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ABSTRACT 

TURKISH SIGN LANGUAGE ANIMATION WITH ARTICULATED 

BODY MODEL 

Demonstration of sign languages with the computer is a potentially useful learning 

aid for sign language learners. If implemented as a part of a learning tool, one that includes 

sign recognition as well, it will invaluable for providing feedback to the learners, a most 

needed contribution. 

Human body animation and motion capture technologies have reached a point where 

realistic virtual actors can perform plausible human movements in realtime. For this, the 

motion can be defined on a virtual human skeleton, either by design or by motion capture 

methods, and then displayed over the skeleton which drives a realistic skin model, 

visualizing the human body. 

In this work we capture Turkish sign language finger spelling alphabet and semi-

automatically translate it into a visually appealing model. For capturing the sign language 

we use a magnetic motion capture system. Then, a playback tool generates sign language 

demonstrations interactively and in realtime in 3D. 
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ÖZET 

EKLEML İ VÜCUT MODEL İYLE TÜRK İŞARET DİLİ 

CANLANDIRMASI 

Bilgisayar ile işaret dili canlandırması, işaret dili öğrenimi için önemli bir araç olma 

potansiyeli taşımaktadır. Özellikle işaret tanıma özellikleri de içeren bir paketin içerisine 

eklenirse, öğrencilere en önemli eksiklerini, geri beslemeyi gideren bir araç elde 

edilebilecektir. 

İnsan vücudunun canlandırılması ve hareket yakalanması teknolojileri gerçekçi sanal 

aktörlerin, gerçek zamanda inandırıcı hareketleri yaptığı uygulamaları artık mümkün 

kılmaktadır. Bunun için hareketler sanal bir iskelet üzerinden tasarlanabilir ya da 

yakalanabilir. Bu iskelet doğru bükülmeleri yapabilen de gerçekçi bir deri modelini 

yürütmek için kullanılabilir. 

Bu çalışmada Türk işaret dili harf alfabesini yakaladık ve yarı otomatik şekilde 

görsel olarak da çekici olan bir modele taşıdık. Hareketleri yakalamak için manyetik bir 

sistem kullandık. Daha sonra sunumlar bu iş için yazılmış bir uygulama ile etkileşimli ve 

gerçek zamanda, 3B ortamda oluşturuldu. 
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1.  INTRODUCTION 

1.1.  Motivation 

Being social creatures, we humans require frequent communication with each other. 

There are many forms of communication, but the most common, and arguably preferred, 

method is speech. Speaking has a unique personal taste that, when supported by visual cues 

such as face and body gestures, helps transmit even the most complicated thoughts and 

feelings without trouble. It is direct, real time, bidirectional and once learned, 

straightforward to use. 

However, speaking is not made available to everyone. Some people are born with 

disabilities and some lose their abilities further in life. What many take for granted may be 

a big issue that needs addressing for these people. Sign language communication can be 

the answer to this need. 

While spoken languages reserve the face and body gestures for subtle details in 

meaning, sign languages use them to transfer the meaning itself, not employing sounds at 

all. Hence, they are useful for both speech and hearing impaired people. Sign languages are 

similar to speech in that they are direct and real time, and unlike lip reading, work 

bidirectionally. However, as do all communication media, sign languages require that both 

parties have prior knowledge. This is often not the case, since not all people depend on 

them. Hence, it would be beneficial to expand learning opportunities for sign languages. 

When learning, language skills first start as imitations of the teacher and improve 

with practice and feedback. Sign languages are no different, but since they are not common 

in everyday life, such feedback is not readily available to the learners. With this point of 

view, we believe that the best sign language learning tool would be one that provides this 

much needed feedback to the learner. Obviously, such a tool would need to be able to 

produce visualizations of signs. Hence, this work attempts to generate synthetic but 

realistic sign language demonstrations using computer graphics and character animation 
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technologies, hopefully sparking some public interest toward this means of communication 

in the process. 

1.2.  Related Work 

Visualizing sign language communication on a computer character is a complicated 

process requiring the collaboration of many fields of the computer science discipline. 

1.2.1.  Animation and Keyframing 

At the most basic level, one should first understand the principles behind computer 

animation and how this animation is displayed. The way it is used in this context, the 

concept of animation is a specialization of the concept of movie, a display changing in 

some way over time. The principal method to achieve this effect has long been to change 

the displayed image quickly in succession, called a moving picture. If the images' 

replacement rate is high enough, the human brain's visual processing power falls short of 

interpreting them as separate images, but rather perceives what it sees as a continually 

changing display. The threshold rate for this illusion is a minimum of about 20 images 

(frames) per second. 

With the large number of frames required to create even a short moving picture, it is 

quickly evident that an automated machine is required to create images. The 

cinematograph was invented in the 1890's to take photographs in succession and also 

display them as a moving picture. The first synthetic animations were created in the 1900's 

by manually drawing the images (on cels) and photographing them. Unlike the 

cinematograph, there was no machine that could simply draw the required images 

automatically. Hence, the process would have become prohibitively expensive if 

keyframing had not been developed. With keyframing, the more established and talented 

artists would draw the major images (the keyframes) in the image sequence and junior 

artists would take examples from those keyframes and draw the rest of the sequence (the 

inbetweens). This way, synthetic animation production was made more efficient (Figure 

1.1). 



 

Figure 1.1. Traditional keyframing

While moving pictures were originally designed to be played at theaters; the 

invention of the cathode ray tube (

require the display to be refreshed many times in a second to prevent the phosphor from 

fading away. With the ability to update the display between the refreshes, CRT's lent 

themselves naturally for animation. However, displaying photographs or manually drawn 

images on a computer display can hardly be considered computer animation. Computer 

animation is more about the computer's ability to generate graphics for display in each 

frame. By arranging the image sequence correctly, 

moving graphics; that is, computer animation.

1.2.2.  Computer Animation

The computer can use stochastic processes, an existing image or another data 

structure to generate a frame of an animation. This work concentrates on computer 

graphics that are generated from mesh representations of 

through a rendering pipeline. The animation process, then, is about how the mesh is 

updated through consecutive frames to create a credible sequence.

As told above, a computer can generate a frame of an animation automatically from a 

data structure. Often, however, 

defined manually for each frame. In some cases, the data can be constructed procedurally. 

For instance, the animation of an object falling under the influence of gravity will simply 

have its Cartesian position updated in each frame, according to a simple formula.

. Traditional keyframing: Frames 1 and 5 are the keyframes, 2

While moving pictures were originally designed to be played at theaters; the 

cathode ray tube (CRT) displays proved a convenient alternative

require the display to be refreshed many times in a second to prevent the phosphor from 

ding away. With the ability to update the display between the refreshes, CRT's lent 

themselves naturally for animation. However, displaying photographs or manually drawn 

images on a computer display can hardly be considered computer animation. Computer 

mation is more about the computer's ability to generate graphics for display in each 

frame. By arranging the image sequence correctly, a computer can 

moving graphics; that is, computer animation. 

Computer Animation 

The computer can use stochastic processes, an existing image or another data 

structure to generate a frame of an animation. This work concentrates on computer 

graphics that are generated from mesh representations of three dimensional (

rendering pipeline. The animation process, then, is about how the mesh is 

updated through consecutive frames to create a credible sequence. 

computer can generate a frame of an animation automatically from a 

ften, however, that this data structure itself is very complex and cannot be 

defined manually for each frame. In some cases, the data can be constructed procedurally. 

For instance, the animation of an object falling under the influence of gravity will simply 

tesian position updated in each frame, according to a simple formula.

3

 

: Frames 1 and 5 are the keyframes, 2-4 are inbetweens. 

While moving pictures were originally designed to be played at theaters; the 

proved a convenient alternative as they 

require the display to be refreshed many times in a second to prevent the phosphor from 

ding away. With the ability to update the display between the refreshes, CRT's lent 

themselves naturally for animation. However, displaying photographs or manually drawn 

images on a computer display can hardly be considered computer animation. Computer 

mation is more about the computer's ability to generate graphics for display in each 

can create the illusion of 

The computer can use stochastic processes, an existing image or another data 

structure to generate a frame of an animation. This work concentrates on computer 

three dimensional (3D) models 

rendering pipeline. The animation process, then, is about how the mesh is 

computer can generate a frame of an animation automatically from a 

is very complex and cannot be 

defined manually for each frame. In some cases, the data can be constructed procedurally. 

For instance, the animation of an object falling under the influence of gravity will simply 

tesian position updated in each frame, according to a simple formula. 
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Not all types of animations can be calculated procedurally. For complicated 

scenarios, a computer animation artist has to define the frame data. In such cases, for the 

very same reasons as in traditional synthetic animation, animators rely on keyframing to 

generate most of the frames automatically from example frames provided manually. 

The computers do not have artistic talent like people do. They require well-defined 

algorithms to calculate inbetweens from the keyframes. To create the inbetweens, the 

values of the keyframe parameters are interpolated. Interpolation methods take each 

variable that is to be interpolated and treat its value as a curve along time (or frames), 

estimating it at the missing points. The first keyframe systems used piecewise linear 

interpolation but other interpolation methods were later used in order to provide desirable 

qualities like plausible continuity [1][2]. 

The early approaches to computer keyframing mimicked the traditional practices by 

calculating inbetweens directly from keyframe images. A basic implementation of this 

approach is to simply interpolate the color values in the keyframe pixels, which usually 

does not produce the intended result. An informed approach is to define corresponding 

points in each keyframe, whose positions are interpolated to create the inbetweens [3][4]. 

With the improvements in vector computer graphics and, in particular, the 3D 

rendering pipeline; using parametric keyframing became common [2]. Since graphical data 

structures are simply organized collections of numerical data, it is possible to operate 

directly on the numbers and have the rendering pipeline create the frame from the resulting 

structure. For a 3D scene, possible interpolation targets may be the positions of vertices, 

camera, or projection parameters. For instance, if interpolation is done on the positions of 

matching mesh vertices for each keyframe, animations for mesh movement, rigid 

transforms (translation, rotation etc.) and even deformations can be obtained. 

1.2.3.  Animation Control 

So far, procedural calculations and keyframing have been described as the most 

useful techniques to generate frame data in computer animation. However, in practice, 



 

procedural methods are 

between objects and influences of numerous 

skills for describing the motion. 

may not always suffice, because the frame data may be too complicated to define 

only for the keyframes. 

Animation control is the umbrella term for the 

management of complex frame data and description of 

controlling tools, the animators are able to specify the motion 

higher level of abstraction and leave the computer t

For instance, the animator might define a bending animation for a mesh and the computer 

will arrange the positions of the vertices in each frame by the correct transformation. Note 

that when animation control is employ

parameters and not directly to the parameters of the resulting mesh 

animation, for instance, 

positions (which would result 

few examples of animation control mechanisms are 

Figure 1.2. Bending of a mesh

computer generates the inbetweens (2

interpolation par

1.2.3.1.  Soft Object Deformation

do by hand, because the number of variables that describe the object (that would need to be 

individually specified for the

 only possible with the simplest animations. Complex interactions 

between objects and influences of numerous affecters require more than an animator's 

skills for describing the motion. Similarly reducing frame definition costs by keyframing 

ys suffice, because the frame data may be too complicated to define 

 

Animation control is the umbrella term for the aids that animators have 

management of complex frame data and description of animations

controlling tools, the animators are able to specify the motion or scene configuration 

higher level of abstraction and leave the computer to do the detailed scene arrangements. 

For instance, the animator might define a bending animation for a mesh and the computer 

will arrange the positions of the vertices in each frame by the correct transformation. Note 

that when animation control is employed, keyframing is often applied to the control 

parameters and not directly to the parameters of the resulting mesh or 

for instance, often the bending angle is interpolated, not the resulting vertex 

positions (which would result in unrealistic, skewed mesh configuration

few examples of animation control mechanisms are discussed below.

. Bending of a mesh: The animator supplies the keyframes (1 and 5) and the 

computer generates the inbetweens (2-4) controlled through parametric interpolation. The 

interpolation parameter is the bending angle, not vertex positions.

Deformation. Deforming an object, particularly a mesh, is difficult to 

do by hand, because the number of variables that describe the object (that would need to be 

individually specified for the deformation) is typically too large. It is usually not required 

5

only possible with the simplest animations. Complex interactions 

require more than an animator's 

Similarly reducing frame definition costs by keyframing 

ys suffice, because the frame data may be too complicated to define even 

that animators have for high level 

animations [5][6]. By using 

scene configuration at a 

o do the detailed scene arrangements. 

