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topic, for his all excellent control lectures, for giving me free time during this study

and for many other things I have learned from him. He is very intelligent and in my

opinion, he is among the best theoretical control engineers in the Europe. It is a big

chance that the mechanical engineering of Boğaziçi university has such a professor.
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I thank to Prof. Levent Güvenç for participating in my thesis committee and

providing me a 1 year-scholarship at AUTOCOM center of İstanbul Technical univer-
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Nilgün Işık for her encouragement “Ercan bitiyor mu, sana ne zaman Dr. Ercan diye-

cegiz?” and to Prof. Alp Eden for asking me about my Ph.D. thesis when he comes

across me . They allowed me to be a research assistant there for many years by which I

have learned a lot of mathematics! I also thank my assistant friends during this period,
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ABSTRACT

GAIN-SCHEDULED AIR PATH SYSTEM CONTROL AND

COMPRESSOR AIR MASS FLOW ESTIMATION IN

DIESEL ENGINES

In this dissertation, we deal with the independent problems of air path system

control and compressor air mass flow estimation in diesel engines. In this regard, the

thesis can be divided into two main parts: control and estimation.

In the first part, control part, we consider regulation of the air path system

in diesel engines. To that end, an extensively used mean-value engine model in the

literature is considered. The underlying nonlinear model is converted into a rational

linear parameter-varying (LPV) form and a gain scheduled control approach is used.

The main contribution here is that the commonly used simplifying assumptions in the

literature (like constant engine speed, use of engine charts, assuming exhaust manifold

pressure to be equal to intake manifold pressure plus some constant value, taking

constant manifold temperatures, etc.) are avoided and a better engine model with a

better subsequent controller design are achieved. As a result, the control system design

is covering a wide range of engine operating points.

In the estimation part, we present two different estimation approaches, each hav-

ing advantages over the other. In the first approach, we develop a general deterministic

state estimation method for states appearing linearly in nonlinear systems. The es-

timation method is based on representation of input-output pairs by a linear moving

model and the use of recursive-least squares with an adaptive forgetting factor. The

method is on-line applicable and very easy to apply. It is shown that the developed

estimation method outperforms the popular extended kalman filter (EKF) method on

some case studies. Next, the developed estimation method is used for a diesel engine
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model to estimate compressor air mass flow, whose measurement is difficult or unreli-

able in some situations and therefore its estimation is important in these cases. Again,

a comparison with EKF shows the advantage of the developed method.

The second estimation method is based on the use of a state estimation method

for affine parameter-dependent linear systems. To use this method, the underlying

nonlinear engine model is first transformed into an affine parameter-dependent form

and then the method is used. This approach has the advantage of having an asymptotic

convergence nature, when compared to the first one. Again, this method is used for

compressor air mass flow estimation and the results are compared with those of EKF

to demonstrate the superiority of the approach.
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ÖZET

DİZEL MOTORLARDA KAZANÇ AYARLAMALI HAVA

YOLU SİSTEMİ KONTROLÜ VE KOMPRES0̈R HAVA

KÜTLESİ KESTİRMESİ

Bu tezde dizel motorlarda hava yolu sistemi kontrolü ve kompresör hava kütlesi

kestirmesi problemleriyle uğraştk. Bu anlamda, tez çalışması iki ana kısma ayrılabilir:

kontrol ve kestirme.

İlk kısımda, kontrol kısmında, dizel motorlarda hava yolunun düzenlenmesini ele

aldık. Bunun için, literatürde sıkça kullanılan ortalama-değerli bir dizel motor modelini

kullandık. İlgili model ilk önce doğrusal parametre değişken (DPD) formuna koyuldu

ve sonra kazanç ayarlamalı kontrol metodu uygulandı. Bu çalışmanın katkısı şudur: lit-

eratürde hava yolu kontrolü yapılırken genelde kolaylaştırıcı varsayımlar yapılmaktadır:

örneğin, motor hızının sabit alınması, dizel motor tablolarının kullanımı, egzoz basıncının

giriş basıncı artı sabit bir değer olarak kabul edilmesi, manifold sıcaklıklarının sabit

alınması, vesaire. Burada bu tür basitleştirici varsayımlardan kaçınılmıştır ve dolayısıyla

daha doğru bir motor modeli ve daha geniş operasyonel noktalarda çalışacak kontrol

algoritması elde edilmiştir.

Kestirme kısmında iki farklı yöntem sunduk. Karşılıklı olarak düşünüldüklerinde

bu iki yöntemin birbirleri üzerinde avantajları mevcuttur. İlk metod, deterministik,

doğrusal olmayan diferansiyel denklemlerde doğrusal gözüken durumların kestirilmesi

için geliştirilen genel bir metotdur. Metodun dayandığı mantık ölçülebilen durum-

lardan ve sistem girdilerinden hareketle zamanla hareket eden bir doğrusal modelin

saptanması ve model saptanmasında adaptif unutma faktörlü rekursif en küçük kareler

yönteminin kullanılmasıdır. Bu metodun temel özelliği çevirimiçi uygulanabilmesi ve

uygulama kolaylığı olmasıdır. Akademik-amaçlı oluşturulan örnekler üzerinde metot
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ugulandı ve sonuçlar popüler genişletilmiş Kalman filtresi (GKF) ile karşılaştırıldı. Bu

karşılaştırmalardan geliştirilen metodun daha iyi sonuç verdiği gözlendi. Daha sonra

metot dizel motorlarda bazı durumlarda ölçüm almanın zor olduğu ya da ölçümlere

güvenilemediğinde kompresor hava kütlesinin kestirilmesine uygulandı. Tekrar sonuçlar

GKF ile karşılaştırıldı ve geliştirilen metodun avantajı görüldü.

İkinci kestirme metodu, ilgin parametre-bağımlı sistemlerde durum kestirmesi

için geliştirilmiş olan yöntemi uygulamaya dayanır. Bu yöntemi kullanabilmek için önce

varolan doğrusal olmayan dizel motor modeli ilgin parametre-bağımlı forma dönüştürüldü.

Bu yöntemin ilk yönteme göre temel avantajı sonuşur yakınsamalı olmasıdır. Bu

metot da kompresör hava kütlesinin kestirilmesinde kullanıldı ve yöntemin üstünlüğünü

göstermek için kestirme sonuçları GKF ile karşılaştırıldı.



xi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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1. INTRODUCTION AND LITERATURE SURVEY

Internal combustion engines were developed in the late 1800s and, after that time,

they became the dominant prime mover technology in the transportation field. In the

early years of 1900, most of the automobiles were steam or electrically powered but

by 1920, the powering mechanism was replaced by gasoline engines. At the beginning

of 2000, almost all motor vehicles were powered by internal combustion engines [1].

Diesel engines are one type of internal combustion engines, which were invented by

Rudolf Diesel between 1893-1897 at Augsburg, Germany and become very popular in

recent years thanks to their better fuel economy, higher power characteristics and their

durability and environmental advantages. These positive facets led to an increasing

penetration of diesel engines in the automotive market, for example as seen in Figure

1 for Western Europe. Diesel engines, as all engineering systems, have pros and cons

Figure 1.1. Diesel engine market share in Western European market [2]

when compared to their competitors and/or alternatives. Next, we considers these

issues.

1.1. Advantages of Diesel Engines

The main factors making diesel engines so popular in automotive industry may

be summarized as follows.
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• Better fuel economy: This is the most distinguishing property of diesel engines

making them superior over gasoline engines. When a light-duty diesel and a gaso-

line engine of similar power are compared, it is seen that diesel engine consume

30-60 % less fuel, where the percentage changes from the type of vehicle and oper-

ating conditions [3]. This better fuel efficiency aspect of diesel engine stems from

the high compression ratios and the rich content of diesel fuel. The efficiency of

gasoline engines is typically around 25 % while diesel engines can convert over 30

% of the chemical fuel energy into mechanical energy [4]. In terms of fuel cost

that means 3 liter per 100 km.

• Higher power rate: For the same speed, the torque production of diesel engines is

substantially higher than that of a gasoline engine of the same size. This is due to

the high compression ratios during the combustion process. As an example, the

Volkswagen 1.9 liter TDI diesel equipped in Jetta with compression ratio 19.5:1

can develop a torque of 114Nm @1900 rpm. On the other hand, the 2.0 liter

gasoline engine powered Jetta with compression ratio 10:1 is able to generate

only a torque of 89 Nm at a much higher speed of 2600 rmp [3].

• Durability and environmental advantages: The life of a diesel engine is almost

twice as that of a gasoline engine due to the increased strength of the parts

used, the better lubrication property of the diesel fuel, etc. In a diesel engine,

boost pressure is limited only by the strength of the engine components, not by

predetonation of the fuel charge as in gasoline engines. Diesel engines have the

advantages of lower CO2, CO and hydrocarbon emissions.

1.2. Disadvantages of Diesel Engines

Although diesel engines have the above advantages, their disadvantages should also be

mentioned. A list of disadvantages of diesel engines can be as follows.

• High rate of PM and NOx emission: The diesel engine particulate matter (PM)

is a combustion-generated soot which is a complex chemical structure including

many inorganic materials, lubricants, sulfates. These harmful products are of

increasing concern as they are small, often less than 2.5 microns in size and are
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responsible for a variety of lung related illnesses including asthma, emphysema

and bronchitis. The amount of these particulate matter is depended on factors

as amount of available oxygen during combustion process, spray formation and

oxidation conditions towards the end of the combustion process [5]. On the

other hand, oxides of nitrogen (NOx) are formed when a mix of nitrogen and

oxygen is subjected to high temperatures. Emissions of harmful oxides of nitrogen

are reduced by recirculating a portion of the exhaust gas back to the intake

manifold and this process is known as exhaust gas recirculation. Intermixing

the incoming air with recirculated exhaust gas dilutes the mixture with inert

gas, lowering the adiabatic flame temperature and reducing the amount of excess

oxygen. The exhaust gas also increases the specific heat capacity of the mixture,

lowering the peak combustion temperature. Because NOx formation progresses

much faster at high temperatures, EGR serves to limit the generation of NOx.

Legislations are increasing day by day the demands on the lower emissions from

the internal combustion engines. Figure 1.2 shows the imposed regulations by

European Union and U.S. It is expected that the upcoming standards be more

stringent. Therefore, it is necessary to make important technological progress to

satisfy these requirements. PM and NOx minimization requires advanced control

Figure 1.2. Diesel vehicle emissions standards for NOx and PM in the U.S. and

Western Europe (grams per mile) [6, 7, 8]
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structures to regulate the air path system and the after-traetment technologies

(like PM filters and Selective Catalytic Reduction).

• Vibration and noise problems: Diesel engines are much noisier and tend to vi-

brate.

• Other disadvantages: They are harder to start in cold weather. In general, many

local repair shops either do not have the service personnel or the diesel engine

parts. Moreover, diesel engine repair costs more than gasoline engine.

1.3. Turbocharging and EGR

A turbocharged diesel engine with exhaust gas recirculation (EGR) is shown

schematically in Figure 1.3. The subscripts “a”, “c”, “i”,“e” and “x” are used to

represent ambient, compressor, intake manifold, engine cylinder and exhaust manifold

locations, respectively. The main function of turbocharging is to use the energy of

the exhaust gas and convert it to the mechanical work by passing the gas through

the blades of a turbine. The turbine drives a compressor which increases the density

of the incoming air, which in turn results in a larger torque output compared to non-

turbocharged engines. The power generation of the turbine is increased by turbocharg-

Figure 1.3. Diesel engine flow diagram

ing and it is directly related to exhaust gas pressure-temperature and the amount of

flow through turbine blades. In general, in turbocharging a variable geometry turbine
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(VGT) technology (Figure 1.4) is used, where the turbo uses little variable vanes to

control exhaust flow passing through turbine blades. The vane angles are adjusted by

an actuator. The changes in the inlet vane positions can change the power generated by

the turbine and hence the transfer of power to the compressor, which in turn affect the

power generated by the engine. Emissions of NOx are reduced by EGR as mentioned

Figure 1.4. VGT [9]

before. As EGR action results in a high level of burned gas fraction, this leads to low

in cylinder air to fuel ratio, AFR, and consequently unacceptable smoke generation as

Figure 1.5 demonstrates. The negative effect of EGR is from two sides. Firstly, burned

gas fraction from the EGR valve replaces some fresh air from the intake manifold and

consequently decreases the fresh air mass flows into the cylinders. Secondly, a fraction

of the exhaust gas that can be used by the turbine is diverted through the EGR valve

to the intake manifold, reducing the turbine power and consequently the flow delivered

to the intake manifold through the compressor. As a result, there is an inverse relation

between reduction of smoke and NOx and, therefore, most of the time an optimal AFR

is sought to set a compromise between these two harmful products [10].

1.4. Modeling-Identification and Control Problems in Diesel Engines

Modeling and control of diesel engines is a substantial task. The related models

can be physics-based or identification-based. The physics-based mean-value models
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Figure 1.5. NOx and Smoke versus AFR [10]

are very complicated and contain many tuning parameters to be estimated. A control

strategy using these complicated models is not readily available and requires a remark-

able effort. On the other hand, linear mean-value models and the associated linear

control are not satisfactory for engine control due to the high nonlinearity and avail-

ability of feedback interactions between engine components. Therefore, model based

control necessities two things at the same time: control oriented modeling of the engine,

where the underlying model accurately reflects the engine dynamics, and synthesis of

an advanced control strategy for the associated control oriented model.

For the emission control, in particular NOx control, of diesel engines, the EGR-

rate should be controlled. To meet the specified operation requirements, boost pres-

sure or exhaust manifold pressure is, also, controlled. The control of EGR-rate can be

achieved by directly controlling EGR air mass flow or indirectly by regulating com-

pressor flow using the VGT-vane and EGR-valve positions.

In general, current production type controllers used in the engine control unit

(ECU) try to achieve the above objectives by simple gain scheduled siso-PI(D) con-

trollers or in some cases incorporating feed forward control based on engine maps. The
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control strategy is, also, synthesized in a decentralized fashion: EGR-valve and VGT-

vane positions are controlled by different, independent controllers. In order to cope

with the nonlinearities and to satisfy the required objectives, gains must be scheduled

over the entire operation range (over entire speed-load regime). This brings an immense

calibration effort and control design is time consuming. In addition, scheduled PI(D)

controllers may not be able to satisfy the required objectives since a decentralized con-

trol design strategy lacks the coordination between the manipulated inputs. Even, as

well-known in the literature, there is no stability guarantee with gain scheduling of

designed simple controllers for operating intervals.

In order to reduce both the calibration effort and synthesize controllers with sat-

isfactory performance, advanced modeling-identification and control approaches are re-

quired. The next subsections are categorized surveys of the main modeling-identification

and control works in the literature generally with a purpose to reduce, model or control

harmful emissions from diesel engines.

1.4.1. Neural Networks Based Modeling-Identification and Control

Artificial neural networks (ANNs) have learning capabilities, they bring impor-

tant benefits by suppressing theoretical difficulties that appear when applying classical

techniques to complex systems and they are very flexible with universal approximation

capabilities. All these make them a prime candidate tool for many engineering applica-

tions including diesel engine modeling-identification and control. In recent years, some

researchers used ANNs methods to model, identify and control the internal combus-

tion engine characteristics. For example, in [11] Yuanwang et al. analyzed the effect of

cetane number on exhaust emissions from engine, in [12] Durna et al. studied the effect

of specific fatty acid methyl esters present in biofuels on particulate matter emissions,

in [13] Lucas et al. modeled diesel particulate emission, in [14] Hafner et al. designed

a diesel engine control system, in [15] Tan and Saif modeled the intake manifold and

throttle body processes in an automotive engine, in [16] Roskilly et al. on-line modeled

and identified a turbocharged medium-speed diesel engine, all using ANNs.
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1.4.2. Nonlinear Modeling and Control

Nonlinear modeling and control applications in diesel engines are numerous. The

underlying physics in diesel engines naturally brings out nonlinear models. The main

difficulty raises in designing nonlinear controllers for the corresponding nonlinear en-

gine models. Nonlinear approaches offer the potential of better coping with the non-

linearities present in diesel engines. The approach of Kao M. and Moskwa J.J in [17]

proposes sliding-modes controllers for speed control problem. Several controller classes

are considered and compared in this paper using simulations. Feed-forward was proved

to be beneficial when a fast transient response is considered and a sliding mode con-

troller is designed to include such a feature. In terms of minimal mean speed error, the

best controller is proven to be the sliding mode controller with integral action and gain

adaptation. In [10], Stefanopoulou et al. considered a direct injected, turbocharged

diesel engine with EGR. The objective is to satisfy three conditions; operate the en-

gine with a controller such that driver’s torque demand are satisfied, NOx emissions

are minimized and visible smoke creation is avoided. In this study, it is demonstrated

that the steady-state optimization of engine emissions results in operating points where

EGR and VGT actuators are in effect redundant in their effect on the variables that

most directly affect the emissions. To account for the actuator redundancy, a multi-

variable nonlinear feedback controller based on gain scheduling of linear controllers is

proposed and coordination of the two actuators to fully utilize their joint effect on

engine emission performance is achieved. In [18], Rajamani considered a turbocharged

diesel engine with EGR and VGT . The paper has the same objectives as those of [10].

