
SCREEN-REPLAY: A TOOL FOR TRACKING HOW STUDENTS DEVELOP

PROGRAMS WITH HTDP

by

Mehmet Fatih Köksal

BS, Computer Science, Istanbul Bilgi University, 2006

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2010

ii

SCREEN-REPLAY: A TOOL FOR TRACKING HOW STUDENTS DEVELOP

PROGRAMS WITH HTDP

APPROVED BY:

Dr. Suzan Üsküdarlı

(Thesis Supervisor)

Dr. Mehmet Gençer

Assoc. Prof. Pınar Yolum

DATE OF APPROVAL: 27.01.2010

iii

ACKNOWLEDGEMENTS

I would like to thank all people who have helped and inspired me during my

master study.

I especially want to thank my advisor, Dr. Suzan Üsküdarlı, for her guidance

during my research. This thesis would not have been possible without the help, support

and patience of her.

My deepest gratitude goes to my wife and my family for their unflagging love and

support throughout my life. I am extremely grateful for their patience.

It is a pleasure to thank Prof. Matthias Felleisen, other members of PLT group

and Chris Stephenson, head of Istanbul Bilgi University Computer Science Department,

who made this thesis possible.

I would like to thank Remzi Emre Başar, Vehbi Sinan Tunalıoğlu, Bülent Özel

and other members of Computer Science Department of Istanbul Bilgi University. They

have made their support available in a number of ways.

Finally, I want to thank my students and all other kind people around me for

their help and support during my research.

iv

ABSTRACT

SCREEN-REPLAY: A TOOL FOR TRACKING HOW

STUDENTS DEVELOP PROGRAMS WITH HTDP

Evaluation of the teaching method has great importance in improving the course

quality. This evaluation is harder in courses which focus on the process of program

development, since it requires observation of the students’ approach to problem solving.

HtDP offers a “design recipe” which focuses on the process of program development.

While there have been a number of studies focusing on the quality of this approach,

there has not been any quantitative analysis.

In this study, I first introduce a model and implementation of a tool (Screen-

Replay) that enables the recording, replaying and annotation of programming sessions.

This tool is implemented for DrScheme environment using Scheme programming lan-

guage. It records and replays a programming session exactly as it occurred. Further-

more, while replaying, an observer may annotate the programming session by associ-

ating HtDP design recipe steps with specific time intervals. The resulting annotations

form a sequence of design activity descriptions which describe the development process.

In order to assess these sequences, a process scoring algorithms is proposed. Finally,

the process scores and exam grades from a set of 61 development sessions are examined

to gain insight into the impact of following design recipe on exam grades.

Screen-Replay was effective for observing how students develop their programs.

In contrast to personal observation, this approach provided consistent and objective

observation of students development processes.

v

ÖZET

SCREEN-REPLAY: HTDP KULLANAN ÖĞRENCİLERİN

PROGRAM GELİŞTİRME SÜREÇLERİNİ TAKİP ETME

ARACI

Öğretim metodlarının değerlendirilmesi ders kalitesinin arttırılması bakımından

büyük önem taşır. Program geliştirme süreçlerine odaklanmış dersler öğrencilerin

problem çözme yöntemlerinin gözlemlenmesini gerektirdiği için öğrenim metodlarının

değerlendirilmesi bu derslerde daha zordur. HtDP de bu tarz bir sürece odaklanan

“tasarım reçetesi” önermektedir. Bu yaklaşımın kalitesini ölçmek için yapılmış çalış-

malar olmasına rağmen nicel analizine ilişkin bir çalışma henüz yapılmamıştır.

Bu çalışmada ben öncelikle program geliştirme sürecinin kaydedilmesi, tekrar oy-

natılması ve üzerine notlar alınmasını sağlayan bir araç (Screen-Replay) modeli ve

uygulaması ortaya koymaktayım. Bu araç DrScheme ortamı için Scheme program-

lama dili kullanılarak yazılmıştır. Program geliştirme sürecini kaydederek aynen tekrar

oynatılabilmesini sağmaktadır. Ayrıca, süreci tekrar oynatan bir gözlemci belirli za-

man aralıklarını HtDP tasarım reçetesi adımları ile eşleştirmek sureti ile süreci yo-

rumlayabilir. Sonuçta ortaya çıkan yorumlar, geliştirme sürecini tanımlayan tasarım

aktivitelerinin dizisidir. Bu dizileri değerlendirebilmek için bir süreç değerlendirme al-

goritması geliştirildi. Son olarak, 61 farklı program geliştirme sürecinden elde edilen

süreç skorları ve sınav notları incelenerek tasarım reçetelerinin sınav notları üzerindeki

etkisi kavramaya çalışıldı.

Screen-Replay, öğrencilerin nasıl program geliştirdiğini gözlemlemek için etkili

bir araçtır. Kişisel gözlemleme yöntemlerine karşın öğrencilerin geliştirme süreçlerinin

tutarlı ve nesnel bir yöntemle gözlemlenmesini sağlamıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. BACKGROUND . 4

2.1. PLT and the TeachScheme! Project . 4

2.2. Language Levels . 5

2.3. DrScheme . 6

2.4. The Design Recipe and HtDP . 8

3. MOTIVATION . 12

3.1. From Product-Oriented to Process-Oriented Approach 12

3.2. Current First Year Curriculum . 16

3.3. The Strategic War Between Instructors and Students 17

3.4. The Need for the Observation of the Process 18

3.5. Observation without Personal Intrusion 19

4. IMPLEMENTATION OF SCREEN-REPLAY 21

4.1. The Basic Approach . 21

4.2. Requirements . 23

4.3. Implementation . 24

4.3.1. Recorder . 25

4.3.2. Replayer . 26

4.3.2.1. Replaying . 28

4.3.2.2. Tagging . 30

4.4. Processing the Tags . 33

5. PROCESS SCORING ALGORITHM . 36

5.1. Assessing the Design . 36

vii

5.2. Classical String Similarity Algorithms 37

5.3. Our Scoring Algorithm . 39

6. EXPERIMENT . 43

6.1. Experimental Questions . 43

6.2. Participants . 43

6.3. Tasks . 44

6.4. Monitoring . 45

6.5. Grading the Exam . 45

7. EVALUATION . 50

7.1. Question 1 . 50

7.2. Question 2 . 51

7.3. Question 3 . 55

8. DISCUSSION . 58

8.1. Screen-Replay . 58

8.2. Process Scoring Algorithm . 59

8.3. Experiment . 59

9. RELATED WORK . 61

10. FUTURE WORK . 64

11. CONCLUSION . 65

APPENDIX A: Experiment Data: Process Scores and Exam Grades 66

REFERENCES . 69

viii

LIST OF FIGURES

Figure 2.1. DrScheme’s interface . 7

Figure 2.2. Basic steps of the design recipe . 8

Figure 2.3. An example application of design recipe 10

Figure 3.1. The RobotWorld applet . 13

Figure 3.2. Example code for JAVA + RobotWorld 14

Figure 4.1. A programming session tagged with design step tags. The entire

session starts at t0 and terminates with tn and sub-processes occur

in sub-intervals. 21

Figure 4.2. Overview of tracking and assessing programming session 22

Figure 4.3. The definition and example of the action structure 25

Figure 4.4. Start recording (a) and stop recording (b) buttons 27

Figure 4.5. An overview of the Replayer . 27

Figure 4.6. The definition of the tape structure 29

Figure 4.7. The definition and example of tag structure 31

Figure 4.8. An example output of the tagging process 32

Figure 4.9. The definition of the processed-tag structure 34

ix

Figure 5.1. Pseudo-code of the process scoring algorithm 41

Figure 6.1. Exam questions for session 1 and session 2 44

x

LIST OF TABLES

Table 3.1. Available built-in functions for the RobotWorld program 15

Table 4.1. Design steps and associated tags 30

Table 4.2. Students actions and observers responses in return 35

Table 5.1. Evaluation of the process scoring algorithm 42

Table 6.1. Demographic information of exam participants 43

Table 6.2. Grading each function using the scala 46

Table 6.3. Scale grades converted to number grades over 100 47

Table 6.4. Percentages of design step weights for main and helper functions . 48

Table 6.5. Application of design step weights 48

Table 6.6. Calculation of the final grade . 48

Table 7.1. Categorization of the exam grades 52

Table 7.2. Process score categorization for the main function 52

Table 7.3. Process score categorization for helper functions 52

Table 7.4. Process scores vs. exam grades for main function 53

Table 7.5. Process scores vs. exam grades for helper functions 53

xi

Table 7.6. Process scores vs. exam grades for helper functions (excluding zero

values) . 54

Table 7.7. Process scores vs. exam code grades for main function 54

Table 7.8. Process scores vs. exam code grades for helper functions (excluding

0’s) . 54

Table 7.9. Exam grade vs. design step category 55

Table 7.10. Frequently used transactions by all students (over 5 per cent) . . . 57

Table 7.11. Frequently used transactions by successfull students (over 5 per cent) 57

Table A.1. Process scores and exam grades of students (1) 66

Table A.2. Process scores and exam grades of students (2) 67

Table A.3. Process scores and exam grades of students (3) 68

xii

LIST OF ABBREVIATIONS

CD Code

COMP111 Introduction to Programming 1

CS Computer Science

CT Contract

EX Examples

HtDP How to Design Programs

IDE Integrated Development Environment

LGPL GNU Lesser General Public License

PLT A research group founded by Prof. Matthias Felleisen (not an

abbreviation)

PLT-Scheme A programming language based on Scheme

PP Purpose

rec Source file that includes recorded process data

scm Scheme language source code file

TL Template

TS Test

1

1. INTRODUCTION

The education of a computer science student usually starts with an introductory

programming course. The aim of such courses is to equip students with general pro-

gramming knowledge and prepare them for subsequent courses in the curriculum. Such

courses typically teach the fundamental concepts of programming with the use of given

programming language, integrated development environment (IDE), and other tools

[1]. With these tools and course instructions, students are expected to learn how to

write, debug and document programs.

While objectives of introductory programming courses are similar, contents, ap-

proaches and assessment methods differ. Teaching with examples is a frequently used

approach [2], where examples are provided for every concept introduced. These ex-

amples are expected to guide students in their assignments. Students often use these

examples as a starting point and modify them until they reach the desired solution.

Conventional assessment methods evaluate exams and assignments by comparing stu-

dents’ code against expected results. Students’ code, in such cases, are final products

with no further information on how they arrived to them.

The TeachScheme! project [3] does not support the programming-by-tinkering

approach, which students often resort to. It developed an alternative approach to teach-

ing, described in the text book “How to Design Programs” (HtDP) [4]. This approach

focuses on a design process that starts from the problem statement and proceeds to

a well-organized solution. After the publication of HtDP, several universities around

the world revised their curriculum in favor of this approach. Most of these universities

use the methodology as described in the book, whereas some [1] have derived alternate

versions [5] to meet their needs.

The HtDP approach and others derived from it emphasize the importance of

process in addition to the product. Accordingly, instead of conventional assessment

methods, they prefer lab (or live) exams, which they consider to be a more accurate

2

reflection of student performance [6]. Approaches to conduct live exams also vary. Some

let students develop programs independently and evaluate the results in a conventional

manner. In others [1, 7], the development process is personally observed.

In order to understand how students develop their programs, it is necessary to

track their development process. By tracking their process, we aim to answer the

following questions: Do students apply the design guidelines we teach, when they

develop programs on their own? Are students, who follow the suggested guidelines,

more successful than the others? If not, can we identify patterns or approaches used

by successful students?

Intrusive tracking, such as watching, may impact students’ performance during a

programming session. Indeed, it has been reported that some students were disturbed

by personal observation of their work [7]. An alternative approach for observing pro-

gram development is to embed tracking into the development tool. Such a tool would

need to record and replay the development process in order to make the process trans-

parently visible.

In this study, I first introduce a model and implementation of a tool (Screen-

Replay) that enables the recording, replaying and annotation of programming sessions.

This tool is implemented for DrScheme [8] environment using Scheme [9] program-

ming language. It records and replays a programming session exactly as it occurred.

Furthermore, while replaying, an observer may annotate the programming session by

associating HtDP design recipe steps with specific time intervals. The resulting anno-

tations form a sequence of design activity descriptions which describe the development

process. In order to assess these sequences, a process scoring algorithms is proposed.

