

ANALOG CIRCUIT OPTIMIZATION WITH HIERARCHICAL GENETIC

ALGORITHMS - 3
RD

 ORDER LOW-PASS BUTTERWORTH FILTER EXAMPLE

by

Olcay Durul Azeri

B.S., Electronic & Telecommunication Engineering,

Yıldız Technical University, 2005

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requireds for the degree of

Master of Science

Graduate Program in Electrical & Electronics Engineering

Boğaziçi University

2009

 ii

ANALOG CIRCUIT OPTIMIZATION WITH HIERARCHICAL GENETIC

ALGORITHMS - 3
RD

 ORDER LOW-PASS BUTTERWORTH FILTER EXAMPLE

APPROVED BY:

 Prof. Günhan DÜNDAR …………………….

 (Thesis Supervisor)

 Prof. H. Levent AKIN …………………….

 Asst. Prof. Arda Deniz YALÇINKAYA …………………….

DATE OF APPROVAL: 16.09.2009

 iii

 To my lovely

 FAMILY

 iv

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Günhan Dündar. Special thanks go to him

for all the help, guidance, encouragement, and motivation during my Ms. Thesis.

I would like to thank Prof. Dr. Francisco Fernandez for his innovative ideas and

guidance.

I would like to thank Prof. Dr. H. Levent Akın and Yrd. Doç. Dr. Arda Deniz

Yalçınkaya for their contribution.

I would like to thank Özsun S. Sönmez for his help and guidance.

I would like to thank special persons in this world; my Dad (Ekrem Azeri), my Mom

(Güleser Azeri) and my sister (Oya Ilgın Azeri or my cücü ).

I would like to thank my friends: Sezgin Bayrak, Erdal Karaçal, Ahmet Köseoğlu,

Kınay Bozdemir to let me using their PC’s for simulation.

I would like to Seyrani Korkmaz for his help.

 v

ABSTRACT

ANALOG CIRCUIT OPTIMIZATION WITH HIERARCHICAL GENETIC

ALGORITHMS - 3
RD

 ORDER LOW-PASS BUTTERWORTH FILTER EXAMPLE

In the several previous studies, various kinds of Hierarchical Genetic Algorithm

structures have been used to solve complex problems. In this thesis, a master-slave mode,

two-layered Hierarchical Genetic Algorithm was designed to optimize an implementable

complex integrated circuit.

Our expectations from two-layered proposed HGA is to minimize the total process

time, to reach the same solution quality with standard HGA in complex problems and to

increase the compatibility to any other topology by working two modules collaboratively

with each other.

In the example chosen in the thesis, the upper module (master module) will optimize

a 3
rd

 order active low-pass Butterworth filter and the lower module (slave module) will

optimize the OPAMPs (MOS technology based integrated circuit) in the filter circuit, with

SPICE based simulation. Thanks to this algorithm which will be realized by the proposed

HGA, solutions can be implemented with current MOS technologies and the same result

quality can be obtained with standard HGA and a low total process time is obtained such as

in the Genetic Algorithm.

 vi

ÖZET

HİYERARŞİK GENETİK ALGORİTMA İLE ANALOG DEVRE

OPTİMİZASYONU – 3. DERECEDEN ALÇAK GEÇİREN BUTTERWORTH

FİLTRE ÖRNEĞİ

Daha önce yapılan çalışmalarda karmaşık problemleri çözmek için çeşitli hiyerarşik

genetik algoritma yapıları kullanılmıştır. Bu tezde, uygulanabilir karmaşık entegre devre

optimizasyonu yapmak için master-slave modunda iki katmanlı Hiyerarşik Genetik

Algoritma tasarlandı.

İki katmanlı olarak kullandığımız hiyerarşik genetik algoritmadan beklentimiz, iki

modülün müşterek çalışarak, toplam işlem süresini kısaltmak, klasik genetik algoritmadaki

sonuç kalitesini karmaşık problemler de sağlamak ve değişik topolojilere uyumluluğu

artırmaktır.

Tezde seçilen örnekte, üst modül 3. dereceden alçak geçiren aktif Butterworth filtreyi

optimize edecek ve alt modülde filtrelerde kullanılan OPAMP’ı (MOS teknoloji bazlı

entegre devre) SPICE tabanlı simülasyon ile optimize edecek. Önerilen HGA ile

gerçekleştirilecek bu sistem sayesinde, çözümler güncel MOS teknolojisi ile

gerçeklenebilecek, standart HGA ile aynı sonuç kalitesi yakalanacak ve Genetik

Algoritmada ki gibi düşük toplam işlem süresi sağlanacaktır.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ………………….…………………………………....... iv

ABSTRACT ………………………………………………………………………… v

ÖZET ………………………………………………………………………………... vi

LIST OF FIGURES ………………………………………………………………..... ix

LIST OF TABLES ………………………………………………………………….. xi

LIST OF SYMBOLS / ABBREVIATIONS ………………………………………... xii

1. INTRODUCTION ………………………………………………………………... 1

1.1. Overview of Genetic Algorithm ……………………………………………… 1

1.2. Overview of Analogue Circuit Synthesis ……………………………………. 2

2. GENETIC ALGORITHM AND OPERATORS …………………………………. 4

2.1. Recombination ………………………………………………………………. 5

2.2. Selection …………………………………………………………………….. 7

2.3. Mutation …………………………………………………………………….. 9

2.4. Usage of Genetic Algorithm ………………………………………………... 10

3. HIERARCHICAL GENETIC ALGORITM ……………………………………. 12

3.1. Types of HGA ……………………………………………………………… 13

4. PROPOSED HIERARCHICAL GENETIC ALGORITHM AND OPTIMIZATON

EXAMPLE CIRCUIT …………………………………………………………… 15

4.1. 3
RD

 Order Butterworth Low-Pass Filter …………………………………….. 17

4.2. Performing Hierarchical Genetic Algorithm ……………………………….. 25

4.3. Construction of a Chromosome of an Individual with Encoded Genes ……. 27

4.4. Recombination ……………………………………………………………… 28

4.4.1. Crossover ………………………………………………………………. 29

4.4.2. Mutation ……………………………………………………………….. 29

4.5. Selection ……………………………………………………………………. 30

 viii

4.5.1. Fitness Function ……………………………………………………… 30

4.6. Communication Space Between Master and Slave Module ………………. 34

5. EXAMPLES AND RESULTS …………………………………………………… 36

5.1. Comparison ……………………………………………………………….... 45

6. CONCLUSION …………………………………………………………………. 48

7. REFERENCES ………………………………………………………………….. 49

 ix

LIST OF FIGURES

Figure 3. 1. HGA in master-slave mode …………………………………………… 14

Figure 3. 2. HGA in island mode ………………………………………………….. 14

Figure 4. 1. The type of the Hierarchical Genetic Algorithm in this work ………… 15

Figure 4. 2. Comparison of low pass Butterworth filter with other types ………… 17

Figure 4. 3. Frequency response of low pass Butterworth filter according to order .. 18

