TURKISH SIGN LANGUAGE ANIMATION WITH ARTICULATED BODY MODEL

by
Turan Can Grel
B.S, in Computer Engineering, Middle East Technidgaiversity, 2002

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
Bogazici University
2010

TURKISH SIGN LANGUAGE ANIMATION WITH ARTICULATED BODY MODEL

APPROVED BY:

Prof. Lale Akarun

(Thesis Supervisor)

Assoc. Prof. Murat Saraglar...........................

Dr. Ali Vahit Sahiner

DATE OF APPROVAL: 03.05.2010

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supesvjdrofessor Lale Akarun, whose

insistent encouragement was the driving force enciimpletion of this work.

| appreciate the contributions of Alp Kindgto by acting in the motion capture of

the signs and preparation of the images of therlatphabet.

| also highly value the performance of Pinar Saimamreference sign videos.

Finally, I am thankful to Gokhan Uysal for his asance in creation of the digital
artwork used in this project.

ABSTRACT

TURKISH SIGN LANGUAGE ANIMATION WITH ARTICULATED
BODY MODEL

Demonstration of sign languages with the compugea potentially useful learning
aid for sign language learners. If implemented paraof a learning tool, one that includes
sign recognition as well, it will invaluable forquiding feedback to the learners, a most

needed contribution.

Human body animation and motion capture technotolgaese reached a point where
realistic virtual actors can perform plausible hunmaovements in realtime. For this, the
motion can be defined on a virtual human skelegither by design or by motion capture
methods, and then displayed over the skeleton whithees a realistic skin model,

visualizing the human body.

In this work we capture Turkish sign language fingpelling alphabet and semi-
automatically translate it into a visually appeglimodel. For capturing the sign language
we use a magnetic motion capture system. Themaybatk tool generates sign language

demonstrations interactively and in realtime in 3D.

OZET

EKLEML i VUCUT MODEL iYLE TURK ISARET DiLi
CANLANDIRMASI

Bilgisayar ile garet dili canlandirmasigaret dili Grenimi igcin 6nemli bir ara¢ olma
potansiyeli tamaktadir. Ozellikle garet tanima 6zellikleri de iceren bir paketin isare
eklenirse, @rencilere en ©6nemli eksiklerini, geri beslemeyi egigh bir arac elde

edilebilecektir.

Insan viicudunun canlandiriimasi ve hareket yakalantaknolojileri gercekei sanal
aktorlerin, gercek zamanda inandirici hareketleptygl uygulamalari arttk mamkin
kilmaktadir. Bunun icin hareketler sanal bir iskelézerinden tasarlanabilir ya da
yakalanabilir. Bu iskelet dipu bikulmeleri yapabilen de gercekci bir deri madel

yuratmek icin kullanilabilir.

Bu calsmada Turk garet dili harf alfabesini yakaladik ve yari otorkagekilde
gorsel olarak da cekici olan bir modelgithk. Hareketleri yakalamak icin manyetik bir
sistem kullandik. Daha sonra sunumlar pucin yazilms bir uygulama ile etkilgmli ve

gercek zamanda, 3B ortamdagbluruldu.

Vi

TABLE OF CONTENTS
ACKNOWLEDGEMENTS ... mmmm e i
AB ST R A C T <ottt e ettt et e e e et e et e e e e e e e e e e e ra e e e e aeraa s v
(@ Y74 = IR SRR v
LIST OF FIGURES ...ttt e e e e e e e e e e e nnnans X
LIST OF TABLES ... ettt e e e e e e e e e nmmn e e e e ennnn s Xil
1. INTRODUGCTION ...ttt ettt e e et et e e e e e eesas s aeaaeeeeeensnnaaaeannes 1
00 O Y (o 111 VZ= V[0 TP P PP PPPPPPP PP 1
1.2, RElAIEA WOTK ...ttt ettt e e e e 2
1.2.1. Animation and Keyframing e eeeeeeeeemuinmmninnneeeeeeeeseeesseseeseeeeeeens 2
1.2.2. Computer ANIMATIONcooieeie ettt e e e e e e e e e eeeeeeeeenneeeeeeeen 3
1.2.3. ANIMAtioN CONLIOLcooiiiiiiii e 4
1.2.4. Human Body ANIMAtiONccoeeisccccmmeeeeiniese s e s e e e e e eeeeeeeeeeeasesennssnnnnnnnnes 10
2R S T o) £ N = o (U = 13
1.2.6. Sign Language SYNTNESIS e eeeeeeeeeeiiiiiiiiiannaea e e e eeeeanaaeeeaaaes 16
1.3, CONIDULIONS ..ottt e e e e e e e e e 20
2. APPROACH AND METHODccoiiiiiiiiieeii et e e eeennmnnes 22
N R Y o 1810 0T 01 T PP PPN 22
2. 1.1 REAIISIM L.ttt 22
2.1.2. PerfOrMEANCEeiiiiiiiiiiiiiiiee ettt ee e e e e e 22
2.1.3. COMMUINICALIONeeiiiieiiiiieii e e e e eee e e e e e e e e e rmneee e e 23
2.1.4. Data ReUSADIIItY..........uueeiiiiiieeeeeeeeeeirs s e e e e e e eene e 23
2.2. APProaCh DECISIONS ...t eeeeeeee e e 23

2.3, SYSEEIM OVEIVIEW ...t et e ettt s e e e e e e e e e e e e e e e e eeaeeneeeeeeeeseennnns 24

Vii

2.3.1. Initialization PRASE..........uuuiiiieee e 24
2.3.2. EXECULION PRASE .. it e e e e e e e e e e e e e e e aeeeeneeeeanrnnnne 25
3. INTTIALIZATION . .ottt e e e e e e e e e e e e e nn e 26
3.1. Motion Capture of TUrkiSh SIgNScocoeeeeiiiiii 26
3.1.1. HArdWare SETUP......cceuuuuuueeeiiimmmmmmm e e e e e e e e et ettt e e eeaae e e e e e e e e aa s 26
G0t 2 o [TR o o] o = 27
3.1.3. The Capture PrOCESSccciiiiiscceeeeee ettt e e s e e e e e e e e e e e e eeeeesesennnneeeennnnes 28
3.2. Construction of the Sign Database.... . ceeeeeveeeeeiiiiiiiiiirie e e eeee e 31
IC 70 W \Y (o To (=1 Ao [B 1531 0] o R 31
3.2.2. Sign Collection and TaQQINGuuummmemmreeeiiiiiiiiiiiiiiiaaae e e e e eeeeeeeeeeaes 31
3.2.3. SigN REPOSILIONING.....cceeiieieiiiie e eree e e e e e e e e e e e 32
3.3. 3D Model and FAcCe DESIQNuuuuuuiiiieeeeieeeeeieeeeiiiiiiesss s e e e e e e e e e e e e e eeeeeeneaeeeeees 33
3.3.1. TR MOTEN ... e e e 33
3.3.2. TNE FACE ..t ettt e e e 34
3.3.3. Model and Face Merging ISSUES ... eeerererrremmmmmiinaaaeeeeaassesseseeeeeenes 35
L = O O N N [] PP 36
S o | IS 11 1= 2] PSP 37
N I I 10 [0] L TP PPPPPTRPPPIN 37
O 1S - Vg 1] o 37
G TR = 1 = o 1o Vo R 38
4.2. Articulated Body Animation and Rendering...........cccceeeeeiiiieiieiiiiiiiiiiineee 39
4.2.1. Forward KINEMALICS.........coeiiiiiiieeeeee i 39
4.2.2. DEfOIMEALIONeieiiiiie et ettt e e e e e e e 41
0. RESULTS oo e e et e e e e e e e e rn e e e e e e e e n e n e e e e e nrnn s 42
5.1 REAIISIM ..t et e e e e e et rr e et e e e e e e e s 42

5.1.1. MOtiON CAPLUIE ISSUESuuiiiiiees ettt e e e e e e e aeeaaeeeees 42

viii

5.1.2. Standard RepOSItIONINGccooiiiis e e e 45
SN0 I F =1 = o T [T 45
5.1.4. SSD ATTIFACES ...eeiiiiiiiiieie e ettt 46
5.2, PeIfOIMENCEuiiiiiiiiiiiiiiiie et ettt e e e e e e e e et e e e e e e e e e s 46
5.3, COMMUNICALION ...ttt e e e e e e e e e e eeeaesn e e neee e 47
5.4, AddItioN@l DISCUSSIONccoiiiiiiiitiimm ettt e e s 47
6. CONCLUSIONS ... emmmmm et e e e e e e e e e e e rnmn e e e e e ennnnas 49
G I 1o]] e] €U PPPUORRRRS 49
6.2. FULUIE DIFECHIONS ...ttt oot e e e e e e e e e e 49
6.2.1. Facial Expressions and Eye MOVEMENTS. cee.iivvviiiiiiiiieee e 50
6.2.2. Head MOVEMENTSeeiiiiiiiiiceeeem et e e 50
G T o L= 7= 1 {0 1= 1] o RPN 51
6.2.4. Additional IMProVEMENLSuuuuin e ee e e e e 51
APPENDIX A: SYSTEM OPERATION GUIDEcootiiiieiii e 53
A.L. Initialization: Operator's ManUAl......... eeeeeeeeeeeeeeeeeee s 54
N I I o T o =T o (= PRRRN 54
A.1.2. Database CONSIIUCLIONcoiiiicmeemiriiiiiiiieeee e 57
ALL.3. 3D DESIGN ..ceeiiieiiiiiiaeee e e ettt e e e e e e e e e e e e e eeaeaaeaaeeeeeaaanees 58
A.2. Execution: End User's Manualcccceiiiiiiiiiiice e 58
A.2.1. SYStem REQUIFEMENTS.......uuuuieiiiiieeieeeeeeeeeeeeeeeeeeet s e e e e e e s e e e aaeaeaaaes 58
A.2.2. User Interface and TaSKS..........uuuuummmeiiiiiiiiiiiiieeee e 58
A.2.3. Playing Sign ANIMAtIONSooiiieeeemiiiiiiaae e 59
APPENDIX B: BVH FILE FORMAT SPECIFICATION ... 61
B.1. Description Of File CONENLScicocce et e e eee e 61
B.1.1. HIErarChi@scoooiiiiiiit it ettt e e e e e 61

=T 2 Y, (o] 1o o IO TP 62

B.2. COMMON CONVENTIONS ... cuinin e ettt e e e et e e e e e e e e e e e e e e e e rmeeeneenaens 62

TG T 1 = 1 1101 =

REFERENCES

LIST OF FIGURES

Figure 1.1. Traditional Keyframingccceeeieiiiiie e ereee e e e 3
Figure 1.2. Bending of @ MeSh ... 5
Figure 1.3. Part of a bicycle modeled as a linkiedanchyccooooeiiiiiiniinniieeeee 7

Figure 1.4. Demonstration of the human body reprtesi®n methods on a human arm... 12

Figure 1.5. Passive and active motion CapturLe.............oevvvvvieiiiiiiiiiieeeeeeeeereeeeeeeeeee 14
Figure 1.6. A generic sign language synthesis BYSMRIVIEW............cccceveiiieeeeeiiineene. 17
FIQUIE 2.1. SYSIEM OVEIVIEWuuuniiiee ettt s s e e e e e e e e e e e e eeeeaeeeneeeeeeeseennnnnn 24
Figure 3.1. Motion capture model of the SyStem...........cccceeeiiiiiiiiiiiiiiieeeee 27
Figure 3.2. Turkish sign language finger spellitghabet.............c.ccoviiiiiiei i 28
Figure 3.3. The DASIC tESE POSESuiiiceeeeeeeiiie et 29
Figure 3.4. SruCtUIe Of @ SION..... .o ee e e e e eeeeenaaees 30
Figure 3.5. The VIrtUAl GCIIESSuuu. s e e e e e e eeeeeeeeeeeeeeetataasss e s s seenees s e e e e e aaaaaaeeees 33
Figure 3.6. The Xface face model, AlICEcccceeiiiiiiiie i 34
Figure 4.1. The user interface of the synthesin@mator-renderer module...................... 36
Figure 5.1. Sample reproduction of the letter “Cl. ... 43
Figure 5.2. Sample reproduction of the letter “O...........cccvevieiveeeceece e ceeeeerea, 43
Figure 5.3. Sample reproduction of the letter “Al........cccoi i 44
Figure 5.4. Sample reproduction of the letter 30 ... 44
Figure 5.5. Sample blending SEQUENCEcceeeriiiiieei e 46
Figure 5.6. Sample SSD ArtifaClcommmmeeeeiiieeiiiiiiiiiirs e e e e e e e e e e eeeee e e eeeeeeennnn 46
FIQUre A.L. SYSIEIM OVEIVIEWccvviiiiiiiieeeeeeeeeeeeeeeasettaansasssaeeeeaeaasseesaaeeeeaeeeseessnsnns 53
Figure A.2. ShapeWrap [l MOCAP SYSIEMcccammmiiiiiieiiiieiiieeeeiiii e 54

Figure A.3. SignPlayer uUser iNterfacecoceeeeuueuiiiiiiii s 59

Figure B.1. A sample BVH file

Xi

Figure B.2. BVH file format grammarcooouiiiiiiiiiiiiii e 64

Xii

LIST OF TABLES

Table 1.1. Summary of previous sign language S@EMStemscoevvvvvvviiiinennn. Q..2

1. INTRODUCTION

1.1. Motivation

Being social creatures, we humans require freqoemmunication with each other.
There are many forms of communication, but the ncostmon, and arguably preferred,
method is speech. Speaking has a unique persataltiteat, when supported by visual cues
such as face and body gestures, helps transmit tteemost complicated thoughts and
feelings without trouble. It is direct, real timdjidirectional and once learned,
straightforward to use.

However, speaking is not made available to every&uwne people are born with
disabilities and some lose their abilities furtirelife. What many take for granted may be
a big issue that needs addressing for these peBge.language communication can be
the answer to this need.

While spoken languages reserve the face and bosyrge for subtle details in
meaning, sign languages use them to transfer tlamingp itself, not employing sounds at
all. Hence, they are useful for both speech andrganpaired people. Sign languages are
similar to speech in that they are direct and teak, and unlike lip reading, work
bidirectionally. However, as do all communicatioedia, sign languages require that both
parties have prior knowledge. This is often not ¢thse, since not all people depend on

them. Hence, it would be beneficial to expand legympportunities for sign languages.

