

TURKISH SIGN LANGUAGE ANIMATION WITH ARTICULATED BODY MODEL

by

Turan Can Gürel

B.S, in Computer Engineering, Middle East Technical University, 2002

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2010

ii

TURKISH SIGN LANGUAGE ANIMATION WITH ARTICULATED BODY MODEL

APPROVED BY:

Prof. Lale Akarun

(Thesis Supervisor)

………………………

Assoc. Prof. Murat Saraçlar ………………………

Dr. Ali Vahit Şahiner ………………………

DATE OF APPROVAL: 03.05.2010

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Professor Lale Akarun, whose

insistent encouragement was the driving force in the completion of this work.

I appreciate the contributions of Alp Kındıroğlu by acting in the motion capture of

the signs and preparation of the images of the letter alphabet.

I also highly value the performance of Pınar Santemiz in reference sign videos.

Finally, I am thankful to Gökhan Uysal for his assistance in creation of the digital

artwork used in this project.

iv

ABSTRACT

TURKISH SIGN LANGUAGE ANIMATION WITH ARTICULATED

BODY MODEL

Demonstration of sign languages with the computer is a potentially useful learning

aid for sign language learners. If implemented as a part of a learning tool, one that includes

sign recognition as well, it will invaluable for providing feedback to the learners, a most

needed contribution.

Human body animation and motion capture technologies have reached a point where

realistic virtual actors can perform plausible human movements in realtime. For this, the

motion can be defined on a virtual human skeleton, either by design or by motion capture

methods, and then displayed over the skeleton which drives a realistic skin model,

visualizing the human body.

In this work we capture Turkish sign language finger spelling alphabet and semi-

automatically translate it into a visually appealing model. For capturing the sign language

we use a magnetic motion capture system. Then, a playback tool generates sign language

demonstrations interactively and in realtime in 3D.

v

ÖZET

EKLEML İ VÜCUT MODEL İYLE TÜRK İŞARET DİLİ

CANLANDIRMASI

Bilgisayar ile işaret dili canlandırması, işaret dili öğrenimi için önemli bir araç olma

potansiyeli taşımaktadır. Özellikle işaret tanıma özellikleri de içeren bir paketin içerisine

eklenirse, öğrencilere en önemli eksiklerini, geri beslemeyi gideren bir araç elde

edilebilecektir.

İnsan vücudunun canlandırılması ve hareket yakalanması teknolojileri gerçekçi sanal

aktörlerin, gerçek zamanda inandırıcı hareketleri yaptığı uygulamaları artık mümkün

kılmaktadır. Bunun için hareketler sanal bir iskelet üzerinden tasarlanabilir ya da

yakalanabilir. Bu iskelet doğru bükülmeleri yapabilen de gerçekçi bir deri modelini

yürütmek için kullanılabilir.

Bu çalışmada Türk işaret dili harf alfabesini yakaladık ve yarı otomatik şekilde

görsel olarak da çekici olan bir modele taşıdık. Hareketleri yakalamak için manyetik bir

sistem kullandık. Daha sonra sunumlar bu iş için yazılmış bir uygulama ile etkileşimli ve

gerçek zamanda, 3B ortamda oluşturuldu.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

ÖZET ... v

LIST OF FIGURES ... x

LIST OF TABLES ... xii

1. INTRODUCTION ... 1

1.1. Motivation ... 1

1.2. Related Work .. 2

1.2.1. Animation and Keyframing ... 2

1.2.2. Computer Animation ... 3

1.2.3. Animation Control ... 4

1.2.4. Human Body Animation .. 10

1.2.5. Motion Capture .. 13

1.2.6. Sign Language Synthesis ... 16

1.3. Contributions .. 20

2. APPROACH AND METHOD .. 22

2.1. Arguments ... 22

2.1.1. Realism .. 22

2.1.2. Performance ... 22

2.1.3. Communication .. 23

2.1.4. Data Reusability ... 23

2.2. Approach Decisions .. 23

2.3. System Overview .. 24

vii

2.3.1. Initialization Phase ... 24

2.3.2. Execution phase ... 25

3. INITIALIZATION ... 26

3.1. Motion Capture of Turkish Signs ... 26

3.1.1. Hardware Setup.. 26

3.1.2. Sign Scope ... 27

3.1.3. The Capture Process .. 28

3.2. Construction of the Sign Database .. 31

3.2.1. Model Acquisition ... 31

3.2.2. Sign Collection and Tagging ... 31

3.2.3. Sign Repositioning ... 32

3.3. 3D Model and Face Design .. 33

3.3.1. The Model .. 33

3.3.2. The Face ... 34

3.3.3. Model and Face Merging Issues .. 35

4. EXECUTION ... 36

4.1. Sign Synthesis ... 37

4.1.1. Jumps ... 37

4.1.2. Restarting ... 37

4.1.3. Blending ... 38

4.2. Articulated Body Animation and Rendering .. 39

4.2.1. Forward Kinematics ... 39

4.2.2. Deformation ... 41

5. RESULTS .. 42

5.1. Realism ... 42

5.1.1. Motion Capture Issues ... 42

viii

5.1.2. Standard Repositioning .. 45

5.1.3. Blending ... 45

5.1.4. SSD Artifacts ... 46

5.2. Performance .. 46

5.3. Communication ... 47

5.4. Additional Discussion ... 47

6. CONCLUSIONS ... 49

6.1. Highlights .. 49

6.2. Future Directions .. 49

6.2.1. Facial Expressions and Eye Movements ... 50

6.2.2. Head Movements ... 50

6.2.3. Retargeting ... 51

6.2.4. Additional Improvements .. 51

APPENDIX A: SYSTEM OPERATION GUIDE ... 53

A.1. Initialization: Operator’s Manual ... 54

A.1.1. Motion Capture ... 54

A.1.2. Database Construction .. 57

A.1.3. 3D Design ... 58

A.2. Execution: End User’s Manual .. 58

A.2.1. System Requirements.. 58

A.2.2. User Interface and Tasks ... 58

A.2.3. Playing Sign Animations .. 59

APPENDIX B: BVH FILE FORMAT SPECIFICATION .. 61

B.1. Description of File Contents .. 61

B.1.1. Hierarchies .. 61

B.1.2. Motion ... 62

ix

B.2. Common Conventions .. 62

B.3. Grammar .. 64

REFERENCES .. 65

x

LIST OF FIGURES

Figure 1.1. Traditional keyframing .. 3

Figure 1.2. Bending of a mesh ... 5

Figure 1.3. Part of a bicycle modeled as a linked hierarchy .. 7

Figure 1.4. Demonstration of the human body representation methods on a human arm ... 12

Figure 1.5. Passive and active motion capture ... 14

Figure 1.6. A generic sign language synthesis system overview ... 17

Figure 2.1. System overview ... 24

Figure 3.1. Motion capture model of the system ... 27

Figure 3.2. Turkish sign language finger spelling alphabet ... 28

Figure 3.3. The basic test poses ... 29

Figure 3.4. Structure of a sign .. 30

Figure 3.5. The virtual actress ... 33

Figure 3.6. The Xface face model, Alice ... 34

Figure 4.1. The user interface of the synthesizer-animator-renderer module 36

Figure 5.1. Sample reproduction of the letter “C” ... 43

Figure 5.2. Sample reproduction of the letter “Ö” ... 43

Figure 5.3. Sample reproduction of the letter “A” ... 44

Figure 5.4. Sample reproduction of the letter “J” .. 44

Figure 5.5. Sample blending sequence .. 46

Figure 5.6. Sample SSD artifact .. 46

Figure A.1. System overview .. 53

Figure A.2. ShapeWrap III MOCAP system ... 54

Figure A.3. SignPlayer user interface .. 59

xi

Figure B.1. A sample BVH file ... 63

Figure B.2. BVH file format grammar .. 64

xii

LIST OF TABLES

Table 1.1. Summary of previous sign language synthesis systems 20

1

1. INTRODUCTION

1.1. Motivation

Being social creatures, we humans require frequent communication with each other.

There are many forms of communication, but the most common, and arguably preferred,

method is speech. Speaking has a unique personal taste that, when supported by visual cues

such as face and body gestures, helps transmit even the most complicated thoughts and

feelings without trouble. It is direct, real time, bidirectional and once learned,

straightforward to use.

However, speaking is not made available to everyone. Some people are born with

disabilities and some lose their abilities further in life. What many take for granted may be

a big issue that needs addressing for these people. Sign language communication can be

the answer to this need.

While spoken languages reserve the face and body gestures for subtle details in

meaning, sign languages use them to transfer the meaning itself, not employing sounds at

all. Hence, they are useful for both speech and hearing impaired people. Sign languages are

similar to speech in that they are direct and real time, and unlike lip reading, work

bidirectionally. However, as do all communication media, sign languages require that both

parties have prior knowledge. This is often not the case, since not all people depend on

them. Hence, it would be beneficial to expand learning opportunities for sign languages.

When learning, language skills first start as imitations of the teacher and improve

with practice and feedback. Sign languages are no different, but since they are not common

in everyday life, such feedback is not readily available to the learners. With this point of

view, we believe that the best sign language learning tool would be one that provides this

much needed feedback to the learner. Obviously, such a tool would need to be able to

produce visualizations of signs. Hence, this work attempts to generate synthetic but

realistic sign language demonstrations using computer graphics and character animation

2

technologies, hopefully sparking some public interest toward this means of communication

in the process.

1.2. Related Work

Visualizing sign language communication on a computer character is a complicated

process requiring the collaboration of many fields of the computer science discipline.

1.2.1. Animation and Keyframing

At the most basic level, one should first understand the principles behind computer

animation and how this animation is displayed. The way it is used in this context, the

concept of animation is a specialization of the concept of movie, a display changing in

some way over time. The principal method to achieve this effect has long been to change

the displayed image quickly in succession, called a moving picture. If the images'

replacement rate is high enough, the human brain's visual processing power falls short of

interpreting them as separate images, but rather perceives what it sees as a continually

changing display. The threshold rate for this illusion is a minimum of about 20 images

(frames) per second.

With the large number of frames required to create even a short moving picture, it is

quickly evident that an automated machine is required to create images. The

cinematograph was invented in the 1890's to take photographs in succession and also

display them as a moving picture. The first synthetic animations were created in the 1900's

by manually drawing the images (on cels) and photographing them. Unlike the

cinematograph, there was no machine that could simply draw the required images

automatically. Hence, the process would have become prohibitively expensive if

keyframing had not been developed. With keyframing, the more established and talented

artists would draw the major images (the keyframes) in the image sequence and junior

artists would take examples from those keyframes and draw the rest of the sequence (the

inbetweens). This way, synthetic animation production was made more efficient (Figure

1.1).

Figure 1.1. Traditional keyframing

While moving pictures were originally designed to be played at theaters; the

invention of the cathode ray tube (

require the display to be refreshed many times in a second to prevent the phosphor from

fading away. With the ability to update the display between the refreshes, CRT's lent

themselves naturally for animation. However, displaying photographs or manually drawn

images on a computer display can hardly be considered computer animation. Computer

animation is more about the computer's ability to generate graphics for display in each

frame. By arranging the image sequence correctly,

moving graphics; that is, computer animation.

1.2.2. Computer Animation

The computer can use stochastic processes, an existing image or another data

structure to generate a frame of an animation. This work concentrates on computer

graphics that are generated from mesh representations of

through a rendering pipeline. The animation process, then, is about how the mesh is

updated through consecutive frames to create a credible sequence.

As told above, a computer can generate a frame of an animation automatically from a

data structure. Often, however,

defined manually for each frame. In some cases, the data can be constructed procedurally.

For instance, the animation of an object falling under the influence of gravity will simply

have its Cartesian position updated in each frame, according to a simple formula.

. Traditional keyframing: Frames 1 and 5 are the keyframes, 2

While moving pictures were originally designed to be played at theaters; the

cathode ray tube (CRT) displays proved a convenient alternative

require the display to be refreshed many times in a second to prevent the phosphor from

ding away. With the ability to update the display between the refreshes, CRT's lent

themselves naturally for animation. However, displaying photographs or manually drawn

images on a computer display can hardly be considered computer animation. Computer

mation is more about the computer's ability to generate graphics for display in each

frame. By arranging the image sequence correctly, a computer can

moving graphics; that is, computer animation.

Computer Animation

The computer can use stochastic processes, an existing image or another data

structure to generate a frame of an animation. This work concentrates on computer

graphics that are generated from mesh representations of three dimensional (

rendering pipeline. The animation process, then, is about how the mesh is

updated through consecutive frames to create a credible sequence.

computer can generate a frame of an animation automatically from a

ften, however, that this data structure itself is very complex and cannot be

defined manually for each frame. In some cases, the data can be constructed procedurally.

For instance, the animation of an object falling under the influence of gravity will simply

tesian position updated in each frame, according to a simple formula.

3

: Frames 1 and 5 are the keyframes, 2-4 are inbetweens.

While moving pictures were originally designed to be played at theaters; the

proved a convenient alternative as they

require the display to be refreshed many times in a second to prevent the phosphor from

ding away. With the ability to update the display between the refreshes, CRT's lent

themselves naturally for animation. However, displaying photographs or manually drawn

images on a computer display can hardly be considered computer animation. Computer

mation is more about the computer's ability to generate graphics for display in each

can create the illusion of

The computer can use stochastic processes, an existing image or another data

structure to generate a frame of an animation. This work concentrates on computer

three dimensional (3D) models

rendering pipeline. The animation process, then, is about how the mesh is

computer can generate a frame of an animation automatically from a

is very complex and cannot be

defined manually for each frame. In some cases, the data can be constructed procedurally.

For instance, the animation of an object falling under the influence of gravity will simply

tesian position updated in each frame, according to a simple formula.

4

Not all types of animations can be calculated procedurally. For complicated

scenarios, a computer animation artist has to define the frame data. In such cases, for the

very same reasons as in traditional synthetic animation, animators rely on keyframing to

generate most of the frames automatically from example frames provided manually.

The computers do not have artistic talent like people do. They require well-defined

algorithms to calculate inbetweens from the keyframes. To create the inbetweens, the

values of the keyframe parameters are interpolated. Interpolation methods take each

variable that is to be interpolated and treat its value as a curve along time (or frames),

estimating it at the missing points. The first keyframe systems used piecewise linear

interpolation but other interpolation methods were later used in order to provide desirable

qualities like plausible continuity [1][2].

The early approaches to computer keyframing mimicked the traditional practices by

calculating inbetweens directly from keyframe images. A basic implementation of this

approach is to simply interpolate the color values in the keyframe pixels, which usually

does not produce the intended result. An informed approach is to define corresponding

points in each keyframe, whose positions are interpolated to create the inbetweens [3][4].

With the improvements in vector computer graphics and, in particular, the 3D

rendering pipeline; using parametric keyframing became common [2]. Since graphical data

structures are simply organized collections of numerical data, it is possible to operate

directly on the numbers and have the rendering pipeline create the frame from the resulting

structure. For a 3D scene, possible interpolation targets may be the positions of vertices,

camera, or projection parameters. For instance, if interpolation is done on the positions of

matching mesh vertices for each keyframe, animations for mesh movement, rigid

transforms (translation, rotation etc.) and even deformations can be obtained.

1.2.3. Animation Control

So far, procedural calculations and keyframing have been described as the most

useful techniques to generate frame data in computer animation. However, in practice,

procedural methods are

between objects and influences of numerous

skills for describing the motion.

may not always suffice, because the frame data may be too complicated to define

only for the keyframes.

