
AN INTERACTIVE WEB-BASED MACHINE-LEARNING SUITE

by

Pınar Yanardağ

B.S., Computer Engineering, Çanakkale Onsekiz Mart University, 2007

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2010

ii

AN INTERACTIVE WEB-BASED MACHINE-LEARNING SUITE

APPROVED BY:

Prof. Ethem Alpaydın

(Thesis Supervisor)

Prof. Fikret Gürgen

Assist. Prof. Olcay Taner Yıldız

DATE OF APPROVAL: 18.05.2010

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisor Prof. Ethem Alpaydın

for his invaluable supervision, academic feedback, support and endless patience during

this thesis.

I would like to thank Prof. Fikret Gürgen and Assist. Prof. Olcay Taner Yıldız

for being in my thesis Jury.

I would especially like to present my gratitude to Mehmet Gönen for counseling

me in any matter where I get confused.

I would like to thank my collegues at TUBITAK UEKAE for encouraging me

to pursue an academic career and members of Perceptual Intelligence Laboratory for

providing such an amusing environment.

I would like to thank Google for supporting my academic studies since my un-

dergraduate education with various scholarships as well as playing an important role

in shaping my scientific perception.

I would like to thank stackoverflow.com family who taught me to discuss the

discussion itself and helped me to solve challenging programming issues in my thesis.

Finally, I would like to thank my family for everything they have done for me.

iv

ABSTRACT

AN INTERACTIVE WEB-BASED MACHINE-LEARNING

SUITE

We propose a comprehensive and interactive web-based machine learning suite

that will allow researchers and practitioners to use a wide collection of basic and exper-

imental learning algorithms and sophisticated visualization and analysis tools. Compo-

nent based frameworks incorporating data input/output, pre-processing, classification,

clustering, regression and visualization schemes have been implemented before in var-

ious programming languages, for use on different platforms, to operate using a variety

of data formats. ML-Lab includes a large variety of machine learning algorithms for

resampling, feature selection and extraction, classification and ensemble methods, as

well as tools to visualize the experimental results of statistical comparison and test-

ing. It provides a sophisticated and easy-to-use interface for creating workflows and a

component-based framework intended for both experienced users and also those who

are just entering the field. The collection of machine learning algorithms are imple-

mented in Python, a modern easy-to-use scripting language with clear but powerful

syntax and extensive set of additional libraries. ML-Lab has an extensible architecture

and allows adding new capabilities to the system infrastructure easily.

v

ÖZET

WEB TABANLI ETKİLEŞİMLİ YAPAY ÖĞRENME

GERÇEKLEMESİ

Bu çalışmada, araştırmacılara ve kullanıcılara hem temel, hem de deneysel yapay

öğrenme algoritmaları içeren web tabanlı, platform bağımsız ve kapsamlı bir görselleştirme

ve analiz aracı sunuyoruz. Sınıflama, kümeleme, gerileme, ön-işleme ve görselleştirme

algoritmalarını bir arada sunan bileşen tabanlı uygulamalar daha önce bir çok program-

lama dilinde, değişik platformlar üzerinde çalışacak şekilde ve değişik veri formatları

üzerinde gerçekleştirildi. Ancak platform bağımlı bu uygulamalar, kullanıcılara değişik

yapay öğrenme algoritmalarını hızlı ve kolay bir şekilde deneme ve karşılaştırma imkanı

vermemektedir. ML-Lab örnekleme, özellik seçme ve çıkarma, sınıflama, görsel olarak

karşılaştırma ve istatistiksel testler gibi bir çok metoda imkan vermektedir. ML-Lab

kullanıcılara sunduğu geniş algoritma seçeneklerine ek olarak, kullanıcı dostu ve şık bir

arayüz sunmaktadır. ML-Lab’ın bileşen tabanlı uygulama çatısı hem deneyimli kul-

lanıcıları ve araştırmacıları, hem de yapay öğrenme alanına yeni adım atmış kullanıcıları

hedeflemektedir. Bu çalışmadaki yapay öğrenme algoritmaları kullanımı kolay ve güçlü

bir sözdizimine sahip olan Python betikleme dilinde gerçeklenmiştir. ML-Lab sisteme

kolayca yeni algoritmalar ve eklentiler yaplabilmesi için genişletilebilir bir mimaride

tasarlanmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xii

LIST OF ABBREVIATIONS . xiv

ACKNOWLEDGEMENTS . xv

1. INTRODUCTION . 1

1.1. Basic Concepts and Terms . 2

1.2. Related Work . 3

1.3. Motivation . 5

1.4. Outline of the Thesis . 5

2. METHODS . 6

2.1. Classification . 6

2.1.1. k-NN Classification Algorithm 6

2.1.2. Naive Bayes Classification Algorithm 7

2.1.3. SVM Classification Algorithm 8

2.1.4. C4.5 Classification Algorithm 11

2.2. Dimensionality Reduction . 14

2.2.1. PCA . 15

2.2.2. LDA . 16

2.2.3. ISOMAP . 16

2.2.4. Forward Feature Selection . 17

2.3. Resampling . 17

2.3.1. K-fold Cross Validation . 18

2.3.2. 5× 2 Cross Validation . 18

2.4. Evaluation . 18

2.4.1. Confusion Matrix . 18

2.4.2. ROC Curve . 19

vii

2.4.3. PR Curve . 21

2.4.4. Hypothesis Testing . 22

2.5. INTEGRATION METHODS . 23

3. ARCHITECTURE . 25

3.1. Web Interface . 25

3.1.1. Dataset Component . 26

3.1.2. Classification Component . 27

3.1.3. Dimensionality Reduction Component 27

3.1.4. Visualization Component . 27

3.1.4.1. 2D Plotting . 28

3.1.4.2. 3D Plotting . 28

3.1.4.3. Comparison Tables with Latex 28

3.2. Backend . 29

3.2.1. Machine Learning Library . 30

3.2.2. Graphical Library . 30

3.2.3. Workflow Generator Engine . 30

3.2.4. Workflow Processor Engine . 30

3.2.5. Save/Load Workflow Engine . 31

3.2.6. Document Creator Engine . 31

3.2.7. Partitioner Engine . 31

3.2.8. Mailing Engine . 31

4. EXPERIMENTS AND RESULTS . 32

4.1. Datasets . 32

4.1.1. Multiple Features Dataset . 32

4.1.2. Splice Dataset . 32

4.1.3. Thyroid Dataset . 33

4.2. Comparison of Different Classification Algorithms 33

4.3. Comparison of Different Dimensionality Reduction Algorithms 34

4.4. Comparison of Sequential Workflows 35

4.5. Comparison of Different k-NN Algorithms 38

4.6. K-fold Cross Validation . 40

4.7. Comparison of Two Forward Feature Selection 43

viii

4.8. Early Integration . 44

4.9. Late Integration . 44

5. CONCLUSIONS . 48

APPENDIX A: OPTIONS FOR VISUALIZATION COMPONENT 49

APPENDIX B: ML-Lab Machine Learning Library 51

APPENDIX C: ML-Lab GRAPHICAL LIBRARY 54

REFERENCES . 55

ix

LIST OF FIGURES

Figure 2.1. An illustration of Support Vector Machines 9

Figure 2.2. Pseudocode of C4.5 Tree Construction 12

Figure 2.3. A simple decision tree T . 14

Figure 2.4. Pseudocode of Forward Feature Selection 17

Figure 2.5. A Sample Confusion Matrix for Mfeat Dataset 20

Figure 2.6. A Sample ROC Curve for Splice Dataset 21

Figure 2.7. A Sample PR/ROC Curve for Thyroid Dataset 22

Figure 2.8. An illustration of Early Integration with Support Vector Machines 24

Figure 2.9. An illustration of Late Integration with Support Vector Machines 24

Figure 3.1. Main screen of ML-Lab with a sample workflow 25

Figure 3.2. A Sample 2D Plotting for Mfeat Dataset 28

Figure 3.3. A Sample 3D Plotting for Mfeat Dataset 29

Figure 4.1. Comparison of Different Classification Algorithms 34

Figure 4.2. Comparison of Different Dimensionality Reduction Algorithms . . 35

Figure 4.3. LDA with 2 Dimension on Splice Dataset 36

x

Figure 4.4. PCA with 2 Dimension on Splice Dataset 36

Figure 4.5. LDA with 3 Dimension on Splice Dataset 37

Figure 4.6. PCA with 3 Dimension on Splice Dataset 37

Figure 4.7. Comparison of Sequential Workflows 38

Figure 4.8. Comparison of Different k-NN Algorithms and ROC Curves on

Splice Dataset . 40

Figure 4.9. Comparison of Different k-NN Algorithms and PR Curves on Splice

Dataset . 40

Figure 4.10. Comparison of Different k-NN Algorithms and ROC Curves on

Splice Dataset . 41

Figure 4.11. Comparison of Different k-NN Algorithms and PR Curves on Thy-

roid Dataset . 41

Figure 4.12. Comparison of Different k-NN Algorithms 42

Figure 4.13. Comparison of Feature Selection with K-NN and SVM 43

Figure 4.14. Workflow of Early Integration Method 45

Figure 4.15. Confusion Matrix of Early Integrated Mfeat Dataset 45

Figure 4.16. 5-NN on single Mfeat dataset . 46

Figure 4.17. Late Integration Method on Mfeat Dataset 46

xi

Figure 4.18. 3-NN on single Mfeat dataset . 47

Figure 4.19. Late Integration Method . 47

xii

LIST OF TABLES

Table 1.1. Comparison of Algorithms . 4

Table 1.2. Comparison of Evaluation Methods 4

Table 1.3. Comparison of Dimensionality Reduction Methods 4

Table 1.4. Comparison of Technology . 5

Table 2.1. Confusion Matrix . 19

Table 3.1. Comparison Table for Splice Dataset 29

Table 4.1. Comparison Table for Mfeat Training/Validating Dataset 33

Table 4.2. Comparison Table for Splice Dataset 34

Table 4.3. Comparison Table for Thyroid Dataset 34

Table 4.4. Comparison Table of Sequential Workflows for Mfeat Dataset . . . 38

Table 4.5. Comparison Table for Splice . 38

Table 4.6. Comparison Table for Thyroid . 39

Table 4.7. Comparison Table for Splice . 39

Table 4.8. Comparison Table for Thyroid . 42

Table 4.9. Comparison Table for Splice . 42

xiii

Table 4.10. Comparison Table for Thyroid with 3-NN algorithm 43

Table 4.11. Feature Selection . 44

Table A.1. Color table for Visualization Component 49

Table A.2. Marker table for Visualization Component 50

xiv

LIST OF ABBREVIATIONS

AUC Area Under the Curve

AUPC Area Under the PR Curve

FFS Forward Feature Selection

FN False Negative

FP False Positive

k-NN k-Nearest Neighbor Classifier

LDA Linear Discriminant Analysis

PCA Principle Component Analysis

PR Precision Recall

ROC Receiver Operating Characteristic

TN True Negative

TP True Positive

1

1. INTRODUCTION

“Find a bug in a program, and fix it, and the program will work today. Show the

program how to find and fix a bug, and the program will work forever.” - Oliver G.

Selfridge [1].

Ever since computers were invented, researchers have been searching for ways to

get computers to program themselves. Machine learning is the discipline that focuses

on the design and development of algorithms that allow computers to make intelligent

decisions, extract important relationships and recognize complex patterns, based on

experience.

In general, any computer program that can improve its performance at some task

through experience (or training) can be called a learning program [2]. Mitchell [2]

defines learning as follows:

Definition: A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E.

There are three components of a learning method: the concept description lan-

guage, the learning element, and the performance element. The concept description

language is used to represent a model (e.g. rules, probabilities, equations). The learn-

ing element uses the training examples to produce a model in description language.

The performance element is used to make a prediction about a given observation.

Machine learning is part of artificial intelligence, but it is related to many dif-

ferent academic disciplines, especially probability theory and statistics, mathematics,

pattern recognition and theoretical computer science.

2

Machine learning has a broad range of applications such as bioinformatics, com-

puter vision, face detection, spam filtering, medical diagnosis, fraud detection, speech

recognition and customer segmentation.

1.1. Basic Concepts and Terms

Before going on, some terminology used widely in Machine learning applications

is defined below:

A class contains similar objects while objects from different classes are not similar.

Some classes correspond to labels for different populations, for example whether a

person is a male or female. In this case, we certainly know that males and females

from separate classes. A class is represented as a random variable, for example: the

customer will buy the product (class =1) or not (class = 0).

We can assume that there are n possible classes in the problem, labeled c1 to cn,

organized as a set of labels C = {c1, ..., cn} and that each object belongs to one and

only one class [3].

A data set contains labeled information, for example a set of handwritten digits

which are labeled into 10 classes.

A feature is a specification of an attribute and its value. It can be a numeric or

categorical quantity used as input to a classifier (e.g.: ”the weight of an person”).

A feature vector is a vector of features, denoted by an x. In general, a classification

function is a function defined on feature vectors and taking values in a set of class labels.

A model is a structure that summarizes a set of data, generally for prediction.

3

A training set is a collection (X ′i, Yi), ..., (X
′
n, Yn) where (X ′i, Yi) are labeled ex-

amples used for training.

A test set is a collection (X ′i, Yi), ..., (X
′
m, Ym) that is used to validate the perfor-

mance of a classifier.

1.2. Related Work

Before introducing our work, we discuss previous work. There is no web-based

machine learning implementation yet, so we discuss platform-dependent solutions in-

stead. Weka [4] and Orange [5] are the most commonly used frameworks.

Weka is a workbench that contains a collection of visualization tools and algo-

rithms for data analysis and predictive modelling initially proposed in 1993 by the

University of Waikato in New Zealand [4]. It supports data preprocessing, clustering,

classification, regression, visualization, and feature selection methods.

Orange is another component based software suite and includes a range of pre-

processing, modelling and data exploration techniques. Orange project is started at

the University of Ljubljana, Slovenia in 1997 [5].

In the following tables, we compare ML-Lab with Weka and Orange. Table 1.1

shows that ML-Lab, Orange and Weka support the same classification algorithms, but

ML-Lab does not include any clustering/regression method (yet).

Table 1.2 shows the comparison of evaluation methods. ML-Lab supports PR

Curve while none of the other frameworks support it.

4

Table 1.1. Comparison of Algorithms

Algorithms ML-Lab Weka Orange

k-NN
√ √ √

Naive Bayes
√ √ √

SVM
√ √ √

C4.5
√ √ √

Clustering X
√ √

Regression X
√ √

Table 1.2. Comparison of Evaluation Methods

Method ML-Lab Weka Orange

ROC Curve
√ √ √

PR Curve
√

X X

Cross Validation
√ √ √

Hypothesis Testing
√ √

X

Table 1.3 shows the comparison of dimensionality reduction methods of the three

frameworks. ML-Lab supports LDA and ISOMAP, while others do not.

Table 1.3. Comparison of Dimensionality Reduction Methods

Method ML-Lab Weka Orange

PCA
√ √ √

LDA
√

X X

ISOMAP
√

X X

Forward Feature Selection
√ √ √

5

In Table 1.4 we compare the technology (dependency, language, architecture,

license) of the frameworks. ML-Lab is the only framework that is platform-independent

while other frameworks need to be properly installed and configured for the platform.

Table 1.4. Comparison of Technology

Feature ML-Lab Weka Orange

Programming Language Python C++ and Python Java

Platform Depended
√

X X

Extensible Architecture
√ √ √

License GPL GPL GPL

1.3. Motivation

Component-based machine learning frameworks have become a popular applica-

tion area in recent years. Weka [4] and Orange [5] support various machine learning

techniques for pre-processing, classification and visualization but they don’t provide a

platform-independent solution.

Our motivation is to develop a platform-independent and web-based machine

learning framework with an extensible architecture to which in the future different

users, researchers and developers can contribute.

1.4. Outline of the Thesis

The outline of this thesis is as follows. In Chapter 2, we discuss the implemented

machine learning and dimensionality reduction algorithms, resampling and evaluation

methods. In Chapter 3, we discuss our solutions for a platform-independent machine

learning framework, architecture, web interface and backend libraries. In Chapter 4, we

describe the datasets we have used in the experiments, our experimental methodology,

evaluation metrics and the results we have obtained. We conclude and outline future

directions in Chapter 5.

6

2. METHODS

In this chapter, we discuss different methods for classification, dimensionality

reduction, resampling and evaluation of the results that are implemented in ML-Lab.

2.1. Classification

The goal of classification is to build a set of models that can correctly predict the

class of the different objects.

ML-Lab supports k-NN, Naive Bayes, SVM and C4.5 classification algorithms

with a wide range of attributes.