Figure 4. 4. First stage or first order of the total topology ………………………… 18

Figure 4. 5. Second stage or 2
nd

 order of the total topology ………………………. 19

Figure 4. 6. Total topology of the 3
rd

 order low pass Butterworth filter with Sallen-Key

topology ……………………………………………………………… 19

Figure 4. 7. Non ideal OPAMP model in this work ……………………………… 21

Figure 4. 8. Non ideal circuit schematic of 3
rd

 order low pass Butterworth filter … 21

Figure 4. 9. The flow chart of the Proposed HGA ……………………………….. 26

Figure 4. 10. General form of an individual in the HGA, an array with 12 elements .. 27

Figure 4. 11. One element in the array of an individual ………………………….. 28

Figure 4. 12. Crossover operator in this work ……………………………………. 29

 x

Figure 4. 13. Mutation operator in this work …………………………………….... 30

Figure 4. 14. “non_sim.txt” and “sim.txt” files in communication space ………… 34

Figure 5. 1. Spice output of the *.cir file which is created by only the Upper Module 37

Figure 5. 2. Frequency response change of first example (model based GA) ……. 37

Figure 5. 3. Cost Change with generation number for first example (model based GA) 38

Figure 5. 4. Spice output of the cir file which is created by the HGA …………… 40

Figure 5. 5. The graphic of the cutoff frequency of the low pass Butterworth filter with

generation number, formed by standard HG ………………………… 41

Figure 5. 6. The graphic of the cost with generation number formed by standard HGA 41

Figure 5. 7. Spice output of the cir file which is created by the proposed HGA ….. 43

Figure 5. 8. Frequency response change that is created by the proposed HGA …… 44

Figure 5. 9. Cost change that is created by the proposed HGA …………………… 44

Figure 5. 10. Gain of the OPAMP from result of the test ………………………… 45

Figure 5. 11. Gain of the OPAMP form result of the test ………………………… 46

Figure 5. 12. Graphical comparison of three applications ……………………….. 47

 xi

LIST OF TABLES

Table 5. 1. The result table of first example, model based GA ……………………. 36

Table 5. 2. The result table of the second example, standard HGA ………………. 39

Table 5. 3. The result table of the third example, proposed HGA ……………….... 43

Table 5. 4. Total process time comparison ………………………………………… 46

 xii

LIST OF SYMBOLS / ABBREVIATIONS

fc Frequency

wc Angular Frequency

BW Bandwidth of the OPAMP

 E Gain of the OPAMP

GA Genetic Algorithm

HGA Hierarchical Genetic Algorithm

K0 Konstant in in transfer function

K1 Coefficent of s in transfer function

K2 Coefficent of s
2
 in transfer function

K3 Coefficent of s
3
 in transfer function

kf Frequency value in the cost

kp Power consumption value of OPAMP in the cost

ka Chip layout area value of OPAMP in the cost

kR Maximum resistance/minimum resistance value in the cost

kC Maximum capacitance/minimum capacitance value in cost

LM Lower Module

OPAMP Operational Amplifier

PGA Parallel Genetic Algorithm

Ro Output resistance of the OPAMP

UM Upper Module

W1 Weight of frequency value in the cost

W2 Weight of power value in the cost

W3 Weight of area value in the cost

W4 Weight of max resistance/min res. ratio value in the cost

W5 Weight of max cap/min cap ratio value in the cost

1

1. INTRODUCTION

1.1. Overview of Genetic Algorithm

A genetic algorithm (in short GA) is an optimization technique to search and find

approximate solutions to combinatorial optimization problems. Genetic algorithms are a

particular class of evolutionary algorithms that use techniques inspired by evolutionary

biology such as inheritance, mutation, recombination (crossover) and natural selection.

The earlier instances of Genetic Algorithms appeared in the late 1950s and early

1960s, programmed on computers by evolutionary biologists who were clearly seeking to

model aspects of natural evolution. It did not occur to them that this strategy could be more

generally applied to artificial problems.

Genetic algorithms originated from the studies of cellular automata, conducted by

John Holland and his colleagues at the University of Michigan in 1970s. Research in GAs

remained largely theoretical until the mid-1980s, when The First International Conference

on Genetic Algorithms was held at The University of Illinois. As academic interest grew,

the increase in desktop computational power allowed for practical application of the new

technique. In 1989, The New York Times writer John Markoff wrote about Evolver, the

first commercially available desktop genetic algorithm. Custom computer applications

began to emerge in a wide variety of fields, and these algorithms are now used by several

companies to solve large scale problems, data fitting, trend spotting, budgeting and

virtually any other type of combinatorial optimization.

2

1.2. Overview of Analogue Circuit Synthesis

Analogue circuit synthesis is a essential in various levels at analogue and digital

design processes by adjusting transistor sizing, calculating the passive component values

and adjusting bias voltages and currents. Most MOS based integrated circuits (ASIC

designs) require analogue modules to communicate external integrated circuits or passive

components in distributed circuits [16]. Because of the nonlinearity in analogue designs,

searching a huge solution space makes analogue simulation more difficult. In the last few

years some techniques were used which incorporate heuristics [17], knowledge-based

optimization [18], and simulation-based optimization [19]. Evolutionary algorithms and

especially genetic algorithms were included to analogue circuit synthesis approximately

three decades ago [20].

Some knowledge-based analogue synthesis computer programs; OASYS [21],

BLADES [22] and IDAC [23] enable rapid synthesis of analog MOS circuits. On the other

hand, the results of these knowledge based approaches are inaccurate.

In addition to, equation-based analogue synthesis techniques have also been used.

Some examples of these approaches are OPASYN [24], OPTIMAN [25] and AMGIE [26].

These techniques are quite fast due to using analytical equations for circuit evaluation, if

the terms in transfer function are not complex. As the equations get more complicated, this

model loses its efficiency.

Nowadays, simulation-based approaches are widely used for analogue circuit

synthesis. One commercially simulation-based approach is GBOPCAD [27] which uses

HSPICE. Using a commercial tool brings some advantages; to get rid of writing software

and to adapt easily to different simulation environments. On the contrary, using

commercial tool has undeniable drawbacks. Two of the main drawbacks are latencies with

user operating and breaking the synthesis process when it has an error in inter-application

communication space.

3

Consequently, writing an in-house simulator and circuit synthesizer ensures several

advantages. Latencies from operator can diminish by full automatic processes. Making a

new search algorithm can decrease total process time with solving complex large-scale

problems.

4

2. GENETIC ALGORITHM AND OPERATORS

In the nature, each species needs to adapt to a changing environment in order to

maximize of its survival property. The stronger species and individuals have more chance

to survive and breed. GA is formed with adaptation, breeding, elimination, and mutation of

individuals like in the natural environment. In other words, GA uses these rules in order to

solve problems or in order to optimize required processes or nearly unlimited number of

applications. GA is also a powerful method which can simplify, clarify and solve more

complicated problems quickly and robustly.