Animation control is the umbrella term for the

management of complex frame data and description of

controlling tools, the animators are able to specify the motion

higher level of abstraction and leave the computer t

For instance, the animator might define a bending animation for a mesh and the computer

will arrange the positions of the vertices in each frame by the correct transformation. Note

that when animation control is employ

parameters and not directly to the parameters of the resulting mesh

animation, for instance,

positions (which would result

few examples of animation control mechanisms are

Figure 1.2. Bending of a mesh

computer generates the inbetweens (2

interpolation par

1.2.3.1. Soft Object Deformation

do by hand, because the number of variables that describe the object (that would need to be

individually specified for the

 only possible with the simplest animations. Complex interactions

between objects and influences of numerous affecters require more than an animator's

skills for describing the motion. Similarly reducing frame definition costs by keyframing

ys suffice, because the frame data may be too complicated to define

Animation control is the umbrella term for the aids that animators have

management of complex frame data and description of animations

controlling tools, the animators are able to specify the motion or scene configuration

higher level of abstraction and leave the computer to do the detailed scene arrangements.

For instance, the animator might define a bending animation for a mesh and the computer

will arrange the positions of the vertices in each frame by the correct transformation. Note

that when animation control is employed, keyframing is often applied to the control

parameters and not directly to the parameters of the resulting mesh or

for instance, often the bending angle is interpolated, not the resulting vertex

positions (which would result in unrealistic, skewed mesh configuration

few examples of animation control mechanisms are discussed below.

. Bending of a mesh: The animator supplies the keyframes (1 and 5) and the

computer generates the inbetweens (2-4) controlled through parametric interpolation. The

interpolation parameter is the bending angle, not vertex positions.

Deformation. Deforming an object, particularly a mesh, is difficult to

do by hand, because the number of variables that describe the object (that would need to be

individually specified for the deformation) is typically too large. It is usually not required

5

only possible with the simplest animations. Complex interactions

require more than an animator's

Similarly reducing frame definition costs by keyframing

ys suffice, because the frame data may be too complicated to define even

that animators have for high level

animations [5][6]. By using

scene configuration at a

o do the detailed scene arrangements.

For instance, the animator might define a bending animation for a mesh and the computer

will arrange the positions of the vertices in each frame by the correct transformation. Note

ed, keyframing is often applied to the control

or image. In a bending

not the resulting vertex

mesh configurations) (Figure 1.2). A

below.

: The animator supplies the keyframes (1 and 5) and the

4) controlled through parametric interpolation. The

ameter is the bending angle, not vertex positions.

eforming an object, particularly a mesh, is difficult to

do by hand, because the number of variables that describe the object (that would need to be

deformation) is typically too large. It is usually not required

6

either. Most realistic deformations require the entire object to be deformed in a more or

less similar way.

For instance, bending a mesh would require all the vertices to rotate around the same

center by an amount according to (i.e. a function of) their position in the object. Hence a

lot of the brute work can be left to the computer simply by asking the animator to provide

the axis of bending and the angle. The nonlinear global deformation approach transforms

the vertices of the object by a matrix that is a function of their positions [7]. This approach

provides easy specifications of tapering, twisting and bending transformations for objects.

In [8], a local space around the target object is defined. The animator can then

deform the space itself in a completely general way, called free form deformations (FFD),

and the computer calculates the new positions of the vertices in the global space by

substituting their local positions in the deformation.

1.2.3.2. Linked Hierarchies. Consider modeling the front wheel complex of a bicycle

mesh. If modeled completely as a single solid mesh, animating the mesh would require the

artist to reconfigure all the vertices in the body, the handlebar and the front wheel

separately for each keyframe. Instead, it is possible to model the handlebar and the steering

column as a separate submesh linked to the body (chassis) mesh at a particular position.

Similarly, the front wheel itself can be modeled separately and linked to the handle column

(Figure 1.3). The links can be completely defined with their positions and orientations

along with a list of the movements they allow (in this case, the axes of rotation). In this

example, the internal configuration of the complex is defined by only two rotation angles

(one allowed rotation axis for each link) and the positions of all the vertices can be

calculated, greatly reducing the effort required of the artist. Hence, such a model is said to

have two degrees of freedom (DOF).

Figure 1.3. Part of a bicycle modeled as a linked hierarchy

movements (rotations in this case) are marked.

Modeling an object as a collection of

provides another level of animation control to the artist

animations can be specified

so that moving or rotating

the integrity of the model

the above example would also rotate the front wheel along the same axis. If the submeshes

in a linked hierarchy are physically connected, the model is also said to be articulated.

A well known use for

would model a torso and each limb separately and link them at the appropriate

positions. The upper arm would be linked to the torso, th

hand to the lower arm and so on. The

structure called the skeleton. A skeleton is comprised of a number of nodes

connected by links (joints)

position or orient the entire model

called the child bones and those toward the root are called the

does not have a parent. Conversely

called an end affecter. The movements allowed by each joint are defined by a

. Part of a bicycle modeled as a linked hierarchy: The link positions and allowed

movements (rotations in this case) are marked.

Modeling an object as a collection of linked submeshes instead of a single mesh

provides another level of animation control to the artist by simplifying the way poses and

animations can be specified. In such models, the submeshes are often hierarchically related

or rotating a submesh would similarly affect all its descendants

the integrity of the model. For instance, rotating the handlebar and the steering column in

the above example would also rotate the front wheel along the same axis. If the submeshes

ierarchy are physically connected, the model is also said to be articulated.

known use for articulated models is the human body. Typically, the animator

would model a torso and each limb separately and link them at the appropriate

he upper arm would be linked to the torso, the lower arm to the upper arm,

hand to the lower arm and so on. The submesh hierarchy in a human

skeleton. A skeleton is comprised of a number of nodes

(joints). A convenient bone is selected as the root

position or orient the entire model. The bones away from the root in the hierarchy are

and those toward the root are called their parents.

does not have a parent. Conversely, any child bone that does not itself have children is

The movements allowed by each joint are defined by a

7

The link positions and allowed

movements (rotations in this case) are marked.

linked submeshes instead of a single mesh

by simplifying the way poses and

such models, the submeshes are often hierarchically related

bmesh would similarly affect all its descendants, preserving

. For instance, rotating the handlebar and the steering column in

the above example would also rotate the front wheel along the same axis. If the submeshes

ierarchy are physically connected, the model is also said to be articulated.

is the human body. Typically, the animator

would model a torso and each limb separately and link them at the appropriate joint

e lower arm to the upper arm, the

hierarchy in a human model has a tree

skeleton. A skeleton is comprised of a number of nodes (bones)

is selected as the root bone and is used to

s away from the root in the hierarchy are

parents. The root bone

that does not itself have children is

The movements allowed by each joint are defined by a number of

8

transformation parameters, the number of which is called the DOF of the joint. The sum of

the DOF’s of all the joints in a skeleton is the DOF of the skeleton. A human model

requires over two hundred DOF’s to represent the capabilities of the joints of a real human.

A vector containing a value for each of the DOF’s of the skeleton completely describes a

particular skeleton configuration, called a pose. Given a vector of joint parameters, the

parameter vector, one can calculate the exact position of every vertex in the model.

Past work using skeletons include [4], which uses skeletons for transforming 2D

images. Controlling articulated human body models with kinematics methods is described

in [9] and [5]. The PODA animation system described in [10] and [11] also employs

kinematics. In [12], [13], [14], [15], [16], [17] and [18], the inverse kinematics method is

extended with features such as multiple constraints, interactive editing and analytical

hybrid solutions.

1.2.3.3. Forward Kinematics. An animation artist can specify the joint parameters of an

articulated object to fully describe its pose. From the joint parameters, the computer can

generate joint transformations and calculate the position of each vertex by applying the

transformations at each joint towards the vertex incrementally. This process is called

forward kinematics method.

1.2.3.4. Inverse Kinematics. While forward kinematics is easy to calculate, it is not always

practical to use. In most cases, artists are interested in directing the articulated body in an

abstract, goal oriented manner. For instance, the artist may want the virtual human to reach

for a door knob but not care about the actual joint parameters as long as they are physically

plausible. However, the computer would still need these parameters to apply keyframing

on and create the animation. Since by adding requirements such as reaching for a door

knob, the artist effectively constrains the pose of the body, with enough such requirements,

it may possible to solve for the parameter vector. This process is called inverse kinematics

(IK). Of course with IK, a solution cannot always be guaranteed (e.g. a human model may

not be able to reach the flag on a tall pole from the ground, however he positions himself).

9

1.2.3.5. Physics Based Methods. Since the laws of physics are relatively known, it is also

possible to control animations with high level physics simulations. This approach not only

lifts some of the work from the animation artist but also produces more realistic results.

Physics based methods essentially rely on procedural animation techniques, governed by

the descriptions of physical laws of the virtual world [19] [20]. These laws are used to

simulate the object behaviors automatically. Such simulations are especially effective on

simple rigid objects that are static (e.g. stones) and even work on those that are internally

motivated (e.g. rockets).

It is also possible to apply physical simulations to the internal configurations of

nonrigid or articulated models. For instance, the vertex positions can be determined by

physically simulating the deformations of soft and elastic bodies and their collisions, as

explored in [21] and [22]. For articulated bodies, physical simulations can be used to drive

the joint parameters through methods collectively called dynamics, as explained in [23],

[24] and [25]. Dynamics performance can be improved as explained in [26], which also

extends the inverse dynamics method.

In dynamic simulations, the parameters are no longer the actual angles or positions of

the joints but rather, the forces and torques affecting the joints. These parameters can be

used to calculate the key skeleton poses, which can be subsequently interpolated for

animation, or directly control the animation itself. Dynamics can also be regarded as yet

another level of abstraction, for the object is described in terms of its physical attributes.

Since simulation laws are based on observed real world laws and the models are defined

with all the physical attributes they would have if they were real, the animations produced

are often more realistic compared to pure kinematic designs.

1.2.3.6. Forward Dynamics. In forward dynamics, the poses of the articulated body over a

period of time are constructed from the specifications of its internal and external forces and

torques, effectively replacing the parameter vector of angles. This can produce very

realistic animations but its usefulness is limited due to its lack of control. In other words,

the animator can specify the entire model and its physical attributes, but cannot control its

motion directly.

10

The lack of control may not be an issue for inanimate articulated bodies, such as

chains, that are intended only to obey the physical laws [27]. However, automotive

characters, like humans or robots, exert forces internal to their bodies and on their

surroundings to accomplish any tasks they may have. For such models, the artist often has

a planned motion the model needs to follow, and has to specify the internal forces exerted

by muscles or motors of the model to generate it. This can prove to be labor intensive,

because with forward dynamics, obtaining the desired motion is mostly trial and error.

1.2.3.7. Inverse Dynamics. Inverse dynamics is the arguably more useful dynamics

approach. Similar to IK, in inverse dynamics, the animation artist describes the desired

motion and the dynamics engine calculates the forces and torques necessary to produce the

motion, which, in turn, can be used to produce animation.

1.2.3.8. Constrained Dynamics. Using inverse dynamics alone to figure out the forces

necessary to generate a given motion is convenient, but relies on the animation artist’s

talent a lot while reducing the benefits of physical simulation. A hybrid method is to

introduce kinematic constraints to regular dynamics simulations. The approach is loosely

attempted in the PODA animation system of [10] and [11], and improved in [28] and [20].

The constraints would be used to solve for unknown forces in the dynamic simulation and

then used in the simulation to generate a realistic motion.

The method is generalized in [29] and [27] to solving for entire trajectories instead of

frames.

1.2.4. Human Body Animation

Modeling, displaying and animating the human body is a very old objective of

computer graphics. As discussed above, control of human animation is commonly

achieved through employing an articulated body, a skeleton, which can be directed through

kinematics or dynamics methods.

11

For visualizing a human body, however, simply producing the rigid limbs of an

articulated body is not enough. Humans, like all automotive animate entities, are covered

with an elastic skin. Without such a skin, the displayed object would always look robotic

(inanimate). This would suffice for a robot, but a realistic human model must incorporate

skin deformations as well.

Historically, the first structured human models were more valuable for their use in

practical simulations than their realistic look. In fact, during the early 1970's, human body

animation attempts merely used stick figure representations. Only later, realistic human

displays were added to the simulations. For instance, the work described in [30] explores

how car crash victims and parachuters can be simulated on computers with somewhat

realistic body models.

The more modern human body representation methods are largely categorized in two

groups. With volume models, the body is divided into (sometimes numerous) 3D

primitives such as cylinders, ellipsoids or spheres [30][31][32]. Rendering the final image,

then, consists of obtaining the contours of the primitives; but shading is relatively difficult.

An alternative approach is using surface models employing patches or meshes [33]. With

these methods, rendering can be made more realistic but more time consuming, not to

mention the undesirable artifacts with some approaches. The available methods of the time

are summarized in [34]. As computer and graphics hardware grew in power and solutions

were proposed to the problems, mesh surface representations gradually dominated along

with layered models extending the surface approaches, rendering the volume models

virtually obsolete.

1.2.4.1. Layered and Physically Based Methods. Layered methods usually employ some

sort of representation for the internal structure of the body and use it to drive the surface

forms. While more realistic, these methods typically require more numerical processing

and hence, are often not interactive. First muscle simulations were added to existing skin

models as explained in [35] and [36]. The work described in [37] is a system for creating

human body models by easily specifying volume features (muscles) as well as a surface

skin model. In [38], [39] and [40], the authors investigate the effects of anatomically

accurate muscle models on skin deformations, with the latter also providing such a generic

human model. [41] describe

as skin over muscles. The work discussed in

models and links to it an inelastic skin surface, instead of usi

1.2.4.2. Skinning Based Models

shell implemented as patches or a mesh and use the skeleton to drive the deformations of

the shell. With such a model, the shape of the body

then deformed according to the position specified by the skeleton pose inside

This approach is more common with interactive applications, but

production of characteristic skin deformation artifacts

configurations. In this work, we follow common practice by using a skinning based surface

model driven by an internal skeleton.

Figure 1.4. Demonstration of the h

Contours of a volume model with cylindrical (1) and spherical primitives (2), a layered

[43] describes how a mesh surface model (virtual skin) can be used in conjunction

with a controlling skeleton.

anatomically realistic mesh bodies with kinematic and dynamic control.

described in [45] uses the character

the deformation of the actual skin.

deformation (SSD) in [46

examples is suggested.

which also suggests ways to reduce

uses principal component

describes implicit surfaces for applying coating layer

. The work discussed in [42] adds a new fat layer to the anatomical

an inelastic skin surface, instead of using an elas

ed Models. These models define the human body to be an empty

shell implemented as patches or a mesh and use the skeleton to drive the deformations of

With such a model, the shape of the body (shell) is completely artist designed and

deformed according to the position specified by the skeleton pose inside

This approach is more common with interactive applications, but it is also known for its

characteristic skin deformation artifacts when handling

In this work, we follow common practice by using a skinning based surface

model driven by an internal skeleton.

Demonstration of the human body representation methods

Contours of a volume model with cylindrical (1) and spherical primitives (2), a layered

model (3) and a skin model (4).

how a mesh surface model (virtual skin) can be used in conjunction

with a controlling skeleton. In [44], a variety of human movements

anatomically realistic mesh bodies with kinematic and dynamic control.

uses the character’s skeleton to drive an FFD model which, in turn, drives

e actual skin. The common technique is named

46], where its shortcomings are studied, and

 The example approach is extended in the work described in

which also suggests ways to reduce the interpolation space. The method employed

principal component analysis (PCA) to reduce the pose space and make

12

coating layers to a model, such

adds a new fat layer to the anatomical

ng an elastic model.

These models define the human body to be an empty

shell implemented as patches or a mesh and use the skeleton to drive the deformations of

is completely artist designed and

deformed according to the position specified by the skeleton pose inside (Figure 1.4).

it is also known for its

when handling particular joint

In this work, we follow common practice by using a skinning based surface

uman body representation methods on a human arm:

Contours of a volume model with cylindrical (1) and spherical primitives (2), a layered

how a mesh surface model (virtual skin) can be used in conjunction

a variety of human movements are studied on

anatomically realistic mesh bodies with kinematic and dynamic control. The work

s skeleton to drive an FFD model which, in turn, drives

technique is named skeleton subspace

and to solve them, using

ed in the work described in [47],

method employed in [48]

to reduce the pose space and makes interpolation

13

and SSD suitable for hardware implementations. In addition, to fix the SSD artifacts, using

2D limbs (medials) is proposed in [49], and multiple weights (for matrix elements) in [50].