A feedback linearization approach is used to set AFR and burned gas fraction in the

intake manifold to desired values in the presence of variable operating points. Since

practically neither of these variables can be measured, an observer based on flow and

pressure sensor measurements is developed for their real time estimations.

Lino P. et al. in [19] presents a control oriented model and a nonlinear control

design for a common rail injection system. First a model is developed, which is tuned

in a virtual simulation environment, representing the injection system in details in

a reliable replication of reality. Then, a sliding mode control is developed. Both
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the model of the injection process and of the control law are validated by a virtual

detailed simulation environment. Plianos A. et al. in [20] used an optimal nonlinear

control strategy based on the analytic solution of a performance index to derive a

controller for the diesel engine air path system. The objective of control is to achieve

tracking of suitable references (corresponding to low emissions) for the AFR and the

fraction of the recirculated exhaust gas. The considered diesel engine is a medium duty

Caterpillar 3126B with six cylinders equipped with a variable geometry turbocharger

and an exhaust gas recirculation valve. The proposed controller is designed on the

reduced third-order mean-value model and implemented as a closed-form nonlinear

model predictive control law on the full order model. In order to eliminate steady state

offset, integral action is introduced.

1.4.3. Linear Parameter-Varying Based Modeling-Identification and Con-

trol

Linear parameter-varying (LPV) models are linear dynamical systems which in-

clude external priori unknown but real time measurable parameter(s). If the state is

a parameter, then the corresponding model is called a quasi-LPV model. LPV models

with the associated LPV control theory will be described in detail in Chapter 2. Mainly,

LPV models can be constructed in two ways: identification of an LPV-structure model

and first-principles-based LPV models. In the second method, most of the time, the

resulting LPV models are of quasi-LPV nature and there is no approximation involved

when going from the (simplified) nonlinear model to the quasi-LPV model, i.e. it is

just a reformulation. Next, we will list the related work on diesel engines using the

mentioned methods.

The recent work of Wei and Re [21] uses physically motivated subsystem models

suited for the intake manifold pressure dynamics, exhaust manifold pressure dynamics

and the air mass flow dynamics. LPV identification techniques are used to estimate

their parameters. A final quasi-LPV model based on the combination of three sub-

models is determined and used for the controller synthesis to control the air path

system.
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In fact, in literature, to our knowledge, there are just two studies on control ori-

ented LPV modeling of diesel engines. Song and Grigoriadis in [22] regulated engine

speed where a model based LPV approach is applied to address the variable operat-

ing conditions of the engine. The closed-loop system has the required stability and

optimized load torque rejection performance in the presence of variable transport de-

lays and fuel saturation constraints. Jung and Glover in [23] present a gain scheduled

approach using a reduced-order, mean-value diesel engine model to reduce calibration

effort which is a significant task encountered in automotive industry. The engine model

is put in a quasi-LPV form and scheduling variable is the intake manifold pressure. In

addition, a second parameter is introduced to adjust the gain of the controller and

hence rendering the controller calibratable. Set points for intake manifold pressure

and compressor air mass flow are tracked to control the air path system.

1.5. Estimation Problems in Diesel Engines

Application of control strategies for the achievement of better fuel economy and

lower emission in turbocharged diesel engines with exhaust gas recirculation unit re-

quires many flow/temperature or pressure variables to be measured accurately. Some-

times the existing hard conditions prevent the measurement of some of these quantities.

In this regard, estimation problems are also very important and challenging in diesel

engines. The complicated structure of the engine when combined with some hard

existing conditions (like high temperatures, soot coverage on sensors) may induce es-

timations of some quantities very difficult or unreliable. In addition, some quantities,

like oxygen/air fraction in manifolds, load torque on the engine may be physically im-

possible to measure. Estimation of such quantities are sometimes very important to be

used as feedback signals in control strategies to reduce emissions and to increase engine

performance. Another reason for estimation is to avoid use of expensive sensors.

Different approaches with different purposes have been used in literature on es-

timation. Here, we will list just some of them. In [24], Wang uses a Luenberger-like

observer for air fraction estimation. In [25], Brahma et.al proposes a linear mean-value

model, whose structure is motivated by a physics-based nonlinear model. Finally, a
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Kalman Filter was designed to predict the torque and NOx predictions from the mani-

fold pressure and mass air flow measurements. In [26], the authors present a nonlinear

sliding mode observer for indicated torque and load torque estimations. Indicated

torques were also estimated using ANN [27]. In [28], Desantes et.al uses a method

known as ∆p method for estimating the total air mass admitted by the engine.

1.6. Main Contributions

In the first part of the thesis, we consider a diesel engine model used in a large

number of papers for different control methods and purposes [18, 23, 29, 30, 31, 32].

We apply a linear parameter-varying control method to it. In fact, a similar work

was done in [23], using the same model. But, there the control problem was to track

intake manifold pressure and compressor air mass flow and the LPV-model was simply

assumed to be scheduled by the intake manifold pressure and the exhaust pressure

was taken to be 2.5 kPa greater than it. This is a huge simplification and it can

be rarely encountered for transient situations in real applications. As a result, the

effect of scheduling of exhaust manifold pressure on system dynamics is not known. In

addition, the LPV-control design procedure was based on a gridding strategy which is

computationally difficult.

In this study, we take the state dependent turbine and EGR flow variables as mod-

ified control inputs. This idea was considered by [29, 30, 31, 32] when applying different

nonlinear controller approaches (like feedback linearization, constructive-lyapunov con-

trol, etc.) using the same model. In [29, 30, 31, 32], the engine speed is taken some

constant value or engine charts are used and therefore the resulting controller is for

the chosen operating point(s). As a result, the controller is not valid for other speed

values or engine operating conditions. In addition, fuel flow rate is, also, taken as some

fixed set point value. These are clearly restrictive assumptions or simplifications. Our

aim is to design a more general controller where we avoid simplifications like the ones

in [23] and in [29, 30, 31, 32]. The determined state dependent control flow inputs are

divided by the states to obtain the real control inputs. The positiveness of state values

makes this idea work. As control performance variables, we track compressor air mass
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flow and exhaust manifold pressure, whose set points are expressed in terms of the set

points of EGR fraction and AFR ratio in the intake manifold.

The LPV controller design method is based on the approach of [33], where no

gridding is necessary. For the control design approach of [33] to work, as a first task,

the model is transformed into an equivalent model by a division/multiplication of

some terms in the equation with the exhaust manifold pressure state to create exhaust

manifold pressure as a state in the associated equations. This is necessary for the

feasibility of linear matrix inequalities (LMIs) used in the controller synthesis. In the

control part, we first assume manifold temperatures to be constant values which may be

encountered in some situations. The resulting model and the associated control system

are scheduled on five time-varying parameters. In the second control section, manifold

temperatures are furthermore assumed to be time-varying parameters and the number

of scheduling parameters is increased from five to seven. The resulting controller is

more general to be applied in a wide range of operating points. In the literature,

so far in diesel engine air path control no work has included manifold temperatures

as parameters. In this regard, this is the first study accomplishing this. The gain-

scheduled controller (based on variable manifold temperatures) is compared with a

H∞ controller (based on a linearized engine model) to emphasis that a typical linear

controller does not work for the nonlinear engine model.

In the second part of the thesis, we consider compressor air mass flow estimation

problem in diesel engines and present two different methods, each having some superior

properties compared to the other. We first develop a general deterministic nonlinear

state estimation method for states appearing linearly in nonlinear systems. The method

is based on fitting an on-line linear moving model to measured states using the input-

output measurements. The linear-moving model is identified using a recursive least-

squares with an adaptive forgetting factor. An error analysis of the resulting method

is also presented. Before application of the method to diesel engine compressor air

mass flow estimation, it is applied to some academic-purpose examples to demonstrate

the cases where it outperforms the popular and widely used extended kalman filter

(EKF). Then, the method is applied to compressor air mass flow estimation, again
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with a comparison to EKF to show the effectiveness of the method and the relative

poor performance of EKF.

The second estimation method is a linear parameter-varying based approach de-

veloped by [34] for estimating state variables in affine LPV models. To apply this

approach, the underlying nonlinear diesel engine model is transformed into an equiv-

alent affine parameter-dependent form. The main advantage of this approach when

compared to the first one is that the designed observer has an asymptotic convergence

nature. Using this method, again estimation of compressor air mass flow is demon-

strated and results are compared with EKF.

To sum up, as a contribution in the research area of diesel engine control-

estimation problems, we present a more general control strategy and develop/apply

two different estimation approaches for compressor air mass flow. The organization of

this dissertation is as follows.

Chapter 2: LPV modeling of diesel engines, LPV systems and the LPV control ap-

proach of [33] are introduced.

Chapter 3: Application of the control method given in Chapter 2 to LPV-based mod-

eled diesel engine is carried out for tracking of compressor air mass flow and exhaust

manifold pressure.

Chapter 4: This chapter is devoted to the development of an identification-based state

estimation method, its performance on case studies and then its application to diesel

engine compressor air mass flow estimation with a comparison to EKF.

Chapter 5: LPV-based estimation method of [34] and its application to compressor air

mass flow estimation with a comparison to EKF are given.

Chapter 6: We conclude with the main findings, contributions of this thesis and the

recommendation of some future work.



14

2. LPV MODELING OF DIESEL ENGINES AND

LPV-BASED CONTROL DESIGN THEORY

In this chapter, we will first introduce a physics-based, mean-value, reduced-

order diesel engine model describing the air path system dynamics and then convert

the underlying model into LPV forms. In LPV-based modeling, we will consider the

separate cases of constant and variable manifold temperatures and hence have two

different models. Then, we will pass to LPV control design theory with all included

details. The developed LPV engine models with the described controller design method

will be used in the next chapter for gain scheduled control of the air path system in

diesel engines.

2.1. LPV Modeling of Diesel Engines with Constant Manifold

Temperatures

Again, consider the schematic flow diagram of a typical turbocharged diesel engine

with EGR as shown in Figure 2.1. The related engine variables and their descriptions

are provided in Table 2.1. Flow variables are shown with a double subscript which

shows the path from the source to the sink location. The dynamics describing the air

path system is

ṗi =
RTi

Vi

(
Wci + Wxi −Wie

)
+

Ṫi

Ti

pi, (2.1a)

ṗx =
RTx

Vx

(
Wie + Wf −Wxi −Wxt

)
+

Ṫx

Tx

px, (2.1b)

Ṗc =
1

τ

(− Pc + Pt

)
. (2.1c)

The first two equations are intake and exhaust manifold pressure state equations,

which are obtained simply by differentiating the ideal gas law for each manifold. The

third equation is a first order Taylor series approximation for compressor power. Unless

manifold temperatures change rapidly, the effect of the terms including the derivatives

of the intake and exhaust manifold temperatures on the system are negligible. This is so
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Figure 2.1. Diesel engine flow diagram.

Table 2.1. Engine variables and their descriptions

Symmbol Description

Ar Effective EGR flow area

pi, px Intake and exhaust manifold pressures

Ti, Tx Intake and exhaust manifold temperatures

pa, Ta Ambient pressure and temperature

pref , Tref Reference pressure and temperature

N, Nt Engine and turbo speed

Vi, Vx, Vd Intake, exhaust manifold volumes and displacement volume

Wxi,Wxt EGR and turbine mass flow rate

Wci,Wie,Wf Compressor, intake-to-engine and fuel mass flow rate

Pc, Pt Compressor and turbine power

xv, xr VGT vane and EGR valve positions

ηc, ηt, ηv Compressor, turbine and volumetric efficiencies

R, cp, cv Gas constant and specific heat at constant pressure and volume

τ Turbo lag constant
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because for cases of small-to-moderate temperature changes their contribution orders

will be typically small compared to the other terms in the pressure state equations.

In this study, the terms including the derivatives of manifold temperatures will be

neglected. The expressions for air mass flows and power variables are

Wci =
ηc

cpTa

Pc(
pi

pa

)µ

− 1

, (2.2a)

Wie =
ηvVdNpi

120RTi

, (2.2b)

Wxi =
Ar(xr)px√

RTx

√
2

pi

px

(
1− pi

px

)
, (2.2c)

Wxt = (a(1− xv) + b)

(
c

(
px

pa

− 1

)
+ d

)
px

pref

√
Tref

Tx

√
2
pa

px

(
1− pa

px

)
, (2.2d)

Pt =WxtcpTxηt

(
1−

(
pa

px

)µ)
. (2.2e)

Ar in Wxi is a quadratic function of xr:

Ar(xr) = −1.370135× 10−4x2
r + 3.156976× 10−4xr.

Ar is a monotone increasing function of xr as shown in Figure 2.2 and hence is invertible.

This allows us to determine xr uniquely once Ar is determined.

The constants a, b, c, d in Wxt (Table 2.2) and the polynomial coefficients in Ar are

taken from [23] for the considered specific engine (related geometric engine model and

thermodynamic parameters are given in Appendix D) and for low and medium load-

speed signal range of New European Drive Cycle (NEDC). Manifold temperatures

are considered as slowly changing parameters and volumetric (ηv), compressor (ηc)

and turbine (ηt) efficiencies are taken as constants, all are optimized for the mentioned

signal range of NEDC, whose values are presented in Table 2.2 [23]. To make controller

Table 2.2. Constant engine model parameters

Ti (K) Tx (K) ηc(%) ηv(%) ηt(%) τ (s) a b c d

313 509 61 87 76 0.11 -490.4/3600 633.7/3600 0.4 0.6
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Figure 2.2. Ar versus xr [23].

design easier, we consider ũ1 := Wxt and ũ2 := Wxi as modified inputs. After inserting

Wci,Wie and Pt expressions into (2.1), we get

ṗi =− k3Npi + k1
Pc(

pi

pa

)µ

− 1

+ k2ũ2, (2.3a)

ṗx =l1Npi + l2Wf − l2ũ1 − l2ũ2, (2.3b)

Ṗc =− 1

τ
Pc + m1ũ1

(
1−

(
pa

px

)µ)
, (2.3c)

where

k1 :=
RTiηc

VicpTa

, k2 :=
RTi

Vi

, k3 :=
ηvVd

120Vi

, l1 :=
ηvVdTX

120VxTi

, l2 :=
RTx

Vx

, m1 :=
cpηtTx

τ
.

Next, we do the following exogenous parameter definitions and manipulations:

ρ1 :=
1(

pi

pa

)µ

− 1

, ρ2 = N, ρ3 := 1−
(

pa

px

)µ

,
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−1

τ
Pc =− 1

τ

Pc

px

px = m2ρ4px, l1Npi = l1N
pi

px

px = l1ρ5px,

where

ρ4 :=
Pc

px

, ρ5 :=
Npi

px

, m2 := −1

τ
.

Then, (2.3) becomes

ṗi =− k3ρ2pi + k1ρ1Pc + k2ũ2, (2.4a)

ṗx =l1ρ5px + l2Wf − l2ũ1 − l2ũ2, (2.4b)

Ṗc =m2ρ4px + m1ρ3ũ1. (2.4c)

The system (2.4) can be written as




ṗi

ṗx

Ṗc


 =




−k3ρ2 0 k1ρ1

0 l1ρ5 0

0 m2ρ4 0







pi

px

Pc




+




0 k2

−l2 −l2

m1ρ3 0





 ũ1

ũ2


 +




0

l2

0


 Wf (2.5)

2.2. LPV Modeling of Diesel Engines with Variable Manifold

Temperatures

We consider the same model as in Section 2.1, except now manifold temperatures

Ti and Tx are also taken as time-varying parameters. This, in turn, results in an im-

proved engine model and hence creating the possibility for a more accurate controller

design. To our knowledge, in all diesel engine air path control system designs in the

literature, manifold temperatures are taken as some constant values. This is partly due

to the fact that taking temperatures as time-varying parameters complicates the model
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and the subsequent controller design task. Although manifold temperatures in some

operating points can be accepted as slowly-varying parameters and therefore consider-

ing them as some optimal constant values (i.e., as optimal model tuning parameters),

this is not always valid and there are situations where manifold temperatures change

considerably. In this section, we remove the restriction of “constant manifold tempera-

tures assumption” and therefore make the designed controller working in a wide range

of operating points. The associated LPV model is given as

ṗi =− k̂3ρ2pi + k̂1ρ1ρ6Pc + k̂2ρ6ũ2, (2.6a)

ṗx =l̂1
ρ5ρ7

ρ6

px + l̂2ρ7Wf − l̂2ρ7ũ1 − l̂2ρ7ũ2, (2.6b)

Ṗc =m̂2ρ4px + m̂1ρ3ρ7ũ1, (2.6c)

where

k̂1 :=
Rηc

VicpTa

, k̂2 :=
R

Vi

, k̂3 :=
ηvVd

120Vi

, l̂1 :=
ηvVd

120Vx

, l̂2 :=
R

Vx

, m̂1 :=
cpηt

τ

are constants, ρ1, ρ2, · · · , ρ5 are the same as in Section 2.1 and finally ρ6 := Ti, ρ7 := Tx.