When learning, language skills first start as itiotas of the teacher and improve
with practice and feedback. Sign languages areffereht, but since they are not common
in everyday life, such feedback is not readily &lde to the learners. With this point of
view, we believe that the best sign language legrtool would be one that provides this
much needed feedback to the learner. Obvioushh sutool would need to be able to
produce visualizations of signs. Hence, this wotterapts to generate synthetic but

realistic sign language demonstrations using coerpgtaphics and character animation

technologies, hopefully sparking some public ideteward this means of communication

in the process.

1.2. Related Work

Visualizing sign language communication on a corapgharacter is a complicated

process requiring the collaboration of many fiedfithe computer science discipline.

1.2.1. Animation and Keyframing

At the most basic level, one should first undermdttre principles behind computer
animation and how this animation is displayed. Way it is used in this context, the
concept of animation is a specialization of thecsm of movie, a display changing in
some way over time. The principal method to achitne effect has long been to change
the displayed image quickly in succession, callesdnaving picture. If the images'
replacement rate is high enough, the human braistgl processing power falls short of
interpreting them as separate images, but ratheepes what it sees as a continually
changing display. The threshold rate for this ithasis a minimum of about 20 images

(frames) per second.

With the large number of frames required to createn a short moving picture, it is
quickly evident that an automated machine is reguirto create images. The
cinematograph was invented in the 1890's to tak&oginaphs in succession and also
display them as a moving picture. The first syrnithahimations were created in the 1900's
by manually drawing the images (on cels) and phajggng them. Unlike the
cinematograph, there was no machine that could Igirdpaw the required images
automatically. Hence, the process would have becg@hibitively expensive if
keyframing had not been developed. With keyframihg, more established and talented
artists would draw the major images (the keyframesthe image sequence and junior
artists would take examples from those keyframekdraw the rest of the sequence (the
inbetweens). This way, synthetic animation productivas made more efficient (Figure
1.1).

Figure 1.1 Traditional keyframin: Frames 1 and 5 are the keyframe-4 are inbetweens.

While moving pictures were originally designed te played at theaters; t
invention of thecathode ray tubeCRT) displaysproved a convenient alternat as they
require the display to be refreshed many times se@nd to prevent the phosphor fr
fading away. With the ability to update the displagtvieeen the refreshes, CRT's |
themselves naturally for animation. However, digplg photographs or manually dra
images on a computer display can hardly be coreideomputer animation. Compu
animation is more about the computer's ability to gateegraphics for display in ea
frame. By arranging the image sequence correa computercan create the illusion of

moving graphics; that is, computer animat

1.2.2. Computer Animation

The computer can use stochastic processes, aringxistage or another da
structure to generate a frame of an animation. sk concentrates on compu
graphics that are generated from mesh represemtatitthree dimensional3D) models
through arendering pipeline. The animation process, thenakieut how the mesh

updated through consecutive frames to create @bdeesbquenc

As told above, @omputer can generate a frame of an animation aittcatly from a
data structure. flen, howeverthat this data structure itse#f very complex and cannot
defined manually for each frame. In some casesd#t@ can be constructed procedure
For instance, the animation of an object fallinglemthe influence of gravity will simpl

have its Caesian position updated in each frame, accordiraggionple formulz

Not all types of animations can be calculated pdacally. For complicated
scenarios, a computer animation artist has to ddfie frame data. In such cases, for the
very same reasons as in traditional synthetic amdmaanimators rely on keyframing to

generate most of the frames automatically from etarframes provided manually.

The computers do not have artistic talent like peaw. They require well-defined
algorithms to calculate inbetweens from the keyamTo create the inbetweens, the
values of the keyframe parameters are interpolatetrpolation methods take each
variable that is to be interpolated and treat @ahu® as a curve along time (or frames),
estimating it at the missing points. The first kayfie systems used piecewise linear
interpolation but other interpolation methods wiater used in order to provide desirable
qualities like plausible continuity [1][2].

The early approaches to computer keyframing minddke traditional practices by
calculating inbetweens directly from keyframe im@g@ basic implementation of this
approach is to simply interpolate the color valueshe keyframe pixels, which usually
does not produce the intended result. An informgplr@ach is to define corresponding

points in each keyframe, whose positions are iotatpd to create the inbetweens [3][4].

With the improvements in vector computer graphiosl,ain particular, the 3D
rendering pipeline; using parametric keyframingame common [2]. Since graphical data
structures are simply organized collections of nucaé data, it is possible to operate
directly on the numbers and have the renderinglipgpereate the frame from the resulting
structure. For a 3D scene, possible interpolatamgets may be the positions of vertices,
camera, or projection parameters. For instandetefpolation is done on the positions of
matching mesh vertices for each keyframe, animatifor mesh movement, rigid

transforms (translation, rotation etc.) and eveiomeations can be obtained.

1.2.3. Animation Control

So far, procedural calculations and keyframing hbeen described as the most

useful techniques to generate frame data in com@uenation. However, in practice,

procedural methods aanly possible with the simplest animations. Comgleeractions
between objects and influences of numeraffectersrequire more than an animatc
skills for describing the motiorSimilarly reducing frame definition costs by keyfriag
may not alwgs suffice, because the frame data may be too coatedl to defineeven
only for the keyframes.

Animation control is the umbrella term for taidsthat animators havfor high level
management of complex frame data and descriptioranimation [5][6]. By using
controlling tools, the animators are able to spettie motionor scene configuratioat a
higher level of abstraction and leave the compto do the detailed scene arrangeme
For instance, the animator might define a bendmgation for a mesh and the compt
will arrange the positions of the vertices in efreme by the correct transformation. N
that when animation control is emped, keyframing is often applied to the con
parameters and not directly to the parameterseof@bulting mesor image. In a bending
animation,for instance,often the bending angle is interpolatedt the resulting verte
positions (which would resuin unrealistic, skewedesh configuratics) (Figure 1.2). A

few examples of animation control mechanismsdiscussedelow

Figure 1.2 Bending of a me« The animator supplies the keyframes (1 and 5)ta@
computer generates the inbetweer-4) controlled through parametric interpolation. -

interpolation peameter is the bending angle, not vertex posit

1.2.3.1. Soft Objeddeformatior. Deforming an object, particularly a mesh, is difficio

do by hand, because the number of variables tlsatride the object (that would need to

individually specified for th deformation) is typically too large. It is usualigt requirec

either. Most realistic deformations require theirenbvbject to be deformed in a more or

less similar way.

For instance, bending a mesh would require alvdréces to rotate around the same
center by an amount according to (i.e. a functifrtteeir position in the object. Hence a
lot of the brute work can be left to the compuier@y by asking the animator to provide
the axis of bending and the angle. The nonlineabajl deformation approach transforms
the vertices of the object by a matrix that is action of their positions [7]. This approach

provides easy specifications of tapering, twistimgl bending transformations for objects.

In [8], a local space around the target object eingéd. The animator can then
deform the space itself in a completely general,walled free form deformations (FFD),
and the computer calculates the new positions efuértices in the global space by

substituting their local positions in the deforroati

1.2.3.2. Linked HierarchiesConsider modeling the front wheel complex of ayblie

mesh. If modeled completely as a single solid masmating the mesh would require the
artist to reconfigure all the vertices in the bodlye handlebar and the front wheel
separately for each keyframe. Instead, it is ptessdomodel the handlebar and the steering
column as a separate submesh linked to the bodsg®) mesh at a particular position.
Similarly, the front wheel itself can be modelegamtely and linked to the handle column
(Figure 1.3). The links can be completely defineithwheir positions and orientations
along with a list of the movements they allow (mstcase, the axes of rotation). In this
example, the internal configuration of the compiexiefined by only two rotation angles
(one allowed rotation axis for each link) and thesipons of all the vertices can be
calculated, greatly reducing the effort requiredhsf artist. Hence, such a model is said to

have two degrees of freedom (DOF).

=%

ot

Figure 1.3 Part of a bicycle modeled as a linked hiera: The link positions and allowe

movements (rotations in this case) are mai

Modeling an object as a collection linked submeshes instead of a single n
provides another level of animation control to #mgs! by simplifying the way poses al
animations can be specif. In such models, the submeshes are often hierarchieddlied
so that movingpr rotatinga submesh would similarly affect all its descend, preserving
the integrity of the mod. For instance, rotating the handlebar and theisgeeolumn in
the above example would also rotate the front whkelg the same axis. If the submes

in a linked herarchy are physically connected, the model is a#d to be articulate

A well known use folarticulated modelgs the human body. Typically, the anima
would model a torso and each limb separately ankl them at the appropriafjoint
positions. he upper arm would be linked to the torse lower arm to the upper arthe
hand to the lower arm and so on. Tsubmeshhierarchy in a humamodel has a tree
structure called theskeleton. A skeleton is comprised of a number odesc(bones)
connected by linkgjoints). A convenient boné selected as the robone and is used to
position or orient the entire mo. The bone away from the root in the hierarchy .
called the child boneand those toward the root are calledir parents.The root bone
does not have a parent. Conver, any child bonghat does not itself have children

called an end affectef.he movements allowed by each joint are define@ number of

transformation parameters, the number of whictailed the DOF of the joint. The sum of
the DOF’s of all the joints in a skeleton is the BOf the skeleton. A human model
requires over two hundred DOF's to represent tipalsiities of the joints of a real human.
A vector containing a value for each of the DORshe skeleton completely describes a
particular skeleton configuration, called a pos&e@ a vector of joint parameters, the

parameter vector, one can calculate the exactiposit every vertex in the model.

Past work using skeletons include [4], which udeslesons for transforming 2D
images. Controlling articulated human body modets kinematics methods is described
in [9] and [5]. The PODA animation system described10] and [11] also employs
kinematics. In [12], [13], [14], [15], [16], [17]ral [18], the inverse kinematics method is
extended with features such as multiple constraimigractive editing and analytical

hybrid solutions.

1.2.3.3. Forward Kinematic#\n animation artist can specify the joint paraengtof an
articulated object to fully describe its pose. Frtma joint parameters, the computer can
generate joint transformations and calculate tha&tipo of each vertex by applying the
transformations at each joint towards the vertesreémentally. This process is called

forward kinematics method.

1.2.3.4. Inverse KinematicgVhile forward kinematics is easy to calculates ihot always

practical to use. In most cases, artists are istiedein directing the articulated body in an
abstract, goal oriented manner. For instance, rtist enay want the virtual human to reach
for a door knob but not care about the actual jparameters as long as they are physically
plausible. However, the computer would still nelbdse parameters to apply keyframing
on and create the animation. Since by adding remquénts such as reaching for a door
knob, the artist effectively constrains the poséhefbody, with enough such requirements,
it may possible to solve for the parameter vecTbis process is called inverse kinematics
(IK). Of course with IK, a solution cannot always guaranteed (e.g. a human model may

not be able to reach the flag on a tall pole frammground, however he positions himself).

1.2.3.5. Physics Based Metho@&nce the laws of physics are relatively knowns ialso

possible to control animations with high level plogssimulations. This approach not only
lifts some of the work from the animation artistt l@lso produces more realistic results.
Physics based methods essentially rely on prockdammation techniques, governed by
the descriptions of physical laws of the virtualrldo[19] [20]. These laws are used to
simulate the object behaviors automatically. Suahukations are especially effective on
simple rigid objects that are static (e.g. storaeg) even work on those that are internally

motivated (e.g. rockets).

It is also possible to apply physical simulatiowstie internal configurations of
nonrigid or articulated models. For instance, tleetex positions can be determined by
physically simulating the deformations of soft asldstic bodies and their collisions, as
explored in [21] and [22]. For articulated bodipkysical simulations can be used to drive
the joint parameters through methods collectivelifed dynamics, as explained in [23],
[24] and [25]. Dynamics performance can be improasdexplained in [26], which also

extends the inverse dynamics method.

In dynamic simulations, the parameters are no Iotigeeactual angles or positions of
the joints but rather, the forces and torques &ffgahe joints. These parameters can be
used to calculate the key skeleton poses, which bmarsubsequently interpolated for
animation, or directly control the animation itsdlfynamics can also be regarded as yet
another level of abstraction, for the object isadiégd in terms of its physical attributes.
Since simulation laws are based on observed redtvawns and the models are defined
with all the physical attributes they would haveéhéy were real, the animations produced

are often more realistic compared to pure kinengggigns.

1.2.3.6. Forward Dynamicén forward dynamics, the poses of the articuldtedy over a

period of time are constructed from the specifaadiof its internal and external forces and
torques, effectively replacing the parameter veabrangles. This can produce very
realistic animations but its usefulness is limitke to its lack of control. In other words,
the animator can specify the entire model andhigsgal attributes, but cannot control its

motion directly.

10

The lack of control may not be an issue for inartemarticulated bodies, such as
chains, that are intended only to obey the physiaals [27]. However, automotive
characters, like humans or robots, exert forcesrial to their bodies and on their
surroundings to accomplish any tasks they may Hawesuch models, the artist often has
a planned motion the model needs to follow, andtbagpecify the internal forces exerted
by muscles or motors of the model to generate his Tan prove to be labor intensive,

because with forward dynamics, obtaining the ddsinetion is mostly trial and error.

1.2.3.7. Inverse Dynamicdnverse dynamics is the arguably more useful oyos

approach. Similar to IK, in inverse dynamics, tmenaation artist describes the desired
motion and the dynamics engine calculates the $oaoel torques necessary to produce the

motion, which, in turn, can be used to produce ation.

1.2.3.8. Constrained DynamicBsing inverse dynamics alone to figure out thecdsr

necessary to generate a given motion is convenberityelies on the animation artist’s
talent a lot while reducing the benefits of phykisanulation. A hybrid method is to
introduce kinematic constraints to regular dynansicsulations. The approach is loosely
attempted in the PODA animation system of [10] Hrid, and improved in [28] and [20].
The constraints would be used to solve for unknéwees in the dynamic simulation and
then used in the simulation to generate a reahstiton.

The method is generalized in [29] and [27] to sudvior entire trajectories instead of

frames.

1.2.4. Human Body Animation

Modeling, displaying and animating the human boslyai very old objective of
computer graphics. As discussed above, control whan animation is commonly
achieved through employing an articulated bodykedeton, which can be directed through
kinematics or dynamics methods.

11

For visualizing a human body, however, simply pdg the rigid limbs of an
articulated body is not enough. Humans, like atbmotive animate entities, are covered
with an elastic skin. Without such a skin, the @igpd object would always look robotic
(inanimate). This would suffice for a robot, butealistic human model must incorporate

skin deformations as well.