For instance, the animator might define a bending animation for a mesh and the computer 

will arrange the positions of the vertices in each frame by the correct transformation. Note 

ed, keyframing is often applied to the control 

or image. In a bending 

not the resulting vertex 

mesh configurations) (Figure 1.2). A 

below. 

 

: The animator supplies the keyframes (1 and 5) and the 

4) controlled through parametric interpolation. The 

ameter is the bending angle, not vertex positions. 

eforming an object, particularly a mesh, is difficult to 

do by hand, because the number of variables that describe the object (that would need to be 

deformation) is typically too large. It is usually not required 
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either. Most realistic deformations require the entire object to be deformed in a more or 

less similar way. 

For instance, bending a mesh would require all the vertices to rotate around the same 

center by an amount according to (i.e. a function of) their position in the object. Hence a 

lot of the brute work can be left to the computer simply by asking the animator to provide 

the axis of bending and the angle. The nonlinear global deformation approach transforms 

the vertices of the object by a matrix that is a function of their positions [7]. This approach 

provides easy specifications of tapering, twisting and bending transformations for objects. 

In [8], a local space around the target object is defined. The animator can then 

deform the space itself in a completely general way, called free form deformations (FFD), 

and the computer calculates the new positions of the vertices in the global space by 

substituting their local positions in the deformation. 

1.2.3.2.  Linked Hierarchies. Consider modeling the front wheel complex of a bicycle 

mesh. If modeled completely as a single solid mesh, animating the mesh would require the 

artist to reconfigure all the vertices in the body, the handlebar and the front wheel 

separately for each keyframe. Instead, it is possible to model the handlebar and the steering 

column as a separate submesh linked to the body (chassis) mesh at a particular position. 

Similarly, the front wheel itself can be modeled separately and linked to the handle column 

(Figure 1.3). The links can be completely defined with their positions and orientations 

along with a list of the movements they allow (in this case, the axes of rotation). In this 

example, the internal configuration of the complex is defined by only two rotation angles 

(one allowed rotation axis for each link) and the positions of all the vertices can be 

calculated, greatly reducing the effort required of the artist. Hence, such a model is said to 

have two degrees of freedom (DOF). 



 

Figure 1.3. Part of a bicycle modeled as a linked hierarchy

movements (rotations in this case) are marked.

Modeling an object as a collection of 

provides another level of animation control to the artist

animations can be specified

so that moving or rotating 

the integrity of the model

the above example would also rotate the front wheel along the same axis. If the submeshes 

in a linked hierarchy are physically connected, the model is also said to be articulated.

A well known use for 

would model a torso and each limb separately and link them at the appropriate 

positions. The upper arm would be linked to the torso, th

hand to the lower arm and so on. The 

structure called the skeleton. A skeleton is comprised of a number of nodes 

connected by links (joints)

position or orient the entire model

called the child bones and those toward the root are called the

does not have a parent. Conversely

called an end affecter. The movements allowed by each joint are defined by a

  

. Part of a bicycle modeled as a linked hierarchy: The link positions and allowed 

movements (rotations in this case) are marked.

Modeling an object as a collection of linked submeshes instead of a single mesh 

provides another level of animation control to the artist by simplifying the way poses and 

animations can be specified. In such models, the submeshes are often hierarchically related 

or rotating a submesh would similarly affect all its descendants

the integrity of the model. For instance, rotating the handlebar and the steering column in 

the above example would also rotate the front wheel along the same axis. If the submeshes 

ierarchy are physically connected, the model is also said to be articulated.

known use for articulated models is the human body. Typically, the animator 

would model a torso and each limb separately and link them at the appropriate 

he upper arm would be linked to the torso, the lower arm to the upper arm, 

hand to the lower arm and so on. The submesh hierarchy in a human 

skeleton. A skeleton is comprised of a number of nodes 

(joints). A convenient bone is selected as the root 

position or orient the entire model. The bones away from the root in the hierarchy are 

and those toward the root are called their parents. 

does not have a parent. Conversely, any child bone that does not itself have children is 

The movements allowed by each joint are defined by a

7

The link positions and allowed 

movements (rotations in this case) are marked. 

linked submeshes instead of a single mesh 

by simplifying the way poses and 

such models, the submeshes are often hierarchically related 

bmesh would similarly affect all its descendants, preserving 

. For instance, rotating the handlebar and the steering column in 

the above example would also rotate the front wheel along the same axis. If the submeshes 

ierarchy are physically connected, the model is also said to be articulated. 

is the human body. Typically, the animator 

would model a torso and each limb separately and link them at the appropriate joint 

e lower arm to the upper arm, the 

hierarchy in a human model has a tree 

skeleton. A skeleton is comprised of a number of nodes (bones) 

is selected as the root bone and is used to 

s away from the root in the hierarchy are 

parents. The root bone 

that does not itself have children is 

The movements allowed by each joint are defined by a number of 
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transformation parameters, the number of which is called the DOF of the joint. The sum of 

the DOF’s of all the joints in a skeleton is the DOF of the skeleton. A human model 

requires over two hundred DOF’s to represent the capabilities of the joints of a real human. 

A vector containing a value for each of the DOF’s of the skeleton completely describes a 

particular skeleton configuration, called a pose. Given a vector of joint parameters, the 

parameter vector, one can calculate the exact position of every vertex in the model. 

Past work using skeletons include [4], which uses skeletons for transforming 2D 

images. Controlling articulated human body models with kinematics methods is described 

in [9] and [5]. The PODA animation system described in [10] and [11] also employs 

kinematics. In [12], [13], [14], [15], [16], [17] and [18], the inverse kinematics method is 

extended with features such as multiple constraints, interactive editing and analytical 

hybrid solutions. 

1.2.3.3.  Forward Kinematics. An animation artist can specify the joint parameters of an 

articulated object to fully describe its pose. From the joint parameters, the computer can 

generate joint transformations and calculate the position of each vertex by applying the 

transformations at each joint towards the vertex incrementally. This process is called 

forward kinematics method.  

1.2.3.4.  Inverse Kinematics. While forward kinematics is easy to calculate, it is not always 

practical to use. In most cases, artists are interested in directing the articulated body in an 

abstract, goal oriented manner. For instance, the artist may want the virtual human to reach 

for a door knob but not care about the actual joint parameters as long as they are physically 

plausible. However, the computer would still need these parameters to apply keyframing 

on and create the animation. Since by adding requirements such as reaching for a door 

knob, the artist effectively constrains the pose of the body, with enough such requirements, 

it may possible to solve for the parameter vector. This process is called inverse kinematics 

(IK). Of course with IK, a solution cannot always be guaranteed (e.g. a human model may 

not be able to reach the flag on a tall pole from the ground, however he positions himself). 
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1.2.3.5.  Physics Based Methods. Since the laws of physics are relatively known, it is also 

possible to control animations with high level physics simulations. This approach not only 

lifts some of the work from the animation artist but also produces more realistic results. 

Physics based methods essentially rely on procedural animation techniques, governed by 

the descriptions of physical laws of the virtual world [19] [20]. These laws are used to 

simulate the object behaviors automatically. Such simulations are especially effective on 

simple rigid objects that are static (e.g. stones) and even work on those that are internally 

motivated (e.g. rockets). 

It is also possible to apply physical simulations to the internal configurations of 

nonrigid or articulated models. For instance, the vertex positions can be determined by 

physically simulating the deformations of soft and elastic bodies and their collisions, as 

explored in [21] and [22]. For articulated bodies, physical simulations can be used to drive 

the joint parameters through methods collectively called dynamics, as explained in [23], 

[24] and [25]. Dynamics performance can be improved as explained in [26], which also 

extends the inverse dynamics method. 

In dynamic simulations, the parameters are no longer the actual angles or positions of 

the joints but rather, the forces and torques affecting the joints. These parameters can be 

used to calculate the key skeleton poses, which can be subsequently interpolated for 

animation, or directly control the animation itself. Dynamics can also be regarded as yet 

another level of abstraction, for the object is described in terms of its physical attributes. 

Since simulation laws are based on observed real world laws and the models are defined 

with all the physical attributes they would have if they were real, the animations produced 

are often more realistic compared to pure kinematic designs. 

1.2.3.6.  Forward Dynamics. In forward dynamics, the poses of the articulated body over a 

period of time are constructed from the specifications of its internal and external forces and 

torques, effectively replacing the parameter vector of angles. This can produce very 

realistic animations but its usefulness is limited due to its lack of control. In other words, 

the animator can specify the entire model and its physical attributes, but cannot control its 

motion directly. 
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The lack of control may not be an issue for inanimate articulated bodies, such as 

chains, that are intended only to obey the physical laws [27]. However, automotive 

characters, like humans or robots, exert forces internal to their bodies and on their 

surroundings to accomplish any tasks they may have. For such models, the artist often has 

a planned motion the model needs to follow, and has to specify the internal forces exerted 

by muscles or motors of the model to generate it. This can prove to be labor intensive, 

because with forward dynamics, obtaining the desired motion is mostly trial and error. 

1.2.3.7.  Inverse Dynamics. Inverse dynamics is the arguably more useful dynamics 

approach. Similar to IK, in inverse dynamics, the animation artist describes the desired 

motion and the dynamics engine calculates the forces and torques necessary to produce the 

motion, which, in turn, can be used to produce animation. 

1.2.3.8.  Constrained Dynamics. Using inverse dynamics alone to figure out the forces 

necessary to generate a given motion is convenient, but relies on the animation artist’s 

talent a lot while reducing the benefits of physical simulation. A hybrid method is to 

introduce kinematic constraints to regular dynamics simulations. The approach is loosely 

attempted in the PODA animation system of [10] and [11], and improved in [28] and [20]. 

The constraints would be used to solve for unknown forces in the dynamic simulation and 

then used in the simulation to generate a realistic motion. 

The method is generalized in [29] and [27] to solving for entire trajectories instead of 

frames. 

1.2.4.  Human Body Animation 

Modeling, displaying and animating the human body is a very old objective of 

computer graphics. As discussed above, control of human animation is commonly 

achieved through employing an articulated body, a skeleton, which can be directed through 

kinematics or dynamics methods. 
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For visualizing a human body, however, simply producing the rigid limbs of an 

articulated body is not enough. Humans, like all automotive animate entities, are covered 

with an elastic skin. Without such a skin, the displayed object would always look robotic 

(inanimate). This would suffice for a robot, but a realistic human model must incorporate 

skin deformations as well. 

Historically, the first structured human models were more valuable for their use in 

practical simulations than their realistic look. In fact, during the early 1970's, human body 

animation attempts merely used stick figure representations. Only later, realistic human 

displays were added to the simulations. For instance, the work described in [30] explores 

how car crash victims and parachuters can be simulated on computers with somewhat 

realistic body models. 

The more modern human body representation methods are largely categorized in two 

groups. With volume models, the body is divided into (sometimes numerous) 3D 

primitives such as cylinders, ellipsoids or spheres [30][31][32]. Rendering the final image, 

then, consists of obtaining the contours of the primitives; but shading is relatively difficult. 

An alternative approach is using surface models employing patches or meshes [33]. With 

these methods, rendering can be made more realistic but more time consuming, not to 

mention the undesirable artifacts with some approaches. The available methods of the time 

are summarized in [34]. As computer and graphics hardware grew in power and solutions 

were proposed to the problems, mesh surface representations gradually dominated along 

with layered models extending the surface approaches, rendering the volume models 

virtually obsolete. 

1.2.4.1.  Layered and Physically Based Methods. Layered methods usually employ some 

sort of representation for the internal structure of the body and use it to drive the surface 

forms. While more realistic, these methods typically require more numerical processing 

and hence, are often not interactive. First muscle simulations were added to existing skin 

models as explained in [35] and [36]. The work described in [37] is a system for creating 

human body models by easily specifying volume features (muscles) as well as a surface 

skin model. In [38], [39] and [40], the authors investigate the effects of anatomically 

accurate muscle models on skin deformations, with the latter also providing such a generic 
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and SSD suitable for hardware implementations. In addition, to fix the SSD artifacts, using 

2D limbs (medials) is proposed in [49], and multiple weights (for matrix elements) in [50]. 