Terms in GA:

 Individual - A member of population or any possible solution

 Chromosome – Coded chain of an individual

 Allele - Gene in the chromosome or cell of coded chain

 Population - Group of all individuals

 Search Space - All possible solutions to the problem

 Locus - The position of a gene on the chromosome

 Genome - Collection of all chromosomes for an individual

 Fitness Function – tool can eliminate the unwanted individuals

 Cost – vital member of Fitness Function to help the make elimination

Operations in GA:

 Reproducing (Crossover)– Breeding of parents with the altering genes method

which ensures to produce new generation

 Mutation – Random altering of the gene in the chromosome of an individual

 Selecting (Elimination) – Choosing the satisfactory or strong individuals and

killing the unsatisfactory or weak individuals in the population by the help of

fitness function.

5

2.1. Recombination

In the recombination process, new individuals are produced by breeding of the

parents in the population. First, individuals are selected randomly in order to be coupled to

breed. Recombination can be done by real numbers or binary numbers which is called

crossover. Chosen couples breed via crossover techniques:

 Single-point / double-point /multi-point crossover

 Uniform crossover

 Shuffle crossover

 Crossover with reduced surrogate

In single-point crossover technique, a crossover position is determined and genes are

altered from this position

Figure 2. 1. Single point crossover

In double-point crossover technique, two crossover positions are determined and

genes are altered from these positions.

6

Figure 2. 2. Double point crossover

In multi-point crossover technique, more than two crossover points are selected, and

selected positions determine where the genes are altered.

Figure 2. 3. Multi point crossover

In the uniform crossover, each bit or gene is selected randomly, either from the first

parent or from the second one.

In selective crossover, one offspring of one parent gets the dominant allele genes.

The second offspring gets the recessive genes.

7

Figure 2. 4. Cut and splice crossover

In cut and splice crossover, crossover points are different for the couple which is

dated. Children born with the different string lengths.

In shuffle crossover, there are three steps in this type of crossover. First, the positions

of bits or genes in the string are randomly shuffled, then the two strings are crossed over, at

last, the offspring is un-shuffled.

2.2. Selection

Selection determines which individuals are chosen after recombination and how

many offspring each selected individual produces. The main idea is, to give preference to

better individuals, allowing them to pass on their genes to the next generation. The

goodness of each individual depends on its fitness. Fitness may be determined by an

objective function or by a subjective judgement. Also cost or punishment is a part of

fitness function.

The types of selections in GAs are:

 Roulette Selection

 Rank Selection

 Steady-State Selection

 Elitist Selection

8

 Tournament Selection

 Truncating Selection

In the roulette selection, parents are selected according to their fitness. The better the

chromosomes are, the more chances they have to be selected. Like the in the game, there is

a roulette wheel where all chromosomes in the population are placed, every individual has

its place according to its fitness function.

Roulette selection has problems when the fitnesses are different very much among

the individuals. If we assume that the best chromosome fitness is more than 90%, then it

covers a very big part of the roulette surface, hence the other chromosomes will have very

few chances to be selected.

Rank selection first ranks the population and then every chromosome receives fitness

from this ranking. The worst will have fitness 1, second worst 2, third 3, and the best will

have the maximum fitness value. The maximum fitness value is the number of

chromosomes in population.

In steady-state selection main idea of this selection is that a big part of chromosomes

should survive to next generation.

GA then works in the following way. In every generation, a few (good - with high

fitness) chromosomes are selected for creating a new offspring. Then, some (bad - with

low fitness) chromosomes are removed and the new offspring is placed in their place. The

rest of the population survives to a new generation.

In the elitist selection, the fit members of each generation are guaranteed to be

selected. When creating new population by crossover and mutation, we have a big chance,

that we will loose the best chromosome.

Elitism is name of method, which first copies the best chromosome (or a few best

chromosomes) to new population. The rest is done in classical way. Elitism can very

rapidly increase performance of GA, because it prevents losing the best found solution.

9

In tournament selection, subgroups of individuals are chosen from the larger

population, and members of each subgroup compete against each other. Only one

individual from each subgroup is chosen to reproduce.

In truncation selection, individuals are sorted according to their fitness. The

parameter for truncation selection is the truncation threshold value. Truncation threshold

value indicates the proportion of the population to be selected as parents. Individuals below

the truncation threshold do not produce offspring.

2.3. Mutation

Mutation is a vital operator in GA. By mutation, individuals’ genes are randomly

altered. These variations or mutation steps are generally small. They will be applied to the

variables of the individuals with a low probability (mutation probability or mutation rate).

Normally, offspring are mutated after being created by recombination according to

mutation rate.

Mutation occurs:

 Real value mutation

 Binary value mutation

Figure 2. 5. Mutation schematic

10

2.4. Usage of Genetic Algorithm

GA and evolutionary algorithms are used in several approaches in order to solve

problems and make optimization in large scale solution space.

The first and most important point is that genetic algorithms are intrinsically parallel.

Most other algorithms are serial and can only explore the solution space to a problem in

one direction at a time, and if the solution they discover turns out to be suboptimal, there is

nothing to do but abandon all work previously completed and start over. However, since

GAs have multiple offspring, they can explore the solution space in multiple directions at

once. If one path turns out to be a dead end, they can easily eliminate it and continue work

on more promising avenues, giving them a greater chance each run of finding the optimal

solution.

Due to the parallelism that allows them to implicitly evaluate many schemas at once,

genetic algorithms are particularly well-suited to solving problems where the space of all

potential solutions is truly huge - too vast to search exhaustively in any reasonable amount

of time.

Another notable strength of genetic algorithms is that they perform well in problems

for which the fitness landscape is complex - ones where the fitness function is

discontinuous, noisy, changes over time, or has many local optima.

GA has been used to schedule jobs in a sequence dependent setup environment for a

minimal total tardiness. All jobs are scheduled on a single machine; each job has a

processing time and a due date. The setup time of each job is dependent upon the job

which immediately precedes it. The GA is able to find good, but not necessarily optimal

schedules, fairly quickly.

11

GA is also used to schedule jobs in non-sequence dependent setup environment. The

jobs are scheduled on one machine with the objective of minimizing the total generally

weighted penalty for earliness or tardiness from the jobs' due dates. However, this does not

guarantee that it will generate optimal solutions for all schedules.

Added to these GA is used in distributed computer network topologies design and in

financial modeling applications.

Also GA is used in those areas which are stated below:

 Aerospace engineering

 Astronomy and astrophysics

 Chemistry

 Electrical engineering

 Game playing

 Geophysics

 Materials engineering

 Mathematics and algorithmic

 Military and law enforcement

 Molecular biology

 Pattern recognition and data mining

 Robotics

 Routing and scheduling

 Systems engineering

http://www.talkorigins.org/faqs/genalg/genalg.html#examples:robotics

12

3. HIERARCHICAL GENETIC ALGORITHM

With the growing required in GA applications, GA algorithms have started to

develop day by day. In some applications, especially in large scale problems, adding

specific improvements and tactics is required in genetic algorithm when the time

consumption is considerable. A type of a genetic algorithm has started to be used which is

called Hierarchical Genetic Algorithm in short (HGA).

