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ABSTRACT

BIOMETRIC IDENTIFICATION THROUGH HAND VEIN

PATTERNS

Many biometric systems, such as face, fingerprint and iris have been studied

extensively for personal verification and identification purposes. Biometric identifica-

tion with vein patterns is a more recent approach that uses the vast network of blood

vessels underneath a person’s skin. These patterns in the hands are assumed to be

unique to each individual and they do not change over time except in size. As veins

are under the skin and have a wealth of differentiating features, an attempt to copy

an identity is extremely difficult. These properties of uniqueness, stability and strong

immunity to forgery of the vein patterns make it a potentially good biometric trait

which offers greater security and reliable features for personal identification. In this

thesis, we present a novel hand vein database and a biometric technique based on the

statistical processing of the hand vein patterns. The hand vein database has been

collected under realistic conditions in that subjects had to undergo the procedures of

holding a bag, pressing an elastic ball and cooling with ice, all exercises that force

changes in the vein patterns. The applied recognition techniques are a combination of

geometric and appearance-based techniques and good identification performances have

been obtained on the database.
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ÖZET

EL DAMAR ÖRÜNTÜLERİYLE BİYOMETRİK TANIMA

Yüz tanıma, iris tanıma ve parmak izi tanıma gibi birçok biyometrik sistem, kim-

lik tanıma ve doğrulama amacıyla yaygın bir şekilde çalışılmıştır. Deri altındaki damar

ağını kullanan, damar örüntüleriyle biyometrik tanıma, yeni bir yaklaşımdır. Eldeki bu

örünütülerin kişiye özgü olduğu ve büyüklükleri haricinde değişmediği sanılmaktadır.

Damarlar, deri altında gözlemlendikleri ve zengin ayırtedici özelliklere sahip olduk-

larından, bir kimliği kopyalama girişimi son derece zordur. Teklik, değişmezlik ve tak-

lit edilemezlik gibi özelliklerinden dolayı damar örüntüleri güvenilir ve inandırıcı bir

biyometrik tanıma adayıdır. Bu tezde, el damar örüntülerinin istatistiksel işlenmesine

dayalı bir biyometri tekniği sunulmuştur. El damar veritabanı, kullanıcıların çanta

taşıma, elastik bir topu sıkma, eli buz ile soğutma gibi damar örüntülerini değişmeye

zorlayan işlemlere tabi tutulduğu gerçekçi koşullar altında toplanmıştır. Tanıma için

şekil bilgisi ve görünüme dayalı yöntemlerin karışımı kullanılmıştır ve veritabanı üzerinde

umut vaad edici sonuçlar elde edilmiştir.
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1. INTRODUCTION

Various biometric techniques for personal identification such as face, fingerprint

and iris images have been developed to make the systems more resistant to the prob-

lems of theft, loss, and reliance on the user’s memory. In order to use a technique as

biometric characteristic, it has to satisfy the requirements of universality, distinctive-

ness, permanence, collectability, performance, acceptability and circumvention [1]. In

Table 1.1 comparison of various biometric technologies in terms of these requirements is

given. Universality states that every individual should have the characteristic, distinc-

tiveness states that the biometric data has to be unique to each individual, permanence

measures how well a biometric resists aging and collectability measures how easy it is

to acquire a biometric for measurement. Accuracy, speed, and robustness of the sys-

tem is named as performance criteria. Circumvention defines how easy it is to fool

the authentication system and lastly the acceptability indicates people’s behaviour in

terms of willingness to accept the use of the biometric characteristic.

Identification using vein patterns is less studied compared to other human traits

probably because the vein pattern is not observable under visible light. The structure

of the vein patterns can be detected and captured with the help of infrared sensors.

The visibility of the vein structure depends on various factors such as age, thickness

of the skin, ambient temperature, physical activity, and the imaged part of the hand.

Surface features such as moles, warts, scars and hairs can also affect the quality of the

images.

Vein pattern is the vast network of blood vessels underneath a person’s skin. The

shape of vascular patterns in the same part of the body is distinct from each other [2],

and it is very stable over long periods, unaffected by aging, except in size. In addition,

as the blood vessels are hidden underneath the skin and are invisible to the human eye,

vein patterns are much harder to copy as compared to other biometric features.
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1.1. Motivation

Developments in biometric technologies have achieved sufficiently high recogni-

tion rates under controlled conditions, but the need for reliability, robustness and

convenience is still a major requirement that remains unfulfilled. Vein patterns appear

as a good candidate for a user friendly interface, potentially reliable against elapsed

time and changes in physical conditions. However, there are few studies regarding the

repeatability, uniqueness of the actual vein pattern and considering the effects of tem-

perature and physical activity. Furthermore, algorithm testing is usually carried out

on a limited number of sample images acquired under different hardware setups due

to the lack of open hand vein databases. Creating a large database of real hand vein

patterns is a difficult task in terms of time and money. There are many papers that

report good results but, none of these results are reproducible since the databases are

not open. Thus, in this thesis we collect a hand vein database that is to be opened

to researchers and we offer a novel implementation of different machine learning algo-

rithms and their fusions on the collected hand vein database. The database has been

collected from more than 100 individuals, by considering the effects of temperature and

physical activity on hand veins.

1.2. Literature Review

There are two kinds of imaging technologies, namely Far-infrared (FIR) and Near-

infrared (NIR) imaging. FIR technology that works within the range 8-14 µm is more

suitable for capturing the large veins in the back of the hand, but it is sensitive to

ambient conditions and does not provide a stable image quality. On the other hand,

NIR imaging that works within the range 700-1000 nm produces good quality images

when capturing vein patterns in the back of the hand, palm, and wrist. This band is

more tolerant to changes in environmental and body conditions, but it also faces the

problem of disruption due to skin features such as hairs and scars [5].

L. Wang et al. [5], proposed a person verification system using the thermal-

imaged vein pattern in the back of the hand based on the Line Segment Hausdorff
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Table 1.1. Comparison of various biometric technologies. High, medium and low are

denoted by H, M, and L, respectively [1]

Biometric Identifier U
n
iv
er
sa
li
ty

D
is
ti
n
ct
iv
en
es
s

P
er
m
an

en
ce

C
ol
le
ct
ab

il
it
y

P
er
fo
rm

an
ce

A
cc
ep
ta
b
il
it
y

C
ir
cu
m
ve
n
ti
on

DNA H H H L H L L

Ear M M H M M H M

Face H L M H L H H

Facial thermogram H H L H M H L

Fingerprint M H H M H M M

Gait M L L H L H M

Hand geometry M M M H M M M

Hand vein M M M M M M L

Iris H H H M H L L

Keystroke L L L M L M M

Odor H H H L L M L

Palmprint M H H M H M M

Retina H H M L H L L

Signature L L L H L H H

Voice M L L M L H H
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Table 1.2. Comparative survey of methods

Reference Data Methods and Results

Verification

C.-L. Lin

et al. [3],

32 users, 30 sam-

ples/subjects, total 960

images

Multi-resolution analysis. 5× enrollment.

EER: 3.75

K. A. Toh

et al. [4],

50 users, left and

right hands, 10 sam-

ples/subjects, total

1000 images

Palm vein and palmprint scores are fused

with SUM rule. SVM with RBF kernel is

optimized for the vein features consisting of

sub-sampled vein lines and for the directional

wavelet energy features for palmprint. 5×

enrollment.

L. Wang et

al. [5],

30 users, 9 sam-

ples/subjects, total 270

images

Vein images are skeletonized as in [6] and

LEM. Triple enrollment. EER is claimed to

be 0.

Identification

Y. Ding et

al. [7],

48 users, 5 sam-

ples/subjects, total 240

images

The number of the end points and crossing

points and the distances between them are

used for feature extraction. Single enroll-

ment. Identification rate: 99.1%.

Z. Wang et

al. [8]

100 users, 5 sam-

ples/subjects, total 500

images

Single enrollment. Hausdorff, LEM and Ga-

bor methods yield respectively 58%, 66% and

80%.