According to [51], dissimilarity of consecutive rotations are to blame for the SSD 

artifacts and to smooth the transitions, new joints can be inserted. In [52], it is proposed to 

interpolate the bones themselves and transform the vertices without further blending. 

Arguing that matrices cannot be directly interpolated, in [53], interpolation on joint 

rotations is suggested, using spherical linear interpolation (SLERP). In [54], it is shown 

that common interpolation methods for SSD effectively reduce to direct interpolation of 

matrix elements, which causes the artifacts. This verifies SLERP as a better interpolation 

method, for which an optimization is also proposed, called linear interpolation of 

quaternions (QLERP). Alternatively, in [55], it is suggested to use dual quaternions [53] 

with two components per element to solve artifacts and achieve better performance. 

1.2.5.  Motion Capture 

As it was previously stated, keyframing in computer animation, as in traditional 

animation, is mostly necessary because of the excessive amount of work required to define 

even a single frame of an animation sequence. However, there is always a tradeoff with 

keyframing; while the more frequent they are defined, the more credible the interpolated 

animation looks. This is due to the fact that interpolation is basically an uninformed 

approximation to the motion the artists intend to create. Moreover, even with animation 

control mechanisms, such as using skeletons, defining the parameter vector (e.g. for a 

keyframe) is still a tedious task. Often, the animator can only specify part of the parameter 

vector and the rest need to be discovered through a solution method like IK. Finally, the 

credibility of keyframe animation is ultimately limited by realism the artists can provide to 

the keyframes themselves, regardless of the performance of the interpolation or solution 

method applied. Fortunately, if the animation is supposed to represent the behavior of real 

objects or characters, an alternative method is available. 

Motion capture (MOCAP) is an approach that can be used to discover the control 

parameters for a frame of an animation automatically, bypassing manual definition of 
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The optical approaches to the motion capture problem originate from the rotoscope 

devices of the early 1900’s [56]. The first MOCAP implementations used image 

processing techniques coupled with prior knowledge about the human body to recognize 

human poses from images [57][58][59][60]. Such attempts are somewhat less accurate but 

have the benefit of being non-invasive, which makes them more useful for surveillance 

applications [61][62]. 

The lack of accuracy of image processing based methods is not acceptable for control 

or analysis applications. For such scenarios, the common solution is to have markers of 

some sort be worn on the actor’s body. The markers can be either reflective or emissive. 

With markers, the human body is assumed to be a stick skeleton and the positions of the 

markers, as tracked by cameras, are used to triangulate the 3D positions of the appropriate 

limbs. [63] contains an excellent overview of the method as well as some historical 

perspective into the original moving light display concept described in [64] and [65]. 

[66] describes another passive motion capture approach which replaces the optical 

markers with sound emitting devices. The relative positions of the devices can be estimated 

from the differences in the delays the sound from each device takes to reach a receiver. 

The 3D limb positions can then be similarly triangulated. 

1.2.5.2.  Active Motion Capture. An alternative to the passive approaches is to use sensors. 

In this case, sensors actively measure their own positions and orientations, and transmit 

them to the recording equipment. This not only avoids the problems with the passive 

methods (such as occlusion of optical markers) but also decreases the dependence on prior 

skeleton specifications. The sensors can be magnetic [67], gyroscopic [68] or even 

electromechanical, collectively forming an exoskeleton [69][70]. In this work, we use a 

magnetic MOCAP system. 

1.2.5.3.  Magnetic Motion Capture. Magnetic trackers were initially developed for the 

helmet mounted displays of military aircraft during the 1960’s [56]. These sensors detect 

the position and orientation by measuring the low frequency electromagnetic field 

generated by a transmitter source. Each sensor outputs 6 DOF’s, making the system as 
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competent as an optical system with 50 per cent more markers than magnetic sensors. 

Compared to the optical systems, magnetic systems are also typically less expensive. 

Unlike electromechanical systems, magnetic systems do not require the actor to wear 

cumbersome equipment, but still achieve considerable accuracy. In terms of latency, 

magnetic systems generally fall in between the slow optical systems and fast 

electromechanical systems, but often have lower sampling rates due to the noise filtering 

required. 

Among the shortcomings of magnetic systems are their recalibration requirements, 

limited range and nonlinear behavior near the limits, especially as the azimuth approaches 

zero. These problems arise from the nature of magnetic fields. In addition, magnetic fields 

are vulnerable to intrusions by other magnetic fields that may be in the environment. 

Besides the magnetic field of the Earth, most electrical equipment (motors, cabling etc) can 

cause magnetic interference. Even at the absence of other magnetic fields, the magnetic 

field of the transmitter itself can induce eddy currents in the surrounding metals (especially 

ferrous metals such as iron and steel) which can interfere with the field. All of these 

problems are reduced by using AC fields instead of DC fields, but not completely negated 

[56]. 

1.2.6.  Sign Language Synthesis 

It was argued earlier in this document why computer visualization of sign language 

communications is a useful research task. This is not a recent realization. The problem has 

found attention earlier, but it was not until the 1980’s that computer hardware grew enough 

in power for true multimedia solutions. Many of the earlier systems aim to provide full 

machine translation between text (and sometimes audio) and sign languages. Such a task 

would obviously require sign language recognition (e.g. from video) components for the 

return path and a linguistic structure for the languages in question. Such extensions are out 

of the scope of this work; we concentrate, instead, only on the synthesis of graphic 

visualizations of sign sequences, focusing primarily on visual quality. 
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A sign synthesis system can output animation in one of several formats. Structured 

numeric formats, such as VRML, are common but also the least dependable in terms of 

realism. Blended video sequences and rendered visualizations of 3D models are known to 

be more successful from that point of view. 

1.2.6.2.  Previous Sign Language Synthesis Systems. An early attempt at computer assisted 

sign language processing is described in [71]. The system employs an optical MOCAP 

system, conceptualized by [64], to drive the synthesis process but does not output any real 

synthesized signs, but merely the observed trajectories. 

One of the first true sign synthesis systems is described in [72]. This is a complete 

translation system which features a voice recognition frontend to drive the synthesis 

process. The database consists of motion definitions captured by an optical MOCAP 

system and data gloves. The system generates signs on a 3D model driven by a skeleton 

identical to the one used in MOCAP. 

In [73], the TEAM machine translation system for English is described. This system 

is driven by English text and generates script-specified 3D signs. 

The SigningAvatar system developed by VCOM3D (formerly Seamless Solutions 

Inc.) is one of the first commercially available solutions for authoring 3D skeletal 

animations [74]. It also supports sign languages through a dedicated proprietary authoring 

tool. Note that this system does not produce rendered output. Instead, virtual reality 

modelling language (VRML) output is produced that can be rendered by compatible 

software. 

The ViSiCAST project and other related work are described in [75], [76], [77], [78] 

and [79]. These projects describe a machine translation system that generates signs from 

English text. The signs themselves were originally specified through an assembly 

involving a magnetic MOCAP system and data gloves. However, later work focuses on 

generating the signs synthetically by script definitions. The work was funded by 

Independent Television Commission, UK Post Office and the European Union. 
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The work described in [80] does script driven synthesis of signs. However, it is 

favored to use video samples to generate the sign sequences, with the argument that they 

produce more realistic results. 

The sign synthesis problem is approached as an articulatory process, instead of a 

concatenative one, much like speech synthesis, in the system described by [81]. The 

system is driven by a scripted list of movements (not complete signs) and generates a 

VRML output defined on a simple 3D model. 

In [82] and [83], the HANDY system is described, which features a database of 

movements (sublexical sign elements) that are obtained through optical MOCAP. The 

synthesis is driven in a similar way to the method described in [81] except here, sublexical 

elements are used in an XML based script, producing rendered output based on a modified 

form of the model described in [40]. 

In [84], a translation system for the Czech Sign Language is described. The system 

receives text input and translates it, producing 3D rendered sign language animations. The 

signs themselves are defined with the same scripting system used for the ViSiCAST 

project [75]. 

The system described in [85] is the first to incorporate Turkish Sign Language 

support. It is a learning tool that recognizes signs from video input for demonstration. For 

feedback, it also synthesizes sign sequences from a database of manual specifications on a 

simple 3D humanoid. The system employs the help of the Xface project for the animation 

of the face [86], [87] and [88]. 

A brief summary of the sign language synthesis systems discussed above is given in 

Table 1.1. The table highlights the unique features of the systems and classifies them 

according to the formats of the original input to the systems, the sign definitions in their 

databases and their products. 
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Table 1.1. Summary of previous sign language synthesis systems 

System 

References 
Name 

Sign 

Language 

Original 

Sign List 

Input 

Format 

Sign 

Definitions 

Format 

Sign 

Animations 

Format 

[72] 
 

Japanese Speech MOCAP 3D Render 

[73] TEAM American Text Scripts 3D Render 

[74] Signing Avatar American Generic Scripts VRML 

[75] 

[76][77][78] 

[79] 

ViSiCAST (Simon 

the Signer, TESSA, 

e-Sign, HamNoSys) 

British & 

Others 
Text 

MOCAP & 

Scripts 
3D Render 

[80] 
 

Slovenian Generic Video Video 

[81] SignSynth American Text Scripts VRML 

[82][83] HANDY Hungarian Text MOCAP 3D Render 

[84] MUSSLAP Czech Text Scripts 3D Render 

[85] SignTutor Turkish Generic Scripts 3D Render 

1.3.  Contributions 

The importance of demonstrations in language learning and the need for sign 

language tutoring systems were stressed above. As the background research suggests, a 

complete sign language tutoring tool with ample demonstration capabilities is a complex 

challenge. Instead, this work aims to provide a practical solution to the more isolated 

problem of producing realistic sign language animations. While trading off a broader 

scope, dedicated attention can be paid to the realism of the output. However, it is the 

intention of the author that the software delivered as a result of this work can eventually be 

used as a frontend to a sign language tutoring tool. 

The implemented system incorporates a sign definition database which lacks 

linguistic structure except for identifying tags. As the literature on the subject matter 

indicates, linguistic analysis of a sign language is often considered together with the data 
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originally driving the synthesis process, usually some form of natural language input, while 

an intermediate language is designed. Hence, it is assumed to be a role reserved for full 

translation systems and is omitted from this implementation. This also has the added 

benefit of making the system transparent to any sign language. Yet, the current database 

contains signs from the Turkish Sign Language finger spelling alphabet. Given the scarce 

interest toward this particular language, it is understood that the database itself is an asset 

as well. 
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2.  APPROACH AND METHOD 

2.1.  Arguments 

2.1.1.  Realism 

Among the qualities of a sign synthesizer is the realism of its output. Realism is a 

definite requirement if the objective is teaching of or communication with sign languages. 

Intuitively, using videos of real signers in the sign database and composing the 

output directly from these videos should produce the most realistic results. With the latest 

advances in computer graphics, using 3D virtual actors can also be considered a good 

alternative. The animation of the 3D actors can be driven with MOCAP data or scripts. 

Using scripted sign definitions has its benefits, but usually produces animations that look 

less natural while MOCAP data is collected from actual signers [72][80]. 

2.1.2.  Performance 

As with all software, performance is another issue with sign synthesizers, especially 

for the availability of the system. Realtime performance can enable a whole new set of 

possible applications (e.g. simultaneous translation). In this context, realtime means 

achieving not only immediate response, but also motion picture frame rates in synthesizing 

and playing sign animations. Note that performance may especially be an issue with older 

hardware or for future porting considerations to low power devices, such as mobile phones. 

Today, with proper hardware acceleration, video handling is usually not a problem 

but blending between the signs is not trivial [80]. On the other hand, 3D hardware 

acceleration is also widely available, even in mobile devices. With proper handling of the 

hardware, animating virtual actors can be a feasible option. Scripted sign definitions should 

also benefit from the hardware acceleration capabilities, but they require additional IK 

processing to solve for the skeleton parameters that are not explicitly specified [81]. 
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2.1.3.  Communication 

If the software is to be useful in networked environments (e.g. the World Wide 

Web), communication requirements have to be addressed. Typically, communications of 

the sign synthesizer with the database and with the receiving end are affected (Figure 1.6). 

If the sign database is formed from sign videos, bandwidth requirements for 

communication with the synthesizer would be great. On the other hand, scripted sign 

definitions would likely require the least bandwidth. The case is similar for the outputs. If 

the system produces video (video sourced or 3D generated), the bandwidth requirements 

would definitely be greater than that for producing VRML compatible animation 

definitions that can be rendered locally. 