Historically, the first structured human models &venore valuable for their use in
practical simulations than their realistic look.fatt, during the early 1970's, human body
animation attempts merely used stick figure repregmns. Only later, realistic human
displays were added to the simulations. For ingtatiee work described in [30] explores
how car crash victims and parachuters can be stetulan computers with somewhat

realistic body models.

The more modern human body representation methredargely categorized in two
groups. With volume models, the body is dividedoinsometimes numerous) 3D
primitives such as cylinders, ellipsoids or sph¢884[31][32]. Rendering the final image,
then, consists of obtaining the contours of thenfiives; but shading is relatively difficult.
An alternative approach is using surface modelsleyimy patches or meshes [33]. With
these methods, rendering can be made more reddstienore time consuming, not to
mention the undesirable artifacts with some apgrescThe available methods of the time
are summarized in [34]. As computer and graphicgvare grew in power and solutions
were proposed to the problems, mesh surface repat®mams gradually dominated along
with layered models extending the surface appraachendering the volume models

virtually obsolete.

1.2.4.1. Layered and Physically Based Methadsiered methods usually employ some

sort of representation for the internal structuré¢he body and use it to drive the surface
forms. While more realistic, these methods typycadlquire more numerical processing
and hence, are often not interactive. First mustteulations were added to existing skin
models as explained in [35] and [36]. The work désd in [37] is a system for creating

human body models by easily specifying volume festy(muscles) as well as a surface
skin model. In [38], [39] and [40], the authors éstigate the effects of anatomically
accurate muscle models on skin deformations, Wwighldtter also providing such a generic

12

human model. [41§lescribs implicit surfaces for applyingoating layes to a model, such
as skin over muscle§he work discussed [42] adds a new fat layer to the anatom

models and links to @n inelastic skin surface, instead oing an elatic model.

1.2.4.2. Skinning Ba&xl Model. These models define the human body to be an e
shell implemented as patches or a mesh and usskéheton to drive the deformations
the shellWith such a model, the shape of the b(shell)is completely artist designed ¢
thendeformed according to the position specified byskeleton pose insi (Figure 1.4).
This approach is more common with interactive aggpions, bu it is also known for it:
production of characteristic skin deformation artifacwhen handlingparticular joint
configurationsin this work, we follow common practice by usingkanning based surfac

model driven by an internal skelet

Figure 1.4Demonstration of theuman body representation meth on a human arm:
Contours of a volume model with cylindrical (1) aspherical primitives (2), a layer

model (3) and a skin model (4).

[43] describeshow a mesh surface model (virtual skin) can be usembnjunction
with a controlling skeleto In [44], a variety of human movemenare studied on
anatomically realistic mesh bodies with kinematied adynamic contrc The work
described in [450Uses the charac’s skeleton to drive an FFD model which, in turnyes
the deformation of th actual skir The commontechnique is nameskeleton subspace
deformation (SSD) in4€], where its shortcomings are studieshdto solve them, using
examples is suggestetihe example approach is exteddin the work described [47],
which also suggests ways to rec the interpolation space. Timeethod employe in [48]

usesprincipal componenanalysis (PCAJo reduce the pose space and rs interpolation

13

and SSD suitable for hardware implementationsdutten, to fix the SSD artifacts, using

2D limbs (medials) is proposed in [49], and muéipteights (for matrix elements) in [50].

According to [51], dissimilarity of consecutive atibns are to blame for the SSD
artifacts and to smooth the transitions, new jogas be inserted. In [52], it is proposed to
interpolate the bones themselves and transformvémgces without further blending.
Arguing that matrices cannot be directly interpetatin [53], interpolation on joint
rotations is suggested, using spherical linearpaiation (SLERP). In [54], it is shown
that common interpolation methods for SSD effedyiveduce to direct interpolation of
matrix elements, which causes the artifacts. Thisfies SLERP as a better interpolation
method, for which an optimization is also proposedlled linear interpolation of
quaternions (QLERP). Alternatively, in [55], it $siggested to use dual quaternions [53]

with two components per element to solve artifacis achieve better performance.

1.2.5. Motion Capture

As it was previously stated, keyframing in compud@imation, as in traditional
animation, is mostly necessary because of the sixeeamount of work required to define
even a single frame of an animation sequence. Heryelrere is always a tradeoff with
keyframing; while the more frequent they are definthe more credible the interpolated
animation looks. This is due to the fact that iptdation is basically an uninformed
approximation to the motion the artists intend teate. Moreover, even with animation
control mechanisms, such as using skeletons, dgfitiie parameter vector (e.g. for a
keyframe) is still a tedious task. Often, the antonaan only specify part of the parameter
vector and the rest need to be discovered throughitdion method like IK. Finally, the
credibility of keyframe animation is ultimately litad by realism the artists can provide to
the keyframes themselves, regardless of the pesafocen of the interpolation or solution
method applied. Fortunately, if the animation ipgased to represent the behavior of real
objects or characters, an alternative method idedole.

Motion capture (MOCAP) is an approach that can seduto discover the control

parameters for a frame of an animation automayicdiypassing manual definition of

14

keyframes and IKMoreover, moderMOCAP equipment is fast enoucto capture control
parameters in realtime for every frarmaking interpolation unnecess as well. In
addition, since the parameters are captfrom a real subject, the derived motion data
guaranteed to be realistWhen applied with care, MOCApBromisespractical authoring

of realistic motion definition:

By far the most commouse of MOCAP is defining thgesture of virtual humans.
Typically, a real actor wou' perform the required bodyovement, possibly while
wearingsome sort of smasuit, and some detecting equipment would record the el

control parameter®r the motiol, usually the positions and oni@ations of the join.

MOCAP tediniquescan be broadly categorized either as pa or active depending

on the underlying technolog (Figure 1.5).

r\

detector markers

database D
1
Q

receiver Sensors

Figure 1.5 Passive and active motion cap: The system at the top is a passive MOC(C
system that usewarkers that are detected by an extedevice. A the bottom is an activ

system usingensors that measure the position and mit the information to a receiv:

1.2.5.1. PassivBlotion Captur. Passive motion capture can be characterized blathe

of data collecting sensors. Instead, passive methely on other equipment to derive
description for the actor’s po: The most common of thesee the optical methoc

15

The optical approaches to the motion capture pmlmeginate from the rotoscope
devices of the early 1900’'s [56]. The first MOCAplementations used image
processing techniques coupled with prior knowledbeut the human body to recognize
human poses from images [57][58][59][60]. Suchrafits are somewhat less accurate but
have the benefit of being non-invasive, which matkesm more useful for surveillance

applications [61][62].

The lack of accuracy of image processing basedaudstis not acceptable for control
or analysis applications. For such scenarios, tmanton solution is to have markers of
some sort be worn on the actor’'s body. The markarnsbe either reflective or emissive.
With markers, the human body is assumed to beck skeleton and the positions of the
markers, as tracked by cameras, are used to tte@teghe 3D positions of the appropriate
limbs. [63] contains an excellent overview of theethod as well as some historical

perspective into the original moving light displegncept described in [64] and [65].

[66] describes another passive motion capture @gprovhich replaces the optical
markers with sound emitting devices. The relatigsifoons of the devices can be estimated
from the differences in the delays the sound fraohedevice takes to reach a receiver.

The 3D limb positions can then be similarly triatzged.

1.2.5.2. Active Motion Capturén alternative to the passive approaches is tcsassors.

In this case, sensors actively measure their owgitipns and orientations, and transmit
them to the recording equipment. This not only dsoihe problems with the passive
methods (such as occlusion of optical markers)ylsd decreases the dependence on prior
skeleton specifications. The sensors can be maghét], gyroscopic [68] or even
electromechanical, collectively forming an exoskate[69][70]. In this work, we use a

magnetic MOCAP system.

1.2.5.3. Magnetic Motion Capturdagnetic trackers were initially developed for the

helmet mounted displays of military aircraft duritige 1960’s [56]. These sensors detect
the position and orientation by measuring the lawg@iency electromagnetic field

generated by a transmitter source. Each sensoutsugp DOF’s, making the system as

16

competent as an optical system with 50 per centmoarkers than magnetic sensors.
Compared to the optical systems, magnetic systemsalgo typically less expensive.
Unlike electromechanical systems, magnetic systdmsiot require the actor to wear
cumbersome equipment, but still achieve consideraacuracy. In terms of latency,
magnetic systems generally fall in between the sloptical systems and fast
electromechanical systems, but often have lowempBagirates due to the noise filtering

required.

Among the shortcomings of magnetic systems are teerlibration requirements,
limited range and nonlinear behavior near the Bmaspecially as the azimuth approaches
zero. These problems arise from the nature of naghelds. In addition, magnetic fields
are vulnerable to intrusions by other magneticdiethat may be in the environment.
Besides the magnetic field of the Earth, most dtmitequipment (motors, cabling etc) can
cause magnetic interference. Even at the absenothef magnetic fields, the magnetic
field of the transmitter itself can induce eddyreuats in the surrounding metals (especially
ferrous metals such as iron and steel) which cterfere with the field. All of these
problems are reduced by using AC fields insteaD®ffields, but not completely negated
[56].

1.2.6. Sign Language Synthesis

It was argued earlier in this document why computsualization of sign language
communications is a useful research task. Thi®isamrecent realization. The problem has
found attention earlier, but it was not until tH#80’s that computer hardware grew enough
in power for true multimedia solutions. Many of tharlier systems aim to provide full
machine translation between text (and sometimegpadd sign languages. Such a task
would obviously require sign language recognitierg(from video) components for the
return path and a linguistic structure for the laages in question. Such extensions are out
of the scope of this work; we concentrate, insteauly on the synthesis of graphic

visualizations of sign sequences, focusing primani visual quality.

17

1.2.6.1. A Generic Sign Lhguage Synthesis Systefithere are two input requirements

sign synthesis (Figure 1.6). The first is a listsans to synthesize. How this list
constructed is completely dependent on the natutteecapplication. A realtime translati
system woul likely create the list by first processing speeuhile a book reade
application would be parsing text as input. Tharfatr of the list itself is also releval
Often, it is designed in a generic list or scrigtnfi, but in translation contexts, it ¢ also

be an intermediate language representation ofrigmal input

Sion list Sign Sign
120 15! ¥ Synthesizer ~aw¥ animations

Sign definitions

Sign

Database

Figure 1.6. A generisignlanguage synthesis system overvidle synthesizer modu
receives the list of signs to generate franother module and looks up the definition:

the signs from the database.

The secondnput to sign synthesis is a database of ggfinitions to generate the
animations from. Thislatabasessentiallyforms the lexicon for the possikoutputs of the
system and typicallgontairs video samples or MOCAP dat#lith the former approacl
proper blendingof video dataat frame and pixel levels necessary to produce smc
movies resulting in heavy computational requirem. In the lattercase, a post pressing
step is necessary in which traw animation data are visualized a virtual human actc
In addition, ®me applicationsuse sign definition scriptsnsteac of either video or
MOCAP. These scriptdescribe the signs in terms of more tripaédefinecmovements,
effectively demoting the database to a sign alpt, but often only specify the movemel
on relevant body parts, not the entire mc Hence for a final animation to be produc
the missing parameters need to be discovered thia process like Ik Scripts are notably
more practical for editing afterwar but they are alsknown for their artificial loo.

18

A sign synthesis system can output animation in @ingeveral formats. Structured
numeric formats, such as VRML, are common but #teoleast dependable in terms of
realism. Blended video sequences and renderedlizistians of 3D models are known to

be more successful from that point of view.

1.2.6.2. Previous Sign Language Synthesis Syst&mearly attempt at computer assisted
sign language processing is described in [71]. ysem employs an optical MOCAP
system, conceptualized by [64], to drive the sysihprocess but does not output any real

synthesized signs, but merely the observed trajesto

One of the first true sign synthesis systems i€rilgsd in [72]. This is a complete
translation system which features a voice recogmitirontend to drive the synthesis
process. The database consists of motion defisiticeptured by an optical MOCAP
system and data gloves. The system generates aigas3D model driven by a skeleton
identical to the one used in MOCAP.

In [73], the TEAM machine translation system forglish is described. This system
is driven by English text and generates script-$ieelc3D signs.

The SigningAvatar system developed by VCOM3D (falgné&eamless Solutions
Inc.) is one of the first commercially availablelwmns for authoring 3D skeletal
animations [74]. It also supports sign languagesutph a dedicated proprietary authoring
tool. Note that this system does not produce restberutput. Instead, virtual reality
modelling language (VRML) output is produced thain cbe rendered by compatible

software.

The VISICAST project and other related work arectdégd in [75], [76], [77], [78]
and [79]. These projects describe a machine triamslaystem that generates signs from
English text. The signs themselves were originapecified through an assembly
involving a magnetic MOCAP system and data glowéswever, later work focuses on
generating the signs synthetically by script défms. The work was funded by

Independent Television Commission, UK Post Offind the European Union.

19

The work described in [80] does script driven segsth of signs. However, it is
favored to use video samples to generate the signesces, with the argument that they

produce more realistic results.

The sign synthesis problem is approached as atulatiory process, instead of a
concatenative one, much like speech synthesishensystem described by [81]. The
system is driven by a scripted list of movementst (complete signs) and generates a

VRML output defined on a simple 3D model.

In [82] and [83], the HANDY system is described, ig¥h features a database of
movements (sublexical sign elements) that are wétaithrough optical MOCAP. The
synthesis is driven in a similar way to the metkedcribed in [81] except here, sublexical
elements are used in an XML based script, produa@ngdered output based on a modified

form of the model described in [40].

In [84], a translation system for the Czech Sigmdusage is described. The system
receives text input and translates it, producingr@idered sign language animations. The
signs themselves are defined with the same sagipgiystem used for the VIiSICAST
project [75].

The system described in [85] is the first to inavgte Turkish Sign Language
support. It is a learning tool that recognizes siffjom video input for demonstration. For
feedback, it also synthesizes sign sequences frdatadbase of manual specifications on a
simple 3D humanoid. The system employs the helfp@iXface project for the animation
of the face [86], [87] and [88].

A brief summary of the sign language synthesisesgstdiscussed above is given in
Table 1.1. The table highlights the unique featw&dshe systems and classifies them
according to the formats of the original input be tsystems, the sign definitions in their

databases and their products.