2.1.1. k-NN Classification Algorithm

k-Nearest Neighbor (k-NN) algorithm is a method for classifying objects based

on the closest training examples in the feature space. The k-NN classifier commonly

use the Euclidean distance between a test sample and the specified training samples.

Assume that xi is an input sample with d features (xi1, xi2, . . . , xid) and assume n

is the total number of input samples (i = 1, 2, . . . , n), the Euclidean distance between

sample xi and xj (j = 1, 2, . . . , n) is defined as:

‖xi − xj‖ =

√
(xi1 − xj1)

2 + (xi2 − xj2)
2 + . . .+ (xid − xjd)

2 (2.1)

Let ki to be the number of neighbors among k nearest that belong to Ci and

V k(x) is the volume of the d-dimensional hypersphere centered at x [6]:

p̂(x|Ci) =
ki

NiV k(x)
(2.2)

7

Then we can assume that:

P̂ (Ci|x) =
p̂(x|Ci)P̂ (Ci)

p̂(x)
=
ki
k

(2.3)

k-NN is a typical lazy classification method that does not build a classifier until

a new object needs to be classified. During classification, the distances between the

new object and each object in the training set are computed. So the time complexity

is O(n) [7].

k is a user-defined constant and k-NN algorithm classifies an unlabeled vector by

assigning the label that is the most frequent among the k training samples nearest to

that point.

The best choice of k parameter depends on the data. Choosing a small k value

make the k-NN more sensitive to noise and choosing a big value of k reduces the effect

of noise but the boundaries between classes become less distinct. Cross-validation can

be used to select a good k parameter.

ML-Lab supports resampling methods such as K-fold cross-validation and 5 × 2

cross-validation methods (discussed in Section 2.3). ML-Lab supports an alternative

parameter type to choose the best k value, as will be shown in the experiment results

chapter.

2.1.2. Naive Bayes Classification Algorithm

Naive Bayes is a simple probabilistic classifier based on Bayes’ theorem, where

features are assumed to be independent given the class. The assumption of indepen-

dence makes it much easier to estimate these probabilities since each attribute can

be treated separately. For example, an animal may be considered to be a dog if it is

barking and has four legs. Even if these features depend on each other or upon the

8

existence of the other features, a Naive Bayes classifier considers all of these properties

to independently contribute to the probability that this animal is a dog.

Naive Bayes algorithm works as follows: for each decision class it computes the

conditional probability that decision class is the correct one, given an object’s infor-

mation vector. The algorithm assumes that the object’s attributes are independent.

The probabilities involved in producing the final estimate are computed as frequency

counts from a ”master” decision table [8].

Given the previous description of Naive Bayes, we can say that the probability

of getting the string of feature values P (X1
j = a1, X

2
j = a2, . . . , X

n
j = an|Ci) is just

equal to the product of multiplying together all of the individual probabilities which

is much easier to compute as well as reducing the curse of dimensionality: P (X1
j =

a1|Ci)× P (X2
j = a2|Ci), . . . , P (Xn

j = an|Ci) =
∏

k P (Xk
j = ak|Ci).

Naive Bayes classifier selects the class Ci for which the following computation is

the maximum [9]:

P (Ci|x) ∝ P (Ci)
∏
k

P (Xk
j = ak|Ci) (2.4)

Despite its simplicity, Naive Bayes is successful in many applications. Its advan-

tage is that it requires a small amount of training data to estimate the parameters

necessary for classification.

2.1.3. SVM Classification Algorithm

Support Vector Machines (SVM) is a popular classification algorithm developed

by Vapnik in 1995 and it is based on the Structural Risk Minimization principle [10].

The problem is to find the decision surface that can achieve maximum seperation

between the two classes. Thus, SVM picks the hyperplane that the distance from the

hyperplane to the nearest data point is maximized.

9

Figure 2.1 shows the the idea behind SVM. The dashed lines parallel to the middle

line show how much we can move the decision surface without causing a misclassication

of data. Margin is the distance between these parallel lines and examples closest to

the decision surface are called support vectors that marked with circles. Hyperplane h

separates the two classes with the maximum margin.

Figure 2.1. An illustration of Support Vector Machines

For the linearly separable case, we can select the two hyperplanes of the margin

that there are no points between them and then try to maximize their distance. A

hyperplane can be written as the set of points x satisfying:

w · x + b = 0 (2.5)

vector w and constant b are learned from the training set.

Let xi ∈ Rn (i = 1, 2, ..., l) and y ∈ Rl (yi ∈ {1,−1}) is our training data, The

SVM problem is to find w and b that satisfy the following constraints:

Minimize ‖w‖2 (2.6)

10

so that,∀i : yi[w · x + b] ≥ 1 (2.7)

SVM can be also used to learn non-linear decision functions. There are three

different types of basis functions that are commonly used, such as polynomial, radial

basis function and sigmoid. We can define these kernel function as follows [6]:

• Polynominal kernels up to some degree q in the elemens of xk of the input vector

(e.g., x3
3 or x1 × x4) with kernel:

Kpolynomal(x
t,x) = (xTxt + 1)q (2.8)

where q is selected by user.

• In this case the feature space is infinite dimensional function in the feature space

Radial basis function (RBF) defines the kernel as in Parzen windows, where xt is

the center and σ defines the radius.

Krbf (x
t,x) = exp

[
−||x

t − x||2

σ2

]
(2.9)

• Sigmoid functions:

Ksigmoid(x
t,x) = tanh(2x

T

xt + 1) (2.10)

where tanh(.) has the same shape with sigmoid, except that it ranges between

-1 and + 1.

In our study we evaluated SVM with polynomial kernel, RBF kernel and Sigmoid

kernel and we used LibSVM library implemented by [11].

Choosing which kernel to use and the parameters in these kernel is a tricky

problem. The common approach is experimenting with different values and finding

11

one that works using validation sets and cross-validation methods that we discussed in

Section 2.3.

2.1.4. C4.5 Classification Algorithm

A decision tree is a tree where internal nodes are tests (on input patterns) and

leaf nodes are categories (of patterns). A decision tree algorithm consists of two parts:

creating the tree and applying the tree to the database.

C4.5 is one of the most widely-used decision tree algorithm developed by Ross

Quinlan as an extension to the earlier ID3 algorithm [12]. C4.5 has the same basic tree

creation approach as ID3, but extends its capabilities to classification of continuous

data by grouping together discrete values of an attribute into subsets or ranges [7].

Another advantage of C4.5 is that it can predict values for data with missing attributes

based on knowledge of the relevant domains [13].

C4.5 constructs decision trees with divide and conquer strategy. At each node,

C4.5 tries to find the locally best choice with no backtracking allowed. The pseudocode

in Figure 2.2 describes the tree-construction algorithm of C4.5 [14]:

Step 1: Let T be the set of cases associated at the node. The weighted

frequency, freq(Ci, T) is computed of cases T whose class is Ci.

Step 2: If all cases in T belong to a same class or the number of cases in T is

less than a certain value, then assign the node as a leaf and create a decision node.

Step 3: If T contains cases that belong to two or more classes, then calculate

gain of each attribute.

Step 4: Select the attribute with the highest information gain.

Step 5: If the attribute is continuous, then calculate the threshold.

12

FormTree(T)

(1) ComputeClassFrequency(T);

(2) if OneClass for FewCases: return a leaf;

create a decision node N;

(3) ForEach Attribute A: ComputeGain(A);

(4) N.test = AttributeWithBestGain;

(5) if N.test is continuous: find Threshold;

(6) ForEach T’ in the splitting of T:

(7) if T’ is Empty: Child of N is a leaf;

(8) else Child of N = FormTree(T’);

(9) Compute Errors of N;

return N

Figure 2.2. Pseudocode of C4.5 Tree Construction

Step 6: A decision node has s children where Ti, . . . , Ts are the sets of splitting.

Step 7: For i = [1, s] , if Ti is empty, assign a leaf to the child node.

Step 8: If Ti is not empty, then apply divide and conquer, apply the same steps

on the set Ti plus those cases in T with the unknown value of the selected attribute.

Step 9: Calculate classification error of the node as the sum of errors of the child

nodes. If the classification error is greater than the error of classifying all cases in T,

then assign the node a leaf and remove all sub-trees.

Now let us explain the gain and entropy concepts that we used in our pseudocode.

Gain is used to rank attributes and to build decision trees where at each node we use

the attribute with the greatest gain. Entropy is used to measure how informative a

node is.

