ANALOG CIRCUIT OPTIMIZATION WITH HIERARCHICAL GENETIC
ALGORITHMS - 3"° ORDER LOW-PASS BUTTERWORTH FILTER EXAMPLE

by
Olcay Durul Azeri
B.S., Electronic & Telecommunication Engineering,

Yildiz Technical University, 2005

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requireds for the degree of

Master of Science

Graduate Program in Electrical & Electronics Engineering
Bogazi¢i University

2009

ANALOG CIRCUIT OPTIMIZATION WITH HIERARCHICAL GENETIC
ALGORITHMS - 3"P ORDER LOW-PASS BUTTERWORTH FILTER EXAMPLE

APPROVED BY:

Prof. Giinhan DUNDAR

(Thesis Supervisor)

Prof. H. Levent AKIN

Asst. Prof. Arda Deniz YALCINKAYA ..

DATE OF APPROVAL: 16.09.2009

To my lovely
FAMILY

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Giinhan Diindar. Special thanks go to him

for all the help, guidance, encouragement, and motivation during my Ms. Thesis.

I would like to thank Prof. Dr. Francisco Fernandez for his innovative ideas and

guidance.

I would like to thank Prof. Dr. H. Levent Akin and Yrd. Dog¢. Dr. Arda Deniz

Yalginkaya for their contribution.
I would like to thank Ozsun S. Sénmez for his help and guidance.

I would like to thank special persons in this world; my Dad (Ekrem Azeri), my Mom

(Giileser Azeri) and my sister (Oya Ilgin Azeri or my ciici ©).

I would like to thank my friends: Sezgin Bayrak, Erdal Karacal, Ahmet Koseoglu,

Kinay Bozdemir to let me using their PC’s for simulation.

I would like to Seyrani Korkmaz for his help.

ABSTRACT

ANALOG CIRCUIT OPTIMIZATION WITH HIERARCHICAL GENETIC
ALGORITHMS - 3"° ORDER LOW-PASS BUTTERWORTH FILTER EXAMPLE

In the several previous studies, various kinds of Hierarchical Genetic Algorithm
structures have been used to solve complex problems. In this thesis, a master-slave mode,
two-layered Hierarchical Genetic Algorithm was designed to optimize an implementable

complex integrated circuit.

Our expectations from two-layered proposed HGA is to minimize the total process
time, to reach the same solution quality with standard HGA in complex problems and to
increase the compatibility to any other topology by working two modules collaboratively

with each other.

In the example chosen in the thesis, the upper module (master module) will optimize
a 3" order active low-pass Butterworth filter and the lower module (slave module) will
optimize the OPAMPs (MOS technology based integrated circuit) in the filter circuit, with
SPICE based simulation. Thanks to this algorithm which will be realized by the proposed
HGA, solutions can be implemented with current MOS technologies and the same result
quality can be obtained with standard HGA and a low total process time is obtained such as

in the Genetic Algorithm.

Vi

OZET

HIYERARSIK GENETIiK ALGORITMA iLE ANALOG DEVRE
OPTIMIiZASYONU - 3. DERECEDEN ALCAK GECIiREN BUTTERWORTH
FILTRE ORNEGI

Daha once yapilan ¢aligmalarda karmasik problemleri ¢6zmek icin ¢esitli hiyerarsik
genetik algoritma yapilari kullanilmistir. Bu tezde, uygulanabilir karmagik entegre devre
optimizasyonu yapmak i¢in master-slave modunda iki katmanli Hiyerarsik Genetik

Algoritma tasarlandi.

Iki katmanli olarak kullandigimiz hiyerarsik genetik algoritmadan beklentimiz, iki
modiiliin miisterek ¢alisarak, toplam islem siiresini kisaltmak, klasik genetik algoritmadaki
sonug¢ kalitesini karmasik problemler de saglamak ve degisik topolojilere uyumlulugu

artirmaktir.

Tezde secilen 6rnekte, list modiil 3. dereceden algak gegiren aktif Butterworth filtreyi
optimize edecek ve alt modiilde filtrelerde kullanilan OPAMP’1 (MOS teknoloji bazli
entegre devre) SPICE tabanli simiilasyon ile optimize edecek. Onerilen HGA ile
gerceklestirilecek bu sistem sayesinde, ¢oOziimler giincel MOS teknolojisi ile
gerceklenebilecek, standart HGA ile ayni sonug¢ kalitesi yakalanacak ve Genetik

Algoritmada ki gibi diisiik toplam islem siiresi saglanacaktir.

Vil

TABLE OF CONTENTS
ACKNOWLEDGEMENTS Lo, 1\
AB S T R A T o v
OZET i Vi
LIST OF FIGURES .. e, IX
LIST OF TABLES e Xi
LIST OF SYMBOLS / ABBREVIATIONS ..., xii
L INTRODUCTION L 1
1.1. Overview of Genetic Algorithmo 1
1.2. Overview of Analogue Circuit Synthesiscccoiiiiiiiiiiiian... 2
2. GENETIC ALGORITHM AND OPERATORS ..., 4
2.1. ReCOMDINAtION ... 5
2.2, SBIBCHION ..t 7
2.3 MUTBEION oo 9
2.4. Usage of Genetic Algorithmo, 10
3. HIERARCHICAL GENETIC ALGORITM ... 12
3. TYPeS Of HG A 13

4. PROPOSED HIERARCHICAL GENETIC ALGORITHM AND OPTIMIZATON

EXAMPLE CIRCUIT e 15
4.1. 3%° Order Butterworth Low-Pass Filtercccccccciiiiiiiiinne, 17
4.2. Performing Hierarchical Genetic Algorithm ... 25
4.3. Construction of a Chromosome of an Individual with Encoded Genes 27
4.4, RecoMDINGtiONo.iuii i 28

A4.L. CrOSSOVEL .oneeie ettt e e e e e 29

A4.4.2. MUBALION ..o 29

Y= (1o (o] IR 30

4.5.1. Fitness Function
4.6. Communication Space Between Master and Slave Module

5. EXAMPLES AND RESULTS

5.1. Comparison
6. CONCLUSION

7. REFERENCES

viii

30
34

36
45

48

49

Figure 3.

Figure 3.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

Figure 4.

LIST OF FIGURES

1. HGA in master-slave MOGEueeee et

2. HGA N ISIANd MOOE .o i,

1. The type of the Hierarchical Genetic Algorithm in thiswork

2. Comparison of low pass Butterworth filter with other types

3. Frequency response of low pass Butterworth filter according to order ..

4. First stage or first order of the total topologyocooiiiiil.

5. Second stage or 2" order of the total topologyoo.......

6. Total topology of the 3" order low pass Butterworth filter with Sallen-Key
TOPOIOQY ..o

7. Non ideal OPAMP model in thisworkooo i,

8. Non ideal circuit schematic of 3 order low pass Butterworth filter

9. The flow chart of the Proposed HGA ...,

10. General form of an individual in the HGA, an array with 12 elements ..

11. One element in the array of an individualc.coai

12. Crossover operator inthiswork ...,

14

14

15

17

18

18

19

19

21

21

26

27

28

29

Figure 4. 13. Mutation operator in thiSworkooiiiiiiiiiiiiiii, 30

Figure 4. 14. “non_sim.txt” and “sim.txt” files in communication space 34

Figure 5. 1. Spice output of the *.cir file which is created by only the Upper Module 37

Figure 5. 2. Frequency response change of first example (model based GA) 37

Figure 5. 3. Cost Change with generation number for first example (model based GA) 38

Figure 5. 4. Spice output of the cir file which is created by the HGA 40

Figure 5. 5. The graphic of the cutoff frequency of the low pass Butterworth filter with

generation number, formed by standard HG 41

Figure 5. 6. The graphic of the cost with generation number formed by standard HGA 41

