Genetic Algorithm in short (HGA). 

 

The structure of Hierarchical Genetic Algorithm (HGA) is more flexible and modular 

than the conventional genetic algorithm. HGA has multi-layered hierarchical topology 

which brings it various efficiencies. The most significant advantage of being multi-layered 

topology ensures dividing large-scale problems into sub-problems by using parallel 

processed Genetic Algorithm increases the efficiency of the optimization search and 

diminishes the total process time. 

 

HGA may have two layers: top layer (master) and the low layer (slave) or may be 

multi-layered: one top level and more than one bottom layers. Thanks to this architecture, 

it is possible to use a mix of simple models or GAs (rapid solvers) and the complex models 

or GAs (slow solvers) together in order to reach solutions. This mixed topology can 

provide us same quality in the complex modules (GAs) and same time consumption is 

simple modules (GAs). The top layer or higher sub-populations generally search a large 

space with lower resolution, opposite to this lower-layer or lower levels search smaller 

space with higher resolution. Communications among the populations are provided by 

migration of individuals with different strategies. In this hierarchical topology, solutions go 

up and down the layers and progressively the best solutions keep going up until they are 

completely refined, at last if the solution is satisfied top population make the decision on 

complete the whole processes. In the design of the HGA, the structure of the hierarchy and 

topology strategies like individual migrations, coordination among the top layer and 

bottom layers is important. Constructing an efficient coordination and load sharing in HGA 

allows us to accelerate the convergence speed of the algorithm to the optimum, and to 

diminish the total process time. Added to these, being a multi-layered structure in HGA 
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ensures multi-objective flexible architecture. Hence, altering one of the sub population or 

bottom GA algorithm ensure us solving any other problem with small changes or 

alterations.  

 

As a consequence, using Hierarchical Genetic Algorithm with different strategies and 

models can achieve to solve complex problems with the same quality in GA but faster than 

GA. In other words, HGA works better than GA in complex problems. 

 

3.1.  Types of HGA 

 

Hierarchical Genetic Algorithm is based on the Parallel Genetic Algorithms (in short 

PGAs). Hierarchical Genetic Algorithms (HGAs) work in the form of hierarchical 

topology, having different layers to perform different tasks (upper and lower level).  Upper 

level and lower levels can be evaluated together or separately. There can be individual 

migration among the levels or individuals can be different for each level.  

 

Some models of parallel model are stated below: 

 

 Master-Slave (global) parallelization; 

  Subpopulations with migration; 

  Subpopulations with static overlapping; 

  Subpopulations with dynamic overlapping; 

  Massive parallelization. 

 

In Master-Slave model, only evaluation of individuals and genetic operators are 

paralleled and such parallel processes are all dependents of the master process. In this kind 

of parallel HGA mode we can easily share the slave algorithm on other processors or 

computers. 
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Figure 3. 1. HGA in master-slave mode 

 

   

 

 

Figure 3. 2. HGA in island mode 
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4.  PROPOSED HIERARCHICAL GENETIC ALGORITHM AND 

OPTIMIZATON EXAMPLE CIRCUIT 

 

 

In this thesis, a two-layered hierarchical genetic algorithm is used to optimize a 

complex MOS integrated circuit. A third order Butterworth low pass filter is selected for a 

simulation example. The Proposed HGA is formed of two layers. A master population or 

first layer which is called upper population or upper module (in short UM) runs with GA to 

optimize the values of its own individuals. These individuals are formed by external 

capacitances, external resistances and cut-off frequency of filter and Butterworth 

characterization of the filter. The slave population or second layer which is called lower 

population or lower module (in short LM) also used different GA algorithm to optimize its 

own individuals. In this layer, transistor based OPAMP circuits are calculated and 

optimized with SPICE based formulas. 