According to [51], dissimilarity of consecutive rotations are to blame for the SSD

artifacts and to smooth the transitions, new joints can be inserted. In [52], it is proposed to

interpolate the bones themselves and transform the vertices without further blending.

Arguing that matrices cannot be directly interpolated, in [53], interpolation on joint

rotations is suggested, using spherical linear interpolation (SLERP). In [54], it is shown

that common interpolation methods for SSD effectively reduce to direct interpolation of

matrix elements, which causes the artifacts. This verifies SLERP as a better interpolation

method, for which an optimization is also proposed, called linear interpolation of

quaternions (QLERP). Alternatively, in [55], it is suggested to use dual quaternions [53]

with two components per element to solve artifacts and achieve better performance.

1.2.5. Motion Capture

As it was previously stated, keyframing in computer animation, as in traditional

animation, is mostly necessary because of the excessive amount of work required to define

even a single frame of an animation sequence. However, there is always a tradeoff with

keyframing; while the more frequent they are defined, the more credible the interpolated

animation looks. This is due to the fact that interpolation is basically an uninformed

approximation to the motion the artists intend to create. Moreover, even with animation

control mechanisms, such as using skeletons, defining the parameter vector (e.g. for a

keyframe) is still a tedious task. Often, the animator can only specify part of the parameter

vector and the rest need to be discovered through a solution method like IK. Finally, the

credibility of keyframe animation is ultimately limited by realism the artists can provide to

the keyframes themselves, regardless of the performance of the interpolation or solution

method applied. Fortunately, if the animation is supposed to represent the behavior of real

objects or characters, an alternative method is available.

Motion capture (MOCAP) is an approach that can be used to discover the control

parameters for a frame of an animation automatically, bypassing manual definition of

keyframes and IK. Moreover, modern

parameters in realtime for every frame,

addition, since the parameters are captured

guaranteed to be realistic.

of realistic motion definitions.

By far the most common

Typically, a real actor would

wearing some sort of smart

control parameters for the motion

MOCAP techniques

on the underlying technologies

Figure 1.5. Passive and active motion capture

system that uses markers that are detected by an external

system using sensors that measure the position and trans

1.2.5.1. Passive Motion Capture

of data collecting sensors. Instead, passive methods rely on other equipment to derive a

description for the actor’s pose.

. Moreover, modern MOCAP equipment is fast enough

parameters in realtime for every frame, making interpolation unnecessary

addition, since the parameters are captured from a real subject, the derived motion data are

guaranteed to be realistic. When applied with care, MOCAP promises

realistic motion definitions.

By far the most common use of MOCAP is defining the gestures

a real actor would perform the required body movements

some sort of smart suit, and some detecting equipment would record the derived

for the motion, usually the positions and orientations of the joints

hniques can be broadly categorized either as passive

on the underlying technologies (Figure 1.5).

. Passive and active motion capture: The system at the top is a passive MOCAP

markers that are detected by an external device. At the bottom is an active

sensors that measure the position and transmit the information to a receiver.

Motion Capture. Passive motion capture can be characterized by the lack

of data collecting sensors. Instead, passive methods rely on other equipment to derive a

description for the actor’s pose. The most common of these are the optical methods.

14

equipment is fast enough to capture control

making interpolation unnecessary as well. In

a real subject, the derived motion data are

promises practical authoring

gestures of virtual humans.

movements, possibly while

and some detecting equipment would record the derived

ntations of the joints.

can be broadly categorized either as passive or active depending

: The system at the top is a passive MOCAP

t the bottom is an active

mit the information to a receiver.

Passive motion capture can be characterized by the lack

of data collecting sensors. Instead, passive methods rely on other equipment to derive a

are the optical methods.

15

The optical approaches to the motion capture problem originate from the rotoscope

devices of the early 1900’s [56]. The first MOCAP implementations used image

processing techniques coupled with prior knowledge about the human body to recognize

human poses from images [57][58][59][60]. Such attempts are somewhat less accurate but

have the benefit of being non-invasive, which makes them more useful for surveillance

applications [61][62].

The lack of accuracy of image processing based methods is not acceptable for control

or analysis applications. For such scenarios, the common solution is to have markers of

some sort be worn on the actor’s body. The markers can be either reflective or emissive.

With markers, the human body is assumed to be a stick skeleton and the positions of the

markers, as tracked by cameras, are used to triangulate the 3D positions of the appropriate

limbs. [63] contains an excellent overview of the method as well as some historical

perspective into the original moving light display concept described in [64] and [65].

[66] describes another passive motion capture approach which replaces the optical

markers with sound emitting devices. The relative positions of the devices can be estimated

from the differences in the delays the sound from each device takes to reach a receiver.

The 3D limb positions can then be similarly triangulated.

1.2.5.2. Active Motion Capture. An alternative to the passive approaches is to use sensors.

In this case, sensors actively measure their own positions and orientations, and transmit

them to the recording equipment. This not only avoids the problems with the passive

methods (such as occlusion of optical markers) but also decreases the dependence on prior

skeleton specifications. The sensors can be magnetic [67], gyroscopic [68] or even

electromechanical, collectively forming an exoskeleton [69][70]. In this work, we use a

magnetic MOCAP system.

1.2.5.3. Magnetic Motion Capture. Magnetic trackers were initially developed for the

helmet mounted displays of military aircraft during the 1960’s [56]. These sensors detect

the position and orientation by measuring the low frequency electromagnetic field

generated by a transmitter source. Each sensor outputs 6 DOF’s, making the system as

16

competent as an optical system with 50 per cent more markers than magnetic sensors.

Compared to the optical systems, magnetic systems are also typically less expensive.

Unlike electromechanical systems, magnetic systems do not require the actor to wear

cumbersome equipment, but still achieve considerable accuracy. In terms of latency,

magnetic systems generally fall in between the slow optical systems and fast

electromechanical systems, but often have lower sampling rates due to the noise filtering

required.

Among the shortcomings of magnetic systems are their recalibration requirements,

limited range and nonlinear behavior near the limits, especially as the azimuth approaches

zero. These problems arise from the nature of magnetic fields. In addition, magnetic fields

are vulnerable to intrusions by other magnetic fields that may be in the environment.

Besides the magnetic field of the Earth, most electrical equipment (motors, cabling etc) can

cause magnetic interference. Even at the absence of other magnetic fields, the magnetic

field of the transmitter itself can induce eddy currents in the surrounding metals (especially

ferrous metals such as iron and steel) which can interfere with the field. All of these

problems are reduced by using AC fields instead of DC fields, but not completely negated

[56].

1.2.6. Sign Language Synthesis

It was argued earlier in this document why computer visualization of sign language

communications is a useful research task. This is not a recent realization. The problem has

found attention earlier, but it was not until the 1980’s that computer hardware grew enough

in power for true multimedia solutions. Many of the earlier systems aim to provide full

machine translation between text (and sometimes audio) and sign languages. Such a task

would obviously require sign language recognition (e.g. from video) components for the

return path and a linguistic structure for the languages in question. Such extensions are out

of the scope of this work; we concentrate, instead, only on the synthesis of graphic

visualizations of sign sequences, focusing primarily on visual quality.

1.2.6.1. A Generic Sign La

sign synthesis (Figure 1.6). The first is a list of signs to synthesize. How this list is

constructed is completely dependent on the nature of the application. A realtime translation

system would likely create the list by first processing speech, while a book reader

application would be parsing text as input. The format of the list itself is also relevant.

Often, it is designed in a generic list or script form, but in translation contexts, it can

be an intermediate language representation of the original input.

Figure 1.6. A generic sign

receives the list of signs to generate from

The second input

animations from. This database

system and typically contain

proper blending of video data

movies, resulting in heavy computational requirements

step is necessary in which the

In addition, some applications

MOCAP. These scripts

effectively demoting the database to a sign alphabet

on relevant body parts, not the entire model.

the missing parameters need to be discovered through

more practical for editing afterwards,

A Generic Sign Language Synthesis System. There are two input requirements for

sign synthesis (Figure 1.6). The first is a list of signs to synthesize. How this list is

constructed is completely dependent on the nature of the application. A realtime translation

d likely create the list by first processing speech, while a book reader

application would be parsing text as input. The format of the list itself is also relevant.

Often, it is designed in a generic list or script form, but in translation contexts, it can

be an intermediate language representation of the original input.

sign language synthesis system overview: The synthesizer module

receives the list of signs to generate from another module and looks up the definitions of

the signs from the database.

input to sign synthesis is a database of sign definitions

database essentially forms the lexicon for the possible

contains video samples or MOCAP data. With the former approach,

of video data at frame and pixel levels is necessary to produce smooth

, resulting in heavy computational requirements. In the latter case, a post proc

step is necessary in which the raw animation data are visualized on a virtual human actor.

ome applications use sign definition scripts instead

. These scripts describe the signs in terms of more trivial predefined

effectively demoting the database to a sign alphabet, but often only specify the movements

on relevant body parts, not the entire model. Hence for a final animation to be produced,

the missing parameters need to be discovered through a process like IK.

more practical for editing afterwards, but they are also known for their artificial look

17

There are two input requirements for

sign synthesis (Figure 1.6). The first is a list of signs to synthesize. How this list is

constructed is completely dependent on the nature of the application. A realtime translation

d likely create the list by first processing speech, while a book reader

application would be parsing text as input. The format of the list itself is also relevant.

Often, it is designed in a generic list or script form, but in translation contexts, it can also

: The synthesizer module

another module and looks up the definitions of

definitions to generate the

forms the lexicon for the possible outputs of the

With the former approach,

is necessary to produce smooth

case, a post processing

on a virtual human actor.

instead of either video or

predefined movements,

, but often only specify the movements

Hence for a final animation to be produced,

a process like IK. Scripts are notably

known for their artificial look.

18

A sign synthesis system can output animation in one of several formats. Structured

numeric formats, such as VRML, are common but also the least dependable in terms of

realism. Blended video sequences and rendered visualizations of 3D models are known to

be more successful from that point of view.

1.2.6.2. Previous Sign Language Synthesis Systems. An early attempt at computer assisted

sign language processing is described in [71]. The system employs an optical MOCAP

system, conceptualized by [64], to drive the synthesis process but does not output any real

synthesized signs, but merely the observed trajectories.

One of the first true sign synthesis systems is described in [72]. This is a complete

translation system which features a voice recognition frontend to drive the synthesis

process. The database consists of motion definitions captured by an optical MOCAP

system and data gloves. The system generates signs on a 3D model driven by a skeleton

identical to the one used in MOCAP.

In [73], the TEAM machine translation system for English is described. This system

is driven by English text and generates script-specified 3D signs.

The SigningAvatar system developed by VCOM3D (formerly Seamless Solutions

Inc.) is one of the first commercially available solutions for authoring 3D skeletal

animations [74]. It also supports sign languages through a dedicated proprietary authoring

tool. Note that this system does not produce rendered output. Instead, virtual reality

modelling language (VRML) output is produced that can be rendered by compatible

software.

The ViSiCAST project and other related work are described in [75], [76], [77], [78]

and [79]. These projects describe a machine translation system that generates signs from

English text. The signs themselves were originally specified through an assembly

involving a magnetic MOCAP system and data gloves. However, later work focuses on

generating the signs synthetically by script definitions. The work was funded by

Independent Television Commission, UK Post Office and the European Union.

19

The work described in [80] does script driven synthesis of signs. However, it is

favored to use video samples to generate the sign sequences, with the argument that they

produce more realistic results.

The sign synthesis problem is approached as an articulatory process, instead of a

concatenative one, much like speech synthesis, in the system described by [81]. The

system is driven by a scripted list of movements (not complete signs) and generates a

VRML output defined on a simple 3D model.

In [82] and [83], the HANDY system is described, which features a database of

movements (sublexical sign elements) that are obtained through optical MOCAP. The

synthesis is driven in a similar way to the method described in [81] except here, sublexical

elements are used in an XML based script, producing rendered output based on a modified

form of the model described in [40].

In [84], a translation system for the Czech Sign Language is described. The system

receives text input and translates it, producing 3D rendered sign language animations. The

signs themselves are defined with the same scripting system used for the ViSiCAST

project [75].

The system described in [85] is the first to incorporate Turkish Sign Language

support. It is a learning tool that recognizes signs from video input for demonstration. For

feedback, it also synthesizes sign sequences from a database of manual specifications on a

simple 3D humanoid. The system employs the help of the Xface project for the animation

of the face [86], [87] and [88].

A brief summary of the sign language synthesis systems discussed above is given in

Table 1.1. The table highlights the unique features of the systems and classifies them

according to the formats of the original input to the systems, the sign definitions in their

databases and their products.

20

Table 1.1. Summary of previous sign language synthesis systems

System

References
Name

Sign

Language

Original

Sign List

Input

Format

Sign

Definitions

Format

Sign

Animations

Format

[72]

Japanese Speech MOCAP 3D Render

[73] TEAM American Text Scripts 3D Render

[74] Signing Avatar American Generic Scripts VRML

[75]

[76][77][78]

[79]

ViSiCAST (Simon

the Signer, TESSA,

e-Sign, HamNoSys)

British &

Others
Text

MOCAP &

Scripts
3D Render

[80]

Slovenian Generic Video Video

[81] SignSynth American Text Scripts VRML

[82][83] HANDY Hungarian Text MOCAP 3D Render

[84] MUSSLAP Czech Text Scripts 3D Render

[85] SignTutor Turkish Generic Scripts 3D Render

1.3. Contributions

The importance of demonstrations in language learning and the need for sign

language tutoring systems were stressed above. As the background research suggests, a

complete sign language tutoring tool with ample demonstration capabilities is a complex

challenge. Instead, this work aims to provide a practical solution to the more isolated

problem of producing realistic sign language animations. While trading off a broader

scope, dedicated attention can be paid to the realism of the output. However, it is the

intention of the author that the software delivered as a result of this work can eventually be

used as a frontend to a sign language tutoring tool.

The implemented system incorporates a sign definition database which lacks

linguistic structure except for identifying tags. As the literature on the subject matter

indicates, linguistic analysis of a sign language is often considered together with the data

21

originally driving the synthesis process, usually some form of natural language input, while

an intermediate language is designed. Hence, it is assumed to be a role reserved for full

translation systems and is omitted from this implementation. This also has the added

benefit of making the system transparent to any sign language. Yet, the current database

contains signs from the Turkish Sign Language finger spelling alphabet. Given the scarce

interest toward this particular language, it is understood that the database itself is an asset

as well.

22

2. APPROACH AND METHOD

2.1. Arguments

2.1.1. Realism

Among the qualities of a sign synthesizer is the realism of its output. Realism is a

definite requirement if the objective is teaching of or communication with sign languages.

Intuitively, using videos of real signers in the sign database and composing the

output directly from these videos should produce the most realistic results. With the latest

advances in computer graphics, using 3D virtual actors can also be considered a good

alternative. The animation of the 3D actors can be driven with MOCAP data or scripts.

Using scripted sign definitions has its benefits, but usually produces animations that look

less natural while MOCAP data is collected from actual signers [72][80].

2.1.2. Performance

As with all software, performance is another issue with sign synthesizers, especially

for the availability of the system. Realtime performance can enable a whole new set of

possible applications (e.g. simultaneous translation). In this context, realtime means

achieving not only immediate response, but also motion picture frame rates in synthesizing

and playing sign animations. Note that performance may especially be an issue with older

hardware or for future porting considerations to low power devices, such as mobile phones.

Today, with proper hardware acceleration, video handling is usually not a problem

but blending between the signs is not trivial [80]. On the other hand, 3D hardware

acceleration is also widely available, even in mobile devices. With proper handling of the

hardware, animating virtual actors can be a feasible option. Scripted sign definitions should

also benefit from the hardware acceleration capabilities, but they require additional IK

processing to solve for the skeleton parameters that are not explicitly specified [81].

