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ABSTRACT

BOOTSTRAPPING A SPEECH RECOGNITION SYSTEM

BY USING SLIDING VIDEO TEXT RECOGNITION

In the broadcast news for the hearing impaired, the information is conveyed by

three modalities: speech, sign language and sliding video text. In this work, we propose

an HMM-based sliding video text recognition (SVTR) system to generate automatic

transcriptions of the speech in broadcast news for the hearing impaired. Then, we

bootstrap an unsupervised acoustic model by using those automatic transcriptions.

The sliding video text recognition system is trained by using minimal amount of

video data (7 minutes). Well known speech processing techniques are applied to model

and to recognize the sliding video text. Baseline system gives 2.2% word error rate over

the video test set. Then character error analysis is provided and a character based

language model is employed to correct the errors. Finally semi-supervised training

method is applied and significant error reduction is achieved (2.2%→ 0.9%).

An automatic speech recognition system is bootstrapped by using the output of

the sliding video text recognizer as the transcriptions. The speech data is segmented

automatically and aligned with the automatic transcriptions. An unsupervised acoustic

model (U-AM) is trained with 83 videos (11 hours). 12.7% word error rate is achieved

for U-AM with 200K language model. The Out of vocabulary (OOV) rates of the lan-

guage models are decreased by adding the automatic transcriptions of the audio train

set to the large text corpus and the effect of OOV rate on system performance is inves-

tigated. Finally, we compared the U-AM performance with the supervised one which

is built from the same acoustic training corpus with manual transcriptions. Supervised

acoustic model performs only 0.4% better than the U-AM (12.7%→ 12.3%).
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ÖZET

VIDEO KAYAN YAZI TANIMA KULLANILARAK

KONUŞMA TANIMA SİSTEMİ EĞİTİMİ

İşitme engelliler haber bültenlerinde bilgi üç kip ile aktarılır; konuşma, işaret dili

ve kayan yazı. Bu çalışmada, otomatik konuşma tanıma sistemi eğitimi için otomatik

çeviriyazı verisi üretmek amacıyla, Saklı Markov Model tabanlı çalışan kayan yazı

tanıma sistemi tasarlanmıştır. Ardından, otomatik çeviriyazılar kullanılarak otomatik

konuşma tanıma sistemi eğitilmiştir.

Kayan yazı tanıma sistemi asgari video verisi kullanılarak eğitilmiştir. Kayan

yazıyı modellemek ve tanımak için konuşma tanıma teknikleri kullanılmıştır. Temel

sistem, test setini %2.2 kelime hata oranı ile tanımaktadır. Ardından, karakter hata

analizi yapılmış ve bu hataları düzeltmek için karakter tabanlı dil modeli uygulanmıştır.

Son olarak, yarı-öğreticili eğitim tekniği uygulanmış ve kelime hata oranında belirgin

bir azalma gözlemlenmiştir. Kelime hata oranı %1 altına indirilmiştir.

Otomatik çeviriyazılar kullanılarak, otomatik konuşma tanıma sistemi eğitilmiştir.

Konuşma verisi otomatik olarak bölütlenmiş ve çeviriyazılar ile hizalanmıştır. 83

video (11 saat) kullanılarak öğreticisiz konuşma tanıma sistemi eğitilmiştir. Öğreticisiz

akustik model 200K dil modeli ile beraber kullanılarak yapılan sınamada %12.7 kelime

hata oranı elde edilmiştir. Kayan yazı tanıma sistemi çıktıları kullanılarak dağırcık

dışı kelime oranı azaltılmış ve dağırcık dışı kelime oranının tanıma performansına etk-

isi gözlemlenmiştir. Son olarak, aynı eğitim setinin manuel çeviriyazısı kullanılarak

öğreticili akustik model eğitilmiştir. Öğreticisiz akustik modelin performansı, öğreticili

model ile karşılaştırılmıştır. Öğreticili akustik model ile öğreticisiz akustik model per-

formansları arasında %0.4 lik kelime hata oranı gözlemlenmiştir (%12.7→ %12.3).
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1. INTRODUCTION

The emerging technologies resulted in an increase in the use of multimedia data.

Recently, the data coding and processing techniques made the multimedia data more

available. Internet became widespread since 1990s and it made the information world

wide accessible. The computers are getting more high-powered and cheaper. In this

era, the human habits started to change by the opportunity technology offers (Amazon,

YouTube, Facebook, ..). Millions of videos are being watched over Youtube every

day. Newspapers are read via Internet. The paradigm shift in communication creates

application areas for Optical Character Recognition (OCR) and Automatic Speech

Recognition (ASR).

OCR is the translation of the handwritten or printed text which is captured by

a scanner into machine editable text. In such a demand of digital data, OCR is an

old but still useful research topic. Nowadays there exist many free OCR distributions

such as the form based handwriting recognition system provided by National Institute

of Standards and Technology (NIST) [1]. One of the best Turkish supported OCR

products, FineReader, has shareware version and may be purchased for about 160

Euros [2].

Speech is the most frequently used communication channel among non-verbal and

verbal communication types. It is a natural tool and easiest way to communicate with

others. Thus, it is a strong candidate to be used for human-computer interaction. The

goal of automatic speech recognition is converting the spoken speech signals to the

word sequences.

There are many application areas of automatic speech recognition, i.e. human

computer interaction, multimedia applications, dictation systems and applications for

mute, hearing impaired or visually impaired people.

Latest research in ASR encourages producing commercial products. Many compa-
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nies such as Microsoft, IBM and Google are investing on automatic speech recognition

research for this purpose. Another application of ASR is in voice activated systems

like, telephone banking and voice dialing.

Youtube is a good example of a digital archive. In such a huge amount of digital

data archive, including video and audio, the need of classification and retrieval arises.

It is almost impossible to watch or listen to every single video and annotate them.

It needs time and labor force. Manual annotation of a huge digital video archive

is ineffective. Automatic speech recognition is used for this purpose by integrating

information retrieval. Google Audio Indexing (Gaudi) [3] is a new service from Google

which uses automatic speech recognition to find the spoken terms inside the videos

and lets the user jump to the demanded portion of the video where these words are

spoken. Turkish Sign Language Dictionary Tool is another example of speech retrieval

application among many speech retrieval applications [4], [5].

Speech processing techniques are used in speech to text (STT) and text to speech

(TTS) conversion systems. Free electronic book provider, Project Gutenberg Literary

Archive Foundation [6] uses text to speech systems to create computer generated audio

books which are quite successful. A high-tech Turkish company regarding speech and

communication technologies, Sestek’s [7] text to speech product which is used in a

news portal [8] is a successful example of Turkish text to speech application. With this

application, instead of reading the news text on the internet site, one can also listen

to the text. Such applications have importance for generating educational documents

especially for visually impaired.

Speech to text applications, in other words dictation systems are very popular

and commonly used applications in medicine and law. It is also possible to generate

automatic transcriptions from speech. Automatic transcription generation from speech

can be used for automatic subtitle generation. Such systems are useful for broadcast

news for hearing impaired.
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1.1. Problem Statement

Speech recognition systems require large amount of data to estimate the model

parameters. Preparation of training data is a tedious work. The data should be seg-

mented into utterances and each utterance should be transcribed at the word level.

This is an expensive and time consuming process. The transcriptions should be accu-

rate. Therefore, it requires experienced human labor. For instance, it takes 1.5 − 2.5

hours to segment and annotate and 4− 6 hours to transcribe 1 hour data [9].

On the other hand, some training materials naturally include the transcription

information. In case of movies, the subtitles are transcription sources and are used in

machine translation studies. Sliding text band in broadcast news for hearing impaired

is also a transcription source and it is a candidate to reduce the data preparation effort

and cost.

In this work, we concentrate on reducing the data preparation effort by making

use of sliding video text. In addition, we bootstrap an acoustic model for automatic

speech recognition by using automatically generated transcriptions which are the out-

put of proposed sliding text recognition system.

1.2. Related Work

This work is composed of two research areas: sliding video text recognition which

may also be thought as video optical character recognition and automatic speech recog-

nition in broadcast news. The related research on text recognition in videos/images

and unsupervised acoustic model training for automatic speech recognition will be

discussed in the following subsections.

1.2.1. Sliding Video Text Recognition

Research on text recognition in images and videos began with optical charac-

ter recognition for scanned text documents and handwriting. In 1929 Tausheck ob-
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tained the first patent in Germany [10] and in 1933 Handel [11] did the same in the

United States. The principle of first application is based on template/mask matching.

Tauschek prepared an optical and mechanical template matching setup. Light passed

through mechanical masks is captured by photo detectors and is scanned mechanically.

When an exact match occurs, the light cannot pass through the template and so the

machine recognizes the characters printed on the paper.