13

Let the training data be a set of already classified samples as Si = s1, s2, ..., sn

and each sample as si = x1, x2, ..., xn where x1, x2, ..., xn shows features of the sample.

Let S be the case set, n be the number of classes in the partition S and pi be the

proportion of Si to S, we use the formula below to calculate the entropy:

Entropy(S) =
n∑
i=1

−pi ∗ log2pi (2.11)

The probability pi gives us an indication of how uncertain we are about the data

and log2 measure represents how many bits we would need to use in order to specify

what the class is of a random instance. For example, the result of a fair coin toss, with

the probability 0.5, can be transmitted using −log2(0.5) = 1 bit, which is a zero or 1

(depending the result of the toss). Thus, we use Equation 2.11, a weighted sum of the

log2pi for variables with several outcomes [15].

C4.5 uses the entropy as follows. Let us have a candidate split, T, which partitions

S into several subsets, {S1, ..., Si, ..., Sn}.

EntropyT (S) =
n∑
i=1

PiEntropyT (Si) (2.12)

where Pi is the proportion of records in subset i. Then, to count the gain, we use the

formula below:

Gain(T,A) = Entropy(S)− EntropyT (S) (2.13)

Gain(T, A) represents the increase in information produced by partitioning the

data according to the candidate split T. C4.5 algorithm chooses the optimal split to

be the split that has the greatest information gain, Gain(T,A).

14

Let us show Figure 2.3 shows a simple decision tree T. The decision rules for tree

T as follows [7]:

1. Rule 1: If (A = x1 and B = y1), then Classification = Class 1;

2. Rule 2: If (A = x2 and C = z1, then Classification = Class 2;

3. Rule 3: If (A = x2 and C = z2), then Classification = Class 1.

4. Rule 4: If (A = x1 and B = y2), then Classification = Class 2;

Figure 2.3. A simple decision tree T

At each iteration during the construction, C4.5 chooses the feature of the data

that most efficiently divides the data into subsets that as much as possible contain

instances of the same class.

2.2. Dimensionality Reduction

The curse of dimensionality is a common problem in machine learning. The more

size and complexity of data increases, the more algorithms perform ineffectively.

Dimensionality reduction is the process of transforming the data from a high-

dimensional space to a space of fewer dimensions. Preprocessing the data in order to

get a smaller set of representative features not only reduces the curse of dimensionality

but also the computational cost of many of the algorithms.

15

ML-Lab supports PCA, LDA, ISOMAP and forward feature selection algorithms.

We discuss these methods briefly in the following subsections.

2.2.1. PCA

Principal Component Analysis (PCA) is a linear method for dimensionality re-

duction algorithm that performs a linear mapping of the data to a lower dimensional

space so that the variance of the data in the low-dimensional representation is maxi-

mized.

PCA algorithm first centres the data by substracting the mean and selects the

direction with the largest variation. Then it places an axis in that direction and looks

at the remaining variation. Then it finds another orthogonal axis to the first and covers

as much of the remaining variation as possible [9].

Let the projection of x on the direction of w be z = wTx [6]. We need to find a

w such that Var(z) is maximized:

Var(z) = wTΣw (2.14)

where

Cov(x) = E[(x− µ)(x− µ)T = Σ (2.15)

Maximize Var(z) subject to ||w|| = 1:

maxw1w
T
1 Σw1 − α(wT

1 w1 − 1) (2.16)

where w1 is the eigenvector of Σ and PCA chooses the one with the largest eigenvalue

for Var(z) to be maximum [6].

16

2.2.2. LDA

Linear discriminant analysis (LDA) is another dimensionality reduction algorithm

implemented in ML-Lab. The idea behind LDA is reducing the dimensionality while

keeping as much of the class discriminatory information as possible.

As in PCA, let the projection of x on the direction of w be z = wTx. We need

to find a w where z is k-dimensional and w is d× k [6]. The scatter matrix for Ci is:

Si =
∑
t

rti(x
t −mi)(x

t −mi)
T (2.17)

where rti = 1 if xt ∈ Ci. Then we can write the total within-class scatter as:

SW =
K∑
i=1

Si (2.18)

Let m = 1
K

∑K
i=1 mi and Ni =

∑
t r

t
i , we can define the between-class scatter as:

SB =
K∑
i=1

Ni(mi −m)(mi −m)T (2.19)

Finally, we can find the matrix W that maximizes:

J(W) =

∣∣∣∣WTSBW

WTSWW

∣∣∣∣ (2.20)

2.2.3. ISOMAP

ISOMAP is one of the popular low-dimensional embedding methods. It is devel-

oped by Tenenbaum et al [16] in 2000. ISOMAP uses geodesic distances on a weighted

graph together with metric multidimensional scaling.

17

Isomap defines the geodesic distance to be the sum of edge weights along the

shortest path between two nodes (computed using Dijkstra’s algorithm [17]). It then

uses multidimensional scaling to map the true geodesic distances to coordinates in a

low-dimensional space.

2.2.4. Forward Feature Selection

Forward feature selection (FFS) is a subset selection method that starts with a

null feature-subset and each step, it adds one feature that decreases the error most. It

continues until any further addition does not decrease the error. Pseudo algorithm of

forward selection is as follows [18]:

St ← ø

repeat

j ← arg maxj q(S
t ∪ {j})

St ← St ∪ j

St ← S \ j

until S = ø

Figure 2.4. Pseudocode of Forward Feature Selection

2.3. Resampling

We cannot use the same data both for training and testing and with small data

sets, we need resampling methods to be able to get sufficiently large training and

validation sets for a full data set.

ML-Lab supports Training/Validation, K-fold Cross Validation and 5 × 2 Cross

Validation Methods. To have more reliable results, ML-Lab supports using a separate

set for training the classifier and using a separate set for calculating the error rates.

The training dataset is used to train or build a model. Once a model is built on training

data, we need to find out the accuracy of the model on unseen data. For this purpose,

the model should be used on a dataset that was not used in the training process, a

dataset where we know the actual value of the target variable.

18

2.3.1. K-fold Cross Validation

K-fold cross validation is a resampling method. While Training/Validation method

causes more accurate results, it reduces the amount of data that is available for testing.

K-fold cross validation method divides a data set into k mutually exclusive partitions

of equal size. The classifier trains k times by using one of the sets as the validation set

and the rest of sets as the training set in each time.

The average error of k partitions is called the cross-validated error rate.

2.3.2. 5× 2 Cross Validation

5× 2 Cross Validation is very similar to K-fold Cross Validation, but it performs

five replications of 2-fold cross validation by dividing the dataset into two equal-sized

sets in each replication.

2.4. Evaluation

We discussed different machine learning methods; classification algorithms and

dimensionality reduction algorithms. In this section, we will discuss how to report

and analyze the results. The error and performance of a method can be evaluated by

comparing the prediction with the actual values.

ML-Lab supports calculating the Confusion Matrix, ROC Curve and PR Curve.

2.4.1. Confusion Matrix

A confusion matrix contains information about the actual and predicted classifica-

tions done by the classification algorithm. Each row of the confusion matrix represents

the predictions while each column represents the instances in the actual class (see Table

2.1).

19

Table 2.1. Confusion Matrix

True Class Positive Negative Total

Positive TP FN P

Negative FP TN N

Accuracy (AC) is the proportion of the total number of predictions that are

correct. It is determined using the equation:

accuracy =
TP + TN

P +N
(2.21)

True positive (TP): Number of instances for which both the class label and the

predicted class are positive.

False negative (FN): Number of instances for which the class label is positive and

the predicted class is negative.

False positive (FP): Number of instances for which the class label is negative and

the predicted class is positive.

True negative (TN): Number of instances for which both the class label and the

predicted class are negative.

Figure 2.5 shows the confusion matrix on the Mfeat dataset using 5-NN algorithm.

2.4.2. ROC Curve

Receiver Operator Characteristic (ROC) curves are commonly used to evaluate

the performance in binary classification problems. ROC curves represent the percentage

of true positives on the y axis and false positives on the x axis.

20

0 2 4 6 8
X

0

2

4

6

8

Y

accuracy = 0.629850746269
Workflow: knn 5 on Mfeat Single

Figure 2.5. A Sample Confusion Matrix for Mfeat Dataset

True positive rate is generally called specificity while false negative rate is called

sensitivity.