Figure 5. 7. Spice output of the cir file which is created by the proposed HGA 43
Figure 5. 8. Frequency response change that is created by the proposed HGA 44
Figure 5. 9. Cost change that is created by the proposed HGA 44
Figure 5. 10. Gain of the OPAMP from result of the testl. 45
Figure 5. 11. Gain of the OPAMP form result of the testoo..l. 46

Figure 5. 12. Graphical comparison of three applications 47

LIST OF TABLES

Table 5. 1. The result table of first example, model based GA

Table 5. 2. The result table of the second example, standard HGA

Table 5. 3. The result table of the third example, proposed HGA

Table 5. 4. Total process time comparison

Xi

36

39

43

46

Xii

LIST OF SYMBOLS / ABBREVIATIONS

fe Frequency

W Angular Frequency

BW Bandwidth of the OPAMP

E Gain of the OPAMP

GA Genetic Algorithm

HGA Hierarchical Genetic Algorithm

Ko Konstant in in transfer function

K1 Coefficent of s in transfer function

K Coefficent of s in transfer function

Ks Coefficent of s in transfer function

K¢ Frequency value in the cost

Ko Power consumption value of OPAMP in the cost

Ka Chip layout area value of OPAMP in the cost

Kr Maximum resistance/minimum resistance value in the cost
ke Maximum capacitance/minimum capacitance value in cost
LM Lower Module

OPAMP Operational Amplifier

PGA Parallel Genetic Algorithm

Ro Output resistance of the OPAMP

UM Upper Module

W, Weight of frequency value in the cost

W, Weight of power value in the cost

W3 Weight of area value in the cost

W, Weight of max resistance/min res. ratio value in the cost

W5 Weight of max cap/min cap ratio value in the cost

1. INTRODUCTION

1.1. Overview of Genetic Algorithm

A genetic algorithm (in short GA) is an optimization technique to search and find
approximate solutions to combinatorial optimization problems. Genetic algorithms are a
particular class of evolutionary algorithms that use techniques inspired by evolutionary

biology such as inheritance, mutation, recombination (crossover) and natural selection.

The earlier instances of Genetic Algorithms appeared in the late 1950s and early
1960s, programmed on computers by evolutionary biologists who were clearly seeking to
model aspects of natural evolution. It did not occur to them that this strategy could be more

generally applied to artificial problems.

Genetic algorithms originated from the studies of cellular automata, conducted by
John Holland and his colleagues at the University of Michigan in 1970s. Research in GAs
remained largely theoretical until the mid-1980s, when The First International Conference
on Genetic Algorithms was held at The University of Illinois. As academic interest grew,
the increase in desktop computational power allowed for practical application of the new
technique. In 1989, The New York Times writer John Markoff wrote about Evolver, the
first commercially available desktop genetic algorithm. Custom computer applications
began to emerge in a wide variety of fields, and these algorithms are now used by several
companies to solve large scale problems, data fitting, trend spotting, budgeting and

virtually any other type of combinatorial optimization.

1.2. Overview of Analogue Circuit Synthesis

Analogue circuit synthesis is a essential in various levels at analogue and digital
design processes by adjusting transistor sizing, calculating the passive component values
and adjusting bias voltages and currents. Most MOS based integrated circuits (ASIC
designs) require analogue modules to communicate external integrated circuits or passive
components in distributed circuits [16]. Because of the nonlinearity in analogue designs,
searching a huge solution space makes analogue simulation more difficult. In the last few
years some techniques were used which incorporate heuristics [17], knowledge-based
optimization [18], and simulation-based optimization [19]. Evolutionary algorithms and
especially genetic algorithms were included to analogue circuit synthesis approximately
three decades ago [20].

Some knowledge-based analogue synthesis computer programs; OASYS [21],
BLADES [22] and IDAC [23] enable rapid synthesis of analog MOS circuits. On the other
hand, the results of these knowledge based approaches are inaccurate.

In addition to, equation-based analogue synthesis techniques have also been used.
Some examples of these approaches are OPASYN [24], OPTIMAN [25] and AMGIE [26].
These techniques are quite fast due to using analytical equations for circuit evaluation, if
the terms in transfer function are not complex. As the equations get more complicated, this

model loses its efficiency.

Nowadays, simulation-based approaches are widely used for analogue circuit
synthesis. One commercially simulation-based approach is GBOPCAD [27] which uses
HSPICE. Using a commercial tool brings some advantages; to get rid of writing software
and to adapt easily to different simulation environments. On the contrary, using
commercial tool has undeniable drawbacks. Two of the main drawbacks are latencies with
user operating and breaking the synthesis process when it has an error in inter-application

communication space.

Consequently, writing an in-house simulator and circuit synthesizer ensures several
advantages. Latencies from operator can diminish by full automatic processes. Making a
new search algorithm can decrease total process time with solving complex large-scale

problems.

2. GENETIC ALGORITHM AND OPERATORS

In the nature, each species needs to adapt to a changing environment in order to
maximize of its survival property. The stronger species and individuals have more chance
to survive and breed. GA is formed with adaptation, breeding, elimination, and mutation of
individuals like in the natural environment. In other words, GA uses these rules in order to
solve problems or in order to optimize required processes or nearly unlimited number of
applications. GA is also a powerful method which can simplify, clarify and solve more

complicated problems quickly and robustly.

Terms in GA:

e Individual - A member of population or any possible solution
e Chromosome — Coded chain of an individual

o Allele - Gene in the chromosome or cell of coded chain

e Population - Group of all individuals

e Search Space - All possible solutions to the problem

o Locus - The position of a gene on the chromosome

e Genome - Collection of all chromosomes for an individual

e Fitness Function — tool can eliminate the unwanted individuals

o Cost — vital member of Fitness Function to help the make elimination
Operations in GA:

e Reproducing (Crossover)— Breeding of parents with the altering genes method
which ensures to produce new generation

e Mutation — Random altering of the gene in the chromosome of an individual

e Selecting (Elimination) — Choosing the satisfactory or strong individuals and
Killing the unsatisfactory or weak individuals in the population by the help of

fitness function.

2.1. Recombination

In the recombination process, new individuals are produced by breeding of the
parents in the population. First, individuals are selected randomly in order to be coupled to
breed. Recombination can be done by real numbers or binary numbers which is called

crossover. Chosen couples breed via crossover techniques:

« Single-point / double-point /multi-point crossover
¢ Uniform crossover
o Shuffle crossover

 Crossover with reduced surrogate

In single-point crossover technique, a crossover position is determined and genes are

altered from this position

Parents Offsprings

—

Figure 2. 1. Single point crossover

In double-point crossover technique, two crossover positions are determined and

genes are altered from these positions.

Parents Offsprings

—

Figure 2. 2. Double point crossover

In multi-point crossover technique, more than two crossover points are selected, and

selected positions determine where the genes are altered.

Parents Offsprings

—

Figure 2. 3. Multi point crossover

In the uniform crossover, each bit or gene is selected randomly, either from the first

parent or from the second one.

In selective crossover, one offspring of one parent gets the dominant allele genes.

The second offspring gets the recessive genes.

Parents Offsprings

-
1

Figure 2. 4. Cut and splice crossover

In cut and splice crossover, crossover points are different for the couple which is
dated. Children born with the different string lengths.

In shuffle crossover, there are three steps in this type of crossover. First, the positions
of bits or genes in the string are randomly shuffled, then the two strings are crossed over, at

last, the offspring is un-shuffled.