Finally, the process scores and exam grades from a set of 61 development sessions are

examined to gain insight into the impact of following design recipe on exam grades.

The rest of this thesis is organized as follows: Chapter 2 presents some background

information on the design recipe and HtDP. Chapter 3 further discusses my motiva-

tion to analyze students’ programming sessions. Chapter 4 describes the model and

3

implementation details of the Screen-Replay. Chapter 5 explains the process scoring

algorithm. Chapter 6 presents the details of the experiment, followed by an evaluation

in Chapter 7. Chapter 8 and Chapter 9 include discussions and related work, respec-

tively. Finally, in Chapters 10 and 11, I present future work to be done and conclude

my work.

4

2. BACKGROUND

This chapter presents background information needed to follow this work. Pri-

marily, the objectives and approach of the TeachScheme! [3] project are explained.

2.1. PLT and the TeachScheme! Project

PLT was founded by Prof. Matthias Felleisen [10] in the mid 1990s, as a research

group at Rice University. The aim was to produce pedagogic materials for novice

programmers. In 1996, PLT started the TeachScheme! project [3]. The objective

of this project was to reform introductory high school courses on programming with

the long-term goal of overcoming all the problems they have diagnosed. Three major

problems presented by the authors [3] are as follows:

(i) Schools consider programming as a part of vocational studies rather than the

liberal arts core. Therefore, in many places “introduction to computer science”

is a course on application software and has nothing to do with programming and

computing.

(ii) Schools employ programming technology from the industry that is just the cheap-

ened version of the professional products, hence, is not appropriate for educational

purposes.

(iii) The curriculum of high schools often dictate the grammar of currently fashionable,

vocational programming languages rather than teaching principles of design and

problem solving.

The following three sections present major contributions of TeachScheme! project

concerning these problems stated above.

5

2.2. Language Levels

Beginners have a lot of errors (of all types) in their programs and easily get

frustrated, when the feedback for errors is obscure [3]. Therefore, it is critical for an

introductory course on programming to present ideas and use tools that help students

to comprehend and overcome these errors.

After comprehensive observation of lab sessions at Rice University and in local

high schools in Houston, the TeachScheme! project designed a series of programming

languages based on Scheme [3]1 . Each element of the series corresponds to a cognitive

stage of the learning process in a concrete manner:

• Beginning Student: This is a small version of Scheme that is tailored for beginning

computer science students.

• Beginning Student with List Abbreviations: This language is an extension to

“Beginning Student” that prints lists with list instead of cons, and accepts

quasiquoted input.

• Intermediate Student: The Intermediate Student language adds local bindings

and higher-order functions.

• Intermediate Student with Lambda: This language adds anonymous functions.

• Advanced Student: The Advanced Student language adds mutable state.

When programs in these languages are run in DrScheme, any part of the program

that was not run is highlighted in orange and black, indicating that those parts of the

program have not been tested. To avoid these colors, students are expected to write

test cases. Seeing no colors does not mean that the program is fully tested, but it

simply means that each part of the program has been run (at least once) [11].

Providing a coherent series of sub-languages instead of a single language has two

major advantages: First, by starting with a small-language, teachers can focus on the

1Original paper introduces three language levels, but, due to additional observations TeachScheme!
project currently works with five teaching languages.

6

development of problem solving, instead of discussing the appropriate linguistic mech-

anisms (such as using “for” as well as “while”). Second, using a specific sub-language

enables the language implementors to report error messages that are appropriate to a

student’s level of knowledge.

2.3. DrScheme

The classroom observations of TeachScheme! team also revealed problems with

the IDE’s used for the introductory programming courses. Complex control panels are

one of the main problems that confuse beginners [3]. Learning editions of these IDE’s

also do not help, since they are often cheapened editions of professional tools which

include the same complex control panels.

TeachScheme! project developed DrScheme as a response to these issues. DrScheme

has a very pure interface with two windows for definitions and interactions, along with

5 carefully chosen buttons (see Figure 2.1). It supports syntax highlighting, paren-

thesis matching and other functionalities to help novice users. It includes a debugger,

macro stepper [12] and a syntax checker. The stepper helps a teacher to explain eas-

ily a complete model of computation to students without ever mentioning a hardware

concept.

Another important feature of DrScheme is that it supports language levels ex-

plained in Section 2.2. Choosing the appropriate language level allows students to

benefit from more explanatory error messages.

DrScheme is published under the GNU Lesser General Public License (LGPL)

[13]. Thus, it can be modified, redistributed or linked into any other application as

long as the rules of LGPL are followed. This makes DrScheme freely available and

allows instructors to modify it according to their needs.

7

Figure 2.1. DrScheme’s interface

8

2.4. The Design Recipe and HtDP

TeachScheme! project emphasizes the importance of process in addition to the

product. It introduces a program design method to help beginning students and their

teachers. This design method is extensively described in the book HtDP as a teaching

methodology.

HtDP is defined by its authors as “... the first book on programming as the core

subject of a liberal arts education”. It focuses on the design process that leads from

problem statements to well-organized solutions rather than studying the details of a

specific programming language, algorithmic minutiae, and specific application domains

[4]. It includes design guidelines, which are formulated as a number of program design

recipes leading students from a problem statement to a computational solution in a

step-by-step fashion with well-defined intermediate products.

A design recipe is a checklist that helps students to organize their thoughts

through the problem solving process. Students are expected to use this checklist on

a question-and-answer basis to progress towards a solution [4]. The basic steps of the

design recipe are shown in Figure 2.2.

0. (DD) Data definition: determine the classes of data that the program

consumes and produces

1. (CT) Contract : name your function and specify the input-output rela-

tion in terms of the defined data type

2. (PP) Purpose: informally specify what the program is to compute

3. (EX) Examples : illustrate the behavior with examples

4. (TL) Template: describe your programs template/layout

5. (CD) Code: transform your template into a complete definition

6. (TS) Tests : turn your examples into formal test cases

Figure 2.2. Basic steps of the design recipe

9

The version of design recipe presented here includes 7 steps, where the original

one has 6. In this version2 , purpose statement and the contract are split into two

different steps. It starts from 0, since the data definition may be used by a number of

different functions, while the other steps are function specific.

It is the best to explain the design recipe with an example. The example in Fig-

ure 2.3 illustrates how to apply the design recipe to the problem of summing elements

of a list.

One may ask, whether it is necessary to write each step down during the develop-

ment process. A student, still, may write a well structured, working program, without

including all intermediate steps, but having them in mind as he/she proceeds. Writing

each step separately has a lot of advantages for (1) the student, (2) his/her teacher

and (3) those who use the students program at some future time.

First of all, it helps students to overcome the so called “blank page syndrome”

[14, 15]. Given a problem statement and a white blank paper, students do not have

to think about where to start. They can immediately start by asking themselves the

following question: “Which classes of data does this program consume and produce?”,

that leads to a data definition. This question will then be followed by other design

recipe questions and guide the student towards a well-structured solution.

Second, it helps teachers. Every design step the student produces is a verifiable

intermediate product. When a student comes to the teacher, because he got stuck, the

teacher can ask questions about the intermediate design steps and try to understand

the real problem that the student is facing. Thus, the teacher is able to lead students

in the right direction, instead of trying to correct an erroneous code piece. Similarly,

a teacher can use these intermediate products for grading and evaluation. Instead of

guessing how many points to assign to a correct statement in a program, the teacher

can inspect the process that produced the product and assign a more accurate grade

[3].

2as it is used in Istanbul Bilgi University Department of Computer Science

10

Figure 2.3. An example application of design recipe

11

Third, it helps other people who will later use the students code. Design recipe

A program that is produced using the design recipe contains all the necessary docu-

mentation, and is tested.

Finally, it is a good practice to develop solutions of any kind of problems. Students

internalize the approach and become able to use this methodology to solve problems

in other areas or to build more complex systems.

The design recipe approach has been gradually adopted and used by the Com-

puter Science Department of Istanbul Bilgi University [16, 17]. The following chapter

explains this adaptation process, difficulties encountered and issues that motivated this

study.

12

3. MOTIVATION

3.1. From Product-Oriented to Process-Oriented Approach

The Computer Science (CS) Department of Istanbul Bilgi University was founded

in 1999. Since its foundation, the introductory programming curriculum of the depart-

ment has changed three times3 .

Starting from 1999/Fall semester, the CS department used C programming lan-

guage for two years in the introductory programming course (COMP111). This course

used a conventional C language curriculum. For every concept introduced, students

were provided with example solutions. These examples were expected to guide stu-

dents in their assignments. Students typically used these examples as starting points

and modified them (in a code and fix manner) until they reached the desired solution.

Instructors evaluated assignments and exams by conventional methods, where students

code was compared against the expected result. It was observed that students were

mostly struggling with the heavy syntax of the language instead of learning how to solve

problems. Therefore, the CS department ceased using the C programming language in

COMP111.

The 2001/Fall semester started with the use of a different programming language,

JAVA. Instead of teaching “how to write programs in JAVA”, COMP111 aimed to teach

“how to solve problems”. Introductory programming concepts were introduced to stu-

dents by using a program, called RobotWorld [18]. The RobotWorld program was

developed by Chris Stephenson (head of the CS department). The aim was to relieve

students from the unnecessary syntactic issues of the programming language, and to

allow them to concentrate on problem solving skills (like in [19, 20, 21, 22, 23]). Ba-

sically, the program dealt with a checker board and a blind robot. Students had to

instruct the robot in accomplish some tasks, which vary from finding the center of the

3The author has been a student and teaching assistant at Computer Science Department of Istanbul
Bilgi University

13

Figure 3.1. The RobotWorld applet

room to putting block objects in to the hole (see Figure 3.1 and 3.2). The robot was

not only blind, but it understood a small number of instructions (see Table 3.1). Ac-

complishing complex tasks were only possible by building new functions upon already

existing ones. For example, to make the robot turn 90 ◦ to the right, students turned

it 3 times 90 ◦ to the left. This new functionality then, was saved for future use. In

this way, student learned the concept of re-use through experience rather than a formal

introduction of the concept.

Instructors of the CS department considered JAVA + RobotWorld to be more

appropriate than the C programming language for COMP111. Firstly, it reduced the

syntactic overhead and lowered the learning curve. Secondly, it was more successful

than C in learning the introductory programming concepts. On the other hand, JAVA

+ RobotWorld had some issues as well. Some students were, still, struggling with syn-

tactic issues for the initial 3-4 weeks of the term. They used the language constructs

without understanding what they mean (like static, public, void etc.). The main ef-

fects in Robotworld were obtained through side effects, that is, a move of the robot was

14

import robotworld01 .∗ ;

c l a s s MyRobotProgram extends RobotProgram

{

void walkToTheWall () throws RobotResetException

{

i f (t ryStep ())

walkToTheWall () ;

}

i n t countToTheWall () throws RobotResetException

{

i f (t ryStep ())

return 1 + countToTheWall () ;

else

return 0 ;

}

i n t findTheWidth () throws RobotResetException

{

walkToTheWall () ;

doTurn () ;

doTurn () ;

return 1 + countToTheWall () ;

}

pub l i c void go (St r ing task , i n t x , i n t y , S t r ing s)

throws RobotResetException

{

print (‘ ‘ I took ‘ ‘+ countToTheWall ()+ ’ ’ s teps ’ ’) ;

print (‘ ‘ the room i s ‘ ‘+ findTheWidth ()+ ’ ’ s t ep s wide ’ ’) ;

}

}

Figure 3.2. Example code for JAVA + RobotWorld

15

Table 3.1. Available built-in functions for the RobotWorld program

print(String) prints any String

tryStep() tries to step the robot one step forward; the return value

is true if the step is successful, false if the Robot hits an

obstacle and cannot move forward

doTurn() turns the Robot 90 degrees to the left, which is always

possible

setPainting(boolean) sets the robot to paint if true, not to paint if false

getPainting() gets the current painting setting

getObjectNumber() looks for an object in the current square, gives its num-

ber if there is an object, otherwise -1

getBlockNumber() looks for a block in front of the Robot, gives its number

if there is a block in front of the Robot, otherwise -1

void hideRobot() hide the robot

void showRobot() show the robot

void hideCheckerBoard() hide the checker board effect in RobotWorld

void showCheckerBoard() show the checker board effect in RobotWorld

not a value of a function, but simply the side effect of the evaluation of the function4 .