Specificity = TN/N = TN/(FP + TN) (2.22)

Sensitivity = TP/P = TP/(TP + FN) (2.23)

The closer the curve follows the left-hand border and the top border of the ROC space,

the more accurate is the classifier. ROC curves are commonly used with cross validation

method rather than a point. ML-Lab supports K-fold cross validation and 5 × 2 fold

cross-validation methods for ROC curves. For example using a 10-fold cross-validation,

there will be 10 different ROC curves that correspond to 10 different test sets.

21

The Area Under the Curve (AUC) is equal to the probability that a classifier

will rank a randomly chosen positive instance higher than a randomly chosen negative

one [19]. An example is given in Figure 2.6.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Workflow: knn 5 on Splice Dataset

AUC = 0.93956

Figure 2.6. A Sample ROC Curve for Splice Dataset

2.4.3. PR Curve

Precision-Recall (PR) curves is a plot of the true positive rate (so called, recall)

on the x-axis, and the precision on the y-axis.

The closer curve follows the upper-right portion of the graph, the more accurate

is the test. When the curve is in the lower-left portion of the graph, the classifier’s

performance is low.

Precision =
TP

TP + FP
(2.24)

22

Recall =
TP

TP + FN
(2.25)

An example is given in Figure 2.7.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Workflow: SVM LINEAR on Thyroid Dataset

AUPC = 0.92822
AUC = 0.91648

Figure 2.7. A Sample PR/ROC Curve for Thyroid Dataset

2.4.4. Hypothesis Testing

Hypothesis testing is used to test a particular hypothesis concerning the param-

eters. A result can be assumed to be significant if it is unlikely to have occurred by

chance. ML-Lab supports Paired t Test, 5 × 2 Paired t Test and 5 × 2 Paired F Test

methods.

In Paired t test, we the algorithm K times, on K training/validation set pairs, we

get K error percentages. Let xti = 1 if the classifier makes a misclassification error on

23

instance t of Vi, xti = 0 otherwise [6]. Assume that pi is the error percentage:

pi =

∑N
t=1 x

t
i

N
(2.26)

Then,

m =

∑K
i=1 pi
K

,S2 =

∑K
i=1(pi −m)2

K − 1
(2.27)

Finally we get the following formula for Paired t-test:

√
K(m− p0)

S
∼ tK−1 (2.28)

We reject the null hypothesis that the classification algorithm has higher error

percentage than p0 at significance level α if this value is higher than tα,K−1.

2.5. INTEGRATION METHODS

We covered general classification approaches in Section 2.1. In all these ap-

proaches, we used a single set of data for training and a single classification method

to produce a classifier. Although there is no single best method for all classification

problems, we can always find the best classification method for a given data set. Inte-

gration methods aims to reach an overall better performance than could be achieved

by using each of them separately.

ML-Lab supports Early Integration method and Late Integration Method.

In Early integration, two or more types of data (e.g. different features of a dataset)

are concatenated to form a single set of input vectors and then we give it this large

input vector to a single classification algorithm. Figure 2.8 shows an illustration of

Early integration [20].

24

Figure 2.8. An illustration of Early Integration with Support Vector Machines

Late Integration uses a single dataset and trains multiple classifiers on it and

then combines their decisions by a single classification algorithm. Figure 2.9 shows an

illustration of Late integration [20]. One SVM is trained on each data type, and the

resulting discriminant values are summed.

Figure 2.9. An illustration of Late Integration with Support Vector Machines

25

3. ARCHITECTURE

In this chapter, we discuss ML-Lab’s architecture. ML-Lab consists of two main

parts: the graphical user interface and the backend. The graphical user interface part

is responsible for interacting with the users and providing the connection between

the users and the backend. The user interface of ML-Lab consists of four different

components; Dataset, Classification, Dimensionality Reduction and Visualization. The

backend of ML-Lab consists of two different parts; libraries and engines. Engines are

responsible for processing the workflows by using the libraries and returning the results

to the graphical interface. A screenshot of ML-Lab is given in Figure 3.1.

Figure 3.1. Main screen of ML-Lab with a sample workflow

3.1. Web Interface

ML-Lab’s web interface is responsible for the connection between the user and

the backend. ML-Lab’s interface is designed as a user-friendly interface and consists of

connectable boxes. Each box can be connected together (with the exception of Dataset

26

component) with the help of wires and connected components become workflows. When

a user decides to run the workflow, the graphical user interface component delivers the

workflow with the parameters and the values and sends them to the backend.

ML-Lab’s web interface is written in Django Framework [21] and WireIt library

[22].

3.1.1. Dataset Component

Dataset component is the only component that is not connectable to other com-

ponents. It is responsible for all of the resampling, converting and processing issues.

The Dataset component can be used in three different ways and can take two types of

input. There are three ways to give an input to ML-Lab:

1. Dataset component can take a single set as an input. In this case, ML-Lab will

train and test on the same examples.

2. Dataset component can take a training set and a validation set. In this case, ML-

Lab will train the classifiers from the training set, and will predict the results

from the validation set.

3. K-fold Cross Validation: ML-Lab can take a K parameter and run K-fold cross

validation algorithm.

There are three different data types available in ML-Lab:

1. Numeric data: The default format of ML-Lab.

2. Discrete data: If the given data is discrete, ML-Lab converts it into a numeric

dataset.

3. Kernel Matrix: ML-Lab allows to use kernel matrices for the SVM classifier.

27

3.1.2. Classification Component

The Classification component takes the preprocessed data from the Dataset com-

ponent and runs the selected algorithm with a given set of parameters. This component

interacts with any type of components (e.g. taking a component as an input for itself

or giving an output to be another component’s input).

Classification component supports k-NN, Naive Bayes, SVM and C4.5 classifica-

tion algorithms, as we have discussed earlier in Section 2.1.

3.1.3. Dimensionality Reduction Component

Dimensionality Reduction Component takes the preprocessed data from the Dataset

component and runs the selected algorithm with the given parameters. ML-Lab sup-

ports LDA, PCA, Isomap and Forward Feature Selection methods which we discussed

earlier in Section 2.2.

3.1.4. Visualization Component

This component takes graphic type, color, marker type and various options (grid

background, transparent background or landscape orientation), plots the dataset and

return the graphic as in various formats: EPS, PS, PDF and PNG.

The color, marker and other available options are given in Appendix A.

ML-Lab currently supports Confusion Matrix, ROC Curve, PR Curve and 2D/3D

plotting and Comparison Table in Latex format. Confusion Matrix, ROC Curve and

PR Curve have been discussed in Section 2.4. Now we will introduce the 2D/3D

plotting and Comparison Table visualization options.

28

3.1.4.1. 2D Plotting. 2D Plotting option is used after reducing the dimensionality of

a data to two. Figure 3.2 shows an example of two-dimensional representation of Mfeat

Dataset.

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
X

1.5

1.0

0.5

0.0

0.5

1.0

Y

Workflow: LDA 2 on Mfeat

Figure 3.2. A Sample 2D Plotting for Mfeat Dataset

3.1.4.2. 3D Plotting. 3D Plotting option is used after reducing the dimensionality of

a data to three. Figure 3.3 shows an example of three-dimensional representation of

the Mfeat Dataset.

3.1.4.3. Comparison Tables with Latex. ML-Lab can also generate comparison tables

in .tex format to allow users to embed them in their own documents (see Table 3.1).

29

X

0.3 0.2 0.1 0.0 0.1 0.2 0.3

Y

1.0

0.5

0.0

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Mfeat

Figure 3.3. A Sample 3D Plotting for Mfeat Dataset

Table 3.1. Comparison Table for Splice Dataset

Results 5-NN Naive Bayes SVM

Accuracy 0.79798 0.91658 0.84422

AUC 0.93956 0.97321 0.91648

AUPC 0.94160 0.97310 0.92822

3.2. Backend

ML-Lab’s backend is designed as a library and a set of engines for complicated

tasks. In this section, we will discuss the different libraries and engines of ML-Lab.

30

3.2.1. Machine Learning Library

ML-Lab’s machine learning library consists of all of the classification and dimen-

sionality reduction algorithms that we discussed in earlier chapters. This library is

designed separately from ML-Lab, thus anyone can download this package and use it

for their own projects (Appendix B).

ML-Lab’s machine learning library is written in Python language with scientific

packages; Numpy and Scipy [23].

3.2.2. Graphical Library

ML-Lab’s graphical library consists of procedures for generating a confusion ma-

trix, ROC/PR Curves, 2D/3D plotting methods and can be used seperately from

ML-Lab. In Appendix 3, we explain how to use this graphical library in Python.