 

 

Figure 4. 1. The type of the Hierarchical Genetic Algorithm in this work 
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Both of the two modules have their own specific GA operators. Some genes or some 

part of gene strings migrate to the lower module, which processes these genes with its own 

operators and gives results to the communication space. The UM gets the new genes from  

the communication space and goes on to reproducing new generations. In this application 

both modules are executable files and the communication space is a folder which include 

two “*.txt” files. One of these “*.txt” files is used by the UM to write the genes which are 

sent to the LM, so this same file is the file which the LM reads the genes. The second file 

is used by the LM to write back the processed genes and it is also the file which the UM 

uses to read processed datas (immigrant genes).  

 

First, the UM starts to process its own algorithm. After some generations, it sends the 

immigrant genes in the chromosomes to the LM, these genes or locus are processed and 

optimized by the LM. After some generations, the processed datas or immigrant genes are 

send back to the UM by the LM. This cycle continues until the satisfactory child or 

generation born. 

 

The upper module (UM) optimizes a third order active Butterworth low pass filter 

with non ideal practical OPAMPs. The lower module (LM) optimizes the OPAMPs’ 

bandwidth and output resistance and gain with Spice parameters by optimizing the 

transistor based circuit. The UM gives the required OPAMPs’ gains, output resistances and 

bandwidths to the LM by writing them to external text file in the communication space. 

The LM gets these parameters and starts to process its own GA and finds the required 

OPAMPs approximate results. After optimizing, the LM sends the chip layout areas, chip 

power consumptions, bandwidth, gain and output resistance of OPAMPs and waits for new 

OPAMP requests from the UM. The UM gets the required or close to required OPAMP 

values and keeps on to process its own GA in order to get a satisfied individual, this 

transaction pursues until the UM gets the result and breaks up the all processes. The UM 

sends of 20 OPAMPs features (unity gain, bandwidth and output resistance) by writing it 

to text file in the directory, the LM process these 20 OPAMPs and turns back with the 

optimized values (chip area, chip power) by writing the external text file. 
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4.1.  3RD
 Order Butterworth Low-Pass Filter  

 

To perform the proposed Hierarchical Genetic Algorithm a low-pass Butterworth 

filter is selected. 3
rd

 order active low pass Butterworth with 2
nd

 order Sallen-Key topology 

included is chosen.  

 

 

 

Figure 4. 2. Comparison of low pass Butterworth filter with other types 

 

Butterworth filter has flattest pass-band magnitude response. Added to these, pulse 

response is better than the Chebyshev and rate of attenuation is better than the Bessel filter. 
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Figure 4. 3.  Frequency response of low pass Butterworth filter according to order 

 

The order of the filter is selected as three which is formed by one odd order topology 

and an even topology by cascading. 

 

 

 

Figure 4. 4. First stage or first order of the total topology 
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Figure 4. 5. Second stage or 2
nd

 order of the total topology 

 

 

Figure 4. 6. Total topology of the 3
rd

 order low pass Butterworth filter with Sallen-Key 

topology 

 

 
0

2

( ) 1
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( ) ( 1)( 1)i

V s
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2c cw f

 (4.2)
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3
rd

 order Butterworth polynomial is:  

  

 
0

2

( ) 1
( )

( )
(1 )(( ) 1)i

c c c

V s
H s

s s sV s

w w w

 (4.3)
 

 

 So, from the circuit transfer function; 

 1 1 2 2 3 3

2

c

C R C R C R
w  (4.4)

 

   

1 1 2 2 3 3

2
cw

C R C R C R
   and    2c cw f  

  

Cutoff frequency with ideal OPAMP is: 

 

 
1 1 2 2 3 3

1

( )
cf

C R C R C R  (4.5)
 

       

 

The topology of the filter circuit is formed by two cascading structures. First stage is 

1
st
 order and the second stage is 2

nd
 order low pass active filter. In the lower module, 

values of the OPAMP (bandwidths, gains, output resistances, layout areas and power 

consumptions) are optimized with the MOS technology.  
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Figure 4. 7. Non ideal OPAMP model in this work 

 

Input resistance of the OPAMP is not included and in the analysis since MOS 

technology is used. Output resistances and gains of two OPAMPs have maximum and 

minimum values in order to get implementable results. 

