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ABSTRACT

A STEADY STATE ANALYSIS OF COMPETITIVE

PREDICTION USING LMMN COMBINATION

In this thesis, the adaptive linear prediction of autoregressive signals under ad-

ditive Gaussian noise model is investigated in a competitive algorithm framework. In

this framework, there is a comparison class of predictors of different models, model

orders or model parameters that work in parallel to estimate the same desired signal.

The outputs of the constituent algorithms in this competing class are then combined

using another adaptive algorithm to improve the overal performance over the com-

parison class. As the combination method, the Least Mean Mixed Norm (LMMN)

algorithm is proposed without any constraints in converging to the optimal Wiener

solution. This method is specificly applied to: a comparison class of two LMMN pre-

dictors of the same model order but different model parameters; a comparison class of

an RLS and an LMMN predictor of the same model order; and finally a comparison

class of M different order LMMN predictors with the same algoritmic parameters. For

each of the combination schemes, the LMMN combination method is shown to yield a

smaller MSE in the steady state than the best predictor in the comparison class when

the step size is choosen appropriately. Furthermore, for the LMMN-LMMN and the

RLS-LMMN combinations, i.e., the first two combination classes, it has been observed

through simulations that the combination filter converges more rapidly than the most

rapidly converging filter in the comparison class when the parameters of the LMMN

combination filter are choosen properly.
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ÖZET

LMMN BİRLEŞTİRME YÖNTEMİ İLE YARIŞABİLEN

ÖNGÖRÜNÜN KARARLI DURUM ANALİZİ

Bu tezde, katkı Gauss gürültü modeli altında otoregressif sinyallerin adaptiv

doğrusal kestirimi, yarışabilen bir algoritma çerçevesinde araştırılmaktadır. Bu çerçeve-

de, modelleri, model seviyeleri ve model parametreleri farklı olan ve bir karşılaştırma

sınıfı oluşturan filtreler, paralel çalışarak aynı sinyali kestirmeye çalışmaktadır. Bu

rekabet sınıfının kurucu algoritmalarının çıkışları daha sonra karşılaştırma sınıfı per-

formansını artırmak için başka bir adaptiv algoritma ile birleştirilmektedir. Birleştirme

yöntemi olarak, optimum Wiener çözümüne ulaşmada herhangi bir kısıtlaması ol-

madığından dolayı Asgari Ortalama - Karma Norm (LMMN) algoritması önerilmiştir.

Bu yöntem özel olarak : aynı model seviyeli fakat farklı model parametreleri olan

iki LMMN filtreden oluşan bir karşılaştırma sınıfı; aynı model seviyeli bir RLS bir

LMMN filtreden oluşan bir karşılaştırma sınıfı; ve son olarak da M farklı seviyel-

erde LMMN filtrelerinden oluşan bir karşılaştırma sınıfı için uygulanmıştır. Sistem

kararlı duruma ulaştığında, herbir birleştime işlemi için, adım boyu uygun seçildiği

takdirde LMMN birleştirmesinin karşılaştırma sınıfının en iyi kestiricisinden bile daha

küçük bir MSE ürettiği gösterilmiştir. Ayrıca, LMMN-LMMN ve RLS-LMMN ik-

ililerinin oluşturduğu sınıflar (yani ilk iki birleştirme sınıfı) için simülasyonlarda LMMN

birleştirme filtresinin karşılaştırma sınıfının en hızlı yakınsayan filtresinden daha hızlı

yakınsadığı gözlemlenmiştir.
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1. INTRODUCTION

1.1. Overview of the Approach and Contributions

In this thesis, we study adaptive linear prediction of autoregressive signals under

additive Gaussian noise model in a competitive algorithm framework. Rather then

approaching the problem from a classical adaptive prediction perspective where one

tries to predict the desired signal by fitting a model and then estimating the parameters

of this model, we compete against a class of predictors that work in parallel to predict

the same signal. Our ultimate goal is to outperform or perform as good as the best

predictor among this competing class of sequential adaptive predictors in mean square

error (MSE) sense. Note that this competing class of algorithms may include predictors

of different models, model orders or model parameters. We try to outperform the

best predictor by constructing a performance based mixture of these predictors in

the comparison class according to their MSE performances. Hence, in this sense, the

competing class of predictors comprised the first stage of the algorithm, where the

combination stage is the second, i.e., the mixture stage. Specifically, we use sequential

predictors with Least Mean Mixed Norm (LMMN) adaptive learning algorithm [1] as

the competing class of predictors. Note that the LMMN algorithm is constructed as a

convex combination of the Least Mean Squares (LMS) [2] and the Least Mean Fourth

(LMF) [3] adaptive learning algorithms.

In this thesis, as the competing class of algorithms, we use three different com-

parison classes. The first and the second competing classes have only two adaptive

filters in their comparison classes. In both cases, the first adaptive filter is chosen a

rapidly converging filter while suffering in terms of MSE performance at steady state

(like the RLS [4] algorithm with a small forgetting factor or the LMMN algorithms

with a large step size [5]). On the other hand, the other constituent adaptive filter in

the comparison class is chosen a slowly converging filter with a relatively smaller MSE

(like the LMMN algorithm with a small step size).
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The third, i.e., the final, comparison class is composed of M different LMMN

predictors with different orders, the same step size and the same LMS-LMF mixture

weight. We combine the filters in the comparison class with an M -tap LMMN adaptive

filter with a different step size and an LMS-LMF mixture weight, where M states the

predictor number in the comparison class.

One problem in classical linear adaptive prediction methods is the trade off be-

tween convergence speed and steady state MSE performance [6]. As an example,

although the RLS algorithm usually converges rapidly to its steady state, it is shown

to yield inferior tracking performance for certain nonstationary signals compared to

the LMS algorithm [7]. On the other hand, the LMMN algorithm has a good track-

ing performance when the step size is chosen sufficiently small; however, its transient

behaviour is relatively slower [5]. In order to exploit the better features of these algori-

htms, we propose to combine these two type predictors via another adaptive algorithm

and obtain a new adaptive prediction algorithm that converges rapidly and yields a

smaller MSE than the MSEs of the constituent filters. Hence, we avoid the MSE-speed

trade off and also obtain a better performance in MSE sense.

Another problem that arises in classical linear prediction is the model order se-

lection problem for the underlying parametric model [8]. Rather than fixing a specific

model order, in this thesis, we combine M LMMN predictors of different model or-

ders with another LMMN predictor of order M in order to obtain a steady-state MSE

performance as good as the best performing predictor in the competing class yields.

Therefore, without knowing the model order of desired autoregressive signal, we seek

produce a better performance than one can produce with classical adaptive prediction

methods.

In this thesis, we particularly use the LMMN algorithm to combine outputs of the

first stage adaptive predictors in prediction context. However, the results of this study

can be straigtforwardly extended to other adaptive signal processing problems such as

channel equalization, echo cancellation and adaptive filtering or can be extended to

include other learning algorithms such as the LMS updates or the RLS updates.
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Recently, there has been an increased interest in the competitive prediction frame-

work in certain adaptive signal processing problems due to the aformentioned proper-

ties. In the literetature, several different mixture methods have been proposed such as

combining individual predictors using Bayesian mixtures [8, 9], convex [10, 11, 12, 13],

or affine combination approaches [14, 15]. In this research, unlike these previous works,

we combine individual algorithms by the LMMN algorithm, where we impose no con-

straints on the combination. The most significant benefit of the LMMN combination

method against Bayesian, convex and affine combination methods is that the LMMN

combination does not require any constraints in converging to the optimal solution.

In Bayesian and convex combinations, filter-tap-weights are constrained to be greater

than zero and summed up to one. In affine combination, sum of the filter-tap-weights

are also have to be one; however, they can be smaller than zero. In the LMMN

combination, on the other hand, there is no constraint on the filter-tap-weights. The

unconstraint combination reaches to the Wiener solution except a small excess error.

Therefore, obtaining a better performance is possible by a proper selection of the filter

parameters. In addition to the above mentioned methods, in the literature the LMS

combination of the LMS predictors is also proposed and basic analysis are carried out

[16].

The contribution of this study to the competitive prediction area is the use of

the LMMN learning algorithm as a combination method. The better features of the

LMMN combination method are mentioned above. The work carried out within this

thesis is stated in the following two paragraphs.

First, the steady state analysis is carried out for the following algorithms:

• The LMMN adaptive prediction algorithm,

• The LMMN combination of different order LMMN filters,

• The LMMN combination of two individual LMMN filters one having a larger step

size and the other having a smaller step size,

• The LMMN combination of the RLS filter and the LMMN filter where the for-

getting factor of the RLS filter and the step size of the LMMN filter are summed
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up to one.

For the LMMN algorithm, the steady state performance analysis is derived. This result

is used in analysing the steady state behaviour of the LMMN combination of the three

comparison classes. For each of the combination schemes, the steady state mean square

error of the combination filter is derived and shown to be smaller than the MSE of the

best predictor in the comparison class for certain parameters.

Next, in addition to the analysis in MSE sense, the transient and the steady state

behaviour of the algorithms are simulated using MATLAB. By these simulations we

specificly present the following:

• the MSEs of the competing filters in the comparison classes against the MSE of

the competing algorithm, i.e., the combination filter in both transient and steady

state (for the first and the second comparison classes),

• the excess MSEs of the competing filters in the comparison class against the

Excess MSE (EMSE) of the competing algorithm in the steady state (for the

third comparison class),

• the filter tap-weights of the combination filter combining the filters in the first,

the second and the third comparison classes in the transient and the steady state.

The LMMN algorithm is a convex combination of the LMS and the LMF algo-

rithms as we mentioned in the beginning. The LMS-LMF mixture weight parameter

of the LMMN algorithm tells the LMS-LMF ratio in the LMMN algorithm. Therefore,

when we choose the LMS-LMF mixture weight in the LMMN algorithm as one or the

zero, the LMMN becomes the LMS or the LMF correspondingly. Thus the results of

this thesis can be straightforwardly specialized for the LMS (where LMS-LMF mixture

weight is one) and the LMF (where LMS-LMF mixture weight is zero) combination

algorithms.

Lastly, the term filter is used frequently in the thesis. As we merely do prediction,

this word is used in the meaning of predictor.
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1.2. Overview of the Prior Art

Before rigorously exploring the LMMN combination setup, we first explore the

studies on adaptive algorithms, more specifically the LMMN algorithm, and the com-

petitive prediction framework that constitute the basis for this study.

Adaptive learning algorithms like the LMS, the LMF and the RLS algorithms

are comprehensively studied in adaptive filtering literature [2, 3, 1, 4, 6, 8, 17, 18].