2.1.4.  Data Reusability 

Since a sign synthesis system has to incorporate a database, how the data in this 

database can be exploited is also an item to ponder on. A sign video is only externally 

marked, but does not contain any structural information inside; it is just a video that 

happens to contain signing content. A MOCAP database has somewhat better structure, but 

the data is still difficult to edit, reorganize or apply to another system (e.g. virtual reality 

applications, games etc.). Scripted sign definitions have the most internal structure and are 

best suited for data reusability. 

2.2.  Approach Decisions 

In the light of the above arguments, we have opted to keep a database of MOCAP 

sign definitions obtained using a magnetic system. Magnetic MOCAP systems are 

generally more accurate than optical systems, which is important for capturing detailed 

finger motions. They are also more comfortable than electromechanical systems in that 

they require lighter, more flexible setups, which is necessary for our actor to produce 

natural sign animations. 
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made available to the public. Among the work belonging to this phase, three separate tasks 

can be identified. First, the data collection task is done to obtain separate MOCAP data 

files for each sign. These data files are fed to the database builder module for the database 

construction task. After some preprocessing and cleanup, this software collects the 

MOCAP data into a sign database. Meanwhile, 3D artists carry out the production cycle of 

the two main digital assets for the application: the body model for skeletal animation and 

the face model for expressions. When all the information is properly stored, this phase can 

be called complete. Note that the initialization phase for a preset configuration and feature 

set is already completed. The database in this configuration contains signs from the 

Turkish Sign Language finger spelling alphabet. The initialization phase is detailed in 

section 3. 

2.3.2.  Execution phase 

This phase follows the initialization phase once all the necessary data are available 

and is characterized by end user access to the system. It is a cyclic phase in which the user 

issues sign queries, to which the system responds by carrying out the two tasks required to 

generate the sign animations. For the sign synthesis task, the synthesizer module fetches 

the definitions of the desired signs from the sign database and concatenates them as 

necessary, producing skeletal animation specifications. Next, for the animation & 

rendering task, these specifications are fed to the animator-renderer module which, in turn, 

drives the virtual actress as necessary and renders the resulting mesh to obtain a realistic 

animation. The execution phase is detailed in section 4. 
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3.  INITIALIZATION 

The objective of this phase is preparation of the system for actual, in-field usage. The 

most significant part of this preparation task is construction of the sign database. For this 

purpose, a motion capture task was defined to initially collect sign data in separate data 

files. The database can be called ready once this data is loaded and bound to the skeleton of 

the virtual actress by our dedicated database builder application. This application is 

basically a standard database editor with a simple 2D interface. 

3.1.  Motion Capture of Turkish Signs 

3.1.1.  Hardware Setup 

We used a Shapewrap III system by Measurand Inc. for our MOCAP tasks [89]. This 

system is not only magnetic based, but is also capable of tracking all the limbs we require 

for sign languages. In contrast, for example, [72] and [76] use MOCAP systems that do not 

track the hands and use data gloves instead, which adds synchronization problems to their 

implementations. Our system supports wireless communication and does not require a 

spandex body suit to be worn and hence is most practical for expecting realistic sign data 

from our actor. 

The skeleton of our MOCAP system contains 40 joints. The root has six DOF’s 

(Euler orientation and Cartesian position) and the rest of the joints have three DOF’s each 

(orientation only), adding up to 123 DOF’s in total. The missing DOF’s (three for each 

joint except the root) are fixed into the skeleton design, since real bones cannot be resized 

when moving. The detail in the articulation of the hands is worth mentioning; all the 

fingers have a full set of three bones each. In addition, note that although our MOCAP 

system also features leg sensors, they were not used because leg movements are not 

relevant to signing. The skeleton is visualized in Figure 3.1. 



 

Figure 3.1. Motion capture 

hands. 1 is the underlying MOCAP skeleton, 2 is the realtime 

model in the software and 3 is our actual actor wearing the Shapewrap III system.

The MOCAP hardware was connected wirel

running at 2.4 GHz and 

the motions in standard Biovision H

this setup managed to record joint parameters at 77

3.1.2.  Sign Scope 

As an initial data set, we aimed to capture the signs for the

finger spelling alphabet

second phase, but also enables a much simpler interface 

list. However, the system is not limited to this 

more data. 

. Motion capture model of the system: Note the detailed articulation of the 

1 is the underlying MOCAP skeleton, 2 is the realtime preview

model in the software and 3 is our actual actor wearing the Shapewrap III system.

hardware was connected wirelessly to a PC with dual core CPU 

 3 GB of RAM. OEM software, ShapeRecorder

the motions in standard Biovision Hierarchy (BVH) format. Running Microsoft Windows, 

setup managed to record joint parameters at 77 fps (frames per second)

As an initial data set, we aimed to capture the signs for the Turkish sign language 

alphabet (Figure 3.2). This not only limits the work 

, but also enables a much simpler interface and format 

list. However, the system is not limited to this set of signs and can easily be extended with 
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Note the detailed articulation of the 

preview of the MOCAP 

model in the software and 3 is our actual actor wearing the Shapewrap III system. 

essly to a PC with dual core CPU 

ShapeRecorder, was used to record 

Running Microsoft Windows, 

s (frames per second). 

Turkish sign language 

work required before the 

and format in specifying the sign 

set of signs and can easily be extended with 



 

Figure 3

3.1.3.  The Capture Process

3.1.3.1.  Preparation. Prior to our MOCAP sessions, we first prepared the equipm

adapting the dimensions of the predefined MOCAP 

This ensures the accuracy of the captured data. 

measurements from various limbs of our actor

Fortunately, the software features a wizard that guides this 

Note that this process has to be done only once, since the measurements can be sto

reused for each session. 

3.1.3.2.  Testing. Before capturing the 

setup, preparation and our

poses on our actor and visually checking if they are reproduced on the 3D 

3.2. Turkish sign language finger spelling alphabet.

Capture Process 

rior to our MOCAP sessions, we first prepared the equipm

dimensions of the predefined MOCAP skeleton template 

This ensures the accuracy of the captured data. For this task, it is necessary to

various limbs of our actor and declare them to t

software features a wizard that guides this task in a step

his process has to be done only once, since the measurements can be sto

 

efore capturing the signs to be stored in the database,

our virtual actress’ dimensions were tested by capturing predefined 

poses on our actor and visually checking if they are reproduced on the 3D 
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alphabet. 

rior to our MOCAP sessions, we first prepared the equipment by 

template to our actual actor. 

For this task, it is necessary to take specific 

and declare them to the MOCAP software. 

in a step-by-step manner. 

his process has to be done only once, since the measurements can be stored and 

signs to be stored in the database, the hardware 

were tested by capturing predefined 

poses on our actor and visually checking if they are reproduced on the 3D preview of the 



 

software and by our virtual

repeating preparation or calibration as necessary

by manually rearranging the model or noting and compensating for the inaccuracies while 

recording. The test poses are designed to check the relative dimensions of parts 

and the accuracy of the motion by having the actor bring various limbs in contact at certain 

angles, such as those in Figure 

Figure 3.3. The basic test poses

5 test the compatibility of the Xface and the MOCAP virtual 

3.1.3.3.  Calibration. One typical weakness of magnetic MOCAP systems is that they are 

prone to lose their calibration quickly. 

joint correction offsets of the software to match the MOCAP data, which

does not remain consistent for a long time. 

calibration of the equipment was checked by 

actor with his actual pose using the 

3.1). If there a mismatch

predetermined home pose

pose accordingly. 

3.1.3.4.  Standard Positioning.

concatenate them to obtain 

produce realistic movement descriptions, concatenation is not

sign transition points include 

jumps of the body or the 

our virtual actress. Problems evident in the preview were fixed by 

repeating preparation or calibration as necessary, and virtual actress problems were fixed 

by manually rearranging the model or noting and compensating for the inaccuracies while 

oses are designed to check the relative dimensions of parts 

and the accuracy of the motion by having the actor bring various limbs in contact at certain 

Figure 3.3. 

. The basic test poses: 1-3 test the calibration of the hands and the arms while 4

5 test the compatibility of the Xface and the MOCAP virtual actress models.

One typical weakness of magnetic MOCAP systems is that they are 

prone to lose their calibration quickly. Calibration involves specification of the internal 

joint correction offsets of the software to match the MOCAP data, which

does not remain consistent for a long time. For this reason, before capturing each sign, the 

calibration of the equipment was checked by visually matching the 

actor with his actual pose using the realtime 3D preview produced by the software

there a mismatch is detected, calibration is restored by having the actor assume a 

predetermined home pose and signaling the software to reset its internal definition of this 

ositioning. In our work, we capture the signs individually, and later 

obtain a sign sequence. However, while motion capture is known 

movement descriptions, concatenation is not. Possible problems at the 

sign transition points include returning to the rest position between every sign and

body or the limbs at the transition points. 
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Problems evident in the preview were fixed by 

and virtual actress problems were fixed 

by manually rearranging the model or noting and compensating for the inaccuracies while 

oses are designed to check the relative dimensions of parts of the body 

and the accuracy of the motion by having the actor bring various limbs in contact at certain 

 

3 test the calibration of the hands and the arms while 4-

actress models. 

One typical weakness of magnetic MOCAP systems is that they are 

Calibration involves specification of the internal 

joint correction offsets of the software to match the MOCAP data, which, unfortunately, 

efore capturing each sign, the 

the detected pose of the 

oduced by the software (Figure 

restored by having the actor assume a 

are to reset its internal definition of this 

In our work, we capture the signs individually, and later 

otion capture is known to 

Possible problems at the 

est position between every sign and sudden 



 

The jump problems 

points. Since the signs can be ordered in any fashion, this requires defining the signs at the 

same pose for their start and end points. Hence, before recording a sign, the actor 

standard rest pose, to the possible accuracy

It is generally desired that the virtual actor does not return to the rest position 

between the signs. Such an animation would look rather robotic. An easy solution to 

prevent this effect would be to blend the signs in the 

would also solve the jump problems mentioned above, but 

blending is more homogeneous when the rest positions are alike.

3.1.3.5.  Attack and Decay.

blended parts of the motions will lose some 

expressive parts of the signs, attack and decay periods were 

second parts of the captured motions respectively.

belonging to either period

Figure 3.4. Structure of a sign

decay and the rest of the sign in between

During the attack period, th

Likewise during the decay period, the signer is only allowed to return to the rest pose.

Blending will be discussed later in more detail.

The jump problems can be solved if the signs take the same pose at the transition 

points. Since the signs can be ordered in any fashion, this requires defining the signs at the 

same pose for their start and end points. Hence, before recording a sign, the actor 

to the possible accuracy. 

It is generally desired that the virtual actor does not return to the rest position 

between the signs. Such an animation would look rather robotic. An easy solution to 

prevent this effect would be to blend the signs in the output animation. Note that 

would also solve the jump problems mentioned above, but the movement rate during 

blending is more homogeneous when the rest positions are alike. 

Attack and Decay. Since blending will be performed on the captured signs, 

blended parts of the motions will lose some of their details. To

expressive parts of the signs, attack and decay periods were defined as the first and last 1 

captured motions respectively. The expressive part of a motion not 

either period is referred to as the body of the motion (Figure 

. Structure of a sign: The first 1 second is the attack, the last 1 second is the 

rest of the sign in between the attack and the decay is the body. D represents 

the duration of the sign. 

During the attack period, the signer starts moving his limbs from the

Likewise during the decay period, the signer is only allowed to return to the rest pose.

Blending will be discussed later in more detail. 
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olved if the signs take the same pose at the transition 

points. Since the signs can be ordered in any fashion, this requires defining the signs at the 

same pose for their start and end points. Hence, before recording a sign, the actor takes a 

It is generally desired that the virtual actor does not return to the rest position 

between the signs. Such an animation would look rather robotic. An easy solution to 

output animation. Note that blending 

the movement rate during 

Since blending will be performed on the captured signs, the 

To prevent loss of the 

defined as the first and last 1 

The expressive part of a motion not 

Figure 3.4). 

 

: The first 1 second is the attack, the last 1 second is the 

is the body. D represents 

ing his limbs from the rest pose. 