The structure of Hierarchical Genetic Algorithm (HGA) is more flexible and modular

than the conventional genetic algorithm. HGA has multi-layered hierarchical topology

which brings it various efficiencies. The most significant advantage of being multi-layered

topology ensures dividing large-scale problems into sub-problems by using parallel

processed Genetic Algorithm increases the efficiency of the optimization search and

diminishes the total process time.

HGA may have two layers: top layer (master) and the low layer (slave) or may be

multi-layered: one top level and more than one bottom layers. Thanks to this architecture,

it is possible to use a mix of simple models or GAs (rapid solvers) and the complex models

or GAs (slow solvers) together in order to reach solutions. This mixed topology can

provide us same quality in the complex modules (GAs) and same time consumption is

simple modules (GAs). The top layer or higher sub-populations generally search a large

space with lower resolution, opposite to this lower-layer or lower levels search smaller

space with higher resolution. Communications among the populations are provided by

migration of individuals with different strategies. In this hierarchical topology, solutions go

up and down the layers and progressively the best solutions keep going up until they are

completely refined, at last if the solution is satisfied top population make the decision on

complete the whole processes. In the design of the HGA, the structure of the hierarchy and

topology strategies like individual migrations, coordination among the top layer and

bottom layers is important. Constructing an efficient coordination and load sharing in HGA

allows us to accelerate the convergence speed of the algorithm to the optimum, and to

diminish the total process time. Added to these, being a multi-layered structure in HGA

13

ensures multi-objective flexible architecture. Hence, altering one of the sub population or

bottom GA algorithm ensure us solving any other problem with small changes or

alterations.

As a consequence, using Hierarchical Genetic Algorithm with different strategies and

models can achieve to solve complex problems with the same quality in GA but faster than

GA. In other words, HGA works better than GA in complex problems.

3.1. Types of HGA

Hierarchical Genetic Algorithm is based on the Parallel Genetic Algorithms (in short

PGAs). Hierarchical Genetic Algorithms (HGAs) work in the form of hierarchical

topology, having different layers to perform different tasks (upper and lower level). Upper

level and lower levels can be evaluated together or separately. There can be individual

migration among the levels or individuals can be different for each level.

Some models of parallel model are stated below:

 Master-Slave (global) parallelization;

 Subpopulations with migration;

 Subpopulations with static overlapping;

 Subpopulations with dynamic overlapping;

 Massive parallelization.

In Master-Slave model, only evaluation of individuals and genetic operators are

paralleled and such parallel processes are all dependents of the master process. In this kind

of parallel HGA mode we can easily share the slave algorithm on other processors or

computers.

14

Figure 3. 1. HGA in master-slave mode

Figure 3. 2. HGA in island mode

15

4. PROPOSED HIERARCHICAL GENETIC ALGORITHM AND

OPTIMIZATON EXAMPLE CIRCUIT

In this thesis, a two-layered hierarchical genetic algorithm is used to optimize a

complex MOS integrated circuit. A third order Butterworth low pass filter is selected for a

simulation example. The Proposed HGA is formed of two layers. A master population or

first layer which is called upper population or upper module (in short UM) runs with GA to

optimize the values of its own individuals. These individuals are formed by external

capacitances, external resistances and cut-off frequency of filter and Butterworth

characterization of the filter. The slave population or second layer which is called lower

population or lower module (in short LM) also used different GA algorithm to optimize its

own individuals. In this layer, transistor based OPAMP circuits are calculated and

optimized with SPICE based formulas.

Figure 4. 1. The type of the Hierarchical Genetic Algorithm in this work

16

Both of the two modules have their own specific GA operators. Some genes or some

part of gene strings migrate to the lower module, which processes these genes with its own

operators and gives results to the communication space. The UM gets the new genes from

the communication space and goes on to reproducing new generations. In this application

both modules are executable files and the communication space is a folder which include

two “*.txt” files. One of these “*.txt” files is used by the UM to write the genes which are

sent to the LM, so this same file is the file which the LM reads the genes. The second file

is used by the LM to write back the processed genes and it is also the file which the UM

uses to read processed datas (immigrant genes).

First, the UM starts to process its own algorithm. After some generations, it sends the

immigrant genes in the chromosomes to the LM, these genes or locus are processed and

optimized by the LM. After some generations, the processed datas or immigrant genes are

send back to the UM by the LM. This cycle continues until the satisfactory child or

generation born.

The upper module (UM) optimizes a third order active Butterworth low pass filter

with non ideal practical OPAMPs. The lower module (LM) optimizes the OPAMPs’

bandwidth and output resistance and gain with Spice parameters by optimizing the

transistor based circuit. The UM gives the required OPAMPs’ gains, output resistances and

bandwidths to the LM by writing them to external text file in the communication space.

The LM gets these parameters and starts to process its own GA and finds the required

OPAMPs approximate results. After optimizing, the LM sends the chip layout areas, chip

power consumptions, bandwidth, gain and output resistance of OPAMPs and waits for new

OPAMP requests from the UM. The UM gets the required or close to required OPAMP

values and keeps on to process its own GA in order to get a satisfied individual, this

transaction pursues until the UM gets the result and breaks up the all processes. The UM

sends of 20 OPAMPs features (unity gain, bandwidth and output resistance) by writing it

to text file in the directory, the LM process these 20 OPAMPs and turns back with the

optimized values (chip area, chip power) by writing the external text file.

17

4.1. 3RD
 Order Butterworth Low-Pass Filter

To perform the proposed Hierarchical Genetic Algorithm a low-pass Butterworth

filter is selected. 3
rd

 order active low pass Butterworth with 2
nd

 order Sallen-Key topology

included is chosen.

Figure 4. 2. Comparison of low pass Butterworth filter with other types

Butterworth filter has flattest pass-band magnitude response. Added to these, pulse

response is better than the Chebyshev and rate of attenuation is better than the Bessel filter.

18

Figure 4. 3. Frequency response of low pass Butterworth filter according to order

The order of the filter is selected as three which is formed by one odd order topology

and an even topology by cascading.

Figure 4. 4. First stage or first order of the total topology

19

Figure 4. 5. Second stage or 2
nd

 order of the total topology

Figure 4. 6. Total topology of the 3
rd

 order low pass Butterworth filter with Sallen-Key

topology

0

2

() 1
()

() (1)(1)i

V s
H s

V s s s s (4.1)

2c cw f

 (4.2)

20

3
rd

 order Butterworth polynomial is:

0

2

() 1
()

()
(1)(() 1)i

c c c

V s
H s

s s sV s

w w w

 (4.3)

 So, from the circuit transfer function;

 1 1 2 2 3 3

2

c

C R C R C R
w (4.4)

1 1 2 2 3 3

2
cw

C R C R C R
 and 2c cw f

Cutoff frequency with ideal OPAMP is:

1 1 2 2 3 3

1

()
cf

C R C R C R (4.5)

The topology of the filter circuit is formed by two cascading structures. First stage is

1
st
 order and the second stage is 2

nd
 order low pass active filter. In the lower module,

values of the OPAMP (bandwidths, gains, output resistances, layout areas and power

consumptions) are optimized with the MOS technology.