20

Table 1.1. Summary of previous sign language sygntsystems

Original . _
] .) Sign Sign
System Sign [Sign List o o
Name Definitions| Animations
References Language¢ Input
Format Format
Format
[72] Japanesg Speech| MOCAP 3D Render
[73] TEAM American Text Scripts 3D Render
[74] Signing Avatar | AmericanGeneric| Scripts VRML
[75] ViSICAST (Simon|
. British & MOCAP &
[76][77][78] | the Signer, TESSA, Text _ 3D Render
_ Others Scripts
[79] e-Sign, HamNoSys)
[80] Slovenian Generic| Video Video
[81] SignSynth American Text Scripts VRML
[82][83] HANDY Hungariap Text MOCAP 3D Render
[84] MUSSLAP Czech Text Scripts 3D Render
[85] SignTutor Turkish| Generic Scripts 3D Render

1.3. Contributions

The importance of demonstrations in language legrrand the need for sign
language tutoring systems were stressed abovehé®dckground research suggests, a
complete sign language tutoring tool with ample destration capabilities is a complex
challenge. Instead, this work aims to provide acfical solution to the more isolated
problem of producing realistic sign language anioms. While trading off a broader
scope, dedicated attention can be paid to thesmeatif the output. However, it is the
intention of the author that the software deliveasd result of this work can eventually be
used as a frontend to a sign language tutoring tool

The implemented system incorporates a sign deimitdatabase which lacks
linguistic structure except for identifying tagss Ahe literature on the subject matter

indicates, linguistic analysis of a sign languag®@ften considered together with the data

21

originally driving the synthesis process, usuatiyne form of natural language input, while
an intermediate language is designed. Hence,asssimed to be a role reserved for full
translation systems and is omitted from this impatation. This also has the added
benefit of making the system transparent to ang fagguage. Yet, the current database
contains signs from the Turkish Sign Language firgpelling alphabet. Given the scarce
interest toward this particular language, it is enstbod that the database itself is an asset

as well.

22

2. APPROACH AND METHOD

2.1. Arguments

2.1.1. Realism

Among the qualities of a sign synthesizer is thedisen of its output. Realism is a

definite requirement if the objective is teachifgppcommunication with sign languages.

Intuitively, using videos of real signers in thersidatabase and composing the
output directly from these videos should produceertiost realistic results. With the latest
advances in computer graphics, using 3D virtuabractan also be considered a good
alternative. The animation of the 3D actors cardbeen with MOCAP data or scripts.
Using scripted sign definitions has its benefitst bsually produces animations that look

less natural while MOCAP data is collected fromuatsigners [72][80].

2.1.2. Performance

As with all software, performance is another isaiih sign synthesizers, especially
for the availability of the system. Realtime penfiance can enable a whole new set of
possible applications (e.g. simultaneous transiation this context, realtime means
achieving not only immediate response, but alsaanggicture frame rates in synthesizing
and playing sign animations. Note that performames especially be an issue with older

hardware or for future porting considerations to [wower devices, such as mobile phones.

Today, with proper hardware acceleration, videodhiag is usually not a problem
but blending between the signs is not trivial [8QJn the other hand, 3D hardware
acceleration is also widely available, even in nfeodevices. With proper handling of the
hardware, animating virtual actors can be a feasiption. Scripted sign definitions should
also benefit from the hardware acceleration cajpiasi| but they require additional IK
processing to solve for the skeleton parametetsatieanot explicitly specified [81].

23

2.1.3. Communication

If the software is to be useful in networked enmiments (e.g. the World Wide
Web), communication requirements have to be adedesBypically, communications of

the sign synthesizer with the database and withabeiving end are affected (Figure 1.6).

If the sign database is formed from sign videosnd@adth requirements for
communication with the synthesizer would be gréxt. the other hand, scripted sign
definitions would likely require the least bandwidihe case is similar for the outputs. If
the system produces video (video sourced or 3Drgew, the bandwidth requirements
would definitely be greater than that for produciMRML compatible animation
definitions that can be rendered locally.

2.1.4. Data Reusability

Since a sign synthesis system has to incorporatatabase, how the data in this
database can be exploited is also an item to poowleA sign video is only externally
marked, but does not contain any structural infdimmainside; it is just a video that
happens to contain signing content. A MOCAP datalb&s somewhat better structure, but
the data is still difficult to edit, reorganize apply to another system (e.g. virtual reality
applications, games etc.). Scripted sign defingibave the most internal structure and are
best suited for data reusability.

2.2. Approach Decisions

In the light of the above arguments, we have opbekleep a database of MOCAP
sign definitions obtained using a magnetic systéftagnetic MOCAP systems are
generally more accurate than optical systems, whadmportant for capturing detailed
finger motions. They are also more comfortable tettromechanical systems in that
they require lighter, more flexible setups, whichnecessary for our actor to produce

natural sign animations.

24

Our system usea synthesizer to drive a 3D virtual et to produce rendered
output. Rendering our own models a safer approaghsince client renders, especice
those by the browsermay not produce realistic outputs. The$mices, in our opinion,

give the best compromise of the quali we see as significant.
2.3. System Overview

Figure 1.6summarizes le structure of a typical sign language synthessystem.
The way this prototype system is implemented inwark is depicted i Figure 2.1. The

operation of our syem can beexplained in two phases.

Expressions

\+ Sign
animations

Animator-
SIRTH Sign Renderer
Sign liS! ¥ Synthesizer
Skeletal
motion
Execution Phase Sign definitions
Initialization Phase
3D Xface
MOCAP . model
data Database 1gn
— Builder Database
o N ammm— T — N’

Data Collection Database Construction 3D Design

Figure 2.1 System overvie: The initialization phase consists of data coltectdatabas
construction and 3D design tasks while the exeoyilmase includes si¢synthesis and

animating & rendering tasks.

2.3.1. Initialization Phase

During the initializatior phase, system operators define the applicationfdesafor

use during the execution phaThis phase must be completed before the system ci

25

made available to the public. Among the work belogdo this phase, three separate tasks
can be identified. First, the data collection tésklone to obtain separate MOCAP data
files for each sign. These data files are fed éodatabase builder module for the database
construction task. After some preprocessing anancip, this software collects the
MOCAP data into a sign database. Meanwhile, 3B3tartiarry out the production cycle of
the two main digital assets for the applicatiore Hody model for skeletal animation and
the face model for expressions. When all the infdrom is properly stored, this phase can
be called complete. Note that the initializatioraph for a preset configuration and feature
set is already completed. The database in thisiguoation contains signs from the
Turkish Sign Language finger spelling alphabet. Tim&alization phase is detailed in

section 3.

2.3.2. Execution phase

This phase follows the initialization phase ondetla necessary data are available
and is characterized by end user access to thensy#itis a cyclic phase in which the user
issues sign queries, to which the system respopdsaroying out the two tasks required to
generate the sign animations. For the sign syrghask, the synthesizer module fetches
the definitions of the desired signs from the sdatabase and concatenates them as
necessary, producing skeletal animation specitioati Next, for the animation &
rendering task, these specifications are fed tatinator-renderer module which, in turn,
drives the virtual actress as necessary and retkenesulting mesh to obtain a realistic

animation. The execution phase is detailed in spati

26

3. INITIALIZATION

The objective of this phase is preparation of §stesn for actual, in-field usage. The
most significant part of this preparation task amstruction of the sign database. For this
purpose, a motion capture task was defined toalhjiticollect sign data in separate data
files. The database can be called ready once #ltigsisl loaded and bound to the skeleton of
the virtual actress by our dedicated database dauifpplication. This application is

basically a standard database editor with a sif@plenterface.

3.1. Motion Capture of Turkish Signs

3.1.1. Hardware Setup

We used a Shapewrap Il system by Measurand In@ioMOCAP tasks [89]. This
system is not only magnetic based, but is alsoltapa tracking all the limbs we require
for sign languages. In contrast, for example, pt#] [76] use MOCAP systems that do not
track the hands and use data gloves instead, vagidh synchronization problems to their
implementations. Our system supports wireless commcation and does not require a
spandex body suit to be worn and hence is mostigaaéor expecting realistic sign data

from our actor.

The skeleton of our MOCAP system contains 40 joifitse root has six DOF’s
(Euler orientation and Cartesian position) andrés of the joints have three DOF's each
(orientation only), adding up to 123 DOF’s in totdhe missing DOF’s (three for each
joint except the root) are fixed into the skeletl@sign, since real bones cannot be resized
when moving. The detail in the articulation of thands is worth mentioning; all the
fingers have a full set of three bones each. Intadd note that although our MOCAP
system also features leg sensors, they were nat bseause leg movements are not

relevant to signing. The skeleton is visualizeéigure 3.1.

27

Figure 3.1 Motion capturemodel of the systenNote the detailed articulation of t|
hands. is the underlying MOCAP skeleton, 2 is the readtpreview of the MOCAP

model in the software and 3 is our actual actorringahe Shapewrap Il syste

The MOCAP hardware was connected wessly to a PC with dual core CF
running at 2.4 GHz an8 GB of RAM. OEM softwareShapeRecord, was used to record
the motions in standard Biovisiorierarchy (BVH) formatRunning Microsoft Windows

this setup managed to record joint parameters fps (frames per secor.

3.1.2. Sign Scope

As an initial data set, we aimed to capture thasigr the Turkish sign languag
finger spellingalphabe (Figure 3.2). This not only limits thevork required before the
second phasdut also enables a much simpler interfand formaiin specifying the sign
list. However, the system is not limited to tset of signs and can easily be extended
more data.

28

A B C C E
.|| 4 :
iy VN = I‘;—(J a7

J v
O P R S T
Q:z) 7

PR e e
U U \Y4 Y

D
S
I
4
, 7
J K L M N
\-Lr w
S
14
Ao
Z

Jyle ||

Figure3.2. Turkish sign language finger spelliaiphabe

3.1.3. TheCapture Proces:

3.1.3.1. PreparatiorPrior to our MOCAP sessions, we first prepared theigrent by

adapting thedlimensions of the predefined MOC/skeletontemplateto our actual actor.
This ensures the accuracy of the captured For this task, it is necessary take specific
measurements frowarious limbs of our act and declare them the MOCAP software.
Fortunately, thesoftware features a wizard that guides taskin a ste-by-step manner.
Note that lhis process has to be done only once, since theureraents can be red and

reused for each session.

3.1.3.2. TestingBefore capturing thesigns to be stored in the datab the hardware

setup, preparation aralr virtual actress’ dimensionsere tested by capturing predefir

poses on our actor and visually checking if they raproduced on the 3preview of the

29

software and byour virtua actress.Problems evident in the preview were fixed
repeating preparation or calibration as nece, and virtual actress problems were fi»
by manually rearranging the model or noting and mensating for the inaccuracies wt
recording. The testgses are designed to check the relative dimensiopartsof the body
and the accuracy of the motion by having the datimg various limbs in contact at cert:

angles, such as thosehkigure3.3.

& dr

Figure 3.3 The basic test pos: 1-3 test the calibration of the hands and the armkew-
5 test the compatibility of the Xface and the MOCWRual actress model

3.1.3.3. CalibrationOne typical weakness of magnetic MOCAP systembas they ar¢

prone to lose their calibration quicklCalibration involves specification of the inter
joint correction offsets of the software to matble MOCAP data, whi¢, unfortunately,
does not remain consistent for a long tilFor this reason,dfore capturing each sign, t
calibration of the equipment was checkedvisually matchingthe detected pose of the
actor with his actual pose using frealtime 3D preview mduced by the softwe (Figure
3.1). If there a mismatc is detected, calibration i®stored by having the actor assun
predetermined home pc and signaling the soft@ave to reset its internal definition of tt

pose accordingly.

3.1.3.4. StandarddBitioning In our work, we capture the signs individually, alatler

concatenate them tmbtaina sign sequence. However, whileton capture is knowto
produce realistianovement descriptions, concatenation is. Possible problems at tl
sign transition points includreturning to theest position between every sign sudden

jumps of thebody or thelimbs at the transition points.

30

The jump problemcan be slved if the signs take the same pose at the tran:
points. Since the signs can be ordered in anydaslthis requires defining the signs at
same pose for their start and end points. Henderédeecording a sign, the acttakes a

standard rest post the possible accure.

It is generally desired that the virtual actor doed return to the rest positic
between the signs. Such an animation would lookeratobotic. An easy solution
prevent this effect would be to blend the signthimoutput animation. Note thiblending
would also solve the jump problems mentioned abdwg,the movement rate durir

blending is more homogeneous when the rest positom alike

3.1.3.5. Attack and Deca' Since blending will be performed on the captureghsithe
blended parts of the motions will lose solof their details.To prevent loss of the
expressive parts of the signs, attack and decagdseweredefined as the first and last
second parts of theaptured motions respective The expressive part of a motion 1
belonging tceither perio is referred to as the body of the motiéingre3.4).

Figure 3.4 Structure of a si¢: The first 1 second is the attack, the last 1 sda® the
decay and theest of the sign in betwe the attack and the deceythe body. D represer
the duration of the sign.

During the attack period, e signer starts mawg his limbs from th rest pose.
Likewise during the decay period, the signer isyaalowed to return to the rest pc

Blending will be discussed later in more de

31

3.2. Construction of the Sign Database

A special database builder was developed to caristridatabase of the signs that
can be later queried by the sign synthesizer. Usireg database builder involves the

following steps.

3.2.1. Model Acquisition

When first launched, the software builder requitbat the user specifies a
compatible model file to use as the virtual aciithis step is not directly related to the
database construction (except a future implememtatif retargeting), but is necessary
because the motions defined on the virtual actoe ta be specified on its skeleton. For
the same reason, the storage for motion data egriaied into the skeleton file. When a
model is first loaded, any signs already in itsablase are used to initialize the

environment.

3.2.2. Sign Collection and Tagging

Once the software environment is initialized witimadel, the user must specify the
captured sign animation files to insert them todhgve collection, or delete existing ones

as necessary.

When querying the database for sign animationssitjre synthesizer requires a way
to identify each sign. The current implementatibéthe database supports string tags to be
specified for each sign and index the databaserdiogby. For our limited database of the
Turkish sign language finger spelling alphabet,tdgs for the signs were selected simply

as the letters represented by the signs.

32

3.2.3. Sign Repositioning

Once the active collection contains the necessgnssthe user can choose to build
the database file. However, before building theabase, the software can do some

preprocessing on the sign animations. In partictier model can be repositioned.