2.2. Selection

Selection determines which individuals are chosen after recombination and how
many offspring each selected individual produces. The main idea is, to give preference to
better individuals, allowing them to pass on their genes to the next generation. The
goodness of each individual depends on its fitness. Fitness may be determined by an
objective function or by a subjective judgement. Also cost or punishment is a part of

fitness function.
The types of selections in GAs are:

e Roulette Selection
e Rank Selection
o Steady-State Selection

e Elitist Selection

e Tournament Selection

e Truncating Selection

In the roulette selection, parents are selected according to their fitness. The better the
chromosomes are, the more chances they have to be selected. Like the in the game, there is
a roulette wheel where all chromosomes in the population are placed, every individual has

its place according to its fitness function.

Roulette selection has problems when the fitnesses are different very much among
the individuals. If we assume that the best chromosome fitness is more than 90%, then it
covers a very big part of the roulette surface, hence the other chromosomes will have very

few chances to be selected.

Rank selection first ranks the population and then every chromosome receives fitness
from this ranking. The worst will have fitness 1, second worst 2, third 3, and the best will
have the maximum fitness value. The maximum fitness value is the number of

chromosomes in population.

In steady-state selection main idea of this selection is that a big part of chromosomes

should survive to next generation.

GA then works in the following way. In every generation, a few (good - with high
fitness) chromosomes are selected for creating a new offspring. Then, some (bad - with
low fitness) chromosomes are removed and the new offspring is placed in their place. The

rest of the population survives to a new generation.

In the elitist selection, the fit members of each generation are guaranteed to be
selected. When creating new population by crossover and mutation, we have a big chance,

that we will loose the best chromosome.

Elitism is name of method, which first copies the best chromosome (or a few best
chromosomes) to new population. The rest is done in classical way. Elitism can very

rapidly increase performance of GA, because it prevents losing the best found solution.

In tournament selection, subgroups of individuals are chosen from the larger
population, and members of each subgroup compete against each other. Only one

individual from each subgroup is chosen to reproduce.

In truncation selection, individuals are sorted according to their fitness. The
parameter for truncation selection is the truncation threshold value. Truncation threshold
value indicates the proportion of the population to be selected as parents. Individuals below

the truncation threshold do not produce offspring.

2.3. Mutation

Mutation is a vital operator in GA. By mutation, individuals’ genes are randomly
altered. These variations or mutation steps are generally small. They will be applied to the
variables of the individuals with a low probability (mutation probability or mutation rate).
Normally, offspring are mutated after being created by recombination according to

mutation rate.
Mutation occurs:

o Real value mutation

e Binary value mutation

— Fithess Value

7 6 4 3 11 0

Original Offspring |1 | 1| 0|1 1|00} 1 217
7 6 5 4 3 11 0

Mutated Offspring |1 |10l 1 1110/ 1|1 219

MutatEGene

Figure 2. 5. Mutation schematic

10

2.4. Usage of Genetic Algorithm

GA and evolutionary algorithms are used in several approaches in order to solve

problems and make optimization in large scale solution space.

The first and most important point is that genetic algorithms are intrinsically parallel.
Most other algorithms are serial and can only explore the solution space to a problem in
one direction at a time, and if the solution they discover turns out to be suboptimal, there is
nothing to do but abandon all work previously completed and start over. However, since
GAs have multiple offspring, they can explore the solution space in multiple directions at
once. If one path turns out to be a dead end, they can easily eliminate it and continue work
on more promising avenues, giving them a greater chance each run of finding the optimal

solution.

Due to the parallelism that allows them to implicitly evaluate many schemas at once,
genetic algorithms are particularly well-suited to solving problems where the space of all
potential solutions is truly huge - too vast to search exhaustively in any reasonable amount

of time.

Another notable strength of genetic algorithms is that they perform well in problems
for which the fitness landscape is complex - ones where the fitness function is

discontinuous, noisy, changes over time, or has many local optima.

GA has been used to schedule jobs in a sequence dependent setup environment for a
minimal total tardiness. All jobs are scheduled on a single machine; each job has a
processing time and a due date. The setup time of each job is dependent upon the job
which immediately precedes it. The GA is able to find good, but not necessarily optimal

schedules, fairly quickly.

11

GA is also used to schedule jobs in non-sequence dependent setup environment. The
jobs are scheduled on one machine with the objective of minimizing the total generally
weighted penalty for earliness or tardiness from the jobs' due dates. However, this does not

guarantee that it will generate optimal solutions for all schedules.

Added to these GA is used in distributed computer network topologies design and in

financial modeling applications.

Also GA is used in those areas which are stated below:

 Aerospace engineering

e Astronomy and astrophysics
e Chemistry

 Electrical engineering

o Game playing

e Geophysics

o Materials engineering

o Mathematics and algorithmic
o Military and law enforcement
e Molecular biology

« Pattern recognition and data mining
e Robotics

e Routing and scheduling

« Systems engineering

http://www.talkorigins.org/faqs/genalg/genalg.html#examples:robotics

12

3. HIERARCHICAL GENETIC ALGORITHM

With the growing required in GA applications, GA algorithms have started to
develop day by day. In some applications, especially in large scale problems, adding
specific improvements and tactics is required in genetic algorithm when the time
consumption is considerable. A type of a genetic algorithm has started to be used which is
called Hierarchical Genetic Algorithm in short (HGA).

The structure of Hierarchical Genetic Algorithm (HGA) is more flexible and modular
than the conventional genetic algorithm. HGA has multi-layered hierarchical topology
which brings it various efficiencies. The most significant advantage of being multi-layered
topology ensures dividing large-scale problems into sub-problems by using parallel
processed Genetic Algorithm increases the efficiency of the optimization search and

diminishes the total process time.

HGA may have two layers: top layer (master) and the low layer (slave) or may be
multi-layered: one top level and more than one bottom layers. Thanks to this architecture,
it is possible to use a mix of simple models or GAs (rapid solvers) and the complex models
or GAs (slow solvers) together in order to reach solutions. This mixed topology can
provide us same quality in the complex modules (GAs) and same time consumption is
simple modules (GAs). The top layer or higher sub-populations generally search a large
space with lower resolution, opposite to this lower-layer or lower levels search smaller
space with higher resolution. Communications among the populations are provided by
migration of individuals with different strategies. In this hierarchical topology, solutions go
up and down the layers and progressively the best solutions keep going up until they are
completely refined, at last if the solution is satisfied top population make the decision on
complete the whole processes. In the design of the HGA, the structure of the hierarchy and
topology strategies like individual migrations, coordination among the top layer and
bottom layers is important. Constructing an efficient coordination and load sharing in HGA
allows us to accelerate the convergence speed of the algorithm to the optimum, and to

diminish the total process time. Added to these, being a multi-layered structure in HGA

13

ensures multi-objective flexible architecture. Hence, altering one of the sub population or
bottom GA algorithm ensure us solving any other problem with small changes or

alterations.

As a consequence, using Hierarchical Genetic Algorithm with different strategies and
models can achieve to solve complex problems with the same quality in GA but faster than

GA. In other words, HGA works better than GA in complex problems.

3.1. Typesof HGA

Hierarchical Genetic Algorithm is based on the Parallel Genetic Algorithms (in short
PGAs). Hierarchical Genetic Algorithms (HGAs) work in the form of hierarchical
topology, having different layers to perform different tasks (upper and lower level). Upper
level and lower levels can be evaluated together or separately. There can be individual

migration among the levels or individuals can be different for each level.

Some models of parallel model are stated below:

Master-Slave (global) parallelization;

e Subpopulations with migration;

e Subpopulations with static overlapping;

e Subpopulations with dynamic overlapping;

e Massive parallelization.

In Master-Slave model, only evaluation of individuals and genetic operators are
paralleled and such parallel processes are all dependents of the master process. In this kind
of parallel HGA mode we can easily share the slave algorithm on other processors or

computers.