21

Figure 4. 7. Non ideal OPAMP model in this work

Input resistance of the OPAMP is not included and in the analysis since MOS

technology is used. Output resistances and gains of two OPAMPs have maximum and

minimum values in order to get implementable results.

Figure 4. 8. Non ideal circuit schematic of 3
rd

 order low pass Butterworth filter

0

2

() 1
()

() (1)(1)i

V s
H s

V s s s s (4.1)

It is equal to:

0

3 2

() 1
()

() 2 2 1i

V s
H s

V s s s s (4.1)

22

If we scale this formulas by

c

s
s

w (4.7)

3

0

3 2 2 3

()
()

() 2 2

c

i c c c

V s w
H s

V s s w s w s w (4.8)

With (4.6):

2

0 3 2 3 1 3 0

3 2 02 1

3 3 3

()
()

()i

V s K Z s K Z s K Z
H s

KK KV s
s s s

K K K

 (4.9)

Zeros appear because of the non-ideality of the OPAMPs.

Matching the coefficients between the equation 4.8 and equation 4.9, angular frequencies

are:

2

3

2 c

K
w

K (4.10)

2 1

3

2 c

K
w

K (4.11)

3 0

3

c

K
w

K (4.12)

If we give different index parameter to the three different cw s :

2

3

2 cA

K
w

K (4.13)

2 1

3

2 cB

K
w

K (4.14)

3 0

3

cC

K
w

K (4.15)

23

In ideal form, it should be

 cA cB cCw w w

 (4.16)

Also with the equation

2c cw f
 (4.2)

The cutoff frequency of the Low-pass Butterworth filter should be:

 cA cB cCf f f

 (4.17)

 0 E2 E1 E1 E2 1 K

(4.18)

1 E2 E1 C1 R1 E1 C1 R1 E2 C1 R1 C1 R1 E2 E1 C2 R3 E2 E1 C2 R2 K

E1 E2 E1 C1 R1 E1 C1 R1 E2 C1 R1 C1 R1 E2 E1 C2 R3 E2 E1 C2 R2

E1 C2 R3 E1 C2 R2 E2 C2Ro1 E2 C2 R3 E2 C2 R2 C2 Ro1 C2 R3

C2 R2 E1 C3 Ro2 E1 C3 R2 C3Ro2 C3 Ro1 C3 R2

(4.19)

2 E2 E1 C2 C1 R1 R3 E2E1 C2 C1 R1 R2 E1 C2 C1 R1 R3 E1 C2 C1 R1 R2 K

 E2 C2 C1 R1 Ro1 E2C2 C1 R1 R3 E2 C2 C1 R1 R2 C2 C1 R1 Ro1

C2 C1 R1 R3 C2 C1 R1 R2 E1 C3C1 R1 Ro2 E1 C3 C1 R1 R2 C3 C1 R1 Ro2

 C3 C1 R1 Ro1 C3 C1 R1 R2 E2E1 C3 C2 R2 R3 E1 C3 C2 R3 Ro2

 E1 C3 C2 R2 Ro2 E1 C3 C2 R2 R3 E2 C3 C2R3 Ro1 E2 C3 C2 R2 R3

C3 C2 Ro1 Ro2 C3 C2 R3 Ro2 C3 C2 R3 Ro1 C3 C2 R2 Ro2 C3 C2 R2 R3

(4.20)

24

 3 E2 E1 C3 C2 C1 R1 R2 R3 E1 C3 C2 C1 R1 R3 Ro2 E1 C3 C2 C1 R1 R2 Ro2 K

 E1 C3 C2 C1 R1 R2 R3 E2 C3 C2 C1 R1 R3 Ro1 E2 C3 C2 C1 R1 R2 R3 +

C3 C2+C1 R1 Ro1 Ro2 C3 C2 C1R1 R3 Ro2 C3 C2 C1 R1 R3 Ro1

C3 C2 C1 R1 R2 Ro2 C3 C2 C1 R1 R2 R3
 (4.21)

From the equations: (4.13), (4.14), (4.15) and (4.2)

2

3

2 cA

K
w

K

2 1

3

2 cB

K
w

K

3 0

3

cC

K
w

K

And

2c cw f

2

34
cA

K
f

K (4.22)

1

3

1

2 2
cB

K
f

K (4.23)

0
3

3

1

2
cC

K
f

K (4.24)

 It should be,
 cA cB cCf f f

 (4.17)

Equation 4.17 has to be obtained in order to make a flat pass-band magnitude

response in Butterworth filter. This equation is also used in fitness function, bigger

difference among the cAf , cBf and cCf means more increment at the cost. Added to this,

ratio of the max resistance to min resistance and the ratio of the max capacitance to min

capacitance are considered. These proportions are vital to make a Butterworth

characterization.

25

4.2. Performing Hierarchical Genetic Algorithm

To find the optimized low-pass 3
rd

 order Butterworth filter, Hierarchical Genetic

Algorithm (in short HGA) performs with two modules. The upper module (UM) optimized

resistances, capacitances, frequency, Butterworth characterization, and superficially

OPAMP’s power consumption and chip layout area. The lower module (LM) optimizes the

OPAMP’s chip layout area, power consumption and the bandwidth with transistor base

using spice model of current technology.

26

Figure 4. 9. The flow chart of the Proposed HGA

27

4.3. Construction of a Chromosome of an Individual with Encoded Genes

Before using the genetic algorithm, individuals in the population should be created.

Also chromosomes of every individual have to be formed. This could be as a string of real

numbers or, as is more typically the case, a binary bit string. This bit string will be referred

to chromosomes from now on. A typical chromosome may look like the example as stated

below:

Chromosome example: 10010101110101001010011101101110111111101

 The individuals in this work formed an array which has 15 members or loci. Each

member of string array has 32 bit binary cells. Every cell includes one characterization in

the filter circuit.

Figure 4. 10. General form of an individual in the HGA, an array with 12 elements

The chromosomes formed by fifteen genes which are named cells in the array.

1. The gene# 0 is symbolized of R1 resistance in the circuit schematic in figure 4.11.

2. The gene# 1 is symbolized of R2 resistance in the figure 4.11.

3. The gene# 2 is symbolized of R3 resistance in the figure 4.11.

4. The gene# 3 is symbolized of C1 capacitance in the figure 4.11.

5. The gene# 4 is symbolized of C2 capacitance in the figure 4.11.

6. The gene# 5 is symbolized of C3 capacitance in the figure 4.11.

7. The gene# 6 is symbolized of gain of the first OPAMP in the figure 4.11.

8. The gene# 7 is symbolized of output resistance Ro1 of the first OPAMP in the

figure 4.11.

9. The gene# 8 is symbolized of gain of the second OPAMP in the figure 4.11.

28

10. The gene# 9 is symbolized of output resistance Ro2 of the second OPAMP in the

figure 4.11.