The system (2.6) can be written as




ṗi

ṗx

Ṗc


 =




−k̂3ρ2 0 k̂1ρ1ρ6

0
l̂1ρ5ρ7

ρ6

0

0 m̂2ρ4 0







pi

px

Pc




+




0 k̂2ρ6

−l̂2ρ7 −l̂2ρ7

m̂1ρ3ρ7 0





 ũ1

ũ2


 +




0

l̂2ρ7

0


 Wf (2.7)

Both models (2.5) and (2.7) can be written as

ẋ =A(ρ)x + Bw(ρ)w + Bu(ρ)u
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and are special cases of dynamical systems known as LPV systems. When the measured

and control outputs (which are introduced in the next chapter) are considered for the

underlying engine models, the systems can be put in the form

ẋ =A(ρ)x + Bw(ρ)w + Bu(ρ)u,

z =Cz(ρ)x +Dzw(ρ)w +Dzu(ρ)u,

y =Cy(ρ)x +Dyw(ρ)w +Dyu(ρ)u,

where x ∈ Rnx is the state vector, u ∈ Rnu is the manipulated input, w ∈ Rnw is

the disturbance input on the system, z ∈ Rnz is the controlled output, y ∈ Rny is

the measured output and ρ ∈ Rnρ is the time-varying parameter vector. There exists

a large literature on control of such systems [33, 40, 41, 42, 43]. The approaches

presented in [40, 41, 42, 43] synthesize parameter dependent controllers and require

gridding of the parameter space, which becomes computational very hard if the number

of parameters is high (for example, if more than three parameters). In this study, the

number of parameters is high, and hence we will use the method of [33] which is for

LPV systems in rational form and which does not require gridding. In the next sections,

the underlying LPV control theory of [33] will be explained. The interested reader can

find more detailed information than presented here in [33] and the references therein.

2.3. Introduction to LPV-Based Control Design: General Framework

Consider the system

ẋ =A(ρ)x + Bw(ρ)w + Bu(ρ)u,

z =Cz(ρ)x +Dzw(ρ)w +Dzu(ρ)u,

y =Cy(ρ)x +Dyw(ρ)w +Dyu(ρ)u, (2.8)
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where we assume that the plant is proper so that Dyu(ρ) = 0. The parameter vector ρ

is “pulled out” from the system such that the system of equations in (2.8) becomes

ẋ =Ax + Bpp + Bww + Buu,

q =Cqx + Dqpp + Dqww + Dquu,

z =Czx + Dzpp + Dzww + Dzuu,

y =Cyx + Dypp + Dyww + Dyuu,

p =∆q, (2.9)

where ∆ = diag
(
ρ1In1 , ρ2In2 , · · · , ρnρInρ

)
. The system in (2.9) can be graphically

represented as in Figure 2.3. The control design problem is to find a controller K with

∆





















A Bp Bw Bu

Cq Dqp Dqw Dqu

Cz Dzp Dzw Dzu

Cy Dyp Dyw Dyu



















u y

w z

p q

Figure 2.3. General framework

state space equations

ẋc =Acxc + Bpcpc + Bcy,

qc =Cqcxc + Dqcpcpc + Dqcyy,

u =Cuxc + Dupcpc + Duyy,

pc =∆cqc, (2.10)

where ∆c is the controller scheduling function. The controller is required to satisfy the

following properties for all admissible parameter trajectories ρ(t) ∈ Rnρ :
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• stabilizes the system

• provides a guaranteed L2 performance for the closed-loop system from the dis-

turbance channel w to the controlled output channel z. I.e.,

sup
w∈L2,w 6=0

||z||2
||w||2

≤ γ

The plant with controller is shown in Figure 2.4.

yu

pc qc

∆c

∆

G

K

p q
w z

Figure 2.4. Scheduled LTI-plant with scheduled LTI-controller

2.4. Linear Fractional Representations

In Section 2.3, we have assumed that the parameters are “pulled-out” from the

system so that we have the system of equations (2.9). In this section, we will give a

classical example to demonstrate how to pull-out parameters. We consider the example

given in [36], which is a forced mass/spring/damper system as shown in Figure 2.5.

The equation of motion of the system is

mξ̈ + cξ̇ + kξ = F. (2.11)
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m

c

ξ

k

F

Figure 2.5. Uncertain mass-spring-damper system

Suppose that the physical parameters m, c, k are not known exactly but it is known

that they lie in a range centered about some nominal values. In particular, suppose

that

m = m0(1 + 0.1δm), c = c0(1 + 0.2δc), k = k0(1 + 0.3δk)

Here, the perturbations δm, δc, δk are unknown but they lie in the interval [−1, 1].

With a simple algebra, one can show that

1

m
=

1

m0

− 0.1δm

m0

(1 + 0.1δm)−1 .

Next, we select the states of the dynamical system (2.11) as x1 = ξ, x2 = ξ̇, resulting

in,

ẋ1 = x2, (2.12a)

ẋ2 =− c

m
x2 − k

m
x1 +

F

m

=

(
− c

m0

x2 − k

m0

x1 +
F

m0

) (
1− 0.1δm (1 + 0.1δm)−1)

=

(
−c0 + 0.2c0δc

m0

x2 − k0 + 0.3k0δk

m0

x1 +
F

m0

) (
1− 0.1δm (1 + 0.1δm)−1)

=− c0

m0

x2 − k0

m0

x1 +
F

m0

− 1

m0

(0.2c0δcx2 + 0.3k0δkx1)

+
0.1

m0

(− (1 + 0.2δc) c0x2 − (1 + 0.3δk) k0x1 + F
) (−δm (1 + 0.1δm)−1) . (2.12b)
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Now, we make the following definitions

qk := 0.3k0x1, (2.13a)

pk := δkqk, (2.13b)

qc := 0.2c0x2, (2.13c)

pc := δcqc, (2.13d)

qm := (− (1 + 0.2δc) c0x2 − (1 + 0.3δk) k0x1 + F ) (1 + 0.1δm)−1 , (2.13e)

pm := δmqm. (2.13f)

Next, observe that (1 + 0.1δm)−1 = 1− 0.1δm (1 + 0.1δm)−1 . Then, qm and x2 become

qm =− k0x1 − c0x2 + F − pk − pc − 0.1pm. (2.14)

ẋ2 =− k0

m0

x1 − c0

m0

x2 − 1

m0

pk − 1

m0

pc − 0.1

m0

pm. (2.15)

Equations (2.12a, 2.15, 2.13a, 2.13c, 2.14) can be written more compactly as




ẋ1

ẋ2

qk

qc

qm




=




0 1 0 0 0 0

− k0

m0

− c0

m0

1

m0

− 1

m0

− 1

m0

−0.1

m0

0.3k0 0 0 0 0 0

0 0.2c0 0 0 0 0

−k0 −c0 1 −1 −1 −0.1




︸ ︷︷ ︸
M




x1

x2

F

pk

pc

pm




, (2.16a)




pk

pc

pm


 =∆




qk

qc

qm


 , (2.16b)

∆ =




δk 0 0

0 δc 0

0 0 δm


 . (2.16c)
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We have


 ẋ1

ẋ2


 = Fl(M, ∆)




x1

x2

F


 ,

where Fl(M, ∆) is defined in Appendix C. The state-space matrices corresponding to

the LTI-part of the system (2.16a, 2.16b) and (2.16c) are given as

A =




0 1

− k0

m0

− c0

m0


 , Bp =


 0 0 0

− 1

m0

− 1

m0

−0.1

m0


 , Bu =


 0

1

m0


 ,

Cq =




0.3k0 0

0 0.2c0

−k0 −c0


 , Dqp =




0 0 0

0 0 0

−1 −1 −0.1


 , Dqu =




0

0

1


 .

A second way of obtaining LFR form is as follows. First, obtain a block-diagram for

the equation of motion of the system (2.11) as shown in Figure 2.6. Next, isolate the

uncertain parameters δc, δk, δm, and denote their inputs and outputs as qc, qk, qm and

pc, pk, pm as shown in Figure 2.7. With all δ′s taken out, writing the transfer function

from the “system states + system inputs + pk, pc, pm” to “derivative of system states

+ qk, qc, qm” will give the matrix M in (2.16a). This transfer function can easily

be computed using Matlab command “linmod”. ∆ will be a block-diagonal matrix,

where the size of each block is equal to the number of times the associated uncertain

parameter appears in Figure 2.7.

In addition to the two methods presented above for LFR representations, a third

way is to use the software developed by Hecker-Varga-Magni [37]. This software is

freely available and it is accompanied with an excellent user manual.
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1

m0 (1 + 0.1δm)

k0 (1 + 0.3δk)

1

s

c0 (1 + 0.2δc)

-

+

Fξ̇ ξ̈ξ 1

s

Figure 2.6. Block diagram for uncertain mass-spring-damper system

1
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qc
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x2

pk

qm

pm

N

δm

c0

0.2
δc

F

-

+ +

+

pc

Figure 2.7. Uncertain mass-spring-damper system with uncertain parameters

2.5. LPV Controller Synthesis

Before presenting the control synthesis algorithm of [33], we need the following

concepts regarding uncertainty sets and their characterizing multipliers.

Definition 2.1. The uncertainty set ∆ is said the be generated by (or is the convex

hull of) ∆1, ∆2, · · · , ∆N if

∆ =

{
N∑

i=1

αi∆i : αi ≥ 0,
N∑

i=1

αi = 1

}
.
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Definition 2.2. The multiplier set P and the corresponding dual multiplier set P̃
associated with ∆ are defined as

P :=






 Q S

ST R


 : Q ≺ 0,


 ∆j

I




T 
 Q S

ST R





 ∆j

I


 Â 0, for j = 1 : N





.

P̃ :=






 Q̃ S̃

S̃T R̃


 : R̃ Â 0,


 I

−∆T
j




T 
 Q̃ S̃

S̃T R̃





 I

−∆T
j


 ≺ 0, for j = 1 : N





.

In general, ∆ can include dynamic components, time-varying or constant param-

eters, can be full block or diagonal block. When ∆ is a block diagonal matrix whose

blocks consist of time-varying scalar functions ρ̄i(t) with ||ρ̄i(t)|| ≤ 1, the multiplier

sets

Psub =






 Q S

ST R


 : Q ≺ 0, S = −ST , R = −Q



 .

P̃sub =






 Q̃ S̃

S̃T R̃


 : R̃ Â 0, S̃ = −S̃T , Q̃ = −R̃



 .

are subsets of P and P̃ , respectively, hence, characterizing the uncertainty in the

system [38]. Full block multipliers can be used to decrease conservatism for block

diagonal uncertainties [39]. In this study, it will be be satisfactory to use the sets Psub

and P̃sub when synthesizing LPV controllers.

2.5.1. Stability and Performance Analysis of LPV Systems

Next, we consider the following LPV system, which includes the controller dy-

namics in case of forced systems.
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ẋ =Ax + Bpp + Bww

q =Cqx + Dqpp + Dqww

z =Czx + Dzpp + Dzww

p =∆q (2.17)

Then, we have the following analysis theorem regarding the stability and performance

of (2.17).

Theorem 2.1. [33] Consider the system (2.17). Let γ > 0. Then, the LPV system

(2.17) is stable with a L2-gain less than γ if there exist X = XT Â 0 and P ∈ P such

that




∗
∗
∗
∗
∗
∗




T 


0 X 0 0 0 0

X 0 0 0 0 0

0 0 Q S 0 0

0 0 ST R 0 0

0 0 0 0 −γI 0

0 0 0 0 0 γ−1I







I 0 0

A Bp Bw

0 I 0

Cq Dqp Dqw

0 0 I

Cz Dzp Dzw




≺ 0. (2.18)

The performance is characterized by

sup
w∈L2,w 6=0

||z||2
||w||2

≤ γ,

where L2 is the set of square integrable functions which is defined as

L2 :=

{
x(t) ∈ Rn :

∫ ∞

−∞
x(t)T x(t)dt < ∞

}
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and

||x||2 :=

(∫ ∞

−∞
x(t)T x(t)dt

)1/2

.

2.5.2. Scheduled Closed-Loop System

After closing the control input-measured output channel in Figure 2.4, we obtain

the scheduled closed-loop system shown in Figure 2.8 in the following state-space form.

Gcl =







Acl Bcl

Ccl Dcl







∆cl

pcl qcl

w z

Figure 2.8. Scheduled closed-loop system

ẋcl =Aclxcl + Bpcl
pcl + Bcl

ww,

qcl =Cqcl
xcl + Dqclpcl

pcl + Dqclww,

z =Ccl
z xcl + Dzpcl

pcl + Dcl
zww,

pcl =∆clqcl, (2.19)

where

pcl =


 p

pc


 , qcl =


 q

qc


 , ∆cl =


 ∆ 0

0 ∆c


 . (2.20)

In the above notation, note that the subscript and superscript “cl” (meaning closed-

loop) is used whenever necessary to prevent confusion with the previously defined

matrices. The scheduled closed loop system matrices in (2.19) are
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


Acl Bpcl
Bcl

w

Cqcl
Dqclpcl

Dqclw

Ccl
z Dzpcl

Dcl
zw


 =




A 0nxnx Bp 0nxnp Bw

0nxnx 0nxnx 0nxnp 0nxnp 0nxnw

Cq 0nqnx Dqp 0nxnp Dqw

0nqnx 0nqnx 0nxnp 0nqnp 0nqnw

Cz 0nznx Dzp 0nznp Dzw




+




Bu Onxnq 0nxnx

0nxnu 0nxnq Inx

Dqu 0nqnq 0nqnx

0nqnx Inq 0nqnx

Dzu 0nznq 0nznx







Duy Dupc Cu

Dqcy Dqcpc Cqc

Bc Bpc Ac







Cy 0nynx Dyp 0nynp Dyw

0npnx 0npnx 0nynp Inp 0npnw

0nxnx Inx 0nxnp 0nxnp 0nxnw




(2.21)

2.5.3. Controller Synthesis Procedure

In this subsection, we will describe the controller design algorithm based on Linear

Matrix Inequalities (LMIs), which are introduced in Appendix A.

2.5.3.1. Existence LMIs. Consider the system (2.9) and let

P =


 Q S

ST R


 , P̃ =


 Q̃ S̃

S̃T R̃




be two multiplier sets in Psub and P̃sub, respectively. Let X, Y be matrices of di-

mension nx × nx. Finally, let Φ and Ψ be orthonormal basis matrices for kernels of

[BT
u DT

q DT
zu] and [Cy Dyp Dyw], respectively. The following theorem states the

existence conditions for the scheduled controller of the form (2.10).

Theorem 2.2 ([33]). Let P ∈ Psub, P̃ ∈ P̃sub. Assume that there exist X = XT ∈
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Rnx×nx, Y = Y T ∈ Rnx×nx and a scalar γ > 0 such that




(
?

)T

⊥

(
?

)T




0 0 X 0

0 P 0 0

X 0 0 0

0 0 0 −γI







A Bp Bw

Cq Dqp Dqw

0 I 0

I 0 0

0 0 I







CT
y

DT
yp

DT
yw



⊥

?

(
Cz Dzp Dzw

)



CT
y

DT
yp

DT
yw



⊥

−γI




≺ 0

(2.22a)




(
?

)T

⊥

(
?

)T




0 0 Y 0

0 P̃ 0 0

Y 0 0 0

0 0 0 γI







I 0 0

0 I 0

−BT
p −DT

qp −DT
zp

−AT −CT
q −CT

z

0 0 I







Bu

Dqu

Dzu



⊥

?

(
BT

w DT
qw DT

zw

)



Bu

Dqu

Dzu



⊥

γI




Â 0

(2.22b)


 Y I

I X


 Â 0 (2.22c)


 R I

I R̃


 Â 0 (2.22d)

Then, there exists a controller of the form (2.10) which stabilizes the system and pro-
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vides L2-gain < γ.

Here, we adopted the following notational convention. When we write


 A ?

BT C


 ,

we mean ? = B. Instead of showing the actual content of a matrix, use of such a

convention is very useful for compactness purposes.