Master Population

Master Population

Slave Populations

Figure 3. 1. HGA in master-slave mode

Populations

Populations

Figure 3. 2. HGA in island mode

14

Slave Populations

15

4. PROPOSED HIERARCHICAL GENETIC ALGORITHM AND
OPTIMIZATON EXAMPLE CIRCUIT

In this thesis, a two-layered hierarchical genetic algorithm is used to optimize a
complex MOS integrated circuit. A third order Butterworth low pass filter is selected for a
simulation example. The Proposed HGA is formed of two layers. A master population or
first layer which is called upper population or upper module (in short UM) runs with GA to
optimize the values of its own individuals. These individuals are formed by external
capacitances, external resistances and cut-off frequency of filter and Butterworth
characterization of the filter. The slave population or second layer which is called lower
population or lower module (in short LM) also used different GA algorithm to optimize its
own individuals. In this layer, transistor based OPAMP circuits are calculated and

optimized with SPICE based formulas.

Upper Module (UM)

]

'.. ®
o o0 o %o 0
o190 e o oe ..

jCommunicatiun Space
I

Lower Module (LM)

Figure 4. 1. The type of the Hierarchical Genetic Algorithm in this work

16

Both of the two modules have their own specific GA operators. Some genes or some
part of gene strings migrate to the lower module, which processes these genes with its own
operators and gives results to the communication space. The UM gets the new genes from
the communication space and goes on to reproducing new generations. In this application
both modules are executable files and the communication space is a folder which include
two “*.txt” files. One of these “*.txt” files is used by the UM to write the genes which are
sent to the LM, so this same file is the file which the LM reads the genes. The second file
is used by the LM to write back the processed genes and it is also the file which the UM

uses to read processed datas (immigrant genes).

First, the UM starts to process its own algorithm. After some generations, it sends the
immigrant genes in the chromosomes to the LM, these genes or locus are processed and
optimized by the LM. After some generations, the processed datas or immigrant genes are
send back to the UM by the LM. This cycle continues until the satisfactory child or

generation born.

The upper module (UM) optimizes a third order active Butterworth low pass filter
with non ideal practical OPAMPs. The lower module (LM) optimizes the OPAMPs’
bandwidth and output resistance and gain with Spice parameters by optimizing the
transistor based circuit. The UM gives the required OPAMPs’ gains, output resistances and
bandwidths to the LM by writing them to external text file in the communication space.
The LM gets these parameters and starts to process its own GA and finds the required
OPAMPs approximate results. After optimizing, the LM sends the chip layout areas, chip
power consumptions, bandwidth, gain and output resistance of OPAMPs and waits for new
OPAMP requests from the UM. The UM gets the required or close to required OPAMP
values and keeps on to process its own GA in order to get a satisfied individual, this
transaction pursues until the UM gets the result and breaks up the all processes. The UM
sends of 20 OPAMPs features (unity gain, bandwidth and output resistance) by writing it
to text file in the directory, the LM process these 20 OPAMPs and turns back with the

optimized values (chip area, chip power) by writing the external text file.

17

4.1. 37P Order Butterworth Low-Pass Filter

To perform the proposed Hierarchical Genetic Algorithm a low-pass Butterworth

filter is selected. 3" order active low pass Butterworth with 2™ order Sallen-Key topology

included is chosen.

Butterworth

Ilagnitude(dE)

04

Llagnitude] dE)

0 0.2 0.4 0.6 0.8 I
Fregqueney iradfzec)

Chebyshev type 2

Magnitiade] dBE)

04

0 02 04 0A 08 1
Fregquency (radfzec)

Llagnitude dE)

.

=
[B¥]

Chebyshev type 1

=3

.

02

ol

0 0.2 04 0.6 L] |
Freuency (radfzec)

Elliptic

|

g |

06—

=

0 02 04 0A 0.8 [
Frequency (radfsec)

Figure 4. 2. Comparison of low pass Butterworth filter with other types

Butterworth filter has flattest pass-band magnitude response. Added to these, pulse
response is better than the Chebyshev and rate of attenuation is better than the Bessel filter.

18

—20

10

A(w)/dB

G0 =

—&Ri

I \
1:.“’ L i i b a i aal i i M i i PR l\l

0,01 0.1 | 10 100
-1
wirad s

Figure 4. 3. Frequency response of low pass Butterworth filter according to order

The order of the filter is selected as three which is formed by one odd order topology

and an even topology by cascading.

Figure 4. 4. First stage or first order of the total topology

19

Figure 4. 6. Total topology of the 3" order low pass Butterworth filter with Sallen-Key
topology

_Vo(s) 1

O Tt s (4.1)

w, =2rf, (4.2)

20

3" order Butterworth polynomial is:

V, (s 1
H(s) = VO((S)) S — 4.3)
S @ 2)
W, W, w,
So, from the circuit transfer function;
2. C,R +C,R, +C,R
WC ™ 272 3'3 (44)
2
w, = and w, =2rf,
CR +C,R, +C;R,
Cutoff frequency with ideal OPAMP is:
- 1
° 2(CR+C,R,+C,R,) (4.5)

The topology of the filter circuit is formed by two cascading structures. First stage is
1% order and the second stage is 2" order low pass active filter. In the lower module,
values of the OPAMP (bandwidths, gains, output resistances, layout areas and power

consumptions) are optimized with the MOS technology.

21

Figure 4. 7. Non ideal OPAMP model in this work

Input resistance of the OPAMP is not included and in the analysis since MOS

technology is used. Output resistances and gains of two OPAMPs have maximum and

minimum values in order to get implementable results.

R R RZ R2
LA : Mo

E1

+ O —
1% -
02 -

Figure 4. 8. Non ideal circuit schematic of 3" order low pass Butterworth filter

()_Vo(s) _ 1
TV(s) (s+1)(sP+s+1) (4.1)

It is equal to:

Vo(s) _ 1
Vi(s) s*+2s?+2s+1 (4.1)

H(s) =

If we scale this formulas by

S—>—

_V%(®) _ W

TVi(s) s+2w st +2wis+w

H (s)

With (4.6):
Vo(s) K,Z,8° +K,Zs+K,Z,
HO=V 9™ Ko KK
Vi®) gy Pegr Mg,
3 KS K3

Zeros appear because of the non-ideality of the OPAMPs.

22

4.7)

(4.8)

(4.9)

Matching the coefficients between the equation 4.8 and equation 4.9, angular frequencies

are:

2WC=&
K3

ow? =X
K3
W3=ﬁ
¢ K

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

23

In ideal form, it should be

= Wec (4.16)

Also with the equation

: : (4.2)

The cutoff frequency of the Low-pass Butterworth filter should be:

ch = ch = fcc (4.17)

K,=E2El + E1 + E2 +1 (4.18)

K,=E2E1C1R1 + E1C1R1 +E2C1R1 + C1R1 + E2E1C2R3 + E2E1C2R2

El + E2E1C1R1 + E1C1R1 +E2C1R1 + C1R1 + E2E1 C2R3 + E2E1C2R2 +
E1C2+R3 + E1C2R2 + E2C2Ro1 + E2C2R3 + E2C2R2 + C2Rol + C2R3 +

C2R2 + E1+C3Ro2 + E1 C3R2 + C3R02 + C3Rol + C3R2 (4.19)