This thesis 100 users, 3 sam-

ples/user, 4 conditions,

total 1200 images

ICA1, ICA2, LEM and NMF methods as well

as their fusion are considered. Identification

rates are 94.16% for single enrollment and

97.33% for double enrollment.
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Distance (LHD). They reported correct recognition of all subjects in a database of

100 persons. In another paper, Z. Wang et al. [8] gave comparisons of shape and

texture based methods for vein recognition. While shape similarity is measured via

Hausdorff and Line Edge Map (LEM), texture similarity was measured via Euclidean

distance of Gabor magnitude features. In a dataset of 100 persons, Hausdorff, LEM

and Gabor based methods achieved an accuracy of 58%, 66%, 80%, respectively. They

ended with a conclusion stating that Gabor based feature extraction get much better

performance than traditional shape based methods since Gabor wavelet is robust to

variation on gray-level images. C.-L. Lin et al. [3] present person verification results

using palm dorsal images acquired from infrared (IR) images in the 3.4 - 5 µm band.

Their approach is based on the combination of multiresolution images obtained from

the pre-processed thermal vein images. G. Wang et al. [9] proposed a multimodal

person identification system where palmprint and palm vein modalities were combined

in a single image. Locality Preserving Projection (LPP) was used to extract features

of the fused images and they called this ”Laplacianpalm”.

In [4], the authors collected 1000 NIR images, 10 images each from the right and

left palm, from 50 different individuals. For feature extraction part, they investigated

both palm vein and palm crease texture. For verification with palm vein, they first

applied a Gaussian high pass filter. To enhance the edges of the vein structure, they

applied morphological gradient operations such as erosion and dilation. Support Vector

Machines (SVM) adopting different kernels (SVM-Linear, SVM-Poly, and SVM-RBF)

and a Reduced Multivariate (RM) polynomial have been tested. SVM with RBF kernel

and RM generalizes best for the two-fold experiments.

In [10], the watershed algorithm is directly applied to the gray-scale vein pattern

images instead of gradient images and it is capable of locating the skeletons of the veins.

The over-segmentation problem caused by watershed algorithm is solved by applying an

opening operation followed by closing operation before applying the watershed method.

The weaknesses of the algorithm are noted as merging close veins, missing thin veins

and those that have floating endpoints.
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In [7], the authors used a database of 240 instances, 5 images of one hand for

48 people. In this method, the segmentation effect has been improved from the single

threshold to multi-thresholds. After applying median filtering, the image is thinned

using a combination method of general conditional thinning and templates. The feature

extraction is based on the end points and the crossing points. The distances between

the end points and the distances between the crossing points have been calculated and

the matching experiment is performed using these distances. A pass ratio of 99.1%

has been noted for the approach. The weaknesses of the approach are speed problems

in the segmentation part, the algorithm being simple and small sized database. A

summary of the literature has been presented in Table 1.2.

1.3. Outline

The thesis is orginized as follows: Section 2 investigates the vein anatomy of the

hand and the utilization of far and near-infrared imaging technologies for capturing

veins in various parts of the hand. The imaging setup and the varialibities between

the hand images captured during different times has been explained in a detailed way.

To verify the usefulness of the infrared hand vein images for biometrics, feature

extraction techniques that use ICA, NMF and LEM methods and their fusion is pro-

posed and implemented in Section 3.

In Section 4, the methodology for the experiments is reported and the experimen-

tal results are presented for identification and verification. Section 5 gives concluding

remarks of the thesis and Section 6 future directions for the thesis and new methods

are presented.
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2. HAND VEIN STRUCTURE AND IMAGE

ACQUISITION

New biometric applications based on physiological features have recently emerged,

thanks to the use of different imaging technologies. These methods are used to study

the content of biological pigments and tissue structures by analyzing the absorption

and scattering of the induced light. The structure of the hand veins on the surface of

the hand and image acquisition techniques for hand vein biometry will be discussed

briefly in this chapter.

2.1. Hand Vein Anatomy

The most important physiological features that can be extracted from the back

of the hand are the so called dorsal vein network. This is a network of veins formed by

the dorsal metacarpal veins. There are mainly two types of hand veins found on the

dorsum of the hand, namely cephalic and basilic. The basilic veins are the group of

veins attached with surface of the hand and generally consist of upper limb of the back

of hand. Cephalic veins are the group of veins attached with the elbow of the hand.

The veins of the human body extend or shrink with changes in the body. In

general, no major growth takes place in adult life and hence vein patterns are quite

stable in the age group of 20−50. As the vascular system is a large and essential system

of the body, it is largely affected due to any change in the body; either by nature or

by disease. The diabetes, hypertension, atherosclerosis, metabolic disorders [11] and

tumors [12] are some diseases which affect the vascular systems and either make it

thick or thin. Figure 2.1 illustrates the generic vascular map found on the dorsum of

the hand.
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Figure 2.1. The veins on the dorsum of the hand [13]

2.2. Imaging for Vein Biometrics

When illuminated with a near-infrared light source, absorption of the veins is

larger than other tissues. This causes veins to appear darker than other parts. Using

this information, the veins that are closer to the skin surface are captured with the

help of a near-infrared sensitive camera and an infrared light source.

Figure 2.2. Configuration of a)Reflection based, b) Transmission based, acquision

models [2]
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The image of blood vessels can be acquired by either reflection or transmission

methods as illustrated in Figure 2.2. In the reflection method, hand is placed in front

of the camera and the light source, whereas in the transmission method the hand is

placed between the camera and the light source. The reflection method is commonly

preferred because the light transmittance is easily affected by temperature or weather.

In the transmission method, if the hand’s light transmission is high, the blood vessels

are not visible in the image [2]. The configuration of vein capturing devices are different

for each of the two method. In the reflection method, an illumination device and a

capturing device can be combined because the direction of illumination and capturing

is the same, but in the transmission method, those devices must be used separately

because the direction of illumination and capturing differs.

Apart from the imaging methods, one has to decide which technique to use in

order to capture the veins. There are two main imaging techniques: Far-Infrared (FIR)

and Near-Infrared (NIR).

2.2.1. Near-Infrared (NIR) Imaging of Veins

In the entire electromagnetic spectrum, human eyes can only see the visible band,

which is between 400 − 700 nm. Different objects reflect and emit light in different

bands of the electomagnetic spectrum and there is useful information reflected by the

objects of interest beyond the visible band. Although human vein patterns are not

easily discernable in the visible band, they are easily captured in the near infrared

band.

Biologically, there is a “medical spectral window”which extends approximately

from 700 to 1000 nm, where light in this spectral window penetrates deeply into tissues,

thus allowing for veins to be captured [14]. Therefore, the wavelength of the infrared

light beam coming out from a light source should be within the near-infrared region.

An exampe of this kind of imaging is given in Figure 2.3.

NIR imaging technique captures the major vein patterns in the back of the hand
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Figure 2.3. NIR images of the palm and wrist [5]

like FIR imaging technique. In addition, NIR imaging is capable of capturing images

of the small veins lying in the palm and wrist areas. NIR imaging technique is more

tolerant to the external environment and the subject’s medical condition. However,

when NIR imaging of vein patterns has defects on the skin surface that are also visible

in the image, it will corrupt the structure of the vein patterns and lead to problems in

later processing [5].

2.2.2. Far-Infrared (FIR) Imaging of Veins

It is known that when objects are heated, they emit infrared radiation. The

Far-Infrared (FIR) imaging technology captures an image using the infrared radiation

emitted by the human body. Having the knowledge that veins have higher temperature

than the surrounding tissues, the images containing the heat distribution of body parts

can be clearly captured by the thermal imaging in order to display the desired vein

patterns. Different imaging technologies work within different spectral bands and FIR

images are acquired in the spectral range of 8 − 14 µm. An example is given in

Figure 2.4.

Figure 2.4. FIR images of the hand in an office environment [5]
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FIR images have low levels of contrast that makes it difficult to separate the veins

from the background. FIR imaging technology is very sensitive to external conditions.

Also, the tissue near the blood vessels has similar temperature as the vein due to heat

radiation under FIR imaging. In addition, as the FIR imaging can only capture the

major vein patterns, the information contained in these patterns is limited and it is

difficult to locate the exact position of a vein [5].

2.3. Hand Vein Database

We preferred to use NIR imaging technology in order to capture the vein patterns

in the back of the hand. The hand vein image acquisition setup and the factors that

affect the hand vein patterns are investigated in detail in this chapter.