In 1950s with the arrival of computers, the commercial demand forced optical

character recognition to become a core research area. These applications aim to convert

any human readable document to machine manipulatable representation. In these years

OCR applications generally used template matching techniques in which an input image

is compared to a library of images similar to the Tauschek’s setup. For handwritten

text documents, low-level image processing techniques have been used on the binary

image to extract feature vectors, which are then fed to statistical classifiers. Successful,

but constrained algorithms have been implemented mostly for Latin characters and

numerals. Moreover, some studies on Japanese, Chinese, Hebrew, Indian, Cyrillic,

Greek, and Arabic characters and numerals in both machine-printed and handwritten

cases were also implemented [12], [13], [14].

Studies up until 1980 suffered from the lack of powerful computer hardware and

data acquisition devices. With the explosion of information technology, the previously

developed methodologies found a very fertile environment for rapid growth in many

application areas, as well as character recognition system development. Structural

approaches were initiated in many systems in addition to the statistical methods [15],

[16].

The real progress on character recognition systems was achieved during 1990s by

using new methodologies. In the early 1990s, image processing and pattern recogni-

tion techniques were efficiently combined with artificial intelligence (AI) methodologies.

Researchers developed complex character recognition algorithms, which receive high-

resolution input data and require extensive number crunching in the implementation

phase. Nowadays, in addition to the more powerful computers and more accurate elec-
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tronic equipments such as scanners, cameras, and electronic tablets, we have efficient,

modern use of methodologies such as neural networks (NNs), hidden Markov models

(HMMs), fuzzy set reasoning, and natural language processing [17].

The introduction of Hidden Markov Models (HMMs) to the area of speech recog-

nition has brought several useful aspects to this technology. Use of HMMs brings

language-independent training and recognition methodology.

A number of studies have been made on HMMs for Optical Character Recog-

nition. [18], [19], [20] used HHMs for off-line printed and handwriting recognition.

In these works, the recognition of only a single language was attempted. For lan-

guage independence, [21], [22], [23] extracts features from thin slices of the image that

makes the system language independent. [24] draws a box around each word to be

recognized, and extracts features from vertical thin slices. [24] makes experiments on

single printed Roman fonts. [25] also uses vertical thin slices for feature extraction to

recognize hand-written addresses.

The state of art recognition systems combine the information in the image or

video with the prior information about the language (Language model) in order to

produce the best possible recognition result. Language models work best when the

text contains a significant amount of text, so that tri-gram or four-gram language

models can be effectively applied.

[26] show how continuous speech recognition methods can be used for character

recognition. The only difference between their continuous speech recognition system

and the optical character recognition system is the nature of the input feature. They

extract language independent statistical features from the images instead of the speech

signals. [27] is an application on multifont Arabic text recognition and [28] uses the

same technique for both Arabic and English text recognition.

In 1990s, OCR problem became a text recognition problem in images and videos.

The exponential increase in the amount of digital data, text recognition has large ap-



6

plication areas in document management, for instance digital video and image indexing

and retrieval applications, [29], [30]. A retrieval application, Turkish Sign Language

Dictionary, is a suitable application to use video OCR. Another text recognition prob-

lem in videos and images is license plate recognition. There exist several research

studies [31], [32], [33], [34] and commercial products are developed for this purpose.

The video text recognition can include a number of different post-processing

steps. For example, the recognition results for the different instances of a text can

be integrated to produce a single best hypothesis [35]. [36] uses the NIST ROVER

algorithm developed for speech recognition to combine 1–best hypothesis from different

frames of the same text region.

1.2.2. Unsupervised Acoustic Model Training

Traditional classifiers use only labeled data (feature / label pairs) for training.

However, labeled data is often difficult, expensive and time consuming to obtain since

it requires efforts of experienced human annotators. Meanwhile unlabeled data is

relatively easy to obtain. Semi-supervised training addresses this problem by using

large amount of unlabeled data with small amount of labeled data to build better

classifiers (models).

A good acoustic model requires a large amount of speech data as training material.

These materials can be obtained via Internet or television channels. Excluding the

broadcast news programs, the training materials reflects less formal, more spontaneous,

a natural form of speech data. The broadcast news programs contain generally fluent

spoken training material.

A great amount of work has been reported on unsupervised training of acoustic

models. [37], [38], [39] explore the techniques to make use of untranscribed data to

increase the available training data amount for automatic speech recognition systems.

The dominant factor on performance of speech recognition systems, especially
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Large Vocabulary Conversational Speech Recognition Systems is the amount of avail-

able training data [40]. [37] addresses the need to increase the amount of available

training data by presenting the ways to make use of untranscribed acoustic data. [39]

applies the technique for Mandarin Broadcast News and Broadcast Conversations. [41]

reduces the word error rate of a speech recognition system by bootstrapping with 30

minutes of initially labeled training data, and make use of unlabeled data. They show

that comparable performance increase can be obtained by using twice as much as un-

transcribed data as transcribed data. [38] trains the acoustic model with less training

data (10 minutes) and analysis performance of the system with varying automati-

cally transcribed acoustic training. They obtain significant word error rate reduction

(65.3%→ 37.4%) by using the automatically transcribed data.

The transcriptions such as closed-captions are also available for some of these

audio materials, especially in movies and broadcast news. The benefit of working with

these materials is obtaining the labeled audio data which is very valuable in terms of

speech recognizer training. [42] uses the aligned captions to help the acoustic model,

by doing partially-supervised adaptation.

1.3. Main Contribution

The main contribution of our work is bootstrapping an unsupervised acoustic

model by using the overlaid sliding video text in broadcast news for the hearing im-

paired.

We propose an HMM-based sliding video text recognition system to recognize

the overlaid sliding video text in broadcast news for the hearing impaired. The sliding

video text is recognized by using the well known speech processing techniques.

The sliding video text is almost synchronized with the speech. By making use

of this modality, we bootstrap an unsupervised acoustic model with the automatically

generated transcriptions.
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1.4. Thesis Outline

This thesis is organized as follows: Chapter 2 gives the background information

on automatic speech recognition. In Chapter 3, we give brief information about our

database which consists of three parts: video, audio and text corpus. In Chapter 4,

we explain our sliding video text recognition system in detail and give the experimen-

tal results. The automatic speech recognition system trained with these automatic

transcriptions is explained in Chapter 5 and Chapter 6 concludes our work.

Appendix A includes the synthetic data set. The sliding video text recognition

system parameter optimization test results are given in Appendix B and Appendix C

explains the minimum edit distance (Levenshtein distance) and a dynamic program-

ming algorithm is given in order to calculate minimum edit distance.
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2. BACKGROUND

In this chapter, we give background information on speech recognition and the

tools that we used in this study. First, we explain the automatic speech recognition

background: feature extraction, HMM modeling and application in speech recogni-

tion, language modeling and the evaluation metrics in speech recognition (word error

rate and real time factor). Then, we explain the usage of semi-supervised training

in recognition systems and describe the algorithm applied in this study. Finally, we

make a short introduction to finite state automata and explain how to model a speech

recognition system by using FSA.

2.1. Automatic Speech Recognition Background

The basic idea of speech recognition is to find the most likely word sequence Ŵ

in a language L given the observation O;

Ŵ = arg max
W∈L

P (W |O) (2.1)

When we apply the Bayes rule, Equation 2.1 becomes;

Ŵ = arg max
W∈L

P (O|W )P (W )

P (O)
(2.2)

The probability of given observation P (O) is constant for a single word sequence.

Since we are applying a maximization operation, we only need to find;

Ŵ = arg max
W∈L

P (O|W )︸ ︷︷ ︸
Acoustic Model

P (W )︸ ︷︷ ︸
Language Model

(2.3)

where P (O|W ) is called likelihood calculated by the acoustic model and P (W ) is the

prior probability of the word sequence calculated by the language model.
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A generic automatic speech recognition system consists of feature extraction,

acoustic modeling, language modeling and decoding components.

The acoustic waveforms are captured via microphones and are converted to digital

signals by sampling and quantizing. After digitizing the input acoustic waveform, we

have a vector x(n) representing the input signal. In order to model the waveforms,

the vector specific information called features should be extracted from the digital

representation x(n).

The human perception scale is almost linear in the low frequency (f < 1kHz) and

logarithmic above 1kHz. Cepstrum coefficients such as Mel frequency cepstrum coeffi-

cients (MFCC) or perceptual linear predictive (PLP) coefficients are the most popular

features in speech processing. Because these feature sets are designed concerning the

human audio perception scale. MFCC coefficients c(k) are calculated via;

c(k) = DCT

{
log|DFT{wk(n) ∗ x(n)}|

}
(2.4)

where wk(n) is the filter bank designed based on the Mel frequency scale, DFT is

the discrete Fourier transform and DCT is the discrete cosine transform. ∆MFCCs

and other additional features can be concatenated to the feature vector. For detailed

information see [43].

Hidden Markov Models (HMMs) are powerful statistical method to model speech

signals. An HMM represents a language unit, for instance a word or a phoneme. It has

a finite number of states Si and the state transitions aij. Each state has probabilistic

output function bi which is represented by a random variable. Gaussian distributions

are commonly used for representing these state output functions. The initial condition

probabilities of an HMM is described by πi. Figure 2.1 represents a 3-state HMM.