K,=E2E1C2C1R1R3 + E2ZE1C2C1R1R2 + E1C2C1R1R3 + E1C2C1R1R2
+E2C2C1R1Rol + E2C2C1R1R3 + E2C2C1R1R2 + C2C1R1 R0l +

C2C1R1+R3 + C2C1R1R2 + E1C3C1R1R02 + E1C3C1R1R2 + C3 C1R1 Ro2

+ C3C1R1+Rol + C3C1R1R2 + E2E1 C3C2R2R3 + E1C3C2R3Ro2 +

E1C3C2R2R02 + E1 +C3C2R2R3 + E2 C3C2R3Rol + E2C3C2R2R3 +
C3C2Ro1R02 + C3C2R3R02 + C3C2R3Rol + C3C2R2R02 + C3C2R2R3
(4.20)

24

K,=E2E1C3C2C1R1R2R3+ E1C3C2C1R1R3Ro2 + E1C3C2C1R1R2Ro02

+E1C3C2C1R1R2R3 +E2C3C2C1R1R3 R0l + E2C3C2C1R1R2R3 +
C3C2+C1R1Ro1Ro2 + C3C2C1R1R3Ro2 + C3C2C1R1R3Rol +
C3C2C1R1R2Ro2+ C3C2C1R1R2R3 (4.21)

From the equations: (4.13), (4.14), (4.15) and (4.2)

2w, = —2 2ch52=ﬁ ch3=&
K3 3

And w, =2rf,

(4.22)

(4.23)

fe =03~ (4.24)

It should be, fon = fea = foc (4.17)

Equation 4.17 has to be obtained in order to make a flat pass-band magnitude

response in Butterworth filter. This equation is also used in fitness function, bigger
difference among the f,,, f; and f. means more increment at the cost. Added to this,

ratio of the max resistance to min resistance and the ratio of the max capacitance to min

capacitance are considered. These proportions are vital to make a Butterworth

characterization.

25

4.2. Performing Hierarchical Genetic Algorithm

To find the optimized low-pass 3™ order Butterworth filter, Hierarchical Genetic
Algorithm (in short HGA) performs with two modules. The upper module (UM) optimized
resistances, capacitances, frequency, Butterworth characterization, and superficially
OPAMP’s power consumption and chip layout area. The lower module (LM) optimizes the
OPAMP’s chip layout area, power consumption and the bandwidth with transistor base

using spice model of current technology.

26

Start

Thitiate the

Eequired Freq.

!
N=0
'y e
Tpper Module Lower IModule
o Eecombination o Fecombination
o DMMutation o DMutation
o Zelection ® Zelection
¥ ¥
Mo Tes Cost < Mo
Cost Truncate
Truncated | | =0
=ynthesis
Fuall |
synthesis
Mo ,
Satisfed
Tes
Simulate the
Eesults
¥
End

—-—._._‘___,_.——"_—'-'__F._._'_

Figure 4. 9. The flow chart of the Proposed HGA

27

4.3. Construction of a Chromosome of an Individual with Encoded Genes

Before using the genetic algorithm, individuals in the population should be created.
Also chromosomes of every individual have to be formed. This could be as a string of real
numbers or, as is more typically the case, a binary bit string. This bit string will be referred
to chromosomes from now on. A typical chromosome may look like the example as stated

below:

Chromosome example: 10010101110101001010011101101110111111101

The individuals in this work formed an array which has 15 members or loci. Each
member of string array has 32 bit binary cells. Every cell includes one characterization in

the filter circuit.

Chromosomes Addresses of an Individual

01|23]|4|5|6]|7|8]|9|10|11|12({13|14|15

Figure 4. 10. General form of an individual in the HGA, an array with 12 elements

The chromosomes formed by fifteen genes which are named cells in the array.

1. The gene# 0 is symbolized of R1 resistance in the circuit schematic in figure 4.11.
The gene# 1 is symbolized of R2 resistance in the figure 4.11.

The gene# 2 is symbolized of R3 resistance in the figure 4.11.

The gene# 3 is symbolized of C1 capacitance in the figure 4.11.

The gene# 4 is symbolized of C2 capacitance in the figure 4.11.

The gene# 5 is symbolized of C3 capacitance in the figure 4.11.

The gene# 6 is symbolized of gain of the first OPAMP in the figure 4.11.

© N o g B~ WD

The gene# 7 is symbolized of output resistance Rol of the first OPAMP in the
figure 4.11.
9. The gene# 8 is symbolized of gain of the second OPAMP in the figure 4.11.

10.

11.
12.
13.
14.
15.
16.

28

The gene# 9 is symbolized of output resistance Ro2 of the second OPAMP in the
figure 4.11.

The gene# 10 is symbolized of the power consumption of the OPAMP.

The gene# 11 is symbolized of the layout chip area of the OPAMP.

The gene# 12 is symbolized of ratio of the max R to min R in the circuit.

The gene# 13 is symbolized of ratio of the max C to min C in the circuit.

The gene# 14 is symbolized of Bandwidth of the OPAMP.

The gene# 15 is symbolized of Fitness value of the individual.

All these cells or genes are chromosomes which are formed by 32 bit binary string.

Genes in Cromosomes

Ol1|(2|3|4|5|6]|7|8|9(10[11(12]|13]|14]15

e
00000000010010101010101010101010

Figure 4. 11. One element in the array of an individual

4.4. Recombination

Parents in the population are mated randomly, after this mating; crossover is

performed, between the couples. Two new children are born from a couple, hence from ten

couples 20 children are breed. The population has thirty individuals before selecting the

fittest ones.

29

4.4.1. Crossover

The crossover method in the proposed HGA is similar with double point crossover
but it has some other developed tactics. The first gene where the crossover starts, the last
gene where the crossover finished and crossover depth (genes which will be altered) are
determined. For example, the number which determines the first gene that the crossover
starts is 7. The number which determines the how many genes are altered in the crossover
is 11. The genes of couple’s chromosomes from the lowest significant 7th bit to 18th are

altered. Thanks to the gene alteration two new children are born.

I— Tth bit
A cell of parent 1 000110100010101100100100100001010

A cellofparent2 01000011111101010010111110100010

children1 00011010001010010010111110001010

childrten2 01000011111101100100100100100010

11 bit depth

Figure 4. 12. Crossover operator in this work

4.4.2. Mutation

As we know, an individual in this work has 15 cells in the array; all cells have their
own chromosomes. In the mutation operator, there are three random numbers which affect
the process. First random number is bit “1” or “0”. This bit determines what the mutated

gene will be. The second number determines which cell will be mutated in the individual.

The third number determines the bit or the gene which will be altered in the chromosome.

30

non mutated cell 00011010001010100100100100001010

mutated cell 00011010001010100000100100001010

Figure 4. 13. Mutation operator in this work

4.5. Selection

In this work, selection is close to elitist selection. The fitness function is calculated

for all individuals in the search space. The fitness function generates the cost using
consistence among f,, fs, f. cutoff frequency values, max/min R value, max/min C

value, power consumption value of the OPAMP and chip layout area value of the OPAMP.

All these values are normalized by their own normalization functions. After
normalization, all these values get their own weights. Summation of these values after
normalization and giving weight, cost value or fitness function value is formed. After
calculating the fitness function value, an algorithm writes this value to the individual’s 15"
gene, hence all individuals carry their own fitness value in their arrays. In selection
operator, an algorithm sort all the population in the search space; after sorting, most fit 10

individuals are selected to survive and to breed in the next generations.