 

 

Figure 4. 8. Non ideal circuit schematic of 3
rd

 order low pass Butterworth filter 

    

 
0

2
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It is equal to: 

      
 

0
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( ) 1
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If we scale this formulas by       

      
 

c

s
s

w  (4.7)
  

 

      
 

3

0

3 2 2 3

( )
( )

( ) 2 2

c

i c c c

V s w
H s

V s s w s w s w  (4.8)
 

 

With (4.6): 

      
 

2

0 3 2 3 1 3 0

3 2 02 1

3 3 3

( )
( )

( )i

V s K Z s K Z s K Z
H s

KK KV s
s s s

K K K

 (4.9)
 

Zeros appear because of the non-ideality of the OPAMPs.  

              

Matching the coefficients between the equation 4.8 and equation 4.9, angular frequencies 

are: 

 

                               
 

2

3

2 c

K
w

K  (4.10)
 

                               
 

2 1

3

2 c

K
w

K  (4.11)
 

                               
 

3 0

3

c

K
w

K  (4.12)
 

 

If we give different index parameter to the three different cw s :  

                               
 

2

3

2 cA

K
w

K  (4.13)
 

                               
 

2 1

3

2 cB

K
w

K  (4.14)
 

                               
 

3 0

3

cC

K
w

K  (4.15)
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In ideal form, it should be  

                               
 cA cB cCw w w

 (4.16)
 

Also with the equation  

                               
 

2c cw f
 (4.2)

 

 

The cutoff frequency of the Low-pass Butterworth filter should be: 

                               
 cA cB cCf f f

 (4.17)
 

 

                               
 0 E2 E1  E1  E2 1         K

 
(4.18) 

 

 

1 E2 E1 C1 R1  E1 C1 R1 E2 C1 R1  C1 R1  E2 E1 C2 R3  E2 E1 C2 R2 K
 

E1  E2 E1 C1 R1  E1 C1 R1 E2 C1 R1  C1 R1  E2 E1 C2 R3  E2 E1 C2 R2   

 

E1 C2 R3  E1 C2 R2  E2 C2Ro1  E2 C2 R3  E2 C2 R2  C2 Ro1  C2 R3   
 

C2 R2  E1 C3 Ro2  E1 C3 R2  C3Ro2  C3 Ro1  C3 R2    
 

(4.19) 

 

2 E2 E1 C2 C1 R1 R3  E2E1 C2 C1 R1 R2  E1 C2 C1 R1 R3  E1 C2 C1 R1 R2 K

 

  E2 C2 C1 R1 Ro1  E2C2 C1 R1 R3  E2 C2 C1 R1 R2  C2 C1 R1 Ro1  

 

C2 C1 R1 R3  C2 C1 R1 R2  E1 C3C1 R1 Ro2  E1 C3 C1 R1 R2  C3 C1 R1 Ro2 
 

  C3 C1 R1 Ro1  C3 C1 R1 R2  E2E1 C3 C2 R2 R3  E1 C3 C2 R3 Ro2   

 E1 C3 C2 R2 Ro2  E1 C3 C2 R2 R3  E2 C3 C2R3 Ro1  E2 C3 C2 R2 R3                                 

 
C3 C2 Ro1 Ro2  C3 C2 R3 Ro2  C3 C2 R3 Ro1  C3 C2 R2 Ro2  C3 C2 R2 R3

              

(4.20) 
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 3 E2 E1 C3 C2 C1 R1 R2 R3  E1 C3 C2 C1 R1 R3 Ro2  E1 C3 C2 C1 R1 R2 Ro2 K  

  E1 C3 C2 C1 R1 R2 R3 E2 C3 C2 C1 R1 R3 Ro1  E2 C3 C2 C1 R1 R2 R3  +  

C3 C2+C1 R1 Ro1 Ro2  C3 C2 C1R1 R3 Ro2  C3 C2 C1 R1 R3 Ro1    

                               
 