For a given observation sequence, i.e. the feature vectors for speech recognition,

an HMM determines the probability of having generated the observations. The process

is hidden because the observations do not uniquely define a particular state as in an
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observable Markov model but the probabilistic functions of being in that state.

Figure 2.1. Example: a 3-state HMM

In [44], Rabiner states three basic problems associated with HMM for real world

applications. These problems are;

• How to compute the probability P (O|λ) of the observation sequenceO = O1O2...OT

given a model λ(A,B, π).

• How to choose the optimal state sequence which best explains the observation

sequence.

• How to adjust, in other words train, the model parameters to maximize the

P (O|λ).

For the solution of the first problem P (O|λ), consider a fixed state sequence;

Q = q1q2...qT (2.5)

where q1 is the initial state and qT is the last state of the model. Assume that the

observations are statistically independent, the probability of the observation sequence
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O = O1O2...OT for the state sequence Q is defined as;

P (O|Q, λ) = bq1(O1) · bq2(O2) · ...bqT
(OT ) (2.6)

The probability of a state sequence Q given model λ is calculated as;

P (Q|λ) = πq1aq1q2aq2q3 ...aqT−1qT
(2.7)

The probability of O and Q occurring at the same time is the joint probability

P (O,Q) and calculated by product of P (O|Q, λ) and P (Q|λ);

P (O,Q) = P (O|Q, λ)P (Q|λ) (2.8)

The probability of an observation sequence O = O1O2...OT given a model λ, i.e. P (O|λ)

is the sum of P (O,Q) over all possible state sequences;

P (O|λ) =
∑
∀Q

P (O,Q)

=
∑
∀Q

P (O|Q, λ)P (Q|λ)

=
∑
∀Q

πq1bq1(O1)aq1q2bq2(O2)aq2q3 ...bqT
(OT )aqT−1qT

(2.9)

The computational complexity of Equation 2.9 isO(NT ) whereN is the number of

states and T is the length of the observation sequence. The calculation ofNT operations

is unfeasible and P (O|λ) is calculated by using Forward-Backward Algorithm in a more

efficient manner.

The second problem is to find the optimal solution for P (Q|O, λ) which becomes

a maximization problem for a best Q sequence. It is solved by Viterbi algorithm [45].
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Let δt(i) define the best score at time t;

δt(i) = maxP (q1q2...qt = i, O1O2...Ot|λ) (2.10)

The best path δt+1(j) at time t+ 1 becomes;

δt+1(j) = [max δt(i)aij] · bi(Ot+1) (2.11)

Equation 2.11 states that, we need to keep only the maximized track of each state

j at time t. Viterbi algorithm is similar to Forward-Backward algorithm where the only

difference is maximization operation over previous states instead of summation of all

possible state probabilities.

The last problem is to estimate the model parameters (A,B, π). There are some

techniques such as the Baum-Welch Algorithm [46] to estimate the model parameters.

These techniques adjust the model parameters to maximize the probability of a given

observation sequence O called training data.

The speech sound is produced by articulating the phones. Since the articulation

cannot chance shape instantly, each phoneme is effected from previous and following

phoneme. Therefore, generally, context dependent models are used to describe the

phones in a context. Usually, tri-phone models are used to improve the model efficiency

and recognition performance.

In speech recognition, statistical language models are used to estimate the prob-

able word sequences in a language in terms of probability distributions. In Equation

2.3 the prior probability P (W ) expresses the language information. P (W ) reflects how

frequent W word occurs in the language. The probability of a N word sequence is
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described in Equation 2.12.

P (W ) = P (w1w2...wN)

= P (w1)P (w2|w1)...P (wN |w1w2...wN−1)

=
N∏

n=1

P (wn|w1w2...wn−1) (2.12)

where P (wn|w1w2...wn−1) is the probability of the word wn after the word sequence

w1w2...wn−1 called history. A language is modeled in a more accurate manner by

considering a longer history. However the longer word sequence tends to appear rare

in the corpus which reduces the reliability of the estimate.

The probability of the wn given the whole history is approximated by the prob-

ability given only last N − 1 words (see 2.13). This approximation is called n-gram

language modeling.

P (wn|w1w2...wn−1) ≈ P (wn|wn−N+1...wn−1) (2.13)

The probability of a given word is computed via counting the relative frequencies

in the corpus. The probability of a word is calculated as;

P (wn|wn−2wn−1) =
C(wn−2wn−1wn)

C(wn−2wn−1)
(2.14)

where C(wn−2wn−1) is the count of the word sequence wn−2wn−1 for N = 3.

Data sparseness is a problem in language modeling. If the training corpus is not

sufficiently enough to estimate the language model parameters, there may be very small

or zero probabilities assigned to some sequences. Smoothing gives away to combine less

specific, more accurate information with more specific data. This operation increases
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the small probabilities and decreases the high probabilities to make the probability

distribution flatter. Some smoothing methods such Add-One, Witten-Bell, Katz and

Kneser-Ney smoothing are used to solve the sparsity problem [43].

The primary evaluation metric to determine the automatic speech recognition

system performance is the word error rate (WER) derived from the minimum edit

distance [47] (see Appendix C). WER is a common metric of automatic speech recog-

nition and machine translation systems. WER is calculated as in the Equation 2.15 as

sum of the number of insertions i, deletions d and substations s divided by the total

number of words in the truth text N.

WER =
(i+ d+ s)

N
(2.15)

Another issue in measuring automatic speech recognizer performance is the real

time factor (RTF). RTF measures the speed of an automatic speech recognition system.

It is a hardware dependent value. Equation 2.16 defines the RTF which is the ratio of

processing time duration P to the input data duration I. If a system is designed to

operate in real time, the RTF should be lower than 1.

RTF =
P

I
(2.16)

2.2. Semi-supervised Training

There are two main methods for classification: supervised classification and un-

supervised classification. In supervised classification, there are a set of data samples

each consisting of measurements of set of variables with associated labels, the class

types. In this case, the priori information about the training data set is known. They

are used as exemplars for the classifier design. However variable set measurements with

associated labels are not always available. There is another pattern recognition task

for the training data in absence of the class labels. In unsupervised classification the
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data are not labeled and the goal is to find groups in the data and the features that

distinguish one group from another.

Good models generally requires more training with data. It is easy to find unla-

beled data. In order to make use of unlabeled data for training purpose, we can apply

semi-supervised training. First, train a initial model from small amount of manually

labeled data. Then, we classify the unlabeled data with the initial model. Finally, in

order to build a better model, we use both manually labeled and automatic classified

data for training. Figure 2.2 shows a basic semi-supervised training algorithm used in

this study.

Figure 2.2. Semi-supervised training algorithm

2.3. Finite State Machines

A finite state machine (FSM) is a model of behavior of a system by a finite number

of states, the transitions between these states and actions. FSMs are commonly used

tools in speech recognition for language modeling. Figure 2.3 illustrates a simple finite

state machine which models a sheep talk [43].

An FSM which recognizes certain inputs are called an acceptor. The FSM in

Figure 2.3 is an acceptor. Figure 2.3 only accepts the words in a sheep language i.e.,
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Figure 2.3. Example: a finite state acceptor

”ba!”, ”baa!”, ..., ”ba...a!” and any other words are rejected. This specific acceptor

has four states; the initial state (state 0), two nodes, a final state (state 4).

Formally, the elements of an FSM are as follows;

• Q: finite set of N states q0, q1, ..., qN−1

• Σ: an alphabet of finite number of input symbols

• q0: beginning state

• F: set of final states

• δq,i: the transition matrix between the states

A FSM which maps a set of input symbols to another symbol set is called a finite

state transducer (FST). Relating to FSM, the alphabet Σ of an FST contains a finite

set of input/output symbol pairs instead of input symbol set. The Figure 2.4 illustrates

a simple FST. The transducer maps the input string ”baa!” to the string ”mee!”.

Figure 2.4. Example: a finite state transducer

In FSM and FST, all transitions have the same probability. However, due to



18

the uncertainty of hypothesis in speech recognition, a weight (cost) must be assigned

to each transition label. A finite state transducer in which each transition is labeled

with a weight is called weighted finite state transducer (WFST). Figure 2.5 illustrates

the weighted version of the previous finite state transducer. In order to make certain

operations on WFSTs, the weights have to form a semiring. Generally log semiring

and tropical semiring are used in speech processing.

Figure 2.5. Example: a weighted finite state transducer

2.3.1. WFST Applications in Speech Recognition

In the previous section, we explained the parts of an automatic speech recognition

system which are: HMMs, Context-dependent phone models, lexicon (pronunciation

dictionary) and language model. Each parts of an ASR system can be represented

by WFSTs and a speech recognition system can be represented by a composition of

the finite state transducers output weights and the output strings [48]. The following

equation shows the general speech recognition system representation in terms of finite

state transducers from bottom to top as;

G ◦ L ◦ C ◦ A ◦O (2.17)

where O represents the acoustic observations, A is the acoustic model which maps the

acoustic observations to the context dependent phones, C is the context-dependency

model which maps the context dependent phones to context independent phones, L

is the lexicon mapping the phone sequences to words, and G is the grammar model

(Language Model) maps the words sequences to sentences. The system converts the
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acoustic observation sequences to the sentences.