Likewise during the decay period, the signer is only allowed to return to the rest pose. 
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3.2.  Construction of the Sign Database 

A special database builder was developed to construct a database of the signs that 

can be later queried by the sign synthesizer. Using the database builder involves the 

following steps. 

3.2.1.  Model Acquisition 

When first launched, the software builder requires that the user specifies a 

compatible model file to use as the virtual actor. This step is not directly related to the 

database construction (except a future implementation of retargeting), but is necessary 

because the motions defined on the virtual actor have to be specified on its skeleton. For 

the same reason, the storage for motion data is integrated into the skeleton file. When a 

model is first loaded, any signs already in its database are used to initialize the 

environment. 

3.2.2.  Sign Collection and Tagging 

Once the software environment is initialized with a model, the user must specify the 

captured sign animation files to insert them to the active collection, or delete existing ones 

as necessary. 

When querying the database for sign animations, the sign synthesizer requires a way 

to identify each sign. The current implementation of the database supports string tags to be 

specified for each sign and index the database accordingly. For our limited database of the 

Turkish sign language finger spelling alphabet, the tags for the signs were selected simply 

as the letters represented by the signs. 
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3.2.3.  Sign Repositioning 

Once the active collection contains the necessary signs, the user can choose to build 

the database file. However, before building the database, the software can do some 

preprocessing on the sign animations. In particular, the model can be repositioned. 

Regardless of the actor’s effort on standardizing the start and end poses, fixing the 

model at a particular position in all the frames may be desirable. First, this would make it 

possible to place the model at the appropriate location in relation to the camera during 

rendering. Second, it would remove the floating effect that would otherwise be produced 

by blending different model positions at the transition points. 

To reposition the model, it is necessary to reset the root joint parameters 

appropriately. Unlike the other joints that have three DOF’s, the root joint has six, 

including position as well as orientation. In our application, we simply reset them all to 

zero, positioning the model at the origin and aligning it with the principal axes, facing the 

+Z direction. This also prevents the model from moving or turning away from the camera 

while signing. 

Note that the parameters of the other joints are not affected by this process. They will 

continue to drive the limbs. At any rate, they work better with blending because limb 

movements are expected in sign animations, but floating is not. The only downside of the 

repositioning process is that it removes from the capture data any navigation the virtual 

actress would make in the available space, but such movements are not necessary or 

desired in sign animations. 

A sign can be defined as a sequence of poses changing over time. Since given a 

skeleton, a pose is just a vector of joint parameters, it is possible to represent a sign as a 

function P=S(t) where P is the parameter vector for the sign at time t. Then, the ith 

parameter of the vector can be defined as pi=Si(t). Then, the repositioning process can be 

described by redefining all the signs as follows. 



 

where the first six parameters are known to re

the root bone. Once the signs are redefined, the database file is written out.

3.3.1.  The Model 

It was stressed above why 

Therefore, this work includes a 3D virtual 

3.5). It was also argued before

representations, are preferred for representing virtual humans in interactive applications. 

Hence, our actress was modeled as a mesh surface model whose deformations are driven 

by an underlying skeleton, designed to be i

Figure 3.5. The virtual actress

an internal skeleton, identical to the MOCAP skeleton.
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where the first six parameters are known to represent the position and orientation of 

Once the signs are redefined, the database file is written out.

3.3.  3D Model and Face Design 

It was stressed above why 3D visualization is preferable in sign 

his work includes a 3D virtual actress to display the sign animations on (

argued before that skinning based surface models, rather than layer

representations, are preferred for representing virtual humans in interactive applications. 

Hence, our actress was modeled as a mesh surface model whose deformations are driven 

by an underlying skeleton, designed to be identical to the MOCAP skeleton.

 

. The virtual actress: The model has a mesh surface model that is driven by 

an internal skeleton, identical to the MOCAP skeleton. 
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present the position and orientation of 

Once the signs are redefined, the database file is written out. 

is preferable in sign demonstrations. 

to display the sign animations on (Figure 

skinning based surface models, rather than layered 

representations, are preferred for representing virtual humans in interactive applications. 

Hence, our actress was modeled as a mesh surface model whose deformations are driven 

dentical to the MOCAP skeleton. 

: The model has a mesh surface model that is driven by 



 

The mesh of our virtual actress 

using Alias Maya modeling software. 

the scope of this document

3.3.2.  The Face 

Since sign languages make extensive use of facial expressions and mimics, a 

complete sign animation system needs to reproduce facial expressions as well as body 

movements. While this work incorporates direct support only for body movements, it also 

includes an integrated Mpeg4 compliant dynamic face engine, Xface

future extensions for facial expressions. Xface uses face meshes generated

software and implements Mpeg4 

definition points (FDP) of the model

through morphing and keyframing.

This work uses the standard face 

(Figure 3.6), containing 

Xface is dynamically integrated

chest joint of the model skeleton. This 

of our virtual actress has 6,875 vertices and 7,128 faces

modeling software. The details of the 3D modeling methods are outside 

the scope of this document and will not be discussed further. 

Since sign languages make extensive use of facial expressions and mimics, a 

complete sign animation system needs to reproduce facial expressions as well as body 

movements. While this work incorporates direct support only for body movements, it also 

includes an integrated Mpeg4 compliant dynamic face engine, Xface

for facial expressions. Xface uses face meshes generated

software and implements Mpeg4 facial animation (FA) standard driving the 

(FDP) of the model. It supports multiple blended facial expressions 

hrough morphing and keyframing. 

This work uses the standard face model distributed with the Xface package, Alice 

), containing a total of 6,887 vertices and 13,412 faces. 

 

Figure 3.6. The Xface face model, Alice. 

Xface is dynamically integrated into the system during rendering and attached to the 

chest joint of the model skeleton. This does not allow neck movements
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128 faces and was prepared 

odeling methods are outside 

Since sign languages make extensive use of facial expressions and mimics, a 

complete sign animation system needs to reproduce facial expressions as well as body 

movements. While this work incorporates direct support only for body movements, it also 

includes an integrated Mpeg4 compliant dynamic face engine, Xface [86][87], to enable 

for facial expressions. Xface uses face meshes generated by FaceGen 

FA) standard driving the facial 

multiple blended facial expressions 

distributed with the Xface package, Alice 

into the system during rendering and attached to the 

does not allow neck movements, but instead, makes 
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the face follow the chest. We believe this is an acceptable compromise, since there is 

currently no input from the MOCAP hardware to drive the neck separately at the point. 

Note that the face mesh is not actually connected to the body mesh. It is merely 

linked so that it is displayed with the body at the appropriate location. 

3.3.3.  Model and Face Merging Issues 

Our data set, the Turkish sign language finger spelling alphabet, does not require the 

use of head gestures or facial expressions. However, sign languages often employ them in 

connection with the body movements, sometimes with interactions as well. For instance, a 

sign might involve the left thumb touching the chin. With our system, the more basic task 

of supporting expressions is as simple as providing a data stream to the Xface engine. 

However, to handle interactions between the body and the face correctly, care must be 

taken when merging the body model and the face together. In particular, the position of the 

head and its dimensions should be compatible with the body. For this task, we simply 

measured the head features during the initial preparation and testing tasks, and transformed 

the Xface model accordingly. This does not ensure an exact match, but provided visually 

acceptable results during our tests (Figure 3.3). 

A virtual signer with a head should also support head rotations. The most 

straightforward way to support these motions would be defining a neck joint that would 

only drive the head. Then, the neck joint can be provided with a data stream appropriately. 

However, the lack of actual connectivity between the polygons of the Xface mesh and the 

body would still cause these movements to look unnatural, because none of the polygons in 

the body would deform in response to the head, not replicating the elastic behavior of the 

skin at the junction. This problem can be solved by manually creating new polygons 

between the two meshes at runtime and defining them partial weights to follow the neck 

joint and the parent of the neck joint accordingly. 



 

The two software 

animator-renderer are integrated into a single Microsoft Windows application based on 

OpenGL graphics. The user interface is mouse driven, 

interface (GUI) controls.

signs to play, a read-only text box indicating the sign that is currently played by the actress 

and two buttons; a play button to in

interface can also be driven by the keyboard through shortcut keys

Figure 4.1. The user interface of the 

background is a 3D display of our virtual actress and in the foreground are the GUI 

controls; the edit and the read

Besides the 2D GUI, it is also possible to switch to 3D navigation mode via the 

control key or the right mouse button. While in 3D navigation mode, the user can 

manipulate the camera using the mouse or the keyboard.

4.  EXECUTION 

The two software components used in this phase, the sign synthesizer and 

renderer are integrated into a single Microsoft Windows application based on 

The user interface is mouse driven, used to access the graphical user 

interface (GUI) controls. In particular, the user is provided with an edit box to type a list of 

only text box indicating the sign that is currently played by the actress 

and two buttons; a play button to initiate playback and another to quit the application. This 

interface can also be driven by the keyboard through shortcut keys (Figure 

 

. The user interface of the synthesizer-animator-renderer module

background is a 3D display of our virtual actress and in the foreground are the GUI 

controls; the edit and the read-only boxes above, and the play and 

Besides the 2D GUI, it is also possible to switch to 3D navigation mode via the 

control key or the right mouse button. While in 3D navigation mode, the user can 

manipulate the camera using the mouse or the keyboard. 
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he sign synthesizer and the 

renderer are integrated into a single Microsoft Windows application based on 

access the graphical user 

In particular, the user is provided with an edit box to type a list of 

only text box indicating the sign that is currently played by the actress 

itiate playback and another to quit the application. This 

Figure 4.1). 

renderer module: In the 

background is a 3D display of our virtual actress and in the foreground are the GUI 

 quit buttons below. 

Besides the 2D GUI, it is also possible to switch to 3D navigation mode via the 

control key or the right mouse button. While in 3D navigation mode, the user can 
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When launched, the application presents the user with a virtual actress shown at an 

idle stage. When idle, the actress performs an idle loop from the motion database. 

When the play button is pressed, the application first builds a list of signs by parsing 

the user’s input in the edit box and fetches the sign definitions from the database. Next, the 

two primary tasks of this phase are executed in order: to synthesize a single continuous 

animation that will drive the model skeleton, the sign definitions are concatenated together 

with appropriate blending and to drive the deformation of the virtual actress mesh, a 

rendering loop is used, after posing the skeleton for each frame according to the animation. 

When playing the sign list is complete, the application returns to the idle mode. 

4.1.  Sign Synthesis 

The sign sequence animation is formed by concatenating sign definitions fetched 

from the database in order. When concatenating, the frame data (parameter vector) of the 

animation is copied from those of the constituent signs, offset in time as necessary. 

When MOCAP data are used to synthesize sign sequences, there is little concern 

over the realism of the produced animation. In fact, the only places where realism may be 

lost are the transition points between the signs. 

4.1.1.  Jumps 

The most important problem that can occur is visible jumps in the actor’s pose at the 

transition points, caused by direct concatenation of the signs with different start and end 

points. Continuity of the motion (more precisely, C0 continuity) can be restored by simply 

having the signs start and end at the same poses. 

4.1.2.  Restarting 

The problem with matching all start and end poses is that it would cause the virtual 

actor take this particular pose between every sign. However, if, at the end of a sign, the 
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next sign is known to him, a real actor would just make a smooth transition to the first 

movements of the next sign instead of going back to the rest pose and starting over. The 

virtual motion can also be made to look smooth by blending the motions of the signs at the 

transition points. Note that this would also solve the jump problem, but the signs were still 

captured with similar start and end poses as this produces more natural transition speeds 

when blended. 

4.1.3.  Blending 

To be able to blend, we make use of the attack and decay period specifications. 

Earlier, we allocated these brief durations at the beginning and at the end of the signs and 

required them not to contain any movement or pose significant to the meaning of the sign. 

Then, blending can be applied between the decay of the preceding sign and the attack of 

the succeeding sign. Since the signs can be concatenated in any order, the attack and decay 

durations must be the same for every sign, decided as a convenient 1 second (Figure 3.4). 