Regardless of the actor’s effort on standardizimg dtart and end poses, fixing the
model at a particular position in all the framesyrba desirable. First, this would make it
possible to place the model at the appropriatetimtan relation to the camera during
rendering. Second, it would remove the floatingeiffthat would otherwise be produced

by blending different model positions at the tréinsi points.

To reposition the model, it is necessary to redet toot joint parameters
appropriately. Unlike the other joints that haveeth DOF’s, the root joint has six,
including position as well as orientation. In oyophcation, we simply reset them all to
zero, positioning the model at the origin and ahgnt with the principal axes, facing the
+Z direction. This also prevents the model from mgwor turning away from the camera

while signing.

Note that the parameters of the other joints ateafiected by this process. They will
continue to drive the limbs. At any rate, they wdrétter with blending because limb
movements are expected in sign animations, butifigas not. The only downside of the
repositioning process is that it removes from thptare data any navigation the virtual
actress would make in the available space, but snotements are not necessary or

desired in sign animations.

A sign can be defined as a sequence of poses citaoger time. Since given a
skeleton, a pose is just a vector of joint paramseié is possible to represent a sign as a
function P=S(t) where P is the parameter vectortha sign at time t. Then, the ith
parameter of the vector can be defined ;@S). Then, the repositioning process can be
described by redefining all the signs as follows.

33

_ 0, if 0<i<7
S'(t) =1 :
S'(t), otherwise

where the first six parameters are known present the position and orientation
the root boneOnce the signs are redefined, the database fletien out

3.3. 3D Model and Face Design

3.3.1. The Model

It was stressed above wi3D visualizationis preferable in sigrdemonstrations.
Therefore, his work includes a 3D virtuiactresgo display the sign animations cFigure
3.5). It was alsargued befor that skinning based surface models, rather than ed
representations, are preferred for representingialimumans in interactive applicatiol
Hence, our actress was modeled as a mesh surfadel mbose deformations are driv

by an underlying skeleton, designed todentical to the MOCAP skeletc

Figure 3.5 The virtual actres The model has a mesh surface model that is dbye
an internal skeleton, identical to the MOCAP skai¢

34

The meslof our virtual actreshas 6,875 vertices andl28 face and was prepared
using Alias Mayamodeling softwareThe details of the 3D adeling methods are outsi

the scope of this documeand will not be discussed further.

3.3.2. The Face

Since sign languages make extensive use of faciptessions and mimics,
complete sign animation system needs to reprodacilfexpressions as well as bc
movements. While this work incorporates direct suppnly for body movements, it al:
includes an integrated Mpeg4 compliant dynamic fagine, Xfac [86][87], to enable
future extensiongor facial expressions. Xface uses face meshesrgien by FaceGen
software and implements Mpegfacial animation EA) standard driving thefacial
definition points (FDP) of the mod. It supportsmultiple blended facial expressio

through morphing and keyframit

This work uses the standard femodel distributed with the Xface package, Ali

(Figure 3.6, containinca total of 6,887 vertices and 13,412 faces.

Figure 3.6. The Xface face model, Alice.

Xface is dynamically integrat into the system during rendering and attached
chest joint of the model skeleton. Tldoes not allow neck moveme, but instead, makes

35

the face follow the chest. We believe this is aneptable compromise, since there is

currently no input from the MOCAP hardware to dritie neck separately at the point.

Note that the face mesh is not actually conneatethé body mesh. It is merely

linked so that it is displayed with the body at #ppropriate location.

3.3.3. Model and Face Merging Issues

Our data set, the Turkish sign language fingerlisygedlphabet, does not require the
use of head gestures or facial expressions. Howeigr languages often employ them in
connection with the body movements, sometimes initractions as well. For instance, a
sign might involve the left thumb touching the chiMith our system, the more basic task
of supporting expressions is as simple as providingata stream to the Xface engine.
However, to handle interactions between the body the face correctly, care must be
taken when merging the body model and the facehegeln particular, the position of the
head and its dimensions should be compatible viiéhdody. For this task, we simply
measured the head features during the initial paetjoaa and testing tasks, and transformed
the Xface model accordingly. This does not ensarexact match, but provided visually

acceptable results during our tests (Figure 3.3).

A virtual signer with a head should also supporacheotations. The most
straightforward way to support these motions wdwdddefining a neck joint that would
only drive the head. Then, the neck joint can lwipled with a data stream appropriately.
However, the lack of actual connectivity betweea plolygons of the Xface mesh and the
body would still cause these movements to look turag because none of the polygons in
the body would deform in response to the headrewticating the elastic behavior of the
skin at the junction. This problem can be solvednbgnually creating new polygons
between the two meshes at runtime and defining thartial weights to follow the neck

joint and the parent of the neck joint accordingly.

36

4. EXECUTION

The two softwarecomponents used in this phaske tsign synthesizer arthe
animatorrenderer are integrated into a single Microsoft &léins application based «
OpenGL graphicsThe user interface is mouse driveused toaccess the graphical us
interface (GUI) control: In particular, the user is provided with an edikbo type a list o
signs to play, a readnly text box indicating the sign that is currenthayed by the actre:
and two buttons; a play button tdtiate playback and another to quit the applicatibms
interface can also be driven by the keyboard thmalgprtcut key (Figure4.1).

bu bir test mesajidir

Figure 4.1 The user interface of ttsynthesizer-animataenderer modu: In the
background is a 3D display of our virtual actresd e the foreground are the G

controls; the edit and the re-only boxes above, and the play apdt buttons below.

Besides the 2D GUI, it is also possible to switoh3D navigation mode via tf
control key or the right mouse button. While in 3@vigation mode, the user c
manipulate the camera using the mouse or the keg!

37

When launched, the application presents the usr avivirtual actress shown at an

idle stage. When idle, the actress performs anadie from the motion database.

When the play button is pressed, the applicatimst Builds a list of signs by parsing
the user’s input in the edit box and fetches tha siefinitions from the database. Next, the
two primary tasks of this phase are executed irrorh synthesize a single continuous
animation that will drive the model skeleton, tiignsdefinitions are concatenated together
with appropriate blending and to drive the defoioratof the virtual actress mesh, a
rendering loop is used, after posing the skeledore&ich frame according to the animation.

When playing the sign list is complete, the appicrareturns to the idle mode.

4.1. Sign Synthesis

The sign sequence animation is formed by concatenaign definitions fetched
from the database in order. When concatenatingfrémee data (parameter vector) of the

animation is copied from those of the constituégns offset in time as necessary.

When MOCAP data are used to synthesize sign segsgtitere is little concern
over the realism of the produced animation. In,fded only places where realism may be

lost are the transition points between the signs.

4.1.1. Jumps

The most important problem that can occur is visjhimps in the actor’'s pose at the
transition points, caused by direct concatenatibthe signs with different start and end
points. Continuity of the motion (more precisely, @ntinuity) can be restored by simply

having the signs start and end at the same poses.

4.1.2. Restarting

The problem with matching all start and end posehat it would cause the virtual

actor take this particular pose between every ditpwever, if, at the end of a sign, the

38

next sign is known to him, a real actor would josike a smooth transition to the first
movements of the next sign instead of going bacthéorest pose and starting over. The
virtual motion can also be made to look smooth lepding the motions of the signs at the
transition points. Note that this would also salve jump problem, but the signs were still
captured with similar start and end poses as ttudyzes more natural transition speeds

when blended.
4.1.3. Blending

To be able to blend, we make use of the attack dewhy period specifications.
Earlier, we allocated these brief durations atlibginning and at the end of the signs and
required them not to contain any movement or pagafieant to the meaning of the sign.
Then, blending can be applied between the decdlgeopreceding sign and the attack of
the succeeding sign. Since the signs can be coratatkin any order, the attack and decay

durations must be the same for every sign, de@seticonvenient 1 second (Figure 3.4).

The blending procedure is linear in that it simfdikes a weighted average of the
poses of the two signs while arranging the weidgbtgary linearly between 0 and 1. The
sum of the weights is 1 at all times during blegdili the signs are rewritten as R&}) a

sign sequence with m signs. SS;,, can be defined piecewise as:

S (), if 0<t<E,

=SB HESt<E,

S.(t—-E,.), if E,,<t<E,

where E is the time the nth sign has completed playingiaioled by adding
durations of the previous signs to that of thesiggm. When the blending process and the

overlap duration are incorporated, i& redefined as:

E'=)'D -a
i=1

39

where a is the length of the attack and decay geramd Dis the duration of the ith
sign. Then, blending the signs, &nd $.1 can be formulated with the following

reassignment.

S(t), if 0O<t<E,
S.(t-E"), if E,_+a<t<E,'
E*a Vg -g 0+ ") (t-E,), ifE/<t<E+a
a a
T'(t)=1S...(t-E,"), if E +a<t<E, '
Sm—1(t - Em—zl)’ If Em—2l+a <t < Em—lI
Em*a g ¢-g,,)+Em)s -E), ifE, <t<E,,+a
a a
S, (t—-E..", if E,_,'"ta<t<E_'+a

4.2. Articulated Body Animation and Rendering

4.2.1. Forward Kinematics

As with all skeleton driven, skinning based surfagadels, our model has its mesh-
skeleton relationship built in. There are no subdmesto assign to joints, but rather each
vertex in the mesh has a vector of normalized wsjgimdicating how much it must be
affected by each joint in the skeleton. Howevee, BROCAP data contain only individual
angles for each joint, so a preprocessing stepet®ssary to convert these angles into
global transformation matrices for each joint beftiney can be applied to the vertices.
This is done through forward kinematics. The precems done in each frame of the
animation, can be described as follows.

First, let the skeleton be defined as a vector, J=j. |, of joints and the function p(j)
as a function that returns the parent of a givam jor is undefined. To be able to drive this

skeleton, one also needs to parse the parametiervec

40

At an instant t, the parameter vector returnedheysign function P=S(t) includes the
parameters to be applied to each joint. Since ttaerothe joints are defined in the
parameter vector are known, it is possible to ekxtthe parameters belonging to a
particular joint from the vector. In particular,REp,p,...pm, then the parameters of a joint
ji are pi+1, Pi+2 and Riss. These parameters are the Euler angles the pitat be rotated
with. Note that the parameters, o, and p are not accounted for by these expressions.
These parameters belong to the root joint, whichdia DOF’s, and specify its Cartesian

coordinates.

From the parameters for each jointitjis possible to calculate a local rotation nxatr

Li as:
cosd, -singd, O 1 0 0 cosd, 0 sing,
L, =|sing, cosf, O| L,=|0 cosf, -singd | L, = 0 1 0
0 0 1 0 sing, cosf, -sing, 0 coso,
LI = Li,ZLI,XLI y

The MOCAP hardware uses the ZXY convention with Huger angles (in degrees),
both in specification in the parameter vector amdapplication of the simple rotations.

Hence, of the above anglés,is i1, Ox IS P2, andOy IS Psi+3.

Once the local rotation matrices &re known for each joint, jthe global rotation

matrices Gcan be recursively defined as follows.

G = LG, if p(i) isdefined
L, otherwise

Note that, no motion validity checking or DOF limg is applied during the
calculations. Such checks are not necessary, sheenotions are captured from a real

person.

41

Once the G matrices are calculated, the forward kinematickuwtations are

completed and deformations can be applied.
4.2.2. Deformation

As well as positions, the model also keeps a weiglstor for each vertex. These
weights indicate how much a particular vertex ie@ed by the rotations of each of the
joints and add up to 1 for each vertex. The deftionagprocedure we employ is derived
from the SSD algorithm in that to obtain a finatte& position; we calculate the weighted
average of the positions directed by the contrdngiof each of the joints in order to

produce the final vertex position.

Mathematically, if our skeleton has the joints;J§j...j» and our model has a set of
m vertices V={\, V... V}, then the model must also have a vectqrW;, Wi ... w;, Of
weights for each vertex.vNote that the sum of the weights in eachi$V1. If v is the
vector of Cartesian coordinates for the ith vertben for each frame, a new positighis
calculated as:

n
vi'=2 WG
j=1

where G is the global rotation matrix for the jth jointofFclarity, we have omitted

the transformation of the vertex coordinates frbmrhodel space to skeletal space.

Once the new vertex positions are calculated for each vertex, the new coordeate
are fed to the rendering pipeline to produce oamé& of the animation. The operations of

the rendering pipeline are beyond the scope oftihisiment.

42

5. RESULTS

The approach and methodology of the system areaequl above; yet, the quality
and performance of the final product merits furttiescussion. It is from these results that

conclusions for the work can be derived.

5.1. Realism

In terms of realism, the system can be said toop@rimoderately successful. While
the produced animations look adequately smoothcantnuous, and result in high quality
renders, the sign animations themselves are noayalviit for teaching purposes. To
evaluate the realism of our results from this pectipe, we check the animations the
system produces against reference videos. Our wsinal is that, realism problems of the

signs stem from the difficulties in capturing catent data during MOCAP.

5.1.1. Motion Capture Issues

Collecting a representation of the actor’'s motiaiihh MOCAP is quite a challenge
in practice. Ultimately, as it turns out, most bétproblems with the captured MOCAP
data can be attributed to inaccurate calibratiosteNhat while preparation can be used to
adapt the virtual model to the actor in terms ohelsions, manual calibration is still

required to make sure the orientations are matakeuell.

Calibration is a tricky process, especially for #Hrens. In our MOCAP system, the
arms have to be manually calibrated with correctémmgles, which seem to be quite
unstable, in each direction in a trial and erronmea. Unfortunately, it is very difficult to
obtain an accurately calibrated model with thisrapph, which is akin to manually using
forward kinematics. A common result of this probleshands that individually move and
pose correctly, but fail to cooperate accuratelgtuxally, this result is most noticeable in
signs involving the two hands coming together @apging the fingers. Figure 5.1, Figure
5.2, Figure 5.3 and Figure 5.4 exemplify these €ase

43

Figure 5.1. Saple reproduction of the letter “CLeft to right above are sample fran
from thereference video for the letter, below are fromrigggroduction. A simple lette

“C” is clearly reproduced accurately.

Figure 5.2Sample reproduction of the letter “CLeft to right above are sample fran
from thereference video for the letter, below are fromréggroduction“O” requires
finger snaps, which are correctly reproduced betrétative position and orientation of tf

hands is skewed.

44

Figure 5.3 Sample reproduction of the letter “: Left to right above are sample fran
from the reference video for the letter, belowfapen the reproductior“A” requires
precise association tiie hands and the fingelsjt while the hand shapes icorrectly

reproduced, the association is missing.