23

2.1.3. Communication

If the software is to be useful in networked environments (e.g. the World Wide

Web), communication requirements have to be addressed. Typically, communications of

the sign synthesizer with the database and with the receiving end are affected (Figure 1.6).

If the sign database is formed from sign videos, bandwidth requirements for

communication with the synthesizer would be great. On the other hand, scripted sign

definitions would likely require the least bandwidth. The case is similar for the outputs. If

the system produces video (video sourced or 3D generated), the bandwidth requirements

would definitely be greater than that for producing VRML compatible animation

definitions that can be rendered locally.

2.1.4. Data Reusability

Since a sign synthesis system has to incorporate a database, how the data in this

database can be exploited is also an item to ponder on. A sign video is only externally

marked, but does not contain any structural information inside; it is just a video that

happens to contain signing content. A MOCAP database has somewhat better structure, but

the data is still difficult to edit, reorganize or apply to another system (e.g. virtual reality

applications, games etc.). Scripted sign definitions have the most internal structure and are

best suited for data reusability.

2.2. Approach Decisions

In the light of the above arguments, we have opted to keep a database of MOCAP

sign definitions obtained using a magnetic system. Magnetic MOCAP systems are

generally more accurate than optical systems, which is important for capturing detailed

finger motions. They are also more comfortable than electromechanical systems in that

they require lighter, more flexible setups, which is necessary for our actor to produce

natural sign animations.

Our system uses

output. Rendering our own models is

those by the browsers,

give the best compromise of the qualities

Figure 1.6 summarizes th

The way this prototype system is implemented in our work is depicted in

operation of our system can be

Figure 2.1. System overview

construction and 3D design tasks while the execution phase includes sign

2.3.1. Initialization Phase

During the initialization

use during the execution phase.

Our system uses a synthesizer to drive a 3D virtual actress

output. Rendering our own models is a safer approach, since client renders, especially

those by the browsers, may not produce realistic outputs. These choice

the best compromise of the qualities we see as significant.

2.3. System Overview

summarizes the structure of a typical sign language synthesizer system.

The way this prototype system is implemented in our work is depicted in

tem can be explained in two phases.

. System overview: The initialization phase consists of data collection, database

construction and 3D design tasks while the execution phase includes sign

animating & rendering tasks.

hase

the initialization phase, system operators define the application data files for

use during the execution phase. This phase must be completed before the system can be

24

ress to produce rendered

, since client renders, especially

choices, in our opinion,

e structure of a typical sign language synthesizer system.

The way this prototype system is implemented in our work is depicted in Figure 2.1. The

: The initialization phase consists of data collection, database

construction and 3D design tasks while the execution phase includes sign synthesis and

phase, system operators define the application data files for

phase must be completed before the system can be

25

made available to the public. Among the work belonging to this phase, three separate tasks

can be identified. First, the data collection task is done to obtain separate MOCAP data

files for each sign. These data files are fed to the database builder module for the database

construction task. After some preprocessing and cleanup, this software collects the

MOCAP data into a sign database. Meanwhile, 3D artists carry out the production cycle of

the two main digital assets for the application: the body model for skeletal animation and

the face model for expressions. When all the information is properly stored, this phase can

be called complete. Note that the initialization phase for a preset configuration and feature

set is already completed. The database in this configuration contains signs from the

Turkish Sign Language finger spelling alphabet. The initialization phase is detailed in

section 3.

2.3.2. Execution phase

This phase follows the initialization phase once all the necessary data are available

and is characterized by end user access to the system. It is a cyclic phase in which the user

issues sign queries, to which the system responds by carrying out the two tasks required to

generate the sign animations. For the sign synthesis task, the synthesizer module fetches

the definitions of the desired signs from the sign database and concatenates them as

necessary, producing skeletal animation specifications. Next, for the animation &

rendering task, these specifications are fed to the animator-renderer module which, in turn,

drives the virtual actress as necessary and renders the resulting mesh to obtain a realistic

animation. The execution phase is detailed in section 4.

26

3. INITIALIZATION

The objective of this phase is preparation of the system for actual, in-field usage. The

most significant part of this preparation task is construction of the sign database. For this

purpose, a motion capture task was defined to initially collect sign data in separate data

files. The database can be called ready once this data is loaded and bound to the skeleton of

the virtual actress by our dedicated database builder application. This application is

basically a standard database editor with a simple 2D interface.

3.1. Motion Capture of Turkish Signs

3.1.1. Hardware Setup

We used a Shapewrap III system by Measurand Inc. for our MOCAP tasks [89]. This

system is not only magnetic based, but is also capable of tracking all the limbs we require

for sign languages. In contrast, for example, [72] and [76] use MOCAP systems that do not

track the hands and use data gloves instead, which adds synchronization problems to their

implementations. Our system supports wireless communication and does not require a

spandex body suit to be worn and hence is most practical for expecting realistic sign data

from our actor.

The skeleton of our MOCAP system contains 40 joints. The root has six DOF’s

(Euler orientation and Cartesian position) and the rest of the joints have three DOF’s each

(orientation only), adding up to 123 DOF’s in total. The missing DOF’s (three for each

joint except the root) are fixed into the skeleton design, since real bones cannot be resized

when moving. The detail in the articulation of the hands is worth mentioning; all the

fingers have a full set of three bones each. In addition, note that although our MOCAP

system also features leg sensors, they were not used because leg movements are not

relevant to signing. The skeleton is visualized in Figure 3.1.

Figure 3.1. Motion capture

hands. 1 is the underlying MOCAP skeleton, 2 is the realtime

model in the software and 3 is our actual actor wearing the Shapewrap III system.

The MOCAP hardware was connected wirel

running at 2.4 GHz and

the motions in standard Biovision H

this setup managed to record joint parameters at 77

3.1.2. Sign Scope

As an initial data set, we aimed to capture the signs for the

finger spelling alphabet

second phase, but also enables a much simpler interface

list. However, the system is not limited to this

more data.

. Motion capture model of the system: Note the detailed articulation of the

1 is the underlying MOCAP skeleton, 2 is the realtime preview

model in the software and 3 is our actual actor wearing the Shapewrap III system.

hardware was connected wirelessly to a PC with dual core CPU

 3 GB of RAM. OEM software, ShapeRecorder

the motions in standard Biovision Hierarchy (BVH) format. Running Microsoft Windows,

setup managed to record joint parameters at 77 fps (frames per second)

As an initial data set, we aimed to capture the signs for the Turkish sign language

alphabet (Figure 3.2). This not only limits the work

, but also enables a much simpler interface and format

list. However, the system is not limited to this set of signs and can easily be extended with

27

Note the detailed articulation of the

preview of the MOCAP

model in the software and 3 is our actual actor wearing the Shapewrap III system.

essly to a PC with dual core CPU

ShapeRecorder, was used to record

Running Microsoft Windows,

s (frames per second).

Turkish sign language

work required before the

and format in specifying the sign

set of signs and can easily be extended with

Figure 3

3.1.3. The Capture Process

3.1.3.1. Preparation. Prior to our MOCAP sessions, we first prepared the equipm

adapting the dimensions of the predefined MOCAP

This ensures the accuracy of the captured data.

measurements from various limbs of our actor

Fortunately, the software features a wizard that guides this

Note that this process has to be done only once, since the measurements can be sto

reused for each session.

3.1.3.2. Testing. Before capturing the

setup, preparation and our

poses on our actor and visually checking if they are reproduced on the 3D

3.2. Turkish sign language finger spelling alphabet.

Capture Process

rior to our MOCAP sessions, we first prepared the equipm

dimensions of the predefined MOCAP skeleton template

This ensures the accuracy of the captured data. For this task, it is necessary to

various limbs of our actor and declare them to t

software features a wizard that guides this task in a step

his process has to be done only once, since the measurements can be sto

efore capturing the signs to be stored in the database,

our virtual actress’ dimensions were tested by capturing predefined

poses on our actor and visually checking if they are reproduced on the 3D

28

alphabet.

rior to our MOCAP sessions, we first prepared the equipment by

template to our actual actor.

For this task, it is necessary to take specific

and declare them to the MOCAP software.

in a step-by-step manner.

his process has to be done only once, since the measurements can be stored and

signs to be stored in the database, the hardware

were tested by capturing predefined

poses on our actor and visually checking if they are reproduced on the 3D preview of the

software and by our virtual

repeating preparation or calibration as necessary

by manually rearranging the model or noting and compensating for the inaccuracies while

recording. The test poses are designed to check the relative dimensions of parts

and the accuracy of the motion by having the actor bring various limbs in contact at certain

angles, such as those in Figure

Figure 3.3. The basic test poses

5 test the compatibility of the Xface and the MOCAP virtual

3.1.3.3. Calibration. One typical weakness of magnetic MOCAP systems is that they are

prone to lose their calibration quickly.

joint correction offsets of the software to match the MOCAP data, which

does not remain consistent for a long time.

calibration of the equipment was checked by

actor with his actual pose using the

3.1). If there a mismatch

predetermined home pose

pose accordingly.

3.1.3.4. Standard Positioning.

concatenate them to obtain

produce realistic movement descriptions, concatenation is not

sign transition points include

jumps of the body or the

our virtual actress. Problems evident in the preview were fixed by

repeating preparation or calibration as necessary, and virtual actress problems were fixed

by manually rearranging the model or noting and compensating for the inaccuracies while

oses are designed to check the relative dimensions of parts

and the accuracy of the motion by having the actor bring various limbs in contact at certain

Figure 3.3.

. The basic test poses: 1-3 test the calibration of the hands and the arms while 4

5 test the compatibility of the Xface and the MOCAP virtual actress models.

One typical weakness of magnetic MOCAP systems is that they are

prone to lose their calibration quickly. Calibration involves specification of the internal

joint correction offsets of the software to match the MOCAP data, which

does not remain consistent for a long time. For this reason, before capturing each sign, the

calibration of the equipment was checked by visually matching the

actor with his actual pose using the realtime 3D preview produced by the software

there a mismatch is detected, calibration is restored by having the actor assume a

predetermined home pose and signaling the software to reset its internal definition of this

ositioning. In our work, we capture the signs individually, and later

obtain a sign sequence. However, while motion capture is known

movement descriptions, concatenation is not. Possible problems at the

sign transition points include returning to the rest position between every sign and

body or the limbs at the transition points.

29

Problems evident in the preview were fixed by

and virtual actress problems were fixed

by manually rearranging the model or noting and compensating for the inaccuracies while

oses are designed to check the relative dimensions of parts of the body

and the accuracy of the motion by having the actor bring various limbs in contact at certain

3 test the calibration of the hands and the arms while 4-

actress models.

One typical weakness of magnetic MOCAP systems is that they are

Calibration involves specification of the internal

joint correction offsets of the software to match the MOCAP data, which, unfortunately,

efore capturing each sign, the

the detected pose of the

oduced by the software (Figure

restored by having the actor assume a

are to reset its internal definition of this

In our work, we capture the signs individually, and later

otion capture is known to

Possible problems at the

est position between every sign and sudden

The jump problems

points. Since the signs can be ordered in any fashion, this requires defining the signs at the

same pose for their start and end points. Hence, before recording a sign, the actor

standard rest pose, to the possible accuracy

It is generally desired that the virtual actor does not return to the rest position

between the signs. Such an animation would look rather robotic. An easy solution to

prevent this effect would be to blend the signs in the

would also solve the jump problems mentioned above, but

blending is more homogeneous when the rest positions are alike.

3.1.3.5. Attack and Decay.

blended parts of the motions will lose some

expressive parts of the signs, attack and decay periods were

second parts of the captured motions respectively.

belonging to either period

Figure 3.4. Structure of a sign

decay and the rest of the sign in between

During the attack period, th

Likewise during the decay period, the signer is only allowed to return to the rest pose.

Blending will be discussed later in more detail.

The jump problems can be solved if the signs take the same pose at the transition

points. Since the signs can be ordered in any fashion, this requires defining the signs at the

same pose for their start and end points. Hence, before recording a sign, the actor

to the possible accuracy.

It is generally desired that the virtual actor does not return to the rest position

between the signs. Such an animation would look rather robotic. An easy solution to

prevent this effect would be to blend the signs in the output animation. Note that

would also solve the jump problems mentioned above, but the movement rate during

blending is more homogeneous when the rest positions are alike.

Attack and Decay. Since blending will be performed on the captured signs,

blended parts of the motions will lose some of their details. To

expressive parts of the signs, attack and decay periods were defined as the first and last 1

captured motions respectively. The expressive part of a motion not

either period is referred to as the body of the motion (Figure

. Structure of a sign: The first 1 second is the attack, the last 1 second is the

rest of the sign in between the attack and the decay is the body. D represents

the duration of the sign.

During the attack period, the signer starts moving his limbs from the

Likewise during the decay period, the signer is only allowed to return to the rest pose.

Blending will be discussed later in more detail.

30

olved if the signs take the same pose at the transition

points. Since the signs can be ordered in any fashion, this requires defining the signs at the

same pose for their start and end points. Hence, before recording a sign, the actor takes a

It is generally desired that the virtual actor does not return to the rest position

between the signs. Such an animation would look rather robotic. An easy solution to

output animation. Note that blending

the movement rate during

Since blending will be performed on the captured signs, the

To prevent loss of the

defined as the first and last 1

The expressive part of a motion not

Figure 3.4).

: The first 1 second is the attack, the last 1 second is the

is the body. D represents

ing his limbs from the rest pose.

Likewise during the decay period, the signer is only allowed to return to the rest pose.

31

3.2. Construction of the Sign Database

A special database builder was developed to construct a database of the signs that

can be later queried by the sign synthesizer. Using the database builder involves the

following steps.

3.2.1. Model Acquisition

When first launched, the software builder requires that the user specifies a

compatible model file to use as the virtual actor. This step is not directly related to the

database construction (except a future implementation of retargeting), but is necessary

because the motions defined on the virtual actor have to be specified on its skeleton. For

the same reason, the storage for motion data is integrated into the skeleton file. When a

model is first loaded, any signs already in its database are used to initialize the

environment.

3.2.2. Sign Collection and Tagging

Once the software environment is initialized with a model, the user must specify the

captured sign animation files to insert them to the active collection, or delete existing ones

as necessary.

When querying the database for sign animations, the sign synthesizer requires a way

to identify each sign. The current implementation of the database supports string tags to be

specified for each sign and index the database accordingly. For our limited database of the

Turkish sign language finger spelling alphabet, the tags for the signs were selected simply

as the letters represented by the signs.

32

3.2.3. Sign Repositioning

Once the active collection contains the necessary signs, the user can choose to build

the database file. However, before building the database, the software can do some

preprocessing on the sign animations. In particular, the model can be repositioned.

Regardless of the actor’s effort on standardizing the start and end poses, fixing the

model at a particular position in all the frames may be desirable. First, this would make it

possible to place the model at the appropriate location in relation to the camera during

rendering. Second, it would remove the floating effect that would otherwise be produced

by blending different model positions at the transition points.

To reposition the model, it is necessary to reset the root joint parameters

appropriately. Unlike the other joints that have three DOF’s, the root joint has six,

including position as well as orientation. In our application, we simply reset them all to

zero, positioning the model at the origin and aligning it with the principal axes, facing the

+Z direction. This also prevents the model from moving or turning away from the camera

while signing.

Note that the parameters of the other joints are not affected by this process. They will

continue to drive the limbs. At any rate, they work better with blending because limb

movements are expected in sign animations, but floating is not. The only downside of the

repositioning process is that it removes from the capture data any navigation the virtual

actress would make in the available space, but such movements are not necessary or

desired in sign animations.

A sign can be defined as a sequence of poses changing over time. Since given a

skeleton, a pose is just a vector of joint parameters, it is possible to represent a sign as a

function P=S(t) where P is the parameter vector for the sign at time t. Then, the ith

parameter of the vector can be defined as pi=Si(t). Then, the repositioning process can be

described by redefining all the signs as follows.

where the first six parameters are known to re

the root bone. Once the signs are redefined, the database file is written out.