Therefore, proper design and proper automated testing were impossible. Moreover, the

weekly assignments of RobotWorld were far from being real world applications. Stu-

dents did not feel ready for an internship or the application for any other programming

language at the end of the year. They were not able to transfer their programming

knowledge into other problem domains, and it was obvious that companies were not

using robots. Finally, when students got stuck, helping them was not easy for instruc-

tors. They had to inspect the students code and find the bug, without having much

idea about the students understanding of the problem.

After 4 years of JAVA + RobotWorld, COMP111 switched to PLT-Scheme [24],

a programming language based on Scheme [9], and gradually adopted the HtDP cur-

4This information is obtained from Chris Stephenson through e-mail conversations.

16

riculum. Adaptation of the new curriculum took 2 years. Following this change, the

course structure of the department also revised. The next section explains the current

introductory programming curriculum in more detail.

3.2. Current First Year Curriculum

The first year curriculum of Computer Science Department at İstanbul Bilgi Uni-

versity was revised effective of 2007-2008 academic year. In order to have better control

over the course and increase student-instructor interaction, sections of at most 20 stu-

dents were opened. With this change, it became possible to intensively follow students

to see if they meet the educational objectives.

The new introductory programming course (Comp149/150-HtDP) at İstanbul

Bilgi University, is a part of the meta-course Comp149/150, which also includes the

courses: Academic Skills (Comp149/150-AS), Meta Skills (Comp149/150-MS) and Dis-

crete Mathematics (Comp149/150-DM). This meta-course is mandatory for Computer

Science, Financial Mathematics and Business Informatics majors. Comp149/150-HtDP

uses “How to Design Programs” (HtDP) [4] as the text book, Scheme as the program-

ming language and DrScheme [8] as the development environment.

The first semester of the course (Comp149-HtDP) covers first four parts of the

book, which basically includes primitive, compound and recursive data types, condi-

tionals, and abstraction. Generative recursion, graphs, vectors and iterative program-

ming are taught in the second semester (Comp150-HtDP).

Each semester consists of 13 weeks. Every week there are two hours of lectures

and two hours of labs. In lecture hours, instructors present the material and develop

programs in front of the students by following the design recipe as suggested by HtDP.

Additionally, each week students are assigned a project, which they must complete

within one week. In the final weeks of the second semester, assignments become more

complex and students are given a minimum of two weeks to complete them. During

lab sessions students present their project solutions to their classmates.

17

During this course students are given four live exams, where they develop pro-

grams in computer labs. Each exam consists of one or two questions that are to be

solved in approximately 90 minutes. During the exam, students have access only to the

text book and DrScheme. Network access is disabled during exams. Grades of weekly

projects and live exams determine the course grade of students. The final grade this

course is combined with grades from other parts of the meta-course with a formula that

rewards even performance. This grading policy was established based on the belief that

students must have sufficient knowledge of mathematics, critical reading/thinking skills

and the ability to express their thoughts properly in order to develop well structured

programs. Starting from the 2008-2009 academic year, at the end of the year students

are examined by a jury consisting of the meta-course instructors.

The main objective of the overall course is to teach “How to solve it?” [25] and

the process is the central concern in this idea. The HtDP curriculum meets the aim

of the introductory programming course, as it focuses on problem solving process via

design recipes, rather than the product. Additionally, it offers a more appropriate

support to the introductory curriculum, by using DrScheme and different language

levels. However, it introduces some challenges with respect to evaluation, which are

discussed in the following section.

3.3. The Strategic War Between Instructors and Students

There are numerous reports on the success using the HtDP curriculum [26, 1,

27, 28]. Since the adoption of HtDP, CS department of Istanbul Bilgi University also

observed similar improvements. Specifically, improvements in student performance

have been observed with respect to:

• programming abilities,

• overall grades, and

• success in subsequent courses.

These improvements are particularly noticeable in female students [2].

18

On the other hand, increased interaction with students revealed some issues with

respect to the adoption of the taught process. It became apparent that students were

not applying the design recipe throughout the development process. Instead, they were

diving into the code without going through each step of the design recipe. So, a change

in the grading policy was implemented. The grading scheme was modified to grade

each step of the design recipe separately.

Students responded to the new grading scheme by faking the process. They

wrote the code first and inserted the design steps later. This response led us to inspect

each student submission more carefully. Forged design steps are often distinguished

by checking the inconsistencies between written design steps. Considering that, a con-

sistency check between design steps and terminating the evaluation of the assignment

when an inconsistency was found, was implemented. Unfortunately, this also did not

resulted in following the design recipe.

At that point, it became apparent that evaluating the final product and making

assumptions about the development process was not the proper way of evaluating a

process oriented approach. Applying more pressure to following the design recipes only

created better “design recipe evasion” tactics.

With this realization the attempt to evaluate the order of construction by looking

only to the final product was abandoned. However, the interest in tracking our student

development process and its impact on successful outcome remained strong. The next

section further discusses the need for the observation of the development process.

3.4. The Need for the Observation of the Process

The evaluation method of a course should be consistent with the course objectives.

There are two main reasons for that: First of all, it ensures that we are evaluating what

we are teaching. Second, it helps improving teaching methods. Therefore, a course that

aims to teach the process of program development should evaluate students program

development.

19

HtDP, as a process oriented approach for the introductory programming curricu-

lum, should observe students program development processes. Students may, as have

been experienced, write the program code and then add other design steps to get higher

grades. Such students, obviously, do not benefit from the design recipe as aimed by

course objectives. Also, sufficient feedback to improve teaching method is not avail-

able. Final products are not sufficient for observing design steps that students have

difficulties in applying.

In conclusion, final product evaluation is insufficient in evaluating process oriented

approaches. Instead, the development processes must be observed in order to better

evaluate. The next section discusses the problems of current observation methods and

proposes a different one instead.

3.5. Observation without Personal Intrusion

There are several ways of tracking students program development processes.

Some of them are one-to-one programming exercises, assisted programming sessions

or student-led live coding sessions.

In one-to-one programming exercises, an instructor observes the students process

while he/she is writing a program. Assisted programming session is pretty much the

same with the one-to-one approach, but, it is applied to several students at the same

time. Student-led live coding sessions refer to a selected student writing a program in

front of his/her classmates, so that the process is visible to everyone. We find all of these

methods intrusive, as they may effect students’ behavior during program development.

Indeed, it has been reported that some students were disturbed by personal observation

of their work [7]. Chapter 9 further discusses these methods in related work and explain

why we call them intrusive. The desired observation is that students internalize and

use the process while they develop programs on their own.

An alternative approach to tracking program development is to embed the track-

ing ability into the development tool. Such a tool would need to record the development

20

process as students develop their programs. This process should be re-playable by the

instructor, after students complete their development. Thus students can be observed

without intervention to their work.

21

4. IMPLEMENTATION OF SCREEN-REPLAY

4.1. The Basic Approach

As stated in the motivation, in order gain insight into the impact of teaching

programming with the HtDP design recipe, which teaches a process, it is necessary to

track student programming sessions. For this, an approach that supports the following

is proposed:

(i) the capture of programming sessions,

(ii) the observation of captured sessions,

(iii) the high level description of the process followed in a programming session,

(iv) the assessment of high level programming session descriptions.

The capture of programming sessions: In order to capture sessions consistently

and objectively, programming sessions must be recorded automatically. All states of

the development process, from beginning to end, must be captured. The recorded

information must be persistent, so that it can be further observed and analyzed.

Observation of captured sessions: A captured session must be viewable. In other

terms it must be re-playable. The presentation must identically recreate the actual

Figure 4.1. A programming session tagged with design step tags. The entire session

starts at t0 and terminates with tn and sub-processes occur in sub-intervals.

22

programming session in terms of content, focus and time. An observer must be able to

see the state of development at any given time and be able to browse the process.

High level description: A programming session can be considered as a process that

consists of a sequence of subprocesses. In this case each subprocess would correspond

to a HtDP design step. A developer may revisit a subprocess (design step) several

times within the duration of a programming session. Each sub-process is associated

with a time interval indicating it began and stopped working on that process. Each

design step can be denoted with a tag. Tags can be used to annotate a programming

session. We refer to these tags as design step tags and the process of associating such

tags with specific time intervals as programming session tagging (or simply tagging

session). The tagging of a programming session yields a sequence of design recipe tags

that represent the entire process followed during development (see Figure 4.1).

Figure 4.2. Overview of tracking and assessing programming session

Assessment: A high level process description can be evaluated by assigning it

a score that represents how well it corresponds to the prescribed design recipe. We

propose an algorithm that assigns a score to a given design recipe tag sequence. This

algorithm rewards expected/prescribed design step transitions and penalizes those that

23

do not. This algorithm is concerned with relative ranking rather than assigning a fine

grained scores that indicate levels of success.

A representation of proposed model is shown in Figure 4.2. As the model pro-

poses, the Recorder automatically records every interaction of the student during the

programming session. All recorded actions are saved in a file. This file, then, is used

to view the recorded programming session and tag the programming session. Finally,

the process scoring algorithm computes a process score for the design tag sequence.

4.2. Requirements

This section presents the requirements that based on the proposed model. In the

remainder of this thesis the term tag should be understood as design step tag. The

requirements are as follows:

(i) Capturing the programming session

• Every text related addition, deletion and modification must be saved.

• Each keystroke should be saved with the content, time and position data.

(ii) Observation of the development process

• The user should be able to select the file (i.e recorded session) to be viewed.

• The user should be able to view the session at the same speed as it occurred.

• Convenient browsing support for viewing sessions should be provided. The

user should be able to pause, replay and navigate to an earlier time in session.

• If a design step tag sequence for a session was defined, it must be loaded

along with session for viewing.

(iii) Describing the development process

• The user must be able to identify time intervals that correspond to a specific

design step.

• The user must be able to identify time intervals that do not correspond to

any design step (i.e. irrelevant activities).

• The user must be able to associate a description with a tag. This is for

identifying the function that the tag belongs to, where the session includes

24

more than one function.

• The user should be able to see the defined tag sequence.

• The user must be able to delete an erroneous tag within the tag sequence.

• The user should be able to save a tag sequence.

(iv) User interface

• Recorded session must be displayed in a window.

• Appropriate tag buttons should be available for each design step.

• Appropriate control buttons for navigating a programming session should

be available for each control function (i.e play, pause, play backwards).

(v) Persistence

• All interaction of a given session should be saved to a file.

• Each session must be stored in a separate file.

• Defined tag sequence should be saved to a file.

• Associations between sessions and tag sequences must be handled.

(vi) Scoring development process

• Points should be awarded for steps visited.

• Any premature visit of a step should be penalized.

• A penalty should be applied for each prerequisite step which was not visited.

• Each revisit of a previously visited step should be penalized.

4.3. Implementation

In order to track how students construct programs, we developed a system called

Screen-Replay [29]. This system records how students develop their programs and

allow evaluators to observe and identify the sequence of development activities taken

during the program construction.

Screen-Replay mainly consists of two parts: Recorder and Replayer. It imple-

ments the requirements within the DrScheme environment. Scheme programming lan-

guage is used for the implementation. The Recorder and Replayer are described in the

following sections.

25

4.3.1. Recorder

The Recorder records all user interactions within the DrScheme’s Definitions win-

dow, where programs are defined (see Figure 2.1). These interactions include insertions

or deletions of any character. In other words, every time a user inserts a character into

the editor or deletes a character from the editor, the Recorder saves this character

along with some other additional information. This information is stored as a scheme

structure, namely action, which is defined as in Figure 4.3.

; ; a c t i on

; ; timestamp (number) : curren t time in seconds

; ; opera t ion (symbol) : type o f the opera t ion

; ; (can be ’ i n s e r t or ’ on−delete)

; ; s t a r t (number) : p o s i t i o n o f the cursor in the d e f i n i t i o n s

; ; window at the time o f opera t ion

; ; l en (number) : l e n g t h o f the act ion−content

; ; content (s t r i n g) : the content o f the ac t i on

(define−struct ac t i on (timestamp

operat ion

s t a r t

l en

content) #: pre fab)

; ; For Example

(make−action 1240394142 ’ i n s e r t 0 1 ” f ”)

Figure 4.3. The definition and example of the action structure

The above example is an action indicating that the user typed f, an insertion of

length 1, at position 0 of the definitions window, when the current time was 1240394142

in seconds. Position 0 is the starting position. Current time is generated using current-

seconds function that returns the current time in seconds based on a platform-specific

starting date and increases by one for each second that passes.