11. The gene# 10 is symbolized of the power consumption of the OPAMP.

12. The gene# 11 is symbolized of the layout chip area of the OPAMP.

13. The gene# 12 is symbolized of ratio of the max R to min R in the circuit.

14. The gene# 13 is symbolized of ratio of the max C to min C in the circuit.

15. The gene# 14 is symbolized of Bandwidth of the OPAMP.

16. The gene# 15 is symbolized of Fitness value of the individual.

All these cells or genes are chromosomes which are formed by 32 bit binary string.

Figure 4. 11. One element in the array of an individual

4.4. Recombination

Parents in the population are mated randomly, after this mating; crossover is

performed, between the couples. Two new children are born from a couple, hence from ten

couples 20 children are breed. The population has thirty individuals before selecting the

fittest ones.

29

4.4.1. Crossover

The crossover method in the proposed HGA is similar with double point crossover

but it has some other developed tactics. The first gene where the crossover starts, the last

gene where the crossover finished and crossover depth (genes which will be altered) are

determined. For example, the number which determines the first gene that the crossover

starts is 7. The number which determines the how many genes are altered in the crossover

is 11. The genes of couple’s chromosomes from the lowest significant 7th bit to 18th are

altered. Thanks to the gene alteration two new children are born.

Figure 4. 12. Crossover operator in this work

4.4.2. Mutation

As we know, an individual in this work has 15 cells in the array; all cells have their

own chromosomes. In the mutation operator, there are three random numbers which affect

the process. First random number is bit “1” or “0”. This bit determines what the mutated

gene will be. The second number determines which cell will be mutated in the individual.

The third number determines the bit or the gene which will be altered in the chromosome.

30

Figure 4. 13. Mutation operator in this work

4.5. Selection

In this work, selection is close to elitist selection. The fitness function is calculated

for all individuals in the search space. The fitness function generates the cost using

consistence among cAf , cBf , cCf cutoff frequency values, max/min R value, max/min C

value, power consumption value of the OPAMP and chip layout area value of the OPAMP.

All these values are normalized by their own normalization functions. After

normalization, all these values get their own weights. Summation of these values after

normalization and giving weight, cost value or fitness function value is formed. After

calculating the fitness function value, an algorithm writes this value to the individual’s 15
th

gene, hence all individuals carry their own fitness value in their arrays. In selection

operator, an algorithm sort all the population in the search space; after sorting, most fit 10

individuals are selected to survive and to breed in the next generations.

4.5.1. Fitness Function

The fitness function is formed by consistence among cAf , cBf , cCf cutoff frequency

values, max/min R value, max/min C value, power consumption value of the OPAMP,

chip layout area value of the OPAMP. Power consumption value and chip layout area

value are calculated from formulas of a model which is formed from 300 simulated results.

fk =Frequency value in the cost

31

pk = Power consumption value of OPAMP in the cost

ak = Chip layout area value of OPAMP in the cost

Rk = Maximum resistance/minimum resistance value in the cost

Ck = Maximum capacitance/minimum capacitance value in the cost

1W =Weight of frequency value in the cost

2W = Weight of power value in the cost

3W = Weight of area value in the cost

4W = Weight of max resistance/min resistance ratio value in the cost

5W = Weight of max cap/min cap ratio value in the cost

 2

1 2 3 4 5_ ((1) 1)f p a R cFitness Function W k W k W k W k W k
 (4.25)

Normalization of cutoff frequency:

0

_

_ _

cA

f

f wanted frequency
k

wanted frequency tolerance (4.26)

 1

_

_ _

cB

f

f wanted frequency
k

wanted frequency tolerance (4.27)

2

_

_ _

cC

f

f wanted frequency
k

wanted frequency tolerance (4.28)

 0 1 2f f f fk k k k

 (4.29)

32

Power Consumption:

E = Gain of the OPAMP

BW = Bandwidth of the OPAMP

Ro = Output resistance of the OPAMP

 1

1.5101

0.25928* 1.2106
P

E (4.30)

7

2 1.2182*10 * 0.00034877P BW
 (4.31)

 3 5

0.0073585

5.8601*10 * 2.2895
P

Ro (4.32)

 Power Consumption values from model:

1 2 3

3

P P P
P

 (4.33)

 Normalization of power values:

good

p

good bad

P powerconsump
k

powerconsump powerconsump (4.34)

OPAMP chip layout area values from model:

16 8

1 1.3354*10 * * 2.054*10A A BW
 (4.35)

13 8

2 2*10 * 4.3*10A Ro
 (4.36)

33

1 2

2

A A
A

 (4.37)

Normalization of area values:

good

a

good bad

A Area
k

Area Area (4.38)

Max Resistance/Min Resistance ratio:

max

min

R
Rmm

R (4.39)

Normalization of resistance ratio:

mm good

R

good bad

R Rmm
k

Rmm Rmm (4.40)

Max Capacitance/Min Capacitance ratio:

max

min

C
Cmm

C (4.41)

Normalization of capacitance ratio:

mm good

C

good bad

C Cmm
k

Cmm Cmm (4.42)

When, fk , pk , ak , Rk and Ck are combined with their weights fitness function is formed.

34

 2

1 2 3 4 5_ ((1) 1)f p a R cFitness Function W k W k W k W k W k
 (4.43)

4.6. Communication Space Between Master and Slave Module

While the HGA performs, master module (UM) and slave module (LM)

communicate by using communication space in order to realize individuals and locus

migration. In this space, there are two text files which include required values of the

OPAMP (gain, output resistance and bandwidth) and optimized results (OPAMP’s chip

layout area and chip power consumption) written by the slave module. The UM writes out

the required OPAMP’s features to the “non_sim.txt” file and the LM writes out this

OPAMP’s features area and power consumption to the “sim.txt” file.

Figure 4. 14. “non_sim.txt” and “sim.txt” files in communication space

35

As we see in Figure 4.15, there are two numbers at first line and three columns in the

“non_sim.txt” file. First number in the first line indicates how many times master and slave

modules communicate. Second number in the first line indicates the number of the

individuals that the UM send to the LM and in the file this number is 20. The three

columns consist of the OPAMP’s gain, OPAMP’s output resistance and OPAMP’s

bandwidth, respectively.

In the “sim.txt” file the number in the first line indicates how many times the UM

and the LM communicate like the first number in the first line in the “non_sim.txt” file.

The five columns consist of the OPAMP’s gain, OPAMP’s output resistance, OPAMP’s

bandwidth, OPAMP’s chip power consumption values and OPAMP’s chip layout areas,

respectively. The order between the UM and the LM is determined by the first number

both in two text files

36

5. EXAMPLES AND RESULTS

In the first example, upper module worked alone. The simulation and optimization

job which is done from lower module is also done by upper module with using internal

model. The results of this module are within 60% of SPICE simulation results. The results

of an example are presented in Table 5.1. 1R , 2R and 3R values were forced to 1000 and

1 1000C nF 2 500C nF and 3 2000C nF . The desired frequency was 10000 Hz and the

tolerance is 10%.