One can find derivations of the transient and steady state behaviour for these adaptive

algorithms in [2] and [6] from basic to advanced level.

The LMNM algorithm had attracted quite attention in late 1990s. One study

for the LMMN steady state performance and its comparison with the LMS and the

LMF algorithms is given in [5] which explores a formulation for steady state mean

square error. This formula is in fact a good representation for the LMMN steady state

behaviour, yet this is a bit complicated to apply for our setup. Therefore, we analysed

the “Variance Relation” derived in [6] and performed derivations for the staedy state

performance measure to reach a more applicable formulation for our setup. (This

formula is also stated in [6] yet derivations are done within this study).

In [10] and [11], a study of the steady state MSE performance of a convex combi-

nation of two transversal filters is given. They specialize the results to a combination

of the two LMS filters operating both in stationary and nonstationary scenarios using

energy conservation relations. In [11], the authors also show that the combination is

universal w.r.t. the comparison class. The authors in [13] uses the results of [10] and

[11], and apply the convex combination idea to combine two adaptive filters with sev-

eral different adaptive methods including one fast converging and one slow converging

predictors. In addition, in [12], the convex combination method is extended for M

filter combination and applied for the direct to earth communication.

In [8] sequential combination of individual batch predictors (possibly more than

two) of order less than M according to their performance criteria is carried out. In
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combining individual sequences, weighting is done by a Bayesian combination method.

Results are applied for combining M RLS algorithms having different forgetting factors

by the Bayesian combination method mentioned and universality of the algorithm with

respect to all possible type of comparison classes was shown. Results of [8] were also

used in [9] to combine the LMS algorithms by the Bayesian combination method.

In [9] the combination algorithm given converges to the Wiener solution in the

combination stage. This algorithm is the LMS-LMS combination by the LMS mix-

ture. The LMMN combination given in this thesis is more generalized than the LMS

combination method.

1.3. Problem Statement and Notation

1.3.1. Notation

In this section, we provide the notation used throughout the thesis. Boldface

letters denote vectors; regular letters with subscripts denote individual elements of

vectors. The vector [a1, a2, ...., aN ]T is compactly represented by a. Boldface capital

letters denote matrices; regular letters with subscripts denote individual elements of

matrices. “.T” denotes transpose operation. Furthermore, E[.] denotes expectation

operation, no parenthesis is used when only expectation of single term is shown. Italic

capital letters denote vector size, weight-tap number and filter order. The abbreviations

“i.i.d.” and “w.r.t.” are shorthands for the terms “independent identically distributed”

and “with respect to” respectively.

1.3.2. Problem Statement

The main goal of combining individual prediction algorithms is to obtain better

performance results in terms of MSE or convergence speed than the constituent adap-

tive predictors by using a competitive prediction setup. Hence, we use competitive

prediction framework to combine different algorithm comparison classes. However, for

each of the prediction scheme, the same setup is used throughout the thesis work. In
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this section, we explain this general setup and the main problem.

In competitive prediction, as we stated in section 1.1, there is a comparison class

and a competing predictor that predicts the desired signal by making a weighted com-

bination of the competing class predictors. The competing class predictors work in

parallel to predict the same desired signal. Their tap weight vectors are updated at

each time iteration and adaptively converge to Wiener solution for the desired signal.

The competing predictor also tries to converge to Wiener solution by combining the

individual algorithms. The tap-weights that combine the individual filter outputs are

updated at each time iteration. Both the adaptive prediction methods and the com-

bination algorithms are analysed in next chapters. In this section we do not go into

details for neither individual algorithms nor combining algorithm, we just give here the

general scheme.

In general, overall procedure is composed of two stages:

• The fist stage is composed of individual adaptive predictors that form the com-

parison class. They work in parallel and tryies to converge to Wiener solution for

the desired signal in an adaptive manner.

• The second stage is composed of a competing predictor that combines outputs of

the individual predictors in the first stage. This competing predictor also tries to

predict the same desired signal by combining the filters in the comparison class

and updating its combination weights at each time iteration in order to reach

Wiener solution.

Figure 1.1 explains the structure used in the competitive prediction. This struc-

ture is common for the whole thesis work.

Following are the explanation of the signals used in the structure given with figure

1.1.

• u(n) is the input sequence with mean ηu = 0, variance σ2
u. It is a wide sense
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Figure 1.1. The general competitive prediction structure used throughout the thesis

work
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stationary autoregressive process.

• v(n) is i.i.d. zero-mean Gaussian noise with variance σ2
v .

• K is the number of predictors in the comparison class.

• k indicates the predictor number, k = 1, 2, ..., K for each of the following defini-

tions

• mk is the model order of kth predictor.

• qi,k is the kth parameter of the ith predictor.

• uk(n) is the input vector for the kth predictor of the first stage:

uk(n) = [u(n), u(n− 1), u(n− 2), ..., u(n−mk + 1)]T.

• d(n) is the desired signal for all predictors with a mean µu = 0 and variance σ2
d.

It is a wide sense stationary process.

• wk(n) is the tap-weight-vector of the kth predictor of the first stage:

wk(n) = [wk,1(n), wk,2(n), ..., wk,mk
(n)]T.

• yk(n) is the estimator output of the kth predictor in the first stage:

yk(n) =< wk(n),uk(n) >, k = 1, 2, ..., K.

• ek(n) is the estimation error of the kth predictor of first stage:

ek(n) = d(n)− yk(n), k = 1, 2, ..., K

• y(n) is the input vector of second stage:

y(n) = [y1(n), y2(n), y3(n), ..., yK(n)]T.
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• wc(n) is the tap-weight-vector of the second stage combining predictor:

wc(n) = [wc,1(n), wc,2(n), ..., wc,K(n)]T.

• z(n) is the estimator output of the second stage combining predictor:

z(n) =< wc(n),y(n) > .

• ec(n) is the estimation error of the second stage combining predictor:

ec(n) = d(n)− z(n).

In the first stage, each predictor is an adaptive filter. The adaptive learning

algorithms used in the first stage are the RLS, the LMS, the LMF and the LMMN

filters having different number of tap-weights and filter parameters.

First, the input sequence is collected and uk(n) = [u(n), u(n−1), u(n−2), ..., u(n−
mk+1)]T input vector is obtained. Namely, prediction of the desired signal d(n) is based

on the current and the past values of the input sequence. We decide on the number

of the past input values to be used in the prediction according to the filter tap-weight

number. The filter tap-weight-vector and the input vector should be in the same size.

Next, filter output yk(n) is obtained by yk(n) =< wk(n),uk(n) >, k = 1, 2, ..., K. This

output is updated using an error feedback loop using the error signal defined by ek(n) =

d(n)− yk(n), k = 1, 2, ..., K. At each time iteration, error term is also updated. Next,

first stage outputs are collected to form a vector y(n) = [y1(n), y2(n), y3(n), ..., yK(n)]T

and the result is inputted to the second stage.

In the second stage, the predictor output is obtained by z(n) =< wc(n),y(n) >.

This output is also updated using an error feedback loop using the error signal defined

by ec(n) = d(n)−z(n), k = 1, 2, ..., K. At each time iteration, this error is also updated.

When steady state is reached, it is desired that z(n) is to be a better estimate
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than each of the yk(n) for k = 1, 2, .., K and the MSE limn→∞ E[ec(n)2] is smaller for

the second stage than the MSEs of each of the individual predictors limn→∞ E[ek(n)2],

where k = 1, 2, .., K.

1.4. Organization of the Thesis

In chapter 1 the main problem is stated, the approaches for solving this problem

and our approach and contributions are introduced . In addition, the general structure

used throughout the thesis study is explained.

In chapter 2, firstly the general information on adaptive signal processing and

stochastic processes related to the thesis work is given (section 2.1). Next, the Steep-

est Descend, the LMS, the LMF, the LMMN and the RLS algorithms are explained

(Sections 2.2, 2.3, 2.4, 2.5, 2.6 correspondingly). Lastly, the steady state performance

analysis of these stochastic gradient algorithms are given(2.7).

In chapter 3 the LMMN combinaiton method is explained. Combinaiton of the

predictors in the first, the second and the third comparioson class is given in sections

3.1, 3.2 and 3.3 correspondingly. For each of the comparison classes, the steady state

behaviour of the combination filter is given.

Finaly, in chapter 4, MATLAB simulations for the combination of each of the

comparison classes are given.
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2. STOCHASTIC GRADIENT ALGORITHMS

2.1. Background Information

2.1.1. Stochastic Models

A stochastic process, where the process depends on both time and ensamble,

can be modeled by one of the “moving average”, “autoregressive” and “autoregressive-

moving average” models [19], which will be defined in this subsection.

Definition 2.1 A Moving-Average process u(n) of order N (MA(N)) is a stochastic

process that is is defined by

u(n) =
N∑

i=0

biv(n− i), (2.1)

where v(n) is zero-mean i.i.d white Gaussian noise [19].

Definition 2.2 An Autoregressive process u(n) of order M (AR(M)) is a stochastic

process that is defined by

u(n) =
M∑
i=1

aiu(n− i) + v(n), (2.2)

where v(n) is zero-mean i.i.d white noise [19].

Definition 2.3 An Autoregressive Moving-Average process u(n) of order M , N (ARMA(M ,

N)) is a stochastic process that is defined by

u(n) =
M∑
i=1

aiu(n− i) +
N∑

j=0

biv(n− i), (2.3)
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where v(n) is zero-mean i.i.d white Gaussian noise [19].

2.1.2. General Linear Prediction Problem

Given a sample set {u(n−n0), u(n−n0−1), ..., u(n−n0−M +1)} of a stationary

discrete-time stochastic signal u(n), estimating another sample of u(n) as a linear

combination of samples in the sample set is called M th order linear prediction. If

n0 = 0 and we try to estimate u(n + 1), then we do M th order one step linear forward

prediction [2]. In this case desired signal d(n) = u(n+1) and the estimate d̂(n) is given

by (2.4). In this thesis we use “linear prediction” in place of “one step linear forward

predition” since we only deal with one step linear forward prediction. The prediction

error e(n) in linear prediction is given in [19] by

e(n) = d(n)− d̂(n), (2.4)

where

d(n) = u(n + 1), (2.5)

d̂(n) =
M−1∑
i=0

aiu(n− i). (2.6)

2.1.3. Optimum Prediction in MSE Sense

Our main goal in linear prediction is to minimize the cost function J(n) which

is a function of prediction error e(n). The criterion that is most widely used in the

literature of adaptive filtering is the steady-state MSE criterion [6]. Therefore we use

the Mean Square Error function as the cost function.