3.3.1. The Model

It was stressed above why

Therefore, this work includes a 3D virtual

3.5). It was also argued before

representations, are preferred for representing virtual humans in interactive applications.

Hence, our actress was modeled as a mesh surface model whose deformations are driven

by an underlying skeleton, designed to be i

Figure 3.5. The virtual actress

an internal skeleton, identical to the MOCAP skeleton.

 <<

=
otherwisetS

i
tS

i

i

),(

70 if,0
)('

where the first six parameters are known to represent the position and orientation of

Once the signs are redefined, the database file is written out.

3.3. 3D Model and Face Design

It was stressed above why 3D visualization is preferable in sign

his work includes a 3D virtual actress to display the sign animations on (

argued before that skinning based surface models, rather than layer

representations, are preferred for representing virtual humans in interactive applications.

Hence, our actress was modeled as a mesh surface model whose deformations are driven

by an underlying skeleton, designed to be identical to the MOCAP skeleton.

. The virtual actress: The model has a mesh surface model that is driven by

an internal skeleton, identical to the MOCAP skeleton.

33

present the position and orientation of

Once the signs are redefined, the database file is written out.

is preferable in sign demonstrations.

to display the sign animations on (Figure

skinning based surface models, rather than layered

representations, are preferred for representing virtual humans in interactive applications.

Hence, our actress was modeled as a mesh surface model whose deformations are driven

dentical to the MOCAP skeleton.

: The model has a mesh surface model that is driven by

The mesh of our virtual actress

using Alias Maya modeling software.

the scope of this document

3.3.2. The Face

Since sign languages make extensive use of facial expressions and mimics, a

complete sign animation system needs to reproduce facial expressions as well as body

movements. While this work incorporates direct support only for body movements, it also

includes an integrated Mpeg4 compliant dynamic face engine, Xface

future extensions for facial expressions. Xface uses face meshes generated

software and implements Mpeg4

definition points (FDP) of the model

through morphing and keyframing.

This work uses the standard face

(Figure 3.6), containing

Xface is dynamically integrated

chest joint of the model skeleton. This

of our virtual actress has 6,875 vertices and 7,128 faces

modeling software. The details of the 3D modeling methods are outside

the scope of this document and will not be discussed further.

Since sign languages make extensive use of facial expressions and mimics, a

complete sign animation system needs to reproduce facial expressions as well as body

movements. While this work incorporates direct support only for body movements, it also

includes an integrated Mpeg4 compliant dynamic face engine, Xface

for facial expressions. Xface uses face meshes generated

software and implements Mpeg4 facial animation (FA) standard driving the

(FDP) of the model. It supports multiple blended facial expressions

hrough morphing and keyframing.

This work uses the standard face model distributed with the Xface package, Alice

), containing a total of 6,887 vertices and 13,412 faces.

Figure 3.6. The Xface face model, Alice.

Xface is dynamically integrated into the system during rendering and attached to the

chest joint of the model skeleton. This does not allow neck movements

34

128 faces and was prepared

odeling methods are outside

Since sign languages make extensive use of facial expressions and mimics, a

complete sign animation system needs to reproduce facial expressions as well as body

movements. While this work incorporates direct support only for body movements, it also

includes an integrated Mpeg4 compliant dynamic face engine, Xface [86][87], to enable

for facial expressions. Xface uses face meshes generated by FaceGen

FA) standard driving the facial

multiple blended facial expressions

distributed with the Xface package, Alice

into the system during rendering and attached to the

does not allow neck movements, but instead, makes

35

the face follow the chest. We believe this is an acceptable compromise, since there is

currently no input from the MOCAP hardware to drive the neck separately at the point.

Note that the face mesh is not actually connected to the body mesh. It is merely

linked so that it is displayed with the body at the appropriate location.

3.3.3. Model and Face Merging Issues

Our data set, the Turkish sign language finger spelling alphabet, does not require the

use of head gestures or facial expressions. However, sign languages often employ them in

connection with the body movements, sometimes with interactions as well. For instance, a

sign might involve the left thumb touching the chin. With our system, the more basic task

of supporting expressions is as simple as providing a data stream to the Xface engine.

However, to handle interactions between the body and the face correctly, care must be

taken when merging the body model and the face together. In particular, the position of the

head and its dimensions should be compatible with the body. For this task, we simply

measured the head features during the initial preparation and testing tasks, and transformed

the Xface model accordingly. This does not ensure an exact match, but provided visually

acceptable results during our tests (Figure 3.3).

A virtual signer with a head should also support head rotations. The most

straightforward way to support these motions would be defining a neck joint that would

only drive the head. Then, the neck joint can be provided with a data stream appropriately.

However, the lack of actual connectivity between the polygons of the Xface mesh and the

body would still cause these movements to look unnatural, because none of the polygons in

the body would deform in response to the head, not replicating the elastic behavior of the

skin at the junction. This problem can be solved by manually creating new polygons

between the two meshes at runtime and defining them partial weights to follow the neck

joint and the parent of the neck joint accordingly.

The two software

animator-renderer are integrated into a single Microsoft Windows application based on

OpenGL graphics. The user interface is mouse driven,

interface (GUI) controls.

signs to play, a read-only text box indicating the sign that is currently played by the actress

and two buttons; a play button to in

interface can also be driven by the keyboard through shortcut keys

Figure 4.1. The user interface of the

background is a 3D display of our virtual actress and in the foreground are the GUI

controls; the edit and the read

Besides the 2D GUI, it is also possible to switch to 3D navigation mode via the

control key or the right mouse button. While in 3D navigation mode, the user can

manipulate the camera using the mouse or the keyboard.

4. EXECUTION

The two software components used in this phase, the sign synthesizer and

renderer are integrated into a single Microsoft Windows application based on

The user interface is mouse driven, used to access the graphical user

interface (GUI) controls. In particular, the user is provided with an edit box to type a list of

only text box indicating the sign that is currently played by the actress

and two buttons; a play button to initiate playback and another to quit the application. This

interface can also be driven by the keyboard through shortcut keys (Figure

. The user interface of the synthesizer-animator-renderer module

background is a 3D display of our virtual actress and in the foreground are the GUI

controls; the edit and the read-only boxes above, and the play and

Besides the 2D GUI, it is also possible to switch to 3D navigation mode via the

control key or the right mouse button. While in 3D navigation mode, the user can

manipulate the camera using the mouse or the keyboard.

36

he sign synthesizer and the

renderer are integrated into a single Microsoft Windows application based on

access the graphical user

In particular, the user is provided with an edit box to type a list of

only text box indicating the sign that is currently played by the actress

itiate playback and another to quit the application. This

Figure 4.1).

renderer module: In the

background is a 3D display of our virtual actress and in the foreground are the GUI

 quit buttons below.

Besides the 2D GUI, it is also possible to switch to 3D navigation mode via the

control key or the right mouse button. While in 3D navigation mode, the user can

37

When launched, the application presents the user with a virtual actress shown at an

idle stage. When idle, the actress performs an idle loop from the motion database.

When the play button is pressed, the application first builds a list of signs by parsing

the user’s input in the edit box and fetches the sign definitions from the database. Next, the

two primary tasks of this phase are executed in order: to synthesize a single continuous

animation that will drive the model skeleton, the sign definitions are concatenated together

with appropriate blending and to drive the deformation of the virtual actress mesh, a

rendering loop is used, after posing the skeleton for each frame according to the animation.

When playing the sign list is complete, the application returns to the idle mode.

4.1. Sign Synthesis

The sign sequence animation is formed by concatenating sign definitions fetched

from the database in order. When concatenating, the frame data (parameter vector) of the

animation is copied from those of the constituent signs, offset in time as necessary.

When MOCAP data are used to synthesize sign sequences, there is little concern

over the realism of the produced animation. In fact, the only places where realism may be

lost are the transition points between the signs.

4.1.1. Jumps

The most important problem that can occur is visible jumps in the actor’s pose at the

transition points, caused by direct concatenation of the signs with different start and end

points. Continuity of the motion (more precisely, C0 continuity) can be restored by simply

having the signs start and end at the same poses.

4.1.2. Restarting

The problem with matching all start and end poses is that it would cause the virtual

actor take this particular pose between every sign. However, if, at the end of a sign, the

38

next sign is known to him, a real actor would just make a smooth transition to the first

movements of the next sign instead of going back to the rest pose and starting over. The

virtual motion can also be made to look smooth by blending the motions of the signs at the

transition points. Note that this would also solve the jump problem, but the signs were still

captured with similar start and end poses as this produces more natural transition speeds

when blended.

4.1.3. Blending

To be able to blend, we make use of the attack and decay period specifications.

Earlier, we allocated these brief durations at the beginning and at the end of the signs and

required them not to contain any movement or pose significant to the meaning of the sign.

Then, blending can be applied between the decay of the preceding sign and the attack of

the succeeding sign. Since the signs can be concatenated in any order, the attack and decay

durations must be the same for every sign, decided as a convenient 1 second (Figure 3.4).

The blending procedure is linear in that it simply takes a weighted average of the

poses of the two signs while arranging the weights to vary linearly between 0 and 1. The

sum of the weights is 1 at all times during blending. If the signs are rewritten as P=Sn(t), a

sign sequence with m signs S1…Sm can be defined piecewise as:

<<−

<<−
<<

=

−− mmmm EtEEtS

EtEEtS

EttS

tT

11

2112

11

 if),(

...

 if),(

0 if),(

)(

where En is the time the nth sign has completed playing, obtained by adding

durations of the previous signs to that of the nth sign. When the blending process and the

overlap duration are incorporated, En is redefined as:

∑
=

−=
n

i
in aDE

1

'

39

where a is the length of the attack and decay periods and Di is the duration of the ith

sign. Then, blending the signs Sn and Sn+1 can be formulated with the following

reassignment.

+<<+−

+<<−−+−−+
<<+−

<<+−

+<<−−+−−+
<<+−

<<

=

−−

−−−
−

−−
−

−−−−

++

+−

−−

aEtaEEtS

aEtEEtS
a

Et
EtS

a

taE
EtaEEtS

EtaEEtS

aEtEEtS
a

Et
EtS

a

taE
EtaEEtS

EttS

tT

mmmm

mmmm
m

mm
m

mmmm

nnnn

nnnn
n

nn
n

nnnn

'' if),'(

'' if),'(
)'(

)'(
)'(

'' if),'(

...

'' if),'(

'' if),'(
)'(

)'(
)'(

'' if),'(

...

'0 if),(

)('

11

111
1

21
1

1221

11

11

11

11

4.2. Articulated Body Animation and Rendering

4.2.1. Forward Kinematics

As with all skeleton driven, skinning based surface models, our model has its mesh-

skeleton relationship built in. There are no submeshes to assign to joints, but rather each

vertex in the mesh has a vector of normalized weights, indicating how much it must be

affected by each joint in the skeleton. However, the MOCAP data contain only individual

angles for each joint, so a preprocessing step is necessary to convert these angles into

global transformation matrices for each joint before they can be applied to the vertices.

This is done through forward kinematics. The process, as done in each frame of the

animation, can be described as follows.

First, let the skeleton be defined as a vector J=j1, j2… jn of joints and the function p(j)

as a function that returns the parent of a given joint or is undefined. To be able to drive this

skeleton, one also needs to parse the parameter vector.

40

At an instant t, the parameter vector returned by the sign function P=S(t) includes the

parameters to be applied to each joint. Since the order the joints are defined in the

parameter vector are known, it is possible to extract the parameters belonging to a

particular joint from the vector. In particular, if P=p1,p2…pm, then the parameters of a joint

j i are p3i+1, p3i+2 and p3i+3. These parameters are the Euler angles the joint is to be rotated

with. Note that the parameters p1, p2 and p3 are not accounted for by these expressions.

These parameters belong to the root joint, which has six DOF’s, and specify its Cartesian

coordinates.

From the parameters for each joint ji, it is possible to calculate a local rotation matrix

Li as:

−
=

−=

 −
=

yy

yy

yi

xx

xxxizz

zz

zi LLL

θθ

θθ

θθ
θθθθ

θθ

cos0sin

010

sin0cos

cossin0

sincos0

001

100

0cossin

0sincos

,,,

yixizii LLLL ,,,=

The MOCAP hardware uses the ZXY convention with the Euler angles (in degrees),

both in specification in the parameter vector and in application of the simple rotations.

Hence, of the above angles, θz is p3i+1, θx is p3i+2, and θy is p3i+3.

Once the local rotation matrices Li are known for each joint ji, the global rotation

matrices Gi can be recursively defined as follows.

=
otherwiseL

GL
G

i

ipi
i ,

defined is p(i) if,)(

Note that, no motion validity checking or DOF limiting is applied during the

calculations. Such checks are not necessary, since the motions are captured from a real

person.

41

Once the Gi matrices are calculated, the forward kinematics calculations are

completed and deformations can be applied.

4.2.2. Deformation

As well as positions, the model also keeps a weight vector for each vertex. These

weights indicate how much a particular vertex is affected by the rotations of each of the

joints and add up to 1 for each vertex. The deformation procedure we employ is derived

from the SSD algorithm in that to obtain a final vertex position; we calculate the weighted

average of the positions directed by the contributions of each of the joints in order to

produce the final vertex position.

Mathematically, if our skeleton has the joints J=j1, j2…jn and our model has a set of

m vertices V={v1, v2… vm}, then the model must also have a vector Wi=wi,1, wi,2…wi,n of

weights for each vertex vi. Note that the sum of the weights in each Wi is 1. If vi is the

vector of Cartesian coordinates for the ith vertex, then for each frame, a new position vi’ is

calculated as:

i

n

j
jjii vGwv ∑

=

=
1

,'

where Gj is the global rotation matrix for the jth joint. For clarity, we have omitted

the transformation of the vertex coordinates from the model space to skeletal space.

Once the new vertex positions v’i are calculated for each vertex, the new coordinates

are fed to the rendering pipeline to produce one frame of the animation. The operations of

the rendering pipeline are beyond the scope of this document.

42

5. RESULTS

The approach and methodology of the system are explained above; yet, the quality

and performance of the final product merits further discussion. It is from these results that

conclusions for the work can be derived.

5.1. Realism

In terms of realism, the system can be said to perform moderately successful. While

the produced animations look adequately smooth and continuous, and result in high quality

renders, the sign animations themselves are not always fit for teaching purposes. To

evaluate the realism of our results from this perspective, we check the animations the

system produces against reference videos. Our conclusion is that, realism problems of the

signs stem from the difficulties in capturing consistent data during MOCAP.

5.1.1. Motion Capture Issues

Collecting a representation of the actor’s motions with MOCAP is quite a challenge

in practice. Ultimately, as it turns out, most of the problems with the captured MOCAP

data can be attributed to inaccurate calibration. Note that while preparation can be used to

adapt the virtual model to the actor in terms of dimensions, manual calibration is still

required to make sure the orientations are matched as well.

Calibration is a tricky process, especially for the arms. In our MOCAP system, the

arms have to be manually calibrated with correction angles, which seem to be quite

unstable, in each direction in a trial and error manner. Unfortunately, it is very difficult to

obtain an accurately calibrated model with this approach, which is akin to manually using

forward kinematics. A common result of this problem is hands that individually move and

pose correctly, but fail to cooperate accurately. Naturally, this result is most noticeable in

signs involving the two hands coming together or snapping the fingers. Figure 5.1, Figure

5.2, Figure 5.3 and Figure 5.4 exemplify these cases.

Figure 5.1. Sample reproduction of the letter “C”:

from the reference video for the letter, below are from the reproduction. A simple letter,

Figure 5.2. Sample reproduction of the letter “Ö”:

from the reference video for the letter, below are from the reproduction.

finger snaps, which are correctly reproduced but the relative

mple reproduction of the letter “C”: Left to right above are sample frames

reference video for the letter, below are from the reproduction. A simple letter,

“C” is clearly reproduced accurately.