4.5.1. Fitness Function

The fitness function is formed by consistence among f.,, f;, f.c cutoff frequency

values, max/min R value, max/min C value, power consumption value of the OPAMP,
chip layout area value of the OPAMP. Power consumption value and chip layout area

value are calculated from formulas of a model which is formed from 300 simulated results.

k; =Frequency value in the cost

31

k, = Power consumption value of OPAMP in the cost

k, = Chip layout area value of OPAMP in the cost

k; = Maximum resistance/minimum resistance value in the cost

k. = Maximum capacitance/minimum capacitance value in the cost
W, =Weight of frequency value in the cost

W, = Weight of power value in the cost

W, = Weight of area value in the cost

W, = Weight of max resistance/min resistance ratio value in the cost

W, = Weight of max cap/min cap ratio value in the cost
Fitness _ Function =W, ((1+k,)* —1) +W,k_ +Wk, +W,kg +Wk, (4.25)

Normalization of cutoff frequency:

| f., —wanted _ frequency|

o~ |wanted _ frequency _tolerance| (4.26)
_ |fg—wanted _ frequency|

" |wanted _ frequency _tolerance| (4.27)
_|f —wanted _ frequency|

"2 |wanted _ frequency _tolerance| (4.28)

kf :kf0+kfl+kf2 (4.29)

Power Consumption:

E = Gain of the OPAMP

BW = Bandwidth of the OPAMP

Ro = Output resistance of the OPAMP

~ 1.5101
" 0.25928*E +1.2106

P, =1.2182*10""*BW +0.00034877

B 0.0073585
* 5.8601*107°*Ro+2.2895

Power Consumption values from model:

_R+P+P
3

P

Normalization of power values:

|P — powerconsump,,,,

k

OPAMP chip layout area values from model:

A =1.3354*107"°* A*BW +2.054*10°°

A, =-2*10"*Ro+4.3*10°

p p—
‘powerconsumpgood — powerconsump,

32

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

+
A_ATA
2
Normalization of area values:
. |A- Areay,,
L=
|Area,,,, — Area,,
Max Resistance/Min Resistance ratio:
R max
Rmm = -
R min
Normalization of resistance ratio:
_ ‘Rmm - Rmmgood
Q=
‘Rmmgood - Rmm,,

Max Capacitance/Min Capacitance ratio:

cmm = C max
C min
Normalization of capacitance ratio:
_ ‘Cmm - Cmmgood
.=
‘CmmgoOd -Cmm,,

33

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

When, k;, k,, k., ks and k. are combined with their weights fitness function is formed.

Fitness _ Function =W, ((1-+k;)? —1) +W,k_ +W,k, +W,k, +W,k

4.6. Communication Space Between Master and Slave Module

34

© (4.43)

While the HGA performs, master module (UM) and slave module (LM)

communicate by using communication space in order to realize individuals and locus

migration. In this space, there are two text files which include required values of the

OPAMP (gain, output resistance and bandwidth) and optimized results (OPAMP’s chip

layout area and chip power consumption) written by the slave module. The UM writes out

the required OPAMP’s features to the “non sim.txt” file and the LM writes out this

OPAMP’s features area and power consumption to the “sim.txt” file.

I non_sim.txt - Not De... g@@|

Dosya Dizen Bicim Gardnom — Yardim
3 20

11006 145904 6065
11006 14504 B065
11006 14504 B065
8958 15011 a0ah
11004 15044 B065
11262 15048 6065
4089 140989 4095
8062 14995 60865
BOEZ2 14905 a0&5
8062 14995 60865
8052 14995 0465
BOE2 14905 A0&5
8062 14995 6085
BO&2 14904 6070
8062 14993 6129
BO62 14903 6129
BOE2 14903 6129
8062 14993 6129
FE06 14988 6129
11583 15055 HOAS

& sim.txt - Not Defteri g@@l

Dosya Dizen Bicim Gardndm Yardim
3

601 299044 753 1 40
599 303570 731 2 39
588 308066 740 & 30
603 294312 755 5 40
588 3080466 740 & 30
598 308066 740 & 30
601 310750 752 9 40
604 169510 759 4 30
604 169510 759 4 39
588 167803 745 & 38
603 296133 757 2 40
602 2679745 735 6 40
603 2094312 755 5 40
604 169510 759 4 39

665 204886 901 25 34
665 204885 901 25 34
665 204885 501 25 34
665 204885 901 25 34
674 183320 924 30 33
588 308066 740 & 309

Figure 4. 14. “non_sim.txt” and “sim.txt” files in communication space

35

As we see in Figure 4.15, there are two numbers at first line and three columns in the
“non_sim.txt” file. First number in the first line indicates how many times master and slave
modules communicate. Second number in the first line indicates the number of the
individuals that the UM send to the LM and in the file this number is 20. The three
columns consist of the OPAMP’s gain, OPAMP’s output resistance and OPAMP’s

bandwidth, respectively.

In the “sim.txt” file the number in the first line indicates how many times the UM
and the LM communicate like the first number in the first line in the “non_sim.txt” file.
The five columns consist of the OPAMP’s gain, OPAMP’s output resistance, OPAMP’s
bandwidth, OPAMP’s chip power consumption values and OPAMP’s chip layout areas,
respectively. The order between the UM and the LM is determined by the first number

both in two text files

36

5. EXAMPLES AND RESULTS

In the first example, upper module worked alone. The simulation and optimization

job which is done from lower module is also done by upper module with using internal

model. The results of this module are within 60% of SPICE simulation results. The results

of an example are presented in Table 5.1. R;, R,and R, values were forced to 1000Q2 and

C, =1000nF C, =500nF and C, =2000nF . The desired frequency was 10000 Hz and the

tolerance is 10%.

The initial values are:

The initial frequency = 159.2297 Hz

9000 Hz < Desired frequency < 11000 Hz

The results are given in the Table 5.1.

Table 5. 1. The result table of first example, model based GA

The calculated frequency = 9517.90332 Hz

Total Process Time

Generation Number

923 second 47
R, R, R, C, C, C,
62Q 72Q 107 Q 251 nF 105nF 340nF

Gain of OPAMP

Bandwidth of OPAMP

Royr of OPAMP

6401

14276

33997

Power Consumption of OPAMP

Chip Layout Area of OPAMP

8mwW

35 um?

37

—— dbk (roag (w6))

rhiwriG))

Tnits=

1045

10~ 4

102

100

Hx

frequency

Figure 5. 1. Spice output of the *.cir file which is created by only the Upper Module

As we can see from the Figure 5.1, the values and the formulas can calculate the

correct frequency response, using GA in the UM.

18))14 4D asuodsay Aduanbalg

=] ' '
Wi " _
& \ 5
' H }
' h "
' .
T
e A - S B —
! 2 a
H =
. k==
' = o
1 W =
\ =1
_ & 2
B r r =[5 g -
; 2
i £ =
' [
\ S m
' &S
\
............................ S I -3 1 R
)
1 &
H =}
H T =
_ -3
1 o2
_ £ &
|
...
' H
\
\
H
h
\
\
\
|
,
\
\
\
|
h
\
\
|
,
\
\
\
|
' h
' t,
! .
' \
.......................
f h
' \
'
H 1
' h
' \
' \
' \
...................................
f h
' \
' \
' \
H H
' h
' \
' \
' \
...
f h
H 1 "
' h L
' \ .
' | |
' h h
' \ \
1 | | | |
= f=J = = = f=J L=}
=4 = =4 = = =
=1 = =4 = = =
&l =4 & = =+ &
- =

&0

15

40

36

30

25

20

15

10

Generation Murmber

Figure 5. 2. Frequency response change of first example (model based GA)

38

In the Figure 5.2, we can observe changing of the frequency response by the
generation number. Up to the 20™ generation, it increases rapidly, from the 25™ generation
to the 40™ generation, other values of the cost: chip layout area of the OPAMP, power
consumption of the OPAMP, max Res./min Res. Ratio and (max cap)/(min cap) ratio
converge. After 40" generation GA tries to fix and optimization details.

25 T ! ! ! ! T T T !

—— Cost of the Best Individual
------ Average Cost of the Population

Cost

20 25 30 35 40 45 50
Generation Mumber

Figure 5. 3. Cost Change with generation number for first example (model based GA)

Like the frequency graphic in figure 5.3, cost also rapidly decreases up to the 20™
generation. After the 20" generation, it starts to converge slowly, and at 46™ generation
GA finds the satisfied cost.