2.3.1. Hand Vein Image Acquisition Setup

Since the hand vascular pattern lies under the skin, it can not be seen by the

human eye. Therefore, we can not use visible light, which occupies a very narrow band

(300 − 500 nm wavelength), for image acquisition. The principle is that the infrared

light within the wavelength of 700− 1000 nm can pass through most of human tissues

while the hemoglobin in the blood can absorb the infrared light fully [14] and causes

the vascular patterns to appear as black patterns in resulting images. The absorption

spectra of hemoglobin can be observed from Figure 2.5. Therefore, an infrared light

source with proper wavelength is needed to shine the region of interest. Furthermore,

a near-infrared sensitive camera has to be placed above the hand in order to capture

the vein areas that become black under the infrared light source.

NIR imaging technology and reflection method is chosen for image acquisition

part of this thesis. A monochrome NIR CCD camera WAT-902H2 ULTIMATE [15] at-

tached with an infrared lens is used to capture the vein patterns in the back of the hand.

This camera has a good sensitivity in the near infrared spectrum (Figure 2.6 [16]). The

region of interest is irradiated by two IR light sources. Light sources are composed of

6 big infrared LEDs which are placed in a circular combination. Diffusing papers are
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Figure 2.5. Absorption spectra of hemoglobin

placed in front of the infrared light sources to scatter the light uniformly. In order to

eliminate the effects of visible light, the setup is installed in a dark room. The camera

in the overhead position is adjusted approximately 80 cm above the hand stand. Users

were asked to place their hands on a black sheet with the back of the hand facing the

camera. The images were digitized into 640 × 480 pixels with a gray-scale resolution

of 8-bit per pixel and after deinterlacing, the image sizes were reduced to 300 × 240

pixels.

Figure 2.6. Acquisition camera’s spectral response
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2.3.2. Variability in Hand Veins

The database we constructed is acquired in different conditions taking into ac-

count the effects of temperature and physical activity. Furthermore, in order to see the

effects of time lapse the images are captured again for a small subset of the database

after approximately two months later from the first shot.

In Figure 2.7, the changes between different data collection conditions is presented

for the same person. The veins become more visible after the stages of holding bag

and ball squeezing since the blood flow to the region of interest is increased. On the

other hand, after holding an ice pack, the veins become narrower and thus less visible.

After having observed our hand vein images and the images that are reported in the

Figure 2.7. a) Image in normal condition b) After carrying a bag c) After doing the

physical activiy d) After holding the ice.

literature, we can say that the quality of the hand vein images are affected by;

• Camera noise.

• Scattered light source.

• Position of the hand under the camera.

• Temperature.

• Hairs on the back of the hand.

• Depth of veins under the skin.

• Thickness of the veins.

• Amount of the subcutaneous fat.

• Darkness of the skin pigmentation.

• Birth marks, scars, etc.

• Age and gender.



14

• Physical activity.

Moreover, to understand the variability between hand vein images, capturing procedure

is repeated hourly. When the hand vein images are observed in detail, the vein patterns

do not change but in some cases they become less visible. This is due to the person’s

body temperature and the actions he/she performed. The images can be observed from

Figure 2.8.

Figure 2.8. Hourly captured vein images
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3. BIOMETRIC IDENTIFICATION FOR HAND VEINS

The hand vein identification system consists of six main steps of image acquisition,

normalization of hand position, segmentation of the veins, feature exraction, identity

matching and score/decision fusion. The details of the system can be observed from

Figure 3.1.

Figure 3.1. Identification steps for the hand vein biometry system

3.1. Image Acquisition

The data was collected from 100 people, 42 female and 58 male subjects. Three

images were captured for each of the following conditions, hence overall twelve images

per subject:

• Under normal condition,

• After having carried a bag weighing 3 kg. for one minute,

• After having squeezed an elastic ball repetitively (closing and opening) for one

minute,

• After having cooled the hand by holding an ice pack on the surface of the back

of the hand.
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Figure 3.2. The hand vein image acquisition setup

First of all, users place their right hands and then left hands in front of the

camera, and three images are taken in arbitrary poses. This session is named as

“normal (N)”since no attempt to change vein pattern appearence is performed. Then,

capturing proceeds with the left hand. Users are asked to carry a bag in their left hands,

while standing up for one minute. Again three images are acquired and this process is

named as “bag (B)”. Then, the person is asked to squeeze an elastic ball, closing and

opening the fist for one minute, namely “activity (A)”. In the last session, an ice pack

is placed on the back of hand and this session is named as “ice (I)”. We observe that

these actions, which simulate real life conditions have an effect on hand vein pattern

appearence. In total, we obtain 1200 left hand images. In addition, 300 right hands

in normal conditon are also acquired to determine the degree of interchangeability

between the left and right hands. For each individual we are recording the following

information with the vein images in our database:

• Acquisition date,

• Left/right handed information,

• Age,

• Gender,

• If the user doing any sport involving the hands?

• The user’s job.
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Figure 3.3. Data collection steps

The images are named as p(id) (section name) (image number).bmp. For example, for

person 56, bag section and second image will be recorded as p56 bag 2.bmp. Other

sections are named as ’bag’ and ’act’, and ’ice’.

Table 3.1. Database information

Gender Female: 42 person, Male: 58 person

Left/Right Handed Left: 2 person, Right: 98 person

Age Varying between 16-63

3.2. Normalization of the Hand Position

In order to normalize the hand images and obtain the 100× 100 vein region, we

use Yoruk et al. algorithm [17, 18]. The normalization or registration task involves

several consecutive processing steps, namely, segmentation of the hand image from the

background, hand rotation and translation, finding the finger axes and tips, removal

of ring artifacts, completion of the wrist, estimation of finger pivots, rotation and

translation of fingers to standard orientations, Figure 3.5. Hand vein images and

corresponding 100× 100 vein images are shown in Figure 3.4
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Figure 3.4. Hand vein images and region of interest images after normalization

process

3.2.1. Hand Segmentation

Yoruk et al. algorithm starts with a two class K-means clustering algorithm

to separate and extract the hand from the background is followed by morphological

operators to fill in holes. The silhouette of the hand is extracted at the end of the

segmentation stage.

3.2.2. Initial Hand Registration

The registration process of the algoritm involves translation of the centroid of the

binary hand mass and its rotation in the direction of the larger eigenvector of the inertia

matrix [19]. An ellipse fitted to the connected component of the hand object, where the

larger eigenvalue determines the hand orientation and corresponds to themajor axis of

the ellipse.

3.2.3. Finger Tips and Valleys

In order to detect and localize the hand extremities, that is, the fingertips and the

valley between the fingers, the radial distances with respect to a reference point around

the wrist region are computed. This reference point was taken as the first intersection
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Figure 3.5. Processing steps for hand normalization: a) Original hand image; b)

Segmented hand image; c) Illumination corrected hand image (ring removed); d)

Gray-scale, texture enhanced hand image; e) Determination of finger tips and valleys;

f) Initial global registration by translation and rotation: Middle finger length and

palm width for hand image scaling and derivation of the metacarpal pivots; g)

Superposed contours taken from different sessions of the same individual with rigid

hand registration only; h) Superposed contours taken from different sessions of the

same individual after finger orientation normalization; i) Final gray- scale, normalized

hand with cosine-attenuated wrist [17, 18].
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point of the major axis (the larger eigenvector of the inertial matrix) with the wrist

line. The resulting sequence of radial distances yields 4 minima (finger valleys)and 5

maxima (finger tips) corresponding to the sought extremum points.

3.2.4. Wrist Completion

In order to create similar wrist contour for every hand image, wrist region is

tapered off with a cosinusoidal window starting from the half distance between the

pivot line and the wrist line. The wrist line is defined as the horizontal line passing

through the estimated thumb pivot on the globally rotated hand image.

3.2.5. Finger Pivots

The fingers alignment process consists of reorientation of fingers along predeter-

mined directions and around their metacarpal-phalanx pivots or finger pivots.

3.3. Vein Segmentation

Binarization is the quantization of the image into two levels; object (vein) and

backgroud (non-vein). NIR produces images that need to be enhanced prior to further

processing. Due to the fact that the gray level intensity values of the veins vary slowly

across the image, global thresholding techniques do not provide satisfactory results.

3.3.1. Binarization Methods

We have applied four local binarization methods in order to segment the veins,

namely, Yasuda [20], Bernsen [20], Niblack [20], Wang [5] and one global method,

namely, Otsu [20].

3.3.1.1. Bernsen Method. In the local method of Bernsen [20], the threshold is set

at the midrange value, which is the mean of the minimum Ilow(i, j) and maximum
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Ihigh(i, j) gray values in a local window, w=31. However, if the contrast C(i, j) =

Ihigh(i, j) − Ilow(i, j) is below a certain threshold, then that neighborhood is said to

consist only of one class, depending on the value of T (i, j):

T (i, j) =
1

2
(localmax ∗ I(i, j)− localmin ∗ I(i, j)) (3.1)

where C(i, j) = Ihigh − Ilow ≥ 15.