Sample reproduction of the letter “Ö”: Left to right above are sample frames

reference video for the letter, below are from the reproduction.

finger snaps, which are correctly reproduced but the relative position and orientation of the

hands is skewed.

43

Left to right above are sample frames

reference video for the letter, below are from the reproduction. A simple letter,

Left to right above are sample frames

reference video for the letter, below are from the reproduction. “Ö” requires

position and orientation of the

Figure 5.3. Sample reproduction of the letter “A”

from the reference video for the letter, below are from the reproduction.

precise association of

Figure 5.4. Sample reproduction of the letter “J”

from the reference video for the letter, below are from the reproduction.

association between the hands

shapes and the movement are correctly reproduced,

Sample reproduction of the letter “A”: Left to right above are sample frames

from the reference video for the letter, below are from the reproduction.

 the hands and the fingers, but while the hand shapes are

reproduced, the association is missing.

Sample reproduction of the letter “J”: Left to right above are sample frames

from the reference video for the letter, below are from the reproduction.

between the hands as well as movement of the left hand, but

shapes and the movement are correctly reproduced, the association

44

: Left to right above are sample frames

from the reference video for the letter, below are from the reproduction. “A” requires

but while the hand shapes are correctly

: Left to right above are sample frames

from the reference video for the letter, below are from the reproduction. “J” requires

movement of the left hand, but while the hand

association is missing.

45

5.1.2. Standard Repositioning

While a real actor is signing, it is required to produce a realtime preview of the

observed motion for immediate feedback and correction as necessary. The MOCAP

software produces such a 3D preview, but it is not the most practical kind of feedback for

the actor. A real actor would be used to looking at a mirror for a feedback of his motions,

but to the inconvenience of the actor, the 3D preview is not inverted like a mirror.

Moreover, the actor looking at the preview actually degrades the data quality because

it affects the detected positions. In particular, the head and part of the body of the actor

instinctively turns to look at the PC monitor where the preview is displayed. While using a

helmet mounted display would help prevent this problem, it is also possible to extend the

standard repositioning procedure to fix the rotations of these other bones to zero, instead.

5.1.3. Blending

Linear blending, implemented in this system, is the most straightforward way to

smoothly concatenate two animations. However, it only preserves C0 continuity and hence

looks somewhat artificial in the output. In particular, the motions are transitioned smoothly

but the transition rates change abruptly, causing the virtual actress to look like she has

suddenly changed her mind. Note that inaccurate adherence to the attack and decay

specifications also cause this problem. We assume that a better blending method that

would preserve another order of continuity would definitely produce more natural

transitions. A sample of the obtained blending transitions is given in Figure 5.5.

Figure 5.5. Sample blending sequence

“L” and the two hand sign for the letter “J” demonst

hand stays in position instead of returning to the rest position.

5.1.4. SSD Artifacts

The realism of the output

SSD artifacts of the joints, which can cause the l

configurations. Fortunately, methods are available to remedy these problems

Figure 5.6 demonstrates one of the worst SSD artifacts of the system.

Figure 5.6. Sample SSD artifact

From a performance point of view, the implemented system can be considered very

successful. On the same workstation PC previously mentioned in MOCAP, with hardware

. Sample blending sequence: Transition between the simple sign for the letter

“L” and the two hand sign for the letter “J” demonstrates blending. Notice that the right

hand stays in position instead of returning to the rest position.

The realism of the outputs also suffers mildly from the lack of special handling of the

SSD artifacts of the joints, which can cause the limbs to look unnatural at certain

configurations. Fortunately, methods are available to remedy these problems

demonstrates one of the worst SSD artifacts of the system.

. Sample SSD artifact: The right elbow loses part of its thickness

for the letter “U”.

5.2. Performance

From a performance point of view, the implemented system can be considered very

successful. On the same workstation PC previously mentioned in MOCAP, with hardware

46

: Transition between the simple sign for the letter

rates blending. Notice that the right

hand stays in position instead of returning to the rest position.

also suffers mildly from the lack of special handling of the

imbs to look unnatural at certain

configurations. Fortunately, methods are available to remedy these problems [52] [54].

demonstrates one of the worst SSD artifacts of the system.

: The right elbow loses part of its thickness while signing

From a performance point of view, the implemented system can be considered very

successful. On the same workstation PC previously mentioned in MOCAP, with hardware

47

acceleration for 3D graphics using an NVIDIA 8400M GS graphics adapter, the playback

application achieved frame rates between 550 fps to 700 fps in our tests (at 400x600 image

resolution and 24 bit color depth, using OpenGL without frame rate limiting and no

Vsync).

5.3. Communication

While the playback application is running, the sign animations are loaded on demand

and kept in memory as long as there is memory available. Assuming the database is housed

on another server, the bandwidth requirements for connecting the server can be calculated

with the expression bandwidth = (size of a frame) x (frame rate). Size of a frame is the size

of the parameter vector for a frame, which is 123 x 8 = 984 bytes, assuming the parameters

are stored as 8 byte doubles. Hence, for the attained MOCAP frame rate, 77 fps, the

bandwidth required is 984 x 77 = 75,768 bytes per second (Bps) or 606,144 bits per second

(bps). This requirement reduces to 984 x 20 = 19,680 Bps or 157,440 bps for the minimum

frame rate required for the moving picture illusion. Both numbers are practical with a

modern digital subscriber line (DSL) connection.

Since actual images are transferred between the renderer and the final client, the

bandwidth requirements are much higher. Uncompressed video at 400x600 image

resolution and 24 bit color depth at 20 fps requires a 400 x 600 x 24 x 20 = 115,200,000

bps connection. While such rates are only possible in local area networks (LAN), it is

possible to reduce these requirements by reducing the resolution and color depth or

compressing the produced video.

5.4. Additional Discussion

Once system tests are done in the execution phase, a number of other results emerge.

For instance, the need for facial expressions is stressed once again. As it is currently

implemented, the virtual actress lacks any expression whatsoever. At this state, she looks

little more than a humanoid robot. Some form of expression must be fed to the face of the

actress if she is to look like a human at all.

48

The lack of facial expressions is also exaggerated by the availability of 3D

navigation in the playback application. At the default pose, the virtual actress is

conveniently looking forward, at the camera. If the camera is moved, however, the actress

needs to react, just as a real human would, by turning to look at the camera, even if with

her eyes only. The current implementation, however, fixes the eyes to look forward,

regardless of the position of the camera, preventing the user from feeling communicated to.

The lack of head movement support in the system also limits the realism of the

virtual actress. Our system has temporarily attached the head to the chest bone of the

model. This provides a suitable placement of the head, but does not allow it any

independent movement. On the contrary, a real person moves his or her head even when

idle.

49

6. CONCLUSIONS

6.1. Highlights

Generally speaking, the implemented system can be considered a successful frontend

to any sign producing application. As long as the application implements the concatenative

sign synthesis model, this frontend can be exploited. Furthermore, since no assumptions

are made about the particular sign language represented in the database, the system can

virtually support any language.

The system provides not only synthesis and playback of signs, but also high quality

realtime rendering of a virtual actress. The realism of the renders provided by the system is

notable, as the quality is certainly above common implementations.

An even more important achievement of the system is its realtime performance. With

realtime rendering, the playback module can be used in any interactive 3D application.

Moreover, there is no limitation on using a different virtual actor to suit the needs of

different future requirements.

Finally, the fact that the system was designed to support the broadly recognized BVH

format is also an asset. While the current database contains a realistic set of signs, it can

easily be extended with more, provided they are in BVH format. There is no restriction on

the source of the sign data either. Besides MOCAP, the system would work equally well

with authored animations, as long as they can be provided in BVH format. Note that,

supporting skeletal animation data for input is also a strategically sound choice; as such

data can be easily manipulated to be used in or adapted from other projects.

6.2. Future Directions

Aiming to be the frontend of a sign tutoring tool, this work is limited in its goal and

feature set. Yet, there are many areas that can benefit from improvements.

50

6.2.1. Facial Expressions and Eye Movements

As discussed before, facial expressions are a definite requirement in a system such as

ours. They are important for the perception of reality in the virtual actor and an integral

part of many sign languages, so they must be supported if the system is to remain generic.

Eye control is another important feature that is missing. Real social interactions involve the

two parties actively look at each other, but our actress only looks ahead.

Our implementation does not reproduce facial expressions, because there is no data

source for generating them. In particular, a video processor is required to capture the facial

expressions along with the MOCAP data so that the data can be fed to a facial expression

synthesizer. However, our work does incorporate the Xface engine so that it can properly

support such an extension as soon as a data source is available. Xface also supports full

control of eye movements. A future extension of our work can easily use the Xface engine

to actively direct the actress’ eyes to look at the camera. Moreover, since our model is

directed by a well defined skeleton structure, she can also be programmed to turn partially

to the camera with her body.

6.2.2. Head Movements

It was already stated that head movements are necessary if the actress is idle. In

addition, many sign languages actively use head movements, just like facial expressions.

Hence, our system must be extended to support them in the future.

Currently, the head is attached properly to the body at the chest joint but never

moves. However, a recent improvement in our MOCAP hardware added proper head

MOCAP support. The motions of the head are recorded on dedicated joints in the skeleton

and can be reproduced on the virtual actress. To support the head motions with our

implementation, the only necessary change is to attach the head to the appropriate neck

bone instead.

51

When the head movements are independently supported and there are two separate

engines to support the face and the body, as in our system, there is often a unification

problem. Specifically, the meshes for the head and the body are separate and do not

reproduce the elastic skin between them when moved in different directions. This problem

does not arise in our system, because we do have head motion data to drive the head

independently. If the system is extended to support such data, the easiest solution would be

to manually create polygons between the border vertices of the head and the body meshes.

As the vertices are deformed, the polygons will stretch and create an elastic skin effect.

6.2.3. Retargeting

An important extension would be supporting retargeting, manually or automatically,

of the motion data to virtual models with different skeleton topologies. Our

implementation currently requires that the virtual model have the same skeleton as the

MOCAP model. We also implement basic support for retargeting on the software side

while building the database, but do not do retargeting itself. The benefits of retargeting are

twofold. First it would allow other, significantly different, models be used in the

visualization, without modifying the database of MOCAP data. Second, it would allow the

database to be extended with MOCAP data taken from other actors or other MOCAP

systems, which may produce different skeleton topologies.

6.2.4. Additional Improvements

The MOCAP data of our system are manually entered into the database and the sign

sequence is acquired from the user interface controls. In return, the output visualization is

produced in the application’s own window. It is possible to move all of these data streams

into generic inputs and output. For instance, the database can be directly constructed from

the command line with the names of separate BVH files, the sign sequence also expected

from the command line and the output can be directed to a generic operating system

window. If all of these interfaces are made generic, the system can be embedded in any

other system without modification. The ouput can be even more generalized by producing

52

VRML output (since 3D models are already available) instead of a rendering for better

network performance, should the application be distributed.

Our system is tuned for our specific models, skeletons and meshes. However, with

other digital data, substantial rearrangement may need to be done. While our code is

designed to be easily adaptable to other models, it does not provide an external interface to

do these settings without rebuilding the binaries. The addition of a few GUI screens of

command line parameters could make the system a lot more useful.

Finally, an obvious improvement of any system involving a database is the extension

of the database with more data. Our system is no exception. Since there is no restriction on

the signs the system can store, synthesize and play, it is only natural to expect that the

database will be extended with more signs in the future.

APPENDIX A:

This document is a guide to the operation of our Sign

system. The system is comprised of software

realtime, 3D sign animations of

combining sign definitions that are fetched from a sign database in order specified by a

sign list. The sign list is built from end user’s input

MOCAP data for each sign.

The operation of the system

logically applies to one type of

system operators to prepare the application data files that are used during the execution

phase. The data files include the virtual actress model and the sign data

phase spans the query-response loop

the end user. The rest of this document describes the operation of the system from the point

of view of these users.

APPENDIX A: SYSTEM OPERATION GUIDE

This document is a guide to the operation of our Sign Language Animation

e system is comprised of software and data files that

realtime, 3D sign animations of a virtual actress. The animations are obtained by

combining sign definitions that are fetched from a sign database in order specified by a

sign list. The sign list is built from end user’s input, whereas

MOCAP data for each sign.

Figure A.1. System overview.

The operation of the system (Figure) can be explained in two phases, each of whic

logically applies to one type of user. The initialization phase is normally carried out by

system operators to prepare the application data files that are used during the execution

phase. The data files include the virtual actress model and the sign data

response loop of the system, which creates and plays animations

the end user. The rest of this document describes the operation of the system from the point

53

GUIDE

Language Animation Synthesis

that are used to generate

The animations are obtained by

combining sign definitions that are fetched from a sign database in order specified by a

the database contains

can be explained in two phases, each of which

. The initialization phase is normally carried out by

system operators to prepare the application data files that are used during the execution

phase. The data files include the virtual actress model and the sign database. The execution

, which creates and plays animations for

the end user. The rest of this document describes the operation of the system from the point

A.1.1. Motion Capture

To be able to construct sign animation sequences, first, a database of sign definitions

is required. The definitions are obtained through MOCAP, the first task in the initialization

phase. While any MOCAP system can be used to capture

currently uses a Shapewrap III system by Measurand Inc.

Figure

Shapewrap III is a magnetic MOCAP system that can track most of the limbs of an

actor, including the legs and the fingers. T

ShapeRecorder for Microsoft Windows to record the captured motion data. ShapeRecorder

does not connect to the sensors directly. Instead, it connects to a data concentrator box that

is mounted on the actor a

ShapeRecorder and the data

LAN) or wireless (IEEE 802.11

“ShapeRecorder”). In contrast,

sensor hubs with cables, over proprietary protocols

A.1.1.1. Mounting the Sensors.

is to mount the sensors and the data concentrator to the actor using the provided Velcro

A.1. Initialization: Operator’s Manual

Motion Capture

o be able to construct sign animation sequences, first, a database of sign definitions

The definitions are obtained through MOCAP, the first task in the initialization

While any MOCAP system can be used to capture the sign definitions, the system

currently uses a Shapewrap III system by Measurand Inc.

Figure A.2. ShapeWrap III MOCAP system.

is a magnetic MOCAP system that can track most of the limbs of an

actor, including the legs and the fingers. The system includes a software application, called

ShapeRecorder for Microsoft Windows to record the captured motion data. ShapeRecorder

does not connect to the sensors directly. Instead, it connects to a data concentrator box that

is mounted on the actor along with the sensors. The communication between

ShapeRecorder and the data concentrator can be wired (Ethernet based

IEEE 802.11 wireless local area network, WLAN

). In contrast, the data concentrator is connected to the sensors

, over proprietary protocols (Figure).

Mounting the Sensors. To capture motion data with Shapewrap

is to mount the sensors and the data concentrator to the actor using the provided Velcro

54

o be able to construct sign animation sequences, first, a database of sign definitions

The definitions are obtained through MOCAP, the first task in the initialization

the sign definitions, the system

is a magnetic MOCAP system that can track most of the limbs of an

he system includes a software application, called

ShapeRecorder for Microsoft Windows to record the captured motion data. ShapeRecorder

does not connect to the sensors directly. Instead, it connects to a data concentrator box that

long with the sensors. The communication between

Ethernet based local area network,

wireless local area network, WLAN with SSID

entrator is connected to the sensors through

To capture motion data with Shapewrap III, the first step

is to mount the sensors and the data concentrator to the actor using the provided Velcro

55

straps, belt, hat and vest, according to the Shapewrap III manual. There are three

orientation sensors, connected to a single sensor hub. One is attached to the back of the

head, one to the back of the waist and the other, which is embedded inside the hub, on the

back of the actor. Arm sensors are thick black strips and are attached to the outside of

either forearm in parallel, minding orientation (the right way up). Hubs of the arm sensors

are attached to the upper arms. The hand sensor hubs are mounted on the outside of the

wrists and the sensors themselves, thin blue strips, are inserted into the slits in the gloves.