The blending procedure is linear in that it simply takes a weighted average of the 

poses of the two signs while arranging the weights to vary linearly between 0 and 1. The 

sum of the weights is 1 at all times during blending. If the signs are rewritten as P=Sn(t), a 

sign sequence with m signs S1…Sm can be defined piecewise as: 
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where a is the length of the attack and decay periods and Di is the duration of the ith 

sign. Then, blending the signs Sn and Sn+1 can be formulated with the following 

reassignment. 
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4.2.  Articulated Body Animation and Rendering 

4.2.1.  Forward Kinematics 

As with all skeleton driven, skinning based surface models, our model has its mesh-

skeleton relationship built in. There are no submeshes to assign to joints, but rather each 

vertex in the mesh has a vector of normalized weights, indicating how much it must be 

affected by each joint in the skeleton. However, the MOCAP data contain only individual 

angles for each joint, so a preprocessing step is necessary to convert these angles into 

global transformation matrices for each joint before they can be applied to the vertices. 

This is done through forward kinematics. The process, as done in each frame of the 

animation, can be described as follows. 

First, let the skeleton be defined as a vector J=j1, j2… jn of joints and the function p(j) 

as a function that returns the parent of a given joint or is undefined. To be able to drive this 

skeleton, one also needs to parse the parameter vector.  
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At an instant t, the parameter vector returned by the sign function P=S(t) includes the 

parameters to be applied to each joint. Since the order the joints are defined in the 

parameter vector are known, it is possible to extract the parameters belonging to a 

particular joint from the vector. In particular, if P=p1,p2…pm, then the parameters of a joint 

j i are p3i+1, p3i+2 and p3i+3. These parameters are the Euler angles the joint is to be rotated 

with. Note that the parameters p1, p2 and p3 are not accounted for by these expressions. 

These parameters belong to the root joint, which has six DOF’s, and specify its Cartesian 

coordinates. 

From the parameters for each joint ji, it is possible to calculate a local rotation matrix 

Li as: 
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The MOCAP hardware uses the ZXY convention with the Euler angles (in degrees), 

both in specification in the parameter vector and in application of the simple rotations. 

Hence, of the above angles, θz is p3i+1, θx is p3i+2, and θy is p3i+3. 

Once the local rotation matrices Li are known for each joint ji, the global rotation 

matrices Gi can be recursively defined as follows. 
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Note that, no motion validity checking or DOF limiting is applied during the 

calculations. Such checks are not necessary, since the motions are captured from a real 

person. 
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Once the Gi matrices are calculated, the forward kinematics calculations are 

completed and deformations can be applied.  

4.2.2.  Deformation 

As well as positions, the model also keeps a weight vector for each vertex. These 

weights indicate how much a particular vertex is affected by the rotations of each of the 

joints and add up to 1 for each vertex. The deformation procedure we employ is derived 

from the SSD algorithm in that to obtain a final vertex position; we calculate the weighted 

average of the positions directed by the contributions of each of the joints in order to 

produce the final vertex position. 

Mathematically, if our skeleton has the joints J=j1, j2…jn and our model has a set of 

m vertices V={v1, v2… vm}, then the model must also have a vector Wi=wi,1, wi,2…wi,n of 

weights for each vertex vi. Note that the sum of the weights in each Wi is 1. If vi is the 

vector of Cartesian coordinates for the ith vertex, then for each frame, a new position vi’ is 

calculated as: 

i

n

j
jjii vGwv ∑

=

=
1

,'

 

where Gj is the global rotation matrix for the jth joint. For clarity, we have omitted 

the transformation of the vertex coordinates from the model space to skeletal space. 

Once the new vertex positions v’i are calculated for each vertex, the new coordinates 

are fed to the rendering pipeline to produce one frame of the animation. The operations of 

the rendering pipeline are beyond the scope of this document. 
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5.  RESULTS 

The approach and methodology of the system are explained above; yet, the quality 

and performance of the final product merits further discussion. It is from these results that 

conclusions for the work can be derived. 

5.1.  Realism 

In terms of realism, the system can be said to perform moderately successful. While 

the produced animations look adequately smooth and continuous, and result in high quality 

renders, the sign animations themselves are not always fit for teaching purposes. To 

evaluate the realism of our results from this perspective, we check the animations the 

system produces against reference videos. Our conclusion is that, realism problems of the 

signs stem from the difficulties in capturing consistent data during MOCAP. 

5.1.1.  Motion Capture Issues 

Collecting a representation of the actor’s motions with MOCAP is quite a challenge 

in practice. Ultimately, as it turns out, most of the problems with the captured MOCAP 

data can be attributed to inaccurate calibration. Note that while preparation can be used to 

adapt the virtual model to the actor in terms of dimensions, manual calibration is still 

required to make sure the orientations are matched as well. 

Calibration is a tricky process, especially for the arms. In our MOCAP system, the 

arms have to be manually calibrated with correction angles, which seem to be quite 

unstable, in each direction in a trial and error manner. Unfortunately, it is very difficult to 

obtain an accurately calibrated model with this approach, which is akin to manually using 

forward kinematics. A common result of this problem is hands that individually move and 

pose correctly, but fail to cooperate accurately. Naturally, this result is most noticeable in 

signs involving the two hands coming together or snapping the fingers. Figure 5.1, Figure 

5.2, Figure 5.3 and Figure 5.4 exemplify these cases. 



 

Figure 5.1. Sample reproduction of the letter “C”: 

from the reference video for the letter, below are from the reproduction. A simple letter, 

Figure 5.2. Sample reproduction of the letter “Ö”: 

from the reference video for the letter, below are from the reproduction. 

finger snaps, which are correctly reproduced but the relative

 

mple reproduction of the letter “C”: Left to right above are sample frames 

reference video for the letter, below are from the reproduction. A simple letter, 

“C” is clearly reproduced accurately. 

 

Sample reproduction of the letter “Ö”: Left to right above are sample frames 

reference video for the letter, below are from the reproduction. 

finger snaps, which are correctly reproduced but the relative position and orientation of the 

hands is skewed. 

43

 

Left to right above are sample frames 

reference video for the letter, below are from the reproduction. A simple letter, 

 

Left to right above are sample frames 

reference video for the letter, below are from the reproduction. “Ö” requires 

position and orientation of the 



 

Figure 5.3. Sample reproduction of the letter “A”

from the reference video for the letter, below are from the reproduction. 

precise association of 

Figure 5.4. Sample reproduction of the letter “J”

from the reference video for the letter, below are from the reproduction. 

association between the hands

shapes and the movement are correctly reproduced,

 

Sample reproduction of the letter “A”: Left to right above are sample frames 

from the reference video for the letter, below are from the reproduction. 

 the hands and the fingers, but while the hand shapes are 

reproduced, the association is missing. 

Sample reproduction of the letter “J”: Left to right above are sample frames 

from the reference video for the letter, below are from the reproduction. 

between the hands as well as movement of the left hand, but

shapes and the movement are correctly reproduced, the association 
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: Left to right above are sample frames 

from the reference video for the letter, below are from the reproduction. “A” requires 

but while the hand shapes are correctly 

 

: Left to right above are sample frames 

from the reference video for the letter, below are from the reproduction. “J” requires 

movement of the left hand, but while the hand 

association is missing. 
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5.1.2.  Standard Repositioning 

While a real actor is signing, it is required to produce a realtime preview of the 

observed motion for immediate feedback and correction as necessary. The MOCAP 

software produces such a 3D preview, but it is not the most practical kind of feedback for 

the actor. A real actor would be used to looking at a mirror for a feedback of his motions, 

but to the inconvenience of the actor, the 3D preview is not inverted like a mirror. 

Moreover, the actor looking at the preview actually degrades the data quality because 

it affects the detected positions. In particular, the head and part of the body of the actor 

instinctively turns to look at the PC monitor where the preview is displayed. While using a 

helmet mounted display would help prevent this problem, it is also possible to extend the 

standard repositioning procedure to fix the rotations of these other bones to zero, instead. 

5.1.3.  Blending 

Linear blending, implemented in this system, is the most straightforward way to 

smoothly concatenate two animations. However, it only preserves C0 continuity and hence 

looks somewhat artificial in the output. In particular, the motions are transitioned smoothly 

but the transition rates change abruptly, causing the virtual actress to look like she has 

suddenly changed her mind. Note that inaccurate adherence to the attack and decay 

specifications also cause this problem. We assume that a better blending method that 

would preserve another order of continuity would definitely produce more natural 

transitions. A sample of the obtained blending transitions is given in Figure 5.5. 



 

Figure 5.5. Sample blending sequence

“L” and the two hand sign for the letter “J” demonst

hand stays in position instead of returning to the rest position.

5.1.4.  SSD Artifacts 

The realism of the output

SSD artifacts of the joints, which can cause the l

configurations. Fortunately, methods are available to remedy these problems

Figure 5.6 demonstrates one of the worst SSD artifacts of the system.

Figure 5.6. Sample SSD artifact

From a performance point of view, the implemented system can be considered very 

successful. On the same workstation PC previously mentioned in MOCAP, with hardware 

. Sample blending sequence: Transition between the simple sign for the letter 

“L” and the two hand sign for the letter “J” demonstrates blending. Notice that the right 

hand stays in position instead of returning to the rest position.

The realism of the outputs also suffers mildly from the lack of special handling of the 

SSD artifacts of the joints, which can cause the limbs to look unnatural at certain 

configurations. Fortunately, methods are available to remedy these problems

demonstrates one of the worst SSD artifacts of the system.

 

. Sample SSD artifact: The right elbow loses part of its thickness 

for the letter “U”. 

5.2.  Performance 

From a performance point of view, the implemented system can be considered very 

successful. On the same workstation PC previously mentioned in MOCAP, with hardware 
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: Transition between the simple sign for the letter 

rates blending. Notice that the right 

hand stays in position instead of returning to the rest position. 

also suffers mildly from the lack of special handling of the 

imbs to look unnatural at certain 

configurations. Fortunately, methods are available to remedy these problems [52] [54]. 

demonstrates one of the worst SSD artifacts of the system. 

: The right elbow loses part of its thickness while signing 

From a performance point of view, the implemented system can be considered very 

successful. On the same workstation PC previously mentioned in MOCAP, with hardware 
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acceleration for 3D graphics using an NVIDIA 8400M GS graphics adapter, the playback 

application achieved frame rates between 550 fps to 700 fps in our tests (at 400x600 image 

resolution and 24 bit color depth, using OpenGL without frame rate limiting and no 

Vsync). 

5.3.  Communication 

While the playback application is running, the sign animations are loaded on demand 

and kept in memory as long as there is memory available. Assuming the database is housed 

on another server, the bandwidth requirements for connecting the server can be calculated 

with the expression bandwidth = (size of a frame) x (frame rate). Size of a frame is the size 

of the parameter vector for a frame, which is 123 x 8 = 984 bytes, assuming the parameters 

are stored as 8 byte doubles. Hence, for the attained MOCAP frame rate, 77 fps, the 

bandwidth required is 984 x 77 = 75,768 bytes per second (Bps) or 606,144 bits per second 

(bps). This requirement reduces to 984 x 20 = 19,680 Bps or 157,440 bps for the minimum 

frame rate required for the moving picture illusion. Both numbers are practical with a 

modern digital subscriber line (DSL) connection. 

Since actual images are transferred between the renderer and the final client, the 

bandwidth requirements are much higher. Uncompressed video at 400x600 image 

resolution and 24 bit color depth at 20 fps requires a 400 x 600 x 24 x 20 = 115,200,000 

bps connection. While such rates are only possible in local area networks (LAN), it is 

possible to reduce these requirements by reducing the resolution and color depth or 

compressing the produced video. 

5.4.  Additional Discussion 

Once system tests are done in the execution phase, a number of other results emerge. 

For instance, the need for facial expressions is stressed once again. As it is currently 

implemented, the virtual actress lacks any expression whatsoever. At this state, she looks 

little more than a humanoid robot. Some form of expression must be fed to the face of the 

actress if she is to look like a human at all. 
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The lack of facial expressions is also exaggerated by the availability of 3D 

navigation in the playback application. At the default pose, the virtual actress is 

conveniently looking forward, at the camera. If the camera is moved, however, the actress 

needs to react, just as a real human would, by turning to look at the camera, even if with 

her eyes only. The current implementation, however, fixes the eyes to look forward, 

regardless of the position of the camera, preventing the user from feeling communicated to. 