2.5.3.2. Extended Multiplier and Extended Lyapunov Matrix Construction. The con-

troller construction requires an extended multiplier and an extended Lyapunov matrix,

which are required for the performance and stability analysis of the closed loop sys-

tem (Section 2.5.1). After determination of P, P̃ , X and Y from Theorem (2.22), the

extended multiplier, Pcl, for closed loop system is given as

Pcl =




P̃cl11 0 P̃cl12 0

0 γ−1I 0 0

P̃ T
cl12

0 P̃cl22 0

0 0 0 −γI




,

where

P̃cl =


 P̃cl11 P̃cl12

P̃ T
cl12

P̃cl22


 = P T

perm


 P T

T T T T ET


 Pperm,

where

T := [T1 T2], Pperm :=




I 0 0 0

0 0 I 0

0 I 0 0

0 0 0 I




.
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Here, T1, T2 are a basis for the positive eigenspaces of

[
E − Z

(
ZT PZ

)−1
ZT

]
and

[
E − Z⊥

(
ZT
⊥PZ⊥

)−1
ZT
⊥
]
, respectively,

where

E =
(
P − P̃−1

)−1

, Z =


 Iρ

0


 .

As to extended Lyapunov matrix,

Xcl =


 X Xcl12

XT
cl12

Xcl22


 ,

where

Xcl12 = I, Xcl22 = (X − Y −1)−1.

2.5.3.3. ∆c(∆) Construction.

∆c (∆) = −W22 + (W21 V21)


 U11 ∗

W11 + ∆ V11



−1 

 U12

W12


 , (2.23)

where

U := Pcl11 − Pcl12P
−1
cl22

P T
cl12

, V := −P−1
cl22

and W := P−1
cl22

P T
cl12

.
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2.5.3.4. Controller Construction. In this part, we first need to define some necessary

terms. The closed-loop system in (2.19) or (2.21) can be written as

G :=


 Acl Bcl

Ccl Dcl


 ,

where

Bcl :=
(

Bpcl
Bcl

w

)
, Ccl =


 Cqcl

Ccl
z


 , Dcl =


 Dqclpcl

Dqclw

Dzpcl
Dcl

zw


 .

Next, we have


 Acl Bcl

Ccl Dcl


 =




Ã B̃p B̃w

C̃q D̃qp D̃qw

C̃z D̃zp D̃zw


 +




B̃u

D̃qu

D̃zu


 K

(
C̃y D̃yp D̃yw

)

=: UA + UBKUC ,

where the “ ·̃ ” terms are clear from a comparison with (2.21). Next, let

Π :=




0 0 Xcl 0

0 Pcl11 0 Pcl12

Xcl 0 0 0

0 P T
cl12

0 Pcl22




Φ :=


 UA UB

I 0




T

Π


 UA UB

I 0



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Γ :=


 −UT

C 0

0 I




T

Φ−1


 −UT

C 0

0 I




Then, the controller matrices are given by

K = V −T
2 V T

1 ,

where


 V1

V2




is a basis for the positive eigenspace of Γ.

2.6. Comments on LPV Modeling of Diesel Engines

In LPV modeling of diesel engines given by (2.4) and (2.6), the first thing to

notice is that both models could be obtained with a smaller number of parameters. For

example, we could obtain a LPV model in case of constant manifold temperatures by

just considering N,
1

(pi/pa)
µ − 1

, 1−(pa/px)
µ as time-varying parameters and in case of

variable manifold temperatures, we could consider additionally Ti and Tx as parameters

so that in the first case we would have a LPV system with three parameters and in the

second one a system with five parameters. Therefore, the immediate question that will

arise is that why Pc/px and Npi/px were considered as additional parameters, which

increased the number of parameters from three to five in the first case and from five

to seven in the second case.

Before answering the above question, it is helpful to know that in real application

of LPV controllers it is better to have a small number of time-varying parameters

as much as possible because first of all, as the number of parameter increases, the

underlying controller may require more sensors for measurement of the parameters and

this is a disadvantage from cost considerations. Secondly, as the number of parameter
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increases, the size of ∆ may increase and this may introduce computational costs and

even delays due to computations, especially in the scheduling function for the controller

(See 2.23) since it is necessary to take on-line inversions. Therefore, in general, the

objective is to have a LPV-model with a small number of time-varying parameters.

In this study, the above suggested LPV models with a smaller number of pa-

rameters did not work. I.e., the controller existence conditions given in (2.22) did not

produce any feasible solution. In fact, not only these selections of parameters but also

many other possible parameter selections either did not give a feasible solution or a

solution but working in a very small range of parameters and hence not satisfactory.

In the LPV models presented here, note that the selected extra parameters Pc/px and

Npi/px are not obvious at all; i.e., they are created artificially. Luckily, this set of

parameters resulted in a feasible solution for a very wide range of parameter values

(See Chapter 3) and subsequently achievement of controllers working in a wide range

of operating points and having satisfactory results.

To summarize, the non-unique LPV representation of a system may produce

conservative solutions or even infeasible solutions. Therefore, optimal time-varying

parameter selection brings an additional freedom in LPV-based control systems [44].

As to this optimization, there is nothing available except a trial-error mechanism.
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3. GAIN-SCHEDULED AIR PATH CONTROL IN DIESEL

ENGINES

In this chapter, we consider regulation of the air path system in diesel engines.

To that end, the LPV-control method described in Chapter 2 will be applied. The

considered diesel engine model is the physics-based derived, third order mean-value

model considered in [18, 23, 29, 30, 31, 32]. As mentioned before, in [18, 29, 30, 31, 32]

either engine speed is taken as some constant value or engine charts are used when

control method is nonlinear control (especially feedback linearization). Moreover, the

gain scheduled approach of [23] assumes exhaust manifold pressure to be 2.5 kPa greater

than intake manifold pressure for LPV control method. As another point, in all studies

in the literature, manifold temperatures are considered as slowly-varying parameters

which may not be the case in some situations. Now, we will extend the air path system

control in diesel engines in two directions. Firstly, we will control the air path system

by tracking the exhaust manifold pressure and compressor air mass flow and in doing

this we will not do any simplifying assumption or the use of any engine chart. Next,

we will furthermore take manifold temperatures as time-varying parameters so that a

more accurate engine model and control system are obtained. Finally, the designed

gain-scheduled controller based on variable manifold temperatures is compared to a

H∞ controller (which is based on a linearized engine model) to show the inadequacy of

a linear controller under variable engine operating points.

We start the chapter with the selection of performance variables and their rela-

tions with variables that are directly related to emissions.

3.1. Selection of Control Performance Variables

As mentioned before, to control emissions from diesel engines AFR and EGR

fraction in the intake manifold (EGRf ) must be controlled by regulating them to set
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points which are determined from the static engine data

AFR = AFR(N,Wf ), EGRf = EGRf (N, Wf )

Since it is not possible to measure AFR and EGRf physically, we will transform the

set points of these quantities into set points for measurable variables, namely, among

many possibilities, to set points of compressor air mass flow Wci and exhaust manifold

pressure px. As a result, the control problem will boil down to regulation of Wci and

px. Next, we will show this transformation.

Lean combustion in diesel engines (the situation that the cylinder mixture con-

tains more air than that of stoichiometric) results in a non-exact burning process. I.e.,

the engine combustion products include extra air which subsequently flow to exhaust

and intake (via EGR) manifolds. The dynamics of fractions of burned gases in the

intake and exhaust manifolds are given by [46] as

Ḟi =
Wxi (Fx − Fi)−WciFi

mi

, (3.1a)

Ḟx =
We (Fe − Fx)

mx

, (3.1b)

where mi,mx are masses of gases in the intake, exhaust manifolds, respectively and

Fe =
αWf + FiWie + Wf

We

,

where We = Wie +Wf and α is the stoichiometric ratio, namely which is equal to 14.6.

AFR and EGRf are given as

AFR =
(1− F1) Wie

Wf

, (3.2a)

EGRf =
Wxi

Wci + Wxi

. (3.2b)
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Solving Wie from (3.2a) and inserting into the expression for Fe, we obtain

Fe =
(1− F1) (α + 1) + F1AFR

1− F1 + AFR
. (3.3)

Next, using the steady-state values of F1 and F2 from (3.1a-3.1b) and using (3.3), we

obtain

Wci =
(1− F1) (α + 1− F1)

F1 (1− F1 + AFR)
Wxi, (3.4)

Next, solving F1 from (3.2a), using the fact that at steady-state Wie = Wci + Wxi and

(3.4), we get

Wci = Wf
α (Wci + Wxi) + AFRWf

(Wci + Wxi − AFRWf ) (Wf + Wci + Wxi)
Wxi. (3.5)

Now, solving for Wxi from (3.2b), inserting into (3.5), solving the resulting quadratic

equation for Wci and considering the set points for AFR and EGRf , we obtain the

corresponding set point for Wci:

W ci =
Wf

2

[
(
AFR− 1

) (
1− EGRf

)− αEGRf

+

√( (
AFR− 1

) (
1− EGRf

)− αEGRf

)2

+ 4AFR
(
1− EGRf

)
]
. (3.6)

Finally, solving for Wxi from (3.2b), considering the set points for AFR and EGRf and

using (3.6), we have

W xi =
EGRf

1− EGRf

W ci. (3.7)

Now using (2.2c), px corresponding to W xi and W ci is determined as

px = pi − RT ?
xW

2

xi

2A2
rpi

, (3.8)
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where T ?
x is the optimal engine parameter when manifold temperatures are considered

as slowly time-varying parameters (which is the case in this section) or is the real

time-varying exhaust manifold temperature (see the next section). In addition, as we

observe from (2.2c), Ar is always nonzero when W xi is always nonzero. As a result,

the set point values of AFR and EGRf are expressed in terms of the set point values

of px and Wci given by (3.6) and (3.8).

3.2. Gain Scheduled Air Path Control with Constant Manifold

Temperatures

The LPV diesel engine model with constant manifold temperatures (Section 2.1)

was

ṗi =− k3ρ2pi + k1ρ1Pc + k2ũ2, (3.9a)

ṗx =l1ρ5px + l2Wf − l2ũ1 − l2ũ2, (3.9b)

Ṗc =m2ρ4px + m1ρ3ũ1, (3.9c)

where ρ1 =
1

(pi/pa)
µ − 1

, ρ2 = N, ρ3 = 1−
(

pa

px

)µ

, ρ4 =
Pc

px

, ρ5 =
Npi

px

.

We assume pi ∈ [103, 160] kPa, px ∈ [105, 170] kPa, Pc ∈ [150, 2000] W and

N ∈ [1000, 2500] rpm. Therefore, we take the corresponding range of parameters

as ρ1 ∈ [6.82, 92.5], ρ2 ∈ [1000, 2500], ρ3 ∈ [0.016, 0.143], ρ4 ∈ [0.88, 19.04], ρ5 ∈
[911.5, 2500] (assuming px − pi ∈ [0, 10] kPa, which is a situation occurring in real

applications). To put the model in (3.9) into the framework of Figure 2.3 for controller

design phase, we use lfr-toolbox and obtain ∆ = diag (ρ̄1, ρ̄2, · · · , ρ̄5) where ρ̄i, i=1:5,

are parameters normalized about the mean of each ρi.

As air path control variables, we choose to track exhaust manifold pressure (px)

and compressor air mass flow (Wci). The tracking configuration is shown in Figure 3.1.

Note that the designed LPV controller is applied in an anti-windup (AW) form. The

AW method used is the one developed in [45] and is described in Appendix E. Using



41

z1

z2

z3 z4

Wf

pxref

Wciref

pipx

Wci

N

N

x
r
v

x
r
r Engine Model

AW-LPV

Controller

Inversion:
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ũ

r
2
)

Parameter

generation

-

+

ρ

Wpx

WWci

WWf

We1

We2
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ũ
r
2

-

-

+

+

px

Figure 3.1. Closed-loop system with inversion mappings, AW and weights.

manifold pressures, determined modified control inputs are inverted to obtain VGT

vane and EGR valve positions, which are, then, passed through the saturation block to

guarantee achievement of physically meaningful control inputs (which are called real

process inputs). The possible negative effect of saturation block is compensated by

first inverting the the real process inputs to obtain the corresponding modified real

process control inputs and then feeding the difference between modified control inputs

and modified real process inputs to the AW-LPV controller. The AW-LPV controller is

also scheduled by ρ = [ρ1, ρ2, ρ3, ρ4, ρ5]
T . Fuel rate, Wf , is considered as disturbance

on the system. Although for tracking of px and Wci it is necessary just to measure px

and Wci, from definition of scheduling parameters and inversion mappings, all states

pi, px and Pc are necessarily measured.

Weight selection, which involves trail and error most of the time, is an important

task and strongly affects the performance of the controller. The chosen frequency
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weights are as follows.

Wpx =WWci
=

6.283

s + 6.283
, WWf

= 1, We1 =
300

s + 0.01
,

We2 =
600

s + 0.01
, Wũ1 = Wũ2 = 1.

Next, tracking of some Wci − px set points, the associated process control inputs and

the states Pc − pi are shown in the following cases. The obtained L2-gain of the

controlled closed-loop system, γ, is 76. In all cases, the initial conditions are pi(0) =

103 kPa, px(0) = 109 kPa and Pc(0) = 150 W.

3.2.1. Case I

In the first case study, we will track set points consisting of one step. The fuel

flow rate and engine speed are consisting of two steps. The corresponding plots are

shown through Figures 3.2-3.5.
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Figure 3.2. Fuel flow rate and engine speed
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Figure 3.3. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response
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Figure 3.4. Vgt vane and egr valve positions
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Figure 3.5. Intake manifold pressure and compressor power

3.2.2. Case II

In the second case study, we will track set points such that px consists of three

steps step and Wci consists of one step. The fuel flow rate and engine speed are taken

as one step signals. The corresponding plots are shown through Figures 3.6 and 3.9.
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Figure 3.6. Fuel flow rate and engine speed
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Figure 3.7. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response

0 5 10 15
0

20

40

60

80

100

x
v

(%
)

0 5 10 15
0

20

40

60

80

100

time (s)

x
r

(%
)

Figure 3.8. Vgt vane and egr valve positions
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Figure 3.9. Intake manifold pressure and compressor power

3.2.3. Case III

In the third case study, we will track set points such that px consists of one step

but Wci consists of three steps. The fuel flow rate and engine speed are taken sinusoidal

signals. The corresponding plots are shown through Figures 3.10 and 3.13.
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Figure 3.10. Fuel flow rate and engine speed
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Figure 3.11. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response.
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Figure 3.12. Vgt vane and egr valve positions
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Figure 3.13. Intake manifold pressure and compressor power

3.2.4. Case IV

In the last case study, we will track set points such that px and Wci are sinusoids.

The fuel flow rate and engine speed consist of one step. The corresponding plots are

shown through Figures 3.14 and 3.17.
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Figure 3.14. Fuel flow rate and engine speed
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Figure 3.15. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response
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Figure 3.16. Vgt vane and egr valve positions



50

0 5 10 15
90

100

110

120

130

140

150

p
i
(k

P
a
)

0 5 10 15

500

1000

1500

time (s)

P
c

(W
)

Figure 3.17. Intake manifold pressure and compressor power

3.3. Gain Scheduled Air Path Control with Variable Manifold

Temperatures

The LPV diesel engine model with variable manifold temperatures (Section 2.2)

was

ṗi =− k̂3ρ2pi + k̂1ρ1ρ6Pc + k̂2ρ6ũ2, (3.10a)

ṗx =l̂1
ρ5ρ7

ρ6

px + l̂2ρ7Wf − l̂2ρ7ũ1 − l̂2ρ7ũ2, (3.10b)

Ṗc =m̂2ρ4px + m̂1ρ3ρ7ũ1, (3.10c)

where ρi, i = 1 : 5 are as in the previous section and ρ6 = Ti, ρ7 = Tx. We assume

that intake and exhaust manifold temperatures vary in 300− 350 K and 350− 700 K,

respectively. I.e., ρ6 ∈ [300, 350] and ρ7 ∈ [350, 700]. Again to put the model into

(3.10) in the framework of Figure 2.3 for controller design phase, we use lfr-toolbox

and obtain ∆ = diag (ρ̄1, ρ̄2, ρ̄3, ρ̄4, ρ̄5, ρ̄6I2, ρ̄7I2). Wf is again taken as a disturbance
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signal. The weight set is now as follows

Wpx =WWci
=

6.283

s + 6.283
, WWf

= 1, We1 =
60

s + 0.01
,

We2 =
120

s + 0.01
, Wũ1 = Wũ2 = 1.

The controller implementation is in the same way as in Figure 3.1, except now two

more parameters are added and in the inversion mappings Tx is also used. Next, we

consider two case studies for the illustration of the performance of the more general

controller designed in this part. The obtained L2-gain of the closed system in this case

is 217.5 and the initial conditions are the same as before.