ML-Lab’s graphical library is written in Python language with Matplotlib, a 2D

graphics package used for Python for application development and interactive scripting

[24].

3.2.3. Workflow Generator Engine

Workflow generator solves the dependency issues between the connected com-

ponents and constructs a tree structure with ancestors and nodes that shows which

component to be processed after which. After generating the workflow, it sends a

request to the Workflow Processor Engine to process the data.

3.2.4. Workflow Processor Engine

Workflow processor takes a workflow as an input and processes tasks one after the

other. Each task output is an input for the next task. There is no limit for the number

31

of tasks, thus it is possible to create dozens of sequential workflows for experimental

uses.

3.2.5. Save/Load Workflow Engine

ML-Lab allows users to save and load workflows. Save/Load Workflow engine

allows users to save the current workflow from the user interface and can load it at a

later time.

Workflows can also be downloaded to a local disk and can be uploaded to the

server at any time. Thus, users can continue to work on the same workflow.

Each workflow in ML-Lab can be reached using its id, e.g.:

http://www.ml-lab.com/graphic/533

3.2.6. Document Creator Engine

Document Creator Engine converts the graphical results into various document

formats: PS, EPS, PDF and SVG.

3.2.7. Partitioner Engine

This module creates cross fold partition sets from an input sequence while taking

the stratification issue into account. Thus, Partitioner Engine makes sure that the

classes are represented in the right proportions.

3.2.8. Mailing Engine

Users can optionally enter their e-mail address to the Contact Information com-

ponent. In this case, ML-Lab’s e-mail server sends the graphics (in EPS or other

desired document formats) and the url of the workflow to the entered e-mail address.

32

4. EXPERIMENTS AND RESULTS

In this chapter we first describe the datasets we used in our experiments and

next, we present and evaluate the experimental results for the ML-Lab’s algorithms.

4.1. Datasets

In this thesis, demonstrations are done with a multivariate dataset; Multiple

Features and two bioinformatics datasets; Thyroid and Splice.

4.1.1. Multiple Features Dataset

Multiple Features Dataset (mfeat) consists of features of handwritten numerals

(‘0’–‘9’) extracted from a collection of Dutch utility maps. 200 patterns per class

(for a total of 2,000 patterns) have been digitized in binary images. These digits are

represented in terms of the following six feature sets:

• mfeat-fou: 76 Fourier coefficients of the character shapes;

• mfeat-fac: 216 profile correlations;

• mfeat-kar: 64 Karhunen-Love coefficients;

• mfeat-pix: 240 pixel averages in 2 x 3 windows;

• mfeat-zer: 47 Zernike moments;

• mfeat-mor: 6 morphological features.

4.1.2. Splice Dataset

Splice is a dataset containing primate splice-junction gene sequences (DNA) with

associated imperfect domain theory. Splice junctions are points on a DNA sequence at

which ‘superfluous’ DNA is removed during the process of protein creation in higher

organisms.

33

The problem posed in this dataset is to recognize, given a sequence of DNA, the

boundaries between exons (the parts of the DNA sequence retained after splicing) and

introns (the parts of the DNA sequence that are spliced out). This problem consists

of two subtasks: recognizing exon/intron boundaries (referred to as EI sites), and

recognizing intron/exon boundaries (IE sites).

The Splice dataset consists of 512 NB and 483 BD samples.

4.1.3. Thyroid Dataset

The Thyroid–problem task is to decide whether a patient has thyroid over–,

normal– or underfunction. There are 21 feature, 15 of them are binary and 6 of them

are continuous ones. The class probability for the normalfunction is rather high 92.6%

and there are only few samples for disfunctions of the thyroid.

The Thyroid dataset consists of 62 Hyperthroid and 2723 Negative samples.

4.2. Comparison of Different Classification Algorithms

ML-Lab support k-NN, Naive Bayes, SVM and C4.5 classification algorithms.

Figure 4.1 shows the workflow of how to compare different classification algorithms in

one comparison table (see Table 4.1).

Table 4.1. Comparison Table for Mfeat Training/Validating Dataset

Results 7-NN Naive Bayes C4.5 SVM

Accuracy 0.9164 0.8955 0.9044 0.9641

AUC and AUPC values cannot be shown since it is a multiclass dataset.

Table 4.2 shows the comparison table for Splice dataset and Table 4.3 shows the

comparison table for Thyroid dataset.

34

Figure 4.1. Comparison of Different Classification Algorithms

Table 4.2. Comparison Table for Splice Dataset

Results 5-NN Naive Bayes SVM

Accuracy 0.7979 0.9165 0.8442

AUC 0.9395 0.9732 0.9164

AUPC 0.9416 0.9731 0.9282

Table 4.3. Comparison Table for Thyroid Dataset

Results 7-NN Naive Bayes SVM

Accuracy 0.9856 0.9992 0.9906

AUC 0.9944 0.9999 0.9963

AUPC 0.7488 0.9801 0.8124

4.3. Comparison of Different Dimensionality Reduction Algorithms

ML-Lab supports LDA, PCA and Isomap dimensionality reduction algorithms.

Figure 4.2 shows how to compare different dimensionality reduction algoritms. In

35

this comparison, LDA and PCA algorithms are applied to Splice dataset to reduce

the dimensionality to two and plot the results. Figure 4.3 and Figure 4.4 shows the

graphical results of LDA and PCA algorithms.

Figure 4.2. Comparison of Different Dimensionality Reduction Algorithms

After changing the parameter of Dimensionality Reduction box of LDA and PCA

to three and graphic type to 3D Plotting, Figure 4.5 and Figure 4.6 shows the 3D plots

of LDA and PCA.

4.4. Comparison of Sequential Workflows

ML-Lab allows users to create sequential workows, that is, to apply classification

after reducing the dimensionality, or to apply classification algorithms one after one.

Figure 4.7 shows the workflow of comparing the results of applying classification after

LDA, applying classification after PCA, and directly applying classification.

36

8 6 4 2 0 2 4 6
X

15

10

5

0

5

10

15

Y

Workflow: LDA 2 on Splice dataset

Figure 4.3. LDA with 2 Dimension on Splice Dataset

2.2 2.3 2.4 2.5 2.6 2.7 2.8
X

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Y

Workflow: PCA 2 on Splice dataset

Figure 4.4. PCA with 2 Dimension on Splice Dataset

Table 4.4 shows the comparison table of sequential workflows for Mfeat dataset,

Table 4.5 shows the comparison table for Splice dataset and Table 4.6 shows the com-

parison table for Thyroid dataset.

37

X

6
4

2
0

2
4

Y

10

5

0
5

10

10

5

0

5

10

Splice dataset

Figure 4.5. LDA with 3 Dimension on Splice Dataset

X

2.3
2.4

2.5
2.6

2.7

Y

2.0

2.5

3.0

2.0

2.5

3.0

Splice dataset

Figure 4.6. PCA with 3 Dimension on Splice Dataset

38

Figure 4.7. Comparison of Sequential Workflows

Table 4.4. Comparison Table of Sequential Workflows for Mfeat Dataset

Results 4-NN LDA 3 and 4-NN PCA 3 and 4-NN

Accuracy 0.9454 0.8469 0.7984

Table 4.5. Comparison Table for Splice

Results 3-NN LDA 3 and 3-NN PCA 3 and 3-NN

Accuracy 0.8442 0.9246 0.8281

AUC 0.9541 0.9838 0.9142

AUPC 0.9522 0.9836 0.9234

4.5. Comparison of Different k-NN Algorithms

ML-Lab supports a special parameter format for k-NN algorithm. In Figure 4.12,

we will use first-last, count format as 2-6,1 which will help us to compare 2-NN, 3-NN,

4-NN, 5-NN and 6-KNN algorithms respectively.

39

Table 4.6. Comparison Table for Thyroid

Results 3-NN LDA 3 and 3-NN PCA 3 and 3-NN

Accuracy 0.9899 0.9805 0.9892

AUC 0.9969 0.9812 0.9958

AUPC 0.8610 0.4955 0.8190

Table 4.7 shows the comparison table for Splice dataset, Table 4.8 shows the

comparison table for Thyroid dataset for different k-NN algorithms. Figure 4.8 shows

the ROC Curves and Figure 4.9 shows the PR Curves with different k-NN algorithms

on Splice dataset, Figure 4.10 shows the ROC Curves and Figure 4.11 shows the PR

Curves with different k-NN algorithms on Thyroid dataset. Thyroid dataset contains

62 Hyperthroid and 2723 Negative samples where Splice dataset has 512 NB and 483

BD samples. The imbalance between the class samples of Thyroid dataset causes

AUPC values to decrease faster than AUC values. This is because of specificity and

precision values. As discussed in Section 2.4, specificity value is calculated with true

negative (TN) and false positive (FP) values where precision is calculated with true

positive (TP) and false positive (FP) values. Because of the imbalance of the Thyroid

dataset, the change in TN value is much more smaller than TP value. For example,

the change of TN value between 4-NN and 5-NN algorithm is 0.2% where the change

of TP value is 15%. This change causes precision to decrease faster.