3.3.1.2. Niblack Method. The idea of this method is to vary the threshold over the

image, based on the local mean and local standard deviation. The threshold at pixel

(i, j) is calculated as:

T (i, j) = m(i, j) + k.σi,j (3.2)

where m(i, j) and σ(i, j) are the sample mean and standard deviation values, respec-

tively, in a local neighborhood of 15× 15 and k = −0.2.

3.3.1.3. Wang Method. Due to the fact that the gray-level intensity values of the vein

vary across the image, global thresholding techniques alone do not provide satisfactory

results. Thus, the authors in [5] investigated an algorithm that combines global and

local adaptive thresholding. Local thresholding with global reduction gives a more sat-

isfactory result for segmenting the vein patterns from the background. The algorithm

chooses different threshold values for every pixel in the image based on the analysis of

its surrounding neighbors. For every pixel in the image, its threshold value is set as

the regional mean value subtracted by a global offset.

I
′

(x, y) =











1, I(i, j) ≥ (µij − Tg)

0, Otherwise.

(3.3)
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where µij is the mean value for its 15 × 15 neighborhood, and Tg = 2 is a common

offset for all the pixels.

3.3.1.4. Otsu Method. Otsu suggested minimizing the weighed sum of within-class

variances of the foreground and background pixels to establish an optimum threshold.

In Otsu’s method we exhaustively search for the threshold that minimizes the within-

class variance, defined as a weighed sum of variances of two classes:

σ2
ω(t) = ω1(t)σ

2
1(t) + ω2(t)σ

2
2(t) (3.4)

weights wi are the probabilities of the two classes seperated by a threshold t and σ2
i

are variances of these classes. Otsu shows that minimizing the within-class variance is

equivalent to maximizing the between-class variance:

σ2
b (t) = σ2 − σ2

ω(t) = ω1(t)ω2(t)(µ1(t)− µ2(t))
2 (3.5)

3.3.1.5. Yasuda Method. In the Yasuda method [20] one first applies a normalization

process, followed by a nonlinear smoothing, which preserves the sharp edges and cul-

minating in an adaptive thresholding and segmentation stage. The smoothing consists

of replacing each pixel by the average of its eight neighbors, provided the local pixel

range is below a threshold T1.

An adaptive threshold is applied, whereby any pixel value is attributed to the

background (i.e., set to 255) if the local range is below a threshold T2 or the pixel

value is above the local average, both computed over w × w windows. Otherwise, the

dynamic range is expanded accordingly. Finally, the image is binarized by declaring a

pixel to be an object pixel if its minimum over a 3× 3 window is below T3 or its local

variance is above T4.

The algorithm has four steps;
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(i) Normalization

f1(x, y) =
f(x, y)−min

max−min

(ii) Smoothing

f2(x, y) =











f1(x, y), range(x, y) > T1;

∑

(x′
,y

′ )∈A(x,y)

f1(x
′

, y′)

8
, Otherwise.

(iii) Adaptive Threshold

f3(x, y) =















255, max b(i) < T3 or f2(x, y) > ave b(i);

f2(x, y)−min b(i)

aveb(i)−min b(i)
255, Otherwise.

(iv) Segmentation

b(x, y) =











1, min f3(x, y) < T3 or σ(x, y) > T4;

0, Otherwise.

3.3.2. Comparison of the Binarization Techniques

For comparison of these binarization techniques that are detailed in the previous

section, the scores of various similarity criteria [20], such as accuracy, misclassification

error (ME), Hausdorff distance and Modified Hausdorf (MHD) is presented. Based

on several ground truth-images, these similarity criterias between ground-truth images

and test images are calculated and summarized in Table 3.2. Based on the calculations

the best results have been obtained with the Yasuda method.
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3.3.2.1. Accuracy. Accuracy calculates the percentage of true classified vein pixels. It

is defined as:

Accuracy =
|BO ∩ BT |+ |FO ∩ FT |

|BO|+ |FO|
(3.6)

where BO and FO represent background and foreground of original (ground-truth)

image, BT and FT denote the background and foreground area pixels in the test image.

3.3.2.2. Misclassification Error (ME). Misclassification Error (ME), reflects the per-

centage of background pixels wrongly assigned to foreground, and conversely, fore-

ground pixels wrongly assigned to background. For the two-class segmentation prob-

lem, the definition is:

ME = 1−
|BO ∩ BT |+ |FO ∩ FT |

|BO|+ |FO|
(3.7)

where BO and FO represent background and foreground of original (ground-truth)

image, BT and FT denote the background and foreground area pixels in the test image.

The ME varies from 0 for a perfectly classified image and 1 for a totally wrong binarized

image.

3.3.2.3. Hausdorff Distance (HD). The Hausdorff distance can be used to assess the

shape similarity of the thresholded regions to the ground-truth shapes. Recall that,

given two finite sets of points, say ground-truth and thresholded foreground regions,

their Hausdorff distance is defined as:

H(FO, FT ) = max{dH(FO, FT ), dH(FT , FO)} (3.8)

where, dH(FO, FT ) = maxfO∈FO
d(fO, FT ) = maxfO∈FO

minfT∈FT
‖fO, FT‖ and ‖fO, FT‖

denotes the Euclidean distance of two pixels in the ground-truth and thresholded im-

ages.
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3.3.2.4. Modified Hausdorff Distance (MHD). Since the original definition of the Haus-

dorff distance is rather sensitive to noise, a more robust version of this metric, namely

the Modified Hausdorff Distance (MHD) is defined as;

MHD(FO, FT ) =
1

|FO|

∑

fo∈FO

d(fO, FT ) (3.9)

Table 3.2. Comparison of binarization methods

Accuracy ME HD MHD

Niblack 0.69 0.30 15.85 1.16

Bernsen 0.86 0.13 15.03 0.41

Yasuda 0.94 0.05 12.31 0.27

Wang 0.74 0.25 14.86 0.81

Otsu 0.78 0.21 29.65 2.04

Figure 3.6. Output of different binarization methods on two vein images, (a) vein

image (b) Yasuda (c) Bernsen (d) Wang (e) Niblack (f) Otsu

3.3.3. Skeletonization

After performing Yasuda binarization on the vein images, in order to eliminate

the background noise, the area of the black and the white regions is calculated in a

local window. If the area of the background is smaller than the given size, this block is
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taken as noise and erased. Once a binary map is obtained, a skeletonization algorithm

is applied to the connected components which yields the vein line segments.

The skeleton of a region is defined via the Medial Axis Transformation (MAT) [21].

In order to find the MAT of a region R with border b, for each point p in R, its closest

neighbour in b is found. If p has more than one such neighbor, it is said to belong to

the medial axis (skeleton) of R. For skeletonization bwmorph method with ’skel’ option

of Matlab is used.

3.4. Feature Extraction

In this thesis we have applied both apperance based and geometry based tech-

niques. Appearance based methods such as Independent Component Analysis (ICA)

or Non-negative matrix factorization (NMF) try to find a suitable representation of the

original data while approximating the original data by keeping as much information

as possible whereas geometry-based methods represent an object by its shape/contour.

Appearance-based methods can be divided into two main classes, i.e., local and global

approaches. Local feature is a property of an image located on a single point or small

region. By contrast, global features try to cover the information of the whole image.

The main idea of all of these methods is to project the original data onto a subspace,

that represents the data optimally according to a predefined criterion: independency

of the data (ICA), or non-negative, additive, components (NMF).