3.3.1. Case I

In this case study, fuel flow rate consists of one step, engine speed is a sinusoid,

manifold temperatures and px−Wci references consist of three steps. The corresponding

plots are shown through Figures 3.18 and 3.21.
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Figure 3.18. Fuel flow rate and engine speed
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Figure 3.19. Intake and exhaust manifold temperatures
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Figure 3.20. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response
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Figure 3.21. Vgt vane and egr valve positions.

3.3.2. Case II

In the second case study, fuel flow rate and manifold temperatures are sinusoids

engine speed and px −Wci references consist of three steps. The corresponding plots

are shown through Figures 3.22 and 3.25.
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Figure 3.22. Engine speed and fuel flow rate
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Figure 3.23. Intake and exhaust manifold temperatures
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Figure 3.24. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response
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Figure 3.25. Vgt vane and egr valve positions

3.4. Comments

From the simulation results in Sections 3.2 and 3.3, we see that the performance

of the gain scheduled controllers are quite well. The considered parameter ranges are

wide enough to cover practical applications. The settling time of the system under

the the gain scheduled AW-LPV controller of Section 3.3 is a little bit high compared

to that of the controller designed in Section 3.2. This is due to the high range of

temperature variables included in the second section. To see the importance of taking

manifold temperatures as variables, let us use both AW-LPV controllers for the variable

manifold temperatures model to track the px−Wci references. The fuel flow rate is Wf =

1+0.8 cos(t) (g), N = 2000+300 sin(t) (rpm), Ti = 320+20 sin(10t) (K) and Tx = 450+

50 sin(10t) (K). The results are shown in Figure 3.26. Red-color signals are references,

blue color are the results using AW-LPV controller designed under the assumption of

variable manifold temperatures and the black color signals are results using AW-LPV

controller designed under the assumption of constant manifold temperatures. As seen,

the second controller is not robust to variable manifold temperatures.
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Figure 3.26. Performance of AW-LPV controllers for the variable manifold

temperatures model

3.5. Comparison of Gain-Scheduled and H∞ Controllers

In this section, to appreciate the importance of air path system control using a

gain-scheduled approach, we will compare performances of the gain-scheduled controller

based on variable manifold temperatures and a H∞ controller based on a linearized

model of the engine around an equilibrium point of the nonlinear engine model. The

main external parameters to the system are N ∈ [1000, 2500] rpm, Ti ∈ [300, 350]

K and Tx ∈ [350, 700] K. To find an equilibrium point of the system we first choose

nominal values of these external parameters. That is, we take Nnom = 1750 rpm,

Tinom = 325 K and Txnom = 525 K. The equilibrium set point values for the engine

inputs (modified inputs) and fuel flow rate are taken as Wxteq = 25 g, Wxieq = 10 g

and Wfeq = 1 g. The corresponding equilibrium states are determined as pieq = 125

kPa, pxeq = 133.5 kPa and Pceq = 823 W. The linearized model around the equilibrium
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points is

˙̃x =Ax̃ + Bũ,

ỹ =Cx̃ + Dũ,

where

A =




−17.58 0 453.22

40.99 0 0

0 0.18 −9.09


 , B =




0 0 15.54

150.67 −150.67 −150.67

0 0.29 0


 ,

C =


 0 1 0

−3.09 0 104.95


 , D =


 0 0 0

0 0 0


 ,

x̃ =




pi − pieq

px − pxeq

Pc − Pceq


 , ũ =




Wf −Wfeq

Wxt −Wxteq

Wxi −Wxieq


 , ỹ =




px − pxeq

Wci − ηc

cpTa

Pceq(
pieq

pa

)µ

− 1


 .

For the H∞ controller, the weight selection is the same as in Section 3.3. The obtained

L2-gain, γ is 1.0664. The controller implementation is the same as before.

Next, we will consider two case studies. In the first case study, we will set the

values of main external variables N, Ti and Tx close to their nominal values and track

set points for px − Wci which are close to their equilibrium values. Then, we will

compare the performances of the two controllers. In the second case study, we will

choose values of N, Ti and Tx far from their nominal values and track set points for

px −Wci which are also far from their equilibrium values. Again, we will compare the

performance of the two controllers. In comparison figures, the red color signals are the

reference signals, the blue color signals are the system response or control inputs with

gain-scheduled controller and the green color signals are those corresponding to H∞

controller.
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3.5.1. Case I

In this case study, fuel flow rate, engine speed and manifold temperatures are all

sinusoids around their nominal values and px−Wci references consist of two steps. The

corresponding plots are shown through Figures 3.27 and 3.30.
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Figure 3.27. Fuel flow rate and engine speed
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Figure 3.28. Intake and exhaust manifold temperatures
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Figure 3.29. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response
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Figure 3.30. Vgt vane and egr valve positions
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3.5.2. Case II

In the second case study, fuel flow rate and engine speed are sinusoids, manifold

temperatures are steps and px−Wci references consist of two steps. The corresponding

plots are shown through Figures 3.31 and 3.34.
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Figure 3.31. Fuel flow rate and engine speed
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Figure 3.32. Intake and exhaust manifold temperatures
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Figure 3.33. Exhaust manifold pressure, compressor air mass flow references and the

corresponding system response
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Figure 3.34. Vgt vane and egr valve positions



62

From the first case study we see that H∞ controller and gain-scheduled controller

produce almost the same results when the main external parameters N, Ti and Tx are

around their nominal values and when the tracked outputs are close to their equilib-

rium values. Interestingly, for the first case study the performance of H∞ controller

is better than that of gain-scheduled controller. The reason for this is that the gain-

scheduled controller works in a wide range of operating points and this comes at a cost

of performance decrease. On the other hand, the second case study clearly illustrates

that H∞ controller does not work when the parameters N, Ti and Tx are far from their

nominal values and/or when the reference set points for the outputs are far from their

equilibrium values. As a conclusion, when the wide range of engine operating points is

considered, it is very possible that a linear controller will not work. This implies the

necessity of gain-scheduled controllers for engine air path control.
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4. COMPRESSOR AIR MASS FLOW ESTIMATION VIA

AN IDENTIFICATION-BASED ESTIMATION METHOD

In turbocharged diesel engines with EGR, compressor flow is measured by a

mass air flow (MAF) sensor, which have limited accuracy and is more expansive than

a manifold absolute pressure (MAP) sensor or exhaust manifold pressure sensors. In

addition, when the pressure drop across the compressor is close to 1, compressor flow is

typically low and the accuracy of MAF is weak. Other conditions affecting the accuracy

are oscillations in the engine and back-flow situations. In most control oriented engine

applications, compressor flow is a feedback signal and a poor measurement of this

signal may result in poor control performance, which in turn, affects the fuel economy.

Therefore, from both cost reduction point of view and good quality signal point of view

for control problems, accurate estimation of compressor flow is an important task in

diesel engine applications.

We consider again the diesel engine model of Chapter 3, where manifold tem-

peratures are considered as time-varying parameters. Taking temperatures variable

parameters is important since in estimation problems the underlying model must be

accurate as much as possible. The mean-value engine model of the previous chapter is

repeated below for the sake of completeness purposes.

ṗi =

[
Rηc

VicpTa

]
Ti

Pc(
pi

pa

)µ

− 1

+

[
R

Vi

]
Tiũ2 −

[
ηvVd

120Vi

]
Npi, (4.1a)

ṗx =

[
ηvVd

120Vx

]
NTx

Ti

pi +

[
R

Vx

]
Txũ3 −

[
R

Vx

]
Txũ1 −

[
R

Vx

]
Txũ2, (4.1b)

Ṗc =

[
1

τ

]
Pc +

[cpηt

τ

]
Tx

(
1−

(
pa

px

)µ)
ũ1, (4.1c)

where the terms in the square brackets are constants, ũ1 = Wxt, ũ2 = Wxi, ũ3 = Wf

and the terms N, Ti, Tx are interpreted also as inputs.

The structural property of the above model is that although the model is a
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nonlinear model, the state variable Pc appears linearly in the equations. In this chap-

ter, we develop a general method to estimate unmeasured states appearing linearly

in deterministic nonlinear models and then apply to estimate compressor power. The

compressor air mass flow will be estimated indirectly from

Wci =
ηc

cpTa

Pc(
pi

pa

)m

u− 1

. (4.2)

The developed method is based on a recursive least-squares identification algo-

rithm. The proposed method possesses some superior properties, mainly its simplic-

ity and better estimation performance, compared to other typical estimation methods.

The effectiveness of the method is demonstrated on academic-purpose constructed case

studies and then applied to diesel engine compressor air mass flow estimation, all with

a comparison to the popular extended kalman filter (EKF). Although the method is

developed for state estimation, it can be easily modified for time-varying parameter

(appearing linearly in the equations) estimation.

The chapter is organized as follows. In Section 1, a general introduction for

state estimation methods is given. Section 2 details the developed estimation method

including the error analysis. Section 3 demonstrates the application of the method to

case studies with a comparison to EKF. Section 4 is devoted to the employment of

the developed method to compressor air mass flow in diesel engines and, again, with a

comparison to EKF. Finally, the main findings of this chapter are presented in Section

5 of the chapter.

4.1. Introduction

State estimation using measured outputs and inputs is an important problem

in engineering applications where the underlying process requires control, monitoring,

fault diagnosis, etc. Sometimes it is not possible to measure some states or it is

not desirable for cost reduction purposes. For linear systems, this topic has been
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extensively studied and has proven useful results especially for control applications such

as observer-based control design. Most of engineering models are nonlinear systems

and therefore linear methods cannot be applied. For nonlinear systems this topic is

neither complete nor successful in contrast to linear systems. In literature, different

approaches have been developed based on different tools and taking into account the

specific structure of the underlying dynamics.

Among all nonlinear state estimation methods, the celebrated EKF is by far the

most popular and dominant approach [47, 48, 49, 50]. In the EKF approach, lineariza-

tion about the current mean and covariance is performed and a Riccati equation is

solved to obtain the estimator gain. The main drawback of the EKF method is that it

requires the knowledge of the noisy model. Most of the time this is not known perfectly

and the model involves uncertainties. A mismatch may cause biased estimation results

or even divergence [51]. In addition, since linearization techniques are employed con-

vergence and speed of convergence are local properties which in turn imply that while

the estimation error converges in a given time interval, it may diverge in another one.

The speed of the convergence is also dependent on the initial value of the covariance

matrix, which is assumed to start the algorithm [52]. The approximation issues of

the EKF method are handled in the unscented Kalman filter method but this brings

additional computational burden and complication. The application of EKF to deter-

ministic nonlinear systems can be done in two ways. First, by adding a small noise

component to the model and then performing state estimation. In this case, one faces

the main flaws of the EKF mentioned above. The second way is addition of a fictitious

noise component to account for linearization errors, resulting in a tuning problem,

which again may not be an easy task.

The second class of approaches to nonlinear state estimation are based on Lya-

punov stability results, for example [53]. They produce sufficient conditions (even in

global sense) for the existence of observers. Since they are based on Lyapunov theory,

there is no constructive procedure and most of time trial and error is done and the

method cannot be used practically for higher dimensional and complicated systems.
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The third class is called extended linearization, for example as in [54, 55]. In

such methods, an operating point is chosen, a function of output is injected to state

dynamics to make linearized error dynamics have locally constant eigenvalues. Since

the method works locally, a serious improvement is not brought.

The fourth group of methods are based on a Lie-algebraic approach [56, 57]. The

nonlinear system is converted to a linear system through a nonlinear state transfor-

mation and then linear observer theory is utilized. The main disadvantages of these

approaches are that the nonlinear system must satisfy certain conditions and finding

the nonlinear transformation is a very difficult task.

Finally, other estimation methods are collected under the generic name “other

class of approaches”. Monte Carlo [58], neural approximation [59], genetic optimization

[60], extended Luenberger-like observer approach [61] are among these approaches.

Again each of these has their own advantages and disadvantages.

As a summary, up to now there is no method which outperforms all other ones

and is applicable in general. In this chapter, the situation in which the state variables

in a deterministic nonlinear system are classified into measured and unmeasured com-

ponents is studied. It is assumed that measurements are made without noise, and that

the unmeasured components appear linearly in the equation:

ẋ =A(xm, u)xum + b(xm, u)

y =xm (4.3)

where xm ∈ Rn1 , xum ∈ Rn2 are the measured and unmeasured parts of the state vector

x ∈ Rn1+n2 and u ∈ Rm and y ∈ Rp are input and output vectors, respectively. Our

interest is in estimating the unmeasured component of the state vector, xum.

The structure in (4.3) is utilized to provide efficient estimation of xum that quickly

reduces the error resulting from initial estimates. The procedure has two components.

Firstly, the measured state variables are estimated through a linear moving model.
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Linear moving model identification is based on the use of orthogonal functions and re-

cursive least-squares (with a variable forgetting factor to track fast parameter changes).

Secondly, discretization of unmeasured states is performed and the linear moving model

together with the structure of the system are used to recover xum and results in an

iterative estimation formula. The developed method is an easy-to-apply method (in

contrast to Lyapanov-based or transformation based methods) and is very effective

in state estimation and has better performance than EKF, as shown on case stud-

ies and on compressor air mass flow estimation. Furthermore, the suggested method

can be modified easily for estimation of time-varying parameters appearing linearly in

nonlinear systems.

4.2. State Estimation

Using the structure of (4.3), our method is divided into two parts. Firstly, a

linear moving model structure is used to approximate the dynamics of xm. This is

needed to account for the influence of the unmeasured xum. Once this approximation

is done, the discretization of unmeasured states combined with the linear structure of

the equations in xum can be used to recover the unmeasured state vector efficiently.

The two steps of state estimation for xum are detailed in the following subsections

4.2.1. Stage 1: Estimation of Measured States by a Linear Moving Model

For the measured states and system inputs the following linear model is assumed

in the time interval kts ≤ t ≤ (k + 1)ts:

ẋm
∼= Akxm + Bku, (4.4)

where ts is the sampling period, Ak and Bk are matrices of appropriate dimensions to

be found. Consider the variables xm(t) and u(t) in the time interval tk = kts ≤ t ≤
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(k + 1)ts = tk+1 and let

t := kts + η, xm(k) := xm(kts), u(k) := u(kts),

where k=0,1,2..., and 0 ≤ η ≤ ts. Next, the variables xm(t) and u(t) within tk ≤ t ≤
tk+1 are approximated by r orthogonal functions (which are introduced in Appendix

B) as

xm(t) ∼=
r−1∑
i=0

x(k)
mi

φi(t) = x(k)
m φ

u(t) ∼=
r−1∑
i=0

u
(k)
i φi(t) = u(k)φ,

where x
(k)
m := [x

(k)
m0 , · · · , x

(k)
mr−1 ] ∈ Rn1×r and u(k) := [u

(k)
0 , · · · , u

(k)
r−1] ∈ Rm×r are the

coefficient matrices and φ = [φ0(t) φ2(t), · · · , φr−1(t)]
T . Integrating (4.4) from t = tk

to t = tk+1 and using the integral property of orthogonal functions results in

x(k)
m − [xm(k) 0 · · · 0] ∼= Akx

(k)
m O + Bku

(k)O, (4.5)

where O is the operational matrix (of integration) for the corresponding orthogonal

set of functions used. In the estimation by orthogonal functions, only the first term of

the expansion coefficients, x
(k)
m0 and u

(k)
0 , is used, taking the remaining coefficients as 0

within tk ≤ t ≤ tk+1. Then,

x(k)
m0
∼= xm(k + 1) + xm(k)

2
, u

(k)
0
∼= u(k + 1) + u(k)

2

and (4.5) becomes

xm(k + 1)− xm(k) ∼= b0

[
Ak

(
xm(k) + xm(k + 1)

)
+ Bk

(
u(k) + u(k + 1)

)]
, (4.6)



69

where b0 is the (1,1) entry of O. Now, (4.6) can be written as

xT
m(k + 1)− xT

m(k) ∼= b0

[
xT

m(k) + xT
m(k + 1) uT (k) + uT (k + 1)

]

 AT

k

BT
k


 . (4.7)

Defining

y(k + 1) :=xT
m(k + 1)− xT

m(k),

ϕ(k + 1) :=b0


 xm(k) + xm(k + 1)

u(k) + u(k + 1)


 ,

θ(k + 1) :=


 AT

k

BT
k


 ,

(4.7) can be written more compactly as

y(k + 1) ∼= ϕT (k + 1)θ(k + 1).

In estimating input-output data by a set of orthogonal functions, any kind of orthogonal

functions can be used since it is well known in the literature, for example [62], that

their performance is very close to each other. In addition, note that since estimation

is done in time intervals with a length equal to sampling period, it is sufficient to use

the first element of the orthogonal function vector. Using more than one component

yields negligible improvement.