Definition 2.4 Mean Square Error (MSE) in an estimation problem is the expected

value of the square of the error signal in the estimation process when steady state
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Winer filter,

w(n)
u (n)

+

d(n)

y(n)

e(n)
-

Figure 2.1. Block diagram representation of the Wiener filtering operaion

reached. Mathematically it is defined by

MSE = lim
n→∞

E[|d(n)− d̂(n)|2],

= lim
n→∞

E[e(n)e(n)∗]. (2.7)

Optimum prediction in MSE sense is the prediction when MSE is the minimum

among MSE’s of all prediction processes for the same signal. The filter that generates

the Minimum MSE (MMSE) in a linear prediction problem is called the optimum filter

in MSE sense for that prediction process [2]. Order of the optimum filter is unique for

a certain signal and depends on the parametric model of the signal.

Figure 2.1 shows the optimum filtering operation. In this figure; u(n) is the

input sequence, d(n) is the desired signal, d̂(n) is the estimated output, w(n) is the

optimum filter tap-weight-filter and e(n) is the estimation error. If the order of the

optimum filter is M , than w = [w1, w2, ..., wM ]T, u(n) = [u(n), u(n− 1), ..., u(n−M +

1)]T and autocorrelation matrice of the input sequence is an MxM matrice RMxM =

E[u(n)u(n)T].

Proposition 2.1 The MMSE is produced when the estimation error e(n) and the de-

sired signal d(n) are orthogonal, i.e < e(n), d(n) >= 0
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Proof of the proposition 2.1 can be found in [2] and [6].

Based on the principle of orthogonality, filter-tap-weights of the optimum filter

can easily be derived as:

E[e(n)(d(n)] = 0,

E[(d(n)− d̂(n))(wT
optu(n) + v(n))] = 0,

wT
optE[d(n)u(n)]−wT

optE[u(n)d̂(n)] = 0,

wT
optE[d(n)u(n)]−wT

optE[u(n)u(n)T]wopt = 0,

p−Rwopt = 0,

p = Rwopt,

⇒wopt = R−1p. (2.8)

Then, the minimum MSE that is produced with optimum filter is calculated as:

MSE = lim
n→∞

E[e(n)(d(n)− d̂(n))],

= 0− lim
n→∞

E[e(n)d̂(n)],

= lim
n→∞

(−E[d(n)d̂(n)] + E[d̂(n)2]),

= lim
n→∞

(−wTE[d(n)u(n)] + wTE[u(n)u(n)T]w),

= lim
n→∞

(wTRw −wTp). (2.9)

2.1.4. Adaptive Linear Prediction

It is generally not possible to describe the optimal solution in closed-form in

terms of the moments of the underlying variables, and it often becomes necessary to

approximate the optimal solution iteratively .

The iterative procedure according to the error feedback loop is the adaptation of

the estimator to the desired signal. This procedure could start from an initial guess for



16

the solution and then improve upon it from one iteration to another. This application

is called adaptive prediction [2]. The prediction error and output estimate of adaptive

filter at time n is given by

e(n) = d(n)− ˆd(n), n = 1, 2, .... , (2.10)

d̂(n) = w(n− 1)Tu(n), n = 1, 2, .... . (2.11)

where d̂(n) is the estimated output, w(n) is the adaptive filter tap-weight-filter (time

dependent) and e(n) is the error signal. The vector w(n− 1)T is updated with some

update rule determined with the adaptive prediction algorithm. The important point

is the use of the filter tap weights of previous time step in prediction error calculation.

In the next four sections, we explain adaptive prediction algorithms used in this

thesis and give their steady state analysis. We begin with Steepest Descend Algorithm

in the next section.

2.2. Steepest Descent Algorithm

Given cost function J(w) , and without assuming any prior knowledge about

the value of its minimizing argument wopt, steepest descend is a procedure that starts

from an initial guess for wopt and then improves upon it in a recursive manner until

ultimately converging to wopt. The procedure is one of the form

(newguess) = (oldguess) + (acorrectionterm).

Or, more explicitly it can be stated as

w(n) = w(n− 1) + µg, n = 0, 1, 2, 3, ... . (2.12)

Here we are writing w(n − 1) to denote a guess for wopt at iteration (n − 1), and

w(n), to denote the updated guess at iteration n. The vector g is an update direction
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vector that we should choose adequately, along with the positive scalar µ, in order to

guarantee convergence of w(n) to wopt. The scalar µ is called the step-size parameter

since it affects how small or how large the correction term is. The iteration starts from

an initial value w0 assigned to tap-weight-vector w(n) without prior knowledge of the

wopt [6].

The cost function J(w) in steepest descend algorithm is

J(n) = E[|e(n)|2],
= E[|d(n)−w(n)Tu(n)|2]. (2.13)

To obtain weight update function for each time iteration we first find the update

function g(n) which is defined by

g(n) = − ∂J

∂w∗ . (2.14)

Therefore, we find the update function by differenciating the cost function w.r.t weight

vector as

∂J

∂w∗ =
∂(E[e(n)(d(n)∗ −w(n)Hu(n)∗)])

∂w∗ ,

= E[e(n)(−u(n)∗)],

= E[(d(n)−w(n)Tu(n))(−u(n)∗)],

= w(n)TRu − p. (2.15)

Then the update function becomes

g(n) = −∂Jw

∂w∗ ,

⇒ g(n) = p−w(n)TRu. (2.16)

This update function is multiplied by a step size parameter µ in order to guarantie

the convergence of the weight vector of steepest descend algorithm. Then the update
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equation of the weight vector becomes

w(n + 1) = w(n) + µp−w(n)TRu, n > 0. (2.17)

For stability of the steepest descend algorithm, step size µ should be sufficiently small

i.e. 0 < µ < 2
λmax

[2].

Steepest Descend algorithm forms a basis for gradient based algorithms. Having

explained Steepest Descend Algorithm, now we go on with the LMS algorithm in the

next section.

2.3. Least Mean Square (LMS) Algorithm

In practice, calculating expectations is not easy because it requires infinite number

of ensemble values, therefore infinite number of calculations. For this practical reason

LMS algorithm defines the cost function J(n) as

J(n) = |e(n)|2,
= |e(n)(d(n)∗ −wHu(n)∗)|. (2.18)

This cost function is the same as the cost function of steepest descend algorithm except

expectation. The update function is than

g(n) = −∂J(n)

∂w∗ ,

= e(n)u(n). (2.19)

Therefore we obtain the update equation for weight vector of LMS algorithm as

w(n) = w(n− 1) + µu(n)(d(n)− u(n)Tw(n)), n > 0,

= w(n− 1) + µu(n)e(n), n > 0. (2.20)
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LMS adaptive prediction algorithm is than defined by three equations:

w(n) = w(n− 1) + µu(n)e(n− 1), n > 0, (2.21)

e(n) = d(n)− y(n), n > 0, (2.22)

y(n) = w(n− 1)Tu(n), n > 0. (2.23)

For the stability of the LMS algorithm, step size µ should be sufficiently small i.e.

0 < µ < 2
||un||2 [2].

It can be easily observed that LMS update formula is the same as steepest descend

algorithm except expectations. Now we will explain LMF algorithm in the next section.

2.4. Least Mean Fourth (LMF) Algorithm

In LMS algorithm, cost function is the square of the error function. In addition,

update function is negative gradient of the cost function. Update function and step

size updates the tap weight vector together. When filter tap weights reach its steady

state value, the gradient noise is measured to be proportional to step size. Namely,

steady state gradient noise is large when large step size is used and small when small

step size is used. On the other hand, if small step size is selected then the convergence

may become too slow. For the solution of this problem, Least Mean Fourth (LMF)

algorithm is developed in which the cost function is the fourth order of the error

function. Therefore update steps become larger than update steps of LMS algorithm

when the error function is large and update steps become smaller than update steps

of LMS algorithm when the error function is small. Therefore, when the prediction

output gets nearer to desired signal, update steps gets smaller and smaller and the

resulting gradient noise becomes smaller than LMS gradient noise [3].

LMF algorithm defines the cost function J(n) as

J(n) = |e(n)|4,
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= |e(n)2(d(n)∗ −wHu(n)∗)2|. (2.24)

The update function is than

g(n) = −∂J(n)

∂w∗ ,

= e(n)2e(n)∗u(n). (2.25)

Since we deal with real signals in this thesis,

e(n)2e(n)∗ = e(n)3. (2.26)

Therefore we obtain the update equation for weight vector of LMF algorithm as

w(n) = w(n− 1) + µu(n)e(n)3, n > 0. (2.27)

LMF adaptive prediction algorithm is than defined by three equations:

w(n) = w(n− 1) + µu(n)e(n− 1)3, n > 0, (2.28)

e(n) = d(n)− y(n), n > 0, (2.29)

y(n) = w(n− 1)Tu(n), n > 0. (2.30)

We explained Steepest Descend, LMS and LMF algorithms so far and now we go

on with LMMN algorithm.

2.5. Least Mean Mixed Norm (LMMN) Prediction Algorithm

Least Mean Mixed Norm (LMMN) algorithm is the convex combination of the

LMS and LMF algorithms. Adjusting the step size parameter in LMF algorithm is very

difficult because small changes in step size cause big changes in convergence behaviour

due to the third order of the error in the update equation. In addition, for signals
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having both L2 and L4 space components prediction with a convex combination of L2

and L4 norms gives better result .Moreover converting an LMMN filter to LMS or LMF

filter is trivial by adjusting the LMS-LMF weight to one or zero correspondingly [5].

For these reasons LMMN adaptive prediction algorithm is defined with the cost

function J(n)

J(n) =
δ

2
|e(n)|2 +

δ

4
|e(n)|4. (2.31)

The update function is than

g(n) = −∂J(n)

∂w∗ ,

= [δe(n)] + [δe(n)3]. (2.32)

Therefore we obtain the update equation for weight vector of LMMN algorithm as

w(n) = w(n− 1) + µu(n)e(n)[δ + (1− δ)e(n)2], n > 0. (2.33)

In short LMMN adaptive linear prediction algorithm is defined by three equations:

w(n) = w(n− 1) + µu(n)e(n)[δ + (1− δ)e(n)2], n > 0, (2.34)

e(n) = d(n)− y(n), n > 0, (2.35)

y(n) = w(n− 1)Tu(n), n > 0. (2.36)

Now we go on with RLS Algorithm in the next section.
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2.6. Recursive Least Squares (RLS) Algorithm

In RLS algorithm we try to find a recursive solution to minimize cost function

J(w) =
n∑

i=1

λn−i|e(i)|2, n = 0, 1, 2, 3, ... , (2.37)

where

e(i) = d(i)− y(i),

= d(i)−wH(n)u(i).