Table 4.7. Comparison Table for Splice

Results KNN#2 KNN#3 KNN#4 KNN#5 KNN#6

Accuracy 0.9366 0.8442 0.8703 0.7979 0.8371

AUC 0.9714 0.9541 0.9467 0.9395 0.9342

AUPC 0.9684 0.9522 0.9451 0.9416 0.9370

40

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Workflow: knn 2-6,1 on Splice

KNN = 2, AUC = 0.9714
KNN = 3, AUC = 0.9541
KNN = 4, AUC = 0.9467
KNN = 5, AUC = 0.9395
KNN = 6, AUC = 0.9342

Figure 4.8. Comparison of Different k-NN Algorithms and ROC Curves on Splice

Dataset

0.0 0.2 0.4 0.6 0.8 1.0
X

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Y

Workflow: knn 2-6,1 on Splice

KNN = 2, AUPC = 0.9684
KNN = 3, AUPC = 0.9522
KNN = 4, AUPC = 0.9451
KNN = 5, AUPC = 0.9416
KNN = 6, AUPC = 0.9370

Figure 4.9. Comparison of Different k-NN Algorithms and PR Curves on Splice

Dataset

4.6. K-fold Cross Validation

ML-Lab supports K-Fold Cross Validation technique for estimating the perfor-

mance and we will compare results for 5-Fold Cross Validation. Table 4.9 shows the

41

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Workflow: knn 2-6,1 on Thyroid

KNN = 2, AUPC = 0.9236
KNN = 3, AUPC = 0.8610
KNN = 4, AUPC = 0.8271
KNN = 5, AUPC = 0.7522
KNN = 6, AUPC = 0.7338

Figure 4.10. Comparison of Different k-NN Algorithms and ROC Curves on Splice

Dataset

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Workflow: knn 2-6,1 on Thyroid

KNN = 2, AUC = 0.9984
KNN = 3, AUC = 0.9969
KNN = 4, AUC = 0.9961
KNN = 5, AUC = 0.9948
KNN = 6, AUC = 0.9943

Figure 4.11. Comparison of Different k-NN Algorithms and PR Curves on Thyroid

Dataset

comparison table for Splice dataset and Table 4.10 shows the comparison table for

Thyroid dataset.

42

Figure 4.12. Different k-NN Algorithms

Table 4.8. Comparison Table for Thyroid

Results KNN#2 KNN#3 KNN#4 KNN#5 KNN#6

Accuracy 0.9895 0.9899 0.9877 0.9874 0.9870

AUC 0.9984 0.9969 0.9961 0.9948 0.9943

AUPC 0.9236 0.8610 0.8271 0.7522 0.7338

K-fold Cross Validation with Thyroid dataset also suffers from the imbalance of

samples as we discussed in Section 4.6. The AUPC value is much more smaller with K-

fold Cross Validation, because folds contain a very few amount of hyperthyroid samples

to learn.

Table 4.9. Comparison Table for Splice

Results K-Fold#1 K-Fold#2 K-Fold#3 K-Fold#4 K-Fold#5

Accuracy 0.63 0.7 0.76 0.67 0.7

AUC 0.8375 0.7655 0.8335 0.6906 0.8345

AUPC 0.8742 0.8031 0.7479 0.5714 0.8487

43

Table 4.10. Comparison Table for Thyroid with 3-NN algorithm

Results K-Fold#1 K-Fold#2 K-Fold#3 K-Fold#4 K-Fold#5

Accuracy 0.983 0.985 0.983 0.973 0.982

AUC 0.855 0.961 0.987 0.926 0.870

AUPC 0.477 0.334 0.519 0.441 0.401

4.7. Comparison of Two Forward Feature Selection

Figure 4.13 shows the workflow of how to compare two Forward Selection methods

on the Iris Dataset. The first Feature Selection box uses K-NN algorithm for classifi-

cation and the second Feature Selection box uses SVM algorithm with RBF parameter

for classification.

Figure 4.13. Comparison of Feature Selection with K-NN and SVM

Table 4.11 shows the results of the workflow in Figure 4.13. Feature Selection

with K-NN stops at the 3rd iteration since any further addition does not decrease the

44

error. On the other hand, Forward Selection with SVM continues to select features

in the 4th iteration rather than stopping because the last addition decreases the error

rate.

Table 4.11. Feature Selection on Iris Dataset

K-NN SVM

Iteration 1 0.9599 (Feature: 4) 0.9599 (Feature: 4)

Iteration 2 0.9666 (Feature: 1) 0.9666 (Feature: 1)

Iteration 3 0.9733 (Feature: 3) 0.9799 (Feature: 3)

Iteration 4 0.9666 (None) 0.98666 (Feature 2)

Selected Features 4, 1, 3 4, 1, 3, 2

4.8. Early Integration

Early integration concatenates inputs as one large vector and then uses it in

a single classification algorithm. Figure 4.14 shows how to apply early integration

method to a dataset. In this figure, two features of Mfeat dataset (Mfeat Fou and Mfeat

Mor) are given to a single classification algorithm. Early Integration concatenates two

datasets together and applies 5-NN classifier on this new dataset.

Figure 4.15 shows the confusion matrix after applying the early integration method

to Mfeat dataset. Figure 4.16 shows the confusion matrix without applying early inte-

gration method. As we can see from the confusion matrices, applying early integration

is more accurate, so combining inputs or decisions is useful in increasing accuracy.

4.9. Late Integration

Late integration trains multiple classifiers and combines their decisions by a clas-

sification algorithm. Figure 4.17 shows the workflow of Late integration. ML-Lab first

classifies the Mfeat dataset with 5-NN and 2-NN, and then combines their decisions

using 3-NN algorithm.

45

Figure 4.14. Workflow of Early Integration Method

0 2 4 6 8
X

0

2

4

6

8

Y

accuracy = 0.683582089552
Workflow: knn 5 on Late Mfeat Combined

Figure 4.15. Confusion Matrix of Early Integrated Mfeat Dataset

Figure 4.18 shows the confusion matrix after applying late integration method to

Mfeat dataset. Figure 4.19 shows the confusion matrix without applying late integra-

tion method.

46

0 2 4 6 8
X

0

2

4

6

8

Y

accuracy = 0.629850746269
Workflow: knn 5 on Mfeat Single

Figure 4.16. 5-NN on single Mfeat dataset

Figure 4.17. Late Integration Method on Mfeat Dataset

We find that there is a small difference between late integration and single k-NN.

47

0 2 4 6 8
X

0

2

4

6

8

Y

accuracy = 0.75
Workflow: knn 5 + knn 3 on Mfeat

Figure 4.18. 3-NN on single Mfeat dataset

0 2 4 6 8
X

0

2

4

6

8

Y

accuracy = 0.769696969697
Workflow: knn 3 on Mfeat

Figure 4.19. Late Integration Method

48

5. CONCLUSIONS

In this study, an interactive, web-based machine learning framework is developed.

Our motivation was to implement such a tool to allow researchers and practitioners

compare a wide collection of machine learning algorithms and sophisticated visualiza-

tion and analysis tools online.

We implemented different classification and dimensionality reduction algorithms,

in addition to various resampling, evaluation and integration methods. These methods

are tested on three different datasets. We implemented a sequential framework that

allows to apply classification after reducing dimensionality, or to apply classification

algorithms one by one. From our experiments, we conclude that sequential workflows

give better results.

We implemented Early and Late integration methods. From our experiments, we

conclude that concatenating as a large vector and then use it in a single classification

algorithm (Early method) or training multiple classifiers and combining their decisions

by a classification algorithm (Late method) give more accurate results than directly

using a single classification algorithm.

In our work, we also implemented resampling and evaluating methods. We im-

plemented K-fold Cross Validation and 5× 2 Cross Validation methods for resampling

and we proposed Confusion matrices, ROC and PR Curves for evaluating the results

better.