26

For every text insertion and deletion, the Recorder creates a corresponding action.

These actions are accumulated in a buffer until the file is saved. When the file is saved,

the buffer content (all the actions generated so far) is written to an actions-file with

a “.rec” extension. The name of the actions-file is formed using the base file name

of the program file. Subsequent actions are appended to the actions-file when the file

is re-saved. In the case of a save-as operation, previous actions are copied from the

current actions-file to the new actions-file with the new file name.

The Recorder catches keystrokes by extending the definitions-text with a

mixin5 . This mixin augments6 the insert and on-delete methods. It uses a boolean

flag that indicates the recording state of the current window. If the flag is true, it

means we are in the recording state and every insertion of deletion is saved. If the flag

is false generated actions are not saved. Using a separate flag for each editor window

makes it possible to record actions in each window separately. In other words, a user

may open more than one editor window and record each of them separately.

The Recorder is controlled using the recorder button placed on the DrScheme’s

main interface. This button is used to start and stop recording. The image on this

button changes according to the recording state and informs the user about the current

recording state (see Figure 4.4).

When the development process is recorded and saved as an actions-file, this file

can be replayed to see the whole process exactly as it was written. The development

process can also be annotated to obtain a high level description of the process that

indicates the application order of the design steps.

4.3.2. Replayer

The Replayer has two main functions: (1) to replay the program construction

and (2) to describe the high-level construction process with a tag sequence in terms of

5A mixin is a class extension that is parameterized with respect to its superclass.
6To augment means to override a method which is declared with pubment in a superclass. For

further information, see [30]

27

Figure 4.4. Start recording (a) and stop recording (b) buttons

Figure 4.5. An overview of the Replayer

28

the HtDP methodology.

The Replayer allows the observer to see exactly how the program was constructed.

While observing the construction process, the observer can annotate the programming

session by associating time intervals with tags, so that each time interval corresponds

to a design step.

4.3.2.1. Replaying. The Replayer replays the exact steps taken while the program was

constructed. The observer can see each text insertion or deletion at the same speed

of the construction process. Various controls enable more convenient navigation of the

construction process:

• Play : Start playing actions

• Pause: Pause playing

• Backwards : Play backwards

• Speed-Up/Down: Change the play speed

• Go-To-Next-Action: Jump to next action without waiting

• Time-Slider : Directly navigate to a desired action.

A student may jump from one position to another during the programming ses-

sion. For example, he/she can move to the data definition from the program code.

Such jumps can make it difficult for the observer to follow the session. Additional

features exist to assist the observer in such cases. For example, the Replayer auto-

matically scrolls to the position within the program that is associated with the current

action. This makes the location visible and enables the observer to follow the flow

of construction. The location of the current action is also highlighted with a yellow

background so that it is easily visible to the observer.

When a file is selected to be played, all actions in the associated actions-file are

loaded into a scheme structure, namely Tape, which is defined as in Figure 4.6.

29

; ; tape

; ; a c t i on s (v ec t o r) : con ta ins the ac t i on s saved

; ; by the Recorder

; ; po in t e r (number) : index o f the curren t ac t i on

(define−struct tape (a c t i o n s po in t e r) #:mutable)

Figure 4.6. The definition of the tape structure

When the Play button is clicked, a thread starts to play the actions in the Tape

structure. To play an action is to insert/delete the content to/from the editor according

to the timestamp and position information in it. For example, to play the following

action

• (make-action 1240394142 ’insert 0 1 ”f”)

will insert “f”, a character with length 1, in the editors first position (position number

0). When playing backwards, the action operation is reversed: an ’insert symbol is

interpreted as on-delete and an ’on-delete symbol is interpreted as insert.

The Replayer replays the construction at the same speed of the original construc-

tion. Scheme semaphores are used in order to make the Replayer wait while playing.

The running thread is suspended until the semaphore becomes free. This semaphore is

managed by a timer object, which is set to the difference between consecutive actions.

Consider that the example in Figure 2.3 is recorded using the Recorder. When

the final product is inspected, it is clear that all design steps are present. The Replayer

enables one to view the process that led to this product. The first column of Table 4.2

describes the students process. Replaying this session reveals that the student actually

did not follow the design recipe sequence. It appears that the student attempted to fake

the process. The student first implemented the code and then inserted the remaining

required steps. The tracking process reveals the order of the application of design

30

recipe. It also shows how much time was spent on each step. The ability to observe

such a process enables the instructor to discover deficiencies and provide more coherent

help.

4.3.2.2. Tagging. Tagging allows the evaluator to describe the kinds of activities per-

formed during the constructing of a program. A series of activities are associated with

one the corresponding tags (see Table 4.1). During the tagging process the observer

defines a sequence of tags as he/she observes the construction states. The interface

includes buttons for each tag. The observer clicks on an appropriate tag button when

the student moves from one state to another. For example, the observer clicks on the

DD tag button, when the student finishes editing the data definition and moves to

another design step.

Table 4.1. Design steps and associated tags

Design Step Corresponding Tag

0. Data definition DD

1. Contract CT

2. Purpose PP

3. Examples EX

4. Template TL

5. Code CD

6. Tests TS

If a student performs some activity that does not correspond to any design step,

it is identified with the Junk tag. Junk may not be the best label, as the student may

do something useful that is not directly meaningful to HtDP. For example, students

may write a question or make a check list to assist themselves. On the other hand

they may write something totally irrelevant, such as a note to the examiner (i.e. “Dear

Professor, for God’s sake, I don’t want to fail.”). In any case, the Junk tag should

simply be interpreted as anything that is besides the tags defined in Table 4.1.

The ideal development sequence would be: [DD, CT, PP, EX, TL, CD, TS].

31

Naturally, one does not expect a perfect program construction. But, rather, hope to

observe that the overall order of steps was followed.

; ; tag

; ; name (symbol) : name o f the tag

; ; i d e n t i f i e r (symbol) : an i d e n t i f i e r t ha t the tag i s t i e d to

; ; can be the func t i on name

; ; end (number) : the index o f the l a s t ac t i on in t h i s tag

; ; i n d i c a t e s the end po in t o f t h i s tag

(define−struct tag (name i d e n t i f i e r end) #: pre fab)

; ; For Example

(make−tag ’DD ’ l ist−of−numbers 65)

Figure 4.7. The definition and example of tag structure

Tags are stored in Tag structure (see Figure 4.7). The development process is

represented with a sequence of tags, which are created by clicking on the appropriate

tag-button. An identifier may be associated with a tag in order to further describe

which function the activity is associated to, as a program may consist of several func-

tions. For practical reasons, only the position of the tape-pointer at the end of the tag

is stored. This makes reorganization of tags easier. When a new tag is generated, the

Tagger saves this tag to its tags-list and displays it in the panel on the right side of

the window.

Recall the program example in Section 2.4, which we assumed to be recorded using

the Recorder. The second column of the Table 4.2 shows responses of the observer to

the process of the student. The observer carefully tracks actions of the student and

tags the session accordingly. At the end of the tagging process a tag-list, possibly as

in the Figure 4.8, is generated. Tag-end positions may not be easily traceable from the

given example, but they need to be shown in this example.

32

(l i s t (make−tag ’CD ’ sum−lon 158)

(make−tag ’TS ’ sum−lon 297)

(make−tag ’CD ’ sum−lon 303)

(make−tag ’TL ’ sum−lon 382)

(make−tag ’EX ’ sum−lon 484)

(make−tag ’CT ’ sum−lon 564)

(make−tag ’PP ’ sum−lon 574)

(make−tag ’DD ’ l ist−of−numbers 900)

(make−tag ’JK ’ none))

Figure 4.8. An example output of the tagging process

The above tag-list, generated from the tagging session, tells us that according to

observer, actions between indices 0 and 158 are related to the program code (CD) for

the sum-lon function. Similarly, actions between 159 and 297 are related to tests for

the same function.

The application of design recipe was already visible by replaying the session, but

having the tag-list in hand means much more than just replaying. First of all, once

the tag-list is generated, there is no need to replay the session to see the process. It

is sharable data, which can be sent to someone else for further observation. Tag-lists

from different sessions of a student, or from different students can be used together

to be analyzed. Even if the tagging process is not finished, tags generated so far can

be saved and later loaded (for the same session) for further tagging. The Tagger also

allows the observer to jump to a previously tagged position using the tag-list.

The tag-list, by itself, includes some information about the session and can be

used for examining of the construction process. However, using both recorded actions

and the tag-list together, a lot more information about the session can be extracted.

The following subsection introduces the idea of “processed-tag” which enables more

detailed investigation of a session.

33

4.4. Processing the Tags

While actions and tags are useful by themselves, merging these two sources of data

provides a better insight to the students process. A tag, by itself, is actually a collection

of actions. Therefore, it should represent characteristics of actions it contains. Using

the time and position data already available in actions, tags can be extended with more

information to generate a self contained analysis data. Processed-tag is defined as in

Figure 4.9 to meet this requirement;

As described above, processed-tag includes much more information about the

actions associated with a tag. Inspecting a processed-tag provides a summary of its

associated actions, i.e duration, begin and end time, the segment in the code, etc.

It is possible to identify when the student switches between design steps. In-

specting these switches might reveal a common pattern in the application of the design

recipe.

Another type of information that is possible to extract from processed-tags are

the timings. Using processed-tags, it is possible to examine the time distribution among

design steps.

It is possible to observe how the overall program progresses as well as individ-

ual segments. This information might provide insight into students’ problem solving

techniques.

Sessions can be divided into active or passive parts. Active parts are parts where

the user interacts with the editor. Passive parts are the parts where the user does

not interact with the editor and there is no information about what he/she is doing.

The analysis of relations between these parts together with the segment switching

information can provide more accurate information about the students’ behavior.

34

; ; processed− tag

; ; s t ep (symbol) : the name o f the tag

; ; i d e n t i f i e r (symbol) : an i d e n t i f i e r t e x t

; ; action−count (number) : t o t a l number o f a c t i on s

; ; conta ined in t h i s tag

; ; s i z e (number) : t o t a l l e n g t h o f a c t i on s

; ; conta ined in t h i s tag

; ; s tar t− t ime (number) : time o f the s t a r t i n g

; ; ac t i on o f t h i s tag

; ; end−time (number) : time o f the l a s t

; ; ac t i on o f t h i s tag

; ; s t a r t−po s i t i on (number) : s t a r t i n g p o s i t i o n o f t h i s

; ; tag in the e d i t o r

; ; end−posi t ion (number) : end po s i t i o n o f t h i s tag

; ; in the e d i t o r

(define−struct processed−tag (step

i d e n t i f i e r

record−count

s i z e

start−t ime

end−time

s t a r t−p o s i t i o n

end−posit ion) #: pre fab)

Figure 4.9. The definition of the processed-tag structure

35

Table 4.2. Students actions and observers responses in return

Student Observer

Starts implementing the code for the

sum-lon function.

Realizes that the student is implement-

ing the code for the sum-lon function.

Types an identifier (may be “sum-lon”

for this case) or keeps it blank. Waits

until the student switches to some other

design step.

Finishes implementing the code. Starts

implementing the tests.

Pushes CD button at the time student

finishes the code implementation. Waits

the student to finish the tests.

Finishes implementing the tests. Goes

back to the code (he/she might get some

errors. Tagger doesn’t show it) and

modifies some parts.

Pushes TS button at the time student

finishes tests. Waits the student to finish

code modification.

Finishes modifying the code. Starts

writing template according to the code,

then writes examples according to tests.

Pushes CD, then TL as the student fin-

ishes writing code and template, respec-

tively. Waits him to finish examples.

Finishes writing examples. Writes con-

tract and purpose for the function.

Starts writing data definition for list-of-

numbers.

Pushes EX, CT and PP buttons as the

student finishes writing examples, con-

tract and purpose, respectively. Up-

dates the identifier while the student is

writing data definition for the list-of-

number. Waits the student to finish the

data definition.