Matrices Ak, Bk will be determined for each time interval [tk, tk+1] and therefore

they change with time. The corresponding model in (4.4) is called a “linear moving

model”. In determining the moving coefficients at each sample time, a recursive least

squres algorithm for time varying parameters can be used [63, 64, 65, 66]. Here, the

algorithm of [63] is used, where a Gauss-Newton variable forgetting factor is used in

the recursive least squares. It has good estimation properties for fast time-varying
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parameters. The algorithm is given as follows. Consider

θ(n + 1) = θ(n) + k(n + 1)
[
y(n + 1)− θT (n)ϕ(n + 1)

]
,

where θ(n + 1) is the parameter vector to be estimated, ϕ(n + 1) is the measured data

vector, k(n + 1) is the gain vector and y(n + 1) is measured output at time step n + 1.

Updating of k(n + 1) is done based on the following algorithm.

k(n + 1) =
P (n)ϕ(n + 1)

λ(n + 1) + ϕT (n + 1)P (n)ϕ(n + 1)
,

P (n + 1) =
1

λ(n + 1)

[
P (n)− k(n + 1)ϕT (n + 1)P (n)

]
,

z(n + 1) =(1− α)z(n) + αrT (n)ϕ(n + 1)ϕT (n + 1)r(n),

λ(n + 1) =λ(n) + α
rT (n)ϕ(n + 1)e(n + 1)

z(n + 1)
,

M(n + 1) =
1

λ(n + 1)

[(
I − k(n + 1)ϕT (n + 1)

)
M(n)

+
(
I − ϕ(n + 1)kT (n + 1)

)
+ k(n + 1)kT (n + 1)− P (n + 1)

]
,

r(n + 1) =
[
I − k(n + 1)ϕT (n + 1)

]
r(n) + M(n + 1)ϕ(n + 1)e(n + 1),

where e(n + 1) = y(n + 1) − θT (n)ϕ(n + 1) and α is called the convergence rate.

The initial choices are suggested as follows: P (0) ' δI,M(0) ' δI with δ À 104,

θ(0) = 0, z(0) À 104, k(0) = 0. Finally, 0 < α < 0.2, 0.5 < λ(0) < 0.9. To use the

above algorithm for cases of multi-outputs, the algorithm is applied for each output

component to compute the corresponding column of the parameter matrix.

4.2.2. Stage 2: Discretization of Unmeasured States

The state equations of the system given by (4.3) can be decomposed as

ẋm =Am(xm, u)xum + bm(xm, u) (4.8a)

ẋum =Aum(xm, u)xum + bum(xm, u), (4.8b)
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where Am(xm, u), Aum(xm, u) are n1 × n2 and n2 × n2 matrices, respectively. On the

other hand, from Section 4.2.1,

ẋm
∼= Akxm + Bku over t ∈ [tk, tk+1]. (4.9)

From (4.8a) and (4.9),

Am(xm, u)xum = Akxm + Bku− bm(xm, u) + eid(t) over t ∈ [tk, tk+1], (4.10)

where eid(t) is the error due to identification at time t. Next, evaluate (4.10) at times

tk, tk+1. For t = tk,

Am(xm(tk), u(tk))xum(tk) = Akxm(tk) + Bku(tk)− bm(xm(tk), u(tk)) + eid(tk),

or more compactly

Am(k)xum(k) = Akxm(k) + Bku(k)− bm(k) + eid(k), (4.11)

where Ak, Bk are values of the moving matrices at tk. where Ak, Bk are values of the

moving matrices at tk. Similarly, for t = tk+1,

Am(k + 1)xum(k + 1) = Ak+1xm(k + 1) + Bk+1u(k + 1)− bm(k + 1) + eid(k + 1).

(4.12)

Next, discretize the expression of xum given by (4.8b) using the forward-difference

method

xum(k + 1) = (tsAum(k) + I)xum(k) + tsbum(k) + edisc(k + 1), (4.13)

where edisc(k + 1) is the error at time tk+1 due to the discretization process. After a

rearrangement, equations (4.11), (4.12) and (4.13) can be written as
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


0

Am(k + 1)

I


 xum(k + 1) =




Akxm(k) + Bku(k)− bm(k)

Ak+1xm(k + 1) + Bk+1u(k + 1)− bm(k + 1)

tsbum(k)




+




−Am(k)

0

tsAum(k) + I


 xum(k) +




eid(k)

eid(k + 1)

edisc(k + 1)


 .

(4.14)

Defining

Ã(k + 1) :=




0

Am(k + 1)

I


 , h(k + 1) :=




Akxm(k) + Bku(k)− bm(k)

Ak+1xm(k + 1) + Bk+1u(k + 1)− bm(k + 1)

tsbum(k)




H(k) :=




−Am(k)

0

tsAum(k) + I


 , e(k + 1) :=




eid(k)

eid(k + 1)

edisc(k + 1)


 ,

(4.14) becomes

Ã(k + 1)xum(k + 1) = h(k + 1) + H(k)xum(k) + e(k + 1). (4.15)

Clearly, the matrix Ã(k + 1) has full-column rank and hence the solution of (4.15) is

xum(k + 1) =
[
ÃT (k + 1)Ã(k + 1)

]−1(
ÃT (k + 1)h(k + 1)

+ ÃT (k + 1)H(k)xum(k) +AT
m(k + 1)eid(k + 1) + edisc(k + 1)

)
. (4.16)
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4.2.3. Error Analysis

In (4.16), the initial condition xum(0) is not known and therefore the combined

effect of an incorrect initial condition, the identification and discretization errors on

estimation is not clear at this step. It is necessary to determine a set of conditions

which will guarantee that the effect of any initial condition will die out and the other

errors will be bounded as time goes to infinity. Firstly, for a more compact notation

let

Sdis(k + 1) :=[ÃT (k + 1)Ã(k + 1)]−1,

v(k + 1) :=Sdis(k + 1)ÃT (k + 1)h(k + 1),

Q(k + 1) :=Sdis(k + 1)ÃT (k + 1)H(k),

Sid(k + 1) :=Sdis(k + 1)AT
m(k + 1).

Then, (4.16) can be written as

xum(k + 1) =v(k + 1) + Q(k + 1)xum(k)

+ Sid(k + 1)eid(k + 1) + Sdis(k + 1)edisc(k + 1). (4.17)

For future use, for n > m define

m∏
i=n

Ki := KnKn−1 · · ·Km+1Km

Assume that xum(0) = xum0 . Then, after a simple algebra,

xum(k+1) = v(k+1)+
k∑

i=1

i+1∏

j=k+1

Q(j)v(i)+
1∏

j=k+1

Q(j)xum0 +
k∑

i=1

i+1∏

j=k+1

Q(j)Sid(i)eid(i)

+ Sid(k + 1)eid(k + 1) +
k∑

i=1

i+1∏

j=k+1

Q(j)Sdisc(i)edisc(i) + Sdisc(k + 1)edisc(k + 1).
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Next, define the residual term

R(k + 1) := Ric(k + 1) + Rid(k + 1) + Rdisc(k + 1),

where

Ric(k + 1) :=
1∏

j=k+1

Q(j)xum0 , (4.18a)

Rid(k + 1) :=
k∑

i=1

i+1∏

j=k+1

Q(j)Sid(i)eid(i) + Sid(k + 1)eid(k + 1), (4.18b)

Rdisc(k + 1) :=
k∑

i=1

i+1∏

j=k+1

Q(j)Sdisc(i)edisc(i) + Sdisc(k + 1)edisc(k + 1). (4.18c)

Now note that for all time steps,

||R(k + 1)||∗ ≤ ||Ric(k + 1)||∗ + ||Rid(k + 1)||∗ + ||Rdisc(k + 1)||∗ ,

where || ·||∗ is any vector norm on Rn2 . Next, each of these errors is analyzed.

4.2.3.1. Bound Analysis of Ric. Consider ||Ric(k + 1)||∗,

||Ric(k + 1)||∗ =

∣∣∣∣∣

∣∣∣∣∣
1∏

j=k+1

Q(j)xum0

∣∣∣∣∣

∣∣∣∣∣
∗

≤
∣∣∣∣∣

∣∣∣∣∣
1∏

j=k+1

Q(j)

∣∣∣∣∣

∣∣∣∣∣
i∗

||xum0||∗

≤
k+1∏
j=1

||Q(j)||i∗ ||xum0||∗ , (4.19)

where || ·||i∗ is the corresponding induced-norm, namely,

||Q(j)||i∗ := sup
z 6=0

||Q(j)z||∗
||z||∗

, ∀j ≥ 1.
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At this point, the following assumption is made:

Assumption 4.1: There exists n∗ > 0 such that

β := sup
j>n∗

||Q(j)||i∗ < 1.

Then, from (4.19),

||Ric(k + 1)||∗
k→∞−−−→ 0. (4.20)

Hence, with Assumption 1 the effect of any initial condition on estimation dies out as

time goes to infinity.

4.2.3.2. Bound Analysis of Rid. Next, the error due to identification is considered:

||Rid(k + 1)||∗ =

∣∣∣∣∣

∣∣∣∣∣
k∑

i=1

i+1∏

j=k+1

Q(j)Sid(i)eid(i) + Sid(k + 1)eid(k + 1)

∣∣∣∣∣

∣∣∣∣∣
∗

.

For the error associated with recursive-least squares algorithm, define

ρ := sup
i>n∗

||eid(i)||∗ , (4.21a)

γ := sup
i>n∗

||Sid(i)||i∗ . (4.21b)

Then,

||Rid(k + 1)||∗ ≤
∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sid(i)eid(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+ ρ

k∑
i=n∗+1

βk−i+1 ||Sid(i)||i∗ + ρ ||Sid(k + 1)||i∗

≤
∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sid(i)eid(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+ ργ

k∑
i=n∗+1

βk−i+1 + ργ.
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Here, it is assumed that k > n∗ since the interest will be in the limiting behavior of

||Rid(k + 1)||∗. The limiting behavior is

lim
k→∞

||Rid(k + 1)||∗ ≤
∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sid(i)eid(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+
ργ

1− β
. (4.22)

Hence, the error due to identification remains bounded as time goes to infinity. Note

that here we simply assumed that (4.21a) and (4.21b) hold, which is practically the

case for our algorithm.

4.2.3.3. Bound Analysis of Rdisc. Finally, consider Rdisc(k + 1). It is known that [67]

||edisc(k + 1)||∗ =
t2s
2
||ẍum(τ)||∗ for some τ ∈ (tk, tk+1).

Define

δ :=
t2s
2

sup
t>0

||ẍum(t)||∗ (4.23a)

η := sup
i>n∗

||Sdisc(i)||i∗ (4.23b)

Then,

sup
i>n∗

||edisc(i)||∗ ≤ δ (4.24)

and using Assumption 1, (4.18c), (4.23b) and (4.24),

||Rdisc(k + 1)||∗ ≤
∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sdisc(i)edisc(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+

∣∣∣∣∣

∣∣∣∣∣
k∑

i=n∗+1

i+1∏

j=k+1

Q(j)Sdisc(i)edisc(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+ ||Sdics(k + 1)edisc(k + 1)||∗

≤
∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sdisc(i)edisc(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+ δη

k∑
i=n∗+1

βk−i+1 + δη.
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Hence,

lim
k→∞

||Rdisc(k + 1)||∗ ≤
∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sdisc(i)edisc(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+
δη

1− β
. (4.25)

Therefore, error propagation associated with discretization part is also bounded. The

condition (4.23a) is implicity assumed to be satisfied.

4.2.3.4. Total Error Bound. Combining (4.20), (4.22) and (4.25), the asymptotic total

error bound becomes

lim
k→∞

||R(k + 1)||∗ ≤
∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sid(i)eid(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+

∣∣∣∣∣

∣∣∣∣∣
n∗∑
i=1

i+1∏
j=n∗+1

Q(j)Sdisc(i)edisc(i)

∣∣∣∣∣

∣∣∣∣∣
∗

+
1

1− β
(γρ + δη).

4.2.4. Remarks

(i) If Am(xm, u) has full column-rank for all (xm, u), then there is no need to use the

discretization part and in this case, using (4.10),

xum(k) =[AT
m(k)Am(k)]−1AT

m(k)
(
Akxm(k) + Bku(k)− bm(k) + eid(k)

)
. (4.26)

For such a case, any assumption is not needed and note that there is no possibility

of error propagation due to identification errors of the previous steps (since there

is no xum term on right-hand side). Assuming in addition that entries of Am(k)

are finite for all k,

||Rid(k + 1)||∗ =
∣∣∣∣[AT

m(k)Am(k)]−1Am(k)T (k)eid(k)
∣∣∣∣
∗

≤ ρ
∣∣∣∣[AT

m(k)Am(k)]−1AT
m(k)

∣∣∣∣
i∗ , ∀k ≥ n∗.
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One more point to notice is that if the right-hand side of (4.8a) contains unknown

parameters to be estimated, which appear also linearly, and the augmented matrix

of unmeasured states and parameters is full-rank, then a joint state and parameter

estimation can be achieved very easily. More precisely, assume that

ẋm = Aa
m(xm, u)xa

um + bm(xm, u),

where xa
um is the augmented vector containing the unmeasured states and the

unknown time-varying parameters and Aa
m is the associated augmented matrix.

If Aa
m(xm, u) is always full-rank, then the solution xa

um is given by (4.26) in which

Am(xm, u) should be replaced by Aa
m(xm, u).

(ii) In case of linear time-invariant systems, the matrices Q,Sid and Sdisc are constant

matrices.

(iii) In general, Q, Sid, Sdisc are functions of measured states and inputs. A verification

of Assumption 1 can be done as follows. If the input u is known beforehand or is

from a controller, then the known input or the designed control law can be applied

off-line to the system model by considering the guessed xum(0). If Assumption 1

holds, then it can be sure that the effect of a wrong initial condition on estimation

will die out with time.

(iv) In finite dimensional normed spaces, all norms are equivalent (see Appendix A.3).

I.e., convergence with respect to one norm implies convergence with respect to

other norms. Hence, in checking Assumption 1, it is enough to to choose an in-

duced matrix norm such that it will result in an n∗. Furthermore, the expressions

of scaled matrices Q,Sid, Sdisc contain the term [ÃT (k + 1)Ã(k + 1)]−1 and hence

their entries are divided by the determinant of [ÃT (k + 1)Ã(k + 1)], most of the

time resulting in their norms to be small. This, in turn, reduces the effect of prop-

agation of identification and discretization errors on estimation, as demonstrated

on the following case studies.
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4.3. Case Studies

In this section, the developed method is applied to three academic-purpose con-

structed nonlinear models and results are compared with EKF for a set of initial guesses

for the state to be estimated. Small additive measurement and process noises are

considered. As induced matrix norm (for the verification of Assumption 1), the spec-

tral norm is used, which is defined as the square-root of the maximum eigenvalue of

Q(t)T Q(t):

||Q(t)||i2 =
√

λmax (Q(t)T Q(t)).

In all case studies, the following initializations/settings required for recursive least-

squares algorithm or EKF are used:

α = 0.01, λ(0) = 0.75, P = M = 105I, z = 105, r = 0, k = 0, θ = 0.

Additionally, in each case study, small Gaussian process noise (v) and observation errors

(w) are added. All noise terms are independent with variance 10−8. In the comparison

figures of the following case studies, the signal in blue color is the real signal (xir), the

signal in black color is the estimated signal by EKF (xik) and the red-color signal is

the the one estimated by the proposed method (xip).

4.3.1. Example 1

As a first example, consider

ẋ1 =

(
0.6 + 0.5 sin x1

2 + cos x1

)2

x2 + v1

ẋ2 = cos(x1)x2 + v2

(4.27)
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where xum = x2, xm = x1 + w1 and x1(0) = 6, x2(0) = 1. Assumption 1 is not needed

in this example since A(x1) is full column-rank for all values of x1. Figure 4.1 shows

comparison results with EKF for different initial guesses for x2. The performance of

EKF is poor (especially when the initial guess is very far from the true value).
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Figure 4.1. x2 and estimates for it.

4.3.2. Example 2

The next example is

ẋ1 =x1e
−0.25x3

1x2 − 0.5 cos x3 + v1

ẋ2 = sin(2x1)x2 + v2

ẋ3 = log(1 + x2
3)x

3
1 + v3
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where xum = x2, xm = [x1 + w1 x3 + w2]
T and x1(0) = 1, x2(0) = 2, x3(0) = −5.

A(x1) may not be full-column rank and hence an off-line checking of Assumption 1 is

necessary for the guessed initial value of x2(0). Figures (4.2, 4.3) show the verification

of the assumption and the comparison results with EKF, respectively. As seen, the

performance of the proposed method is clearly superior to EKF even for initial guesses

considerably different than the initial true value of x2.