The lack of head movement support in the system also limits the realism of the 

virtual actress. Our system has temporarily attached the head to the chest bone of the 

model. This provides a suitable placement of the head, but does not allow it any 

independent movement. On the contrary, a real person moves his or her head even when 

idle. 
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6.  CONCLUSIONS 

6.1.  Highlights 

Generally speaking, the implemented system can be considered a successful frontend 

to any sign producing application. As long as the application implements the concatenative 

sign synthesis model, this frontend can be exploited. Furthermore, since no assumptions 

are made about the particular sign language represented in the database, the system can 

virtually support any language. 

The system provides not only synthesis and playback of signs, but also high quality 

realtime rendering of a virtual actress. The realism of the renders provided by the system is 

notable, as the quality is certainly above common implementations. 

An even more important achievement of the system is its realtime performance. With 

realtime rendering, the playback module can be used in any interactive 3D application. 

Moreover, there is no limitation on using a different virtual actor to suit the needs of 

different future requirements. 

Finally, the fact that the system was designed to support the broadly recognized BVH 

format is also an asset. While the current database contains a realistic set of signs, it can 

easily be extended with more, provided they are in BVH format. There is no restriction on 

the source of the sign data either. Besides MOCAP, the system would work equally well 

with authored animations, as long as they can be provided in BVH format. Note that, 

supporting skeletal animation data for input is also a strategically sound choice; as such 

data can be easily manipulated to be used in or adapted from other projects. 

6.2.  Future Directions 

Aiming to be the frontend of a sign tutoring tool, this work is limited in its goal and 

feature set. Yet, there are many areas that can benefit from improvements. 
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6.2.1.  Facial Expressions and Eye Movements 

As discussed before, facial expressions are a definite requirement in a system such as 

ours. They are important for the perception of reality in the virtual actor and an integral 

part of many sign languages, so they must be supported if the system is to remain generic. 

Eye control is another important feature that is missing. Real social interactions involve the 

two parties actively look at each other, but our actress only looks ahead. 

Our implementation does not reproduce facial expressions, because there is no data 

source for generating them. In particular, a video processor is required to capture the facial 

expressions along with the MOCAP data so that the data can be fed to a facial expression 

synthesizer. However, our work does incorporate the Xface engine so that it can properly 

support such an extension as soon as a data source is available. Xface also supports full 

control of eye movements. A future extension of our work can easily use the Xface engine 

to actively direct the actress’ eyes to look at the camera. Moreover, since our model is 

directed by a well defined skeleton structure, she can also be programmed to turn partially 

to the camera with her body. 

6.2.2.  Head Movements 

It was already stated that head movements are necessary if the actress is idle. In 

addition, many sign languages actively use head movements, just like facial expressions. 

Hence, our system must be extended to support them in the future. 

Currently, the head is attached properly to the body at the chest joint but never 

moves. However, a recent improvement in our MOCAP hardware added proper head 

MOCAP support. The motions of the head are recorded on dedicated joints in the skeleton 

and can be reproduced on the virtual actress. To support the head motions with our 

implementation, the only necessary change is to attach the head to the appropriate neck 

bone instead. 
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When the head movements are independently supported and there are two separate 

engines to support the face and the body, as in our system, there is often a unification 

problem. Specifically, the meshes for the head and the body are separate and do not 

reproduce the elastic skin between them when moved in different directions. This problem 

does not arise in our system, because we do have head motion data to drive the head 

independently. If the system is extended to support such data, the easiest solution would be 

to manually create polygons between the border vertices of the head and the body meshes. 

As the vertices are deformed, the polygons will stretch and create an elastic skin effect. 

6.2.3.  Retargeting 

An important extension would be supporting retargeting, manually or automatically, 

of the motion data to virtual models with different skeleton topologies. Our 

implementation currently requires that the virtual model have the same skeleton as the 

MOCAP model. We also implement basic support for retargeting on the software side 

while building the database, but do not do retargeting itself. The benefits of retargeting are 

twofold. First it would allow other, significantly different, models be used in the 

visualization, without modifying the database of MOCAP data. Second, it would allow the 

database to be extended with MOCAP data taken from other actors or other MOCAP 

systems, which may produce different skeleton topologies. 

6.2.4.  Additional Improvements 

The MOCAP data of our system are manually entered into the database and the sign 

sequence is acquired from the user interface controls. In return, the output visualization is 

produced in the application’s own window. It is possible to move all of these data streams 

into generic inputs and output. For instance, the database can be directly constructed from 

the command line with the names of separate BVH files, the sign sequence also expected 

from the command line and the output can be directed to a generic operating system 

window. If all of these interfaces are made generic, the system can be embedded in any 

other system without modification. The ouput can be even more generalized by producing 
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VRML output (since 3D models are already available) instead of a rendering for better 

network performance, should the application be distributed. 

Our system is tuned for our specific models, skeletons and meshes. However, with 

other digital data, substantial rearrangement may need to be done. While our code is 

designed to be easily adaptable to other models, it does not provide an external interface to 

do these settings without rebuilding the binaries. The addition of a few GUI screens of 

command line parameters could make the system a lot more useful. 

Finally, an obvious improvement of any system involving a database is the extension 

of the database with more data. Our system is no exception. Since there is no restriction on 

the signs the system can store, synthesize and play, it is only natural to expect that the 

database will be extended with more signs in the future. 



 

APPENDIX A:  

This document is a guide to the operation of our Sign

system. The system is comprised of software 

realtime, 3D sign animations of

combining sign definitions that are fetched from a sign database in order specified by a 

sign list. The sign list is built from end user’s input

MOCAP data for each sign.

The operation of the system 

logically applies to one type of 

system operators to prepare the application data files that are used during the execution 

phase. The data files include the virtual actress model and the sign data

phase spans the query-response loop 

the end user. The rest of this document describes the operation of the system from the point 

of view of these users. 

APPENDIX A:  SYSTEM OPERATION GUIDE

This document is a guide to the operation of our Sign Language Animation

e system is comprised of software and data files that 

realtime, 3D sign animations of a virtual actress. The animations are obtained by 

combining sign definitions that are fetched from a sign database in order specified by a 

sign list. The sign list is built from end user’s input, whereas 

MOCAP data for each sign. 

Figure A.1. System overview. 

The operation of the system (Figure ) can be explained in two phases, each of whic

logically applies to one type of user. The initialization phase is normally carried out by 

system operators to prepare the application data files that are used during the execution 

phase. The data files include the virtual actress model and the sign data

response loop of the system, which creates and plays animations

the end user. The rest of this document describes the operation of the system from the point 
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that are used to generate 

The animations are obtained by 

combining sign definitions that are fetched from a sign database in order specified by a 

the database contains 

 

can be explained in two phases, each of which 

. The initialization phase is normally carried out by 

system operators to prepare the application data files that are used during the execution 

phase. The data files include the virtual actress model and the sign database. The execution 

, which creates and plays animations for 

the end user. The rest of this document describes the operation of the system from the point 



 

A.1.1.  Motion Capture

To be able to construct sign animation sequences, first, a database of sign definitions 

is required. The definitions are obtained through MOCAP, the first task in the initialization 

phase. While any MOCAP system can be used to capture

currently uses a Shapewrap III system by Measurand Inc.

Figure 

Shapewrap III is a magnetic MOCAP system that can track most of the limbs of an 

actor, including the legs and the fingers. T

ShapeRecorder for Microsoft Windows to record the captured motion data. ShapeRecorder 

does not connect to the sensors directly. Instead, it connects to a data concentrator box that 

is mounted on the actor a

ShapeRecorder and the data

LAN) or wireless (IEEE 802.11 

“ShapeRecorder”). In contrast, 

sensor hubs with cables, over proprietary protocols

A.1.1.1.  Mounting the Sensors.

is to mount the sensors and the data concentrator to the actor using the provided Velcro 

A.1.  Initialization: Operator’s Manual 

Motion Capture 

o be able to construct sign animation sequences, first, a database of sign definitions 

The definitions are obtained through MOCAP, the first task in the initialization 

While any MOCAP system can be used to capture the sign definitions, the system 

currently uses a Shapewrap III system by Measurand Inc. 

Figure A.2. ShapeWrap III MOCAP system. 

is a magnetic MOCAP system that can track most of the limbs of an 

actor, including the legs and the fingers. The system includes a software application, called 

ShapeRecorder for Microsoft Windows to record the captured motion data. ShapeRecorder 

does not connect to the sensors directly. Instead, it connects to a data concentrator box that 

is mounted on the actor along with the sensors. The communication between 

ShapeRecorder and the data concentrator can be wired (Ethernet based 

IEEE 802.11 wireless local area network, WLAN

). In contrast, the data concentrator is connected to the sensors 

, over proprietary protocols (Figure ). 

Mounting the Sensors. To capture motion data with Shapewrap

is to mount the sensors and the data concentrator to the actor using the provided Velcro 
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o be able to construct sign animation sequences, first, a database of sign definitions 

The definitions are obtained through MOCAP, the first task in the initialization 

the sign definitions, the system 

 

 

is a magnetic MOCAP system that can track most of the limbs of an 

he system includes a software application, called 

ShapeRecorder for Microsoft Windows to record the captured motion data. ShapeRecorder 

does not connect to the sensors directly. Instead, it connects to a data concentrator box that 

long with the sensors. The communication between 

Ethernet based local area network, 

wireless local area network, WLAN with SSID 

entrator is connected to the sensors through 

To capture motion data with Shapewrap III, the first step 

is to mount the sensors and the data concentrator to the actor using the provided Velcro 
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straps, belt, hat and vest, according to the Shapewrap III manual. There are three 

orientation sensors, connected to a single sensor hub. One is attached to the back of the 

head, one to the back of the waist and the other, which is embedded inside the hub, on the 

back of the actor. Arm sensors are thick black strips and are attached to the outside of 

either forearm in parallel, minding orientation (the right way up). Hubs of the arm sensors 

are attached to the upper arms. The hand sensor hubs are mounted on the outside of the 

wrists and the sensors themselves, thin blue strips, are inserted into the slits in the gloves. 

Cabling should also be completed before the system is turned on. In particular, there 

should be a data cable from each sensor hub to the data concentrator. The cables and the 

available data concentrator slots are equivalent and can be used interchangeably. However, 

note that sensor to hub connections are somewhat flimsy and can get disconnected. It is 

recommended to check them regularly, although the data concentrator also signals 

disconnections with beeps. 

A.1.1.2.  Connecting. ShapeRecorder can connect to the data concentrator over LAN or 

WLAN. If wireless connection is preferred, the wireless access point must be turned on 

prior to powering the data concentrator. For wired connections, the wireless access point 

must be turned off. 

When powered on (through a battery or AC adapter), the data concentrator first 

powers the sensor hubs, causing their red lights to turn on and then looks for the wireless 

access point to connect to. If the access point is active, wireless connection is made to the 

access point, after which the concentrator will assume the IP number 10.0.0.251 and emit 

four beeps to signal connection complete. At this point, the workstation PC should also be 

connected to the access point, through wireless or wired methods. If the data concentrator 

cannot find an access point, it attempts wired connection over the Ethernet port and takes 

the IP 10.0.0.250 instead, emitting two series of four beeps in the process. If the data 

concentrator can be pinged from the workstation PC, the connection is successful. 

A.1.1.3.  Starting ShapeRecorder. ShapeRecorder also supports serial connections, hence if 

the PC has serial ports (e.g.  virtual ports for Bluetooth), they must be disabled before 
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launching the software. Once launched, ShapeRecorder looks for available data ports and 

should eventually discover the data concentrator on the network, if connection is 

successfully made. 

Next, the detected sensors are shown and the ones to use in the MOCAP session are 

asked. Normally, all the sensors are used. Finally, ShapeRecorder requests a subject file 

from the user. 

A.1.1.4.  Preparing a Subject File and Calibration. A subject file is used to match the 

virtual skeleton to the MOCAP actor. To prepare a subject file, the operator must follow 

the instructions in the model link wizard of ShapeRecorder. 

Before capturing motion data, the model has to be well calibrated. It is recommended 

that the calibration procedure is carried out before recording each movement. To calibrate 

ShapeRecorder, the software is instructed to reset its internal offsets in homing pose by 

clicking the homing button in the tape control window, while the actor puts out his hands 

in front, assuming the home pose. Once this process is done, the 3D preview in the 

software should reflect the actual pose of the actor. If it does not, or if there is drift in the 

preview, homing should be repeated. 

A.1.1.5.  Recording Data. If preparation and calibration is correct, recording can be 

initiated by the record raw data file option in ShapeRecorder. This brings up the recording 

control window, already recording. When done, the stop button should be clicked and data 

should be exported into a BVH file. 