Finishes writing data definition. Pushes DD button as the student fin-

ishes writing the data definition.

Writes his/her name and ID number. Pushes JK button (as this is an irrele-

vant information for the analysis) as the

student finishes writing identification in-

formation.

36

5. PROCESS SCORING ALGORITHM

Replaying the recorded programming sessions already revealed the programming

behaviors of students. But, still, we do not have an answer to the question of “how

good a student followed the design recipe”. In other words, we need a concrete value

to indicate the degree of “following the design recipe”. Such a value will serve as a

comparison criteria. This section introduces a process scoring algorithm that produces

similarity scores for tagged programming sessions.

5.1. Assessing the Design

The Design Recipe (as explained in Section 2.4) is a check-list for students and

it has an order that must be followed during the program construction. In the best

case, it should appear in the following order: [DD, CT, PP, EX, TL, CD, TS]. But we

may not expect a student to fully follow this exact pattern, and it is not true to say

that a student can not benefit from the design recipe if his/her design pattern does not

exactly match with the suggested one.

A student may start with the data definition, then jump to examples, and then

write the code. It’s obvious that such a pattern does not meet all the requirements of the

design recipe, but the students intention to follow it is still observable. Thus, we may

not assess the students design pattern with a binary grading scheme (i.e 1 for exactly

the same pattern, and 0 for others). Instead, we need to determine the similarity of

the students pattern with the suggested one. To do that, we used a custom similarity

algorithm that calculates a similarity score for an input design pattern.

Following sections discuss the “similarity” notion and the similarity scoring algo-

rithm that we use to assess students design patterns.

37

5.2. Classical String Similarity Algorithms

There are several string similarity (or edit distance) algorithms that are used to

measure how similar two strings are. These algorithms have been used in different

application areas like computational biology, signal processing, text retrieval, etc [31].

One of the best know similarity algorithm is the Levenshtein [32] distance algorithm.

It calculates the least number of edit operations that are necessary to modify one

string to obtain another string [33]. Allowable operations are insertion, deletion, and

substitution. Each operation has a cost of 1. The aim is to start with the first string

and use the allowable operations to transform the characters until the second string

is reached. The distance between the first and the second string is the minimum

operation cost. As an example, suppose that we are trying to measure the distance

between strings “kitten” and “sitting” [34].

(i) kitten (substitute “k” with “s”)

(ii) sitten (substitute “e” with “i”)

(iii) sittin (add “g” at the end of the string)

(iv) sitting (total cost 3)

Considering that a design pattern of a students is actually a series of symbols, we

can apply the same algorithm to measure the distance between the suggested design

recipe and the design pattern of a student. As an example, suppose that we have two

different design patterns from 2 students: For the first student [DD, CT, EX, PP, TS,

CD] and for the second student [CD, TS, DD, CD, EX, TL]. Using the same algorithm

above, we will try to measure the distance between the suggested pattern [DD, CT,

PP, EX, TL, CD, TS] and given example patterns. As a result we will produce distance

scores for each student. The smaller distance score will mean that the design pattern

of that student is more similar to the suggested pattern then the one with the larger

distance score. If the algorithm produces the same score for both design patterns, this

means that they are equally similar to the suggested one.

38

For student 1:

• (DD, CT, EX ,PP, CT, CD) (substitute EX with PP)

• (DD, CT, PP, PP, CT, CD) (substitute the second PP with EX)

• (DD, CT, PP, EX, CT, CD) (substitute the second CT with TL)

• (DD, CT, PP, EX, TL, CD) (add TS at the end of the list)

• (DD, CT, PP, EX, TL, CD, TS) (total cost is 4)

For student 2:

• (CD, CT, CD, EX, TL, DD, CD) (substitute the first CD with DD)

• (DD, CT, CD, EX, TL, DD, CD) (substitute the first CD with PP)

• (DD, CT, PP, EX, TL, DD, CD) (delete the second DD)

• (DD, CT, PP, EX, TL, CD) (add TS at the end of the list)

• (DD, CT, PP, EX, TL, CD, TS) (total cost is 4)

As illustrated above, the distance algorithm produced same distance scores for

both design patterns, which indicates these patterns are equally similar to the suggested

one. But, the algorithm did not pay any attention to the order of symbols in the list.

The design recipe approach, however, is only beneficial when the order is applied as

suggested. Let us analyze these two patterns in more detail and decide whether they

are really equally similar to the suggested pattern.

Student-1 started the process by defining the data (DD) that he will use for this

program. Then, he stated the input and output types (CT) of the program, most

probably using the data he defined in the previous step. To be able to figure out how

the program should behave, he gave some examples (EX) according to the input-output

types. He stated a purpose statement (PP) for the program. He revised his contract

(CT). And finally, using the data definition, function contract, purpose and examples

he wrote the code (CD) of the program.

39

Student-2 started the process by writing the code (CD). Since he did not know

the input and output types, he stopped writing the code and continued by defining the

function contract (CT). Then, using the function contract he modified the code (CD).

But, still, he had no idea how the program should behave for different types of inputs.

By giving some examples (EX) he tried to understand the behavior of the program.

After that, he wrote a template for the program (TL). Since the template of the

program is decided by the data that is used, a need to a data definition (DD) emerged.

Lastly, he revisited the code (CD) with a better understanding of the program.

A detailed analysis of two design patterns revealed that student-1 actually fol-

lowed a similar path to the suggested pattern and benefited more from the design

recipe. Student-2, however, directly jumped into the code without going through the

required design steps, and had to go back to previous steps in order to have a better

understanding of the program.

This illustration showed that rather than a classical string similarity algorithm,

we needed to use a custom algorithm that pays special attention to the order of design

steps to be able to calculate more accurate process scores. Thus, we developed our

own algorithm to assess design patterns of students. The following section explains

our process scoring algorithm in more detail.

5.3. Our Scoring Algorithm

HtDP requires students to go through (1) all design steps (2) in the suggested

order and (3) to make them properly as defined. The third requirement actually means

“do not proceed until you properly finish a design step”. Because any deficiency in

a step will inherit to other consecutive steps and may result in erroneous programs.

These three requirements are transfered to our algorithm as follows:

(i) The student should get points only for steps he/she visited.

(ii) Any premature attempt to write a step should be penalized.

(iii) Each revisit of a previously visited step should be penalized.

40

According to our algorithm, each design step, 7 in total, have the same score

(14.28), which yields a total of 100 points, if every step is done properly. This means

that each step missing from the design recipe costs students 14.28 points.

• [DD, CT, PP, EX, TL, CD, TS] → 100 pts

• [DD, CT, PP] → 42.84 pts

On the other hand, to get the full point (14.28) from any design step, a student

must visit all the prerequisite steps. For example, to get the full point for CT, the

student should have previously visited DD. Otherwise, he/she can only acquire half of

the points (7.14). The rationale is straightforward: the student did not benefited from

a proper data definition, and made a premature attempt to write a purpose statement.

Similarly, before writing CD, 5 steps (DD, CT, PP, EX and TL) must be visited. For

each skipped step, 1/6 of the full point (2.38) will be reduced.

• [DD] → 14.28 pts

• [CT] → 7.14 pts

• [DD, PP] → 14.28 + 9.52 = 23.80 pts

• [DD, PP, CT, EX, CD] → 14.28 + 9.52 + 14.28 + 14.28 + 11.9 = 64.26 pts

The third rule proposes to reduce points for each revisit of a step. On one hand,

revisiting a step is not a bad thing, since a modification may be done with the intention

of increasing the quality of that design step. On the other hand, it shows that previous

attempts were not sufficient, as a modification is needed. Therefore, we reduce only 1

point for each revisit operation.

• [DD, CT, PP, EX, TL, CD, TS] → 100 pts

• [DD, CT, PP, EX, TL, CD, TS, CD, TS] → 98 pts

• [DD, PP, CT, EX, CD] → 64.26 pts

• [DD, PP, CT, EX, CD, DD, CD, EX, CD] → 60.26 pts

41

score← 100

visitedSoFar ← empty

for each step in pattern do

if visitedBefore?(step, visitedSoFar) then

score← score− 1

else

score ← score - (pointsForThisStep(step) * numberOfSkippedSteps(step,

visitedSoFar))

end if

visitedSoFar ← visitedSoFar.append(step)

end for

score← score− (14.28 ∗ numberOfMissingSteps(pattern))

return round(score)

Figure 5.1. Pseudo-code of the process scoring algorithm

Our algorithm implements these requirements in a different manner. First, it

assigns students the initial perfect score (100 pts), and then reduces this score according

to the rules above (see Figure 5.1). Maximum score (100 pts) is only granted for the

suggested pattern itself. For the minimum score, however, there is no lower-bound.

The algorithm may produce a negative score, if a pattern includes too many revisited

steps.

This algorithm is not intended to produce any result that is the exact answer (if

such thing exists) of how good a student followed the design recipe. Instead, it produces

similarity values that are meaningful in relative basis. That means, it produces higher

scores for patterns that obey the rules of the design recipe, and produces lower scores

for patterns that follow a random order instead.

The evaluation of the algorithm itself is another question. It is not possible to

write a checker for this algorithm to test its accuracy. We can check, however, whether

produced results are relatively accurate according to HtDP instructors. In order to

do that, we asked 5 different instructors (lecturers and teaching assistants), who are

42

Table 5.1. Evaluation of the process scoring algorithm

Patterns / Instructors I#1 I#2 I#3 I#4 I#5 Alg.

(DD PP DD PP DD EX CD PP EX TL) 3 3 3 3 3 3 (51)

(DD CT DD CT CD PP EX TL DD TL CD) 4 4 4 5 5 5 (74)

(DD CT) 2 1 2 2 2 2 (29)

(DD CD DD CD DD CD DD CD) 1 2 1 1 1 1 (13)

(DD CT PP EX TL CD TS CD TL DD CT

DD CT PP CT EX CT EX DD EX TL DD

EX DD EX TS DD TS DD TL DD TL CD

DD CD PP CD DD)

5 5 5 4 4 4 (69)

familiar with the HtDP approach but did not have prior knowledge about our algorithm,

to grade 5 patterns from 1 to 5 (5 indicates most similar to the suggested pattern, 1

indicates least similar). These patterns were randomly chosen from the exam data that

we used for our experiment. Table 5.1 shows these patterns along with grades from

5 instructors and scores generated by our algorithm. Our algorithm produced very

similar results to instructors.

Our similarity scoring algorithm successfully generated accurate results that in-

dicated how good students followed the design recipe. We conducted an experiment

using resulting scores together with exam grades to find out whether students who

follow suggested guidelines were more successful than the others.

43

6. EXPERIMENT

In order to answer the questions stated in the introduction section, we conducted

a small experiment. This section presents the experimental setup and methods used

to evaluate our results.

6.1. Experimental Questions

This experiment has been done in order to answer the following questions:

• Do students apply the design guidelines we teach, when they develop programs

on their own?

• Are students, who follow the suggested guidelines, more successful than the oth-

ers?

• If not, can we identify patterns or approaches used by successful students?

6.2. Participants

Participants of this experiment were students who took the 4th live-programming

exam of Comp149-150/HtDP course in the 2008-2009 academic year. A total of 77

students participated in the exam. The exam was conducted in two different sessions

in order to fit students in computer labs. We recieved 57 submissions from session 1 and

20 submissions from session 2. Out of 77 submissions, 61 were used for the experiment.

Table 6.1 shows the demographic information of the participants.

Table 6.1. Demographic information of exam participants

Department / Gender Male Female

Computer Science 18 9

Financial Mathematics 9 13

Business Informatics 7 5

44

6.3. Tasks

This exam was the last one among 4 live-programming exams and it covered

almost all the topics presented in Section 3.2. It was done in two different sessions.

Each session consisted of one question that was actually very similar to the other,

but used different domain terminology. Thereby, any possibility that students in the

afternoon session (session 2) may take any solutions from students in the morning ses-

sion (session 1) was prevented. Figure 6.1 presents the questions asked for each section.

Session 1
Each particular field of any modern science is developed by its literature

consisting of publications. When a paper is written, it is a very important matter
that its author(s) cites related studies which are already published. However,
given a literature, it is rare to find a cycle of citations within the literature. For
instance a cycle of paper citations would be formed if A cites B, B cites C, and
C in turn cites A.