We have developed three hand recognition schemes applying both apperance

based and geometry based methods. The first two recognition schemes consider the

whole image and apply two different subspace methods, namely ICA and NMF. The

third method, LEM is based on distances between the contours representing the hand

veins, and hence it is shape-based.
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3.4.1. Independent Component Analysis (ICA)

Independent Component Analysis (ICA) is a technique for extracting statistically

independent variables from a mixture of them. It has been successfully used in many

different applications for finding hidden factors within data to be analyzed or decom-

posing it into the original source signals. ICA assumes that each one of the observed

signals {xi(k), k = 1, .., K}, i = 1, .., N is a mixture of a set of N unknown independent

source signals si which are linearly combined through an unknown mixing matrix A. In

ICA xi and si are combined to form the X and S matrices. There are two architectures

in the literature [22]. We apply both ICA architectures as a feature extraction tool

on texture enhanced vein images. In ICA architecture I (ICA1), xi and si are rows

of N × K matrices and in ICA architecture 2 (ICA2), they are columns of K × N

matrices. We have the following model:

X = AS (3.10)

The data vectors for the ICA analysis are the lexicographically ordered hand image

pixels. The dimension of these vectors is K = 10000, if we assume a 100 × 100

vein image. Briefly, ICA aims to find a linear transformation W for the inputs that

minimizes the statistical dependence between the output components yi, the latter

being estimates of the hypothesized independent sources si:

S ∼= WX (3.11)

In order to find such a transformation W , which is also called separating or de-mixing

matrix, we implemented the fastICA algorithm [23].

3.4.1.1. ICA Architecture I. In the first architecture, each of N individual hand-data

vectors is assumed to be a linear mixture of an unknown set of N statistically indepen-

dent source hands. For this model, images of normalized hands, of size 100× 100 con-

struct data vectors of size 10000. More explicitly, the data matrix X will be N×10000
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Figure 3.7. ICA architecture I

Figure 3.8. ICA architecture II

dimensional. This matrix is decomposed into N independent source components si,

which will take place along the rows of the output matrix S = WX . Each row of

the mixing matrix A(N × N), will contain weighting coefficients specific to a given

hand. It follows then that, for the test hand xi, the ith row of A will constitute an

N -dimensional feature vector. In our work, N was 100, since there were 100 subjects

or “hand sources”.

In the recognition stage, assuming that the test set follows the same synthesis

model with the same independent components, we project a normalized test hand xtest

(1 × 10000), onto the set of predetermined basis functions and compare the resulting

vector of projection coefficients given by: atest = xtestS
T (SST )

−1
. Finally, the indi-

vidual to be tested is simply recognized as the individual i when atest is closest to the

feature vector ai.

3.4.1.2. ICA Architecture II. In the second architecture, the superposition coefficients

are assumed to be independent, but not the basis images. Thus, this model assumes

that, each of K pixels of the hand images result from independent mixtures of random

variables. For this purpose, we start considering the transpose of the data matrix,

XT . We obtain our basis functions (the hand images) in the columns of the estimated
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Figure 3.9. Non-negative Matrix Factorization

mixing matrix A(N ×N). Conversely, the coefficients in the estimated source matrix

are statistically independent. The number of pixels in the hand images was K = 10000,

the number of subjects was N = 100, and finally the number of features used in the

ICA2 architecture was M = 100 .

3.4.2. Non-negative Matrix Factorization

Non-negative Matrix Factorization (NMF) is another matrix factorization tech-

nique with the added constraint that each factor matrix has only non-negative coeffi-

cients, i.e. all elements must be equal to or greater then zero [24]. Given a non-negative

data matrix X of size K×N , we obtain two non-negative matrices W and H such that:

X ∼= WH (3.12)

where W is of size K × L and H of size L × N . Since we force the two matrices to

be non-negative, we can only reconstruct X approximately from their product. The

columns of W can be regarded as basis vectors and the columns of H are utilized as

feature vectors of the corresponding vein images. We use Hoyer’s code [25] for NMF

representation.

3.4.3. Line Edge Map

Line Edge Map (LEM) is an approach that extracts lines from an image edge map

as features. The algorithm can be considered as a combination of template matching

and geometrical feature matching. It was proposed by Gao and Leung [26] and orig-
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inally applied for face recognition. The steps of binarization, skeletonization and line

extraction as adapted to vein images are detailed in the previous section. The basic

unit of LEM is the line segment grouped from pixels of the edge map and matching

of line segments is based on the Line Segment Hausdorff Distance (LHD). Two image

patterns are considered to be similar if their LHD distance is small. LEM extraction

Figure 3.10. Perpendicular and parallel distances (right) and conditions (left) where

d‖(m
l
i, t

l
j) = 0 [26]

process mainly consists of four steps, binarization with Yasuda and noise removal,

skeletonization of the binarized veins and line segments generation from these skele-

tons, Figure 3.11. The binarization and skeletonization of the images are discussed in

Section 3.3 and Section 3.3.3 respectively.

In LEM generation process the vein patterns are divided into a number of line

segments. From a given starting point, we track in one direction storing the coordinates

of the edge points in an array and labeling the pixels in the edge image. We continue

until no more connected points are found, or a junction point is encountered. At this

point the function returns to the start point and tracks in the opposite direction (in its

eight neighborhood). In the array of edge points, we find the size and position of the

maximum deviation from the line that joins the endpoints, if the maximum deviation

exceeds the allowable tolerance than the edge is shortened to the point of maximum

deviation and the process is repeated. The start and end points of these lines are saved

for LHD calculation.

3.4.3.1. Line Segment Hausdorff Distance. While Hausdorff Distance (HD) is a nat-

ural measure for comparing similarity of sets and shapes, its extension called Line

Segment Hausdorff Distance (LHD) is a measure to compare line patterns. LHD incor-
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porates structural information of line segment orientations and line-point associations,

and hence is effective in comparing two shapes made up of a number of curve segments.

Figure 3.11. LEM extraction steps: Vein image, Yasuda binarization, noise removal,

skeletonization and line segments generation

LHD measures the degree of dissimilarity between two LEMs. LEM is a rep-

resentation which records only the end points of line segments on curves. An exam-

ple LEM for the face matching problem is given in Figure 3.12. Given two LEMs,

M l = {ml
1, m

l
2, .., m

l
p} representing a model in the database and T l = {tl1, t

l
2, .., t

l
q}

representing a test input LEM where the superscript l stands for line, LHD computes

vectors such as ~d(ml
i, t

l
j) that represents the dissimilarity between two line segments

ml
i and tlj . It is defined as:

~d(ml
i, t

l
j) =











dθ(m
l
i, t

l
j)

d‖(m
l
i, t

l
j)

d⊥(m
l
i, t

l
j)











(3.13)

where dθ(m
l
i, t

l
j), d‖(m

l
i, t

l
j) and d⊥(m

l
i, t

l
j) are the angular distance, parallel distance

and perpendicular distance, respectively. The distance between the two line segments

ml
i and tlj is:

d
(

ml
i, t

l
j

)

=
√

(

Wadθ(ml
i, t

l
j)
)2

+ d2‖(m
l
i, t

l
j) + d2⊥(m

l
i, t

l
j) (3.14)

Wa, weight for angle distance, is taken as 20 emprically. Line Segment Hausdorff
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Figure 3.12. An illustration of a face LEM [26]

distance is defined as,

HLHD

(

M l, T l
)

= max
(

h
(

M l, T l
)

, h
(

T l,M l
))

(3.15)

where,

h
(

M l, T l
)

=
1

∑

ml
i∈M

l lml
i

∑

ml
i∈M

l

lml
i
· min
tlj∈T

l
d
(

ml
i, t

l
j

)

(3.16)

where, lml
i
is the length of the line segment ml

i.

dθ(m
l
i, t

l
j) = tan (θ) (3.17)

dθ(m
l
i, t

l
j), namely the angular distance computes the smallest intersection angle be-

tween lines ml
i and tlj . Parallel and perpendicular distances are shown in Figure 3.10.

Parallel distance can be calculated as,

d‖(m
l
i, t

l
j) = min

(

l‖1, l‖2
)

(3.18)
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LHD steps are given in Figure 3.14. These steps are:

(i) Two lines of different LEMs.

(ii) Calculate angular distance. dθ(m
l
i, t

l
j) = tan (θ)

(iii) Rotate shorter line to make them parallel.

(iv) Make them parallel to x axis, calculate perpendicular distance. d‖(m
l
i, t

l
j) =

min
(

l‖1, l‖2
)

.

(v) Calculate parallel distance.

3.5. Identity Matching

Similarity scores for each algorithm are calculated using Cosine Similarity Metric

(CSM) and Line Segment Hausdorff Distance (LHD) between test and template images.

For ICA and NMF techniques, L1, L2 and CSM are calculated and the best results

have been obtained with CSM. CSM is calculated as:

dcos(ai, atest) =
ai · atest

‖ai‖ ‖atest‖
(3.19)

On the other hand, for LEM method, as described in Section 3.4.3.1, LHD is

calculated between the line segments of the test LEM and enrollment LEM. LHD

measures the degree of dissimilarity between two LEMs. Two image patterns are

considered to be similar if their LHD distance is small.