The initial values are:

The initial frequency = 159.2297 Hz

9000 Hz < Desired frequency < 11000 Hz

The results are given in the Table 5.1.

Table 5. 1. The result table of first example, model based GA

The calculated frequency = 9517.90332 Hz

Total Process Time Generation Number

923 second 47

1R 2R
3R 1C

2C
3C

62 72 107 251 nF 105 nF 340 nF

Gain of OPAMP Bandwidth of OPAMP
OUTR of OPAMP

6401 14276 33997

Power Consumption of OPAMP Chip Layout Area of OPAMP

8mW 35
2m

37

Figure 5. 1. Spice output of the *.cir file which is created by only the Upper Module

As we can see from the Figure 5.1, the values and the formulas can calculate the

correct frequency response, using GA in the UM.

Figure 5. 2. Frequency response change of first example (model based GA)

38

In the Figure 5.2, we can observe changing of the frequency response by the

generation number. Up to the 20
th

 generation, it increases rapidly, from the 25
th

 generation

to the 40
th

 generation, other values of the cost: chip layout area of the OPAMP, power

consumption of the OPAMP, max Res./min Res. Ratio and (max cap)/(min cap) ratio

converge. After 40
th

 generation GA tries to fix and optimization details.

Figure 5. 3. Cost Change with generation number for first example (model based GA)

Like the frequency graphic in figure 5.3, cost also rapidly decreases up to the 20
th

generation. After the 20
th

 generation, it starts to converge slowly, and at 46
th

 generation

GA finds the satisfied cost.

As a result, if the UM works alone with its inner OPAMP optimization formulas,

optimization takes very little time but the quality of the result and realization of OPAMP is

not satisfied.

In second example, HGA runs with conventional method. In other words, upper

module makes communication and wants OPAMP optimization from lower module in

every step or in every new generation. The lower module makes complete simulation and

optimization of the required OPAMPs upon every demand of the UM.

39

The results of an example are provided in Table 5.2:

 1R , 2R and 3R values are forced to 1000 and the 1 1000C nF
, 2 500C nF and

3 2000C nF . The desired frequency is 10000 Hz and the tolerance is 10%.

The initial values are:

The initial frequency = 159.2297 Hz

9000 Hz < Desired_frequency < 11000 Hz

The results are given in the Table 5.2.

Table 5. 2. The result table of the second example, standard HGA

The calculated frequency = 9975.095703 Hz

Total Process Time Generation Number

128456.23 second (35.68 hr) 71

1R 2R
3R 1C

2C
3C

254 42 112 62 nF 100 nF 511 nF

Gain of OPAMP Bandwidth of OPAMP
OUTR of OPAMP

3356 14962 4502

Power Consumption of OPAMP Chip Layout Area of OPAMP

2mW 34
2m

40

Figure 5. 4. Spice output of the cir file which is created by the HGA

The flat band of the low-pass Butterworth is best in this example as we see clearly in

Figure 5.4.

As we see in the Figure 5.5, there is a small gap between the best individual and the

rest of the population.

41

Figure 5. 5. The graphic of the cutoff frequency of the low pass Butterworth filter with

generation number, formed by standard HGA

Figure 5. 6. The graphic of the cost with generation number formed by standard HGA

42

Like in the Figure 5.5, in figure 5.6, there is a gap again between average of the

population and the best individual. The UM communicate with the LM in every generation

by sending 20 elite individual among the 30 individuals; hence 10 individuals do not go to

the LM.

In third example, the proposed HGA is run. The upper Module processes for 20

iterations and sends features of the required OPAMPs to the lower module by writing them

in “non_sim.text” in the communication space and waits for the results that will be sent

back by the lower module. When the upper module send the required OPAMP’s features,

the lower module gets the features (gain, bandwidth and output resistance) of OPAMP and

starts to optimize and design these OPAMPs. The lower module does not run whole

iterations; it runs for a limited number of iterations and gives back the results to the UM.

This loop sustains until the elite individual in the population gets close to satisfied result.

The UM controls the distance between the best individual and the desired individual. If the

population, especially the elite individual starts to get close to the solution, the UM wants

from the LM to make full optimization. If the population starts to go far away from the

satisfied result, UM wants from LM to make short-coming optimization again.

The results of an example stated below:

 1R , 2R
 and 3R values are forced to 1000 and the 1 1000C nF

, 2 500C nF and

3 2000C nF . The wanted frequency is 10000 Hz and the tolerance is 10%.

The initial values are:

The initial frequency = 159.2297 Hz

9000 Hz <Desired frequency < 11000 Hz

The results are given in the Table 5.3.

43

Table 5. 3. The result table of the third example, proposed HGA

The calculated frequency = 9930.5302 Hz

Total Process Time Generation Number

2143 second 61

1R 2R
3R 1C

2C
3C

122 98 240 126 nF 45 nF 240 nF

Gain of OPAMP Bandwidth of OPAMP
OUTR of OPAMP

2517 14895 1191

Power Consumption of OPAMP Chip Layout Area of OPAMP

2mW 34
2m

Figure 5. 7. Spice output of the cir file which is created by the proposed HGA

As we see in the figure 5.7 the frequency response is near 9905.415 Hz. In addition

when we consider the features of the OPAMP, solution is implementable and realizable.

44

Figure 5. 8. Frequency response change that is created by the proposed HGA

In Figure 5.8, the frequency response of elite individual and average of population is

shown. The dotted line is the average frequency response of the population. We can easily

see the sudden peaks in dotted line which are caused by the mutations.

Figure 5. 9. Cost change that is created by the proposed HGA

45

Parallel with the frequency response graphic, the peaks in this graphic overlap peaks

in the frequency response graphic because the effects of mutations.

5.1. Comparison

According to the examples adequate data are obtained in order to make comparison

among the model based GA, standard HGA and the two-layered proposed HGA.

Figure 5. 10. Gain of the OPAMP from result of the test

As we see, in Figure 5.10. Standard HGA and the proposed HGA have the result

(gain of the OPAMP) in the maximum and minimum implementation limit. On the other

hand model based GA has poor result to implement the design.

46

Figure 5. 11. Gain of the OPAMP form result of the test

Like in the previous graphic, standard HGA and proposed HGA have same quality of

the solution.

Table 5. 4. Total process time comparison

Total Process Time (second)

Model based GA 0.431

Standard HGA 128456.23 (35.68 hr)

Two-layered HGA 2143

47

Figure 5. 12. Graphical comparison of three applications.

It clearly seems that two-layered proposed HGA can solve problems in the examples

with close computation time to GA and same result quality as in standard HGA.