A publication is defined as a Scheme structure with its properties: title (a
string), authors (a list of strings) and a list of cited articles identified by their
titles.

Design and implement a program, given a publication title and a literature, it
starts to explore the literature reading through the references of the given paper
to check whether there is a cycle of citations or not. If there is a cycle, it returns
names of authors of all publication in the cycle, otherwise False.

Session 2
A Website is a list of webpages. Each page is a Scheme structure of properties:

page title (a string), editors (list of strings) and links to other webpages in the
website.

Your program starts crawling at a given Web page and explores other Web
pages following the links. For instance, when it visits following sequence of links:

A → B → C → D → B
then it should discover that there is a loop of hyper links formed by sequence

of B → C → D → B and it should report the editors of these web pages (B, C,
D, B).

Design and implement a program given a Web page and the Website, it returns
editors of pages which form the very first loop of Web links it discovers. If there
is none, it should return a False.

Figure 6.1. Exam questions for session 1 and session 2

Students had 1 hour to solve the question. Between two sessions we needed 15

minutes break to configure the lab for the next exam. Students sent their solutions to

45

the submission server along with the “.rec” files, which were used to monitor students

programming activities.

6.4. Monitoring

Monitoring was done using the tracker software that we developed. During the

exam, students developed their programs using DrScheme, which included the Screen-

Replay tool as a module. The tool was pre-configured to start recording as soon as

DrScheme was initiated. We also hided the “Stop recording” button, because we did

not want students to stop recording until the end of the exam. Recording automatically

stopped when DrScheme was closed.

During the exam, every insertion and deletion to the editor was recorded. This

information was saved in a “.rec” file. Students sent these files along with their solutions

(“.scm” files). We realized later on that some of our students failed to submit the “.rec”

file. Some others used separate editor windows to develop their programs and, at the

end of the exam, merged all functions into one file. Thus, “.rec” files of those students

were only including actions of final copy-paste operations. Because of these problems,

we excluded those submissions from the experiment data.

6.5. Grading the Exam

The common way of evaluating exams among HtDP instructors is to grade each

design step separately. Our investigation of discussions about grading in the PLT-edu7

mailing list also verifies this observation. To grade the live-exam, we also used the

same approach.

Questions in both sessions in our exam required a main function and a couple

of helper functions in order to be solved correctly. We divided those functions into

two different groups as “main function” and “helper functions”. The number of helper

functions may vary, since some students prefer to write anonymous helper functions

7The mailing list for educators who participate in the TeachScheme! Project

46

Table 6.2. Grading each function using the scala

Std Main Function Helper Function # 1 Helper Function # 2

Id DDCTPPEXTLCDTSDDCTPPEXTLCDTSDDCTPPEXTLCDTS

1 3 3 3 3 3 2 0 - -

2 3 1 1 3 0 1 1 - 2 3 1 2 3 1 -

3 3 2 3 0 2 2 0 - 3 3 0 1 3 0 - 3 2 0 2 3 0

(functions without a name) using lambda-expressions which is defined within other

functions. We observed 1 to 6 helper functions among the solutions for this live exam.

The first step of grading is illustrated in Table 6.2 for 3 example students. As shown

in the table, each function is graded separately according to steps of the design recipe.

For simplicity, each design recipe step is first graded using this scala:

• does not exists or is not acceptable: 0

• insufficient: 1

• intermediate: 2

• good: 3

For this example illustration, only 2 helper functions are introduced (as explained

above, 1 to 6 helper functions were observed from solutions of students). According to

this example, student-1 only has the main function, student-2 has the main function

and one helper function, and student-3 has the main function and 2 helper functions.

Data definitions (DD) of helper functions are marked as “-” in the table, since the

problem statement for each question only asked for a single data definition. During

the exam, students wrote a data definition for the main function and used it for helper

functions, as well. Therefore, DD was only graded for the main function.

After grading each function using the scale, scales are converted to real grades that

are over 100. Table 6.3 shows this conversion using the previous example. Conversion

criteria may change according to the hardness of the questions. It is decided as follows

47

Table 6.3. Scale grades converted to number grades over 100

Std Main Function Helper Function # 1 Helper Function # 2

Id DDCTPPEXTLCDTSDDCTPPEXTLCDTSDDCTPPEXTLCDTS

1 100100100100100 75 0 - -

2 100 40 40 100 0 40 40 - 75 100 40 75 100 40 -

3 100 75 100 0 75 75 0 - 100100 0 40 100 0 - 100 75 0 75 100 0

for this specific exam:

• 0 → 0

• 1 → 40

• 2 → 75

• 3 → 100

Calculation of grade for each function is done by joining grades for design steps

together. But, every design step has its own weight and it changes according to the

function type. Table 6.4 presents these weights for both function types. Since the

problem statement only required a single data definition and students defined it for

the main function, we did not use same weights for main and helper functions. The

weight for DD is distributed to other design steps for helper functions. Using these

weights, grades in Table 6.3 are recalculated as shown in Table 6.5.

Grades of design steps for each function are summed to calculate the individual

function grades. As solutions included different numbers of helper functions, we cal-

culated the average grade of all helper functions and used this value to calculate the

final grade. Final grade is the sum of 60 per cent of the main function grade and 40

per cent of the helper function average grade, as shown in Table 6.6.

This experiment is conducted to collect two kinds of data. Using Screen-Replay

48

Table 6.4. Percentages of design step weights for main and helper functions

Design Step Main function Helper functions

DD 20 -

CT 10 15

PP 5 10

EX 10 15

TL 15 15

CD 30 30

TS 10 15

Table 6.5. Application of design step weights

Std Main Function Helper Function # 1 Helper Function # 2

Id DDCTPPEX TL CD TSDD CT PPEX TL CDTSDDCTPPEX TL CDTS

1 20 10 5 10 15 22.5 0 - -

2 20 4 2 10 0 12 4 - 11.25 10 6 11.25 30 6 -

3 20 7.5 5 0 11.2522.5 0 - 15 10 0 6 30 0 - 15 7.5 0 11.25 30 0

Table 6.6. Calculation of the final grade

Std Id Main Function Grade Helper Function Average Grade Final Grade

1 82.5 0 49.5

2 52 74.5 61

3 66.25 62.38 64.7

49

tool, programming activities of students are recorded, replayed and annotated. Process

scoring algorithm is used to produce similarity scores. Therefore, we obtained values

that indicate how good our students followed the design recipe. Grades, generated

using the method explained above, indicate the success of students in the exam. In the

next section, we will combine these two types of data together to examine the impact

of using the design recipe.

50

7. EVALUATION

The experiment we conducted mainly produced two types of outputs: process

scores that indicate how well students followed the design recipe and exam grades that

indicate the success of students in the exam. These outputs were examined together

in order to answer the questions stated in the introduction. Process scores and exam

grades are calculated separately for each function type (main and helper functions), so

that we can examine these questions on a function bases. Following sections show the

evaluation for each question separately.

7.1. Question 1

The first question was: “Do students apply the design guidelines we teach, when

they develop programs on their own?”. To answer this question, it is enough to inves-

tigate the design step tags produced by the Screen-Replay tool.

Design step tags for the main function indicate that students applied the design

recipe in different orders, but the common intention was to follow the suggested order.

All of the 61 students started with the data definition (DD) and 45 of them continued

with the function contract (CT). After that 30 students wrote the purpose statements

(PP), while most of the others jumped back to the data definition.

A different situation is observed for helper functions. A total of 91 helper func-

tions were written by 42 students. The rest, 19 students, did not write any helper

functions. For helper functions, students were expected to start the development pro-

cess with the function contract (CT), since the programming task required a single

data definition and students already defined it for the main function. But, only 24

out of 91 helper functions started with the function contract. 61 helper functions are

written starting with the program code. As Screen-Replay revealed, such students

copied similar code segments from the text book and pasted into their editor. Only

27 of these students continued with the function contract, while others jump to other

51

design steps.

As a result, observations showed that students followed design recipes better when

writing the main function. Process scores also indicate similar results. The process

score average for the main function is 66, while it is 57 for helper functions. The median

value is, again, higher for the main function. It is 73 for main function and 63 for the

helper functions.

7.2. Question 2

The second question was: “Are students, who follow the suggested guidelines,

more successful than the others?”. In other words, do high process scores constitute

to high grades from the exam, or vice versa. To examine this, process scores and exam

grades are divided into sub categories.

Exam grades are separated into three categories as high grades, average grades

and low grades. Separation points are determined according to the academic regula-

tions of Istanbul Bilgi University [35]. Table 7.1 shows how our categories map to the

university regulation.

Process scores are divided into two categories. The separation point is determined

by the median value. Process scores higher than the median value are grouped as “high

process scores” and process scores lower than the median value are grouped as “low

process scores”. Number of students in these groups were slightly different for main

and helper functions, since the median values were different.

Results are examined separately for each function type. For the main function,

median value of process scores was 73. There were 6 students with this value. These

students were added into the “low process score” group and 74 was taken as the sepa-

ration point (see Table 7.2). As shown in Table 7.4, 12 students acquired high grades

for the main function and 8 of them were students who had high process scores. For

students with average grade, number of students with high process score (11) is, again,

52

Table 7.1. Categorization of the exam grades

Letter

Grade

Definition Category Main Function

of students

Helper Functions

of students

A Excellent High 12 10

A- Excellent Grade

B+ Good

B Good Average

B- Good Grade 19 10

C+ Average

C Average

C- Pass on probation

D+ Pass on probation Low 30 41

D Pass on probation Grade

F Fail

Table 7.2. Process score categorization for the main function

Category Criteria Number of Students

High process score score ≥ 74 29

Low process score score < 74 32

Table 7.3. Process score categorization for helper functions

Category Criteria Number of Students

High process score score ≥ 45 30

Low process score score < 45 31

53

more than the number of students with low process score (8). For low grades, however,

students with low process scores are much more higher than high process scores. As a

result, main function data indicated that, students with higher process scores acquired

higher grades than the students with low process scores.

Table 7.4. Process scores vs. exam grades for main function

Process score \ Exam grade High grade Average grade Low Grade

High process score 8 11 10

Low process score 4 8 20

The results for helper functions are similar to the main function. For helper

functions, 10 students acquired high grades and 9 of them were the ones with high

process scores. For average grade students, number of students with high process

scores is, again, higher than the ones with low process scores (7 and 3). 41 students

acquired low grades and 27 of them had low process scores. As a result, students with

high process scores were more than the others for high and average grades, and less

than the others for low grades.

Table 7.5. Process scores vs. exam grades for helper functions

Process score \ Exam grade High grade Average grade Low grade

High process score 9 7 14

Low process score 1 3 27

As mentioned earlier, 19 students did not attempt to write any helper functions.

There were also some students that started to write but then deleted the helper func-

tions. Therefore, the data for the helper functions included zero values for both process

scores and helper function grades. Excluding zero values, helper function results are

recalculated for 38 students (see Table 7.6). For students with high grades, results

were similar to the previous calculations: number of students with high process scores

were higher than the ones with low process scores. For students with average and low

grades, however, results were different. There were less students with high process

scores in average grade group and more students in low grade group.

54

Table 7.6. Process scores vs. exam grades for helper functions (excluding zero values)

Process score \ Exam grade High grade Average grade Low grade

High process score 7 2 10

Low process score 3 8 8

As explained in Section 6.5, the grade of each function consists of the grade of

design steps associated with that function. In other words, all the design steps have an

effect on the function grade. When we say for example “high process scores constituted

high exam grades” it actually means “following the design recipe in the suggested order

constituted high quality design steps”. One may wonder whether following the design

recipe in the suggested order constitutes more quality program code. Table 7.7 shows

the results for the main function data, where the grades were calculated from the

program code only, other design steps were excluded. The number of students for each

category is similar to the previous results and indicate high process scores constitute to

more quality program code. In Table 7.8, helper function process scores (excluding zero

values) are mapped into helper function code grades. Again, other design steps were

excluded and just the program code is graded. For this data, the number of students

for high and low process scores are not much different for each category. Students with

low process scores were slightly higher for students with high grade, and vice versa for

students with average grades, therefore, did not constitute to significant results.