Figure 2.6. Usage of FSMs in automatic speech recognition systems

The composition of acoustic model, context dependency model, lexicon and gram-

mar model cannot be solved explicitly because of the large size of the composition.

Instead of searching the whole lattice, a beam pruning is used to find the optimum

path in a faster way. Since the best path is of interest, in beam pruning, we select a

beam which is calculated by the difference of the weights from the minimum weight less

than a predefined threshold and we keep only the paths within the beam during the

composition. We can find the most probable path with higher beam width, however,

the increase in beam yields an increase in RTF.
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3. DATA

A large Turkish Broadcast News Database has been collected at Boğaziçi Univer-

sity. The Turkish Broadcast News Database includes news programs of four television

channels, NTV, CNN-Turk, TRT1 and TRT2. In this work, we used the videos of

Turkish Radio Television 2 (TRT2) broadcast news for the hearing impaired.

In the news for the hearing impaired videos, the speaker (narrator) signs simulta-

neously as she reads the news. Furthermore, the news transcriptions are superimposed

on the bottom portion of the videos as a sliding text band. This sliding text is syn-

chronized with the sign and the speech. Thus, in these videos, the news is narrated via

three different modalities; speech, sign language and sliding video text. These modali-

ties is shown in the Figure 3.1.

Figure 3.1. Three modalities in the broadcast news for the hearing impaired are:

speech, sign language and sliding video text

The video, audio and the text corpus used in this work is explained in detail in

the following sections.
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3.1. Video

The video corpus (for sliding video text recognition) consists of 127 short video

clips. These videos are recorded from Turkish Radio Television 2 (TRT2) broadcast

news for the hearing impaired at a resolution of 352x288 at 25fps in DivX R© format.

The duration of each video is approximately 7 minutes.

The sliding text band is overlaid on the bottom portion of the video. The position

of the sliding text region does not change within a video. However, it may differ

among the videos. The overlaid text is monochromatic (white). The background color

is almost monochromatic (red) and it gets darker towards the right end of the text

region. The characters are rigid; their shape, size, color or orientation does not change

from frame to frame or video to video. The text moves left with an almost constant

speed of 4.3pixel/frame.

Due to the nature of the broadcast news data, character heights on the overlaid

text varies between 13− 16 pixels in the dynamic range of 18 pixel height (see Figure

3.2). Therefore, sliding text band height is defined as 20 pixels. Each video hosts the

logo of news for the hearing impaired at the left side of the sliding text band. The logo

width is 47 pixels, so the sliding text band width is found as 305 pixels by subtracting

the logo width from the video width.

Figure 3.2. Character heights
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The text is composed of 29 capital letters (Turkish alphabet), 10 numerals, 8

punctuation marks and 3 different spaces (intra-word space, inter-word space and inter-

paragraph space) - a total of 50 characters. See Appendix A for detailed information

about the character list.

The space characters are defined based on their durations. Intra-word space cs

defines the 2-3 pixel wide space between the characters in a word. Inter-word space

ws defines the space between the words. It has approximate duration of 7 pixels. The

widest space model, inter-paragraph space ps, is the space between each news segment

and its duration is wider than 150 pixels. Figure 3.3 shows an example of each intra-

word and inter-word spaces.

Figure 3.3. Example: Intra-word space and inter-word space character

Table 3.1. Sliding Video Text Recognition Video Corpora

Name Video Duration(min) Word Character

Video Train Set 1 7 602 4568

Video Development Set 9 60 5090 44591

Video Test Set 9 78 6397 57176

19 videos are selected from the video corpus and divided into three non-overlapping

sets for sliding text recognition. Training set includes only one video and the other

18 videos are divided into two equal parts as development set and test set. The

specifications of these sets are shown in Table 3.1.
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3.2. Audio

Audio corpus is obtained by extracting the audio of the video corpus. Audio

files are recorded at 32kHz 16-bit PCM WVA format. These audio files are segmented

automatically based on the algorithm proposed by [49]. Each news segment, utterance,

duration is approximately 30 seconds. Currently, the audio corpus includes approxi-

mately 17 hours of clean speech considering Classical Hub4 classes.

These audio files are transcribed automatically by using the superimposed sliding

text band at the video with the proposed sliding video text recognition system.

Table 3.2. Automatic Speech Recognition Audio Corpora

Name Video Duration(hours)

Audio Train Set 83 11

Audio Test Set 26 3.5

We divided the audio corpus into two non-overlapping sets. We selected the first

83 audio clips for training set and last 26 audio clips for test set. The audio clips

between training set and test set are not used. The audio duration statistics are stated

in Table 3.2.

3.3. Text Corpus

A large text corpora is needed for the applications and statistical methods used

in language processing. For this purpose, [50] prepared a Turkish large text corpus

which is composed of four sub corpora. We used the NewsCor which is collected by

crawling three newspaper web pages, to built a language model for automatic speech

recognition. A part of NewsCor called MilliyetCor is used to built a character based

language model for sliding text recognition task. Table 3.3 gives the statistics of the

text corpora used in this work.
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Table 3.3. Text corpora statistics

Corpus Words Characters

Milliyet 67M 499M

NewsCor 182M 1486M
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4. SLIDING VIDEO TEXT RECOGNITION

The sliding video text in broadcast news for the hearing impaired is the transcrip-

tion of the speech. An HMM-based sliding video text recognition system is designed

to recognize the overlaid sliding video text in broadcast news for the hearing impaired

to generate automatic transcriptions from the sliding video text.

In the proposed recognition system, we used well knows speech processing tech-

niques to model and recognize the sliding video text. The front-end process includes

the sliding text band detection, text image extraction and feature extraction from those

text images. The only difference between an automatic speech recognition system and

proposed sliding video text recognition system is the nature of the input, the features

are extracted from images instead of speech. The characters are modeled by HMMs

and the glyph models are trained by using minimal amount of labeled data. Character

based language models are imposed to the system and finally semi-supervised training

is investigated to make use of unlabeled data.

4.1. Preprocessing

The goal of preprocessing stage is to obtain the sliding text images from the

videos and to extract the image features from these images. Preprocessing stage covers

three steps; sliding text band detection and localization, text image extraction and

feature extraction as shown in Figure 4.1.

First the sliding text band location is detected. The text images from the sliding

text band is extracted within the rules defined in Section 4.1.2. Finally text image

features are extracted.
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Figure 4.1. SVTR preprocessing stage flow diagram

4.1.1. Sliding Text Band Detection and Localization

Neglecting breaking news, the position of the sliding text band does not change

in a video. In case of the breaking news, the sliding text band may change position for

a 15− 20 seconds interval. Apart from that, it is safe to assume the sliding text band

position is stationary. However, the position may differ among the videos. Therefore,

the need for sliding text band localization arises for each video.

Figure 4.2. A rectangle defined by an offset point c(x, y) and rectangle r(w, h)
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The sliding text band on an image is defined by an offset point c(x, y) and a

rectangle r(w, h) where,

• x defines x-coordinate of the upper-left rectangle corner,

• y defines y-coordinate of the upper-left rectangle corner,

• w defines the width of the rectangle,

• h defines the height of the rectangle as shown in Figure 4.2.

(a) (b) (c)

(d) (e)

(f) (g)

Figure 4.3. SVTR preprocessing stage figures in detail; a)Snapshot, b)Gray-level

snapshot, c)Band detection, d)Horizontal projection, e)Vertical projection, f)Text

image extraction, g)Feature extraction

The sliding text band detection and localization step is applied only on the first
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frame of the each video. The first frame In=0
RGB of each video is grabbed (see Figure

4.3a). Due to the recording setup I0
RGB contains 288 rows and 352 columns. Then

I0
RGB (the grabbed frame) is converted to gray-level image I0

gray(x, y) (see Figure 4.3b),

where x is the horizontal direction and y is the vertical direction of Igray. The gray

level image pixel values I0
gray(x, y) varies between [0, 255] ∀x ∈ [0, 351], ∀y ∈ [0, 287].

The sliding text band detection and localization algorithm [51] is applied to the

gray-level image Igray and the sliding text band position of the corresponding video is

obtained on I0
gray(x, y). Figures 4.3a, 4.3b, 4.3c are obtained at detection and localiza-

tion step.

Let P represent a projection operation. Equation 4.1 defines the horizontal pro-

jection of I0
gray(x, y) which results the horizontal projection vector Vhorizontal(y). The

y-coordinate y′ of the offset c occurs at the hills of Vhorizontal(y) as shown in Figure

4.3d. The band Ih defined by c(0, y′) and r(352, 20) is cropped. Ih hosts the logo of

news for hearing impaired at the left side.