Figure 5.4 Sample reproduction of the letter : Left to right above are sample fran
from the reference video for the letter, belowfaoen the reproductior“J” requires
associatiorbetween the han as well asnovement of the left hand, I while the hand
shapes and the movement are correctly reprod theassociatioris missing.

45

5.1.2. Standard Repositioning

While a real actor is signing, it is required tooguce a realtime preview of the
observed motion for immediate feedback and coweacts necessary. The MOCAP
software produces such a 3D preview, but it isthetmost practical kind of feedback for
the actor. A real actor would be used to looking atirror for a feedback of his motions,

but to the inconvenience of the actor, the 3D me\is not inverted like a mirror.

Moreover, the actor looking at the preview actudiygrades the data quality because
it affects the detected positions. In particulae head and part of the body of the actor
instinctively turns to look at the PC monitor whéie preview is displayed. While using a
helmet mounted display would help prevent this [@oh it is also possible to extend the

standard repositioning procedure to fix the rotadiof these other bones to zero, instead.

5.1.3. Blending

Linear blending, implemented in this system, is thest straightforward way to
smoothly concatenate two animations. However, lig preserves &continuity and hence
looks somewhat artificial in the output. In partan) the motions are transitioned smoothly
but the transition rates change abruptly, caushegvirtual actress to look like she has
suddenly changed her mind. Note that inaccurateeradlce to the attack and decay
specifications also cause this problem. We assurat & better blending method that
would preserve another order of continuity wouldfirdiely produce more natural

transitions. A sample of the obtained blendinggitaons is given in Figure 5.5.

Figure 5.5 Sample blending sequel: Transition between the simple sign for the le
“L” and the two hand sign for the letter “J” demtrates blending. Notice that the ric

hand stays in position instead of returning torts positior

5.1.4. SSD Artifacts

The realism of the outps also suffers mildly from the lack of special handliof the
SSD artifacts of the joints, which can cause timbs to look unnatural at certe
configurations. Fortunately, methods are availableemedy these proble [52] [54].

Figure 5.6demonstrates one of the worst SSD artifacts o$ylseem

Figure 5.6 Sample SSD artifa: The right elbow loses part of its thicknewhile signing
for the letter “U”.

5.2. Performance

From a performance point of view, the implementgstesn can be considered v

successful. On the same workstation PC previouglgtioned in MOCAP, with hardwa

47

acceleration for 3D graphics using an NVIDIA 840@% graphics adapter, the playback
application achieved frame rates between 550 fg®@ofps in our tests (at 400x600 image
resolution and 24 bit color depth, using OpenGLhuaiit frame rate limiting and no

Vsync).

5.3. Communication

While the playback application is running, the sagrimations are loaded on demand
and kept in memory as long as there is memory a@viail Assuming the database is housed
on another server, the bandwidth requirementsdanecting the server can be calculated
with the expression bandwidth = (size of a framéfyame rate). Size of a frame is the size
of the parameter vector for a frame, which is 12=x984 bytes, assuming the parameters
are stored as 8 byte doubles. Hence, for the attaMOCAP frame rate, 77 fps, the
bandwidth required is 984 x 77 = 75,768 bytes peosd (Bps) or 606,144 bits per second
(bps). This requirement reduces to 984 x 20 = 1DE& or 157,440 bps for the minimum
frame rate required for the moving picture illusiddoth numbers are practical with a

modern digital subscriber line (DSL) connection.

Since actual images are transferred between thderenand the final client, the
bandwidth requirements are much higher. Uncompdesgdeo at 400x600 image
resolution and 24 bit color depth at 20 fps reqaet00 x 600 x 24 x 20 = 115,200,000
bps connection. While such rates are only possibllcal area networks (LAN), it is
possible to reduce these requirements by redudiegrésolution and color depth or

compressing the produced video.

5.4. Additional Discussion

Once system tests are done in the execution paasanber of other results emerge.
For instance, the need for facial expressions rissséd once again. As it is currently
implemented, the virtual actress lacks any expoesgihatsoever. At this state, she looks
little more than a humanoid robot. Some form ofregpion must be fed to the face of the

actress if she is to look like a human at all.

48

The lack of facial expressions is also exaggerdigdthe availability of 3D
navigation in the playback application. At the ddfapose, the virtual actress is
conveniently looking forward, at the camera. If ta@mera is moved, however, the actress
needs to react, just as a real human would, byngito look at the camera, even if with
her eyes only. The current implementation, howeWiges the eyes to look forward,

regardless of the position of the camera, prevgritie user from feeling communicated to.

The lack of head movement support in the systero katsits the realism of the
virtual actress. Our system has temporarily attddne head to the chest bone of the
model. This provides a suitable placement of thadhebut does not allow it any
independent movement. On the contrary, a real pamsaves his or her head even when
idle.

49

6. CONCLUSIONS

6.1. Highlights

Generally speaking, the implemented system carobsidered a successful frontend
to any sign producing application. As long as tppligation implements the concatenative
sign synthesis model, this frontend can be exmloifrthermore, since no assumptions
are made about the particular sign language repexsen the database, the system can

virtually support any language.

The system provides not only synthesis and playloddigns, but also high quality
realtime rendering of a virtual actress. The realig the renders provided by the system is

notable, as the quality is certainly above comnmoplémentations.

An even more important achievement of the systeits i®altime performance. With
realtime rendering, the playback module can be useshy interactive 3D application.
Moreover, there is no limitation on using a differevirtual actor to suit the needs of

different future requirements.

Finally, the fact that the system was designedippsert the broadly recognized BVH
format is also an asset. While the current databas&ins a realistic set of signs, it can
easily be extended with more, provided they arBVid format. There is no restriction on
the source of the sign data either. Besides MOGA® system would work equally well
with authored animations, as long as they can beiged in BVH format. Note that,
supporting skeletal animation data for input isoadsstrategically sound choice; as such

data can be easily manipulated to be used in gteddrom other projects.

6.2. Future Directions

Aiming to be the frontend of a sign tutoring totblis work is limited in its goal and
feature set. Yet, there are many areas that cagfib&om improvements.

50

6.2.1. Facial Expressions and Eye Movements

As discussed before, facial expressions are aitiefequirement in a system such as
ours. They are important for the perception ofitgah the virtual actor and an integral
part of many sign languages, so they must be stggpdrthe system is to remain generic.
Eye control is another important feature that issimg. Real social interactions involve the

two parties actively look at each other, but ouress only looks ahead.

Our implementation does not reproduce facial exges, because there is no data
source for generating them. In particular, a vigemcessor is required to capture the facial
expressions along with the MOCAP data so that tta dan be fed to a facial expression
synthesizer. However, our work does incorporatextfaze engine so that it can properly
support such an extension as soon as a data ssuavailable. Xface also supports full
control of eye movements. A future extension of work can easily use the Xface engine
to actively direct the actress’ eyes to look at taenera. Moreover, since our model is
directed by a well defined skeleton structure, e also be programmed to turn partially

to the camera with her body.

6.2.2. Head Movements

It was already stated that head movements are s@ges the actress is idle. In
addition, many sign languages actively use heademewts, just like facial expressions.

Hence, our system must be extended to support ithéme future.

Currently, the head is attached properly to theybatlthe chest joint but never
moves. However, a recent improvement in our MOCAd#dWware added proper head
MOCAP support. The motions of the head are recoatededicated joints in the skeleton
and can be reproduced on the virtual actress. ppat the head motions with our
implementation, the only necessary change is tclatthe head to the appropriate neck

bone instead.

51

When the head movements are independently suppantgédhere are two separate
engines to support the face and the body, as insgstem, there is often a unification
problem. Specifically, the meshes for the head toed body are separate and do not
reproduce the elastic skin between them when movedferent directions. This problem
does not arise in our system, because we do haa@ mmetion data to drive the head
independently. If the system is extended to supgueh data, the easiest solution would be
to manually create polygons between the bordercesrof the head and the body meshes.

As the vertices are deformed, the polygons wibitstt and create an elastic skin effect.

6.2.3. Retargeting

An important extension would be supporting retamggtmanually or automatically,
of the motion data to virtual models with differergkeleton topologies. Our
implementation currently requires that the virtnabdel have the same skeleton as the
MOCAP model. We also implement basic support fdangeting on the software side
while building the database, but do not do retangatself. The benefits of retargeting are
twofold. First it would allow other, significanthdifferent, models be used in the
visualization, without modifying the database of MAP data. Second, it would allow the
database to be extended with MOCAP data taken fdmer actors or other MOCAP
systems, which may produce different skeleton togiels.

6.2.4. Additional Improvements

The MOCAP data of our system are manually entererithe database and the sign
sequence is acquired from the user interface dsntio return, the output visualization is
produced in the application’s own window. It is piliée to move all of these data streams
into generic inputs and output. For instance, thialthse can be directly constructed from
the command line with the names of separate BV fithe sign sequence also expected
from the command line and the output can be didettea generic operating system
window. If all of these interfaces are made gendhe system can be embedded in any

other system without modification. The ouput carelsen more generalized by producing

52

VRML output (since 3D models are already availabstead of a rendering for better

network performance, should the application beitisted.

Our system is tuned for our specific models, skeletand meshes. However, with
other digital data, substantial rearrangement megdnto be done. While our code is
designed to be easily adaptable to other moded®es not provide an external interface to
do these settings without rebuilding the binariBse addition of a few GUI screens of

command line parameters could make the systemmadog useful.

Finally, an obvious improvement of any system inuaj a database is the extension
of the database with more data. Our system is nepon. Since there is no restriction on
the signs the system can store, synthesize and iplesyonly natural to expect that the

database will be extended with more signs in tieréu

53

APPENDIX A: SYSTEM OPERATION GUIDE

This document is a guide to the operation of ogn Language Animatic Synthesis
system. Tk system is comprised of softwaand data fileshat are used to generate
realtime, 3D sign animations a virtual actressThe animations are obtained
combining sign definitions that are fetched fronsign database in order specified b
sign list. The sign list is built from end userspui, whereasthe database contains
MOCAP data for each sic

Expressions

\ Sign

Animator- | animations
Sien list Sign Renderer
= ~—Y Synthesizer ~——Y
Skeletal
motion
Execution Phase Sign definitions
Initialization Phase
3D Xface
MOCAP y model
data Database ign
~—T Builder Database
e W

Data Collection Database Construction 3D Design

Figure A.1. System overview.

The operation of the syste(Figure)can be explained in two phases, each of h
logically applies to one type wser The initialization phase is normally carried dayt
system operators to prepare the application déa fhat are used during the execu
phase. The data files include the virtual actresdahand the sign débase. The execution
phase spans the quemlsponse looof the systemwhich creates and plays animati for
the end user. The rest of this document descriteesperation of the system from the pc

of view of these users.

54

A.l. Initialization: Operator's Manual

A.1.1. Motion Capture

To be able to construct sign animation sequenass, & database of sign definitic
is requiredThe definitions are obtained through MOCAP, thstftask in the initializatio
phase While any MOCAP system can be used to ca| the sign definitions, the syste

currently uses a Shapewrap lll system by Measulan

wireless @ WLAN
access point \ proprietary
1 connection SELSOLS
LAN or WLAN [) w
/ data
concentrator
LAN
workstation PC

and database

FigureA.2. ShapeWrap Il MOCAP system.

Shapewrap llis a magnetic MOCAP system that can track mosheflimbs of ar
actor, including the legs and the fingerhe system includes a software application, ct
ShapeRecorder for Microsoft Windows to record thptered motion data. ShapeRecot
does not connect to the sensors directly. Insieadnnects to a data concentrator box
is mounted on the actorlong with the sensors. The communication betw
ShapeRecorder and the ¢ concentrator can be wireBthernet baselocal area network,
LAN) or wireless [EEE 802.11 wireless local area network, WL/ with SSID
“ShapeRecorde}” In contrastthe data corentrator is connected to the sensthrough

sensor hubs with cablesver proprietary protocc (Figure).

A.1.1.1. Mounting the Sensol To capture motion data with Shapew lll, the first step

is to mount the sensors and the data concentrattiret actor using the provided Vel

55

straps, belt, hat and vest, according to the Shagpevill manual. There are three

orientation sensors, connected to a single sendor @ne is attached to the back of the
head, one to the back of the waist and the othieichwis embedded inside the hub, on the
back of the actor. Arm sensors are thick blackostand are attached to the outside of
either forearm in parallel, minding orientationgthght way up). Hubs of the arm sensors
are attached to the upper arms. The hand senssrdrabmounted on the outside of the

wrists and the sensors themselves, thin blue staesinserted into the slits in the gloves.

Cabling should also be completed before the syssenrned on. In particular, there
should be a data cable from each sensor hub tdatseconcentrator. The cables and the
available data concentrator slots are equivaledtcam be used interchangeably. However,
note that sensor to hub connections are somewihayfland can get disconnected. It is
recommended to check them regularly, although th&a cconcentrator also signals

disconnections with beeps.

A.1.1.2. ConnectingShapeRecorder can connect to the data concentragorLAN or

WLAN. If wireless connection is preferred, the viegs access point must be turned on
prior to powering the data concentrator. For wicedinections, the wireless access point

must be turned off.

When powered on (through a battery or AC adaptég, data concentrator first
powers the sensor hubs, causing their red lightartoon and then looks for the wireless
access point to connect to. If the access poiatiive, wireless connection is made to the
access point, after which the concentrator wiluass the IP number 10.0.0.251 and emit
four beeps to signal connection complete. At tlisp the workstation PC should also be
connected to the access point, through wirelessired methods. If the data concentrator
cannot find an access point, it attempts wired ection over the Ethernet port and takes
the IP 10.0.0.250 instead, emitting two series aufr foeeps in the process. If the data
concentrator can be pinged from the workstationtR€ connection is successful.

A.1.1.3. Starting ShapeRecord8hapeRecorder also supports serial connectionseght

the PC has serial ports (e.g. virtual ports fondBboth), they must be disabled before

56

launching the software. Once launched, ShapeRectwodks for available data ports and
should eventually discover the data concentratorttoe network, if connection is

successfully made.

Next, the detected sensors are shown and the onestin the MOCAP session are
asked. Normally, all the sensors are used. Fin&8lhgpeRecorder requests a subject file

from the user.

A.1.1.4. Preparing a Subject File and Calibratiénsubject file is used to match the

virtual skeleton to the MOCAP actor. To prepareubject file, the operator must follow

the instructions in the model link wizard of Shape&der.