C3 C2 C1 R1 R2 Ro2  C3 C2 C1 R1 R2 R3
 (4.21)

 

 

From the   equations: (4.13), (4.14), (4.15) and (4.2) 
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2c cw f  

 

                               
 

2

34
cA

K
f

K  (4.22) 

                               
 

1

3

1

2 2
cB

K
f

K  (4.23) 

                               
 

0
3

3

1

2
cC

K
f

K  (4.24)
 

 

 It should be,                              
 cA cB cCf f f

 (4.17)
 

 

Equation 4.17 has to be obtained in order to make a flat pass-band magnitude 

response in Butterworth filter. This equation is also used in fitness function, bigger 

difference among the cAf , cBf  and cCf  means more increment at the cost. Added to this, 

ratio of the max resistance to min resistance and the ratio of the max capacitance to min 

capacitance are considered. These proportions are vital to make a Butterworth 

characterization.  
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4.2. Performing Hierarchical Genetic Algorithm 

 

To find the optimized low-pass 3
rd

 order Butterworth filter, Hierarchical Genetic 

Algorithm (in short HGA) performs with two modules. The upper module (UM) optimized 

resistances, capacitances, frequency, Butterworth characterization, and superficially 

OPAMP’s power consumption and chip layout area. The lower module (LM) optimizes the 

OPAMP’s chip layout area, power consumption and the bandwidth with transistor base 

using spice model of current technology. 
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Figure 4. 9. The flow chart of the Proposed HGA 
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4.3. Construction of a Chromosome of an Individual with Encoded Genes 

 

Before using the genetic algorithm, individuals in the population should be created. 

Also chromosomes of every individual have to be formed. This could be as a string of real 

numbers or, as is more typically the case, a binary bit string. This bit string will be referred 

to chromosomes from now on. A typical chromosome may look like the example as stated 

below: 

 

Chromosome example: 10010101110101001010011101101110111111101 

  

 The individuals in this work formed an array which has 15 members or loci. Each 

member of string array has 32 bit binary cells. Every cell includes one characterization in 

the filter circuit. 

 

 

Figure 4. 10. General form of an individual in the HGA, an array with 12 elements 

 

The chromosomes formed by fifteen genes which are named cells in the array.  

1. The gene# 0 is symbolized of R1 resistance in the circuit schematic in figure 4.11. 

2. The gene# 1 is symbolized of R2 resistance in the figure 4.11. 

3. The gene# 2 is symbolized of R3 resistance in the figure 4.11. 

4. The gene# 3 is symbolized of C1 capacitance in the figure 4.11. 

5. The gene# 4 is symbolized of C2 capacitance in the figure 4.11. 

6. The gene# 5 is symbolized of C3 capacitance in the figure 4.11. 

7. The gene# 6 is symbolized of gain of the first OPAMP in the figure 4.11. 

8. The gene# 7 is symbolized of output resistance Ro1 of the first OPAMP in the 

figure 4.11. 

9. The gene# 8 is symbolized of gain of the second OPAMP in the figure 4.11. 
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10. The gene# 9 is symbolized of output resistance Ro2 of the second OPAMP in the 

figure 4.11. 

11.  The gene# 10 is symbolized of the power consumption of the OPAMP. 

12.  The gene# 11 is symbolized of the layout chip area of the OPAMP. 

13.  The gene# 12 is symbolized of ratio of the max R to min R in the circuit. 

14.  The gene# 13 is symbolized of ratio of the max C to min C in the circuit. 

15.  The gene# 14 is symbolized of Bandwidth of the OPAMP. 

16.  The gene# 15 is symbolized of Fitness value of the individual. 

 

 

All these cells or genes are chromosomes which are formed by 32 bit binary string. 