Phorizontal(Igray(x, y)) = Vhorizontal(y) ∀y ∈ [0, 287]

=
351∑
x=0

Igray(x, y) (4.1)

Vertical projection of the Ih is used to eliminate the logo and to find the beginning

of the sliding text band. Eq 4.2 results the vertical projection vector Vvertical(x) where

the second zero value of Vvertical(x) is the x-coordinate x′ of the offset c. Figure 4.3e

shows that the second zero value of the vertical projection is the beginning coordinate

of the sliding text band.
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Pvertical(Igray(x, y)) = Vvertical(x)

=
20−1∑
y=0

Ih(x, y) (4.2)

The logo position on x-axis does not vary from video to video, the width of sliding

text band is a constant for all videos and is found as 305 by subtracting the logo width

w from the band width.

After elimination of the logo, the sliding text band region defined by c(x′, y′) and

r(305, 20) is used for the text image extraction process. Once sliding text region is

located in the first frame, it is safe to assume that it appears at the same location for

the rest of the video.

4.1.2. Text Image Extraction

Let I i
text(x, y) defines the ith text image obtained from the text band for ∀x ∈

[0,M i], ∀y ∈ [0, 19], ∃I i
text(x, y) ∈ [0, 255]. The following requirements are forced for

the extracted text images.

• The text images should be non-overlapping.

• Each text image should include maximal amount of words.

• The words in text images should be complete words. No half word or character

is allowed at either end of the text image.

Assume that the inter-word spaces are wider than 5 pixels.

Pvertical(I
i
text(x+ k, y)) < threshold (4.3)
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defines an inter-word space ∀k ∈ [0, 4], ∀x ∈ [0,M i − 4] and ∀y ∈ [0, 19]. threshold is

found by observing the histogram of Pvertical(I
i
text(x, y)) shown in Figure 4.4b.

(a)

(b)

Figure 4.4. a)Text Image I i
text(x, y), b)Histogram of I i

text(x, y)

These requirements (or rules) are fulfilled by the algorithm stated in Figure 4.5

and this algorithm yielded a total number of 11487 words in 3456 text images which

are extracted from development set and test set. All Itext(x, y) have a constant height

of 20 pixels. The width of I i
text(x, y) ,M i, depends on the number of complete words

and word lengths. Therefore, it may vary depending on the text images. Figure 4.6

shows the non-overlapping text images extracted from the video text.

tp =
lengthband

speedtext × frameRate

= 305pixels︸ ︷︷ ︸
lengthband

× frames

4.3pixels︸ ︷︷ ︸
speedtext

× sec

25frames︸ ︷︷ ︸
frameRate

= 2.83(sec) (4.4)
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Figure 4.5. SVTR text image extraction algorithm

On the other hand, as far as data collection and recognition tasks are concerned,

sliding video text provides a unique opportunity that does not exist in the case of

speech. In case of sliding video text, each character stays on the screen for a certain

period of time while moving from right to left (Equation 4.4). During this period, each

frame provides a new image of that character since the constituting pixels does not

remain as the same as the text moves. To this end the training set may be sampled at

different rates to produce more training data and development and test sets may be

sampled at different rates to make a more precise decision by multi frame integration

[52].

4.1.3. Feature Extraction

Our aim is a language and character independent sliding text recognition system.

So the selected features should be language and character independent. Therefore, any

shape or punctuation related features are not used in this work. [21], [22], [23] define
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Figure 4.6. Non-overlapping text image extraction

a feature vector as a function of horizontal position within a vertical line on the text

image. [26] defines a frame as a narrow vertical strip, with a width that is a small

fraction of the height of the text image. Each frame is divided into 20 overlapping cells

and the features they compute are;

• Intensity as a function of vertical position

• Vertical derivative of intensity

• Horizontal derivative of intensity

• Local slope and correlation in a window of 2 cells square

We simply select the pixel bitmap values as features [53]. Each column of

I i
text(x, y) is selected as a feature vector as shown in Figure 4.3f. Equation 4.5 de-

fines M i 20 dimensional feature vectors of I i
text(x, y). Equation 4.6 shows I i

text(x, y) in

matrix form.

vi(x) = I i
text(x, y) ∀x ∈ [0,M i − 1] (4.5)
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I i
text(x, y) =



vi(0)︷ ︸︸ ︷
Itext(0, 0)

Itext(0, 1)
...

Itext(0, 19)



vi(1)︷ ︸︸ ︷
Itext(1, 0)

Itext(1, 1)
...

Itext(1, 19)



...︷ ︸︸ ︷
· · ·

· · ·
. . .

· · ·



vi(Mi−1)︷ ︸︸ ︷
Itext(M

i − 1, 0))

Itext(M
i − 1, 1)
...

Itext(M
i − 1, 19)




(4.6)

4.2. Modeling

In automatic speech recognition systems, context dependent models are used to

account for the co-articulation effects between adjacent phones. [26] states that in

case of optical character recognition, Arabic script and hand writing can be considered

as context dependent. However, in our case character shapes are independent from

previous and following characters, that are we are dealing with context independent

characters. Therefore, context independent HMMs are used to model characters in this

work.

There are three different spacing in the sliding video text: inter-character space

which has a short duration of 2–3 pixels, inter-word space with a medium duration of

6–7 pixels and inter-paragraph space which lasts for more than 10 pixels. There are a

total of 50 different character models in the sliding text recognition system including

3 different spacing. Most characters like ”A” have a start, middle and end portion, so

we model them as 3-state HMMs. Others like ”İ” are modeled as single state HMMs.

See Figure 4.7 for examples of both character types.

Each state of the HMM has an output probability distribution over the features

modeled as a single Gaussian. The maximum likelihood estimate of the HMM pa-

rameters are obtained by iteratively aligning the sequence of feature vectors with the

sequence of character models using Expectation Maximization (EM) algorithm.
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(a) (b)

Figure 4.7. Examples of a)3-state character “A”, b)1-state character “İ”

We use a self-mapping transducer as a lexicon. The lexicon can accept any

single character and returns back with ε. The following figure illustrates graphical

representation of the lexicon.

Figure 4.8. STR Lexicon

4.3. Experimental Results of Different Training Setups

Before training, a bootstrap glyph model is trained from the synthetic data set

which includes a single example of each character. See Appendix A for more detail
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about the synthetic data set. Synthetic data is automatically segmented by dividing the

pixel width of each character image with the number of states for the corresponding

character. Gaussian models are initialized with the state means and unit variance

for all dimensions. The bootstrap model is used to initialize the training system by

segmenting the train set.

As far as data collection and recognition tasks are concerned, sliding video text

provides a unique opportunity that does not exist in the case of speech as mentioned in

Section 4.1.2. Each text character stays on the screen for a certain period tp. During

this period, each frame provides a new image of that character. This fact can be

exploited to boost the amount of available training data. To this end, training set,

whose transcription includes 602 words and 4568 characters, is sampled at two different

rates (5fps and 1.25fps). Table 4.1 gives the statistics of the sampled train set at

two sampling rates. However, the same fact is not exploited during recognition with

development and test sets. The development and test set text images are extracted

based on the algorithm shown in Figure 4.5 without overlapping.

Table 4.1. Training video data statistics

Sampling Rate #frame #word #character

5.00fps 2084 9726 63850

1.25fps 524 2444 16060

Only the training data is transcribed at word level with time marks that we call

“labeled” data. Each I i
text(x, y) in train set has features and time marked transcriptions

corresponding to these feature. The development and test sets are remained unlabeled.

Word error rate is used to measure the sliding text system performance (see

Equation 2.15). The baseline glyph model experiments give the performance of the

sliding text recognition system using the glyph models obtained from the train set

under two different sampling rates. The effect of labeled data size is investigated over
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recognition performance. We then provide an analysis of character errors and suggest

character-based language modeling as a remedy. Finally, we investigate the semi-

supervised training possibility and obtain results comparable to those from baseline

training.

4.3.1. Baseline Experiments

Two baseline glyph models are trained from the train set. As shown in Table

4.1 train set is sampled at two different rates. Baseline glyph model-I is trained from

5.00fps sampled data and baseline glyph model-II is trained from 1.25fps sampled data.

The baseline glyph model training and test flow diagram is shown in Figure 4.9.

Figure 4.9. SVTR baseline experiment flow diagram

Table 4.2 utilizes these baseline glyph models’ WER performances on develop-

ment and test sets. We see that a very small amount of training data is enough for

a good glyph model. The baseline glyph model-I which is trained with 9726 words

recognition performance is higher than the baseline glyph model-II which is trained

with 2444 words recognition performance over both development and test sets. The
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Table 4.2. SVTR baseline glyph model WER performance on development and test

sets

Model Type
Test Data

dev test

Baseline Glyph Model-I (5.00 fps) 2.4 1.9

Baseline Glyph Model-II (1.25 fps) 2.6 2.2

increase in training data yields a better model as expected.