Here λ is the forgetting factor and 0 ¿ λ ≤ 1. In addition, in RLS algorithm in place

of Ru and p we define

Φ(n)
4
=

n∑
i=1

λn−iu(i)u(i)H, n = 0, 1, 2, 3, ... ,

= λΦ(n− 1) + u(n)uH(n), (2.38)

z(n)
4
=

n∑
i=1

λn−iu(i)d(i)∗ n = 0, 1, 2, 3, ... ,

= λz(n− 1) + u(n)d∗(n),

= Φ(n)ŵ(n). (2.39)

Using “the Matrix Inversion Lemma” an update equation including Φ−1 = P is formed:

P(n) = λ−1P(n− 1)− λ−1k(n)uH(n)P(n− 1), (2.40)

where

k(n) =
λ−1P(n− 1)u(n)

1 + λ−1uH(n)P(n− 1)u(n)
,

= P(n)u(n). (2.41)
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Now we have a recursive solution for the inverse of correlation matrix. Next we need

update method for the tap-weight vector. From (2.39) ˆw(n) can be written as

ŵ = Φ−1(n)z(n). (2.42)

Then the update equation is obtained for tap weight vector as

ŵ(n) = P(n)z(n),

= λP(n)z(n− 1)−P(n)u(n)d∗(n),

= P(n− 1)z(n− 1)− k(n)uH(n)P(n− 1)z(n− 1) + P(n)u(n)d∗(n),

= ŵ(n− 1)− k(n)uH(n)ŵ(n− 1) + P(n)u(n)d∗(n),

= ŵ(n− 1) + k(n)bd∗(n)− uH(n)ŵ(n− 1)c. (2.43)

The RLS algorithm can be summerised by the following three update equations:

k(n) =
λ−1P(n− 1)u(n)

1 + λ−1uH(n)P(n− 1)u(n)
, (2.44)

ŵ(n) = ŵ(n− 1) + k(n)bd∗(n)− uH(n)ŵ(n− 1)c, (2.45)

P(n) = λ−1P(n− 1)− λ−1k(n)uH(n)P(n− 1). (2.46)

Here n = 1, 2, 3.... The initial values are assigned as

P(0) = δ2I,

ŵ(0) = 0.

We finished explaining adaptive learning algorithms that are used within this

study as an individual predictor in the first stage, now we continue with steady state

analysis of the LMS, the LMF, the LMMN and the RLS algorithms.
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2.7. Performance Measure and Steady State Analisys

In this section we give the steady state analysis of adaptive filters explained in the

previous sections. Before plunging into a detailed study of adaptive filter performance,

we need to explain some of the issues that arise in this context, including the need

to adopt a common performance measure in terms of stochastic equations. Energy

Conservation and Variance Relations [6] form the basis of our derivations. So before we

derive the performance measure for the algorithms we shortly explain these phenomena.

We first give the definitions and assumptions used in this section.

Definition 2.5 Minimum error is emin(n)
4
= d(n)−wT

optu(n).

Definition 2.6 Minimum cost function is Jmin
4
= E[e2

min].

Definition 2.7 Excess Mean Square Error is EMSE
4
= MSE − Jmin, where MSE =

E[e(n)2].

Assumption 2.1 There exists a vector wopt such that d(n) = wT
optu(i) + v(n).

Assumption 2.2 The noise sequence {v(n)} is i.i.d. with σ2
v and has a Gaussian

distribution.

Assumption 2.3 The noise sequence {v(n)} is independent of {u(k)} for all n, k .

Assumption 2.4 The initial condition w0 is independent of all {d(n), u(n), v(n)}.
The regressor covariance matrix is Ru = E[u(n)u(n)T] > 0

Assumption 2.5 The random variables {d(n), v(n), u(n)} have zero means.
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We now explain the behaviour of an adaptive filter operating in the steady state.

2.7.1. Steady State Filter Operation

Adaptive filter operating in steady-state means that its behaviour is not a time

function any more. Mathematicaly speaking, if an adaptive filter is said to be operating

in steady state, it holds:

E[w̃i] → s, as i →∞,

E[|w̃i|2] → C, as i →∞,

where, s and C are some finite constants (usually s = 0).

This means that the mean and covarience matrix of the weight error vector of

a steady-state filter tend to some constant values {s,C}. Since the behaviour of the

filter is independent of time, E||w̃i||2 = E||w̃i−1||2 = c, as i →∞, where c = Tr[C]

Steady state operation is reached for an adaptive filter if its step size is suffi-

ciently small. What “sufficiently small” means is defined for each adaptive filter in its

performance measure derivations.

Now we give basic derivations necessary to explain Energy Conservation Relation

adequately.

2.7.2. Basic Derivations For Energy Conservation Relation

The independence assumptions given in the beginning of this section brings two

main consequences [6]:

i Given that v(n) is independent of {wk}, k < n, it also follows that v(n) is inde-

pendent of {w̃k}, k < n, where {w̃k} denotes the weight-error vector and w̃k =

wopt −w(k).



26

ii w(n) is also independent of the a priori estimation excess error ea(n) defined by

ea(n) = w̃(n − 1)Tu(n). This variable measures the difference between wT
optu(n)

and w(n − 1)Tu(n), i.e., it measures how close the estimator w(n − 1)Tu(n) is to

the optimal linear estimator of d(i) , namely d(n) = wT
optu(n) + v(n).

These two consequences of the independece assumptions and definitions given in

the begining of this section, together, lead to the following results:

• MSE = EMSE + σ2
v ,

• EMSE = E[ea(n)2],

• e(n) = ea(n) + v(n),

which can be also found in [6].

2.7.3. Energy Conservation Relation

If an energy consevation relation can be derived for adaptive filters between apriori

and aposteriori situations, then it can be used for performance analysis of these filters

such that knowing either situation, we can easily obtain the other [6].

To derive an energy conservation relation, adaptive filtering update equation is

written in generic form as

w(n) = w(n− 1) + µu(n)g(e(n)), (2.47)

where g(.) denotes a function of a priori error e(n) and initial filter tap weight vector

is given as w0.

Subtructing both sides of (2.47) from wopt, and multiplying with u(n)T from left

we obtain

u(n)Tw̃(n) = u(n)Tw̃(n− 1)− u(n)Tu(n)g(e(n)). (2.48)
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Or, equivalently

ep(n) = ea(n)− u(n)2g(e(n)), (2.49)

⇒g(e(n)) =
1

µ||u(n)||2 [ea(n)− ep(n)], (2.50)

where a posteriori and a priori excess errors are defined as ep(i)
4
= w̃(n)Tu(n) and

ea(n) = w̃(n− 1)Tu(n) correspondingly. Substituting (2.50) into (2.47) we obtain

w̃(n) = w̃(n− 1)− u(n)∗

||u(n)||2 [ea(n)− ep(n)], (2.51)

⇒ w̃(n) +
u(n)∗

||u(n)||2 ea(n) = w̃(n− 1) +
u(n)∗

||u(n)||2 ep(n). (2.52)

This leads to energy conservation relation theorem after taking euclidean norms of both

sides.

Theorem 2.1 Energy Conservation Relation: For adaptive filters of the form

2.47 and for any data {d(n),u(n)}, it always holds that [6]:

||w̃(n)||2 +
1

||u(n)||2 ea(n)2 = ||w̃(n− 1)||2 +
1

||u(n)||2 ep(n)2, (2.53)

where ep(i)
4
= w̃(n)Tu(n), ea(n)

4
= w̃(n− 1)Tu(n) and w̃(n) = wopt −w(n) [6].

This theorem forms the basis for “Variance Relation” which in tern used to drive

steady state performance measures for LMMN, LMS and LMF algorithms. For the

derivation of this theorem the only assumptions are the independence assumptions

given with assumptions 2.1, 2.2, 2.3, 2.4, 2.5.

2.7.4. Variance Relation

Energy conservation relation forms a basis for performance analysis of adaptive

filters. Variance relation, on the other hand, gives the opportunity to evaluate steady
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state performance of the adaptive filters. We obtain variance relation by taking expec-

tations of energy conservation equation when the time goes infinity [6].

Taking expectations of energy conservation equation we have

E||w̃(n)||2 + E[
ea(n)2

||u(n)||2 ] = E||w̃(n− 1)||2 + E[
ep(n)2

||u(n)||2 ]. (2.54)

Since the filter operates at steady state, we have

E||w̃(n)||2 = E||w̃(n− 1)||2, (2.55)

so we have

lim
n→∞

E[
ea(n)2

||u(n)||2 ] = lim
n→∞

E[
ep(n)2

||u(n)||2 ]. (2.56)

We know from (2.49) that ep(n) = ea(n)− µu(n)2g(e(n)). Therefore we obtain

lim
n→∞

E[
ea(n)2

||u(n)||2 ] = lim
n→∞

E[
|ea(n)− µu(n)2g(e(n))|2

||u(n)||2 ],

= lim
n→∞

E[
|ea(n)− µu(n)2g(e(n))|2

||u(n)||2 ],

= lim
n→∞

ea(n)2

||u(n)||2 + µ2ea(n)2g(e(n))2 − µea(n)g∗(e(n))− µ, e∗a(n)g(e(n)),

= lim
n→∞

ea(n)2

||u(n)||2 + µ2ea(n)2g(e(n))2 − 2µRE[e∗a(n)g(e(n))]. (2.57)

Since we work with real valued signals, we have

lim
n→∞

E[
|ea(n)− µu(n)2g|2

||u(n)||2 ] = lim
n→∞

ea(n)2

||u(n)||2 + µ2ea(n)2g2 − 2µ[e∗a(n)g]. (2.58)

This is the Variance Relation for steady state filter operations.
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2.7.5. Excess Mean Square Error Derivation for LMMN Algorithm

The variance relation is used to derive a steady state performance equation for

LMMN algorithm. Before derivation of the Excess Mean Square Error (EMSE) for

LMMN algorithm we should make some assumptions and claims.

Assumption 2.6 At steady state, ea(n), d(n), and v(n) are mutually independent.

Assumption 2.7 The seventh and higher order moments of the i.i.d noise in the

system is nearly zero.

Assumption 2.8 Third and higher order moments of the excess error ea(n) is nearly

zero.

Proposition 2.2 The moment function of the Gaussian signal is given by [19]

E[v(n)k] =





0 k, odd

1.3.5...(k − 1)σk
v k, even

. (2.59)

In general update equation of the adaptive filter depends on error function g(e(n)).