3.6. Fusion Methods

We have considered four fusion techniques to improve the performance of the

individual schemes used for the identification and verification tasks. We have used two

score level fusion schemes and two decision level fusion schemes [27]. Combining differ-

ent classifiers with the aim of increasing classification accuracy is a common technique

in the pattern recognition discipline. Borda Count, Majority Voting, Z-score normal-
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Figure 3.13. Three LEMs of the users are displayed on the same figure in order to see

the variations
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Figure 3.14. Calculation steps of parallel, angular and perpendicular distances

ized Sum and Product methods are used in order to fuse the results of the different

classifiers.

3.6.1. Borda Count

Each method assigns its own rank to all the vein patterns in the database based

on their distances to the input vein pattern. The ranks from individual schemes are

summed up to obtain a final rank for each person in the database. Then the identity

of the vein pattern is declared to be the one with the highest rank.

More explicitly, for a c class problem, ranks produced by any classifier Ci are

in the range of [1, .., c], where 1 is the topmost rank that denotes the highly probable

class. Assume that classifier Ci outputs binary valued vectors {di,1, ..., di,c}
T , where

di,j ∈ 1, .., c then Borda count method simply selects the class label which has the

minimum total rank:

arg
c

min
j=1

L
∑

i=1

di,j (3.20)

3.6.2. Majority Voting

Majority voting can be defined as follows: Assume that classifier Ci outputs

binary valued vectors {di,1, ..., di,c}
T ∈ [0, 1], i = 1, .., L, where L is the number of

classifiers, and c is the number of the classes. di,j = 1 if classifier Ci thinks that the
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unknown pattern belongs to ωi, and di,j = 0 otherwise, i.e. each method assigns 1

if the classifier decides that the unknown pattern belongs to the class and assigns 0

otherwise. The class having the highest vote is declared to be the unknown pattern x’s

class.

arg
c

max
j=1

L
∑

i=1

di,j (3.21)

3.6.3. Fixed Arithmetic Combination Rules

When the individual classifiers produce class similarity scores, these scores can

be combined by using simple arithmetic rules such as sum, product,min and max rules.

Assume that classifier Ci outputs continuous valued score values {di,1, ..., di,c}
T , where

di,j ∈ [0, .., 1]. Without any loss of generality, assume that greater values close to 1

mean high similarity. The following equations are used in order to make a decision:

• Sum Rule:

arg
c

max
j=1

L
∑

i=1

di,j (3.22)

• Product Rule:

arg
c

max
j=1

L
∏

i=1

di,j (3.23)

• Max Rule:

arg
c

max
j=1

(
L

max
i=1

[di, j]) (3.24)

Note that arithmetic rules assume the classifier outputs to be in a common range.

It is therefore necessary to normalize scores before fusing them. There are several ways

to perform score normalization:
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(i) Min-max Normalization If the bounds of the score values are known, or can be

estimated, min-max normalization can be easily applied to normalize scores. Let

d be the original score value. The normalized score can be computed as:

d
′

=
d− dMIN

dMAX − dMIN

(3.25)

where dMAX and dMIN represent the minimum and maximum values of the score

range. Depending on the application, dMAX and dMIN values may be known

beforehand. Otherwise, they are generally estimated from the training set.

(ii) Z-score Normalization z-score normalization method transforms the raw scores

into a new range with the help of sample arithmetic mean and standard deviation

as follows:

d
′

=
d− µ

σ
(3.26)

where µ and σ denote sample arithmetic mean and standard deviation, respec-

tively.
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4. EXPERIMENTAL RESULTS

We experimented with the techniques described in Chapter 3 using the hand vein

database we collected, as described in Chapter 2. The hand vein database we used

contains 1200 images of left hands of 100 different people, each person having three

images of his left hand under four different conditions. The images have been collected

in arbitrary poses and there were no control pegs to orient the fingers.

4.1. Methodology

For each individual, three hand vein images were recorded, denoted by the sets 1,

2, 3 and four different session are N, B, A, I, denoting images collected under normal

condition, after bag carrying exercise, after ball pressing exercise and after having

cooled with ice.

4.1.1. Identification Versus Verification

Associating an identity with an individual is called personal identification. The

problem of resolving the identity of a person can be categorized into two types of

problems: verification and identification. Verification or authentication refers to the

problem of confirming or denying a person’s claimed identity and identification refers

to the problem of establishing a person’s identity without any such claim.

In identification mode (one-to-many matching), the user does not provide any

identity claim, but the system must find out the user’s identity from a database of

enrolled users. For the person identification task, we measure the similarity scores

between the test feature vector and all the feature vectors in the database belonging

to N different subjects and confirm the identified user as the person whose hand vein

feature data has the maximum similarity score.

For a person verification task, one must differentiate the genuine hand from the
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impostor hands as the user provides her hand image in support of her claimed identity.

For this purpose, the distances between the hand of the applicant and all the hands in

the database are calculated and the scores are compared against a threshold.

Feature organization and classification methods are identical for the LEM method

and the subspace (ICA, NMF) methods, except that subspace methods use Cosine

Similaritiy Metric (CSM) while LEM uses Line Segment Hausdorff Distance (LHD).

4.1.2. Different Enrollment Set Sizes

In order to see the effect of enrollment size, we ran the identification experiments

with different enrollment sets. As enrollment sets, we used only “normal”images and

as well as all images. In the single enrollment experiments that we use normal images

as enrollment sets, the ordering of the enrollment sets were {(N1), (N2), (N3)} and the

test sets were {(N2,N3), (N1,N3), (N1,N2), (B1,B2,B3), (A1,A2,A3), (I1,I2,I3)}. For

instance, in one experiment, the enrollment set was N1 (100 left hands under normal

conditions), and the test set was (N2,N3), the 200 hand images under normal condition

while it was the 300 hands images (A1,A2,A3) after ball pressing exercise. In double

enrollment experiments, the enrollment sets were {(N1,N2), (N2,N3), (N3,N1)} and the

test sets were {(N3), (N1), (N2), (B1,B2,B3), (A1,A2,A3), (I1,I2,I3)}. More explicitly,

for single enrollment tests, that we used normal images for enrollment (TEST1),

• Enrollment: {(N1)} and Test: {(N2,N3),(B1,B2,B3),(A1,A2,A3) and (I1,I2,I3)}

• Enrollment: {(N2)} and Test: {(N1,N3),(B1,B2,B3),(A1,A2,A3) and (I1,I2,I3)}

• Enrollment: {(N3)} and Test: {(N1,N2),(B1,B2,B3),(A1,A2;A3) and (I1,I2,I3)}

For double enrollment tests, that we used normal images for enrollment (TEST2),

• Enrollment: {(N1,N2)} and Test: {(N3),(B1,B2,B3),(A1,A2,A3) and (I1,I2,I3)}

• Enrollment: {(N2,N3)} and Test: {(N1),(B1,B3,B3),(A1,A2,A3) and (I1,I2,I3)}

• Enrollment: {(N1,N3)} and Test: {(N2),(B1,B2,B3),(A1,A2,A3) and (I1,I2,I3)}
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For 4× enrollment tests that we used all images for enrollment (TEST3),

• Enrollment: {(N1,B1,A1,I1)} and Test: {(N2,N3),(B2,B3),(A2,A3) and (I2,I3)}

• Enrollment: {(N2,B2,A2,I2)} and Test: {(N1,N3),(B1,B3),(A1,A3) and (I1,I3)}

• Enrollment: {(N3,B3,A3,I3)} and Test: {(N1,N2),(B1,B2),(A1,A2) and (I1,I2)}

For 8× enrollment tests that we used all images for enrollment (TEST4),

• Enrollment: {(N1,N2),(B1,B2),(A1,A2) and (I1,I2)} and Test: {(N3,B3,A3,I3)}

• Enrollment: {(N2,N3),(B2,B3),(A2,A3) and (I2,I3)} and Test: {(N1,B1,A1,I1)}

• Enrollment: {(N1,N3),(B1,B3),(A1,A3) and (I1,I3)} and Test: {(N2,B2,A2,I2)}

4.1.3. Time Lapse

In order to see the effect of time lapse on the applied algorithms results, database

collection process is repeated after three months. For 25 people from the database, the

left hand images under normal condition have been collected. The former collected set

is named as “Version 1”and the latter collected images are named as “Version 2”and

the performance comparisons are provided for each set.