Table 4.3. SVTR baseline glyph model-I character confusion table

Error Types Truth Rec Count

Substitution

0 O 138

O 0 26

I İ 10

8 B 6

L İ 5

Other 42

All 227

Deletion All 331

Insertion All 94

Then, character confusion analysis is provided on baseline glyph model-I recog-

nition results. Recognition results are compared with the truth. Table 4.3 gives the

character confusions made by the baseline glyph model-I. We see that character errors

are mostly due to the confusion between visually similar characters like the letter ”O”

and the numeral ”0”. The letter ”O” and the numeral ”0” are confused 164 times in

11K words.
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4.3.2. Baseline with Language Modeling Experiments

Error analysis suggests that the confusions between visually similar characters

can be resolved by incorporating contextual information into the system. To this end,

we employed character-based Kneser-Ney smoothed n-gram language models during

recognition (see Figure 4.10). The language models are built from Milliyet news

corpus with SRILM tools [54].

Figure 4.10. SVTR baseline with language model experiment flow diagram

System parameters, duration multiplier dur and grammar multiplier grm were

optimized over the development set for each n-gram language model. We employed a

grid test ∀dur, grm ∈ [3, 13] ∀n ∈ [3, 7]. The grid test results for all n-gram language

models are shown in Appendix B. The optimum values of duration and grammar

multipliers are found as 9 and 11 due to the model parameter optimization test results.

The optimized system performance for each language model are given in Table 4.4.

Optimization tests in Table 4.4 show that any test with language model gives

better performance than the test results excluding language models shown in Table
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Table 4.4. SVTR baseline glyph model-I with N-gram language model tests over

development set

LM Type None 3-gram 4-gram 5-gram 6-gram 7-gram

WER 2.6 1.4 1.2 1.1 1.0 1.1

4.2. 6-gram language model gives the best performance and 3-gram language model

has the poorest performance. The n-gram statistics of 3-gram and 6-gram language

models are stated in Table 4.5.

Table 4.5. The # of n-grams of 3-gram and 6-gram language models

LM Type unigram bigram trigram 4-gram 5-gram 6-gram

3-gram 57 2588 41093 − − −

6-gram 57 2650 46427 344821 1432498 4143765

Table 4.6 shows the character confusions of baseline glyph model-I without lan-

guage model and with 3-gram and 6-gram language models. Incorporating language

model to the system significantly reduces character substitutions and deletions as shown

at the seventh and ninth rows of Table 4.6. The confusion of visually similar charac-

ters problem is almost solved. However, the same effect is not observed for deletions

as shown at eighth row of Table 4.6. The reason for that is, incorporating a character

based language model results in word deletions. This fact may increase the character

error rate.

The second, third, fifth and sixth rows of Table 4.7 gives the system performance

when 3-gram and 6-gram language models are used along with the glyph models. We

see a significant decrease in WERs as suggested by the character confusion analysis of

baseline glyph model tests. Since the system parameters are optimized on development

set, we observe a higher relative reduction in WER over development set (2.4 → 1.0)

compared to test set (1.9→ 1.5) results.
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Table 4.6. SVTR character confusions with different language models

Error Types Truth Rec
Count

- 3-gram 6-gram

Substitution

0 O 138 7 3

O 0 26 2 2

I İ 10 15 4

8 B 6 0 0

L İ 5 0 0

Other 42 24 5

All 227 48 13

Deletion All 331 672 244

Insertion All 94 18 12

4.3.3. Semi-Supervised Glyph Model Experiments

In this experiment, we investigate the effects of semi-supervised training by train-

ing the glyph models at two steps. At first step, the models are trained only with the

labeled training data at two different sampling rates as trained in Section 4.3.1. The

baseline glyph model-I and baseline glyph model-II is used to generate more training

samples from previously unlabeled data. The development set is recognized and labeled

by those models and more training data is automatically obtained for second step.

At second step, baseline glyph models are retrained with the expanded training set

including both test set and development set and the final models, semi-supervised

glyph models, are obtained as retraining resultant models. The expanded training set

statistics are shown in Table 4.8 and the flow diagram of semi-supervised training is

shown in Figure 4.11.

Table 4.9 shows the performance of all glyph models with different language

models. Fourth, fifth, ninth and tenth row of Table 4.9 gives the performance of

semi-supervised glyph model performances. The system performance is significantly



41

Table 4.7. Baseline glyph models with 3-gram and 6-gram language models WER

performance on development and test sets

Model Type Language Model
Test Data

dev test

Baseline Glyph Model-I

− 2.4 1.9

3-gram 1.4 1.7

6-gram 1.0 1.5

Baseline Glyph Model-II

− 2.6 2.2

3-gram 1.7 1.9

6-gram 1.2 1.5

Table 4.8. Expanded video training data statistics

Data Set #word #character

Train set(@5.00fps) + Dev Set 14786 108441

Train set(@1.25fps) + Dev Set 7534 60651

increased with semi-supervised training. A WER under 1% is achieved over test set.



42

Figure 4.11. SVTR semi-supervised glyph model experiments flow diagram

Table 4.9. Semi-supervised glyph models with 3-gram and 6-gram language models

WER performance on development and test sets

Model Type Language Model
Test Data

dev test

Baseline Glyph Model-I

− 2.4 1.9

3-gram 1.4 1.7

6-gram 1.0 1.5

Semi-Supervised Glyph Model-I
3-gram 1.2 1.4

6-gram 1.0 1.0

Baseline Glyph Model-II

− 2.6 2.2

3-gram 1.7 1.9

6-gram 1.2 1.5

Semi-Supervised Glyph Model-II
3-gram 1.5 1.4

6-gram 1.0 0.9
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5. AUTOMATIC SPEECH RECOGNITION

In the broadcast news for the hearing impaired, the information is conveyed by

three modalities; speech, sign language and sliding video text. In other words, the

transcriptions of the speech are already embedded on the news videos as an overlaid

text band. In Chapter 4, we propose an HMM-based sliding video text recognition

system and generate the automatic transcriptions of the speech by using the sliding

video text. In this chapter, we bootstrap an unsupervised acoustic model by using

automatically generated transcriptions.

At the front end of the system, we segment the audio data into utterances, align

the utterances with the automatic transcriptions and extract the audio features. A

bootstrap model training is started with the artificial segmentations and then three

iterations of EM algorithm is applied. The bootstrap model is only used to build the

unsupervised acoustic model. Finally, unsupervised acoustic models performance is

compared to the supervised model.

5.1. Preprocessing: Audio Segmentation and Reference Text Alignment

In preprocessing stage, the audio files are segmented to utterances and aligned

with the reference text. The audio features are extracted from the utterances and audio

feature / text pairs are prepared.

The reference text is automatically generated by the proposed sliding video text

recognition system. Each broadcast news video clip is segmented into N short news

segments, video utterances, by using inner paragraph spaces of sliding video text. Each

video utterance is recognized and transcriptions with the time marks V are obtained

from the sliding video text. The sliding video text time mark vector V has N time

pairs indicating the beginning and ending time of each paragraph of the sliding video
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text.

V = (tvb1, t
v
e1), (t

v
b2, t

v
e2)...(t

v
bN , t

v
eN) , tvb1 < tve1 < tvb2 < tve2 < ... < tvbN < tveN (5.1)

where tvb is the beginning time index and tve is the ending time index of a video segment.

The speech/non-speech intervals are determined by the algorithm in [49]. There

exists a non-speech interval between each audio paragraph. As a first step, we label

the paragraph beginnings and endings by searching non-speech intervals longer than 1

second. M audio segments are obtained with time mark pairs A.

A = (tab1, t
a
e1), (t

a
b2, t

a
e2)...(t

a
bM , t

a
eM) (5.2)

where tab is the beginning time index and tae is the ending time index of an audio

segment.

However, there also exists non-speech intervals longer than 1 second within a

paragraph i.e., between the sentences or between some words as well. Hence, the

number of audio segments are always greater than the number of video segments (M ≥

N). Time mark pairs A are not reliable time mark pairs and do not exactly indicate

the audio paragraph segments.

Since it is not possible to segment the audio paragraphs with the corresponding

transcriptions by using only speech/non-speech intervals, we propose to use sliding text

transcription time marks V for audio data segmentation. However sliding video text

is not fully synchronized with the speech and there exists an unknown time offset 4t

between the audio and the video data. Figure 5.1 shows the audio and video segments

along a time line.

We need to incorporate additional information to segment the audio data. Since

the narrator reads the news as the video text slides, we can assume that the durations of

both sliding video text segments and audio segments are equal. Therefore, we decided
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Figure 5.1. Audio and video segmentation

to use the sliding video text segment durations as an additional information source for

segmentation and alignment.

Let V′ be the sliding video text segment duration vector;

V′ = (tve1 − tvb1), (tve2 − tvb2)...(tveN − tvbN) (5.3)

We select all possible N time pairs from the audio time sequence A. Let Â be a

N time pair candidate time mark vector for tab1 < tae1 < tab2 < tae2 < ... < tabN < taeN .

Define error err as;

err =
N∑

n=1

|Âk(n)−V′(n)| (5.4)

The audio time mark pairs A∗ is the candidate time mark vector which minimizes the

error.