In LMMN algorithm the error function is

g(e(n)) = e(n)[δ + (1− δ)e(n)2]. (2.60)

We know that in general, error signal is e(n) = ea(n) + v(n). We define

δ̄
4
= (1− δ). (2.61)
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Therefore, error function is rearranged to be

g(e(n)) = (ea(n) + v(n))[δ + δ̄(ea(n) + v(n))2], (2.62)

or

g(e(n)) = δ(ea(n) + v(n)) + δ̄(ea(n) + v(n))3. (2.63)

Having stated the error function for LMMN algorithm we now derive the EMSE of

LMMN filter using the Variance Relation. So we first recall the variance equation

which was

lim
n→∞

µE[||u(n)||2g(e(n))2] = lim
n→∞

2E[ea(n)]g(e(n)). (2.64)

We first rearrange L.H.S. and R.H.S of the variance equation and seperately, than

we equate them to find the EMSE.

Inserting equation 2.64 into L.H.S of the variance relation we obtain

lim
n→∞

µE[||u(n)||2g(e(n))2] = lim
n→∞

µE
[||u(n)||2[δ(ea(n) + v(n)) + δ̄(ea(n) + v(n))3]2

]
.

(2.65)

Then simplifying the L.H.S by using the assumptions and claims stated before in this

subsection we get

L.H.S = µE[||u(n)||2](δ2E[ea(n)2] + E[v(n)2]) + 2δδ̄(6E[ea(n)2v(n)2] + E[v(n)4])

+ δ̄2(15E[ea(n)2v(n)4] + E[v(n)6]) (2.66)

For simplifying L.H.S. more, we define

a
4
= δ2E[v2] + 2δδ̄E[v4] + ¯delta

2
E[v6], (2.67)
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c
4
= δ2 + 12δδ̄E[v2] + 15 ¯delta

2
E[v4]. (2.68)

Thus equation 2.66 is simplified to

L.H.S = µTr(Ru)(a + cς), (2.69)

where

Tr(Ru) = E[||u(n)||2].

Next, inserting equation 2.64 into R.H.S of the variance relation we obtain

lim
n→∞

2E[ea(n)g(e(n))] = lim
n→∞

2E[ea(n)[δ(ea(n) + v(n)) + δ̄(ea(n) + v(n))3]],

= lim
n→∞

(2δ̄(E[ea(n)4] + 3σ2
vE[ea(n)2] + 2δE[ea(n)2),

= lim
n→∞

(E[ea(n)2](6σ2
v + 2δ)), (2.70)

and we define

ς
4
= lim

n→∞
E[ea(n)2], (2.71)

b
4
= 3δ̄σ2

v + δ. (2.72)

Therefore we have

⇒ R.H.S = 2ςb. (2.73)

Now we have R.H.S and L.H.S of the Variance Equation rearranged. Equating

R.H.S and L.H.S of the Variance Equation we obtain

µTr(Ru)(a + cς) = 2ςb,
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ς(cµTr(Ru)− 2b) = −aµTr(Ru),

⇒ς =
aµTr(Ru)

2b− cµTr(Ru)
, (2.74)

where

a = δ2E[v2] + 2δδ̄E[v4] + δ̄2E[v6],

b = 3δ̄σ2
v + δ,

c = δ2 + 12δδ̄E[v2] + 15δ̄2E[v4].

2.7.6. Excess Mean Square Error Derivation for LMS Algorithm

The assumptions and the claims given in subsection 2.7.5 is also valid for the

LMS adaptive filter operation. Therefore we need not derive the EMSE for the LMS

algorithm from the begining. We rather assign one and zero to the δ and the δ̄ corre-

spondingly in the EMSE equation of the LMMN algorithm. Therefore the EMSE of

the LMS algorithm becomes

ςLMS =
aµTr(Ru)

2b− cµTr(Ru)
, (2.75)

where

a = E[v2] = σ2
v , (2.76)

b = 3δ̄σ2
v + 1, (2.77)

c = 1. (2.78)

Finally, when we replace a, b, c in the EMSE equation of the LMS algorithm with

their values given above, we obtain

ςLMS =
σ2

vµTr(Ru)

2− µTr(Ru)
. (2.79)
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2.7.7. Excess Mean Square Error Derivation for LMF Algorithm

The assumptions and the claims given in subsection 2.7.5 is also valid for the

LMF adaptive filter operation. Therefore we need not derive the EMSE for the LMF

algorithm from the begining. We rather assign zero and one to the δ and the δ̄ corre-

spondingly in the EMSE equation of the LMMN algorithm. Therefore we obtain the

EMSE of the LMF algorithm as

ςLMF =
aµTr(Ru)

2b− cµTr(Ru)
, (2.80)

a = E[v6], (2.81)

b = 3δ̄σ2
v , (2.82)

c = 15E[v4], (2.83)

⇒ςLMF =
E[v6]µTr(Ru)

6σ2
v − 15E[v4]µTr(Ru)

. (2.84)

2.7.8. Excess Mean Square Error for RLS Algorithm

The EMSE for the RLS algorithm is given in [6] as[

ςRLS =
σ2

v(1− λ)m

2− (1− λ)m
, (2.85)

where, m is model order, and λ is forgetting factor.
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3. ADAPTIVE COMPETITIVE PREDICTION

3.1. The LMMN Combination of 2-LMMN Comparison Class

In this section we analyse the steady state performance of the LMMN combination

method when the comparison class at the first stage is composed of 2 individual LMMN

predictors. We devide this section into three subsections.In the first subsection we find

the conditions on E[y1y2] giving the maximum MSE Gain

max
E[y1y2]

min(MSE1, MSE2)

MSE
,

where MSE is the MSE of the second stage, MSE1 is the MSE of the first predictor

in the first stage and MSE2 is the MSE of the second predictor in the first stage. In

the second subsection we discuss the conditions on E[y1y2] to achieve a better MSE

performance in the second stage than the MSE performance of the best predictor in

the comparison class. Namely we find the conditions on E[y1y2] to satisfy

min(MSE1, MSE2)

MSE
> 1.

In the third subsection we find the conditions on the step size µ and the LMS-LMF

combination weight δ of the LMMN predictor in the second stage. We try to achieve

min(MSE1, MSE2)

MSE
> 1

with the selection of proper parameters.

The first and the second subsections are useful for understanding how much MSE

Gain can the system gain according to E[y1y2], the third subsection; however, tells us

how should one select the parameters of the LMMN combination to achieve a certain

MSE Gain.
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We first give the assumptions and definitions used throughout this section.

The assumptions 2.8, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 are assumed when the sysytem

reaches its steady-state behaviour. In additition, the following assumption is made for

the steady state behaviour of the LMMN combinstion.

Assumption 3.1 We assume only stationary inputs to the system.

Assumption 3.2 At steady state, µ is sufficiently small so that 2b + µTr(R)c ∼= 2b.

Following definitions are used in this section and the followings.

Definition 3.1 R
4
=


 r1 r3

r3 r2


 is the autocorrelation matrice of the input vector y(n)

of the second stage. We can further define the correlations between the each output of

the first stage as:

• r1
4
= limn→∞ E[y2

1],

• r2
4
= limn→∞ E[y2

2],

• r3
4
= limn→∞ E[y1y2],

Definition 3.2 p
4
= [p1, p2]

T is the crosscorrelation vector of the input vector y(n) of

the second stage and the desired signal d(n). We can further define the correlations

between the each output of the first stage and the desired signal as:

• p1
4
= limn→∞ E[dy1],

• p2
4
= limn→∞ E[dy2],

Before we analyze the MSE performance of the LMMN-LMMN combination with

the LMMN in three susections, we first calculate MSE Gain in the second stage in terms
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of r1, r2, r3, p1, p2 and second filter parameters. Then we continiue to our analysis

with the derived MSE Gain. The mean square error gain in the second stage can be

written as

Gain =
min(MSE1, MSE2)

MSE
. (3.1)

Therefore we need to calculate MSEs of both the first and the second stages. The MSE

for the second stage filter is

MSE = lim
n→∞

E[e(n)2],

= lim
n→∞

(E[|d(n)−w(n− 1)Ty(n)|2]),

= lim
n→∞

(σ2
d + w(n− 1)TE[y(n)y(n)T]w(n− 1)− 2w(n− 1)TE[d(n)y(n)]),

= lim
n→∞

[σ2
d + w(n− 1)TRw(n− 1)− 2w(n− 1)Tp]. (3.2)

The weight vector can be written as the summation of an optimum filter weight vector

and a weight error vector as

w(n) = wopt + w̃(n), (3.3)

where the seperation is done based on the idea that the optimum filter is the filter

producing the desired signal but an i.i.d noise term [6]. Therefore, the desired signal

and the error signals are

d(n) = wopty(n) + v(n), (3.4)

ea(n) = w̃(n− 1)Ty(n), (3.5)

e(n) = ea(n) + v(n). (3.6)

Then we can further detail the MSE as

MSE = lim
n→∞

[σ2
d + [wT

opt + w̃(n− 1)T]R[wopt + w̃(n− 1)]− 2[wopt + w̃(n− 1)]p],
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= lim
n→∞

[σ2
d + wT

optRwopt − 2wT
optp] + w̃(n− 1)TRw̃(n− 1) + w̃(n− 1)Tp.

(3.7)

We also note that in [6, 19] it says wopt = R−1p, which further simplifies the MSE

equation as

MSE = lim
n→∞

[σ2
d + wT

optRR−1p− 2wT
optp + 2w̃(n− 1)T(Rw̃(n− 1)− 2p],

= lim
n→∞

[σ2
d −wT

optp + w̃(n− 1)TE[y(n)y(n)T]w̃(n− 1)− 2E[y(n)d(n)]],

= lim
n→∞

[σ2
d −wT

optp + E[w̃(n− 1)Ty(n)[y(n)Tw̃(n− 1)− 2d(n)]]]. (3.8)

Combining the MSE equation with ea(n) = w̃(n− 1)Ty(n) we have

MSE = lim
n→∞

[σ2
d −wT

optp + E[ea(n)[ea(n)− 2d(n)]]],

= lim
n→∞

[σ2
d −wT

optp + E[ea(n)2]− 2E[ea(n)d(n)]],

= lim
n→∞

[σ2
d −wT

optp + E[ea(n)2],

= lim
n→∞

[σ2
d − pTR−1p + E[ea(n)2], (3.9)

where limn→∞ E[ea(n)2] is the excess mean square error (EMSE) of the second stage.