Cabling should also be completed before the system is turned on. In particular, there

should be a data cable from each sensor hub to the data concentrator. The cables and the

available data concentrator slots are equivalent and can be used interchangeably. However,

note that sensor to hub connections are somewhat flimsy and can get disconnected. It is

recommended to check them regularly, although the data concentrator also signals

disconnections with beeps.

A.1.1.2. Connecting. ShapeRecorder can connect to the data concentrator over LAN or

WLAN. If wireless connection is preferred, the wireless access point must be turned on

prior to powering the data concentrator. For wired connections, the wireless access point

must be turned off.

When powered on (through a battery or AC adapter), the data concentrator first

powers the sensor hubs, causing their red lights to turn on and then looks for the wireless

access point to connect to. If the access point is active, wireless connection is made to the

access point, after which the concentrator will assume the IP number 10.0.0.251 and emit

four beeps to signal connection complete. At this point, the workstation PC should also be

connected to the access point, through wireless or wired methods. If the data concentrator

cannot find an access point, it attempts wired connection over the Ethernet port and takes

the IP 10.0.0.250 instead, emitting two series of four beeps in the process. If the data

concentrator can be pinged from the workstation PC, the connection is successful.

A.1.1.3. Starting ShapeRecorder. ShapeRecorder also supports serial connections, hence if

the PC has serial ports (e.g. virtual ports for Bluetooth), they must be disabled before

56

launching the software. Once launched, ShapeRecorder looks for available data ports and

should eventually discover the data concentrator on the network, if connection is

successfully made.

Next, the detected sensors are shown and the ones to use in the MOCAP session are

asked. Normally, all the sensors are used. Finally, ShapeRecorder requests a subject file

from the user.

A.1.1.4. Preparing a Subject File and Calibration. A subject file is used to match the

virtual skeleton to the MOCAP actor. To prepare a subject file, the operator must follow

the instructions in the model link wizard of ShapeRecorder.

Before capturing motion data, the model has to be well calibrated. It is recommended

that the calibration procedure is carried out before recording each movement. To calibrate

ShapeRecorder, the software is instructed to reset its internal offsets in homing pose by

clicking the homing button in the tape control window, while the actor puts out his hands

in front, assuming the home pose. Once this process is done, the 3D preview in the

software should reflect the actual pose of the actor. If it does not, or if there is drift in the

preview, homing should be repeated.

A.1.1.5. Recording Data. If preparation and calibration is correct, recording can be

initiated by the record raw data file option in ShapeRecorder. This brings up the recording

control window, already recording. When done, the stop button should be clicked and data

should be exported into a BVH file.

When recording signs for use in this system, care should be taken to have the actor in

the same pose in the beginning and at the end of every sign. This is required to improve

blending performance during playback. In addition, the first and the last 1 second part of

the movement, called the attack and the decay, should only involve moving out of or into

this pose. The attack and decay may be overwritten during blending and hence should not

contain expressive poses.

57

A.1.2. Database Construction

Once the BVH files for the signs are available, the database can be constructed. The

system keeps a sign database integrated into the skeleton file for the virtual actress for

performance and integrity reasons. Hence, to construct the database, the virtual actress

model must be built.

A.1.2.1. System Requirements. SignDBEditor is a simple application that is used to

construct and edit databases for use in this system. SignDBEditor runs on Microsoft

Windows XP or newer operating system, and requires a 2 Ghz CPU, 1 GB of RAM and 60

MB free disk space (shared with SignPlayer).

A.1.2.2. Using SignDBEditor. When first launched, SignDBEditor asks the user for a

compatible model or skeleton file to initialize the user interface with. If there are signs

specified in the skeleton file, they are loaded into memory and displayed to the user in an

animation list window for editing or removal.

An animation can be removed from the memory by clicking on the dedicated remove

button. A dedicated add button is also present, that, when clicked, causes the user to be

prompted for a BVH file to load. Then, the animation extracted from the BVH file is

loaded into memory and added to the animation list. The animations in the animation list

are named automatically with their filenames when first loaded. This default name can be

overridden with the F2 key.

When the list of animations is adequate for exporting into a database, the database

file can be written by clicking on the OK button. At this step, SignDBEditor also allows

the data to be written to another database file, still based on the skeleton in memory, if the

user so desires.

58

A.1.3. 3D Design

The two digital assets of the system are the virtual actress model and the Xface head

model. The virtual actress can be modeled in any standard modeling software and

exported, as long as it uses the exact same skeleton as the MOCAP data. One of the BVH

files can be imported by the software to obtain the skeleton, to which the mesh can be

bound. The bone naming convention in original BVH files must be maintained in the

model (except for the end affecters, which can be named with their parent, suffixed by a

“_End”). In particular, a bone named “Chest” must exist so that it can be used to attach the

Xface model to.

To model an Xface head, FaceGen software must be used. For more detail on this

process, Xface documentation should be consulted.

A.2. Execution: End User’s Manual

A.2.1. System Requirements

The sign animations are generated and played with a dedicated application, called

SignPlayer. SignPlayer runs on Microsoft Windows XP or newer operating system, and

requires a 2 Ghz CPU, 1 GB of RAM and 60 MB free disk space (shared with

SignDBEditor). While it will detect and, if available, use it through OpenGL, SignPlayer

does not require hardware acceleration for graphics.

A.2.2. User Interface and Tasks

SignPlayer features a hybrid user interface that works in both 2D and 3D style. The

2D interface is comprised of a number of controls, namely an edit box to type a list of

signs to play, a read-only text box indicating the sign that is currently played by the actress

and two buttons; a play button to initiate playback and another to quit the application. The

user can move the mouse to control a pointer around the screen and use the left mouse

button to activate the controls that are interactive. For instance, the user can end the

application by clicking on the quit b

Behind the controls, SignPlayer draws the virtual actress in its current mode in 3D

(Figure A.). The 3D display can be manipulated after being

button. When active the mouse is used to control the position and orientation of the 3D

camera. Namely, horizontal movements rotate the camera around the Y axis and vertical

movements around the X axis. Rotation around the Z axis is achieved b

middle button down while moving the mouse horizontally. Finally, the roller can be used

to move the camera forward or backward in its line of sight

A.2.3. Playing Sign Animations

SignPlayer has two modes of

virtual actress looping an idle animation. The application stays in the idle mode

indefinitely, until the user instructs it to switch to playback mode.

button to activate the controls that are interactive. For instance, the user can end the

application by clicking on the quit button.

Behind the controls, SignPlayer draws the virtual actress in its current mode in 3D

display can be manipulated after being activated via the

button. When active the mouse is used to control the position and orientation of the 3D

camera. Namely, horizontal movements rotate the camera around the Y axis and vertical

movements around the X axis. Rotation around the Z axis is achieved b

middle button down while moving the mouse horizontally. Finally, the roller can be used

to move the camera forward or backward in its line of sight.

Figure A.3. SignPlayer user interface.

Playing Sign Animations

SignPlayer has two modes of execution. Initially, it is in idle mode and displays the

virtual actress looping an idle animation. The application stays in the idle mode

indefinitely, until the user instructs it to switch to playback mode.

59

button to activate the controls that are interactive. For instance, the user can end the

Behind the controls, SignPlayer draws the virtual actress in its current mode in 3D

activated via the right mouse

button. When active the mouse is used to control the position and orientation of the 3D

camera. Namely, horizontal movements rotate the camera around the Y axis and vertical

movements around the X axis. Rotation around the Z axis is achieved by keeping the

middle button down while moving the mouse horizontally. Finally, the roller can be used

execution. Initially, it is in idle mode and displays the

virtual actress looping an idle animation. The application stays in the idle mode

60

To request sign playback, first, the list of signs must be entered into the edit box. The

list of signs is a simple string, where each character, including spaces, represents a

different sign. In ordering the signs, the list assumes the left to right order the characters

are used in the string. The characters should be lowercase and in English whenever

possible. For specific Turkish characters, the related capital letter is used instead. For

instance, to request the sign for “ğ”, one needs to type “G”. In case a sign is not

recognized, it is simply ignored.

Once the sign list is specified, playback can be initiated by clicking on the play

button. In response, SignPlayer first completes the current idle loop of the virtual actress

and then directs her to play the sign animations specified in the sign list, in order. The

signs are continuously played one after the other and cannot be interrupted or cancelled. As

the actress plays the signs, the name of the sign currently being played is displayed in the

read-only text box. When playing the sign list is complete, the application returns to the

idle mode, expecting additional playback requests while playing the idle loop.

61

APPENDIX B: BVH FILE FORMAT SPECIFICATION

The Biovision Hierarchy (BVH) file format was originally developed by Biovision to

store and carry motion capture data. It can contain both specification of skeleton

hierarchies and motion data to animate them.

B.1. Description of File Contents

A BVH file is actually an ASCII text file, commonly structured with whitespace. The

keywords and punctuation can be separated by any combination of spaces, tabs and

newlines. Throughout the file, numeric values are specified in decimal form, angles in

degrees and time values are in seconds. The contents of a BVH file are organized into two

sections, as described below.

B.1.1. Hierarchies

The first section describes the skeleton hierarchies driven by the motion data. The

section begins with the keyword “HIERARCHY”. Next, the skeletons are described

sequentially. A skeleton description is actually a hierarchical definition of joints, starting

with the root joint. The description of the root joint starts with the keyword “ROOT”,

followed by a name for the root bone. Internal joints are specified by the keyword

“JOINT”, followed by a name, instead. The end affecters are donated with the “End Site”

keyword and do not have names.

Following the name, the offsets of a joint are specified after a single curly brace “{“

with the keyword “OFFSET”. Following this keyword are the X, Y and Z offsets of the

joint, relative to its parent, also describing its base pose. The next part is used to indicate

which part of the motion data is used to direct this particular joint. First is the keyword

“CHANNELS”, followed by an integer, the number of parameters in the parameter vector

that correspond to this particular joint. Typically, the root joint has six parameters and the

rest of the joints have only three. End affecters do not specify joints and hence, do not have

62

channels. Following the channel count are the channel labels, the number of which should

match the number of parameters as specified. The labels can be one of the preset keywords

“Xposition”, “Yposition”, “Zposition”, “Xrotation”, “Yrotation” or “Zrotation” and

indicate how to use the particular parameter obtained from the parameter vector. Note that

the order the channels are specified is also used when the transformation matrices of the

associated transformations are multiplied. In other words, if “Zrotation” comes before

“Xrotation”, the rotation matrices are multiplied as LzLx.

Unless the joint is an end affecter, next, the child joints described in order. Finally,

the root, joint or end affecter specification is completed with a single curly brace “}”.

B.1.2. Motion

The second section starts with the “MOTION” keyword, followed by the “Frames: “

keyword. Next, the number of frames specified in the motion section is located, which is

an integer. Following this values, the playback rate is specified with the “Frame Time:”

keyword followed by the frame time. The rest of the file is a sequence of parameter

vectors, the count of which is equal to the number of frames specification. Each parameter

vector is a simple sequence of real numbers in the order the joints and their channels are

specified.

B.2. Common Conventions

While whitespace can be used liberally for formatting a BVH file, there are a few

conventions that have found widespread adoption. Namely, the “HIERARCHY” and

“MOTION” keywords and curly braces are usually placed on a line by themselves and

joint specifications, including the braces themselves, are usually indented with tabs to

indicate their level in the hierarchy. These conventions are honored in the sample file that

follows.

63

Figure B.1. A sample BVH file: The file contains just a simplified upper torso model and a

100 millisecond, two frame animation.

HIERARCHY

ROOT Hips

{

 OFFSET 0.00 0.00 0.00

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation

 JOINT Chest

 {

 OFFSET 0.00 8.00 0.00

 CHANNELS 3 Zrotation Xrotation Yrotation

 JOINT LeftArm

 {

 OFFSET 5.00 2.00 1.00

 CHANNELS 3 Zrotation Xrotation Yrotation

 JOINT LeftHand

 {

 OFFSET 0.00 -8.00 0.00

 CHANNELS 3 Zrotation Xrotation Yrotation

 End Site

 {

 OFFSET 0.00 -6.00 0.00

 }

 }

 }

 JOINT RightArm

 {

 OFFSET -5.00 2.00 1.00

 CHANNELS 3 Zrotation Xrotation Yrotation

 JOINT RightHand

 {

 OFFSET 0.00 -8.00 0.00

 CHANNELS 3 Zrotation Xrotation Yrotation

 End Site

 {

 OFFSET 0.00 -6.00 0.00

 }

 }

 }

 }

}

MOTION

Frames: 2

Frame Time: 0.05

 0.00

 0.00 0.00 0.00 0.00 5.00 0.00 -5.00 0.00 5.00 45.00 0.00 0.00 -90.00 0.00 0.00 0.00 -15.00 0.00 0.00 -135.00 0.00

64

B.3. Grammar

The BVH file format can be more properly specified using a grammar for the file

structure (excluding integrity requirements) as follows.

Figure B.2. BVH file format grammar: The top object is bvhFile. Note that unquoted

spaces represent whitespace.

bvhFile: hierarchySection motionSection

hierarchySection: hierarchyHeader hierarchyData

hierarchyHeader: “HIERARCHY”

hierarchyData: skeleton+

skeleton: rootJoint

rootJoint: “ROOT” name { offsetSection channelSection joint* }

offsetSection: “OFFSET” real real real

channelSection: “CHANNELS” integer real+

joint: internalJoint | endAffecter

internalJoint: “JOINT” name { offsetSection channelSection joint* }

endAffecter: “End Site” { offsetSection }

motionSection: motionHeader frameCountSpec frameTimeSpec motionData

motionHeader: “MOTION”

frameCountSpec: “Frames:” integer

frameTimeSpec: “Frame Time:” real

motionData: parameterVector*

parameterVector: parameter+

parameter: real

name: string

string: alpha+ alphanumeric*

alpha: {“A”-“Z”} | {“a”-“z”}

alphanumeric: alpha | digit | “_”

integer: sign digit+

real: integer | sign digit+ “.” digit+

digit: {“0”-“9”}

sign: “” | “+” | “-”

65

REFERENCES

1. Kochanek, Doris H. U. and Richard H. Bartels, "Interpolating Splines with Local

Tension, Continuity, and Bias Control," ACM SIGGRAPH Computer Graphics, pp. 33-

41, 1984.

2. Steketekee, Scott N. and Norman I. Badler, "Parametric Keyframe Interpolation

Incorporating Kinetic Adjustment and Phrasing Control," ACM SIGGRAPH Computer

Graphics, vol. 19, no. 3, pp. 255-262, 1985.

3. Baecker, Ronald M., "Picture Driven Animation," in AFIPS Joint Computer

Conferences, Boston, Massachusetts, pp. 273-288, 1969.

4. Burtnyk, N. and Wein M., "Interactive Skeleton Techniques for Enhancing Motion

Dynamics in Key Frame Animation," Communications of the ACM, vol. 19, no. 10, pp.

569-569, 1976.

5. Zeltzer, D., "Motor Control Techniques for Figure Animation," IEEE Computer

Graphics and Applications, vol. 2, no. 9, pp. 53-59, 1982.

6. Watt, A. and M. Watt, Advanced Animation and Rendering Techniques, Peter Wegner,

Ed., ACM Press, New York, New York, 1992.

7. Barr, Alan H., "Global and Local Deformations of Solid Primitives," in International

Conference on Computer Graphics and Interactive Techniques, pp. 21-30, 1984.

8. Sederberg, Thomas W. and Scott R. Parry, "Free Form Deformation of Solid

Geometric Models," in International Conference on Computer Graphics and

66

Interactive Techniques, pp. 151-160, 1986.

9. Korein, J. U. and Norman I. Badler, "Techniques for Generating the Goal-Directed

Motion of Articulated Structures," IEEE Computer Graphics and Applications, vol. 2,

no. 9, pp. 71-81, 1982.

10. Girard, Michael and A. A. Maciejewski, "Computational Modeling for the Computer

animation of Legged Figures," in International Conference on Computer Graphics and

Interactive Techniques, pp. 263-270, 1985.