Table 7.7. Process scores vs. exam code grades for main function

Process score \ Exam code grade High grade Average grade Low grade

High process score 10 16 3

Low process score 6 12 14

Table 7.8. Process scores vs. exam code grades for helper functions (excluding 0’s)

Process score \ Exam code grade High grade Average grade Low grade

High process score 9 8 2

Low process score 11 6 2

55

7.3. Question 3

The third question was: “Can we identify patterns or approaches (in terms of

design recipe) used by successful students?”. To answer this question, design step tags

(high level process descriptions) are further investigated. For a detailed investigation,

design step tags are categorized in three groups. Categories are determined according

to the order of design steps that the students follow during the development process.

Description of these categories are as follows:

(i) A proper step means that the student already visited all of the prerequisite design

steps.

(ii) A revisited step means that the student already visited this design step.

(iii) A premature step means that the student has not yet visited the prerequisite de-

sign steps. As long as prerequisite steps are not completed, they will be classified

as premature steps even though they may appear as revisited.

For example, lets consider the tag sequence [DD, CT, EX, TL, EX, PP, CD, EX,

DD, TS]. Here, tags in positions 3, 4 and 5 (EX, TL and EX) are premature steps and

tags in positions 8 and 9 (EX and DD) are revisited steps. The maximum number of

proper tags can be at most 7. For the revisited and premature tags, however, there

is no upper bound. A design tag sequence is considered better, when the number of

proper tags are closer to 7, and the number of premature tags are closer to 0.

Table 7.9. Exam grade vs. design step category

Exam grade \ Design step category Proper Revisited Premature

High grade 6.17 15.42 1

Average grade 5.63 9.58 1.53

Low grade 4.17 9.37 1.23

For the main function data, each tag sequence is examined and the average num-

ber of proper, revisited and premature tags are calculated. Table 7.9 shows these

averages grouped by the exam grade categories. It turned out that students with high

56

exam grades (successful students) have the highest average for the proper step category

(6.17) and the lowest average for the premature step category (1). What is interesting

is that, successful students are the ones who have the highest number of revisited steps

(15.42), and it is much higher than the average and low exam grade students. This

may indicate that successful students attempt to perfect their solutions.

As stated earlier, instead of following the suggested order of the design recipe,

some students prefer to jump from one design step to another, which is not the successor

step. Detailed investigation of design steps also revealed that some transactions (a jump

from one design step to another) occur more than the others during the development

process. As Table 7.10 shows, frequently used transactions are from DD to CT (8.58

per cent), from DD to EX (8.48) and from TL to CD (7.37). For successful students,

however, the percentages of these transactions are slightly different. Successful students

mostly jumped from TL to CD (9.58), from DD to EX (8.43) and from DD to CT (7.66).

As a result, during the development process, successful students (students with

high exam grades) frequently jump back and modify previously visited steps. They

mostly jump from TL to CD, which means that they follow the suggested approach by

first writing the function template and then moving to program code.

57

Table 7.10. Frequently used transactions by all students (over 5 per cent)

From To Percentage

DD CT 8.58

DD EX 8.48

TL CD 7.37

EX DD 7.16

CT PP 5.45

CD DD 5.35

DD CD 5.25

EX TL 5.25

Table 7.11. Frequently used transactions by successfull students (over 5 per cent)

From To Percentage

TL CD 9.58

DD EX 8.43

DD CT 7.66

EX DD 7.28

EX TL 5.36

58

8. DISCUSSION

8.1. Screen-Replay

The fuzzy nature of the design recipe makes it hard to automatically detect

the design segments. Students apply it in different orders and in different forms.

Steps other than code and tests do not have formal definitions. Some heuristics may

be developed, but they can hardly ensure a precise tagging. Therefore, instead of

automation we preferred to support the observer with helper functionalities in order

to reduce the time and effort required for tagging.

To make tagging easier go-to-next-record and go-to-end-of-the-current-line but-

tons are added to the Tagger. The former enables the reviewer to jump to the next

action without waiting the action to be occurred. And the latter enables the reviewer

to jump to the action that takes place at the end of the current line. Since students

change the current line when starting to write a new design step, using this button

makes tagging easier.

Another feature that assists the observer is the jump detection function. This

function pauses the playing process and warns the observer when the user is about to

jump 3 lines above or below from the current line. The observer, then, may put a new

tag or continue playing. According to our observations, one or two line jumps mostly

appear within the same tag. Therefore, we preferred to warn the observer every time

a 3-line-jump occur.

An interesting side effect of the Screen-Replay tool is related to plagiarism, which

can be used during analysis. Detecting plagiarism was not a design decision for Screen-

Replay, but an analysis of the actions-file helps us to detect plagiarism. For example,

a student may copy-paste someone else’s code. Since the Recorder generates a new

action for each keystroke, copy-paste operations end up with actions that has a length

greater than 1.

59

We compared recorded sessions with source codes to verify that recorded sessions

would build the exact source code. All sessions were successfully regenerated from the

recorded files, with the exception of regions that were commented out with boxes8 ,

since this feature has not yet been implemented.

8.2. Process Scoring Algorithm

Scores generated by our similarity scoring algorithm is an issue to be discussed.

This algorithm is not intended to produce any result that is the exact answer (if such

thing exists) of how good a student followed the design recipe. Instead it produces

similarity values that are meaningful in relative basis. For our experiment relatively

accurate results are sufficient, since we are interested in the statistical relationship

between grades and process scores.

Another question is the evaluation of the algorithm itself. How can we test the

accuracy of such an algorithm? To the best of our knowledge, this is the first attempt to

develop such an algorithm. Therefore, to test the accuracy, we used the only available

source we have: HtDP instructors in our department. Instructors are asked to rank 5

randomly selected design patterns from 1 to 5, and the result produced by our algorithm

was not distinguishable among the ones produced by instructors.

8.3. Experiment

Normally, in a controlled experiment, experimental units (students in this case)

are divided into two different group: control and treatment [36]. Then the independent

variable is applied to the treatment group to test the effect of that variable. In our case,

the independent variable is the “use of design recipe”. This means that only one of the

groups should use the design recipe in order to test its direct effect on the exam grades.

In a introductory programming course, however, this method is not appropriate. All

students of the course (unless it is design for a special purpose), should be taught using

same tools and methods.

8DrScheme allows users to comment out regions with a box snip.

60

Measurements are usually subject to variation. The experiment we conducted

can be replicated to eliminate these variations and obtain more confident results.

We use a simple model to observe the effect of design recipe on the exam grades.

Using a more complex model may lead to a better understanding of underlying relations

between these two data sets.

Our preliminary observations indicated that high process scores constitutes high

exam grades for most of the cases. However, we strongly believe that there is a more

strong relationship between these two data sets. We identified some problems in our

experimental setup, which, we believe, reduced the relationship between process scores

and exam grades. First of all, the solution for the exam required 6 helper functions to

be properly solved. During the exam, instead of concentrating on a single function at

a time, students jumped across functions to correct any mistake they realized. This

behavior dilute the strength of the design recipe, therefore, reduce students process

scores. Instead of a single task which requires 6 helper functions, we could set two

different tasks that require at most 2-3 helper functions and give the second task when

students finish the first one. Second, students wrote (anonymous) functions within

other functions, which makes function templates inappropriate, and leads to a lower

exam grade.

61

9. RELATED WORK

To the best of our knowledge, there is no software package dealing with the

analysis of code/editing sequences in the way Screen-Replay does. This section rather

reports approaches that intend to increase both product and process quality of students

in programming classes.

In [37], authors report on a controlled experiment to evaluate whether students

using continuous testing are more successful in completing programming assignments.

As the source code is edited, continuous testing uses excess cycles on a developer’s

workstation. It continuously run regression tests in the background against the current

version of the code, providing feedback about test failures. Their tool aims to give extra

feedback during the programming session and improve the productivity of developers.

Experimental results indicated that students using continuous testing were more likely

to complete the assignment by the deadline. It appears that their efforts are on final

product quality rather than the programming process.

In their case study [1], instructors from Tübingen and Freiburg Universities re-

port the development of their introductory programming course. For their first-year

programming course, they adopted the tools developed by the TeachScheme! project.

In addition, they supervise their students closely with assisted programming sessions

on weekly basis. During assisted programming sessions, students solve a set of ex-

ercises under the supervision of a doctoral student assisted by one or two teaching

assistants (TAs) to ensure that the students follow the design recipes. Authors report

that their students not only performed well on exams, they were also able to transfer

their knowledge to other programming languages and IDEs. However, we observed

that some students perform poorly (some even could not do anything) when they are

watched “over their shoulders” during programming sessions. Such students perform

well when they study in environments, where they feel comfortable. As stated in the

same study, nearly 15 per cent of the students did not even try to solve the program-

ming assignments during assisted programming sessions. We can not say that this is

62

caused by the same reason, but, further analysis can be done, and the sessions of such

students can be observed later using tool support.

The same study also points out that many students avoided asking TAs for help

during the session, as they either expected that TAs were not allowed to provide con-

crete help or they even believed that asking for help was a form of cheating. As

reported, the perception of assisted programming changed during the semester as TAs

not only provided help upon request, but also helped pro-actively as they noticed stu-

dents having problems. This approach is helpful for students, who hesitate asking

questions. The point is, how do we find out that a student is experiencing a problem

applying the design recipe without constantly watching his/her session? As we have

already experienced, students’ main concern is to have the final running code before the

time finishes. Thus, they escape from applying the design recipe and focus back on the

code using the programming-by-tinkering method, as soon as they stay uncontrolled.

Furthermore, assisting students during programming sessions does not mean that they

apply design recipe in exams. One may not attribute the success of students to the

success of design recipe, without tracking their process during exams.

Another study [38] points out the importance of exposing the process of develop-

ment of the solution rather than just presenting the final state of the program. They

propose “live coding” as an active learning process. Since instructors do not commit

same errors students generally do, they suggest the student-led live coding (where the

student writes the code in front of his/her classmates) rather than the instructor-led live

coding (in which the instructor writes the code in front of students). Our experiences

show that, especially in the first few weeks, students should program by themselves

and learn from their mistakes. Interrupting as they make mistakes means taking their

chance of solving the problem by themselves and, therefore, learning the importance

of design recipe.

Exposing errors of a student in front of his/her classmates might also damage the

motivation of other students and lead them to hold back and not participate. Instead,

project submissions of students can be replayed without showing the identity of the

63

submission owner to illustrate good and bad programming habits.

For online courses or when the class time is limited, authors of this work also

implemented a screen casting software, which allows recording narrated video screen

captures and then made them available to students to review. However, keeping track of

students’ programming sessions and analyzing them can hardly be done using remote

desktop or screen-cast applications. Because, content based information can not be

extracted from sessions recorded by such applications. Moreover, these applications

are not adequate for resource limited environments.

Finally in [7], instructors teach the programming process using a five-step, test

driven, incremental process (STREAM). Every week there is a mandatory assignment.

For lab examinations, they propose a method, where students are instructed to call

upon a TA when they reach a checkpoint to show and demonstrate their solutions.

Students approach to the development process as well as their solutions count in the

final grade. To evaluate whether students really apply the suggested approach when

no guidance is provided, they conduct an experiment. In this experiment, students

solve assignments, while TAs observe and make note of any violations to the method

taught. Authors report that all students followed the process they have been taught.

It is unclear, whether students were aware of the aim of this experiment. If they were,

it is quite possible that it would influence their programming behavior.

In summary, none of these methods provide a way for tracking students process

while they work on their own. Thus, we see strong viability in favor of our tool in this

context.

64

10. FUTURE WORK

Implementation of the Screen-Replay as a process tracking tool enabled us to

replay students programming sessions and identify their programming activities by

tagging them. We also implemented additional functionalities that support instructors

in the tagging process. But, the tagging process is still time consuming. We are seeking

ways to implement an extended version of our tool that supports automatic tagging.

Such a tool will reduce the time required for tagging and eliminate possible mistakes

during the tagging process.

Currently, Screen-Replay tool only records and replays text-based actions. DrSche-

me, however, enables students to insert images or other types of snips into the program

text [8]. To be able to make more accurate analysis, our tracking tool will be enhanced

with support for these types of snips.

Finally, we are planning to add support for recording the interaction window of

DrScheme. This will allow the investigation for;

• When and how many times students run their programs?

• What are the common errors they get?

• Do students act according to the error messages?

which can not be answered just recording the definitions window.