The EMSE for the LMMN algorithm was derived as

EMSE =
µTr(R)a

2b + µTr(R)c
, (3.10)

a =δ2E[v(n)2] + 2δδ̄E[v(n)4] + δ̄2E[v(n)6], (3.11)

b =3δ̄E[v(n)2] + δ, (3.12)

c =δ + 12δδ̄E[v(n)2] + 15δ̄2E[v(n)4]. (3.13)

Therefore, the MSE equation becomes

MSE =σ2
d − pTR−1p +

µTr(R)a

2b + µTr(R)c
. (3.14)
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Finally we invert the correlation matrice R:

R−1 =
1

r1r2 − r2
3


 r2 −r3

−r3 r1


 , (3.15)

calculate pTR−1p:

−pTR−1p = − 1

r1r2 − r2
3

[
p1 p2

]

 r2 −r3

−r3 r1





 p1

p2


 ,

= − 1

r1r2 − r2
3

[
p1r2 − p1r3 + p2r1

]

 p1

p2


 ,

= −p2
1r2 − 2p1p2r3 + p2

2r1

r1r2 − r2
3

, (3.16)

and insert this into (3.14):

MSE = σ2
d −

p2
1r2 − 2p1p2r3 + p2

2r1

r1r2 − r2
3

+
µTr(R)a

2b + µTr(R)c
. (3.17)

Now we have the MSE for the second stage LMMN filter, i.e., the combination

filter. Next we need to calculate the minimum of the MSEs in the first stage

min(MSE1, MSE2),

in order to obtain the Gain. The MSEs of the filters in the first stage are

MSE1
4
= E[e1(n)2], (3.18)

MSE2
4
= E[e2(n)2], (3.19)

where

e1(n) = d1(n)− y1(n), (3.20)
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e2(n) = d2(n)− y2(n), (3.21)

d1(n) = d2(n) = d(n). (3.22)

Inserting e1(n), e2(n), d(n) into MSE1, MSE2 we obtain

MSE1 =σ2
d − 2E[d(n)y1(n)] + E[y1(n)2,

=σ2
d − 2p1 + r1, (3.23)

MSE2 =σ2
d − 2E[d(n)y2(n)] + E[y2(n)2,

=σ2
d − 2p2 + r2. (3.24)

Therefore, the minimum of the MSEs become

min(MSE1, MSE2) = σ2
d + min([−2p1 + r1], [−2p2 + r2]). (3.25)

We have MSEs for the first and the second stage. Next we calculate the MSE

Gain and derive the r3 value maximizing the gain min(MSE1,MSE2)
MSE

. We first make an

assumption to ease the derivations.

Assumption 3.3 min(MSE1, MSE2) = MSE1

Assumption 3.3 just shortens the derivation equations, it is equivalent to naming

the filter producing min MSE as first filter. Combining the MSE, and MSE1 we obtain

the MSE Gain:

Gain =
(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+
µTr(R)a

2b + µTr(R)c

)−1

. (3.26)
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3.1.1. Conditions on r3 for Minimizing the MSE in the Second Stage

In this subsection we maximize the MSE Gain w.r.t r3 value. The results are

verified with graphical presentation of the MSE Gain w.r.t r3.

The maximization problem is written as

max
r3

(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+
µTr(R)a

2b + µTr(R)c

)−1

, (3.27)

where, r1, r2, p1, p2 are constants. Since the σ2
d and µTr(R)a

2b+µTr(R)c
do not depend on

r3, we can drop them from the maximization problem. In addition, maximizing the

multiplicative inverse of an expression w.r.t a variable is equivalent to minimizing this

expression w.r.t. the same variable. Therefore, equivalent to the maximization problem

stated above, we obtain

min
r3

(
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+
µTr(R)a

2b + µTr(R)c

)
,

≡min
r3

(
−p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

)
,

≡max
r3

(
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

)
. (3.28)

For the solution of maximization problem in (3.28) we apply the following steps:

i We find local extremum points of argument given in (3.28) and decide whether it

is local maximum or local minimum. Then we find the value of the MSE Gain at

the local maximum points.

ii We find the value of the MSE Gain for the end points of r3 value, where r3 is

assumed to take values in [0, 1]

iii We find the value of MSE Gain at the discontinuous points.

iv At the end we decide on the overal maximum value of the MSE Gain.
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The application of these steps in maximizing the MSE Gain and the corresponding

results are given for each of the steps stated above:

i To find local extremum points, we should now take the derivative of

(
−p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

)

and equate it to zero to find the local extremum points for r3:

−
∂[−p2

1r2−2p1p2r3+p2
2r1

r1r2−r2
3

]

∂r3

= 0,

2
p1p2

r1r2 − r2
3

− 2
(p2

1r2 − 2p1p2r3 + p2
2r1) r3

(r1r2 − r2
3)

= 0. (3.29)

Therefore we find

r3 =
p1r2

p2

, (3.30)

or

r3 =
p2r1

p1

. (3.31)

Two different r3 values are found. We test them to understand wether a solution

point is a minimum or a maximum point. if the second order derivative of the MSE

Gain w.r.t r3 is greater than zero at a solution point: −∂2[pTR−1p]

∂r2
3

|r3 > 0 then the

r3 value is a local minimum and else it is a local maximum point. Therefore, since

we look for a local minimum, we place the solution r3 values into −∂2[pTR−1p]

∂r2
3

|r3

and select r3 making ∂2[pTR−1p]

∂r2
3

|r3 positive. The second derivative of the MSE Gain

w.r.t r3 value is

∂2[pTR−1p]

∂r2
3

| = −8
p1p2r3

(r1r2 − r3
2)2 + 8

(p1
2r2 − 2p1p2r3 + p2

2r1) r3
2

(r1r2 − r3
2)3 +

+ 2
p1

2r2 − 2p1p2r3 + p2
2r1

(r1r2 − r3
2)2 . (3.32)
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ii Next we calculate the MSE Gain for r3 = 0 and r3 = 1, i.e., the end points as

Gain|r3=0 =
(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 + p2
2r1

r1r2

+
µTr(R)a

2b + µTr(R)c

)−1

, (3.33)

Gain|r3=1 =
(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2 + p2
2r1

r1r2 − 1
+

µTr(R)a

2b + µTr(R)c

)−1

.

(3.34)

iii The discontinuous points of the MSE Gain is at r3 =
√

r1r2. Inserting the discon-

tinuity point into the MSE Gain we obtain

lim
ε→0

Gain =
(
σ2

d − 2p1 + r1

) (
σ2

d −
(p1
√

r2 − p2
√

r1)
2

ε
+

µTr(R)a

2b + µTr(R)c

)−1

. (3.35)

iv Ones we have the values of r1, r2, p1, p2 and second stage filter parameters, we

calculate the values of the expressions found in steps 1, 2 and 3 and decide on the

r3 value giving the global maximum of the MSE Gain w.r.t r3.

3.1.2. Conditions on r3 for a Smaller MSE in the Second Stage

We will calculate the r3 value making the MSE Gain greater than one. Recall

the MSE Gain was

Gain =
(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+
µTr(R)a

2b + µTr(R)c

)−1

.

(3.36)

We want to find the r3 values that makes

Gain > 1

≡ (
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+ EMSE

)−1

> 1, (3.37)
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where

EMSE =
µTr(R)a

2b + µTr(R)c
.

Since the EMSE term does not depend on r3 value, for the time being we leave it as

EMSE within MSE Gain expression. Than we find the r3 values making the MSE Gain

greater than one as

r3 <
p1p2

−r1 + 2 p1 + (EMSE)
+

1

−r1 + 2 p1 + (EMSE)
×

√
p1 2p2 2 + r1 3r2

−4 p1 r1 2r2 − 2 (EMSE)r1 2r2 + 5 r1 p1 2r2 + p2 2r1 2 + 4 p1 (EMSE)r1 r2

−2 p1 3r2 − 2 p1 p2 2r1 + (EMSE)2r1 r2 − (EMSE)p1 2r2 − (EMSE)p2 2r1 ,

r3 >0. (3.38)

This result seems to be a bit complicated, yet kowing the values of r1, r2, p1,

p2 and the second stage filter parameters, calculation of the r3 values with the given

inequality. In chapter 4 we give a numeric example and justify this result.

3.1.3. Conditions on µ and δ for Maximizing MSE Gain in the Second Stage

In this subsection we try to find the parameters that lead to a better MSE perfor-

mance for the second stage LMMN filter than the MSE performance of the first stage

filters. Given the parameters r1, r2, r3, p1 and p2, we find the lms-lmf weight δ and

the step sizeµ for the second stage filter that makes MSE Gain greater than one.

The MSE Gain was

Gain ≈ (
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+
µTr(R)a

2b

)−1

. (3.39)

In the MSE Gain we observe that the only µ and δ dependent part is the EMSE term
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which is

EMSE ≈µTr(R)a

2b
, (3.40)

a = δ2E[v2] + 2δδ̄E[v4] + δ̄2E[v6],

b = 3δ̄σ2
v + δ.

The approximation relys on the assumption 3.2.

When we analyse the EMSE to have the idea about its behaviour w.r.t. the

changes in the step size µ and the lms-lmf weight δ, we observe that the EMSE does

not form a curve dependent on µ, it regularly decreases with µ. Since small step sizes

result in small convergence rates in gradient type adaptive filters [2], the higher µ we

select, it is the better. Thus we first fix the µ and maximize the MSE Gain w.r.t. δ:

max
δ

(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+
µTr(R)a

2b

)−1

. (3.41)

Since the only δ dependent term in this expression is the EMSE and maximizing the

multiplicative inverse of an expression is equivalent to minimizing this expression, the

maximization problem of the MSE Gain w.r.t. δ is reduced to the minimization of the

EMSE term w.r.t. δ:

min
δ

µTr(R)a

2b
,

≡min
δ

µTr(R)(δ2E[v2] + 2δδ̄E[v4] + δ̄2E[v6])

2(3δ̄σ2
v + δ)

. (3.42)

The argument to be minimized w.r.t the δ includes the second, the fourth and the sixth

order moments of the Gaussian i.i.d. noise. Therefore, before solving this minimization

problem, we need to calculate these moments of the noise v(n). We use the moment

function of the Gaussian i.i.d noise given in claim 2.2 and find the second, the fourth

and the sixth order moments of the Gaussian noise as

E[v2] = σ2
v , (3.43)
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E[v4] = 3σ4
v , (3.44)

E[v6] = 15σ6
v . (3.45)

Note that the odd order moments of the Gaussian noise is zero.