11. Girard, Michael, "Interactive Design of 3-D Computer-Animated Legged Animal

Motion," in Symposium on Interactive 3D Graphics, pp. 131-150, 1987.

12. Badler, Norman I., K. H. Manoochehri, and G. Walters, "Articulated Figure

Positioning by Multiple Constraints," IEEE Computer Graphics and Applications, vol.

7, no. 6, pp. 28-38, 1987.

13. Zhao, J. and Norman I. Badler, "Real Time Inverse Kinematics with Joint Limits and

Spatial Constraints," University of Pennsylvania, Technical Report MS-CIS-89-09,

1989.

14. Phillips, Cary B., J. Zhao, and Norman I. Badler, "Interactive Real Time Articulated

Figure Manipulation Using Multiple Kinematic Constraints," in Symposium on

Interactive 3D Graphics, pp. 245-250, 1990.

15. Zhao, J. and Norman I. Badler, "Inverse Kinematics Positioning Using Nonlinear

Programming for Highly Articulated Figures," ACM Transactions on Graphics, vol.

13, no. 4, pp. 313-336, 1994.

16. Lee, J. and S. Y. Shin, "A Hierarchical Approach to Interactive Motion Editing for

67

Human-Like Figures," in International Conference on Computer Graphics and

Interactive Techniques, pp. 39-48, 1999.

17. Tolani, Deepak, Ambarish Goswami, and Norman I. Badler, "Real Time Inverse

Kinematics Techniques for Anthropomorphic Limbs," Graphical Models and Image

Processing, vol. 62, no. 5, pp. 353-388, 2000.

18. Phillips, Cary B. and Norman I. Badler, "Interactive Behaviors for Bipedal Articulated

Figures," ACM SIGGRAPH Computer Graphics, vol. 25, no. 4, pp. 359-362, 1991.

19. Hahn, J. K., "Realistic Animation of Rigid Bodies," ACM SIGGRAPH Computer

Graphics, vol. 22, no. 4, pp. 299-308, 1988.

20. Barzel, Ronen and Alan H. Barr, "A Modeling System Based on Dynamic

Constraints," in International Conference on Computer Graphics and Interactive

Techniques, pp. 179-188, 1988.

21. Terzopoulos, Demetri, John Platt, Alan Barr, and Kurt Fleischer, "Elastically

Deformable Models," in International Conference on Computer Graphics and

Interactive Techniques, pp. 205-214, 1987.

22. Barr, Alan H. and John Platt, "Constraints Methods for Flexible Models," in

International Conference on Computer Graphics and Interactive Techniques, pp. 279-

288, 1988.

23. Armstrong, William W. and Mark W. Green, "The Dynamics of Articulated Rigid

Bodies for Purposes of Animation," The Visual Computer, vol. 1, no. 4, pp. 231-240,

1985.

24. Wilhelms, J. and B. A. Barsky, "Using Dynamic Analysis to Animate Articulated

68

Bodies such as Humans and Robots," Canadian Information Processing Society

Graphics Interface, pp. 97-104, 1985.

25. Wilhelms, J., "Using Dynamic Analysis for Realistic Animation of Articulated

Bodies," IEEE Computer Graphics and Applications, vol. 7, no. 6, pp. 12-27, 1987.

26. Armstrong, William W., M. Green, and R. Lake, "Near-Real-Time Control of Human

Figure Models," IEEE Computer Graphics and Applications, vol. 7, no. 6, pp. 52-61,

1987.

27. Cohen, Michael F., "Interactive Spacetime Control for Animation," ACM SIGGRAPH

Computer Graphics, vol. 26, no. 2, pp. 293-302, 1992.

28. Isaacs, Paul M. and Michael F. Cohen, "Controlling Dynamic Simulation with

Kinematic Constraints," ACM SIGGRAPH Computer Graphics, vol. 21, no. 4, pp. 215-

224, 1987.

29. Witkin, Andrew and Michael Kass, "Spacetime Constraints," in Computer Graphics

and Interactive Techniques, pp. 159-168, 1988.

30. Willmert, K. D., "Graphic Display of Human Motion," in ACM Annual

Conference/Annual Meeting, pp. 715-719, 1978.

31. Potter, T. E. and K. D. Willmert, "Three Dimensional Human Display Model," in

International Conference on Computer Graphics and Interactive Techniques, pp. 102-

110, 1975.

32. Badler, Norman I., J. O'Rourke, and H. Toltzis, "A Spherical Representation of a

Human Body for Visualizing Movement," in IEEE, pp. 1397-1403, 1979.

69

33. Catmull, Edwin, "A System for Computer Generated Movies," in ACM Annual

Conference/Annual Meeting, pp. 422-431, 1972.

34. Badler, Norman I. and Stephen W. Smoliar, "Digital Representations of Human

Movement," ACM Computing Surveys, vol. 11, no. 1, pp. 19-38, 1979.

35. Chadwick, J. E., D. R. Haumann, and R. E. Parent, "Layered Construction for

Deformable Animated Characters," in International Conference on Computer Graphics

and Interactive Techniques, pp. 243-252, 1989.

36. Chen, David T. and D. Zeltzer, "Pump It Up: Computer Animation of a

Biomechanically Based Model of Muscle Using the Finite Element Method," in

International Conference on Computer Graphics and Interactive Techniques, pp. 89-

98, 1992.

37. Thalmann, Daniel, J. Shen, and E. Chauvineau, "Fast Human Body Deformations for

Animation and VR Applications," in Computer Graphics International, p. 166, 1996.

38. Wilhelms, J. and A. Van Gelder, "Anatomically Based Modeling," in International

Conference on Computer Graphics and Interactive Techniques, pp. 173-180, 1997.

39. Scheepers, F., R. E. Parent, W. E. Carlsson, and S. F. May, "Anatomy-Based Modeling

of the Human Musculature," in International Conference on Computer Graphics and

Interactive Techniques, pp. 163-172, 1997.

40. Nedel, Luciana Porcher and Daniel Thalmann, "Modeling and Deformation of the

Human Body Using an Anatomically-Based Approach," in Computer Animation, pp.

34-40, 1998.

41. Cani-Gascuel, M.P. and M. Desbrun, "Animation of Deformable Models Using

70

Implicit Surfaces," IEEE Transactions on Visualization and Computer Graphics, vol.

3, no. 1, pp. 39-50, 1997.

42. Aubel, A. and D. Thalmann, "Realistic Deformation of Human Body Shapes," in

Computer Animation and Simulation, pp. 125-135, 2000.

43. Magnenat-Thalmann, N., R. Laperriere, and D. Thalmann, "Joint-Dependent Local

Deformations for Hand Animation and Object Grasping," in Graphics Interface, pp.

26-33, 1988.

44. Hodgins, J. K., W. L. Wooten, D. C. Brogan, and James F. O'Brien, "Animating

Human Athletics," in International Conference on Computer Graphics and Interactive

Techniques, pp. 71-78, 1995.

45. Singh, K. and E. Kokkevis, "Skinning Characters Using Surface Oriented Free Form

Deformations," in Graphics Interface, pp. 35-42, 2000.

46. Lewis, J. P., M. Cordner, and N. Fong, "Pose Space Deformation: A Unified Approach

to Shape Interpolation and Skeleton Driven Deformation," in International Conference

on Computer Graphics and Interactive Techniques, pp. 165-172, 2000.

47. Sloan, P. P., C. F. Rose, and Michael F. Cohen, "Shape by Example," in Symposium on

Interactive 3D Graphics, pp. 135-143, 2001.

48. Kry, P. G., D. L. James, and D. K. Pai, "EigenSkin: Real Time Large Deformation

Character Skinning in Hardware," in Symposium on Computer Animation, pp. 153-159,

2002.

49. Bloomenthal, Jules, "Medial Based Vertex Deformation," in Symposium on Computer

71

Animation, pp. 147-151, 2002.

50. Wang, X. C. and C. Phillips, "Multi Weight Enveloping: Least Squares Approximation

Techniques for Skin Animation," in Symposium on Computer Animation, pp. 129-138,

2002.

51. Mohr, Alex and Michael Gleicher, "Building Efficient, Accurate Character Skins from

Examples," ACM Transactions on Graphics, vol. 22, no. 3, pp. 562-568, 2003.

52. Kavan, L. and J. Zara, "Real Time Skin Deformation with Bones Blending," in WSCG

Short Papers, pp. 69-74, 2003.

53. Shoemake, Ken, "Animating Rotation with Quaternion Curves," in Computer Graphics

and Interactive Techniques, pp. 245-254, 1985.

54. Kavan, L. and J. Zara, "Spherical Blend Skinning: A Real Time Deformation of

Articulated Models," in Symposium on Interactive 3D Graphics, pp. 9-16, 2005.

55. Kavan, L., S. Collins, J. Zara, and C. O'Sullivan, "Skinning with Dual Quaternions," in

Symposium on Interactive 3D Graphics, pp. 39-46, 2007.

56. Menache, Alberto, Understanding Motion Capture for Computer Animation and Video

Games, Morgan Kaufmann Publishers, San Francisco, CA, 2000.

57. Akita, Koichiro, "Image Sequence Analysis of Real World Human Motion," Pattern

Recognition, vol. 17, no. 1, pp. 73-83, 1984.

58. Rohr, K., "Towards Model Based Recognition of Human Movements in Image

Sequences," CVGIP: Image Understanding, vol. 59, no. 1, pp. 94-115, 1994.

72

59. D. M. Gavrila, L. S. Davis, "3D Model Based Tracking of Humans in Action: A Multi

View Approach," in Conference on Computer Vision and Pattern Recognition, p. 73,

1996.

60. Wren, C. R., A. Azarbayejani, T. Darrell, and A. P. Pentland, "Pfinder: Real-Time

Tracking of the Human Body," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 19, no. 7, pp. 780-785, 1997.

61. Moeslund, Thomas B. and Eric Granum, "A Survey of Computer Vision-Based Human

Motion Capture," Computer Vision and Image Understanding, vol. 81, no. 3, pp. 231-

268, 2001.

62. Moeslund, Thomas B., Adrian Hilton, and Volker Krüger, "A Survey of Advances in

Vision-Based Human Motion Capture and Analysis," Computer Vision and Image

Understanding, vol. 104, no. 2, pp. 90-126, 2006.

63. Aggarwal, J. K. and Q. Cai, "Human Motion Analysis: A Review," Computer Vision

and Image Understanding, vol. 73, no. 3, pp. 428-440, 1999.

64. Johansson, Gunnar, "Visual Perception of Biological Motion and a Model for its

Analysis," Gunn, vol. 14, no. 2, pp. 201-211, 1973.

65. Webb, J. A. and J. K. Aggarwal, "Structure from Motion of Rigid and Jointed Objects,"

Artificial Intelligence, vol. 19, no. 1, pp. 107-130, 1982.

66. Ward, Andy, Alan Jones, and Andy Hopper, "A New Location Technique for the

Active Office," IEEE Personal Communications, vol. 4, no. 5, pp. 42-47, 1997.

67. Raab, F. H., E. B. Blood, T. O. Steiner, and H. R. Jones, "Magnetic Position and

Orientation Tracking System," IEEE Transactions on Aerospace and Electronics

73

Systems, vol. 15, no. 5, pp. 709-718, 1979.

68. Miller, N., O. C. Jenkins, M. Kallmann, and M. J. Mataric, "Motion Capture from

Inertial Sensing for Untethered Humanoid Teleoperation," in IEEE-RAS International

Conference on Humanoid Robotics (Humanoids), Santa Monica, CA, 2004.

69. Vlasic, D. et al., "Practical Motion Capture in Everyday Surroundings," ACM

Transactions on Graphics (TOG), vol. 26, no. 3, 2007.

70. Sturman, David J., "Character Motion Systems," in ACM SIGGRAPH, 1994.

71. Loomis, Jeffrey, Howard Poizner, Ursula Bellugi, Alynn Blakemore, and John

Hollerbach, "Computer Graphic Modeling of American Sign Language," in

International Conference on Computer Graphics and Interactive Techniques, Detroit,

Michigan, pp. 105-114, 1983.

72. Lu, Shan, Seiji Igi, Hideaki Matsuo, and Yuji Nagashima, "Towards a Dialogue

System Based on Recognition and Synthesis of Japanese Sign Language," in Gesture

and Sign Language in Human-Computer Interaction., Springer Berlin / Heidelberg,

1998, pp. 259-271.

73. Zhao, Liwei et al., "A Machine Translation System from English to American Sign

Language," in In Association for Machine Translation in the Americas., Springer-

Verlag, 2000, pp. 54-67.

74. Sims, Ed, "Virtual Communicator Characters," ACM SIGGRAPH Computer Graphics,

vol. 34, no. 2, p. 44, 2000.

75. Prillwitz, S., R. Leven, H. Zienert, T. Hanke, and J. Henning, HamNoSys. Version 2.0 -

Hamburg Notation System for Sign Languages. An Introductory Guide, Signum Press,

74

Hamburg, 1989.

76. Bangham, J. A. et al., "Signing for the Deaf using Virtual Humans," IEE Digest, 2000.

77. Bangham, J. A. et al., "Virtual Signing: Capture, Animation, Storage and Transmission

- An Overview of the ViSiCAST Project," IEE Digest, 2000.

78. Kennaway, Richard, "Synthetic Animation of Deaf Signing Gestures," Lecture Notes In

Computer Science, Vol. 2298, pp. 146-157, 2001.

79. Zwitserlood, Inge, Margriet Verlinden, Johan Ros, and Sanny van der Schoot,

"Synthetic Signing for the Deaf: eSign," in Conference and Workshop on Assistive

Technologies for Vision and Hearing Impairment, Granada, Spain, 2004.

80. Solina, Franc, Slavko Krapez, and Alas Jaklic, "Multimedia Dictionary and Synthesis

of Sign Language," in Design and Management of Multimedia Information Systems,

Mahbubur Rahman Syed, Ed., Idea Group Publishing, 2001, pp. 268-281.

81. Grieve-Smith, Angus B., "Sign Language Synthesis Application Using Web3D and

Perl," in Lecture Notes in Computer Science Vol.2298, Ipke Wachsmuth and Timo

Sowa, Eds., Springer, 2001, pp. 134-145.

82. Havasi, Laszlo and Helga M. Szabo, "HANDY: Sign Language Synthesis from

Sublexical Elements Based on an XML Data Representation," in Lecture Notes in

Computer Science Vol. 3206., Springer Berlin / Heidelberg, 2004, pp. 73-80.

83. Havasi, Laszlo and Helga M. Szabo, "A Motion Capture System for Sign Language

Synthesis: Overview and Related Issues," in Lecture Notes in Computer Science Vol.

3804., Springer Berlin / Heidelberg, 2005, pp. 636-641.

75

84. Krnoul, Z., J. Kanis, M. Zelezny, and L. Müller, "Czech Text-to-Sign Speech

Synthesizer," in Lecture Notes in Computer Science, Vol. 4892., Springer Berlin /

Heidelberg, 2008, pp. 180-191.

85. Aran, O. et al., "SignTutor: An Interactive System for Sign Language Tutoring," IEEE

MultiMedia, vol. 16, no. 1, pp. 81-93, 2009.

86. Balci, Koray, "Xface: MPEG-4 Based Open Source Toolkit for 3D Facial Animation,"

in Working Conference on Advanced Visual Interfaces, 2004.

87. Balci, Koray, "Xface: Open Source Toolkit for Creating 3D Faces of an Embodied

Conversational Agent," Lecture Notes in Computer Science Vol. 3638, pp. 263-266,

2005.

88. Xface Web Site, http://xface.itc.it/

89. Shapewrap Web Site, http://www.motion-capture-system.com/shapewrap.html

90. Parent, Rick, Computer Animation Algorithms & Techniques, 2nd ed., Morgan

Kaufmann Publishers, Burlington, MA, USA, 2008.