When recording signs for use in this system, care should be taken to have the actor in 

the same pose in the beginning and at the end of every sign. This is required to improve 

blending performance during playback. In addition, the first and the last 1 second part of 

the movement, called the attack and the decay, should only involve moving out of or into 

this pose. The attack and decay may be overwritten during blending and hence should not 

contain expressive poses. 
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A.1.2.  Database Construction 

Once the BVH files for the signs are available, the database can be constructed. The 

system keeps a sign database integrated into the skeleton file for the virtual actress for 

performance and integrity reasons. Hence, to construct the database, the virtual actress 

model must be built. 

A.1.2.1.  System Requirements. SignDBEditor is a simple application that is used to 

construct and edit databases for use in this system. SignDBEditor runs on Microsoft 

Windows XP or newer operating system, and requires a 2 Ghz CPU, 1 GB of RAM and 60 

MB free disk space (shared with SignPlayer). 

A.1.2.2.  Using SignDBEditor. When first launched, SignDBEditor asks the user for a 

compatible model or skeleton file to initialize the user interface with. If there are signs 

specified in the skeleton file, they are loaded into memory and displayed to the user in an 

animation list window for editing or removal. 

An animation can be removed from the memory by clicking on the dedicated remove 

button. A dedicated add button is also present, that, when clicked, causes the user to be 

prompted for a BVH file to load. Then, the animation extracted from the BVH file is 

loaded into memory and added to the animation list. The animations in the animation list 

are named automatically with their filenames when first loaded. This default name can be 

overridden with the F2 key. 

When the list of animations is adequate for exporting into a database, the database 

file can be written by clicking on the OK button. At this step, SignDBEditor also allows 

the data to be written to another database file, still based on the skeleton in memory, if the 

user so desires. 



 

58

A.1.3.  3D Design 

The two digital assets of the system are the virtual actress model and the Xface head 

model. The virtual actress can be modeled in any standard modeling software and 

exported, as long as it uses the exact same skeleton as the MOCAP data. One of the BVH 

files can be imported by the software to obtain the skeleton, to which the mesh can be 

bound. The bone naming convention in original BVH files must be maintained in the 

model (except for the end affecters, which can be named with their parent, suffixed by a 

“_End”). In particular, a bone named “Chest” must exist so that it can be used to attach the 

Xface model to. 

To model an Xface head, FaceGen software must be used. For more detail on this 

process, Xface documentation should be consulted. 

A.2.  Execution: End User’s Manual 

A.2.1.  System Requirements 

The sign animations are generated and played with a dedicated application, called 

SignPlayer. SignPlayer runs on Microsoft Windows XP or newer operating system, and 

requires a 2 Ghz CPU, 1 GB of RAM and 60 MB free disk space (shared with 

SignDBEditor). While it will detect and, if available, use it through OpenGL, SignPlayer 

does not require hardware acceleration for graphics. 

A.2.2.  User Interface and Tasks  

SignPlayer features a hybrid user interface that works in both 2D and 3D style. The 

2D interface is comprised of a number of controls, namely an edit box to type a list of 

signs to play, a read-only text box indicating the sign that is currently played by the actress 

and two buttons; a play button to initiate playback and another to quit the application. The 

user can move the mouse to control a pointer around the screen and use the left mouse 



 

button to activate the controls that are interactive. For instance, the user can end the 

application by clicking on the quit b

Behind the controls, SignPlayer draws the virtual actress in its current mode in 3D 

(Figure A.). The 3D display can be manipulated after being 

button. When active the mouse is used to control the position and orientation of the 3D 

camera. Namely, horizontal movements rotate the camera around the Y axis and vertical 

movements around the X axis. Rotation around the Z axis is achieved b

middle button down while moving the mouse horizontally. Finally, the roller can be used 

to move the camera forward or backward in its line of sight

A.2.3.  Playing Sign Animations

SignPlayer has two modes of 

virtual actress looping an idle animation. The application stays in the idle mode 

indefinitely, until the user instructs it to switch to playback mode.

button to activate the controls that are interactive. For instance, the user can end the 

application by clicking on the quit button. 

Behind the controls, SignPlayer draws the virtual actress in its current mode in 3D 

display can be manipulated after being activated via the

button. When active the mouse is used to control the position and orientation of the 3D 

camera. Namely, horizontal movements rotate the camera around the Y axis and vertical 

movements around the X axis. Rotation around the Z axis is achieved b

middle button down while moving the mouse horizontally. Finally, the roller can be used 

to move the camera forward or backward in its line of sight. 

 

Figure A.3. SignPlayer user interface. 

Playing Sign Animations 

SignPlayer has two modes of execution. Initially, it is in idle mode and displays the 

virtual actress looping an idle animation. The application stays in the idle mode 

indefinitely, until the user instructs it to switch to playback mode. 
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button to activate the controls that are interactive. For instance, the user can end the 

Behind the controls, SignPlayer draws the virtual actress in its current mode in 3D 

activated via the right mouse 

button. When active the mouse is used to control the position and orientation of the 3D 

camera. Namely, horizontal movements rotate the camera around the Y axis and vertical 

movements around the X axis. Rotation around the Z axis is achieved by keeping the 

middle button down while moving the mouse horizontally. Finally, the roller can be used 

execution. Initially, it is in idle mode and displays the 

virtual actress looping an idle animation. The application stays in the idle mode 
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To request sign playback, first, the list of signs must be entered into the edit box. The 

list of signs is a simple string, where each character, including spaces, represents a 

different sign. In ordering the signs, the list assumes the left to right order the characters 

are used in the string. The characters should be lowercase and in English whenever 

possible. For specific Turkish characters, the related capital letter is used instead. For 

instance, to request the sign for “ğ”, one needs to type “G”. In case a sign is not 

recognized, it is simply ignored. 

Once the sign list is specified, playback can be initiated by clicking on the play 

button. In response, SignPlayer first completes the current idle loop of the virtual actress 

and then directs her to play the sign animations specified in the sign list, in order. The 

signs are continuously played one after the other and cannot be interrupted or cancelled. As 

the actress plays the signs, the name of the sign currently being played is displayed in the 

read-only text box. When playing the sign list is complete, the application returns to the 

idle mode, expecting additional playback requests while playing the idle loop. 
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APPENDIX B:  BVH FILE FORMAT SPECIFICATION 

The Biovision Hierarchy (BVH) file format was originally developed by Biovision to 

store and carry motion capture data. It can contain both specification of skeleton 

hierarchies and motion data to animate them. 

B.1.  Description of File Contents 

A BVH file is actually an ASCII text file, commonly structured with whitespace. The 

keywords and punctuation can be separated by any combination of spaces, tabs and 

newlines. Throughout the file, numeric values are specified in decimal form, angles in 

degrees and time values are in seconds. The contents of a BVH file are organized into two 

sections, as described below. 

B.1.1.  Hierarchies 

The first section describes the skeleton hierarchies driven by the motion data. The 

section begins with the keyword “HIERARCHY”. Next, the skeletons are described 

sequentially. A skeleton description is actually a hierarchical definition of joints, starting 

with the root joint. The description of the root joint starts with the keyword “ROOT”, 

followed by a name for the root bone. Internal joints are specified by the keyword 

“JOINT”, followed by a name, instead. The end affecters are donated with the “End Site” 

keyword and do not have names. 

Following the name, the offsets of a joint are specified after a single curly brace “{“ 

with the keyword “OFFSET”. Following this keyword are the X, Y and Z offsets of the 

joint, relative to its parent, also describing its base pose. The next part is used to indicate 

which part of the motion data is used to direct this particular joint. First is the keyword 

“CHANNELS”, followed by an integer, the number of parameters in the parameter vector 

that correspond to this particular joint. Typically, the root joint has six parameters and the 

rest of the joints have only three. End affecters do not specify joints and hence, do not have 
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channels. Following the channel count are the channel labels, the number of which should 

match the number of parameters as specified. The labels can be one of the preset keywords 

“Xposition”, “Yposition”, “Zposition”, “Xrotation”, “Yrotation” or “Zrotation” and 

indicate how to use the particular parameter obtained from the parameter vector. Note that 

the order the channels are specified is also used when the transformation matrices of the 

associated transformations are multiplied. In other words, if “Zrotation” comes before 

“Xrotation”, the rotation matrices are multiplied as LzLx. 

Unless the joint is an end affecter, next, the child joints described in order. Finally, 

the root, joint or end affecter specification is completed with a single curly brace “}”. 

B.1.2.  Motion 

The second section starts with the “MOTION” keyword, followed by the “Frames: “ 

keyword. Next, the number of frames specified in the motion section is located, which is 

an integer. Following this values, the playback rate is specified with the “Frame Time:” 

keyword followed by the frame time. The rest of the file is a sequence of parameter 

vectors, the count of which is equal to the number of frames specification. Each parameter 

vector is a simple sequence of real numbers in the order the joints and their channels are 

specified. 

B.2.  Common Conventions 

While whitespace can be used liberally for formatting a BVH file, there are a few 

conventions that have found widespread adoption. Namely, the “HIERARCHY” and 

“MOTION” keywords and curly braces are usually placed on a line by themselves and 

joint specifications, including the braces themselves, are usually indented with tabs to 

indicate their level in the hierarchy. These conventions are honored in the sample file that 

follows. 
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Figure B.1. A sample BVH file: The file contains just a simplified upper torso model and a 

100 millisecond, two frame animation. 

HIERARCHY 

ROOT Hips 

{ 

 OFFSET 0.00 0.00 0.00 

 CHANNELS 6 Xposition Yposition Zposition Zrotation Xrotation Yrotation 

 JOINT Chest 

 { 

  OFFSET 0.00 8.00 0.00 

  CHANNELS 3 Zrotation Xrotation Yrotation 

  JOINT LeftArm 

  { 

   OFFSET 5.00 2.00 1.00 

   CHANNELS 3 Zrotation Xrotation Yrotation 

   JOINT LeftHand 

   { 

    OFFSET 0.00 -8.00 0.00 

    CHANNELS 3 Zrotation Xrotation Yrotation 

    End Site  

    { 

     OFFSET 0.00 -6.00 0.00 

    } 

   } 

  } 

  JOINT RightArm 

  { 

   OFFSET -5.00 2.00 1.00 

   CHANNELS 3 Zrotation Xrotation Yrotation 

   JOINT RightHand 

   { 

    OFFSET 0.00 -8.00 0.00 

    CHANNELS 3 Zrotation Xrotation Yrotation 

    End Site  

    { 

     OFFSET 0.00 -6.00 0.00 

    } 

   } 

  } 

 } 

} 

MOTION 

Frames: 2 

Frame Time: 0.05 

 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 0.00 0.00 0.00 0.00 5.00 0.00 -5.00 0.00 5.00 45.00 0.00 0.00 -90.00 0.00 0.00 0.00 -15.00 0.00 0.00 -135.00 0.00 



 

64

B.3.  Grammar 

The BVH file format can be more properly specified using a grammar for the file 

structure (excluding integrity requirements) as follows. 

 

Figure B.2. BVH file format grammar: The top object is bvhFile. Note that unquoted 

spaces represent whitespace. 

bvhFile: hierarchySection motionSection 

hierarchySection: hierarchyHeader hierarchyData 

hierarchyHeader: “HIERARCHY” 

hierarchyData: skeleton+ 

skeleton: rootJoint 

rootJoint: “ROOT” name { offsetSection channelSection joint* } 

offsetSection: “OFFSET” real real real 

channelSection: “CHANNELS” integer real+ 

joint: internalJoint | endAffecter 

internalJoint: “JOINT” name { offsetSection channelSection joint* } 

endAffecter: “End Site” { offsetSection } 

motionSection: motionHeader frameCountSpec frameTimeSpec motionData 

motionHeader: “MOTION” 

frameCountSpec: “Frames:” integer 

frameTimeSpec: “Frame Time:” real 

motionData: parameterVector* 

parameterVector: parameter+ 

parameter: real 

name: string 

string: alpha+ alphanumeric* 

alpha: {“A”-“Z”} | {“a”-“z”} 

alphanumeric: alpha | digit | “_” 

integer: sign digit+ 

real: integer | sign digit+ “.” digit+ 

digit: {“0”-“9”} 

sign: “” | “+” | “-” 
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