Since r1, r2, r3, p1 and p2 are regarded as given parameters, the step size parameter

µ is fixed and the moments of the Gaussian noise is calculated, we can now solve the

minimization of the EMSE term w.r.t. the δ problem which is

min
δ

µTr(R)a

2b
. (3.46)

We differentiate this and equate to zero:

∂

∂δ

µTr(R)a

2b
= 0,

µTr(R)[a′b− ab′]
4b2

= 0, (3.47)

and find

a′b− b′a = 0, (3.48)

where

a = δ2σ2
v + 2δ(1− δ)3σ4

v + (1− δ)215σ6
v ,

= δ2[σ2
v − 6σ4

v + 15σ6
v ] + δ[6σ4

v − 30σ6
v ] + 15σ6

v , (3.49)

a′ =
∂a

∂δ
,

= 2δ[σ2
v − 6σ4

v + 15σ6
v ] + [6σ4

v − 30σ6
v ], (3.50)

b = 2(1− δ)σ2
v + δ = δ[1− 2σ2

v ] + 2σ2
v , (3.51)

b′ =
∂b

∂δ
= 1− 2σ2

v . (3.52)
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Therefore we have

a′b− b′a = (2δ[σ2
v − 6σ4

v + 15σ6
v ] + [6σ4

v − 30σ6
v ])(δ[1− 2σ2

v ] + 2σ2
v)

− (δ2[σ2
v − 6σ4

v + 15σ6
v ] + δ[6σ4

v − 30σ6
v ] + 15σ6

v)(1− 2σ2
v) = 0. (3.53)

To simplify this equation we define

f1
4
= [σ2

v − 6σ4
v + 15σ6

v ], (3.54)

f2
4
= [6σ4

v − 30σ6
v ], (3.55)

f3
4
= [15σ6

v ], (3.56)

f4
4
= [1− 2σ2

v , ] (3.57)

f5
4
= 2σ2

v . (3.58)

Therefore we obtain

(2δf1 + f2)(δf4 + f5)− (δ2f1 + δf2 + f3)(f4) = 0

δ2 + 2
f5

f4

+ [
f2f5 − f3f4

f1f4

] = 0, (3.59)

and find the δ, maximizing the MSE Gain as

δ = −f5

f4

+

√
f 2

5

f 2
4

− [
f2f5 − f3f4

f1f4

]. (3.60)

Now, we obtained the δ (in terms of the step size parameter µ) that maximizes the MSE

Gain. Therefore, we first select the minimum possible µ value according to the need

for convergence speed in the system, and calculate the corresponding δ maximizing the

MSE Gain.
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3.2. The LMMN Combination of the RLS-LMMN Comparison Class

In this section we revisit the results of the previous section for the second com-

parison class i.e., when the comparison class is composed of an RLS and an LMMN

filter.

For a stationary input the RLS filter converges more rapidly than the LMMN

filter and produce a higher MSE than the LMMN filter unless the LMMN step size is

µ ≈ 1 or the forgetting factor for the RLS filter is λ ≈ 0 [21]. As stated in assumption

3.1, we assume only stationary inputs to the system. Therefore it is guarantied that

the smallest MSE in the first stage is produced by the LMMN filter. This means

that the results of the previous section is also valid in this section. Thus we do not

give the derivations but just effects of the cross correlation of the input vector of the

second stage filter, r3, and the second stage filter parameters i.e, the step size µ and

the LMS-LMF weight δ on the MSE Gain of the system.

Recall the MSE Gain of the system is

Gain =
(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+
µTr(R)a

2b + µTr(R)c

)−1

. (3.61)

Firstly, the r3 value maximizing this Gain can be calculated by following the steps

given in section 3.1.1:

i We find local extremum points of the MSE Gain w.r.t r3 and decide whether it is

local maximum or local minimum. Then we find the value of the MSE Gain at the

local maximum points.

ii We find the value of the MSE Gain for the end points of r3 value, where r3 is

assumed to take values in [0, 1]

iii We find the value of MSE Gain at the discontinuous points.

iv At the end we decide on the overal maximum value of the MSE Gain.

Next we find the r3 values making the MSE Gain greater than one, which is found
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to be

r3 <
p1p2

−r1 + 2 p1 + (EMSE)
+

1

−r1 + 2 p1 + (EMSE)
×

√
p1 2p2 2 + r1 3r2

−4 p1 r1 2r2 − 2 (EMSE)r1 2r2 + 5 r1 p1 2r2 + p2 2r1 2 + 4 p1 (EMSE)r1 r2

−2 p1 3r2 − 2 p1 p2 2r1 + (EMSE)2r1 r2 − (EMSE)p1 2r2 − (EMSE)p2 2r1 ,

r3 >0. (3.62)

Next the rule for selecting the step size µ and the LMS-LMF weight δ parameters

of the second stage filter in order to obtain the highest MSE Gain possible is

δ = −f5

f4

+

√
f 2

5

f 2
4

− [
f2f5 − f3f4

f1f4

], (3.63)

where,

f1
4
= [σ2

v − 6σ4
v + 15σ6

v ],

f2
4
= [6σ4

v − 30σ6
v ],

f3
4
= [15σ6

v ],

f4
4
= [1− 2σ2

v , ]

f5
4
= 2σ2

v .

Here one can first decide on the step size µ, than calculate the LMS-LMF weight δ.

3.3. The LMMN Combination For M-LMMN Comparison Class

In ths section we make the steady state EMSE Gain analysis of the LMMN

Combination for the third comparison class i.e., the N individual LMMN predictors of

order less than M .

For this comparison class we compare only EMSEs of the individual predictors



49

and the combiner. Recall the MSE of an individual LMMN predictor was

MSEk = lim
n→∞

E[(d(n)− yk(n))2],

= lim
n→∞

[σ2
d −wT

opt,kpk + E[ea,k(n)2]]. (3.64)

In addition, the MSE of the combination LMMN predictor was

MSE = lim
n→∞

E[(d(n)− z(n))2],

= lim
n→∞

[σ2
d −wT

optp + E[ea(n)2]]. (3.65)

The desired signal d(n) is the same for the whole system. Here what we neglect by

comparing the only EMSE terms is the difference between the optimum filter tap-

weight-vectors of the different predictors. If we assume they are the same, then there

is no reason for comparing the entire MSE terms. In fact, when the model order of

the desired signal to be predicted and the model order of the predictor are the same or

the model order of the predictor is higher, than the optimum filter tap weights do not

change for these predictors [2]. In the comparison class, there is N different order of

predictors some of which has a model order less than the order of the desired signal.

In comparing those predictors; however, the ones with smaller model orders become

out of comparison because of their comparatively high MSEs and EMSEs. This is

demonstrated in chapter 4 where we show the simulations and the results. Thus we do

not consider those predictors with comparatively higher EMSEs in making the steady

state EMSE Gain analysis.

In this section we first find the values of the step size µ and the LMS-LMF weight

δ parameters maximizing the EMSE Gain. Then find the values of these parameters

to obtain an EMSE Gain greater than unity.

The EMSE for an individual LMMN predictor in the first stage is

EMSE =
akµkTr(Ru)

2bk + ckµkTr(Ru)
,
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≈akµkTr(Ru)

2bk

, (3.66)

where

ak = δ2
k(σ

2
v − 6σ4

v + 15σ6
v) + δk(6σ

4
v − 30σ6

v) + 15σ6
v , (3.67)

bk = δk(1− 2σ2
v) + 2σ2

v , (3.68)

Tr(Ru) = lim
n→∞

mk∑
i=1

E[uk(i)
2]. (3.69)

In addition the EMSE for the combination LMMN predictor is

EMSE =
aµTr(R)

2b + cµkTr(Ru)
,

≈aµTr(R)

2b
, (3.70)

where

a = δ2(σ2
v − 6σ4

v + 15σ6
v) + δ(6σ4

v − 30σ6
v) + 15σ6

v , (3.71)

b = δ(1− 2σ2
v) + 2σ2

v , (3.72)

Tr(R) = lim
n→∞

N∑
i=1

E[y(i)2]. (3.73)

Therefore, if the minimum EMSE in the first stage is produced by the kth predictor,

the EMSE Gain is obtained as

Gain =
akbµkTr(Ru)

bkaµTr(R)
,

=
[δ2

k(σ
2
v − 6σ4

v + 15σ6
v) + δk(6σ

4
v − 30σ6

v) + 15σ6
v ][δ(1− 2σ2

v) + 2σ2
v ]µkTr(Ru)

[δk(1− 2σ2
v) + 2σ2

v ][δ
2(σ2

v − 6σ4
v + 15σ6

v) + δ(6σ4
v − 30σ6

v) + 15σ6
v ]µTr(R)

.

(3.74)

The LMS-LMF weight parameter δ is choosen to be the same for the whole system be-

cause the desired signal ( therefore the need for L2 and L4 components of the estimate)
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is the same for the whole system. Then the EMSE Gain is becomes

Gain =
akbµkTr(Ru)

bkaµTr(R)
,

=
µkTr(Ru)

µTr(R)
,

= lim
n→∞

µk

∑mk

i=1 E[uk(i)
2]

µ
∑N

i=1 E[y(i)2]
, (3.75)

where the kth predictor produces the minimum EMSE in the first stage. Therefore we

can conclude that one can obtain a EMSE Gain greater than unity by selecting the

step size in the combination stage small enough.
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4. VERIFICATION OF THE RESULTS AND

SIMULATIONS

4.1. First Comparison Class Combinations:Combining LMMN With Small

Step Size-LMMN With Large Step Size

In this section:

• First, we state the graphical verifications of the results found in section 3.1 for a

selected signal.

• Next, we give the simulation results for the same signal.

The results of the section 3.1 includes r3 value maximixing the MSE Gain, r3

value interval making the MSE Gain greater than unity and the second stage

filter maximizing the MSE Gain.

For the simulations, the following signal is used as the input sequence.

u(n) = 0.9u(n− 1)− 0.6u(n− 2) + 0.5u(n− 3)− 0.3u(n− 4) + v(n),

which is an AR(4) process with additive white Gaussian noise. The noise and the

AR signal are both zero mean, the noise variance is σ2
v = 0.01. The desired signal is

d(n) = u(n + 1) since we deal with linear forward prediction.

4.1.1. Verification of r3 Maximizing the MSE Gain

First we calculate r1, r2, p1, p2 using the MATLAB script we wrote for the sim-

ulations of the LMMN combination of LMMN-LMMN predictors. Next we determine

the r3 value maximizing the MSE Gain and check this r3 value with the results obtained

in section 3.1.

The comparison class is composed of two LMMN filters with the given parameters:



53

First LMMN Filter:mo=4, µ = 0.16, γ = 0.5

Second LMMN Filter:mo=4, µ = 2.4, γ = 0.5

The combination LMMN Filter parameters are selected according to the section

3.1 in order to maximize the MSE Gain.

Recall the MSE Gain For the LMMN combination of the LMMN-LMMN predic-

tors was

Gain =
(
σ2

d − 2p1 + r1

) (
σ2

d −
p2

1r2 − 2p1p2r3 + p2
2r1

r1r2 − r2
3

+ EMSE

)−1

For the given signal and filter parameters, r1, r2, p1 and p2 are found as r1 =

0.0094393, r2 = 0, 0095511, p1 = 0, 0093196 and p2 = 0, 0092826. The EMSE term in

the MSE Gain equation is replaced with 0.01 since it is expected to be smaller then

that value with proper parameter selection.