Before capturing motion data, the model has to ek ealibrated. It is recommended
that the calibration procedure is carried out bef@cording each movement. To calibrate
ShapeRecorder, the software is instructed to riesetternal offsets in homing pose by
clicking the homing button in the tape control womd while the actor puts out his hands
in front, assuming the home pose. Once this proestone, the 3D preview in the
software should reflect the actual pose of theradtat does not, or if there is drift in the

preview, homing should be repeated.

A.1.1.5. Recording Datalf preparation and calibration is correct, recagdican be

initiated by the record raw data file option in §aRecorder. This brings up the recording
control window, already recording. When done, ttog utton should be clicked and data

should be exported into a BVH file.

When recording signs for use in this system, choellsl be taken to have the actor in
the same pose in the beginning and at the endeyfyesign. This is required to improve
blending performance during playback. In additithre first and the last 1 second part of
the movement, called the attack and the decay,ldlumly involve moving out of or into
this pose. The attack and decay may be overwritteimg blending and hence should not

contain expressive poses.

57

A.1.2. Database Construction

Once the BVH files for the signs are available, database can be constructed. The
system keeps a sign database integrated into #letsk file for the virtual actress for
performance and integrity reasons. Hence, to coctsthe database, the virtual actress
model must be built.

A.1.2.1. System RequirementSignDBEditor is a simple application that is usied

construct and edit databases for use in this sys&gnDBEditor runs on Microsoft
Windows XP or newer operating system, and requar2sshz CPU, 1 GB of RAM and 60
MB free disk space (shared with SignPlayer).

A.1.2.2. Using SignDBEditorWhen first launched, SignDBEditor asks the user do

compatible model or skeleton file to initialize thser interface with. If there are signs
specified in the skeleton file, they are loaded imemory and displayed to the user in an

animation list window for editing or removal.

An animation can be removed from the memory bykolig on the dedicated remove
button. A dedicated add button is also present, thilaen clicked, causes the user to be
prompted for a BVH file to load. Then, the animatiextracted from the BVH file is
loaded into memory and added to the animation Tise animations in the animation list
are named automatically with their flenames whiest foaded. This default name can be
overridden with the F2 key.

When the list of animations is adequate for expgrinto a database, the database
file can be written by clicking on the OK buttont this step, SignDBEditor also allows
the data to be written to another database fille bsised on the skeleton in memory, if the

user so desires.

58

A.1.3. 3D Design

The two digital assets of the system are the Vidaaess model and the Xface head
model. The virtual actress can be modeled in aapdstrd modeling software and
exported, as long as it uses the exact same skedstthe MOCAP data. One of the BVH
files can be imported by the software to obtain skeleton, to which the mesh can be
bound. The bone naming convention in original BMlesf must be maintained in the
model (except for the end affecters, which can &med with their parent, suffixed by a
“ End”). In particular, a bone named “Chest” musseso that it can be used to attach the

Xface model to.

To model an Xface head, FaceGen software must & Eor more detail on this

process, Xface documentation should be consulted.

A.2. Execution: End User’'s Manual

A.2.1. System Requirements

The sign animations are generated and played widkdicated application, called
SignPlayer. SignPlayer runs on Microsoft Windows &Pnewer operating system, and
requires a 2 Ghz CPU, 1 GB of RAM and 60 MB freskdspace (shared with
SignDBEditor). While it will detect and, if availbly use it through OpenGL, SignPlayer
does not require hardware acceleration for graphics

A.2.2. User Interface and Tasks

SignPlayer features a hybrid user interface thaksvan both 2D and 3D style. The
2D interface is comprised of a number of controlsmely an edit box to type a list of
signs to play, a read-only text box indicating $ign that is currently played by the actress
and two buttons; a play button to initiate playbackli another to quit the application. The

user can move the mouse to control a pointer ard@dscreen and use the left mouse

59

button to activate the controls that are interactiFor instance, the user can end

application by clicking on the quiutton.

Behind the controls, SignPlayer draws the virtuatess in its current mode in &
(Figure A.). The 3Ddisplay can be manipulated after beactivated via th right mouse
button. When active the mouse is used to cont@lpibsition and orientation of the
camera. Namely, horizontal movements rotate theecararound the Y axis and verti
movements around the X axis. Rotation around tha&xi& is achievedy keeping the
middle button down while moving the mouse horiztntdinally, the roller can be use

to move the camera forward or backward in its bhsigh.

bu bir test mesajidir

Figure A.3. SignPlayer user interface.

A.2.3. Playing Sign Animations

SignPlayer has two modes execution. Initially, it is in idle mode and disp$athe
virtual actress looping an idle animation. The ation stays in the idle moc

indefinitely, until the user instructs it to switth playback mod

60

To request sign playback, first, the list of sigmgst be entered into the edit box. The
list of signs is a simple string, where each characncluding spaces, represents a
different sign. In ordering the signs, the listlasss the left to right order the characters
are used in the string. The characters should berttase and in English whenever
possible. For specific Turkish characters, theteelacapital letter is used instead. For

instance, to request the sign fog”,” one needs to type “G”. In case a sign is not

recognized, it is simply ignored.

Once the sign list is specified, playback can h&ated by clicking on the play
button. In response, SignPlayer first completescimeent idle loop of the virtual actress
and then directs her to play the sign animatiorecifipd in the sign list, in order. The
signs are continuously played one after the othdrcannot be interrupted or cancelled. As
the actress plays the signs, the name of the sigerdly being played is displayed in the
read-only text box. When playing the sign list @nplete, the application returns to the
idle mode, expecting additional playback requestsenplaying the idle loop.

61

APPENDIX B: BVH FILE FORMAT SPECIFICATION

The Biovision Hierarchy (BVH) file format was origlly developed by Biovision to
store and carry motion capture data. It can contaoth specification of skeleton

hierarchies and motion data to animate them.

B.1. Description of File Contents

A BVH file is actually an ASCII text file, commonistructured with whitespace. The
keywords and punctuation can be separated by ampioation of spaces, tabs and
newlines. Throughout the file, numeric values grectfied in decimal form, angles in
degrees and time values are in seconds. The cerdeatBVH file are organized into two

sections, as described below.

B.1.1. Hierarchies

The first section describes the skeleton hierascdigven by the motion data. The
section begins with the keyword “HIERARCHY”. Nexthe skeletons are described
sequentially. A skeleton description is actuallftiararchical definition of joints, starting
with the root joint. The description of the rooinbstarts with the keyword “ROOT”,
followed by a name for the root bone. Internal {sirare specified by the keyword
“JOINT”, followed by a name, instead. The end akbes are donated with the “End Site”

keyword and do not have names.

Following the name, the offsets of a joint are #peat after a single curly brace “{*
with the keyword “OFFSET". Following this keywordeathe X, Y and Z offsets of the
joint, relative to its parent, also describingbse pose. The next part is used to indicate
which part of the motion data is used to direcs tharticular joint. First is the keyword
“CHANNELS?”, followed by an integer, the number adifameters in the parameter vector
that correspond to this particular joint. Typicallige root joint has six parameters and the
rest of the joints have only three. End affectersidt specify joints and hence, do not have

62

channels. Following the channel count are the cbldabels, the number of which should
match the number of parameters as specified. Tiedda@an be one of the preset keywords
“Xposition”, “Yposition”, “Zposition”, “Xrotation”, “Yrotation” or “Zrotation” and
indicate how to use the particular parameter obthinom the parameter vector. Note that
the order the channels are specified is also udezhwhe transformation matrices of the
associated transformations are multiplied. In otwerds, if “Zrotation” comes before

“Xrotation”, the rotation matrices are multiplied b,L.

Unless the joint is an end affecter, next, thedcfoints described in order. Finally,

the root, joint or end affecter specification isrggeted with a single curly brace “}".

B.1.2. Motion

The second section starts with the “MOTION” keywdi@lowed by the “Frames: “
keyword. Next, the number of frames specified i@ thotion section is located, which is
an integer. Following this values, the playbacle riat specified with the “Frame Time:”
keyword followed by the frame time. The rest of file is a sequence of parameter
vectors, the count of which is equal to the nundddrames specification. Each parameter
vector is a simple sequence of real numbers irotber the joints and their channels are

specified.

B.2. Common Conventions

While whitespace can be used liberally for fornmafta BVH file, there are a few
conventions that have found widespread adoptiormélyg the “HIERARCHY” and
“MOTION” keywords and curly braces are usually @dcon a line by themselves and
joint specifications, including the braces themss)vare usually indented with tabs to
indicate their level in the hierarchy. These coriers are honored in the sample file that

follows.

63

HIERARCHY
ROOT Hips
{
OFFSET 0.00 0.00 0.00
CHANNELS 6 Xposition Yposition Zposition Zrotatiofrotation Yrotation
JOINT Chest
{
OFFSET 0.00 8.00 0.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftArm

{
OFFSET 5.00 2.00 1.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT LeftHand
{
OFFSET 0.00 -8.00 0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site
{
OFFSET 0.00 -6.00 0.00
}
}
}
JOINT RightArm
{
OFFSET -5.00 2.00 1.00
CHANNELS 3 Zrotation Xrotation Yrotation
JOINT RightHand
{
OFFSET 0.00 -8.00 0.00
CHANNELS 3 Zrotation Xrotation Yrotation
End Site
{
OFFSET 0.00 -6.00 0.00
}
}
}
}
}
MOTION
Frames: 2

Frame Time: 0.05
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
0.00 0.00 0.00 0.00 5.00 0.00 -5.00 0.00 5.00(46.00 0.00 -90.00 0.00 0.00 0.00 -15.00 0.00 €186.00 0.00

Figure B.1. A sample BVH file: The file containsjwa simplified upper torso model and a

100 millisecond, two frame animation.

64

B.3. Grammar

The BVH file format can be more properly specifiegsing a grammar for the file

structure (excluding integrity requirements) asofob.

bvhFile: hierarchySection motionSection

hierarchySection: hierarchyHeader hierarchyData
hierarchyHeader: “"HIEERARCHY”

hierarchyData: skeleton+

skeleton: rootJoint

rootJoint: “ROOT” name { offsetSection channelSeetjoint* }
offsetSection: “OFFSET” real real real

channelSection: “CHANNELS” integer real+

joint: internalJoint | endAffecter

internalJoint: “JOINT” name { offsetSection charBettion joint* }
endAffecter: “End Site” { offsetSection }

motionSection: motionHeader frameCountSpec frameBipec motionData
motionHeader: “MOTION”"

frameCountSpec: “Frames:” integer

frameTimeSpec: “Frame Time:” real

motionData: parameterVector*

parameterVector: parameter+

parameter: real

name: string

string: alpha+ alphanumeric*

alpha: {*A"-2"} | {“a"-"2"}

alphanumeric: alpha | digit | “_"

integer: sign digit+

real: integer | sign digit+ “.” digit+

digit: {0"-“9"}

sign: © | 4+ |«

Figure B.2. BVH file format grammar: The top objecbvhFile. Note that unquoted
spaces represent whitespace.

65

REFERENCES

1.Kochanek, Doris H. U. and Richard H. Bartels, "tpt#dating Splines with Loc.

Tension, Continuity, and Bias ControACM SGGRAPH Computer Graphics, pp. 33
41, 1984.

. Steketekee, Scott N. and Norman |. Badler, "Pamaméteyframe Interpolatio
Incorporating Kinetic Adjustment and Phrasing CohtrACM S GGRAPH Computer
Graphics, vol. 19, no. 3, pp. 255-262, 1985.

.Baecker, Ronald M., "Picture Driven Animation,” IAFIPS Joint Computer

Conferences, Boston, Massachusetts, pp. 273-288, 1969.

.Burtnyk, N. and Wein M., "Interactive Skeleton Tatjues for Enhancing Motic
Dynamics in Key Frame AnimationCommunications of the ACM, vol. 19, no. 10, pj
569-569, 1976.

.Zeltzer, D., "Motor Control Techniques for Figurenifation,” IEEE Computer

Graphics and Applications, vol. 2, no. 9, pp. 53-59, 1982.

.Watt, A. and M. WattAdvanced Animation and Rendering Techniques, Peter Wegne
Ed., ACM Press, New York, New York, 1992.

.Barr, Alan H., "Global and Local Deformations ofli@dPrimitives," in International
Conference on Computer Graphics and Interactive Techniques, pp. 21-30, 1984.

8.Sederberg, Thomas W. and Scott R. Parry, "Free FDeformation of Soli
Geometric Models," inlInternational Conference on Computer Graphics and

66

Interactive Techniques, pp. 151-160, 1986.

9.Korein, J. U. and Norman |. Badler, "Techniques @&nerating the God&birectec
Motion of Articulated StructuresEEE Computer Graphics and Applications, vol. 2,
no. 9, pp. 71-81, 1982.

10.Girard, Michael and A. A. Maciejewski, "ComputatadrModeling for the Comput
animation of Legged Figures,” International Conference on Computer Graphics and
Interactive Techniques, pp. 263-270, 1985.

11.Girard, Michael, "Interactive Design of 3-D Compufeimated Legged Anim:
Motion," in Symposium on Interactive 3D Graphics, pp. 131-150, 1987.

12.Badler, Norman 1., K. H. Manoochehri, and G. Walter'Articulated Figur
Positioning by Multiple Constraints|EEE Computer Graphics and Applications, vol.
7, no. 6, pp. 28-38, 1987.

13.Zhao, J. and Norman |. Badler, "Real Time Inverseekhatics with Joint Limits ar
Spatial Constraints,” University of Pennsylvaniachnical Report MS-CIS-809,
1989.

14.Phillips, Cary B., J. Zhao, and Norman |. Badldntéractive Real Time Articulate
Figure Manipulation Using Multiple Kinematic Corstits,” in Symposium on
Interactive 3D Graphics, pp. 245-250, 1990.

15.Zhao, J. and Norman [. Badler, "Inverse Kinematssitioning Using Nonline:
Programming for Highly Articulated FiguresACM Transactions on Graphics, vol.
13, no. 4, pp. 313-336, 1994.

16.Lee, J. and S. Y. Shin, "A Hierarchical Approachinteractive Motion Editing fo

67

Human-Like Figures,” inlnternational Conference on Computer Graphics and

Interactive Techniques, pp. 39-48, 1999.

17.Tolani, Deepak, Ambarish Goswami, and Norman I. |&ad'Real Time Invers
Kinematics Techniques for Anthropomorphic Limb&taphical Models and Image
Processing, vol. 62, no. 5, pp. 353-388, 2000.