As a result, if the UM works alone with its inner OPAMP optimization formulas,
optimization takes very little time but the quality of the result and realization of OPAMP is

not satisfied.

In second example, HGA runs with conventional method. In other words, upper
module makes communication and wants OPAMP optimization from lower module in
every step or in every new generation. The lower module makes complete simulation and

optimization of the required OPAMPSs upon every demand of the UM.

The results of an example are provided in Table 5.2:

39

R,, R, and R; values are forced to 1000Q2 and the C, =1000nF C, =500nF and

C, =2000nF . The desired frequency is 10000 Hz and the tolerance is 10%.

The initial values are:

The initial frequency = 159.2297 Hz

9000 Hz < Desired_frequency < 11000 Hz

The results are given in the Table 5.2.

Table 5. 2. The result table of the second example, standard HGA

The calculated frequency = 9975.095703 Hz

Total Process Time

Generation Number

128456.23 second (35.68 hr) 71
R, R, R, C, C, C,
254 Q 420 1120 62nF 100 nF 511nF

Gain of OPAMP

Bandwidth of OPAMP

Ry of OPAMP

3356

14962

4502

Power Consumption of OPAMP

Chip Layout Area of OPAMP

2mw

34 ym?

40

Tnit=—— db (raag(w (&) 1} rhiwi(s))

frequency Hx

Figure 5. 4. Spice output of the cir file which is created by the HGA

The flat band of the low-pass Butterworth is best in this example as we see clearly in
Figure 5.4.

As we see in the Figure 5.5, there is a small gap between the best individual and the

rest of the population.

41

T
'
'
'
'
'
'
'
'
a---q-

R LT

Freguency Response of the Best Individual
- Ayerage Frequency Hesponse of the Population

'
1
I
o
'
'
'
]
]
4= ——-
]
'
'
]
'
'
]

12000
10000 f---------

asuodsesy Axusnbald

2000 f-----+4--

ll]

70

&0

50

40

30

20

10

Generation Mumber

Figure 5. 5. The graphic of the cutoff frequency of the low pass Butterworth filter with

generation number, formed by standard HGA

I
Clnst of the Ellest Individl.;al
- Awerage Cost of the Population

.........

Gl

70

B0

50

40

30

Generation Numbear

Figure 5. 6. The graphic of the cost with generation number formed by standard HGA

42

Like in the Figure 5.5, in figure 5.6, there is a gap again between average of the
population and the best individual. The UM communicate with the LM in every generation
by sending 20 elite individual among the 30 individuals; hence 10 individuals do not go to
the LM.

In third example, the proposed HGA is run. The upper Module processes for 20
iterations and sends features of the required OPAMPs to the lower module by writing them
in “non_sim.text” in the communication space and waits for the results that will be sent
back by the lower module. When the upper module send the required OPAMP’s features,
the lower module gets the features (gain, bandwidth and output resistance) of OPAMP and
starts to optimize and design these OPAMPs. The lower module does not run whole
iterations; it runs for a limited number of iterations and gives back the results to the UM.
This loop sustains until the elite individual in the population gets close to satisfied result.
The UM controls the distance between the best individual and the desired individual. If the
population, especially the elite individual starts to get close to the solution, the UM wants
from the LM to make full optimization. If the population starts to go far away from the

satisfied result, UM wants from LM to make short-coming optimization again.

The results of an example stated below:

R,, R, and R, values are forced to 1000Q2 and the C, =1000nF C, =500nF and

C, =2000nF . The wanted frequency is 10000 Hz and the tolerance is 10%.

The initial values are:

The initial frequency = 159.2297 Hz
9000 Hz <Desired frequency < 11000 Hz

The results are given in the Table 5.3.

43

Table 5. 3. The result table of the third example, proposed HGA

The calculated frequency = 9930.5302 Hz

Total Process Time

Generation Number

2143 second 61
Rl Rz R3 Cl CZ C3
122 Q) 98 Q) 240Q 126 nF 45nF 240nF

Gain of OPAMP

Bandwidth of OPAMP

Royr 0f OPAMP

2517

14895

1191

Power Consumption of OPAMP

Chip Layout Area of OPAMP

2mw

34 um’

Thnite=—— db (raag (&) 1)

4.0r------4 [[e e e I I N i I Y R S [e e A e
]]]]] [

phiwr(G))

Fregquency

H=

Figure 5. 7. Spice output of the cir file which is created by the proposed HGA

As we see in the figure 5.7 the frequency response is near 9905.415 Hz. In addition

when we consider the features of the OPAMP, solution is implementable and realizable.

44

12000 , ,

10000

3000 —

6000 -

Fregency Response

4000 -

— Frequency Response of the Best Individual
------ Awverage Frequency Response of the Population

2000 om0 em e T .

] 10 20 30 40 a0 B0 70
Generation Number

Figure 5. 8. Frequency response change that is created by the proposed HGA
In Figure 5.8, the frequency response of elite individual and average of population is

shown. The dotted line is the average frequency response of the population. We can easily
see the sudden peaks in dotted line which are caused by the mutations.

%10
25 ! ! ! ! ! !
: ' —— Cuost of the Best Individual
------ Awerage Cost of the Population
P SRR SR S SR NS AR -
15 femmnd S A S S — A
i3 E E E
[: : :
o | | |
i‘. -'r W 4‘ wa " Y
a 10 20 30 40 a0 60 70

Generation MNumber

Figure 5. 9. Cost change that is created by the proposed HGA

45

Parallel with the frequency response graphic, the peaks in this graphic overlap peaks
in the frequency response graphic because the effects of mutations.

5.1. Comparison

According to the examples adequate data are obtained in order to make comparison
among the model based GA, standard HGA and the two-layered proposed HGA.

15DDD T T T F T I I I
—fw r—i/ N— [— Conventional GA
Conventional HGA
- ! b —F d HGA
' | Too Limit ropuse
N ! ! i
e .
=T . : . | | i i
[H | | H
. H : : H
& L\u : ! ! ;
= : ! !
i I ISR NI ORIV (SNt BRI SIS NRIIPRI RN | WU FASPRIIN S AP _
h a000
y Basge Limi i : : f :
q i i i i i i i i i

0 5 10 15 20 25 an 35 40 45 50
Generation Mumber

Figure 5. 10. Gain of the OPAMP from result of the test

As we see, in Figure 5.10. Standard HGA and the proposed HGA have the result
(gain of the OPAMP) in the maximum and minimum implementation limit. On the other
hand model based GA has poor result to implement the design.

15[":":' T T T T T T T
—fw r—/ N— [— Comventional GA
. Conventional HGA,
' ' Tltl,ﬂ ."_."mi"f — Proposed HEA
N : : :
=S 111/0) SU I O 5 S S RN AN S -
=1 ' , , , , H
(R . . .
- . . .
& L\u : : !
“(j ! . E —h —
=] ; i
i I IR A SRR NN (Hoc PRI IR RN | DN ERPUNN - SR i
" a000
Vi oadermd L b 1 P
0 i i i i i i i i i

0 5 10 15

20 25 20 a5 A0 45 £0
Zeneration Number

Figure 5. 11. Gain of the OPAMP form result of the test

46

Like in the previous graphic, standard HGA and proposed HGA have same quality of

the solution.

Table 5. 4. Total process time comparison

Total Process Time (second)

Model based GA

0.431

Standard HGA

128456.23 (35.68 hr)

Two-layered HGA

2143

100

80

60

40

20

1

Maodel Based 2
GA

3
Standart HGA

Proposed HGA

O Total Process Time
W Quality of the Results

Figure 5. 12. Graphical comparison of three applications.