A∗ = arg min
Â
err

= arg min
Â

N∑
n=1

|Âk(n)−V′(n)| (5.5)
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Figure 5.2. Aligned audio and video segmentations

Figure 5.2 shows the aligned audio segmentations with the corresponding video

segmentations. By using the sliding video text duration V′ as a supplementary infor-

mation, the split audio segments A are merged and the exact audio paragraph segments

A∗ are aligned with the sliding video text segments automatically.

The audio features between the time pairs A∗ are extracted as mentioned in 2.1.

5.2. Modeling

5.2.1. Phone Modeling

The phone set includes 29 Turkish phones and one silence phone - a total of 30

phones and each phone is modeled by 3-state HMMs. The output distribution of each

HHM state is defined by Gaussian Mixture Models. The number of Gaussian mixture

components are calculated based on the observation count. Figure 5.3 shows the three

state representation of the phone “A”.

Figure 5.3. 3-state representation of phone “A”
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5.2.2. Bootstrap Model Training

So far audio features between the time marks A∗ are extracted. Each audio

paragraph has a feature vector set and automatically generated transcription. The

feature / transcription pairs of each paragraph are prepared for each video.

18 audio clips are used to train the bootstrap acoustic model. The audio features

are initially segmented uniformly. We assume each character in a paragraph has the

same duration as shown in Figure 5.4 and the number of uniform segments are cal-

culated by dividing the number of feature vectors by the number of characters in a

paragraph.

Figure 5.4. Uniform segmentations

The bootstrap model is a context independent model. The following lexicon in

Figure 5.5 is used as the training lexicon. Training lexicon accepts all the possible

phones in the phone list and reflects the input to the output.
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Figure 5.5. Automatic speech recognizer training lexicon

The initial model is trained with those uniformly divided segmentations and we

applied three iterations of Maximum Likelihood training to obtain the bootstrap model.

The bootstrap model is only used for segmenting the training data automatically and

building the acoustic models which are mentioned in the following chapters.

Figure 5.6 shows the bootstrap model segmentations. These segmentations are

not uniformly divided and more realistic compared to the initial segmentations.

Figure 5.6. Bootstrap model segmentations
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5.2.3. Lexicon and Language Modeling

Lexicon model and language model (also called grammar model) are essential

parts of speech recognition systems. The composition of lexicon and language model

(L ◦G) is used in recognition tasks. The lexicon is a dictionary which maps the words

to phone sequences and the language model defines the word sequence probabilities

calculated from the large text corpus by counting the word sequence frequencies.

Turkish orthography is almost phonetic and the pronunciation of a word can be

completely identified by its spelling (phones). Therefore, the lexicon is created by

mapping each word in the vocabulary to its phone sequences. Figure 5.7 illustrates the

lexicon of some words in the vocabulary.

Figure 5.7. Lexicon Example

Table 5.1. Lexicon

Word Phone

iyi i-y-i

günler g-ü-n-l-e-r

on o-n

altı a-l-t-ı

temmuz t-e-m-m-u-z
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We built three 3-gram Kneser-Ney smoothed language models from the NewsCor,

including 50K, 100K and 200K words. The composition of lexicon and language model,

L ◦G is taken in account during the recognition. L ◦G accepts phones which are the

output of the Acoustic Model and output of L ◦G is the recognition results, words.

The words that are introduced to the recognizer but are not found in the vocab-

ulary are called the out-of-vocabulary (OOV) words. Due to the agglutinative nature

of Turkish, the OOV word ratio is very large. If a word is OOV word, the word is

not included neither in lexicon nor language model, thus, the recognizer has no chance

to recognize the word correctly. Thus, OOV rate defines the performance limit of the

automatic speech recognition system. Therefore, the coverage of the language model

is a very important metric for recognition performance.

The OOV rates of the language models, 50K - LM1, 100K - LM1 and 200K - LM1

which are built from the NewsCor are shown in the first, second and third rows of

Table 5.2. The OOV rate decreases when the coverage of language model increases.

The words in the audio training data set more probably occur in the audio test

set than the words in the NewsCor. Therefore, we build another three set of language

models which contain the training video set sliding text recognition outputs in its

vocabulary. The fourth, fifth and sixth rows of Table 5.2 shows the OOV rates of

the expanded language models, 50K - LM2, 100K - LM2, 200K - LM2. We obtained 1%

reduction in the OOV rate of 50K - LM2. However the same effect was not observed in

200K - LM2.

5.3. Unsupervised Acoustic Model (U-AM)

5.3.1. U-AM Training

We used the bootstrap model to initiate the unsupervised acoustic model training.

The audio training set including 83 files is segmented by the bootstrap model and
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Table 5.2. OOV rates of language models

Language Model OOV Rate

50K - LM1 7.5%

100K - LM1 3.9%

200K - LM1 2.2%

50K - LM2 6.6%

100K - LM2 3.7%

200K - LM2 2.1%

aligned with automatic transcriptions. The lexicon shown in the Figure 5.5 is used as

the automatic speech recognizer training lexicon. We applied four iterations of EM

algorithm and built a context dependent unsupervised acoustic model.

5.3.2. U-AM Performance

The system performance is examined by investigating the WER change due to

the RTF. The word error rate and the real time factor are defined by the Equation

2.15 and Equation 2.16. We provide recognition on the audio test set with different

pruning beam values. If pruning beam increases, the number of paths in the lattice

increases, therefore, WER probably decreases. In contrast, a higher value of pruning

beam increases the number of operations, hence the real time factor increases.

The performance of the unsupervised acoustic model with 50K–LM1, 100K–LM1,

200K–LM1 language models is illustrated in Figure 5.8. The recognition performance

converges a constant value and after a certain point, pruning beam increase yields a

little improvement in recognition performance but a higher increase in RTF.

Recognition with 200K language model gives the best recognition performance

(12.7%).
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Figure 5.8. Unsupervised acoustic model performance with 50K–LM1, 100K–LM1,

200K–LM1 language models

We then investigate the effect of OOV rate on recognition performance. As men-

tioned before, we decreased the OOV rates of LM–2 set language models by adding the

words in audio train set sliding text recognition outputs to the language model vocab-

ulary. We perform recognition on audio test set with the language models 50K–LM2,

100K–LM2, 200K–LM2. The recognition performance with 50K–LM2, 100K–LM2,

200K–LM2 language models is shown in Figure 5.9. We obtained 1% word error rate

performance increase with 50K–LM2 language model. However the same performance

increase could not been observed with 100K–LM2 and 200K–LM2 language models.

Because 100K–LM2 and 200K–LM2 language models’ vocabularies already contain al-

most all of the words which exist in the automatic transcriptions of the audio training

set. The recognition performance of unsupervised acoustic model with the language

model sets LM–1 and LM–2 are stated in Table 5.3.
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Figure 5.9. Effect of OOV rate on recognition performance

5.4. Performance Comparison of Unsupervised v.s. Supervised AM

We build an unsupervised acoustic model and perform recognition with different

language models. In this experiment we compare the performance of the unsupervised

acoustic model with the supervised acoustic model.

We segmented and labeled the training audio data manually. The supervised

acoustic model is built by those manually prepared training data. The same training

and recognition procedure is followed as done in unsupervised acoustic model train-

ing and recognition. The bootstrap model is used to segment the audio training set

features. We then apply four iterations of EM algorithm and obtain the supervised

acoustic model.

We perform recognition in audio test set with 50K–LM1, 100K–LM1, 200K–
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Table 5.3. Effect of OOV rate in recognition performance

Language Model OOV Rate ( % ) WER ( % )

50K
LM1 7.5 18.8

LM2 6.6 17.8

100K
LM1 3.9 14.6

LM2 3.7 14.3

200K
LM1 2.2 12.7

LM2 2.1 12.7

LM1 language models. The performance comparison of unsupervised and supervised

acoustic models is illustrated in Figure 5.10. The unsupervised acoustic model works a

little faster when compared to the unsupervised model. With 50K–LM1, the supervised

acoustic model and the unsupervised acoustic model converges the same word error

rate of 18.8%. The word error rates of 14.2% and 12.3% are obtained by supervised

acoustic model performance test with 100K–LM1, 200K–LM1 language models. As

stated in Table 5.4, supervised acoustic model performs only 0.4% better than the

unsupervised one for 200K–LM1. The performance comparison graph of U-AM and

S-AM is illustrated in Figure 5.10.

Table 5.4. Performance comparison table: unsupervised v.s. supervised acoustic

model

Acoustic Model
WER ( % )

50K-LM1 100K-LM1 200K-LM1

U-AM 18.8 14.6 12.7

S-AM 18.8 14.3 12.3
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Figure 5.10. Performance comparison: unsupervised v.s. supervised acoustic model
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6. CONCLUSION

Automatic speech recognition (ASR) systems require large amount of training

data. It is easy to find audio material (CDs, broadcast news or Internet..) However,

audio materials should be prepared before training. It is a tedious work to segment

and transcribe each utterance at word level. In literature there exist studies to reduce

the data preparation effort for ASR systems. This study addresses the speech data

preparation problem.