48

6. CONCLUSION

Two-layered proposed Hierarchic Genetic Algorithms are used to optimize MOS

based complex integrated circuits in 3
rd

 order low-pass Butterworth filter in order to

measure its performance. To measure the performance of the proposed HGA, the same

example problem performs to model based GA and to standard HGA. After performing

various tests to these three applications (model based GA, standard HGA and proposed

HGA) results prove that the proposed HGA has advantages. In the performance tests, three

applications are operated to optimize and design low-pass filter with the same frequency

responses. At the end of every test, total process time, calculated filter frequency response,

Butterworth characterization and features of OPAMPs are observed. When we consider

these control parameters, which are laid out from optimizations, proposed two-layered

HGA can gives satisfied outcomes. The proposed HGA performs same quality with the

standard HGA and close to process time of model based GA. The quality of the results is

determined by the LM according to realization and implementation in current MOS

technology. Added to these, thanks to the modular architecture, modules and the

technology can easily change in order to solve different complex problems.

All in all, two-layered proposed HGA can make optimization and solve complex

large-scale problems with approximately process time in GA and same result quality in

standard HGA.

49

7. REFERENCES

1. Worapradya K and S. Pratishthananda, “Fuzzy Supervisory PI controller Using the

Hierarchical Genetic Algorithms”, Control Conference, 2004. 5th Asian, Volume:

3, p.p: 1523- 1528 Vol.3 , 20-23 July 2004

2. Wiles J. and B. Tonkes, “Visualization of Hierarchical Cost surface for Evolutionary

Computing”, Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002

Congress on,Volume :1, p.p 157-162, 12-17 May 2002

3. Bo H. and W. Lixin, “The Application of Genetic Algorithm in Multi-Hierarchical

Complex Mechanical Structure Scheme Innovation Design”, Computer-Aided

Industrial Design and Conceptual Design, 2006. CAIDCD '06. 7th International

Conference on, No: 9487103, p.p: 1-6, 17-19 Nov. 2006

4. Fan Z., D. Erik Goodman, J. Wang, R. Rosenberg, K. Seo and J. Wu, “Hierarchical

Evolutionary Synthesis of MEMS”, Evolutionary Computation, 2004. CEC2004.

Congress on, Volume: 2, p.p 2320- 2327, 19-23 June 2004

5. Zhou Z., Y. S. Ong and P. B. Nair, “Hierarchical Surrogate-Assisted evolutionary

Optimization Framework”, Evolutionary Computation, 2004. CEC2004. Congress on,

Volume: 2, p.p: 1586- 1593, 19-23 June 2004

6. Wang C., Y. C. Soh, H. Wang and H. Wang, “A Hierarchical Genetic Algorithm for

Path Planning in a Static Environment with Obstacles” Electrical and Computer

Engineering, 2002. IEEE CCECE 2002. Canadian Conference on, Volume: 3, p.p:

1652- 1657, 2002

7. Lu Y., H. Zhang, W. Zhang, “The Application of Hierarchical Evolutionary Approach

for Sleep Apnea Classification”, Machine Learning and Cybernetics, 2005.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9768
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4127003
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4127003
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4127003
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7909
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7909
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10231
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10231

50

Proceedings of 2005 International Conference on, Volume: 6, p.p:3708-3712, 18-21

Aug. 2005

8. Isaacs A., T. Ray, W. Smith, “A Hybrid Evolutionary Algorithm With Simplex Local

Search” Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, p.p: 1701-

1708 , 25-28 Sept. 2007

9. Lim D., Y. Ong, Y. Jin, B. Sendholf, B. Lee, “Efficient Hierarchical Parallel Genetic

Algorithms Using Grid Computing”, Future Generation Computer Systems , Volume

23 , P: 658-670, 4 May 2007

10. Herrera F., M. Lozano, C. Moraga, “Hierarchical Distributed Genetic Algorithms”

Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, Volume:

1, p.p: 272-276, 2000

11. Fan. Z., J. Hu, K. Seo, D. E. Goodman, R. C. Rosenberg and B. Zhang, “A Bond

Graph Representation Approach for Automated Analog Fitler Design”, Gecco 2001,

p:1253, 2001

12. Ma M. and L. Zhang, “Optimization a fuzzy network with a hierarchical genetic

algorithm”, Intelligent Sytesms, Vol. 11 No. 3, pp. 76-84, June 1996

13. Olivera. C. M A., L. A. N. Lorena, S. Stephani and A. J. Preto

 “A Hierarchical Fair Competition Genetic Algorithm for Numerical Optimization”,

Gecco 2002,

14. Gulsen. M. and A. E. Smith, “A Hierarchical Genetic Algorithm for System

Identification and Curve Fitting with a Supercomputer Implementation”, 1031

Benedum Hall University of Pittsburgh,USA, 1998

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4424445
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6997

51

15. Kunicka A. and H. Kwasnicka, “Hypermarket – an evolutionary paths planner”,

Evolutionary Computation and Global Optimization 2006, ISSN 0137-2343; pp. 247-

256, June 2, 2006

16. Gielen G. G. and W. Sansen, “Symbolic Analysis for Automated Design of Analog

Integrated Circuits”, Boston, MA: Kluwer, 1991.

17. Sussman G. J. and R.M. Stallman, “Heuristic Techniques in Computer-Aided Circuit

 Analysis,” IEEE Trans. Circuits and Systems, Vol. 22, 1975.

18. Harjani R., R.A. Rutenbar and L.R. Carey, “A Prototype Framework for Knowledge-

 Based Analog Circuit Synthesis,” Proc. 24th Design Automation Conf., 1987.

19. Ochotta E.S., R.A. Rutenbar and L.R. Carley, \Synthesis of High-Performance Analog

 Circuits in ASTRX/OBLX," IEEE Trans. Computer-Aided Design, Vol. 15, pp.

 273{294, 1996.

20. John H. H., “Adaptation in Natural and Artificial Systems”, Univ. of Michigan

 Press, Ann Arbor, 1975.

21. Harjani R., R.Rutenbar, and L. R. Carley, “OASYS: A framework for analog circuit

synthesis,” IEEE Trans. Computer-Aided Design, Vol.8, pp. 1247-1265, Dec. 1989.

22. El-Turky F. and E. Perry, “BLADES: “An artificial intelligence approach to analog

circuit design,” IEEE Trans. Computer-Aided Design, Vol. 8, pp. 680–692, June

1989.

23. Degrauwe M., “IDAC:An interactive design tool for analog CMOS circuits,” IEEE J.

Solid-State Circuits, Vol. SC-22, pp. 1106–1116, Dec. 1987.

52

24. Stehr G., H. E. Graeb, and K. J. Antreich, “Analog performance space exploration by

normal-boundary intersection and by Fourier-Motzkin elimination,” IEEE Trans.

Computer-Aided Design, Vol. 26, 1733-1748, Oct. 2007.

25. Ingber L., “Very fast simulated re-annealing,” Mathl. Comput. Modelling, Vol. 12, pp.

967-973, 1989.

26. Michalewicz Z., “Genetic Algorithms + Data Structures = Evolution Programs,”

Springer, 1998.

27. Yuan J., N. Farhat, and J. V. der Spiegel, “GBOPCAD: A synthesis tool for high

performance gain-boosted opamp design,” IEEE Trans. Circuits Syst. I, Fundamental

Theory and Applications, Vol.52, pp. 1535-1544, Aug. 2005.