 

 

Figure 4. 11. One element in the array of an individual 

 

4.4. Recombination 

 

Parents in the population are mated randomly, after this mating; crossover is 

performed, between the couples. Two new children are born from a couple, hence from ten 

couples 20 children are breed. The population has thirty individuals before selecting the 

fittest ones.  
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4.4.1.  Crossover 

 

The crossover method in the proposed HGA is similar with double point crossover 

but it has some other developed tactics. The first gene where the crossover starts, the last 

gene where the crossover finished and crossover depth (genes which will be altered) are 

determined. For example, the number which determines the first gene that the crossover 

starts is 7. The number which determines the how many genes are altered in the crossover 

is 11. The genes of couple’s chromosomes from the lowest significant 7th bit to 18th are 

altered. Thanks to the gene alteration two new children are born. 

 

 

Figure 4. 12. Crossover operator in this work 

 

4.4.2.  Mutation  

 

As we know, an individual in this work has 15 cells in the array; all cells have their 

own chromosomes. In the mutation operator, there are three random numbers which affect 

the process. First random number is bit “1” or “0”. This bit determines what the mutated 

gene will be. The second number determines which cell will be mutated in the individual. 

The third number determines the bit or the gene which will be altered in the chromosome. 
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Figure 4. 13. Mutation operator in this work 

 

4.5. Selection 

 

In this work, selection is close to elitist selection. The fitness function is calculated 

for all individuals in the search space. The fitness function generates the cost using 

consistence among cAf , cBf , cCf  cutoff frequency values, max/min R value, max/min C 

value, power consumption value of the OPAMP and chip layout area value of the OPAMP.  

 

All these values are normalized by their own normalization functions. After 

normalization, all these values get their own weights. Summation of these values after 

normalization and giving weight, cost value or fitness function value is formed. After 

calculating the fitness function value, an algorithm writes this value to the individual’s 15
th

 

gene, hence all individuals carry their own fitness value in their arrays. In selection 

operator, an algorithm sort all the population in the search space; after sorting, most fit 10 

individuals are selected to survive and to breed in the next generations. 

 

4.5.1. Fitness Function 

 

The fitness function is formed by consistence among cAf , cBf , cCf   cutoff frequency 

values, max/min R value, max/min C value, power consumption value of the OPAMP, 

chip layout area value of the OPAMP. Power consumption value and chip layout area 

value are calculated from formulas of a model which is formed from 300 simulated results.  

fk =Frequency value in the cost 
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pk = Power consumption value of OPAMP in the cost 

ak = Chip layout area value of OPAMP in the cost 

Rk = Maximum resistance/minimum resistance value in the cost 

Ck = Maximum capacitance/minimum capacitance value in the cost 

1W =Weight of frequency value in the cost 

2W = Weight of power value in the cost 

3W = Weight of area value in the cost 

4W = Weight of max resistance/min resistance ratio value in the cost 

5W = Weight of max cap/min cap ratio value in the cost 

 

                               2

1 2 3 4 5_ ((1 ) 1)f p a R cFitness Function W k W k W k W k W k
 (4.25)

 

 

Normalization of cutoff frequency: 

 

                               
0

_

_ _
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f

f wanted frequency
k

wanted frequency tolerance  (4.26)
 

 

                               1

_

_ _

cB

f

f wanted frequency
k

wanted frequency tolerance  (4.27)
 

 

                               
2

_

_ _

cC

f
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k

wanted frequency tolerance  (4.28)
 

 

                               
 0 1 2f f f fk k k k

 (4.29)
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Power Consumption: 

E = Gain of the OPAMP 

BW = Bandwidth of the OPAMP 

Ro = Output resistance of the OPAMP 

 

                               
 1

1.5101

0.25928* 1.2106
P

E  (4.30)
 

 

                               
 

7

2 1.2182*10 * 0.00034877P BW
 (4.31)

 

 

                               
 3 5

0.0073585

5.8601*10 * 2.2895
P

Ro  (4.32)
 