0 0.5 1 1.5 2 2.5 3

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time (s)

Q
(t

)

 

 
case x2(0) = 2.5
case x2(0) = 5
case x2(0) = −10

Figure 4.2. Off-line verification of Assumption 1

4.3.3. Example 3

As a last example, consider

ẋ1 =− 0.32x2
1 + 0.1x2 + v1

ẋ2 =0.16x2
1 + v2

where xum = x2, xm = x1 + w1 and x1(0) = 3, x2(0) = 4.5. In this example, A(xm) is

constant and for verification of Assumption 1, an off-line check is not needed. A simple



82

calculation gives Q(t) = 0.99. Therefore, the proposed method can be used. The results

are shown in Figure 4.4. As seen, when the guessed initial condition is chosen more far

away from the correct value, the speed of convergence of EKF decreases seriously.
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Figure 4.3. x2 and estimates for it
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4.4. Application to Diesel Engine Compressor Air Mass Flow Estimation

The application of the method with a comparison to EKF is shown in the following

two case studies, where

α = 0.01, λ(0) = 0.75, P = M = 105I, z = 105, r = 0, k = 0, θ = 0.

Additionally, in each case study, small Gaussian process (v) and observation noise

(w) are added (for both methods). In the first case, process and measurement noise

terms are independent with variances 10−10 and 10−4, respectively; the orders being

compatible with the orders of input and output signals. For the second case study,
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the variances of process and measurement noises are 10−12 and 10−4. Note also that

the coefficient of Pc in (4.1a), (RηcTi)/(VicpTa), is always positive and hence the first

remark mentioned in the previous section applies in this case.

4.4.1. Case I

The corresponding input, parameter signals and estimation results are shown

through Figures 4.5 and 4.8. In the estimation comparison figures, the signal in blue

color is the real signal (xr), the signal in black color is the estimated signal by EKF

(xk) and the red-color signal is the the one estimated by the proposed method (xp).

In the simulations, the true initail conditions are pi(0) = 103 kPa, px(0) =

109 kPa and Pc(0) = 250 W. The assumed initial condition for Pc in both the de-

veloped method and EKF is 600 W.
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4.4.2. Case II

The initial conditions are the same as before. The corresponding input, parameter

signals and estimation results are shown through Figures 4.9 and 4.12.
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4.5. Comments

In this chapter, an identification based, on-line state estimation method for de-

terministic nonlinear dynamical systems where unmeasured states appear linearly is

developed and then it is applied to estimate compressor air mass flow in diesel engines,

which can be problematic and hence its estimation important in the situations men-

tioned before. The method consists of two stages. In the first stage, a linear moving

model is identified for measured states and for that purpose orthogonal functions are

used. In the second stage, a forward-difference method is applied to the unmeasured

state dynamics and together with the results of the first stage, a discrete-time formula-

tion of the unmeasured states is derived. An error analysis of the method was discussed

with the associated error bounds. One of the striking properties of the method is its

easiness of application. In contrast to the methods discussed in the Introduction, no

injection of a function of the output (as is the case for extended linearization meth-

ods) or a transformation of the dynamics (as in Lie-algebraic methods) is required.

Since there is no constructive procedure involved (as in the case of Lyapunov-based

methods), no trial-error is reqired. As shown through three examples and diesel engine
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compressor air mass flow estimation, the proposed method outperforms EKF. EKF

results are poor since EKF uses linearization at each time step and this causes a slow

convergence or divergence which may be worser when initial guesses are far from the

true initial values. In contrast to EKF, the proposed method is robust to wrong initial

guesses for the state(s) to be estimated. Since the developed method is for determinis-

tic systems, in comparison with EKF, small additive process and measurement noises

are used. In case of a high measurement noise, an on-line noise filtering process can be

incorporated to improve the results.

In air compressor mass flow estimation, the results from the first case study shows

that the effects of wrong initial conditions, linearization errors and guessed variances

cause EKF to have an initial poor estimate but later on converging to true results. On

the other hand, in the second case study for the second wrong initial condition, EKF

is not able to be convergent. In contrast, the estimation results with the proposed

method are very satisfactory in both cases.
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5. LPV-BASED COMPRESSOR AIR MASS FLOW

ESTIMATION

Although the identification-based method presented in the previous chapter gave

us satisfactory results, the method is not an asymptotically convergent method; rather

it gives results which are optimal in the sense of least-squares. In this chapter, we con-

struct an asymptotically convergent observer for the estimation of compressor air mass

flow using the previous mean-value engine model and the LPV-based state estimation

method presented in [34] for affine LPV systems.

As a first task, the mean-value engine model is transformed into an equivalent

model with affine parameter dependence. Since the designed estimator has asymptotic

convergence nature, it gives better results. Of course, such a comparison is meaningful

when both methods are applicable on the same system and it is important to keep

in mind that there may be situations where the LPV-based state estimation is not

applicable. I.e., there may be some systems for which the identification-based method

works but the LPV-based method to be presented here may not be applicable.

The chapter is organized as follows. In Section 1, affine linear parameter-varying

systems and the observer design procedure of [34] are shortly summarized. In Section

2, the used diesel engine model is re-introduced and its transformation to an affine

parameter-dependent form is given. Simulation results are given in Section 3. Finally,

we conclude with the main findings of this work in Section 4 of the chapter.

5.1. LPV-Systems and Scheduled Observer Design

In this section, we will first define the necessary concepts and then summarize

the observer design method presented in [34].
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5.1.1. General Concepts

As mentioned before, linear parameter-varying systems are in the following form

ẋ =A(ρ)x + B(ρ)u,

y =C(ρ)x +D(ρ)u, (5.1)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are the state, input and measured outputs, respectively.

The system matrices are depending on a measurable parameter vector ρ ∈ Rr. If

parameter vector ρ includes a state, then the underlying model is called a quasi-LPV

model. One class of LPV systems is affine parameter-dependent LPV systems, which

we define next.

Definition 5.1. System (5.1) is said to be an affine parameter-dependent LPV system

if

A(ρ) =A0 +
r∑

i=1

ρiAi, B(ρ) = B0 +
r∑

i=1

ρiBi,

C(ρ) =C0 +
r∑

i=1

ρiCi, D(ρ) = D0 +
r∑

i=1

ρiDi,

where ρ = [ρ1 ρ2 · · · ρr]
T .

In the design of scheduled observer for state estimation, we will use the concept

of affine quadratic stability (AQS). Therefore, next this concept is defined.

Definition 5.2. The linear parameter-dependent system

ξ̇ = A(ρ)ξ

is said to be affinely quadratically stable if there exists r + 1 matrices P0, P1, · · · , Pr
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such that

P (ρ) :=P0 +
r∑

i=1

ρiPi Â 0

Ω(ρ, ρ̇) :=A(ρ)T P (ρ) + P (ρ)A(ρ) + P (ρ̇)− P0 ≺ 0

Note that for a system to be affinely quadratically stable affinely parameter-

dependence is not required.

5.1.2. Scheduled Observer Design

In this part, we present the scheduled observer design method of [34]. For details,

the reader is referred to [34]. Consider, the system

ẋ =A(ρ)x + B(ρ)u

y =Cx, (5.2)

where

• the parameter-dependent system matrices are affine in the parameter vector.

• C is full row-rank.

• each parameter ρi(t) is measurable, ρi(t) ∈ [ρ
i
, ρi] and ρ

i
< 0, ρi > 0.

• ρ̇i ∈ [νi, νi].

Note that the conditions ρ
i
< 0, ρi > 0 are not restrictive in the third assumption since

they can be achieved by a change of variable. The parameter vector and its derivative

remain in the hyper-rectangles with 2r vertices as defined below.

S :={(s1, s2, · · · , sr) : si ∈ {ρi
, ρi}}

T :={(τ1, τ2, · · · , τr) : τi ∈ {τ i, τ i}}
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The structure of the full-order observer is assumed to be of

η̇(t) =H (ρ(t)) η(t) + L (ρ(t)) y(t) + J (ρ(t)) u(t),

x̂(t) =η(t) + My(t), (5.3)

where η ∈ Rn and x̂ ∈ Rn is the estimate of the state vector. The matrix M and

parameter dependent matrices are matrices to be determined so that the estimation

error converges to zero asymptotically. Defining

e := x̂− x, T := In −MC

error dynamics becomes

ė = H(ρ)e +
(
H(ρ)T + L(ρ)C − TA(ρ)

)
x +

(
J(ρ)− TB(ρ)

)
u. (5.4)

The observer design problem is reduced to the determination of the parameter depen-

dent observer matrices H(ρ), L(ρ), J(ρ) and the matrix M such that (5.4) is stable

regardless of the initial conditions x(0), η(0), control input u and the parameter vector

ρ with the specified ranges. Next, the determination of these matrices is considered.

5.1.2.1. Interpolation Algorithm. The parameter-dependent observer state-space ma-

trices are obtained by an interpolation algorithm on the parameter vector. The con-

tainment of the parameter vector ρ(t) in a hyper rectangle box with 2r vertices S
implies that H(ρ), J(ρ) and L(ρ) are contained in the matrix polytopes Rn×n, Rn×m

and Rn×p, respectively, with the associated vertices

Ĥ :={Ĥ0, Ĥ1, · · · , Ĥ2r−1},
L̂ :={L̂0, L̂1, · · · , L̂2r−1},
Ĵ :={Ĵ0, Ĵ1, · · · , Ĵ2r−1}.
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Note that each corner Ĥi of Ĥ ,L̂i of L̂ and Ĵi of Ĵ is a matrix and corresponds to

a corner of S. The next task is to determine this correspondence. To that end, let

(ai
r ai

r−1 · · · ai
2 ai

1) be the binary representation of the index i, 0 ≤ i ≤ 2r − 1, with

a1 being the last significant and ar the most significant bit. Then, the parameter box

corner (ŝ1, ŝ2, · · · , ŝr) of S corresponding to Ĥi, L̂i, Ĵi is

ŝj =





ρ
j
, if ai

j = 0

ρj, if ai
j = 1

The interpolated observer matrices are given as

H(ρ) =
2r−1∑
i=0

πi(ρ)Ĥi, (5.5a)

L(ρ) =
2r−1∑
i=0

πi(ρ)L̂i, (5.5b)

J(ρ) =
2r−1∑
i=0

πi(ρ)Ĵi, (5.5c)

where the interpolation function πi(ρ) is given by

πi(ρ) =
r∏

j=1

αijρj + βij

ρ
j
− ρj

, (5.6)

where

αij =





1, if ai
j = 0

0, if ai
j = 1

, βij =




−ρj, if ai

j = 0

ρ
j
, if ai

j = 1

After a simple algebra, it can be shown that the interpolation functions satisfy the

following properties.

• 0 ≤ πi(ρ) ≤ 1 for all i = 1, 2, · · · , 2r − 1.

•
2r−1∑
i=1

πi(ρ) = 1.
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5.1.2.2. Observer Design Procedure. In this section, the parameter-dependent observer

construction procedure is given. Using (5.5-5.6), we get the following equivalent system

of equations.

H(ρ) =H0 +
r∑

i=1

ρiHi +
r∑

i=1,j>i

ρiρjHr+i+j−2 + · · ·+
r∏

i=1

ρiH2r−1 , (5.7a)

L(ρ) =L0 +
r∑

i=1

ρiLi +
r∑

i=1,j>i

ρiρjLr+i+j−2 + · · ·+
r∏

i=1

ρiL2r−1 , (5.7b)

J(ρ) =J0 +
r∑

i=1

ρiJi +
r∑

i=1,j>i

ρiρjJr+i+j−2 + · · ·+
r∏

i=1

ρiJ2r−1 . (5.7c)

Note that although the system has affine structure, the interpolated observer matrices

are nonlinear functions of the parameters.

Proposition 5.1. ([34]) System (5.3) is a scheduled observer for the system (5.2) if

the following conditions are met.

ξ̇ = H(ρ)ξ has AQS. (5.8a)

H(ρ)T + L(ρ)C − TA(ρ) = 0 (5.8b)

T = In −MC (5.8c)

J(ρ) = TB(ρ) (5.8d)

Now, the aim is to express the the conditions of Proposition 1 as a LMI feasibility

problem. Note that (5.8b) is a Sylvester equation with non-constant matrices. The

resolution of this equation gives

H(ρ) =−K(ρ)C + TA(ρ) (5.9a)

L(ρ) =K(ρ) + H(ρ)M, (5.9b)

where K(ρ) is an arbitrary parameter-dependent matrix. For this matrix, the same
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structure as for the matrices H(ρ), L(ρ) and J(ρ) is chosen

K(ρ) =K0 +
r∑

i=1

ρiKi +
r∑

i=1,j>i

ρiρjKr+i+j−2 + · · ·+
r∏

i=1

ρiH2r−1 . (5.10)

From (5.7,5.9) and (5.10), we get

Hi = −KiC + TAi for i = 0, 1, · · · , r (5.11a)

Hi = −KiC for i = r + 1, r + 2, · · · , 2r − 1 (5.11b)

Li = Ki + HiM for i = 0, 1, · · · , 2r − 1 (5.11c)

Ji = TBi for i = 0, 1, · · · , r (5.11d)

Ji = 0 for i = r + 1, r + 2, · · · , 2r − 1. (5.11e)

Inserting (5.9a) into (5.8a) and using (5.8c, 5.10) gives a relation involving unknown

matrices K0, K1, · · · , K2r−1 and M . Hence, the problem of observer design reduces to

determination of those matrices such that (5.8a) has AQS. The next theorem gives the

conditions under which AQS holds and the expressions for the unknown matrices to

be determined.

Theorem 5.1. ([34]) System (5.3) is a scheduled observer for the system (5.2) if there

exist matrices V,Q and symmetric matrices P0, P1, · · · , Pr such that the following LMI

condition




−(V + V T ) W (s) + P (s) V T

W T (s) + P (s) −P (s) + P (τ)− P0 0

V 0 −P (s)


 ≺ 0

for all (s, τ) ∈ S × T (5.12)

is feasible, where W (ρ) = QΦ(ρ) + V T A(ρ), where

Φ(ρ) = C

[
I ρ1I · · · ρrI ρ1ρ2I ρ1ρ3I · · · ρ1ρrI · · ·

(
r∏

i=1

ρi

)
I AT (ρ)I

]T
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and

P (ρ) = P0 + ρ1P1 + · · ·+ Prρr.

Then,

K =
[
−K0 −K1 · · · −K2r−1 −M

]
= V −TQ.

After determination of Ki and M , Hi, Li and Ji can be computed from (5.11a)-(5.11e).

5.2. Application to Diesel Engine Compressor Air Mass Flow Estimation

Considering the same diesel engine model of the previous chapters, we have the

following equivalent system.

ṗi =k1ρ1Pc + ˜̃u1, (5.13a)

ṗx =k2ρ2pi + ˜̃u2, (5.13b)

Ṗc =k3Pc + ˜̃u3, (5.13c)

where

k1 =
Rηc

cpTaVi

, k2 =
ηvVd

120Vx

, k3 = −1

τ
,

˜̃u1 =
RTi

Vi

(Wxi −Wie) , ˜̃u2 =
RTx

Vx

(Wf −Wxi −Wxt) , ˜̃u3 =
WxtcpTxηt

τ

(
1−

(
pa

px

)µ)

and the scheduling parameters are

ρ1 =
Ti(

pi

pa

)µ

− 1

, ρ2 =
TxN

Ti

.
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The measured variables are the states pi, px, the engine inputs xv, xr,Wf and the

external exogenous parameters Ti, Tx and N . Note that Wxi,Wxt and Wie are functions

of the above measured variables and therefore we are able to define the transformed

inputs ˜̃u1 and ˜̃u2. The model (5.13) will be called a “transformed diesel engine model”

and is affine in the parameters ρ1 and ρ2. The aim is first to estimate the state Pc and

then determine the compressor air mass flow from the estimated compressor power via

the relation

Wci =
ηc

cpTa

Pc(
pi

pa

)µ

− 1

.

The last task is the determination of the ranges for the scheduling parameters

and for their rates of variation. We assume that pi ∈ [100, 160] kPa, Ti ∈ [300, 350]

K, Tx ∈ [350, 700] K and N ∈ [500, 3500] rpm. This results in ρ1 ∈ [2, 153]× 103 and

ρ2 ∈ [0.5, 8.2]× 103. Finally,

ρ1 =
Ti(

pi

pa

)µ

− 1

⇒ ρ̇1 =

Ṫi

((
pi

pa

)µ

− 1

)
− Tiµ

pµ−1
i

pµ
a

ṗi

((
pi

pa

)µ

− 1

)2 ,

ρ2 =
TxN

Ti

⇒ ρ̇2 =

(
ṄTx + NṪx

)
Ti − Ṫi (NTx)

T 2
i

.