18. Phillips, Cary B. and Norman |. Badler, "InteraetiBehaviors for Bipedal Articulat
Figures,"ACM SGGRAPH Computer Graphics, vol. 25, no. 4, pp. 359-362, 1991.

19.Hahn, J. K., "Realistic Animation of Rigid BodiesfCM S GGRAPH Computer
Graphics, vol. 22, no. 4, pp. 299-308, 1988.

20.Barzel, Ronen and Alan H. Barr, "A Modeling SysteBased on Dynam
Constraints,” inInternational Conference on Computer Graphics and Interactive
Techniques, pp. 179-188, 1988.

21.Terzopoulos, Demetri, John Platt, Alan Barr, andrtK&leischer, "Elasticall
Deformable Models,"” inlnternational Conference on Computer Graphics and
Interactive Techniques, pp. 205-214, 1987.

22.Barr, Alan H. and John Platt, "Constraints Methdds Flexible Models," i
International Conference on Computer Graphics and Interactive Techniques, pp. 279-
288, 1988.

23.Armstrong, William W. and Mark W. Green, "The Dynias of Articulated Rigit
Bodies for Purposes of AnimationThe Visual Computer, vol. 1, no. 4, pp. 23240,
1985.

24.Wilhelms, J. and B. A. Barsky, "Using Dynamic Arsil/ to Animate Articulate

68

Bodies such as Humans and RobotSanadian Information Processing Society
Graphics Interface, pp. 97-104, 1985.

25.Wilhelms, J., "Using Dynamic Analysis for Realist@&nimation of Articulate

Bodies,"IEEE Computer Graphics and Applications, vol. 7, no. 6, pp. 12-27, 1987.

26.Armstrong, William W., M. Green, and R. Lake, "Nd2eal-Time Control of Huma
Figure Models,"|EEE Computer Graphics and Applications, vol. 7, no. 6, pp. 581,
1987.

27.Cohen, Michael F., "Interactive Spacetime Contosl Animation,”"ACM S GGRAPH
Computer Graphics, vol. 26, no. 2, pp. 293-302, 1992.

28.lsaacs, Paul M. and Michael F. Cohen, "Controllibgnamic Simulation wit
Kinematic Constraints ACM SGGRAPH Computer Graphics, vol. 21, no. 4, pp. 215-
224, 1987.

29.Witkin, Andrew and Michael Kass, "Spacetime Corists" in Computer Graphics
and Interactive Techniques, pp. 159-168, 1988.

30.Willmert, K. D., "Graphic Display of Human Motion,"in ACM Annual
Conference/Annual Meeting, pp. 715-719, 1978.

31.Potter, T. E. and K. D. Willmert, "Three Dimensional Hum&nsplay Model," ir
International Conference on Computer Graphics and Interactive Techniques, pp. 102-
110, 1975.

32.Badler, Norman I., J. O'Rourke, and H. Toltzis, S®herical Representation o
Human Body for Visualizing Movement," IiEEE, pp. 1397-1403, 1979.

69

33.Catmull, Edwin, "A System for Computer Generated vMs," in ACM Annual
Conference/Annual Meeting, pp. 422-431, 1972.

34.Badler, Norman I. and Stephen W. Smoliar, "DigiRépresentation®f Humar
Movement,"ACM Computing Surveys, vol. 11, no. 1, pp. 19-38, 1979.

35.Chadwick, J. E., D. R. Haumann, and R. E. Parebayéred Construction fi
Deformable Animated Characters,"limternational Conference on Computer Graphics

and Interactive Techniques, pp. 243-252, 1989.

36.Chen, David T. and D. Zeltzer, "Pump It Up: Comput@nimation of ¢
Biomechanically Based Model of Muscle Using the iteinElement Method," i
International Conference on Computer Graphics and Interactive Techniques, pp. 89-
98, 1992.

37.Thalmann, Daniel, J. Shen, and E. Chauvineau, "Hagtan Body Deformations f
Animation and VR Applications," i€omputer Graphics International, p. 166, 1996.

38.Wilhelms, J. and A. Van Gelder, "Anatomically BasElddeling," in International
Conference on Computer Graphics and Interactive Techniques, pp. 173-180, 1997.

39.Scheepers, F., R. E. Parent, W. E. Carlsson, akd8ay, "AnatomyBased Modelin
of the Human Musculature," imternational Conference on Computer Graphics and
Interactive Techniques, pp. 163-172, 1997.

40.Nedel, Luciana Porcher and Daniel Thalmann, "Madgland Deformation of tt
Human Body Using an Anatomically-Based Approach,Computer Animation, pp.
34-40, 1998.

41.Cani-Gascuel, M.P. and M. Deshru"Animation of Deformable Models Usi

70

Implicit Surfaces,"|lEEE Transactions on Visualization and Computer Graphics, vol.
3, no. 1, pp. 39-50, 1997.

42.Aubel, A. and D. Thalmann, "Realistic Deformatioh lduman Body Shapes,"
Computer Animation and Smulation, pp. 125-135, 2000.

43.Magnenat-Thalmann, N., R. Laperriere, and D. ThaimaJointbependent Loci
Deformations for Hand Animation and Object Grasping Graphics Interface, pp.
26-33, 1988.

44.Hodgins, J. K., W. L. Wooten, D. C. Brogaand James F. O'Brien, "Animati
Human Athletics," innternational Conference on Computer Graphics and Interactive
Techniques, pp. 71-78, 1995.

45.Singh, K. and E. Kokkevis, "Skinning CharactersrdsBurface Oriented Free Fc
Deformations," inGraphics Interface, pp. 35-42, 2000.

46.Lewis, J. P., M. Cordner, and N. Fong, "Pose Sjzsfermation: A Unified Approac
to Shape Interpolation and Skeleton Driven Deforomgt in International Conference
on Computer Graphics and Interactive Techniques, pp. 165-172, 2000.

47.Sloan, P. P., C. F. Rose, and Michael F. Cohergp&iby Example," i®ymposium on
Interactive 3D Graphics, pp. 135-143, 2001.

48.Kry, P. G., D. L. James, and D. K. Pai, "EigenSKreal Time Large Deformatic
Character Skinning in Hardware," 8ymposium on Computer Animation, pp. 153159,
2002.

49.Bloomenthal, Jules, "Medial Based Vertex Deformation Symposium on Computer

71

Animation, pp. 147-151, 2002.

50.Wang, X. C. and C. Phillips, "Multi Weight Envelog: Least Squares Approximat
Techniques for Skin Animation," iBymposium on Computer Animation, pp. 129138,
2002.

51.Mohr, Alex and Michael Gleicher, "Building EfficignAccurate Character Skinsofn
Examples,’ACM Transactions on Graphics, vol. 22, no. 3, pp. 562-568, 2003.

52.Kavan, L. and J. Zara, "Real Time Skin Deformatiath Bones Blending," i'WSCG
Short Papers, pp. 69-74, 2003.

53.Shoemake, Ken, "Animating Rotation with Quatern@@urves," inComputer Graphics
and Interactive Techniques, pp. 245-254, 1985.

54.Kavan, L. and J. Zara, "Spherical Blend Skinning:R&al Time Deformation

Articulated Models," iSymposium on Interactive 3D Graphics, pp. 9-16, 2005.

55.Kavan, L., S. Collins, J. Zara, and C. O'Sulliv&kinning with Dual Quaternions,"
Symposium on Interactive 3D Graphics, pp. 39-46, 2007.

56.Menache, AlbertoUnderstanding Motion Capture for Computer Animation and Video

Games, Morgan Kaufmann Publishers, San Francisco, CA020

57.Akita, Koichiro, "Image Sequence Analysis of ReabNd Human Motion,"Pattern
Recognition, vol. 17, no. 1, pp. 73-83, 1984.

58.Rohr, K., "Towards Model Based Recognition of Humisilovements in Imac
Sequences CVGIP: Image Understanding, vol. 59, no. 1, pp. 94-115, 1994.

72

59.D. M. Gavrila, L. S. Davis, "3D Model Based Traafiof Humans in Action: A Mul
View Approach," inConference on Computer Vision and Pattern Recognition, p. 73.
1996.

60.Wren, C. R., A. Azarbayejani, T. Darrell, and A. Pentland, "Pfinder: Redlime
Tracking of the Human BodyJEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 7, pp. 780-785, 1997.

61.Moeslund, Thomas B. and Eric Granum, "A Survey ofmputer VisionBased Huma
Motion Capture,"Computer Vision and Image Understanding, vol. 81, no. 3, pp. 231-
268, 2001.

62.Moeslund, Thomas B., Adrian Hilton, and Volker Keiig"A Survey of Advances
Vision-Based Human Motion Capture and Analysi€dmputer Vision and Image
Understanding, vol. 104, no. 2, pp. 90-126, 2006.

63.Aggarwal, J. K. and Q. Cai, "Human Motion Analysfs:Review," Computer Vision
and Image Understanding, vol. 73, no. 3, pp. 428-440, 1999.

64.Johansson, Gunnar, "Visual Perception of Biologigkdtion and a Model for i
Analysis,"Gunn, vol. 14, no. 2, pp. 201-211, 1973.

65.Webb, J. A. and J. K. Aggarwal, "Structure from Matof Rigid and Jointed Object:
Artificial Intelligence, vol. 19, no. 1, pp. 107-130, 1982.

66.Ward, Andy, Alan Jones, and Andy Hopper, "A New afien Technique for tf
Active Office," IEEE Personal Communications, vol. 4, no. 5, pp. 42-47, 1997.

67.Raab, F. H., E. B. Blood, T. O. Steiner, and H.JBnes, "Magnetic Position a

Orientation Tracking System,lEEE Transactions on Aerospace and Electronics

73

Systems, vol. 15, no. 5, pp. 709-718, 1979.

68.Miller, N., O. C. Jenkins, M. Kallmann, and M. J.aMric, "Motion Capture frol
Inertial Sensing for Untethered Humanoid Teleopendt in IEEE-RAS International

Conference on Humanoid Robotics (Humanoids), Santa Monica, CA, 2004.

69.Vlasic, D. et al., "Practical Motion Capture in Eygay Surroundings,”ACM
Transactions on Graphics (TOG), vol. 26, no. 3, 2007.

70. Sturman, David J., "Character Motion Systems AGM S GGRAPH, 1994.

71.Loomis, Jeffrey, Howard Poizner, Ursula BeilugAlynn Blakemore, and Jol
Hollerbach, "Computer Graphic Modeling of AmericaBign Language,” i
International Conference on Computer Graphics and Interactive Techniques, Detroit,
Michigan, pp. 105-114, 1983.

72.Lu, Shan, Seiji lgi, Hideaki Matsuo, anduji Nagashima, "Towards a Dialog
System Based on Recognition and Synthesis of JapaBign Language,” iGesture
and Sgn Language in Human-Computer Interaction., Springer Berlin / Heidelber
1998, pp. 259-271.

73.Zhao, Liwei et al., "A Machine Treslation System from English to American £
Language,” inln Association for Machine Trandlation in the Americas., Springer-
Verlag, 2000, pp. 54-67.

74.Sims, Ed, "Virtual Communicator CharacterBCM SGGRAPH Computer Graphics,
vol. 34, no. 2, p. 44, 2000.

75.Prillwitz, S., R. Leven, H. Zienert, T. Hanke, ahdHenningHamNoSys. Version 2.0 -

Hamburg Notation System for Sgn Languages. An Introductory Guide, Signum Pres

74

Hamburg, 1989.

76.Bangham, J. A. et al., "Signing for the Deaf usiigual Humans,"EE Digest, 2000.

77.Bangham, J. A. et al., "Virtual Signing: Capturairation, Storage and Transmiss
- An Overview of the ViSICAST Project|EE Digest, 2000.

78.Kennaway, Richard, "Synthetic Animation of Deafr8igy Gestures,Lecture Notes In
Computer Science, Vol. 2298, pp. 146-157, 2001.

79.Zwitserlood, Inge, Margriet Verlinden, Johan RosidaSanny van der Scho
"Synthetic Signing for the Deaf: eSign," @onference and Workshop on Assistive
Technologies for Vision and Hearing Impairment, Granada, Spain, 2004.

80.Solina, Franc, Slavko Krapez, and Alas Jaklic, "tihagdia Dictionary and Synthe:
of Sign Language," ilDesign and Management of Multimedia Information Systems,
Mahbubur Rahman Syed, Ed., Idea Group Publishidg@l 2pp. 268-281.

81.GrieveSmith, Angus B., "Sign Language Synthesis ApplaatlUsing Web3D ar
Perl," in Lecture Notes in Computer Science Vol.2298, Ipke Wachsmuth and Tin
Sowa, Eds., Springer, 2001, pp. 134-145.

82.Havasi, Laszlo and Helga M. Szabo, "HANDY: Sign gaage Synthesis fro
Sublexical Elements Based on an XML Data Represienta in Lecture Notes in
Computer Science Vol. 3206., Springer Berlin / Heidelberg, 2004, pp. 73-80.

83.Havasi, Laszlo and Helga M. Szabo, "A Motion Capt&ystem for Sign Langua
Synthesis: Overview and Related Issues,l eature Notes in Computer Science Vol.
3804., Springer Berlin / Heidelberg, 2005, pp. 636-641.

75

84.Krnoul, Z., J. Kanis, M. Zelezny, and L. Miller, Z€ch Text-toSign Speec
Synthesizer," inLecture Notes in Computer Science, Vol. 4892., Springer Berlin
Heidelberg, 2008, pp. 180-191.

85.Aran, O. et al., "SignTutor: An Interactive Systémn Sign Language Tutoring/EEE
MultiMedia, vol. 16, no. 1, pp. 81-93, 2009.

86.Balci, Koray, "Xface: MPEG} Based Open Source Toolkit for 3D Facial Animati
in Working Conference on Advanced Visual Interfaces, 2004.

87.Balci, Koray, "Xface: Open Source Toolkit for Cregt 3D Faces of an Embodi
Conversational Agent,Lecture Notes in Computer Science Vol. 3638, pp. 263266,
2005.

88. Xface Web Site, http://xface.itc.it/

89. Shapewrap Web Ste, http://www.motion-capture-system.com/shapewrap.htmi

90.Parent, Rick,Computer Animation Algorithms & Techniques, 2nd ed., Morga
Kaufmann Publishers, Burlington, MA, USA, 2008.