In the broadcast news for the hearing impaired, the information is conveyed

in three modalities; speech, sliding video text and sign language. Sliding video text

recognition (SVTR) is an easy task and admits automatic transcription generation for

ASR and sign language data preparation.

We build a SVTR system to make use of untranscribed audio and sign language

video data for training. The front end of the SVTR system consists of sliding text

band detection, video image extraction and feature extraction. We applied speech

processing techniques to model and recognize the sliding video text. The baseline

glyph model performance is increased by imposing a character based language model

to the system (2.2% → 1.5%). Semi-supervised training method is applied to make

use of untranscribed video data for training and 32% relative word error reduction is

achieved. As a result our language independent SVTR system performs with under

1% word error rate.

The main contribution of this thesis is that; we bootstrap an unsupervised acous-

tic model by using the sliding video text in broadcast news for the hearing impaired.

Without any manual data preparation, the transcriptions are generated by the pro-

posed SVTR system at 0.9% word error rate. Audio data is segmented automatically

and aligned with the automatic transcriptions. We obtained 12.7% word error rate

with unsupervised acoustic model with 200K–LM1. When we compare unsupervised

acoustic model to the supervised one, supervised acoustic model yields only 0.4% per-
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formance increase in word error rate. The unsupervised acoustic model performs quite

successful in comparison to the supervised acoustic model performance.

Future work for the SVTR system includes increasing the variety of training and

test data, expanding the feature set and multiple frame integration to obtain more

robust SVTR system. Adaptation may be applied to recognize different fonts and

character sizes. Instead of using only pixel values of the image, additional features

may be added to the feature set. In addition, the multiple frame hypothesis may be

taken in account to improve the recognition performance. The automatic transcriptions

generated by our SVTR system, also can be used for data preparation of sign language

recognition system or for broadcast news retrieval applications. In order to increase

the ASR performance, morph-based language model may be used. The unsupervised

acoustic model performs quite successfully for clean speech. Adaptation may be applied

to improve performance for noisy speech data sets.
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APPENDIX A: SYNTHETIC DATA SET

As mentioned in Chapter 4.3, a synthetic character set including only one sample

of each character is prepared manually. The font of character images are selected from

a similar font to sliding text. The character list is shown in Table A.1. The number of

states are assigned according to the character image duration (width)wc.

The characters are segmented automatically by dividing the image duration by

the number of states. The state means and artificial (unity) variances are assigned as

initial Gaussian model parameters. This model is used to bootstrap the actual baseline

model. The training data is segmented with bootstrap model and baseline model is

training is started with these segmentations.
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Table A.1. Synthetic data states and durations

Characters States Duration Characters States Duration

A 3 13 U 3 12

B 3 12 Ü 3 12

C 3 12 V 3 13

Ç 3 12 V 3 21

D 3 12 Y 3 14

E 3 11 Z 3 11

F 3 10 1 1 7

G 3 13 2 3 10

Ğ 3 13 3 3 10

I 1 4 4 3 10

İ 1 4 5 3 10

J 3 10 6 3 10

K 3 13 7 3 10

L 3 10 8 3 10

M 3 13 9 3 10

N 3 12 0 3 10

O 3 13 . 1 4

Ö 3 13 , 1 4

P 3 11 ’ 1 4

R 3 13 : 1 4

S 3 11 - 1 6

Ş 3 11 ; 1 4

T 3 12 ? 3 6

cs 1 2

ws 1 7

ps 1 120
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APPENDIX B: SVTR SYSTEM PARAMETER

OPTIMIZATION

In this set of experiments, we optimize the system parameters ,duration multiplier

dur and grammar multiplier grm, over SVTR development set. We perform a grid

test ∀dur, grm = [3, 5, 7, 9, 11, 13]. Recognition tests ∀dur, grm = [3, 5, 7, 9, 11, 13] are

performed for each n-gram language models ∀n = [3, 4, 5, 6, 7]. The performance results

are shown in the following Tables B.1,B.2,B.3,B.4,B.5

Table B.1. Duration and grammar multiplier parameter optimization of SVTR for

3-gram language model

3-gram Tests

dur/grm 3 5 7 9 11 13

3 2.141 1.925 1.886 2.083 2.593 3.477

5 2.161 1.866 1.807 1.650 1.768 2.181

7 2.299 1.650 1.690 1.513 1.493 1.788

9 3.733 1.788 1.532 1.591 1.552 1.611

11 7.682 2.299 1.749 1.552 1.572 1.690

13 10.059 2.809 1.945 1.611 1.572 1.729

The duration and grammar multiplier values which minimize the WER are found

as 9 and 11 respectively. These values are kept constant and are used for all SVTR

performance tests.
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Table B.2. Duration and grammar multiplier parameter optimization of SVTR for

4-gram language model

4-gram Tests

dur/grm 3 5 7 9 11 13

3 2.043 1.807 1.631 1.552 1.729 1.984

5 2.122 1.709 1.552 1.415 1.454 1.591

7 2.141 1.572 1.454 1.336 1.356 1.454

9 3.399 1.493 1.395 1.336 1.277 1.316

11 7.289 1.729 1.415 1.198 1.198 1.316

13 9.528 1.965 1.454 1.277 1.277 1.336

Table B.3. Duration and grammar multiplier parameter optimization of SVTR for

5-gram language model

5-gram Tests

dur/grm 3 5 7 9 11 13

3 1.827 1.552 1.434 1.395 1.611 1.886

5 1.945 1.493 1.415 1.198 1.277 1.454

7 2.063 1.434 1.336 1.218 1.238 1.257

9 3.084 1.415 1.238 1.159 1.159 1.297

11 6.994 1.473 1.316 1.179 1.081 1.198

13 9.371 1.650 1.356 1.139 1.139 1.257
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Table B.4. Duration and grammar multiplier parameter optimization of SVTR for

6-gram language model

6-gram Tests

dur/grm 3 5 7 9 11 13

3 1.749 1.473 1.316 1.395 1.434 1.552

5 1.788 1.513 1.336 1.081 1.159 1.297

7 2.004 1.434 1.316 1.159 1.100 1.139

9 3.084 1.493 1.297 1.139 1.041 1.100

11 7.014 1.454 1.297 1.159 1.081 1.139

13 9.450 1.572 1.336 1.159 1.159 1.179

Table B.5. Duration and grammar multiplier parameter optimization of SVTR for

7-gram language model

7-gram Tests

dur/grm 3 5 7 9 11 13

3 1.729 1.513 1.375 1.356 1.434 1.631

5 1.749 1.552 1.356 1.179 1.238 1.434

7 1.925 1.473 1.356 1.218 1.100 1.218

9 2.986 1.454 1.277 1.179 1.120 1.179

11 6.935 1.513 1.356 1.238 1.139 1.198

13 9.411 1.552 1.316 1.198 1.120 1.159
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APPENDIX C: MINIMUM EDIT DISTANCE

Minimum edit distance (Levenshtein distance) is a metric for measuring the

amount of difference between two sequences. It calculates the cheapest way to trans-

form one sequence to another. It often used in applications that need to determine how

similar, or different the two sequence are like in case of spell checkers or DNA sequence

alignments.

The cost is the number of operations to transform a sequence to another, where

an operation is,

• An insertion (i), to supplement an element to the sequence

• A deletion (d), to remove an element from the sequence

• A substitution (s), to replace an element with another element.

The algorithm for computing minimum edit distance is as follows,

1: m = size of the first string s1 , n = is the size of the second string s2

2: for i from 0 to m do

3: d[i, 0] = i deletions

4: end for

5: for j from 0 to n do

6: d[0, j] = j insertions

7: end for

8: for j from 0 to n do

9: for i from 0 to m do

10: if s1[i] = s2[j] then

11: d[i, j] = d[i− 1, j − 1]

12: else

13: d[i, j] = min{d[i− 1, j] + 1, d[i, j − 1] + 1, d[i− 1, j − 1] + 1}

14: end if
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15: end for

16: end for

17: return d[m,n]

The distance table for the two example strings s1 = ”BU AKŞAM” and s2 =

”8U AŞANN” is shown in Table C.1. The minimum path is highlighted. There are 2

substitutions (B → 8 , M → N), 1 deletion (K) and 1 insertion (N) in the example.

The d[m,n]th value is total number of operations which is 4 for this example. So the

CER is calculated as 50% by Equation C.1.

e =
(i+ d+ s)

N
(C.1)

Table C.1. Distance table

8 U A Ş A N N

0 1 2 3 4 5 6 7 8

B 1 1 2 3 4 5 6 7 8

U 2 2 1 2 3 4 5 6 7

3 3 2 1 2 3 4 5 6

A 4 4 3 2 1 2 3 4 5

K 5 5 4 3 2 2 3 4 5

Ş 6 6 5 4 3 2 3 4 5

A 7 7 6 5 4 3 2 3 4

M 8 8 7 6 5 4 3 3 4
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