65

11. CONCLUSION

Evaluating how students construct programs is difficult with conventional exam-

inations as they evaluate the result and not the process. Evaluating student process

requires observing how they construct their programs in a transparent manner. Else,

we run the risk of altering their behavior.

We have developed a tool for transparently observing how students develop their

programs. This tool was specifically designed to identify the sequence of activities in

terms of the “How to Design Programs” (HtDP) methodology. The tool was imple-

mented and integrated into the DrScheme environment. Screen-replay worked well, as

it perfectly revealed the entire development process of students.

We also developed a process scoring algorithm to assess how well students follow

design recipes. An experiment with 61 students is conducted and program develop-

ment activities are recorded. Recorded process data is replayed, annotated and scored.

Resulting scores are used together with the exam grades to examine the impact of

using the design recipe.

We refrain drawing too strong conclusions from this experiment, but, the re-

sults indicate there is a relation between the application order of the design recipe

and the grade acquired from the exam. Students, who had higher process scores, ac-

quired higher grades from the exam. In other words, applying the design recipe in the

suggested order resulted in higher grades.

66

APPENDIX A: Experiment Data: Process Scores and Exam

Grades

Table A.1. Process scores and exam grades of students (1)

Process scores Exam grades

Student

Id

Main

function

Helper

functions

Exam Main

function

Helper

functions

Exam

31 87 72 78 82.5 37.13 55.28

33 13 75 50.2 38 47 43.4

34 34 45 40.6 32.5 61.17 49.7

69 60 0 24 67.5 0 27

77 14 54 38 20 55 41

132 73 77 75.4 51 49 49.8

134 79 99 91 81.25 55 65.5

137 57 0 22.8 66.25 0 26.5

144 98 35 60.2 56 100 82.4

149 14 87 57.8 32 0 12.8

155 78 0 31.2 63 0 25.2

163 90 0 36 81 0 32.4

165 14 63 43.4 20 57.67 42.6

166 64 79 73 60.5 100 84.2

167 69 0 27.6 43 0 17.2

175 73 19 40.6 52 0 20.8

176 73 27 45.4 43 18 28

177 80 0 32 50.5 0 20.2

191 77 48 59.6 33 70 55.2

67

Table A.2. Process scores and exam grades of students (2)

Process scores Exam grades

Student

Id

Main

function

Helper

functions

Exam Main

function

Helper

functions

Exam

192 14 37 27.8 20 21.33 20.8

193 67 19 38.2 77.5 22.5 44.5

199 89 71 78.2 68 34 47.6

207 24 48 38.4 20 72.63 51.58

208 82 0 32.8 53.5 0 21.4

214 83 0 33.2 40 0 16

215 54 26 37.2 39 55 48.6

216 51 66 60 68.5 84.38 78.03

219 48 58 54 14 25 20.6

220 74 76 75.2 77.5 73.06 74.84

221 71 78 75.2 46.5 56 52.2

222 74 36 51.2 67.75 55 60.1

226 94 0 37.6 28.5 0 11.4

234 77 65 69.8 83.75 32 52.7

238 87 0 34.8 61 0 24.4

241 78 93 87 50.75 78.75 67.55

244 85 93 89.8 41.75 43.5 42.8

245 73 68 70 46 36 40

249 56 81 71 82.5 91.56 87.94

250 73 87 81.4 57 84.75 73.65

252 93 0 37.2 61 0 24.4

68

Table A.3. Process scores and exam grades of students (3)

Process scores Exam grades

Student

Id

Main

function

Helper

functions

Exam Main

function

Helper

functions

Exam

255 65 69 67.4 46 49 47.8

258 84 0 33.6 88.75 0 35.5

262 92 85 87.8 45.25 40 42.1

263 64 19 37 8 0 3.2

267 85 41 58.6 30 56.5 45.9

271 67 0 26.8 34 0 13.6

272 77 48 59.6 37.75 37 37.3

280 79 64 70 31.75 27.75 29.35

301 57 19 34.2 39 0 15.6

306 82 51 63.4 51 52 51.6

309 86 30 52.4 61 33 44.2

316 14 0 5.6 8 0 3.2

327 66 0 26.4 53 0 21.2

331 79 38 54.4 44.25 48.94 47.06

333 93 0 37.2 43 0 17.2

469 29 0 11.6 12 0 4.8

471 88 48 64 80.25 68.75 73.35

475 73 24 43.6 90 25.31 51.19

477 14 69 47 36 0 14.4

536 93 94 93.6 100 96.25 97.75

537 73 0 29.2 76.25 0 30.5

69

REFERENCES

1. Bieniusa, A., M. Degen, P. Heidegger, P. Thiemann, S. Wehr, M. Gasbichler,

M. Sperber, M. Crestani, H. Klaeren and E. Knauel, “Htdp and dmda in the battle-

field: a case study in first-year programming instruction”, FDPE ’08: Proceedings

of the 2008 international workshop on Functional and declarative programming in

education, pp. 1–12, ACM, New York, NY, USA, 2008.

2. Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi, “The structure and

interpretation of the computer science curriculum”, J. Funct. Program., Vol. 14,

No. 4, pp. 365–378, 2004.

3. Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi, “The TeachScheme!

project: Computing and programming for every student”, Computer Science Ed-

ucation, Vol. 14, No. 1, 2004.

4. Felleisen, M., R. B. Findler, M. Flatt and S. Krishnamurthi, How To Design Pro-

grams , MIT Press, Cambridge, MA, USA, 2001.

5. Klaeren, H. and M. Sperber, Die Macht der Abstraktion, Teubner Verlang, 1st

edn., 2007.

6. Daly, C. and J. Waldron, “Assessing the assessment of programming ability”,

SIGCSE ’04: Proceedings of the 35th SIGCSE technical symposium on Computer

science education, pp. 210–213, ACM, New York, NY, USA, 2004.

7. Bennedsen, J. and M. Caspersen, “Assessing Process and Product - A Practical

Lab Exam for an Introductory Programming Course”, pp. 16–21, Oct. 2006.

8. Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler

and M. Felleisen, “DrScheme: a programming environment for Scheme”, J. Funct.

Program., Vol. 12, No. 2, pp. 159–182, 2002.

70

9. Sperber, M., R. K. Dybvig, M. Flatt, A. Van Straaten, R. Finddler and

J. Matthews, “Revised6 Report on the Algorithmic Language Scheme”, Jour-

nal of Functional Programming , Vol. 19, No. Supplement S1, pp. 1–301,

2009, http://journals.cambridge.org/action/displayAbstract?fromPage=

online&aid=6046168&fulltextType=RA&fileId=S0956796809990074.

10. Matthias Felleisen, “Matthias Felleisen”, http://www.ccs.neu.edu/home/

matthias/, 01 2010.

11. PLT-Scheme, “How to Design Programs Languages”, http://docs.plt-scheme.

org/htdp-langs/index.html, 02 2010.

12. Clements, J., M. Flatt and M. Felleisen, “Modeling an Algebraic Stepper”, ESOP

’01: Proceedings of the 10th European Symposium on Programming Languages and

Systems , pp. 320–334, Springer-Verlag, London, UK, 2001.

13. LGPL, “GNU Lesser General Public License”, http://cs.bilgi.edu.tr/pages/

courses/year_1/comp_111/archive/2004-2005_Spring/robot_world/, 01

2010.

14. The TeachScheme! Project, “TeachScheme, ReachJava!”, http://www.

teach-scheme.org/, 01 2010.

15. Bloch, S., “Teach Scheme, reach Java: introducing object-oriented programming

without drowning in syntax”, Journal of Computing Sciences in Colleges , Vol. 23,

No. 5, pp. 65–67, 2008.

16. Istanbul Bilgi University Department of Computer Science, “Bilgi University In-

dex”, http://www.cs.bilgi.edu.tr, 01 2010.

17. Istanbul Bilgi University Department of Computer Science, “Bilgi Univer-

sity Courses Year 1 Comp 149 Index”, http://www.cs.bilgi.edu.tr/pages/

courses/year_1/comp_149, 01 2010.

71

18. Stephenson, C., “RobotWorld Home Page”, http://cs.bilgi.edu.tr/pages/

courses/year_1/comp_111/archive/2004-2005_Spring/robot_world/, 01

2010.

19. Pattis, R. E., Karel the Robot: A Gentle Introduction to the Art of Programming ,

John Wiley & Sons, Inc., New York, NY, USA, 1981.

20. Bergin, J., J. Roberts, R. Pattis and M. Stehlik, Karel++: A Gentle Introduction

to the Art of Object-Oriented Programming , John Wiley & Sons, Inc., New York,

NY, USA, 1996.

21. Alphonce, C. and P. Ventura, “Using graphics to support the teaching of funda-

mental object-oriented principles in CS1”, OOPSLA ’03: Companion of the 18th

annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications , pp. 156–161, ACM, New York, NY, USA, 2003.

22. Cooper, S., W. Dann and R. Pausch, “Alice: a 3-D tool for introductory program-

ming concepts”, CCSC ’00: Proceedings of the fifth annual CCSC northeastern

conference on The journal of computing in small colleges , pp. 107–116, Consor-

tium for Computing Sciences in Colleges, , USA, 2000.

23. Sanders, D. and B. Dorn, “Jeroo: a tool for introducing object-oriented program-

ming”, SIGCSE Bull., Vol. 35, No. 1, pp. 201–204, 2003.

24. PLT-Scheme, “PLT Scheme”, http://www.plt-scheme.org/, 01 2010.

25. Polya, G., How to Solve It (Penguin Science), Penguin Books Ltd, April 1990,

http://www.amazon.de/exec/obidos/redirect?tag=citeulike01-21\&

path=ASIN/0140124993.

26. Proulx, V. K. and T. Cashorali, “Calculator problem and the design recipe”, SIG-

PLAN Not., Vol. 40, No. 3, pp. 4–11, 2005.

27. Proulx, V. K. and K. E. Gray, “Design of class hierarchies: an introduction to

72

OO program design”, SIGCSE ’06: Proceedings of the 37th SIGCSE technical

symposium on Computer science education, pp. 288–292, ACM, New York, NY,

USA, 2006.

28. Bloch, S. A., “Scheme and Java in the first year”, J. Comput. Small Coll., Vol. 15,

No. 5, pp. 157–165, 2000.

29. Köksal, M. F., R. E. Başar and S. Üsküdarlı, “Screen-Replay: A Session Recording

and Analysis Tool for DrScheme”, Proceedings of the 2009 Scheme and Functional

Programming Workshop, pp. 103–110, 2009.

30. PLT-Scheme Reference, “5.2 Creating classes”, http://docs.plt-scheme.org/

reference/createclass.html?q=definitions-text&q=%s, 02 2010.

31. Navarro, G., “A guided tour to approximate string matching”, ACM Comput.

Surv., Vol. 33, No. 1, pp. 31–88, 2001.

32. Levenshtein, V., “Binary codes capable of correcting spurious insertions and dele-

tions of ones”, Problems of Information Transmission, Vol. 1, pp. 8–17, 1965.

33. The Levenshtein-Algorithm, “Efficient Implementation of the Levenshtein-

Algorithm, Fault-tolerant Search Technology, Error-tolerant Search Technologies”,

http://www.levenshtein.net/, 01 2010.

34. Wikipedia, “Levenshtein distance”, http://en.wikipedia.org/wiki/

Levenshtein_distance, 01 2010.

35. Istanbul Bilgi University, “Academic Regulations”, http://www.bilgi.edu.

tr/pages/statics.asp?mmi=12&stbl=sub9&id=12&sid=13&r=04.02.2010+11%

3A37%3A41, 02 2010.

36. Box, G. E. P., J. S. Hunter and W. G. Hunter, Statistics for Experimenters: Design,

Innovation, and Discovery (2nd), John Willey and Sons Inc., 2005.

73

37. Saff, D. and M. D. Ernst, “An experimental evaluation of continuous testing during

development”, SIGSOFT Softw. Eng. Notes , Vol. 29, No. 4, pp. 76–85, 2004.

38. Gaspar, A. and S. Langevin, “Restoring ”coding with intention” in introductory

programming courses”, SIGITE ’07: Proceedings of the 8th ACM SIGITE confer-

ence on Information technology education, pp. 91–98, ACM, New York, NY, USA,

2007.