As future work, we can focus on running streaming jobs in parallel to make ML-

Lab faster. We plan to make both the architecture and the algorithms parallel. We

also plan to add new algorithms, especially for clustering.

There are many different data formats (e.g. csv or arff) in use. We plan to

implement a data format converter.

49

APPENDIX A: OPTIONS FOR VISUALIZATION

COMPONENT

Color Codes: Users can select one of the colors from the color table. Table A.1

shows the color options for visualization component.

Table A.1. Color table for Visualization Component

Color Code

Blue b

Green g

Red r

Cyan c

Magenta m

Yellow y

Black k

White w

Marker: Users can select one of the markers from the marker table. Table A.2

shows the marker options for visualization component.

Title, Xlabel, Ylabel: The title of the graphic, the label of the X axis and the

label of the Y axis.

Grid: If clicked, graphics will be generated with a Grid background.

Transparent: If clicked, graphics will be generated with a transparent back-

ground.

Landscape Mode: If clicked, graphics will be generated in Landscape mode

(horizontal).

50

Table A.2. Marker table for Visualization Component

Marker Description

. Point

, Pixel

o Circle

s Square

p Pentagon

* Star

+ Plus

x x

D Diamond

h Hexagon

1 Triangle Down

2 Triangle Up

3 Triangle Left

4 Triangle Right

Character Limit: Takes an integer as a parameter and limits the characters to

be displayed after the decimal point.

51

APPENDIX B: ML-Lab Machine Learning Library

ML-Lab’s machine learning library supports k-NN, Naive Bayes, C4.5 and SVM

classification algorithms and it can be used seperately from ML-Lab. In this appendix,

we discuss the functions and usage of this library. k-NN Classification Algorithm:

ML-Lab’s k-NN class has two main functions, knn.train and knn.classify:

knn.train: Trains a k-NN classifier on a given set. xs is a list of observations

and ys is a list of the class assignments. Thus, xs and ys should contain the same

number of elements. k is the number of neighbors that should be examined when doing

the classification.

Usage: ml lab.knn.train(xs, ys, k)

Returns: Trained k-NN model.

knn.classify

Classifies an observation into a class by using the trained k-NN model.

Usage: ml lab.knn.classify(k-NN, observation)

Returns: Predicted classes for each dataset element.

k-NN Alternative Input:ML-Lab supports a special parameter format for k-

NN algorithm to compare multiple k-NN algorithms easily.

Usage: First index-Last index, Count Returns: A list of accuracies (one for

each k-NN).

52

Naive Bayes Classification Algorithm: Naive Bayes method of ML-Lab has

two main functions, naive bayes.train,naive bayes.classify:

naive bayes.train: Trains a Naive Bayes classifier on a given set. xs is a list of

observations and ys is a list of the class assignments. Thus, xs and ys should contain

the same number of elements.

Usage: ml lab.naive bayes.train(xs, ys)

Classifies an observation into a class by using the trained Naive Bayes model.

Usage: ml lab.naive bayes.classify(nb, observation)

Returns: Predicted classes for each dataset element.

SVM Classification Algorithm: ML-Lab uses LIBSVM [11] which is a public

domain software for support vector classification. SVM method of ML-Lab has two

main functions, svm.train, svn.classify:

svm.train: Trains a SVM classifier on a given set. xs is a list of observations

and ys is a list of the class assignments. Thus, xs and ys should contain the same

number of elements.

Usage: ml lab.svm.train(xs, ys, parameter)

Returns: Trained SVM model.

SVM method can take 3 different parameter. RBF, LINEAR and SIGMOID

kernels: svm.classify: Classifies an observation into a class by using the trained SVM

model.

Usage: ml lab.svm.classify(svm, observation)

53

Returns: Predicted classes for each dataset element.

C4.5 Classification Algorithm: C4.5 method of ML-Lab has two main func-

tions, c45.train, c45.classify.

c45.train: Trains a c45 classifier on a given set. xs is a list of observations and

ys is a list of the class assignments. Thus, xs and ys should contain the same number

of elements.

Usage: ml lab.c45.train(xs, ys)

Returns: Trained C4.5 model.

c45.classify: Classifies an observation into a class by using the trained C4.5

model.

Usage: ml lab.c45.classify(c45, observation)

Returns: Predicted classes for each dataset element.

54

APPENDIX C: ML-Lab GRAPHICAL LIBRARY

ML-Lab’s graphical library supports Confusion Matrix, ROC Curve, PR Curve,

2D/3D Plotting visualization methods. These methods are all implemented in Python

and can be used seperately from ML-Lab.

Confusion Matrix function: Takes predicted and actual classes for a dataset

and returns the confusion matrix.

Usage: ml lab.confmat(predicted, original)

ROC Curve: Takes the posterior probabilities and original classes for a dataset

and returns the ROC curve and AUC values.

Usage: ml lab.roc curve(posterior probs, original)

PR Curve: Takes the posterior probabilities and original classes for a dataset

and returns the PR curve and AUPC values.

Usage: ml lab.pr curve(posterior probs, original)

2D Plotting: Takes the posterior probabilities and original classes for a dataset

and returns 2D representation.

Usage: ml lab.2D(posterior probs, original)

3D Plotting: Takes the posterior probabilities and original classes for a dataset

and returns 3D representation.

Usage: ml lab.3D(posterior probs, original)

55

REFERENCES

1. Selfridge, O.G., “The Gardens of Learning: A Vision for AI”, Association for the

Advancement of Artificial Intelligence Magazine, Vol. 14, No. 2, 1993.

2. Mitchell, T., Machine Learning , McGraw Hill, 1997.

3. Kuncheva, L.I., Combining pattern classifiers: methods and algorithm, Wiley-

Interscience, 2004.

4. Hall, M., E.Frank, G.Holmes, B.Pfahringer, P.Reutemann, and I.H. Witten, “The

WEKA Data Mining Software: An Update”, SIGKDD Explorations , Vol. 11, Issue

1, 2009.

5. Demsar, J. and B.Zupan, “From Experimental Machine Learning to Interactive

Data Mining, White Paper”, software available at http://www.ailab.si/orange,

2010.

6. Alpaydin, E., Introduction To Machine Learning , The MIT Press, 2004.

7. Berry, M. and M.Browne, Lecture Notes in Data Mining , World Scientific Publish-

ing, 2006.

8. Olson, D.L. and D.Delen, Advanced Data Mining Techniques , Springer, 2008.

9. Marsland, S., Machine Learning: An Algoritmic Perspective, Chapman and

Hall/CRC, 2009.

10. Burges, C.J., A Tutorial on Support Vector Machines for Pattern Recognition, Vol.

2, No. 2, Springer Netherlands, 1998.

11. Chang, C.-C. and C.-J. Lin, LIBSVM: a library for support vector machines , soft-

ware available at http://www.csie.ntu.edu.tw/cjlin/libsvm, 2001.

56

12. Quinlan, J.R., C4.5: Programs for Machine Learning , Morgan Kaufmann Publish-

ers, 1993.

13. Dunham, M., Data Mining: Introductory and Advanced Topics , Prentice Hall,

2003.

14. Ruggeiri, S., “Efficient C4.5”, 2002.

15. Larose, D.T., Discovering Knowledge in Data: An Introduction to Data Mining ,

John Wiley and Sons, 2005.

16. Tenenbaum, J.B., V.Silva, and J.C. Langford, “A Global Geometric Framework

for Nonlinear Dimensionality Reduction”, 2000.

17. Dijkstra, E.W., “A note on two problems in connexion with graphs”, 1959.

18. Borgwardt, K., “Data Mining in Bioinformatics”, Bioinformatics Group MPIs Tub-

ingen, 2000.

19. Fawcett, T., “An introduction to ROC analysis”, Pattern Recognition Letters ,

Vol.27, 2006.

20. Noble, W.S., “Support vector machine applications in computational biology”, In

Kernel Methods in Computational Biology , 2004.

21. Django, “Django, a High-level Python Web framework”, software available at

http://www.djangoproject.com, 2010.

22. Wireit, “A Javascript Wiring Library”, software available at

http://javascript.neyric.com/wireit, 2010.

23. Ascher, D., “Numerical Python”, software available at http://numpy.org, 2001.

24. Barrett, P., J.Hunter, and P.Greenfield, “Matplotlib - A Portable Python Plotting

57

Package”, Astronomical Data Analysis Software and Systems XIV , Vol. 347, 2004.