 

   Power Consumption values from model: 

                            
 

1 2 3

3

P P P
P

 (4.33)
 

 

 Normalization of power values: 

 

                               
 

good

p

good bad

P powerconsump
k

powerconsump powerconsump  (4.34)
 

 

OPAMP chip layout area values from model: 

 

                               
 

16 8

1 1.3354*10 * * 2.054*10A A BW
 (4.35)

 

 

                               
 

13 8

2 2*10 * 4.3*10A Ro
 (4.36)
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1 2

2

A A
A

 (4.37) 

 

Normalization of area values: 

                               
 

good

a

good bad

A Area
k

Area Area  (4.38)
 

 

Max Resistance/Min Resistance ratio: 

 

 

                               
 

max

min

R
Rmm

R  (4.39)
 

                    

Normalization of resistance ratio: 

 

                               
 

mm good

R

good bad

R Rmm
k

Rmm Rmm  (4.40)
 

 

Max Capacitance/Min Capacitance ratio: 

 

                               
 

max

min

C
Cmm

C  (4.41)
 

 

Normalization of capacitance ratio: 

 

                               
 

mm good

C

good bad

C Cmm
k

Cmm Cmm  (4.42)
 

 

When, fk , pk , ak , Rk  and Ck  are combined with their weights fitness function is formed. 
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                               2

1 2 3 4 5_ ((1 ) 1)f p a R cFitness Function W k W k W k W k W k
 (4.43) 

 

4.6.  Communication Space Between  Master and Slave Module 

 

While the HGA performs, master module (UM) and slave module (LM) 

communicate by using communication space in order to realize individuals and locus 

migration. In this space, there are two text files which include required values of the 

OPAMP (gain, output resistance and bandwidth) and optimized results (OPAMP’s chip 

layout area and chip power consumption) written by the slave module. The UM writes out 

the required OPAMP’s features to the “non_sim.txt” file and the LM writes out this 

OPAMP’s features area and power consumption to the “sim.txt” file.  

 

 

 

Figure 4. 14. “non_sim.txt” and “sim.txt” files in communication space 
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As we see in Figure 4.15, there are two numbers at first line and three columns in the 

“non_sim.txt” file. First number in the first line indicates how many times master and slave 

modules communicate. Second number in the first line indicates the number of the 

individuals that the UM send to the LM and in the file this number is 20. The three 

columns consist of the OPAMP’s gain, OPAMP’s output resistance and OPAMP’s 

bandwidth, respectively. 

 

In the “sim.txt” file the number in the first line indicates how many times the UM 

and the LM communicate like the first number in the first line in the “non_sim.txt” file. 

The five columns consist of the OPAMP’s gain, OPAMP’s output resistance, OPAMP’s 

bandwidth, OPAMP’s chip power consumption values and OPAMP’s chip layout areas, 

respectively. The order between the UM and the LM is determined by the first number 

both in two text files 
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5.  EXAMPLES AND RESULTS 

 

 

In the first example, upper module worked alone. The simulation and optimization 

job which is done from lower module is also done by upper module with using internal 

model. The results of this module are within 60% of SPICE simulation results. The results 

of an example are presented in Table 5.1. 1R , 2R and 3R  values were forced to 1000  and 

1 1000C nF  2 500C nF and 3 2000C nF . The desired frequency was 10000 Hz and the 

tolerance is 10%. 

The initial values are: 

 

The initial frequency = 159.2297 Hz 

 

9000 Hz < Desired frequency < 11000 Hz 

 

The results are given in the Table 5.1. 

 

Table 5. 1. The result table of first example, model based GA 

 

The calculated frequency  = 9517.90332 Hz 

Total Process Time Generation  Number 

923 second 47 

1R  2R  
3R  1C  

2C  
3C  

62  72  107  251 nF  105 nF  340 nF  

Gain of OPAMP Bandwidth of OPAMP 
OUTR  of OPAMP 

6401 14276 33997 

Power Consumption of OPAMP Chip Layout Area of OPAMP 

8mW 35 
2m  
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Figure 5. 1. Spice output of the *.cir file which is created by only the Upper Module 

 

As we can see from the Figure 5.1, the values and the formulas can calculate the 

correct frequency response, using GA in the UM. 