In order to show the r3 dependency of the MSE in the second stage, let us plot

the MSE Gain vs r3. The r3 takes values in [0, 1] with steps 10−5 and MSE Gain value

corresponding to each r3 value is obtained. Then the result is plotted as given in figure

4.1.

In figure 4.1 the maximum of the MSE Gain is obtained for r3 = 0. This is

the left end point of r3 value interval. In addition, in figure 4.2 we zoom to the

other critical points and we observe discontinuities around r3 =
√

r1r2 = 0, 009495.

Moreover the local extremum points are caculated to be p2r1/p1 = 0.094018 and

p1r2/p2 = 0.0095892 which is also seen in figure 4.2. So the results of section 3.1 is

verified with figure 4.1 and 4.2.
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Figure 4.1. MSE gain for the LMMN combination of LMMN-LMMN filters µ1=0.08,

µ2=0.8, µc=0.5
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Figure 4.2. MSE gain for the LMMN combination of LMMN-LMMN filters zoomed

on the discontinuity point: µ1=0.08, µ2=0.8, µc=0.5
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4.1.2. Verification of r3 Making the MSE Gain Greater Than Unity

We do the analysis with the same comparison class. First we recall the r3 value

making the MSE Gain greater than unity:

r3 <
p1p2

−r1 + 2 p1 + (EMSE)
+

1

−r1 + 2 p1 + (EMSE)
×

√
p1 2p2 2 + r1 3r2

−4 p1 r1 2r2 − 2 (EMSE)r1 2r2 + 5 r1 p1 2r2 + p2 2r1 2 + 4 p1 (EMSE)r1 r2

−2 p1 3r2 − 2 p1 p2 2r1 + (EMSE)2r1 r2 − (EMSE)p1 2r2 − (EMSE)p2 2r1 ,

r3 >0,

(4.1)

Therefore we obtain the value interval for the r3 as

0 < r3 <0.095.

Therefore the MSE Gain can be greater than unity with a proper parameter selection

for second stage if the r3 is in [0, 0.095).This result is also verified with figure 4.1.

4.1.3. Verification of Second Stage Filter Parameters Making the MSE Gain

Maximum

The analysis is done using the same comparison class as precious subsection.

Firstly lets recall the δ value maximizing the MSE Gain found in section 3.1:

δ1,2 = −f5

f4

+

√
f 2

5

f 2
4

− [
f2f5 − f3f4

f1f4

],
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where

f1 = [σ2
v − 6σ4

v + 15σ6
v ],

f2 = [6σ4
v − 30σ6

v ],

f3 = [15σ6
v ],

f4 = [1− 2σ2
v ],

f5 = 2σ2
v .

Since σ2
v = 0.01, the LMS=LMF weight factor is found to be δ = 0.0074 for

maximum MSE Gain w.r.t. δ value.

Let us verify this result graphicaly by ploting the MSE Gain change w.r.t δ. The

MSE Gain change w.r.t δ is given by the Figure 4.3. This figure are obtained for an

LMMN combiner when the comparison class is composed of an RLS predictor with

λ = 0.84, and an LMMN predictor with µ = 0.16 and the noise variance is σ2
v = 0.01.

The δ value where the minimum occurs change only with noise variance; however the

value of the min MSE is affected from the step size and the forgetting factor parameters

and the correlation coefficients of the first stage filters.
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Figure 4.4. MSE over ensemble of the individual and the combination LMMN filters:

µ1=0.16, µ2=2.4, µc=1

4.1.4. Simulation Results

We give here MATLAB simulation results both graphically and numerically.

Firstly, Figure 4.4 gives the MSE over ensemble of the individual and the combination

LMMN filters vs time for N = 30000. Next Figure 4.5 gives the MSE over time of

the individual and the combination LMMN filters vs time for N = 30000. For both

of the figures the step size µ values of the first stage filters are chosen so as to form

one rapidly converging filter and one slowly converging filter. The rapidly converging

filter suffers from steady state MSE as can be observed from Figure 4.4 and 4.5. The

combination stage LMS-LMF mixture weight δ value is choosen to be δ = 0.5 which

is rounded value of the δ that maximizes MSE Gain. The step size of the combination

stage LMMN filter µc is choosen in between the step sizes of the first stage filters. This

enables a faster convergence behaviour than the second filter in the first stage and

yields a better MSE performance at steady state than the first filter in the first stage.

For this input vector the maximum allowable step size at first stage is µ = 2.46.
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µ1=0.16, µ2=2.4, µc=1

In addition the maximum allowable step size for the second stage is µc = 4.65 which

is nearly two times the maximum step size for the first stage. This is because of the

input vector sizes of the two stages.

In Figure 4.6 the convergence behaviour of the filter tap weights of the combina-

tion filter is shown. They reach the steady state for N = 30000.

4.2. Second Comparison Class Combinations:Combining RLS-LMMN

With Small Step Size

In this section we give simulation results for the RLS-LMMN combination by the

LMMN filter where the first stage filter parameters are:

the LMMN Filter:mo=4, µ = 0.16, γ = 0.5

the RLS Filter:mo=4, λ = 0.84.
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For the simulations, the following signal is used as the input sequence.

u(n) = 0.9u(n− 1)− 0.6u(n− 2) + 0.5u(n− 3)− 0.3u(n− 4) + v(n),

which is an AR(4) process with additive white Gaussian noise. The noise and the

AR signal are both zero mean, the noise variance is σ2
v = 0.01. The desired signal is

d(n) = u(n + 1) since we deal with linear forward prediction.

In Figure 4.7 and Figure 4.8 we observe that the MSE performance of the com-

biantion filter is the same as the MSE performance of the LMMN filter in the first

stage in steady state. In addition, the MSE of the LMMN combination filter has a

fast convergence behaviour like the RLS filter in the first stage. The step size of the

LMMN filter in the first stage is choosen so as to obtain the same performance as the

first filter stated in the previous section. The RLS filter forgetting factor λ is choosen

such that λ = 1− µ. Therefore the forgetting factor is small and that makes the RLS

filter converge faster. Furthemore the MSE of the RLS filter becomes larger as the

forgetting factor is large. In addition to the MSE vs time plots, Figure 4.9 gives the

convergence behaviour of the combination LMMN filter tap weights.

In order to show the power of the LMMN combination algorithm we selected a

comparison class such that RLS filter has a much higher MSE in the steady state than

the LMMN filter. The combinaiton LMMN filter, as observed in figure 4.10, chooses the

better features of the filters in the the comparison class. In Figure 4.12 the convergence

behaviour of the filter tap weights of the combination LMMN filter is shown.

4.3. Third Comparison Class Combinations:Combining M LMMNs Each

Having the Same Step Size But Different Model Order

In this section we give the comparison of the EMSEs produced by the first stage

filters and the combination filter in the steady state. In addition, we give the combina-

tion filter tap weights vs time plots in order to demonstrate the convergence behaviour

of the combination filter. For the simulations of M-LMMN combination, the following
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filter: µ1=0.16, λ=0.84, µc=1

signal is used as the input sequence:

u(n) = 0.9u(n− 1)− 0.6u(n− 2) + 0.5u(n− 3)− 0.3u(n− 4) + v(n),

which is an AR(4) process with additive white Gaussian noise. The noise and the

AR signal are both zero mean, the noise variance is σ2
v = 0.01. The desired signal is

d(n) = u(n + 1) since we deal with linear forward prediction.

We run the simulation for three simulation setups.

In the first setup:

• the step size of the filters in the first stage µ1 = 0.1,

• the step size of the combination filter µc = 0.01

• the LMS-LMF mixture weight δ = 0.5
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• the time goes to N = 30000.

The simulation results are given by Figures 4.13 and 4.14. These figures show the EMSE

vs model order and LMMN combination filter tap weights vs time plots correspondingly.

As the model order of the desired signal is four, the minimum EMSE is produced by

the fourth filter among the first stage filters. This EMSE is also slightly smaller than

the EMSE produced by the LMMN combination filter. The reason why the EMSE of

the LMMN combination filter is not as small as the best predictor in the comparison

class is that the time is not large enough.

In the second setup:

• the step size of the filters in the first stage µ1 = 0.1,

• the step size of the combination filter µc = 0.01

• the LMS-LMF mixture weight δ = 0.5
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Figure 4.14. LMMN combination weight vectors when µ1=0.1, µc=0.01 λ = 0.5 and

N=30000

• the time goes to N = 300000.

Namely, the only time N changes in the second simulation. The simulation results

are given by Figures 4.15 and 4.16. This time the EMSE produced by the LMMN

combinaiton filter is the minimum EMSE in the system.

In the third setup:

• the step size of the filters in the first stage µ1 = 10,

• the step size of the combination filter µc = 10

• the LMS-LMF mixture weight δ = 0.5

• the time goes to N = 200000.

The step size is choosen a much higher value this time. The bigger the step

size the faster the convergence. In Figure 4.18 we observe a complete convergence

behaviour for the LMMN combination. When the EMSE of all the filters converge,
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the EMSE of the LMMN combination filter is much smaller than the EMSE of the

filters in the comparison class as observed from the Figure 4.15. Note that for each

of the simulations, the theoretical value and the experimental value of the EMSE of

the LMMN combinaiton filter are the same. This shows that the theoretical analysis

is correct.
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5. CONCLUSION

In this thesis, the LMMN combination of autoregressive signals under additive

Gaussian noise model is studied on three different comparison classes.

In the first case, two LMMN predictors of the same model order but different

model parameters are combined by the LMMN combination filter. In the second case,

an RLS filter and LMMN filter of the same order where the forgetting factor of the

RLS filter and the step size of the LMMN filter are summed up to one are combined.

In both cases, the MSE of the combination filter is mathematically shown to be smaller

than the MSE of the LMMN filter with the smaller step size for

• a certain cross correlation term between the output signals of the two predictors

in the first stage, independent of the filter parameters

• a certain step size and LMS-LMF mixture weight of the LMMN combiner inde-

pendent of the correlation coefficients between the first stage output signals.

In addition, in the transient, the combination LMMN filter is shown by simulations to

converge more rapidly than the most rapidly converging filter in the comparison class.

In the third and the last case, M different order of LMMN predictors with dif-

ferent model parameters are combined by the LMMN combination filter. The EMSEs

produced by the predictors in the comparison class and the combiner are compared.

As a result, the combination LMMN filter is found to yield as good as or better than

the best predictor in the comparison class in the EMSE sense. The mathematically

found results are also verified by MATLAB simulations.
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