4.2. Performance Measures

For identification experiments, identification rates and for verification experi-

ments, Equal Error Rates (EER) and Receiver Operating Characteristics (ROC) curves

have been provided.

4.2.1. Identification Rate

Identification Rate is calculated by dividing the number of true classified tests to

the number of all tests.
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4.2.2. Equal Error Rate

Equal Error Rate (EER) is the rate at which both false accept and false reject

rates are equal. The value of the EER can be easily obtained from the ROC curve.

The EER is an effective way to compare the performances of different systems with

different ROC curves. In general, the lower the EER the more accurate the system is

considered to be. It can be easily read from the ROC plot by taking the point where

FAR and FRR have the same value.

4.2.3. Reciever Operating Characteristics Curve

The Reciever Operating Characteristic Curve (ROC) plot is a visual characteri-

zation of the trade-off between the False Accept Rate (FAR) and the False Reject Rate

(FRR). In general, the matching algorithm performs a decision based on a threshold

which determines how close a template to the input needs to be in order to be con-

sidered a match. More implicitly, ROC curve plots, parametrically as a function of

the decision threshold, the rate of “false positives”(i.e. impostor attempts accepted)

on the x-axis, against the corresponding rate of “true positives”(i.e. genuine attempts

accepted) on the y-axis. ROC curves are threshold independent, allowing performance

comparison of different systems under similar conditions, or of a single system under

differing conditions [28]. If the threshold is reduced, there will be less false non-matches

but more false accepts. Correspondingly, a higher threshold will reduce the FAR but

increase the FRR.

4.3. Experiments

The results for the single, double, 4× and 8× enrollment tests and the fusion

results for each test have been provided in this section. For the identification experi-

ments we provide identification rate and for verification experiments, we provide Equal

Error Rate (EER) and Receiver Operating Characteristics (ROC) curve for the same

test and enrollment sets.



42

Table 4.1. Results for single enrollment (TEST1): Identification rates and equal error

rates (EER) for verification

Test Set ICA1 ICA2 NMF LEM

N1N2N3
Iden.Rate: 88.66 94.16 81.33 68.5

EER: 4.02 2.47 8.14 13.52

B1B2B3
Iden.Rate: 78.33 72.33 71.44 73.77

EER: 8.01 13.04 12.77 12.13

A1A2A3
Iden.Rate: 75.55 68.88 68.88 71.77

EER: 9.20 13.23 14.11 12.76

I1I2I3
Iden.Rate: 68.77 64.88 66.55 65.77

EER: 11.52 14.88 15.08 14.07

All
Iden.Rate: 77.82 75.06 72.06 69.95

EER: 8.18 10.90 12.53 13.12

Table 4.2. Fusion results of ICA1, LEM and NMF for single enrollment (TEST1)

Test Set ICA1 Majority Voting Borda Count Sum Product

N1N2N3 88.66 86.33 86.00 86.66 85.66

B1B2B3 78.33 77.33 79.00 80.77 79.87

A1A2A3 75.55 75.00 76.22 78.66 78.77

I1I2I3 68.77 72.44 73.44 74.88 74.33

All 77.82 77.78 78.67 80.25 79.67

4.3.1. TEST1: Results for Single Enrollment

Results of the single enrollment experiments are given in Table 4.1. We have

considered two score-level fusion schemes and two decision-level fusion schemes with the

hope to improve the performance of the individual schemes used for the identification

and verification tasks that are detaily explanied in Section 3.6. In Table 4.1, the best

performances have been displayed in boldface. It is observed that for normal test set,

ICA2 performs the best while for the other test sets involving stressed conditions, ICA1

performs superiorly.
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Figure 4.1. ROC curves: Single enrollment (TEST1)

4.3.2. TEST 2: Results for Double Enrollment

The identification rates increases and EER decreases when one moves from sin-

gle enrollment to double enrollment, i.e. better performances have been obtained for

double enrollment (TEST2). Results of the double enrollment experiments are given

in Table 4.3 and the best performances have been displayed in boldface. It is observed

that for normal test set, ICA2 performs the best while for the other test sets involving

stressed conditions, ICA1 performs superiorly.

Score fusion under the Sum rule seems to perform slightly better than fusion under

the Majority Voting, Borda Count and Product rules. Fusion of {ICA1,ICA2,NMF,LEM},

{ICA1,NMF,LEM} and {ICA2,NMF,LEM} have been performed but the best results

have been obtained with the fusion of {ICA1, NMF, LEM}, thus results of this fusion

have been provided. According to the results, fusing of the three methods {ICA1,

NMF,LEM} outperforms the individual techniques.

For both single and double enrollment tests, ICA1 outperformed ICA2, NMF and

LEM. Thus, we have given the ICA1 results on the same ROC curve in Figure 4.4.



44

Table 4.3. Results for double enrollment (TEST2): Identification rates and equal

error rates (EER) for verification

Test Set ICA1 ICA2 NMF LEM

N1N2N3
Iden.Rate: 94.33 97.33 89.67 81.66

EER: 2.43 1.53 4.00 7.41

B1B2B3
Iden.Rate: 88.55 82.88 83.33 88.44

EER: 4.75 8.69 7.33 7.33

A1A2A3
Iden.Rate: 86.44 79.44 81.89 86.66

EER: 6.22 8.00 8.33 6.47

I1I2I3
Iden.Rate: 77.66 74.77 77.22 80.77

EER: 8.22 10.76 10.89 9.13

All
Iden.Rate: 86.74 83.60 83.03 84.38

EER: 5.40 7.24 7.64 7.59
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Figure 4.2. ROC curves: Double enrollment (TEST2)



45

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Similarity Scores

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

genuine distribution
impostor distribution

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

Similarity Scores

P
ro

ba
bi

lit
y 

D
en

si
ty

 

 

genuine distribution
impostor distribution

Figure 4.3. Genuine-impostor distributions, ICA1: TEST1 and TEST2

Table 4.4. Fusion results of ICA1, LEM and NMF for double enrollment (TEST2)

Test Set ICA1 Majority Voting Borda Count Sum Product

N1N2N3 94.33 93.00 93.00 93.66 92.00

B1B2B3 88.55 88.44 89.88 91.33 91.11

A1A2A3 86.44 87.33 87.55 89.22 89.22

I1I2I3 77.66 82.88 84.77 85.44 85.00

All 86.74 87.91 88.80 89.91 89.33
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Figure 4.4. ICA1, ROC curve: Single (TEST1) and double enrollment (TEST2)
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Table 4.5. Results for 4× enrollment (TEST3): Identification rates and equal error

rates (EER) for verification

Test Set ICA1 ICA2 NMF LEM

N1N2N3
Iden.Rate: 94.33 95.33 92.83 87.66

EER: 3.71 1.83 4.49 5.86

B1B2B3
Iden.Rate: 91.83 89.33 90.50 92.00

EER: 4.86 5.79 5.21 4.18

A1A2A3
Iden.Rate: 91.00 89.16 89.66 92.00

EER: 4.98 5.03 5.50 4.63

I1I2I3
Iden.Rate: 89.50 87.33 89.50 89.16

EER: 5.83 4.95 4.48 5.51

All
Iden.Rate: 91.67 90.29 90.63 90.21

EER: 4.85 4.41 4.92 5.05

Table 4.6. Fusion results of ICA1, LEM and NMF for 4× enrollment (TEST3)

Test Set ICA1 Majority Voting Borda Count Sum Product

N1N2N3 94.33 93.83 94.16 95.16 95.16

B1B2B3 91.83 92.50 94.00 94.66 94.66

A1A2A3 91.00 92.16 93.50 95.16 95.00

I1I2I3 89.50 92.50 93.00 95.00 94.50

All 91.67 92.75 93.67 95.00 94.83

4.3.3. TEST3: Results for 4× Enrollment

In the former tests of TEST1 and TEST2, we have used only normal images

for enrollment. In the tests of TEST3 and TEST4 we used all images, i.e normal,

bag, activity and ice images, as enrollment sets. The detailed information about the

enrollment and test sets can be observed from Section 4.1.2. In Table 4.5, the best

performances have been displayed in boldface. It is observed that for normal test set,

ICA2 performs the best while for the other test sets involving stressed conditions, ICA1

performs superiorly.
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Figure 4.5. ROC curves: 4× enrollment (TEST3)

4.3.4. TEST4: Results for 8× Enrollment

In Table 4.7, it is observed that for normal test set ICA2, for bag test set LEM, for

activity test set ICA1 and LEM and for ice test set NMF performs the best. Table 4.5

and Table 4.7 indicate that there is significant improvement when one shifts from single

enrollment set to larger enrollment sets.