 

 

 

Figure 5. 2. Frequency response change of first example (model based GA) 
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In the Figure 5.2, we can observe changing of the frequency response by the 

generation number. Up to the 20
th

 generation, it increases rapidly, from the 25
th

 generation 

to the 40
th

 generation, other values of the cost: chip layout area of the OPAMP, power 

consumption of the OPAMP, max Res./min Res. Ratio and (max cap)/(min cap) ratio 

converge. After 40
th

 generation GA tries to fix and optimization details. 

 

 

Figure 5. 3. Cost Change with generation number for first example (model based GA) 

 

 

Like the frequency graphic in figure 5.3, cost also rapidly decreases up to the 20
th

 

generation. After the 20
th

 generation, it starts to converge slowly, and at 46
th

 generation 

GA finds the satisfied cost. 

As a result, if the UM works alone with its inner OPAMP optimization formulas, 

optimization takes very little time but the quality of the result and realization of OPAMP is 

not satisfied. 

 

In second example, HGA runs with conventional method. In other words, upper 

module makes communication and wants OPAMP optimization from lower module in 

every step or in every new generation. The lower module makes complete simulation and 

optimization of the required OPAMPs upon every demand of the UM. 
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The results of an example are provided in Table 5.2: 

 1R , 2R and 3R  values are forced to 1000  and the 1 1000C nF
, 2 500C nF  and 

3 2000C nF . The desired frequency is 10000 Hz and the tolerance is 10%. 

 

The initial values are: 

The initial frequency = 159.2297 Hz 

 

9000 Hz < Desired_frequency < 11000 Hz 

 

The results are given in the Table 5.2. 

 

Table 5. 2. The result table of the second example, standard HGA 

 

The calculated frequency  = 9975.095703 Hz 

Total Process Time Generation  Number 

128456.23 second  (35.68 hr) 71 

1R  2R  
3R  1C  

2C  
3C  

254  42  112  62 nF  100 nF  511 nF  

Gain of OPAMP Bandwidth of OPAMP 
OUTR  of OPAMP 

3356 14962 4502 

Power Consumption of OPAMP Chip Layout Area of OPAMP 

2mW 34 
2m  
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Figure 5. 4. Spice output of the cir file which is created by the HGA 

 

 

The flat band of the low-pass Butterworth is best in this example as we see clearly in 

Figure 5.4. 

 

As we see in the Figure 5.5, there is a small gap between the best individual and the 

rest of the population. 
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Figure 5. 5. The graphic of the cutoff frequency of the low pass Butterworth filter with 

generation number, formed by standard HGA 

 

 

 

Figure 5. 6. The graphic of the cost with generation number formed by standard HGA 
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Like in the Figure 5.5, in figure 5.6, there is a gap again between average of the 

population and the best individual. The UM communicate with the LM in every generation 

by sending 20 elite individual among the 30 individuals; hence 10 individuals do not go to 

the LM. 

 

In third example, the proposed HGA is run. The upper Module processes for 20 

iterations and sends features of the required OPAMPs to the lower module by writing them 

in “non_sim.text” in the communication space and waits for the results that will be sent 

back by the lower module. When the upper module send the required OPAMP’s features, 

the lower module gets the features (gain, bandwidth and output resistance) of OPAMP and 

starts to optimize and design these OPAMPs. The lower module does not run whole 

iterations; it runs for a limited number of iterations and gives back the results to the UM. 

This loop sustains until the elite individual in the population gets close to satisfied result.     

The UM controls the distance between the best individual and the desired individual. If the 

population, especially the elite individual starts to get close to the solution, the UM wants 

from the LM to make full optimization. If the population starts to go far away from the 

satisfied result, UM wants from LM to make short-coming optimization again. 