Letting ṗi ∈ [−100, 100] kPa/s, Ṫi, Ṫx ∈ [−10, 10] K and Ṅ ∈ [−500, 500] rpm/s gives

ρ̇1 ∈ [−1.93, 1.93]×107 and ρ̇2 ∈ [−1.77, 1.77]×103. For the application of the method,

we need a change of variables. Defining

ρ1 = ρ̃1 + 77.5× 103, ρ2 = ρ̃2 + 4.35× 103,

we have ρ̃1 ∈ [−75.5, 75.5]× 103 and ρ̃2 ∈ [−3.85, 3.85]× 103. Finally, ˙̃ρi = ρ̇i, i = 1, 2

gives ˙̃ρ1 ∈ [−1.93, 1.93] × 107 and ˙̃ρ2 ∈ [−1.77, 1.77] × 103. In computing the ranges
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of the scheduling parameters and their rates of variation we use the toolbox INTLAB

[69] which is used for interval related computations and optimizations.

5.3. Simulations

Figure 5.1 summaries the working principle of observer schematically for com-

pressor air mass flow estimation. For the transformed system (5.13), the parameter-

Inputs Non-linear model

Parameter generation

Input transformation

Wci = f(pi, Pc) Ŵci

y = [pi px]Tu = [xv xr Wf ]T

P̂c

˜̃u = [˜̃u1
˜̃u2

˜̃u3]
T

ρ̃ = [ρ̃1 ρ̃2]
T

Ti Tx N

Ti Tx N

Affine LPV System

Observer

Figure 5.1. Working principle of observer

dependent system matrices are

A(ρ) =




0 0 k1(ρ̃1 + 77.5× 103)

k2(ρ̃2 + 4.35× 103) 0 0

0 0 k3


 , B(ρ) =




1 0 0

0 1 0

0 0 1


 .
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Since we are estimating compressor power based on real time measurement of manifold

pressures, we have

C =


 1 0 0

0 1 0


 .

The parameter dependent Lyapunov matrix P (ρ) to be determined is

P (ρ̃) = P0 + ρ̃1P1 + ρ̃2P2,

and the matrix Φ is

Φ(ρ̃) =
[

CT ρ̃1C
T ρ̃2C

T ρ̃1ρ̃2C
T CT A(ρ̃)T

]T

.

Next, we consider the same case studies of Chapter 4 (the same inputs and Ti, Tx, N

values) and a comparison with EKF.

5.3.1. Case I

The corresponding input, parameter signals and estimation results are shown

through Figures 5.2 and 5.5. In the estimation comparison figures, the signal in blue

color is the real signal (xr), the signal in black color is the estimated signal by EKF

(xk) and the red-color signal is the one estimated by the proposed LPV-based method

(xlpv).

5.3.2. Case II

The corresponding input, parameter signals and estimation results are shown

through Figures 5.6 and 5.9.
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Figure 5.2. Fuel flow rate and engine speed
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Figure 5.4. Vgt vane and egr valve position
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Figure 5.5. Compressor air mass flow and its estimations.
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Figure 5.6. Fuel flow rate and engine speed

0 1 2 3 4 5

310

320

330

340

350

T
i
(K

)

0 1 2 3 4 5
450

500

550

600

650

700

time (s)

T
x

(K
)

Figure 5.7. Intake and exhaust manifold temperatures.



104

0 1 2 3 4 5
0

20

40

60

80

100

x
v

(%
)

0 1 2 3 4 5
0

20

40

60

80

100

time (s)

x
r

(%
)

Figure 5.8. Vgt vane and egr valve position
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5.4. Comments

Observer design for nonlinear systems is in general a difficult task. In this chapter,

we considered a nonlinear mean-value diesel engine model and, without any simplifi-

cation on it, we transformed the model to an equivalent affine parameter-dependent

system and then applied the observer design method of [34]. Based on the measure-

ments of manifold pressures and engine inputs, compressor power was estimated and

then compressor flow was estimated from the estimated compressor power. An accu-

rate estimation of compressor air mass flow is an important task both for removal of

the expensive MAF sensor (which is, also, not accurate in some situations as men-

tioned) when cost is a consideration and achievement of a good quality signal when

it is used as a feedback variable in control applications. The performance of the de-

signed asymptotic observer was shown through simulations with comparisons to EKF

to demonstrate cases where EKF may show poor performance and hence not useful in

compressor air mass flow estimations.
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6. CONCLUSIONS AND FUTURE WORK

In this thesis, we considered the separate problems of controlling the air path

system and compressor air mass flow estimation in diesel engines. To summarize:

• As a control problem we dealt with to regulate the air path system in diesel en-

gines by controlling the exhaust manifold pressure and compressor air mass flow

using a linear parameter-varying approach by considering a general nonlinear,

mean-value engine model used extensively in the literature. The control strategy

is such that no simplifications on engine model is done or no operating point is

chosen and even manifold temperatures are considered as time-varying parame-

ters. In this regard, the presented control strategy is very general, in contrast to

the existing other control strategies in the literature using the same model.

• Two different estimation methods were given to estimate compressor air mass

flow which may be difficult and/or unreliable to measure in certain situations.

(i) The first estimation method is a developed general state estimation method

to be used in state/parameter estimation in nonlinear models where the

state or parameter to be estimated appears linearly in the system dynamics.

The case for state estimation was given and the parameter estimation case

can be developed with a slight modification. The method was based on a

combination of fitting a linear moving model to the measured states and

inputs and using the discretization of the unmeasured states. This results

in an iterative formula. The method was successfully applied to some case

studies and then used for compressor air mass flow estimations. All results

were compared with EKF to see the performance of the method.

(ii) The second estimation approach was a state estimation method for affinely

parameter-dependent systems developed by [34]. For the application of this

method, the nonlinear engine model was transformed into an equivalent

affinely parameter-dependent form. The main advantage of this second ap-

proach is that it is an asymptotic observer. Again the method was applied

for diesel engine compressor air mass flow estimation, with a comparison to
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EKF. The results were even better than using the first estimation method

since the second method is of asymptotic convergence. However, the first es-

timation method may be used in some estimation schemes where the second

cannot be used.

As a future work, in the control part we considered volumetric, turbine and

compressor efficiencies as some optimal constant values. A further improvement may

be modeling of these variables and then considering them as additional time-varying

parameters. A second way may be interpreting them as uncertain parameters and then

apply a control approach for partly measured LPV systems [70].

As to the future work in the estimation part, it is well-known that it is expensive

and difficult to measure exhaust manifold quantities like pressure, temperature or the

flow Wxt since the soot in the exhaust can quickly cover the sensors and make the mea-

surements unreliable. Development of new joint state-parameter estimation methods

is necessary in order to estimate these exhaust quantities.
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APPENDIX A: Basic Terminology

A.1. Signal Norms

Before defining signal norms, it will be better first to give the definition of a

“signal” and a “norm”. A “signal” u(t) is a function from the nonnegative real numbers,

R+, to Rm. Let V be a vector space. Simply, a norm, ‖ · ‖, is a function from the

vector space V to R+ satisfying the following properties for each u, v ∈ V :

(i) ‖u‖ ≥ 0 and ‖u‖ = 0 ⇔ u = 0

(ii) ‖u + v‖ ≤ ‖u‖+ ‖v‖
(iii) ‖αu| = |α|‖u‖ ∀α ∈ R

A signal norm is a norm and is one of the ways to measure its size. Among many

signal norms, here we will be interested in the 2-norm which is defined as follows:

‖u‖2 :=

(∫ ∞

0

u(t)T u(t)dt

)1

2 =

(
1

2π

∫ ∞

0

û(jw)∗û(jw)dw

)1

2 , (A.1a)

where û(jw) is the Laplace transformation of u(t). The second equality is known as

“Parseval’s Relation”.

A.2. Linear Matrix Inequalities

Linear matrix inequalities are expressions encountered in convex optimization

problems, which define convex constraints. For x = (x1 x2 · · · xn)T ∈ Rn, a LMI in x

is an expression of the form

LMI(x) := A0 +
n∑

i=1

xiAi Â 0 (A.2)
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where A0, A1, · · · , An are symmetric matrices in Sn, the set of symmetric matrices, and

Â means positive definiteness. Although we have defined a LMI for Â, it is possible to

have the forms º,≺ and ¹.

The LMI (A.2) defines a convex constraint on the decision variable x. That

is, the set {x ∈ Rn : LMI(x) Â 0} is a convex set. A system of LMIs given by

LMI(1)(x) Â 0, LMI(2)(x) Â 0, · · · , LMI(k)(x) Â 0 can be expressed as the single LMI

diag
(
LMI(1)(x), LMI(2)(x), · · · , LMI(k)(x)

)
Â 0.

In the literature, the encountered forms of LMIs are not in the form given by (A.2)

which involves scalar decision variables, rather they involve matrices as the decision

variables. As an example, consider

AT P + PA Â 0,

where A ∈ Rn×n is a given matrix and P = P T is the matrix variable. This problem

can be easily converted to the form (A.2). Expressions of LMIs involving matrices as

decisions variables can save a lot of space and in addition parsers of LMI solvers (like

Yalmip parser used for Sedumi solver) can be used for LMIs in this condensed form.

The LMI problems given by the main form (A.2) or other forms reducible to

this main form are called LMI feasibility problems and the solution set is called the

feasibility set. It is also possible to have convex optimization problems involving as

their constraints LMIs. In particular, the linear objective minimization problem

minimize cT x subject to LMI(x) Â 0

is such an example. Both LMI feasibility problems and optimization problems involving

a convex objective function with LMIs as their constraints are examples of convex opti-

mization problems. Here, convexity has the important consequence that such problems
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can be solved numerically with a guarantee of finding the solution if it exists. Efficient

numerical algorithms (like interior-point methods) exist in the literature to solve such

problems.

Many control system analysis and design problems (especially those which are

based on Lyapunov analysis and design), estimation-identification problems, struc-

tural design, matrix scaling problems, etc involve LMIs. In the control part of this

thesis, LMIs were used for synthesis of gain scheduled controllers. A short list of other

applications involving LMIs can be given as follows [71]:

• matrix scaling problems, e.g., minimizing condition number by diagonal scaling

• quadratic stability and performance analysis of Lyapunov based control algo-

rithms

• multi-criterion LQR/LQG

• inverse problem of optimal control

• synthesis of Lur’e-type Lyapunov functions for nonlinear systems

• optimal system realization

• weighted interpolation problems

Next, we consider an example involving LMIs.

A.2.1. Stability Example

Consider the dynamical system

ẋ = Ax,

whose stability is equivalent to the existence of a matrix P = P T such that

AT P + PA ≺ 0,

P Â 0.
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The stability analysis can be extended to linear time-variant (LTV) systems. Consider

the system

ẋ = A(t)x, (A.3)

where A(t) varies in the convex envelope of a set of linear time-invariant (LTI) systems:

A(t) ∈ Co{A1, A2, · · · , AN} :=

{
N∑

i=1

αiAi : αi ≥ 0,
N∑

i=1

αi = 1

}
.

A sufficient condition for the stability of (A.3) is the existence of a matrix P = P T

such that the following systems of LMIs are satisfied:

AT
i P + PAi ≺ 0,

P Â 0.

A.3. Equivalence of Norms on Finite Dimensional Vector Spaces

Let ‖u‖a and ‖u‖b be two norms defined on a finite dimensional vector space V .

We say that ‖u‖a and ‖u‖b are equivalent norms on V if there exist α, β ≥ 0 such that

α‖u‖a ≤ ‖u‖b ≤ β‖u‖a

The importance of equivalent norms is that the convergence of a sequence defined on

V with respect to one norm implies the convergence with respect to the other.
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APPENDIX B: Orthogonal Functions

We will introduce orthogonal functions briefly here . For detailed information on

this topic, the reader is referred to [68].

Definition B.1. A set of functions S = {φk(t) : k = 0, 1, 2, · · · , r − 1}, is said to be

orthogonal in the interval [a, b] if

∫ b

a

φi(t)φj(t)dt = K (B.1)

where K = 0 if i 6= j and non-zero for i = j.

One of the important properties of orthogonal functions is their integral property.

The orthogonal functions in the set S satisfy the following integral property

∫ t

t0

φ(τ)dτ ∼= Oφ(t) (B.2)

where φ = [φ0(t) , φ1(t), · · · , φr−1(t)]
T and O is known as operational matrix (of inte-

gration). Examples of orthogonal functions are

• Fourier series

• Shifted Jacobi polynomials

• Shifted Chebyshev polynomials

• Shifted Legendre polynomials.

In this work, we use the shifted Legendre polynomials (in [0, tf ]), which are obtained

from the recursive formula [68]

φn+1 =
2n + 1

n + 1

(
2t

tf
− 1

)
φn(t)− n

n + 1
φn−1(t), n ≥ 1, (B.3)
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with φ0 = 1, φ1(t) =
2t

tf
− 1. The corresponding operational matrix is given as

O = tf




1 1 0 0 · · · · · · · · · 0 0 0

−1
3

0 1
3

0 · · · · · · · · · 0 0 0

0 −1
5

0 1
5
· · · · · · · · · 0 0 0

...
. . .

...
...

...
. . . . . .

...
...

...
. . . . . . . . .

...
...

...
. . . . . .

0 0 0 0 0
1

2r − 5
0

0 0 0 0 · · · · · · −1

2r − 3
0

1

2r − 3

0 0 0 0 · · · · · · 0
−1

2r − 1
0



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APPENDIX C: Linear Fractional Transformations

Consider the complex matrix M appropriately partitioned as

P =


 P11 P12

P21 P22


 ∈ C(q1+q2)×(r1+r2)

and let ∆l ∈ C(r2×q2) and ∆u ∈ C(r1×q1). Then, the lower fractional transformation of

P with respect to ∆l is defined as

Fl(P, ∆l) := P11 + P12∆l (I − P22∆l)
−1 P21 (C.1)

provided that the inverse (I − P22∆l)
−1 exists. Similarly, the upper fractional trans-

formation of P with respect to ∆u is defined as

Fu(∆u, P ) := P22 + P21∆u (I − P11∆u)
−1 P12 (C.2)

provided that (I − P11∆u)
−1 exists.
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APPENDIX D: Diesel Engine Model Parameters

Table D.1. Engine Model Parameters [23]

Symmbol Value Unit Description

Vi 6× 10−3 m3 intake manifold volume

Vx 1× 10−3 m3 exhaust manifold volume

Vd 2× 10−3 m3 displacement volume

cp 1014.4 J/kg/K specific heat at constant pressure

cv 727.4 J/kg/K specific heat at constant volume

R 287 J/kg/K gas constant (R = cp − cv)

pa 99.2 kPa ambient pressure

Ta 302 K ambient temperature

pref 101.3 kPa reference pressure

Tref 298 K reference temperature

γ 1.3936 - specific heat ratio

(
γ =

cp

cv

)
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APPENDIX E: Self Conditioned Controller Design for

Anti-Windup

Most real engineering systems involve actuators which are input bounded. When

the real process input is different than the desired control output, inadequacy of control

state variables may deteriorate the controller performance. In [45], in order to restore

this inadequacy of sate variables, auxiliary reference inputs called “realizable refer-

ences” are used. In this part, we determine realizable references for a LPV controller.

For details, refer to [45].

Assume that the equations of a LPV controller without AW protection are

ẋc =Acxc + Bpcpc + Bce,

qc =Cqcxc + Dqcpcpc + Dqcee,

u =Cuxc + Dupcpc + Duee,

pc =∆cqc,

where e = y − w is the difference between measured and reference signals. The corre-

sponding equations when a realizable reference wr is used as input are

ẋr
c =Acx

r
c + Bpcp

r
c + Bcer, (E.1a)

qr
c =Cqcx

r
c + Dqcpcp

r
c + Dqceer, (E.1b)

ur =Cux
r
c + Dupcp

r
c + Dueer, (E.1c)

pr
c =∆cq

r
c , (E.1d)

where er = y − wr and xr
c, ur, p

r
c and qr

c are the variables corresponding to wr, respec-

tively. Let Dqce = D1, Due = D2 and assume that D2 is invertible (which is the case in
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this thesis). The control input u is assumed to be

u =Cux
r
c + Dupcp

r
c + D2e. (E.2)

and that u = ur. Using (E.1c) and (E.2) and the expressions for e, er, we get

wr =w + D−1
2 (ur − u) . (E.3)

Using (E.1), er and (E.3), we obtain

ẋr
c =Acx

r
c + Bpcp

r
c + Bce + BcD

−1
2 eu, (E.4a)

qr
c =Cqcx

r
c + Dqcpcp

r
c + Dqceer, (E.4b)

u =Cux
r
c + Dupcp

r
c + Dueer, (E.4c)

pr
c =∆cq

r
c , (E.4d)

ur =sat(u), (E.4e)

where “sat” denotes the actuator saturation effect. The AW-LPV Controller (a.k.a.

Self Conditioned Controller) represented by E.4 is shown in Figure E.1.











Ac Bpc
Bc BcD

−1

2

Cqc
Dqcpc

D1 D1D
−1

2

Cu Dupc
D2 0











∆c

Plant

qr

c
pr

c

w y

eu

u ur

-

- +

+

e

Figure E.1. LPV control with AW protection
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