4.3.5. Resolution and Population Size Tests

In order to see the effect of the image resolution on the performance of the system,

we have used different images of different resolutions: 30 × 30, 50 × 50, 70 × 70 and

100 × 100. Calculating EER on ICA1 algorithm, the results revealed that when the

resolution decreases, the performance of the system also decreases, Figure 4.7. In

Figure 4.8, the EER for different sized populations can be observed. As the population

size increases, the performance decreases slightly.
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Table 4.7. Results for 8× enrollment (TEST4): Identification rates and equal error

rates (EER) for verification

Test Set ICA1 ICA2 NMF LEM

N1N2N3
Iden.Rate: 97.00 98.66 96.33 94.33

EER: 2.29 1.02 2.00 3.44

B1B2B3
Iden.Rate: 97.00 94.66 95.00 98.00

EER: 3.31 3.00 3.02 1.74

A1A2A3
Iden.Rate: 98.00 96.00 96.00 98.00

EER: 2.94 2.33 2.37 2.60

I1I2I3
Iden.Rate: 94.66 94.33 95.66 94.66

EER: 4.13 2.64 2.00 3.39

All
Iden.Rate: 96.67 95.92 95.75 96.25

EER: 3.17 2.25 2.35 2.79

Table 4.8. Fusion results of ICA1, LEM and NMF for 8× enrollment (TEST4)

Test Set ICA1 Majority Voting Borda Count Sum Product

N1N2N3 97.00 97.66 98.00 98.33 98.33

B1B2B3 97.00 95.66 95.00 97.33 97.00

A1A2A3 98.00 76.44 98.33 98.33 98.33

I1I2I3 94.66 96.33 98.00 98.66 98.33

All 96.67 91.52 97.33 98.16 98.00
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Figure 4.6. ROC curves: 8× Enrollment (TEST4)
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Figure 4.7. ICA1, EER performances for different resolutions (30× 30, 50× 50,

70× 70 and 100× 100)
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Figure 4.8. ICA1, EER performances for different population sizes (20, 50, 80, 100)

for TEST1 and TEST2

4.3.6. Results for Time Lapse

Results of the two sets Version1 and Version2 that are collected at different times

have been provided. There are small identification and EER differences between the

versions. The results can be observed from Table 4.9.

Table 4.9. Results for the data taken in different times (TEST1 and TEST2)

Version Version 1 Version 2

ICA1 (TEST1)
Iden.Rate: 96.00 81.33

EER: 1.98 9.25

ICA1 (TEST2)
Iden.Rate: 98.66 88.00

EER: 0.33 5.02

The experiments revealed that both appearance-based methods, ICA and NMF,

outperform LEM, which is a geometry-based method. In the LEM method, as the

veins become visible in the bag and activity, the identification rates increase. On the
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other hand, for ice images, due to the veins becoming less visible, the identification

and verification performances also decrease.

We use paired t-test to compare the accuracies for statistically significant differ-

ence. At a significance level % 5, the paired t-test confirmed that the algorithms are

statistically different for individual test sets.
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5. CONCLUSIONS

We have collected a near-infrared based hand vein database, acquired under ad-

verse conditions mirroring real life situations and designed a new biometric identifica-

tion system based on hand vein patterns. The novelty of the thesis is the joint con-

sideration of appearance-based and geometry-based features. The appearance-based

features are extracted using ICA and NMF algorithms, and they both have proved

superior to the geometry-based LEM technique. Under normal conditions there is no

advantage accruing to the verification rate from any classifier fusion. However their

fusion turns out to be beneficial for hand vein biometry under stressed conditions. The

major conclusions can be summarized as follows:

• Under stressed conditions, ICA architecture 2 is the best feature set.

• According to all results, ICA architecture 1 is always better then its competitors

ICA2, LEM and NMF.

• For stressed conditions, such as strenuous exercise with the hand, there are large

performance drops.

• Fusion of the classifier scores under sum rule improves the performance.

We have shown that hand vein pattern biometry is a promising technique. Our future

research will address methods to make this biometric technique more robust in adverse

conditions. Our database will be made open for the sake of reproducable results.
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6. FUTURE DIRECTIONS FOR STUDY

There are several possible avenues to pursue hand vein-based biometry. These

can be collected under the clusters of “Extensions of the Present Work”and “New

Methods”.

6.1. Extensions of the Present Work

First, we will attempt to reproduce the methods of other researchers and apply

them on our database. This will allow for a more fair comparison among competing

methods. Each method should have set its parameters at its optimum performance

point and run on our database. Different aspects like scalability with gallery size,

performance at different resolutions should be compared in a detailed way.

Second, we should obtain the intra-subject distance histograms (genuine-to-genuine)

and compare them with inter-subject distance histograms (impostor-to-genuine). In

addition, the right hand-to left hand vein pattern distance histograms would be of

interest, and would indicate whether ambidextrous biometry is possible or not. For

example, right hand identification performances and the identification performances of

left hands on the enrolled right hands will be studied. Another future study will focus

on the fusion of the left and right hand results.

Thirdly, the verification results should be illustrated with ROC: Receiver Op-

erating Characteristic curves and the AuC figure, that is, the area under the ROC

curve should be computed. Recall that AuC is equivalent to the theoretical maximum

achievable correct rate of a binary classification problem. In this way, one can avoid

measures like correct recognition, hit and false alarm rates which can sometimes be

quite misleading since they depend on the operation threshold.

Fourth, the identification results should be illustrated with CMC: Cumulative
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Match Count curves, and similarly, these curves can be reduced to a single number via

calculation of the AuC.

6.2. New Methods

(i) Vessel extraction methods: There is no single best segmentation method to ex-

tract vessels under varying conditions. However, biomedical image research is

replete with methods to extract vessel patterns. A sampling of methods that can

potentially be used is listed in the references [29] to [30].

(ii) Singular points: We conjecture that the geometry of singular points, i.e., bifur-

cations and end points, contain relevant discriminative information. These are

reminiscent of fingerprint biometrics, where the fingerprint pattern is well rep-

resented by the ridge endings and bifurcations and deltas. These critical points

are commonly referred to as minutiae, and they are widely used to match a pair

of fingerprints, and hence to identify a person [29]. For hand biometry, Wang

et al. [31] used a similar set of minutiae points to represent the vein patterns.

The branching points and the ending points in the vein pattern skeleton image

were the two types of critical points to be extracted. We will investigate methods

to combine appearance and/or skeleton information with the spatial distribution

of singularities. Registration process may be applied after LEM construction or

bifurcation and ending points of the hand vein regions may be used for image

alignment.

(iii) Graph-based method for vessel extraction and recognition: Another approach on

vessel tracking is the use of graph representations. The segmentation process is

reduced to finding the optimum path in a graph representation of the image. The

disadvantage of the vessel tracking approaches is that they are not fully automatic,

i.e. they often require selection of the starting and end points. In [32] graph theory

is used in order to track two edges concurently that constructs vessel contours

in angiogram images. The position and size of section and the curvature of the

segment are used in the formal structure model. The detection process employs a

heuristic search method based on a uniform cost A* [33] algorithm. The best edge

is found as the optimum path in a graph representation of the image. A similar
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approach may be implemented and a graph representation of hand vein images

may be extracted. On this content, polygonization of vein skeletons and as well

as non-vein parts may be considered. Similar as fingerprint recognition, in vein

recognition graph-based methods can be used to compare two vein patterns [30].

Using a graph based comparison will also remove the registration step; hence, the

problems encountered during the registration process will be mitigated.

(iv) Foreground and background skeletons: In the present work, we have only used

the skeleton of the foreground. Similarly, the skeleton of the complementary areas

can be used separately or jointly with vessel skeletons for recognition.

(v) Shape spectrum: Shape spectrum is a good shape descriptor, especially for diffuse

shape patterns as in the case of vein patterns. For example, one can use a

morphological opening operation with increasingly larger structural element S(t).

Then the ratio of the area of the for each size t between the resulting pattern and

that of the original pattern can be calculated. The normalized size distribution

is called the pattern spectrum and its derivative called the density function.
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