 

The results of an example stated below: 

 1R , 2R
 and 3R values are forced to 1000  and the 1 1000C nF

, 2 500C nF  and 

3 2000C nF . The wanted frequency is 10000 Hz and the tolerance is 10%. 

 

The initial values are: 

The initial frequency = 159.2297 Hz 

 

9000 Hz <Desired frequency < 11000 Hz 

 

The results are given in the Table 5.3. 
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Table 5. 3. The result table of the third example, proposed HGA 

 

The calculated frequency  = 9930.5302 Hz 

Total Process Time Generation  Number 

2143 second 61 

1R  2R  
3R  1C  

2C  
3C  

122  98  240  126 nF  45 nF  240 nF  

Gain of OPAMP Bandwidth of OPAMP 
OUTR  of OPAMP 

2517 14895 1191 

Power Consumption of OPAMP Chip Layout Area of OPAMP 

2mW 34 
2m  

 

 

 

Figure 5. 7. Spice output of the cir file which is created by the proposed HGA 

 

As we see in the figure 5.7 the frequency response is near 9905.415 Hz. In addition 

when we consider the features of the OPAMP, solution is implementable and realizable. 
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Figure 5. 8.  Frequency response change that is created by the proposed HGA 

 

In Figure 5.8, the frequency response of elite individual and average of population is 

shown. The dotted line is the average frequency response of the population. We can easily 

see the sudden peaks in dotted line which are caused by the mutations. 

 

 

Figure 5. 9. Cost change that is created by the proposed HGA 
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Parallel with the frequency response graphic, the peaks in this graphic overlap peaks 

in the frequency response graphic because the effects of mutations. 

5.1. Comparison 

According to the examples adequate data are obtained in order to make comparison 

among the model based GA, standard HGA and the two-layered proposed HGA. 

 

Figure 5. 10. Gain of the OPAMP from result of the test 

 

As we see, in Figure 5.10. Standard HGA and the proposed HGA have the result 

(gain of the OPAMP) in the maximum and minimum implementation limit. On the other 

hand model based GA has poor result to implement the design. 
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Figure 5. 11. Gain of the OPAMP form result of the test 

 

Like in the previous graphic, standard HGA and proposed HGA have same quality of 

the solution. 

 

Table 5. 4. Total process time comparison 

 

Total Process Time (second) 

Model based GA 0.431 

Standard HGA 128456.23  (35.68 hr) 

Two-layered HGA 2143 
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Figure 5. 12. Graphical comparison of three applications. 

 

It clearly seems that two-layered proposed HGA can solve problems in the examples 

with close computation time to GA and same result quality as in standard HGA. 
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6. CONCLUSION 

 

 

Two-layered proposed Hierarchic Genetic Algorithms are used to optimize MOS 

based complex integrated circuits in 3
rd

 order low-pass Butterworth filter in order to 

measure its performance. To measure the performance of the proposed HGA, the same 

example problem performs to model based GA and to standard HGA. After performing 

various tests to these three applications (model based GA, standard HGA and proposed 

HGA) results prove that the proposed HGA has advantages. In the performance tests, three 

applications are operated to optimize and design low-pass filter with the same frequency 

responses. At the end of every test, total process time, calculated filter frequency response, 

Butterworth characterization and features of OPAMPs are observed. When we consider 

these control parameters, which are laid out from optimizations, proposed two-layered 

HGA can gives satisfied outcomes. The proposed HGA performs same quality with the 

standard HGA and close to process time of model based GA. The quality of the results is 

determined by the LM according to realization and implementation in current MOS 

technology. Added to these, thanks to the modular architecture, modules and the 

technology can easily change in order to solve different complex problems. 

 

All in all, two-layered proposed HGA can make optimization and solve complex 

large-scale problems with approximately process time in GA and same result quality in 

standard HGA. 
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