It clearly seems that two-layered proposed HGA can solve problems in the examples
with close computation time to GA and same result quality as in standard HGA.

47

48

6. CONCLUSION

Two-layered proposed Hierarchic Genetic Algorithms are used to optimize MOS
based complex integrated circuits in 3™ order low-pass Butterworth filter in order to
measure its performance. To measure the performance of the proposed HGA, the same
example problem performs to model based GA and to standard HGA. After performing
various tests to these three applications (model based GA, standard HGA and proposed
HGA) results prove that the proposed HGA has advantages. In the performance tests, three
applications are operated to optimize and design low-pass filter with the same frequency
responses. At the end of every test, total process time, calculated filter frequency response,
Butterworth characterization and features of OPAMPs are observed. When we consider
these control parameters, which are laid out from optimizations, proposed two-layered
HGA can gives satisfied outcomes. The proposed HGA performs same quality with the
standard HGA and close to process time of model based GA. The quality of the results is
determined by the LM according to realization and implementation in current MOS
technology. Added to these, thanks to the modular architecture, modules and the

technology can easily change in order to solve different complex problems.

All in all, two-layered proposed HGA can make optimization and solve complex
large-scale problems with approximately process time in GA and same result quality in
standard HGA.

49

7. REFERENCES

. Worapradya K and S. Pratishthananda, “Fuzzy Supervisory Pl controller Using the
Hierarchical Genetic Algorithms”, Control Conference, 2004. 5th Asian, Volume:
3, p.p: 1523- 1528 Vol.3, 20-23 July 2004

. Wiles J. and B. Tonkes, “Visualization of Hierarchical Cost surface for Evolutionary
Computing”, Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002
Congress on,Volume :1, p.p 157-162, 12-17 May 2002

Bo H. and W. Lixin, “The Application of Genetic Algorithm in Multi-Hierarchical
Complex Mechanical Structure Scheme Innovation Design”, Computer-Aided
Industrial Design and Conceptual Design, 2006. CAIDCD '06. 7th International
Conference on, No: 9487103, p.p: 1-6, 17-19 Nov. 2006

Fan Z., D. Erik Goodman, J. Wang, R. Rosenberg, K. Seo and J. Wu, “Hierarchical
Evolutionary Synthesis of MEMS”, Evolutionary Computation, 2004. CEC2004.
Congress on, Volume: 2, p.p 2320- 2327, 19-23 June 2004

Zhou Z., Y. S. Ong and P. B. Nair, “Hierarchical Surrogate-Assisted evolutionary
Optimization Framework”, Evolutionary Computation, 2004. CEC2004. Congress on,
Volume: 2, p.p: 1586- 1593, 19-23 June 2004

. Wang C., Y. C. Soh, H. Wang and H. Wang, “4 Hierarchical Genetic Algorithm for
Path Planning in a Static Environment with Obstacles” Electrical and Computer
Engineering, 2002. IEEE CCECE 2002. Canadian Conference on, Volume: 3, p.p:
1652- 1657, 2002

. Lu Y., H. Zhang, W. Zhang, “The Application of Hierarchical Evolutionary Approach
for Sleep Apnea Classification”, Machine Learning and Cybernetics, 2005.

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9768
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7875
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4127003
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4127003
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4127003
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9256
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7909
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7909
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10231
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10231

8.

50

Proceedings of 2005 International Conference on, Volume: 6, p.p:3708-3712, 18-21
Aug. 2005

Isaacs A., T. Ray, W. Smith, “A Hybrid Evolutionary Algorithm With Simplex Local
Search” Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, p.p: 1701-
1708 , 25-28 Sept. 2007

9. LimD.,, Y. Ong, Y. Jin, B. Sendholf, B. Lee, “Efficient Hierarchical Parallel Genetic

10.

11.

12.

13.

14.

Algorithms Using Grid Computing”, Future Generation Computer Systems , Volume
23, P: 658-670, 4 May 2007

Herrera F., M. Lozano, C. Moraga, “Hierarchical Distributed Genetic Algorithms”
Evolutionary Computation, 2000. Proceedings of the 2000 Congress on, Volume:
1, p.p: 272-276, 2000

Fan. Z., J. Hu, K. Seo, D. E. Goodman, R. C. Rosenberg and B. Zhang, “A Bond
Graph Representation Approach for Automated Analog Fitler Design”, Gecco 2001,
p:1253, 2001

Ma M. and L. Zhang, “Optimization a fuzzy network with a hierarchical genetic
algorithm”, Intelligent Sytesms, Vol. 11 No. 3, pp. 76-84, June 1996

Olivera. C. M A, L. A. N. Lorena, S. Stephani and A. J. Preto

“A Hierarchical Fair Competition Genetic Algorithm for Numerical Optimization”,

Gecco 2002,

Gulsen. M. and A. E. Smith, “A Hierarchical Genetic Algorithm for System
Identification and Curve Fitting with a Supercomputer Implementation”, 1031
Benedum Hall University of Pittsburgh,USA, 1998

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4424445
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6997

15.

16.

17.

18.

19

20

21.

22.

23.

o1

Kunicka A. and H. Kwasnicka, “Hypermarket — an evolutionary paths planner”,
Evolutionary Computation and Global Optimization 2006, ISSN 0137-2343; pp. 247-
256, June 2, 2006

Gielen G. G. and W. Sansen, “Symbolic Analysis for Automated Design of Analog
Integrated Circuits”, Boston, MA: Kluwer, 1991.

Sussman G. J. and R.M. Stallman, “Heuristic Techniques in Computer-Aided Circuit

Analysis,” IEEE Trans. Circuits and Systems, Vol. 22, 1975.

Harjani R., R.A. Rutenbar and L.R. Carey, “A Prototype Framework for Knowledge-

Based Analog Circuit Synthesis,” Proc. 24th Design Automation Conf., 1987.

. Ochotta E.S., R.A. Rutenbar and L.R. Carley, \Synthesis of High-Performance Analog
Circuits in ASTRX/OBLX," IEEE Trans. Computer-Aided Design, Vol. 15, pp.
273{294, 1996.

. John H. H., “Adaptation in Natural and Artificial Systems”, Univ. of Michigan
Press, Ann Arbor, 1975.

Harjani R., R.Rutenbar, and L. R. Carley, “OASYS: A framework for analog circuit
synthesis,” IEEE Trans. Computer-Aided Design, VVol.8, pp. 1247-1265, Dec. 19809.

El-Turky F. and E. Perry, “BLADES: “An artificial intelligence approach to analog
circuit design,” IEEE Trans. Computer-Aided Design, Vol. 8, pp. 680-692, June
1989.

Degrauwe M., “IDAC:An interactive design tool for analog CMOS circuits,” IEEE J.
Solid-State Circuits, Vol. SC-22, pp. 1106-1116, Dec. 1987.

24

25.

26.

217.

52

. Stehr G., H. E. Graeb, and K. J. Antreich, “Analog performance space exploration by
normal-boundary intersection and by Fourier-Motzkin elimination,” IEEE Trans.
Computer-Aided Design, Vol. 26, 1733-1748, Oct. 2007.

Ingber L., “Very fast simulated re-annealing,” Mathl. Comput. Modelling, Vol. 12, pp.
967-973, 1989.

Michalewicz Z., “Genetic Algorithms + Data Structures = Evolution Programs,”
Springer, 1998.

Yuan J., N. Farhat, and J. V. der Spiegel, “GBOPCAD: A synthesis tool for high
performance gain-boosted opamp design,” IEEE Trans. Circuits Syst. I, Fundamental
Theory and Applications, Vol.52, pp. 1535-1544, Aug. 2005.

